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Abstract: Despite the existence of a secure and reliable immunization, measles, also known as
rubeola, continues to be a leading cause of fatalities globally, especially in underdeveloped nations.
For investigation and observation of the dynamical transmission of the disease with the influence of
vaccination, we proposed a novel fractional order measles model with a constant proportional (CP)
Caputo operator. We analysed the proposed model’s positivity, boundedness, well-posedness, and
biological viability. Reproductive and strength numbers were also verified to examine how the illness
dynamically behaves in society. For local and global stability analysis, we introduced the Lyapunov
function with first and second derivatives. In order to evaluate the fractional integral operator,
we used different techniques to invert the PC and CPC operators. We also used our suggested
model’s fractional differential equations to derive the eigenfunctions of the CPC operator. There is a
detailed discussion of additional analysis on the CPC and Hilfer generalised proportional operators.
Employing the Laplace with the Adomian decomposition technique, we simulated a system of
fractional differential equations numerically. Finally, numerical results and simulations were derived
with the proposed measles model. The intricate and vital study of systems with symmetry is one of
the many applications of contemporary fractional mathematical control. A strong tool that makes
it possible to create numerical answers to a given fractional differential equation methodically is
symmetry analysis. It is discovered that the proposed fractional order model provides a more realistic
way of understanding the dynamics of a measles epidemic.

Keywords: constant proportional (CP) operator; measles model; biological feasibility; strength
number; eigenfunctions; Hilfer generalised proportional

1. Introduction

Despite the fact that there is a reliable and efficient vaccine, measles, also known
as rubeola, is still a major cause of death globally, particularly in developing nations.
Measles is a contagious viral infection brought on by the “Paramyxovirus”, a member of
the Morbillivirus genus in the Paramyxoviridae family [1]. Children under the age of five
are disproportionately affected, and in 2017, measles claimed the lives of around 110,000
individuals, primarily young children under the age of six [2]. After first affecting the
respiratory system, the measles virus slowly spreads through the bloodstream to other
bodily organs. High fever, a runny or blocked nose, sneezing, sore (or red) eyes, a cough,
and rashes are some of the early signs of measles. The rash typically develops a few days
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after the cold-like symptoms. Measles infections have some serious complications such as
severe diarrhea, dehydration, pneumonia, blindness, malnutrition, lung infection, loss of
immunity, nervous system damage, or even death [3]. Measles is highly contagious, and
the infection can spread very easily from one person to another. An infected person is con-
tagious for approximately 4 days before a significant rash appears. Furthermore, even after
the rash appears, they are still contagious for another four days. The risk of complications
from measles infection continues to be higher in those who have not received the vaccine,
in children, in those with compromised immune systems, and in pregnant women [4].
Vaccination is an effective disease-prevention strategy; therefore, a framework that opti-
mises vaccine coverage levels to halt disease spread is required. In mathematical modeling,
we investigate model construction, parameter estimation, model sensitivity to various
parameters, and numerical simulations [5]. Mathematical models are used to describe
and solve specific issues for the disease under consideration. These mathematical models
help us capture the growth in diseases and provide various techniques to control their
propagation. In recent years, numerous mathematical models have been developed to
investigate the dynamics of measles transmission [6–10].

Researchers’ interest in the idea of fractional calculus has grown recently. In many
fields of mathematics, engineering, and biology, numerous applications of fractional
calculus can be found in the explanation of intricate dynamical systems with memory
effects [11–14]. The most noticeable characteristic of fractional differential equations is
that they distinguish between the genetic and memory characteristics of distinct mathe-
matical models. Therefore, compared to the traditional integer order models, fractional
order models seem to be more factual and empirical. For the semantic and profane prop-
agation of measles in metapopulations, Goufo et al. [15] suggested a fractional order
SEIR epidemic model. A non-singular fractional derivative-based fractional dynamical
analysis of a measles outbreak under vaccination was reported by G. Nazir et al. [16].
Farman et al. [17] developed and provided a numerical solution of an SEIR epidemic model
with non-integer temporal fractional derivatives to control measles in infected populations.
Ogunmiloro et al. [18] investigated two groups of measles-infected and measles-induced
encephalitis-infected people with recurrence under the Atangana–Baleanu–Caputo (ABC)
fractional operator, explaining measles propagation dynamics with a double dose of vacci-
nation. Using the Caputo fractional derivative, Qureshi built an epidemiological model for
a measles epidemic [19]. Numerous studies have employed fractional order derivatives to
study the kinetics of measles transmission [20–23]. Fractional-order mathematical models
of a few more infectious diseases have recently been studied in [24–27].

In order to examine the critical normal form coefficients of bifurcations for both one-
parameter and two-parameter bifurcations, a Lotka–Volterra model was discretised using
a recently revealed nonstandard finite difference method [28]. Currently, COVID-19 is
a widespread infection that is difficult to treat. In their research, Xu et al. [29] used in-
novative operators to observe the impact of vaccination in a COVID-19 model, with a
range of meaningful parameter values that were used to demonstrate the impact of vac-
cination. The Lyapunov approach is one of the most reliable and efficient techniques for
analyzing the stability characteristics of solutions [30]. Researchers have studied many
sorts of stability for fractional differential equations using various fractional derivatives
of Lyapunov functions [31,32]. The Laplace Adomain decomposition method, which is a
potent technique, is the result of the coupling of ADM with the Laplace transform (LADM).
Differential equations are transformed into algebraic equations with the use of the Laplace
transform, and nonlinear factors are then decomposed into Adomain polynomials. This
numerical technique effectively solves a set of stochastic differential equations in addition
to deterministic differential equations. More specifically, it may be applied to a system of
fractional order equations as well as classically ordered ordinary and partial differential
equations that are linear and nonlinear. This approach does not need to be one of per-
turbation or liberalization. Furthermore, unlike RK4, it does not require a set step size.
LADM is more effective than the normal approach, as the authors highlight in [33–35].
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The CPC operator is more general than Caputo’s fractional derivative operator.
Sweilam et al. [36] investigated a fractional order COVID-19 model with the CPC op-
erator and discovered that offered approaches with the CPC operator outperform proposed
methods with the Caputo operator. Researchers studied a HIV pandemic fractional model
using the Caputo operator and the constant proportional Caputo (CPC) operator in [37].
They discovered that the differential transformation approach and the Laplace Adomian
decomposition method are useful in producing approximation findings for the model
studied in this paper. When compared to DTM, LADM produces more consistent out-
comes. The method used in this work is a novel fractional order SVEIHR model to examine
measles dynamics.

The structure of the current paper is as follows: An introduction and a review of the lit-
erature are presented in Section 1. In Section 2, we discuss the fundamentals of the fractional
operator used in the model. In Section 3, we propose a fractional order model on transmis-
sion dynamics of measles and discuss the positiveness and boundedness of the solutions,
the feasible region, the well-posedness, the strength number A0, an analysis of equilib-
rium points, and also examine the local and global asymptotic stability of the fractional
order model using the Lyapunov function first and second derivatives. Section 4 consists
of a detailed analysis of the proposed model using the hybrid fractional operator CPC.
In Section 5, we derive the solution to the proposed system of fractional differential using
the LADM method. In Section 6, the numerical simulations and modeling of the proposed
scheme are shown graphically, and we give an interpretations of the figures to check the
conduct of the disease. The main conclusions of our analysis are covered in Section 7.

2. Preliminaries

Here, we discuss some primary definitions that are useful to analyze the system.

Definition 1. For γ > 0 and any integrable function θ(t), the RLF integral of order γ can be
stated as [38]:

RL
a Iγ

t θ(t) =
1

Γ(γ)

∫ t

a
θ(η)(t− η)γ−1dη, −∞ ≤ a < t ≤ ∞ (1)

Definition 2. In [39], a subsequent operator for generalised non-fractional differentials, often
known as proportional or conformable, was defined as:

PDγ
t θ(t) = K1(γ, t)θ(t) + K0(γ, t)θ′(t) (2)

Here, we use the specific case

K0(γ, t) = γt1−γ , K1(γ, t) = (1− γ)tγ (3)

where K0 and K1 are functions of t and γ∈[0, 1], which fulfil the following criterion for all t∈R:

lim
γ→0+

K0(γ, t) = 0, lim
γ→1−

K0(γ, t) = 1, K0(γ, t) 6= 0, γ ∈ (0, 1] (4)

lim
γ→0+

K1(γ, t) = 1, lim
γ→1−

K1(γ, t) = 0, K1(γ, t) 6= 0, γ ∈ [0, 1) (5)

This may be viewed as a generalization of standard differential operator Dθ(t) = θ′(t),
dependent on γ, which is helpful in regulatory theory [39]. Furthermore, a special case may be
interesting for us, where the functions K0 and K1 are depending only on γ , known as a constant
proportional (CP) operator and defined as:

CPDγ
t = K1(γ)θ(t) + K0(γ)θ

′(t) (6)
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Definition 3. In [38], a hybrid fractional operator, known as proportional Caputo (PC), was
proposed by combining the proportional operator and the Caputo fractional derivative:

PC
0 Dγ

t θ(t) =
1

Γ(1− γ)

∫ t

0

(
K1(γ, η)θ(η) + K0(γ, η)θ′(η)

)
(t− η)−γdη (7)

= RL
0 I1−γ

t

[
K1(γ, t)θ(t) + K0(γ, t)θ′(t)

]
(8)

Consider a specific case where K0 and K1 are independent of t as in the CPDγ, known as the
constant proportional Caputo (CPC) operator, and defined as follows:

CPC
0 Dγ

t θ(t) =
1

Γ(1− γ)

∫ t

0

(
K1(γ)θ(η) + K0(γ)θ

′(η)
)
(t− η)−γdη (9)

= K1(γ)
RL
0 I1−γ

t θ(t) + K0(γ)
C
0 Dγ

t θ(t) (10)

3. Fractional Order Model on Transmission Dynamics Of Measles

Here, we present a time fractional order scheme of measles transmission dynamics.
Measles transmission dynamics are mathematically modeled in [10] using a deterministic
approach. The model splits the number of people into six groups, including susceptible
S(t), vaccinated V(t), exposed E(t), infected I(t), hospitalisedH(t), and recoveredR(t),
based on each person’s epidemiological state. There is a rate, φ, of recruitment of the
susceptible class on a daily basis. People in the susceptible class get vaccinated at a certain
rate, π, and lose immunity at a certain rate, ω, as their immunity from the vaccine wanes.
The rate at which the exposed class becomes the infected class is β, α is the rate at which
vulnerable individuals are infected, and αSI is the force of infection. When measles
complications arise, infected people attend the hospital at a rate ρ, and when they receive
treatment, they recover from the illness at a rate γ. All classes experience a natural death at
a rate of µ, and measles-related mortality is shown by δ. In this study, the rate of measles
curing naturally has not been taken into account. The aforementioned description may be
expressed as a set of time fractional order differential equations:

CPC
0 Dγ

t S(t) = φ− αSI + ωV − q1S
CPC
0 Dγ

t V(t) = πS − q2V
CPC
0 Dγ

t E(t) = αSI − q3E
CPC
0 Dγ

t I(t) = βE − q4I
CPC
0 Dγ

t H(t) = ρI − q5H
CPC
0 Dγ

t R(t) = σH− µR

(11)

where q1 = (π + µ), q2 = (µ + ω), q3 = (µ + β), q4 = (µ + δ + ρ), and q5 = (σ + δ + µ),
with non-negative initial constraints,

S(0) = S0,V(0) = V0, E(0) = E0, I(0) = I0,H(0) = H0,R(0) = R0 (12)

3.1. Positiveness and Boundness of Solutions

In this part, we investigate the factors that ensure the model’s solutions are positive.
We begin with V(t):

V(t) ≥ V0 e−q2t , ∀t > 0 (13)

and similarly, we have following inequalities:

E(t) ≥ E0 e−q3t , I(t) ≥ I0 e−q4t , ∀t > 0 (14)

H(t) ≥ H0 e−q5t , R(t) ≥ R0 e−(µ)t , ∀t > 0 (15)
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The definition of the norm is:

‖ λ ‖∞= supt∈Dλ
|λ(t)| (16)

We obtain the function’s subsequent inequality, S(t), using this norm:

CPC
0 Dγ

t S(t) = φ− αSI + ωV − q1S , ∀t > 0

≥ −αSI − q1S ≥ −
(
α|I|+ q1

)
S , ∀t > 0

≥ −
(
αsupt∈DI |I|+ q1

)
S ≥ −

(
α|I|∞ + q1

)
S , ∀t > 0

=⇒ S(t) ≥ S0 e−
(

α|I|∞+q1

)
t , ∀t > 0 (17)

3.2. Well-Posedness and Biological Feasibility

In this section, we examine the interval and region where the solution to our system
makes historical sense. Let the entire population be N = S + V + E + I +H +R, then:

CPC
0 Dγ

t N (t) = CPC
0 Dγ

t S(t) +
CPC
0 Dγ

t V(t) +
CPC
0 Dγ

t E(t) +
CPC
0 Dγ

t I(t) +
CPC
0 Dγ

t H(t) +CPC
0 Dγ

t R(t)
= φ− µ(S + V + E + I +H+R)− δI − δH

= φ− µN − δI − δH

In the absence of disease we have,

CPC
0 Dγ

t N (t) = φ− µN

It follows that:
CPC
0 Dγ

t N (t) ≤ 0 if N (t) ≥ φ

µ
, ∀t (18)

and we can express this through a particular comparison principle

N (t) ≤ N (0)e−µt +
φ

µ
(1− e−µt) (19)

Particularly,

N (t) ≤ φ

µ
if N (0) ≤ φ

µ
(20)

This indicates that the feasible region can be used to study the model:

Γ = {(S ,V , E , I ,H,R) ∈ R6
+ : N ≤ φ

µ
} (21)

3.3. Disease-Free Equilibrium

Disease-free equilibrium is when infection does not happen. Consequently, we set
exposed (E), infected (I), and hospitalised (H) classes to zero in system (11), and hence
the outcome provides the equilibrium of a disease-free state (E0) that are described as:

E0 = (S0, V0, E0, I0, H0, R0) =
( q2φ

(q2 + π)µ
,

φπ

(q2 + π)µ
, 0, 0, 0, 0

)
(22)
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3.4. Endemic Equilibrium

Infection leads to endemic equilibrium. Setting the right side equations of system (11)
to zero yields the endemic equilibrium points, which are E∗ = (S∗,V∗, E∗, I∗,H∗,R∗):

S∗ = q3q4
αβ , I∗ = αβq2φ−q1q2q3q4+q3q4ωπ

αq2q3q4

V∗ = πq3q4
αβq2

, H∗ =
ρ

(
αβq2φ+q3q4ωπ−q1q2q3q4

)
αq2q3q4q5

E∗ = αβq2φ−q1q2q3q4+q3q4ωπ
αβq2q3

, R∗ =
σ

(
αβq3φ−q1q2q3q4+q3q4ωπ

)
αµq2q3q4

(23)

3.5. Reproductive Number

We obtain the reproductive number, Drep, using the next generation matrix
technique [40] by:

Drep =
αβS0

q3q4
, where S0 =

q2φ

(q2 + π)µ
(24)

A sensitivity analysis revealed that φ, ω, α, and β have positive indices, while µ, δ, τ,
and ρ have negative indices (see [10]). The highest positive indices are φ and β, while the
highest negative indices are µ and ρ.

3.6. Strength Number

Recently, the “Strength Number”, an extension of the reproduction number, has been
proposed. This number is undergoing many tests to determine whether it can be used to
detect spread complexity, or at the very least, whether it can identify waves in a spread.
Here, we employ the next-generation matrix to estimate the strength number of our model
by calculating the second derivative of the contagious classes:

∂

∂I

(αSI
N

)
= αS ∂

∂I

(
(N − ṄI)
N

)
= −αSI

N 2 (25)

and

FA =

 0 − αS0
N 2 0

0 0 0
0 0 0

 , V−1 =


1
q3

0 0
ν

q3q4
1
q4

0
ρβ

q3q4q5

ρ
q4q5

1
q5


then, det

∣∣FAV−1 − λI
∣∣ = 0 yields

A0 = − αβS0

N 2q3q4
< 0 (26)

where A0 denotes the strength number. A negative strength value suggests that the model
under consideration will only have one magnitude, either a maximum point with two
infection points that indicate a single wave, or an infection that decreases quickly from the
disease-free equilibrium and then rises after a minimum point before stabilizing or ceasing
later. This can be ensured by examining the sign of the second derivative of viral groups.

3.7. First Derivative of Lyapunov

For the endemic Lyapunov function, we set all independent variables in our model, in
our case, {S ,V , E , I ,H,R}, to L < 0, which is the endemic equilibrium (E∗).

Theorem 1. If the reproductive number, Drep, is > 1, the endemic equilibrium points of harmful
impact equilibrium points E* of the survival of fractional order model are globally asymptotically stable.
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Proof. The Lyapunov function can be written as:
L(S∗,V∗, E∗, I∗,H∗,R∗) = (S − S∗ − S∗ ln S

S∗ ) + (V − V∗ − V∗ ln V
V∗ )

+(E − E∗ − E∗ ln E
E∗ ) + (I − I∗ − I∗ ln I

I∗ )

+(H−H∗ −H∗ ln H
H∗ ) + (R−R∗ −R∗ ln R

R∗ )

(27)

Therefore, applying the derivative with respect to t on both sides, we get the following:

dL
dt

= L̇ =
(S − S∗
S

)
Ṡ +

(V − V∗
V

)
V̇ +

(E − E∗
E

)
Ė

+
(I − I∗
I

)
İ +

(H−H∗
H

)
Ḣ+

(R−R∗
R

)
Ṙ (28)

Now, we can write the values for their derivatives as follows:
dL
dt = L̇ =

(S−S∗
S
)(

φ− αSI + ωV − (π + µ)S
)
+
(V−V∗
V
)(

πS − (µ + ω)V
)

+
( E−E∗
E
)(

αSI − (µ + β)E
)
+
( I−I∗
I
)(

βE − (µ + δ + ρ)I
)

+
(H−H∗
H

)(
ρI − (σ + δ + µ)H

)
+
(R−R∗
R

)(
σH− µR

)
Now, setting S = S − S∗, V = V − V∗, E = E − E∗, I = I − I∗, H = H−H∗, and

R = R−R∗ and organizing the above, we obtain:

dL
dt = L̇ = φ− φ

(S∗
S
)
− α

(S−S∗)2I
S + α

(
S−S∗

)2
I∗

S + ωV −ωV∗ −ωV
(S∗
S
)
+ ωV∗

(S∗
S
)

−(π + µ) (S−S
∗)2

S + πS − πS∗ − πS
(V∗
V
)
+ πS∗

(V∗
V
)
− (µ + ω)

(
V−V∗

)2

V + αSI
−αSI∗ − αS∗I + αS∗I∗ − αSI

( E∗
E
)
+ αSI∗

( E∗
E
)
+ αS∗I

( E∗
E
)
− αS∗I∗

( E∗
E
)

−(µ + β) (E−E
∗)2

E + βE − βE∗ − βE
( I∗
I
)
+ βE∗

( I∗
I
)
− (µ + δ + ρ) (I−I

∗)2

I
+ρI − ρI∗ − ρI

(H∗
H
)
+ ρI∗

(H∗
H
)
− (σ + δ + µ) (H−H

∗)2

H + σH− σH∗

−σH
(R∗
R
)
+ σH∗

(R∗
R
)
− µ

(R−R∗)2

R

We may rephrase the above equivalence to separate positive and negative terms, and
we get:

dL
dt

= AE−OE (29)

It can be easily seen that if AE < OE, it implies dL
dt < 0.

However, when S = S∗, V = V∗, E = E∗, I = I∗,H = H∗, andR = R∗, then

0 = AE−OE =⇒ dL
dt

= 0 (30)

We can see that the suggested model has the largest compact invariant set in{
(S∗,V∗, E∗, I∗,H∗,R∗) ∈ Γ :

dL
dt

= 0
}

(31)

which is the point E∗, the endemic equilibrium of the considered model. We conclude that E∗ is
globally asymptotically stable in Γ if AE < OE , through the Lasalle’s invariance principle.

3.8. Second Derivative of Lyapunov Function

To completely comprehend the variations in the function under discussion, study
beyond the first derivative of the provided function is necessary. Therefore, we will
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describe examination of the second derivative of the corresponding Lyapunov function of
our model.

dL̇
dt = d

dt
[(

1− S∗S
)
Ṡ + (1− V∗V

)
V̇ + (1− E∗E

)
Ė + (1− I∗I

)
İ + (1− H∗H

)
Ḣ+ (1− R∗R

)
Ṙ
]

L̈ =
( Ṡ
S
)2S∗ +

( V̇
V
)2V∗ +

( Ė
E
)2E∗ +

( İ
I
)2I∗ +

( Ḣ
H
)2H∗ +

( Ṙ
R
)2R∗ +

(
1− S∗S

)
S̈

+
(
1− V∗V

)
V̈ +

(
1− E∗E

)
Ë +

(
1− I∗I

)
Ï +

(
1− H∗H

)
Ḧ+

(
1− R∗R

)
R̈

where

S̈ = −α(ṠI + İS) + ωV̇ − q1Ṡ , V̈ = πṠ − q2V̇
Ë = α(ṠI + İS)− q3Ė , Ï = βĖ − q4İ (32)

Ḧ = ρİ − q5Ḣ , R̈ = σḢ − µṘ

then, we have
dL̇
dt =

( Ṡ
S
)2S∗ +

( V̇
V
)2V∗ +

( Ė
E
)2E∗ +

( İ
I
)2I∗ +

( Ḣ
H
)2H∗ +

( Ṙ
R
)2R∗

+
(
1− S∗S

)(
− α(ṠI + İS) + ωV̇ − q1Ṡ

)
+
(
1− V∗V

)(
πṠ − q2V̇

)
+
(
1− E∗E

)(
α(ṠI + İS)− q3Ė

)
+
(
1− I∗I

)(
βĖ − q4İ

)
+
(
1− H∗H

)(
ρİ − q5Ḣ

)
+
(
1− R∗R

)(
σḢ − µṘ

)
and

d2L
dt2 = Π̇(S ,V , E , I ,H,R)− α

(
1− S∗S

)
(ṠI + İS) +

(
1− S∗S

)
ωV̇ −

(
1− S∗S

)
q1Ṡ

+
(
1− V∗V

)
πṠ −

(
1− V∗V

)
q2V̇ + α

(
1− E∗E

)(
ṠI + İS

)
−
(
1− E∗E

)
q3Ė

+
(
1− I∗I

)
βĖ −

(
1− I∗I

)
q4İ +

(
1− H∗H

)
ρİ −

(
1− H∗H

)
q5Ḣ

+
(
1− R∗R

)
σḢ −

(
1− R∗R

)
µṘ

Now, replacing Ṡ , V̇ , Ė , İ , Ḣ, and Ṙ with their respective formula from the considered
model, putting all the equations together, and after simplifying into a positive and negative
term, we can write:

d2L
dt2 = Θ1 −Θ2 (33)

It can be observed that d2L
dt2 > 0 if Θ1 > Θ2, d2L

dt2 < 0 if Θ1 < Θ2, and d2L
dt2 = 0 if

Θ1 = Θ2.

3.9. Existence and Uniqueness Analysis

Using a fixed point approach, a solution to the fractional order model exists (11) and
can be obtained. For simplicity, we can write kernels as follows:

G1(t,S ,V , E , I ,H,R) = φ− αS(t)I(t) + ωV(t)− q1S(t)
G2(t,S ,V , E , I ,H,R) = πS(t)− q2V(t)
G3(t,S ,V , E , I ,H,R) = αS(t)I(t)− q3E(t)
G4(t,S ,V , E , I ,H,R) = βE(t)− q4I(t)
G5(t,S ,V , E , I ,H,R) = ρI(t)− q5H(t)
G6(t,S ,V , E , I ,H,R) = σH(t)− µR(t)

(34)

By using theorem [38], we obtain:
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

S(t)− S(0) = 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)[
φ− αS(η)I(η) + ωV(η)− q1S(η)

]
dη

V(t)− V(0) = 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)[
πS(η)− q2V(η)

]
dη

E(t)− E(0) = 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)[
αS(η)I(η)− q3E(η)

]
dη

I(t)− I(0) = 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)[
βE(η)− q4I(η)

]
dη

H(t)−H(0) = 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)[
ρI(η)− q5H(η)

]
dη

R(t)−R(0) = 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)[
σH(η)− µR(η)

]
dη

(35)

Assume that S(t), V(t), E(t), I(t), H(t), R(t), and S∗(t), V∗(t), E∗(t), I∗(t), H∗(t),
and R∗(t) ∈ L[0, 1] are continuous functions such that ‖S(t)‖ ≤ ψ1 , ‖V(t)‖ ≤ ψ2 ,
‖E(t)‖ ≤ ψ3 , ‖I(t)‖ ≤ ψ4 , ‖H(t)‖ ≤ ψ5 , and ‖R(t)‖ ≤ ψ6. Below, we prove that the
kernels G1, G2, G3, G4, G5, and G6 satisfy the Lipchitz condition and contraction.

Theorem 2. The kernel G1 satisfies the Lipschitz condition and contraction if the inequality given
below holds:

0 ≤
(
− αψ4 − q1) < 1 (36)

Proof. Let S(t) and S∗(t) be two functions, then
‖G1(t,S)− G1(t,S∗)‖
= ‖

(
φ− αS(t)I(t) + ωV(t)− q1S(t)

)
−
(
φ− αS∗(t)I(t) + ωV(t)− q1S∗(t)

)
‖

≤ (α)‖I(t)‖)‖S(t)− S∗(t)‖+ q1‖S(t)− S∗(t)‖ ≤
(
α‖I(t)‖+ q1

)
‖S(t)− S∗(t)‖

≤ (αψ4 + q1‖S(t)− S∗(t)‖ ≤ D1‖S(t)− S∗(t)‖

(37)

Suppose that D1 = αψ4 + q1, where ‖I(t)‖ ≤ ψ4, is a bounded function. Hence,

‖G1(t,S)− G1(t,S∗)‖ ≤ D1‖S(t)− S∗(t)‖ (38)

Therefore, for G1, the Lipschitz condition is obtained and if 0 ≤
(
αψ4 + q1) < 1,

then G1 is a contraction. Similarly, the Lipschitz conditions for G2, G3, G4, G5, and G6 are
given below: 

‖G2(t,V)− G2(t,V∗)‖ ≤ D2‖V(t)− V∗(t)‖
‖G3(t, E)− G3(t, E∗)‖ ≤ D3‖E(t)− E∗(t)‖
‖G4(t, I)− G4(t, I∗)‖ ≤ D4‖I(t)− I∗(t)‖
‖G5(t,H)− G5(t,H∗)‖ ≤ D5‖H(t)−H∗(t)‖
‖G6(t,R)− G6(t,R∗)‖ ≤ D6‖R(t)−R∗(t)‖

(39)

where
D2 = q2 , D3 =

(
αψ1ψ4 − q3) , D4 = q4 , D5 = q5 , D6 = µ (40)

‖S(t)‖ ≤ ψ1 and ‖I(t)‖ ≤ ψ4 are bounded functions. If 0 ≤ q2 < 1 , 0 ≤
(
αψ1ψ4 −

q3) < 1 , 0 ≤ q4 < 1 , 0 ≤ q5 < 1 , and 0 ≤ µ < 1 then G2 , G3 , G4 , G5, and G6 are
contractions, respectively.

Theorem 3. The fractional order model (11) has a unique solution if

Π = max{Di} < 1 , i = 1, 2, 3, 4, 5, 6 (41)
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Proof. For this purpose, consider the following equations:
Ω1n(t) = Sn+1(t)− S(t) , Ω2n(t) = Vn+1(t)− V(t)
Ω3n(t) = En+1(t)− E(t) , Ω4n(t) = In+1(t)− I(t)
Ω5n(t) = Hn+1(t)−H(t) , Ω6n(t) = Rn+1(t)−R(t)

(42)

then,

‖Ω1n(t)‖ ≤
[ 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)]
× ‖∆1(t,Sn(t))− ∆1(t,S(t))‖dη

≤
( K1(α)
(K0(γ))2

)
D1‖Sn − S‖ ≤

( K1(α)
(K0(γ))2

)nΠn‖S − S1‖
‖Ω2n(t)‖ ≤

[ 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)]
× ‖∆1(t,Vn(t))− ∆1(t,V(t))‖dη

≤
( K1(γ)
(K0(γ))2

)
D2‖Vn − V‖ ≤

( K1(γ)
(K0(γ))2

)nΠn‖V − V1‖
‖Ω3n(t)‖ ≤

[ 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)]
× ‖∆1(t, En(t))− ∆1(t, E(t))‖dη

≤
( K1(γ)
(K0(γ))2

)
D3‖En − E‖ ≤

( K1(γ)
(K0(γ))2

)nΠn‖E − E1‖
‖Ω4n(t)‖ ≤

[ 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)]
× ‖∆1(t, In(t))− ∆1(t, I(t))‖dη

≤
( K1(γ)
(K0(γ))2

)
D4‖In − I‖ ≤

( K1(γ)
(K0(γ))2

)nΠn‖I − I1‖
‖Ω5n(t)‖ ≤

[ 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)]
× ‖∆1(t,Hn(t))− ∆1(t,H(t))‖dη

≤
( K1(γ)
(K0(γ))2

)
D5‖Hn −H‖ ≤

( K1(γ)
(K0(γ))2

)nΠn‖H −H1‖
‖Ω6n(t)‖ ≤

[ 1
K0(γ)

∫ t
0 (t− η)E1,γ

(
− K1(γ)

K0(γ)
(t− η)

)]
× ‖∆1(t,Rn(t))− ∆1(t,R(t))‖dη

≤
( K1(γ)
(K0(γ))2

)
D6‖Rn −R‖ ≤

( K1(γ)
(K0(γ))2

)nΠn‖R−R1‖

so we can find that Ωin(t)→ 0 as n→ ∞ for i = 1, 2, 3, 4, 5, 6.

4. Analysis of the Proposed Model

In this section, we perform a detailed analysis of our proposed model.

4.1. Inverting by Fractional Calculus

According to Definition 3, both the PC and CPC are composed of an RLF integral with
proportional differential operators as follows:

PCDγ
t S(t) = RL I1−γ

t
[ PDγ

t S(t)
]

, CPCDγ
t S(t) = RL I1−γ

t
[ CPDγ

t S(t)
]

PCDγ
t V(t) = RL I1−γ

t
[ PDγ

t V(t)
]

, CPCDγ
t V(t) = RL I1−γ

t
[ CPDγ

t V(t)
]

PCDγ
t E(t) = RL I1−γ

t
[ PDγ

t E(t)
]

, CPCDγ
t E(t) = RL I1−γ

t
[ CPDγ

t E(t)
]

PCDγ
t I(t) = RL I1−γ

t
[ PDγ

t I(t)
]

, CPCDγ
t I(t) = RL I1−γ

t
[ CPDγ

t I(t)
]

PCDγ
t H(t) = RL I1−γ

t
[ PDγ

t H(t)
]

, CPCDγ
t H(t) = RL I1−γ

t
[ CPDγ

t H(t)
]

PCDγ
t R(t) = RL I1−γ

t
[ PDγ

t R(t)
]

, CPCDγ
t R(t) = RL I1−γ

t
[ CPDγ

t R(t)
]

(43)

This implies that to invert the PC and CPC differential operators, it is sufficient to
invert the RLF integral and the proportional (conformable) derivatives PDγ and CPDγ.
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Lemma 1. The expression for inverse of the proportional differential operator, PDγ
t , is provided by:

P
a Iγ

t S(t) =
∫ t

a exp
[
−
∫ t

η
K1(γ,s)
K0(γ,s)ds

] S(η)
K0(γ,η)dη

P
a Iγ

t V(t) =
∫ t

a exp
[
−
∫ t

η
K1(γ,s)
K0(γ,s)ds

] V(η)
K0(γ,η)dη

P
a Iγ

t E(t) =
∫ t

a exp
[
−
∫ t

η
K1(γ,s)
K0(γ,s)ds

] E(η)
K0(γ,η)dη

P
a Iγ

t I(t) =
∫ t

a exp
[
−
∫ t

η
K1(γ,s)
K0(γ,s)ds

] I(η)
K0(γ,η)dη

P
a Iγ

t H(t) =
∫ t

a exp
[
−
∫ t

η
K1(γ,s)
K0(γ,s)ds

] H(η)
K0(γ,η)dη

P
a Iγ

t R(t) =
∫ t

a exp
[
−
∫ t

η
K1(γ,s)
K0(γ,s)ds

] R(η)
K0(γ,η)dη

(44)

which satisfies the subsequent inversion relations [38]:

PDγ
t
[P

a Iγ
t S(t)

]
= S(t) , P

a Iγ
t
[PDγ

t S(t)
]
= S(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
S(a)

PDγ
t
[P

a Iγ
t V(t)

]
= V(t) , P

a Iγ
t
[PDγ

t V(t)
]
= V(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
V(a)

PDγ
t
[P

a Iγ
t E(t)

]
= E(t) , P

a Iγ
t
[PDγ

t E(t)
]
= E(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
E(a)

PDγ
t
[P

a Iγ
t I(t)

]
= I(t) , P

a Iγ
t
[PDγ

t I(t)
]
= I(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
I(a)

PDγ
t
[P

a Iγ
t H(t)

]
= H(t) , P

a Iγ
t
[PDγ

t H(t)
]
= H(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
H(a)

PDγ
t
[P

a Iγ
t R(t)

]
= R(t) , P

a Iγ
t
[PDγ

t R(t)
]
= R(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
R(a)

(45)

and for the constant proportional operator, CPDγ
t , the integral formula is:

CP
a Iγ

t S(t) = 1
K0(γ)

∫ t
a exp

[
− K1(γ)

K0(γ)
(t− η)

]
S(η)dη

CP
a Iγ

t V(t) = 1
K0(γ)

∫ t
a exp

[
− K1(γ)

K0(γ)
(t− η)

]
V(η)dη

CP
a Iγ

t E(t) = 1
K0(γ)

∫ t
a exp

[
− K1(γ)

K0(γ)
(t− η)

]
E(η)dη

CP
a Iγ

t I(t) = 1
K0(γ)

∫ t
a exp

[
− K1(γ)

K0(γ)
(t− η)

]
I(η)dη

CP
a Iγ

t H(t) = 1
K0(γ)

∫ t
a exp

[
− K1(γ)

K0(γ)
(t− η)

]
H(η)dη

CP
a Iγ

t R(t) = 1
K0(γ)

∫ t
a exp

[
− K1(γ)

K0(γ)
(t− η)

]
R(η)dη

(46)

which satisfies the following inversion relations [38]:

CPDγ
t
[CP

a Iγ
t S(t)

]
= S(t) , CP

a Iγ
t
[CPDγ

t S(t)
]
= S(t)− exp

[
− K1(γ)

K0(γ)
(t− a)

]
S(a)

CPDγ
t
[CP

a Iγ
t V(t)

]
= S(t) , CP

a Iγ
t
[CPDγ

t S(t)
]
= V(t)− exp

[
− K1(γ)

K0(γ)
(t− a)

]
V(a)

CPDγ
t
[CP

a Iγ
t E(t)

]
= S(t) , CP

a Iγ
t
[CPDγ

t S(t)
]
= E(t)− exp

[
− K1(γ)

K0(γ)
(t− a)

]
E(a)

CPDγ
t
[CP

a Iγ
t I(t)

]
= S(t) , CP

a Iγ
t
[CPDγ

t S(t)
]
= I(t)− exp

[
− K1(γ)

K0(γ)
(t− a)

]
I(a)

CPDγ
t
[CP

a Iγ
t H(t)

]
= S(t) , CP

a Iγ
t
[CPDγ

t S(t)
]
= H(t)− exp

[
− K1(γ)

K0(γ)
(t− a)

]
H(a)

CPDγ
t
[CP

a Iγ
t R(t)

]
= S(t) , CP

a Iγ
t
[CPDγ

t S(t)
]
= R(t)− exp

[
− K1(γ)

K0(γ)
(t− a)

]
R(a)

(47)

Note that if S(a) = V(a) = E(a) = I(a) = H(a) = R(a) = 0, then the operators PDγ
t ,

P
a Iγ

t , and CPDγ
t , CP

a Dγ
t construct inverse pairs of two sides to one another.
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Proposition 1. The following are the inverse operators for the fractional PC and CPC differential
operators: 

PC
0 Iγ

t S(t) =
∫ t

0 exp
[
−
∫ t

τ
K1(γ,s)
K0(γ,s)ds

] RL
0 D1−γ

τ S(τ)
K0(γ,τ) dτ

PC
0 Iγ

t V(t) =
∫ t

0 exp
[
−
∫ t

τ
K1(γ,s)
K0(γ,s)ds

] RL
0 D1−γ

τ V(τ)
K0(γ,τ) dτ

PC
0 Iγ

t E(t) =
∫ t

0 exp
[
−
∫ t

τ
K1(γ,s)
K0(γ,s)ds

] RL
0 D1−γ

τ E(τ)
K0(γ,τ) dτ

PC
0 Iγ

t I(t) =
∫ t

0 exp
[
−
∫ t

τ
K1(γ,s)
K0(γ,s)ds

] RL
0 D1−γ

τ I(τ)
K0(γ,τ) dτ

PC
0 Iγ

t H(t) =
∫ t

0 exp
[
−
∫ t

τ
K1(γ,s)
K0(γ,s)ds

] RL
0 D1−γ

τ H(τ)
K0(γ,τ) dτ

PC
0 Iγ

t R(t) =
∫ t

0 exp
[
−
∫ t

τ
K1(γ,s)
K0(γ,s)ds

] RL
0 D1−γ

τ R(τ)
K0(γ,τ) dτ

(48)



CPC
0 Iγ

t S(t) = 1
K0(γ)

∫ t
0 exp

[
− K1(γ)

K0(γ)
(t− τ)

]
RL
0 D1−γ

τ S(τ)dτ

CPC
0 Iγ

t V(t) = 1
K0(γ)

∫ t
0 exp

[
− K1(γ)

K0(γ)
(t− τ)

]
RL
0 D1−γ

τ V(τ)dτ

CPC
0 Iγ

t E(t) = 1
K0(γ)

∫ t
0 exp

[
− K1(γ)

K0(γ)
(t− τ)

]
RL
0 D1−γ

τ E(τ)dτ

CPC
0 Iγ

t I(t) = 1
K0(γ)

∫ t
0 exp

[
− K1(γ)

K0(γ)
(t− τ)

]
RL
0 D1−γ

τ I(τ)dτ

CPC
0 Iγ

t H(t) = 1
K0(γ)

∫ t
0 exp

[
− K1(γ)

K0(γ)
(t− τ)

]
RL
0 D1−γ

τ H(τ)dτ

CPC
0 Iγ

t R(t) = 1
K0(γ)

∫ t
0 exp

[
− K1(γ)

K0(γ)
(t− τ)

]
RL
0 D1−γ

τ R(τ)dτ

(49)

which satisfy the following inversion relations [38]:

PC
0 Dγ

t

[
PC
0 Iγ

t S(t)
]
= CPC

0 Dγ
t

[
CPC
0 Iγ

t S(t)
]
= S(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t S(t)
PC
0 Dγ

t

[
PC
0 Iγ

t V(t)
]
= CPC

0 Dγ
t

[
CPC
0 Iγ

t V(t)
]
= V(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t V(t)
PC
0 Dγ

t

[
PC
0 Iγ

t E(t)
]
= CPC

0 Dγ
t

[
CPC
0 Iγ

t E(t)
]
= E(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t E(t)
PC
0 Dγ

t

[
PC
0 Iγ

t I(t)
]
= CPC

0 Dγ
t

[
CPC
0 Iγ

t I(t)
]
= I(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t I(t)
PC
0 Dγ

t

[
PC
0 Iγ

t H(t)
]
= CPC

0 Dγ
t

[
CPC
0 Iγ

t H(t)
]
= H(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t H(t)
PC
0 Dγ

t

[
PC
0 Iγ

t R(t)
]
= CPC

0 Dγ
t

[
CPC
0 Iγ

t R(t)
]
= R(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t R(t)

(50)



PC
0 Iγ

t
[PC

0 Dγ
t S(t)

]
= S(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
S(0)

PC
0 Iγ

t
[PC

0 Dγ
t V(t)

]
= V(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
V(0)

PC
0 Iγ

t
[PC

0 Dγ
t E(t)

]
= E(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
E(0)

PC
0 Iγ

t
[PC

0 Dγ
t I(t)

]
= I(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
I(0)

PC
0 Iγ

t
[PC

0 Dγ
t H(t)

]
= H(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
H(0)

PC
0 Iγ

t
[PC

0 Dγ
t R(t)

]
= R(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
R(0)

(51)



CPC
0 Iγ

t
[CPC

0 Dγ
t S(t)

]
= S(t)− exp

[
− K1(γ)

K0(γ)
t
]
S(0)

CPC
0 Iγ

t
[CPC

0 Dγ
t V(t)

]
= V(t)− exp

[
− K1(γ)

K0(γ)
t
]
V(0)

CPC
0 Iγ

t
[CPC

0 Dγ
t E(t)

]
= E(t)− exp

[
− K1(γ)

K0(γ)
t
]
E(0)

CPC
0 Iγ

t
[CPC

0 Dγ
t I(t)

]
= I(t)− exp

[
− K1(γ)

K0(γ)
t
]
I(0)

CPC
0 Iγ

t
[CPC

0 Dγ
t H(t)

]
= H(t)− exp

[
− K1(γ)

K0(γ)
t
]
H(0)

CPC
0 Iγ

t
[CPC

0 Dγ
t R(t)

]
= R(t)− exp

[
− K1(γ)

K0(γ)
t
]
R(0)

(52)

Proof. We can write Equations (48) and (49) as operational composition as follows:

PC
0 Iγ

t = P Iγ
t ∗

RL
0 I1−γ

t , CPC
0 Iγ

t = CP Iγ
t ∗

RL
0 I1−γ

t (53)
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As a result, the existing inversion relationships for each component of each operator
and the composition of the operators lead to inversion relations. We first prove it for the
susceptible class, S(t).

[PC
0 Dγ

t ∗ PC
0 Iγ

t
]
S(t) =

[RL
0 I1−γ

t ∗ PDγ
t
]
∗
[P Iγ

t ∗ RL
0 D1−γ

t
]
S(t)

=
[RL

0 I1−γ
t ∗ RL

0 D1−γ
t
]
S(t) = S(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t S(t)[PC
0 Iγ

t ∗ PC
0 Dγ

t
]
S(t) =

[P Iγ
t ∗ RL

0 D1−γ
t
]
∗
[RL

0 I1−γ
t ∗ PD1−γ

t
]
S(t)

=
[P Iγ

t ∗ PDγ
t
]
S(t) = S(t)− exp

[
−
∫ t

0
K1(γ,s)
K0(γ,s)ds

]
S(0)[CPC

0 Dγ
t ∗ CPC

0 Iγ
t
]
S(t) =

[RL
0 I1−γ

t ∗ CPDγ
t
]
∗
[CP Iγ

t ∗ RL
0 D1−γ

t
]
S(t)

=
[RL

0 I1−γ
t ∗ RL

0 D1−γ
t
]
S(t) = S(t)− t−γ

Γ(1−γ)
limt→0

RL
0 Dγ

t S(t)[CPC
0 Iγ

t ∗ CPC
0 Dγ

t
]
S(t) =

[CP Iγ
t ∗ RL

0 D1−γ
t
]
∗
[RL

0 I1−γ
t ∗ CPD1−γ

t
]
S(t)

=
[CP Iγ

t ∗ CPDγ
t
]
S(t) = S(t)− exp

[
− K1(γ)

K0(γ)
t
]
S(0)

(54)

Using this approach, we find that these inversion relations are also satisfied for other
compartments of our proposed model.

4.2. Inverting by Laplace Transform

Using the Laplace transform and the outcome of the method given in [38], we can
invert at least the CPC fractional operator. We can obtain an answer from the subsequent,
non-rigorous Laplace transform derivation, which we will then prove rigorously. Consider
that S(0) = V(0) = E(0) = I(0) = H(0) = R(0) = 0 and using results given in [25],

L
[CPCDγ

t S(t)
]
=
[
K1(γ)

s +K0(γ)
]
sγŜ(s) = K0(γ)

[
1 + K1(γ)

K0(γ)
s−1
]
sγŜ(s)

L
[CPCDγ

t V(t)
]
=
[
K1(γ)

s +K0(γ)
]
sγV̂(s) = K0(γ)

[
1 + K1(γ)

K0(γ)
s−1
]
sγV̂(s)

L
[CPCDγ

t E(t)
]
=
[
K1(γ)

s +K0(γ)
]
sγÊ(s) = K0(γ)

[
1 + K1(γ)

K0(γ)
s−1
]
sγÊ(s)

L
[CPCDγ

t I(t)
]
=
[
K1(γ)

s +K0(γ)
]
sγÎ(s) = K0(γ)

[
1 + K1(γ)

K0(γ)
s−1
]
sγÎ(s)

L
[CPCDγ

t H(t)
]
=
[
K1(γ)

s +K0(γ)
]
sγĤ(s) = K0(γ)

[
1 + K1(γ)

K0(γ)
s−1
]
sγĤ(s)

L
[CPCDγ

t R(t)
]
=
[
K1(γ)

s +K0(γ)
]
sγR̂(s) = K0(γ)

[
1 + K1(γ)

K0(γ)
s−1
]
sγR̂(s)

(55)

Hence, writing CPC
0 Dγ

t S(t) = Q1(t), CPC
0 Dγ

t V(t) = Q2(t), CPC
0 Dγ

t E(t) = Q3(t),
CPC
0 Dγ

t I(t) = Q4(t), CPC
0 Dγ

t H(t) = Q5(t), and CPC
0 Dγ

t R(t) = Q6(t), we obtain:

Ŝ(s) =
[
K0(γ)

(
1 + K1(γ)

K0(γ)
s−1)sγ

]−1Q̂1(s) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−nQ̂1(s)

V̂(s) =
[
K0(γ)

(
1 + K1(γ)

K0(γ)
s−1)sγ

]−1Q̂2(s) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−nQ̂2(s)

Ê(s) =
[
K0(γ)

(
1 + K1(γ)

K0(γ)
s−1)sγ

]−1Q̂3(s) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−nQ̂3(s)

Î(s) =
[
K0(γ)

(
1 + K1(γ)

K0(γ)
s−1)sγ

]−1Q̂4(s) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−nQ̂4(s)

Ĥ(s) =
[
K0(γ)

(
1 + K1(γ)

K0(γ)
s−1)sγ

]−1Q̂5(s) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−nQ̂5(s)

R̂(s) =
[
K0(γ)

(
1 + K1(γ)

K0(γ)
s−1)sγ

]−1Q̂6(s) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−nQ̂6(s)

(56)

This series converges under the condition | K1(γ)
K0(γ)

s−γ |< 1, but we are performing only
a formal derivation here and we shall find that this series in the t domain will be convergent
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everywhere. From here, there are two ways to express S(t), V(t), E(t), I(t), H(t), and
R(t) in terms of Q1(t), Q2(t), Q3(t), Q4(t), Q5(t), and Q6(t), respectively. Firstly, we can
take advantage of the Laplace transform of the RLF integral. For any positive number γ,
RL
0 Iγ

t Q(t) is precisely s−γQ̂i(s) for i = 1, 2, 3, 4, 5, and 6. From above, we obtain following
series formula, following related works [38]:

S(t) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1
RL
0 Iγ+n

t Q1(t) , V(t) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1
RL
0 Iγ+n

t Q2(t)

E(t) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1
RL
0 Iγ+n

t Q3(t) , I(t) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1
RL
0 Iγ+n

t Q4(t)

H(t) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1
RL
0 Iγ+n

t Q5(t) , R(t) =
∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1
RL
0 Iγ+n

t Q6(t)

(57)

The second approach is to consider the right hand side of Equation (56) as the product
of Q̂i(s) with a function given by a power series, where i = 1, 2, 3, 4, 5, and 6, and then
determine the inverse Laplace transform of this power series to get a convolution expression
for S(t), V(t), E(t), I(t),H(t), andR(t). We have:

Ŝ(s) =
[ ∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−n
]
Q̂1(s) = L

[ tγ−1

K0(γ)
E1,γ

(−K1(γ)

K0(γ)
t
)]
Q̂1(s)

V̂(s) =
[ ∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−n
]
Q̂2(s) = L

[ tγ−1

K0(γ)
E1,γ

(−K1(γ)

K0(γ)
t
)]
Q̂2(s)

Ê(s) =
[ ∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−n
]
Q̂3(s) = L

[ tγ−1

K0(γ)
E1,γ

(−K1(γ)

K0(γ)
t
)]
Q̂3(s)

Î(s) =
[ ∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−n
]
Q̂4(s) = L

[ tγ−1

K0(γ)
E1,γ

(−K1(γ)

K0(γ)
t
)]
Q̂4(s)

Ĥ(s) =
[ ∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−n
]
Q̂5(s) = L

[ tγ−1

K0(γ)
E1,γ

(−K1(γ)

K0(γ)
t
)]
Q̂5(s)

R̂(s) =
[ ∞

∑
n=0

(
−K1(γ)

)n(
K0(γ)

)n+1 s−γ−n
]
Q̂6(s) = L

[ tγ−1

K0(γ)
E1,γ

(−K1(γ)

K0(γ)
t
)]
Q̂6(s)

(58)

4.3. Further Analysis on CPC and Hilfer Generalised Proportional Operators

Corollary 1. For β = i + j− ij , the operator Di,j,γ
t can be simplified as:

Di,j,γ
t S(t) = I j(1−i),γ

t Dγ
t I(1−β),γ

t S(t) = I j(1−i),γ
t Dβ,γ

t S(t)
Di,j,γ

t V(t) = I j(1−i),γ
t Dγ

t I(1−β),γ
t V(t) = I j(1−i),γ

t Dβ,γ
t V(t)

Di,j,γ
t E(t) = I j(1−i),γ

t Dγ
t I(1−β),γ

t E(t) = I j(1−i),γ
t Dβ,γ

t E(t)
Di,j,γ

t I(t) = I j(1−i),γ
t Dγ

t I(1−β),γ
t I(t) = I j(1−i),γ

t Dβ,γ
t I(t)

Di,j,γ
t H(t) = I j(1−i),γ

t Dγ
t I(1−β),γ

t H(t) = I j(1−i),γ
t Dβ,γ

t H(t)

Di,j,γ
t R(t) = I j(1−i),γ

t Dγ
t I(1−β),γ

t R(t) = I j(1−i),γ
t Dβ,γ

t R(t)

(59)

Proof. Using definitions in [41], we find thatDi,j,γ
t S(t) = I j(n−i),γ

t

[
Dγ

t
(

I(1−j)(1−i),γ
t

)]
S(t)

= I j(n−i),γ
t

[
Dγ

t
γ(1−β)Γ(1−β)

∫ t
m1

e
γ−1

γ (t−η)(t− η)(1−β)−1S(η)dη
]
= I j(n−i),γ

t Dβ,γ
t S(t)

(60)

utilizing this technique, we can prove this for other compartments as well.
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Corollary 2. Now, consider 0 < i < 1, γ ∈ (0, 1], and 0 ≤ β < 1. If {S ,V , E , I ,H,R} ∈
Cβ[a, b], then for all t ∈ (a, b]

Ii,γ
t S(a) = limt→a Ii,γ

t S(t) = 0 , Ii,γ
t V(a) = limt→a Ii,γ

t V(t) = 0 , 0 ≤ β < i
Ii,γ
t E(a) = limt→a Ii,γ

t E(t) = 0 , Ii,γ
t I(a) = limt→a Ii,γ

t I(t) = 0 , 0 ≤ β < i
Ii,γ
t H(a) = limt→a Ii,γ

t H(t) = 0 , Ii,γ
t R(a) = limt→a Ii,γ

t R(t) = 0 , 0 ≤ β < i

(61)

Proof. Suppose that {S ,V , E , I ,H,R} ∈ C[a, b]. This implies that {S ,V , E , I ,H,R} ∈
Cβ[a, b] and (t− a)β ∈ C[a, b]. Therefore, ∀t ∈ [a, b], andM exists such that:

(t− a)βS < M∣∣Ii,γ
t e

γ−1
γ tS(t)

∣∣ < M
(

Ii,γ
t e

γ−1
γ t(t− a)−β

)
(t)∣∣Ii,γ

t e
γ−1

γ tS(t)
∣∣ < M

( Γ(1− β)

Γ(i + 1− β)
e

γ−1
γ t(t− a)i−β

)
(62)

which implies that the right hand side of Equation (62)→ 0 as t → 0. Similarly, we can
prove this for other compartments as well.

Corollary 3. Let 0 < i < 1, γ ∈ (0, 1], 0 ≤ j ≤ 1, and β = i + j− ij. If {S ,V , E , I ,H,R} ∈
Cβ

1−β[a, b], then

Iβ,γ
t Dβ,γ

t S(t) = Ii,γ
t Di,j,γ

t S(t) , Dβ,γ
t Ii,γ

t S(t) = Dj(1−i),γ
t S(t)

Iβ,γ
t Dβ,γ

t V(t) = Ii,γ
t Di,j,γ

t V(t) , Dβ,γ
t Ii,γ

t V(t) = Dj(1−i),γ
t V(t)

Iβ,γ
t Dβ,γ

t E(t) = Ii,γ
t Di,j,γ

t E(t) , Dβ,γ
t Ii,γ

t E(t) = Dj(1−i),γ
t E(t)

Iβ,γ
t Dβ,γ

t I(t) = Ii,γ
t Di,j,γ

t I(t) , Dβ,γ
t Ii,γ

t I(t) = Dj(1−i),γ
t I(t)

Iβ,γ
t Dβ,γ

t H(t) = Ii,γ
t Di,j,γ

t H(t) , Dβ,γ
t Ii,γ

t H(t) = Dj(1−i),γ
t H(t)

Iβ,γ
t Dβ,γ

t R(t) = Ii,γ
t Di,j,γ

t R(t) , Dβ,γ
t Ii,γ

t R(t) = Dj(1−i),γ
t R(t)

(63)

Proof. From Corollary 1, for class S(t),

Iβ,γ
t Dβ,γ

t S(t) = Iβ,γ
t

[
I−j(1−i),γ
t Di,j,γ

t S(t)
]

= Ii+j−ij,γ
t I−j(1−i),γ

t Di,j,γ
t S(t) = Ii,γ

t Di,j,γ
t S(t) (64)

Furthermore, using definition [41], we can see that

Dβ,γ
t Ii,γ

t S(t) = Dγ
t I1−β,γ

t Ii,γ
t S(t) = Dγ

t I1−j+ij,γ
t S(t) = Dj(1−i),γ

t S(t) (65)

Using this approach, we can find this for other compartments as well.

Corollary 4. Let 0 < i < 1, γ ∈ (0, 1], 0 ≤ j ≤ 1, and 0 < β < 1. If {S ,V , E , I ,H,R} ∈
C1−β[a, b] and I1−β,γ

t S(t), I1−β,γ
t V(t) , I1−β,γ

t E(t), I1−β,γ
t I(t), I1−β,γ

t H(t), I1−β,γ
t R(t), then

Ii,γ
t Di,j,γ

t S(t) = S(t)− e
γ−1

γ (t−a) (t−a)β−1

γβ−1Γ(β)

[
I1−β,γ
t

]
S(a) , t ∈ (a, b]

Ii,γ
t Di,j,γ

t V(t) = V(t)− e
γ−1

γ (t−a) (t−a)β−1

γβ−1Γ(β)

[
I1−β,γ
t

]
V(a) , t ∈ (a, b]

Ii,γ
t Di,j,γ

t E(t) = E(t)− e
γ−1

γ (t−a) (t−a)β−1

γβ−1Γ(β)

[
I1−β,γ
t

]
E(a) , t ∈ (a, b]

Ii,γ
t Di,j,γ

t I(t) = I(t)− e
γ−1

γ (t−a) (t−a)β−1

γβ−1Γ(β)

[
I1−β,γ
t

]
I(a) , t ∈ (a, b]

Ii,γ
t Di,j,γ

t H(t) = H(t)− e
γ−1

γ (t−a) (t−a)β−1

γβ−1Γ(β)

[
I1−β,γ
t

]
H(a) , t ∈ (a, b]

Ii,γ
t Di,j,γ

t R(t) = R(t)− e
γ−1

γ (t−a) (t−a)β−1

γβ−1Γ(β)

[
I1−β,γ
t

]
R(a) , t ∈ (a, b]

(66)
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Proof. It follows from the definition in [41] that

Ii,γ
t Di,j,γ

t S(t) = Ii,γ
t

[
Iβ−i,γ
t Dβ,γ

t

]
S(t)

= Iβ,γ
t Dβ,γ

t S(t) = S(t)− e
γ−1

γ (t−a) (t− a)β−1

γβ−1Γ(β)

[
I1−β,γ
t

]
S(a)

4.4. Eigenfunctions of the CPC Operator

We use a Laplace transform and Theorem [38] to solve the fractional order differential
equations of our proposed model. For this, consider

CPC
0 Dγ

t S(t) = G1(t,S(t)) , CPC
0 Dγ

t V(t) = G2(t,V(t))
CPC
0 Dγ

t E(t) = G3(t, E(t)) , CPC
0 Dγ

t I(t) = G4(t, I(t))
CPC
0 Dγ

t H(t) = G5(t,H(t)) , CPC
0 Dγ

t R(t) = G6(t,R(t))
(67)

with non-negative initial constraints,

S(0) = S0 ,V(0) = V0 , E(0) = E0 , I(0) = I0 ,H(0) = H0 ,R(0) = R0

Apply the Laplace transform to both sides of equations:

[
K1(γ)

s +K0(γ)
]
sγŜ(s)−K0(γ)sγ−1S(0) = G1(s, Ŝ)[

K1(γ)
s +K0(γ)

]
sγV̂(s)−K0(γ)sγ−1V(0) = G2(s, V̂)[

K1(γ)
s +K0(γ)

]
sγÊ(s)−K0(γ)sγ−1E(0) = G3(s, Ê)[

K1(γ)
s +K0(γ)

]
sγÎ(s)−K0(γ)sγ−1I(0) = G4(s, Î)[

K1(γ)
s +K0(γ)

]
sγĤ(s)−K0(γ)sγ−1H(0) = G5(s, Ĥ)[

K1(γ)
s +K0(γ)

]
sγR̂(s)−K0(γ)sγ−1R(0) = G6(s, R̂)

(68)

and hence, firstly,

G1(s, Ŝ) = K0(γ)sγ−1

K1(γ)sγ−1+K0(γ)sγ−1S0 = S0s−1
∞

∑
n=0

[ s−γ −K1(γ)s−1

K0(γ)

]n

= S0s−1
∞

∑
n=0

1
(K0(γ))n

n

∑
k=0

(
n
k

)(
s−γ
)n−k(−K1(γ)s−1)k

= S0

∞

∑
n=0

n

∑
k=0

(−K1(γ))
k

(K0(γ))n

(
n
k

)
s−γn+γk−k−1

(69)

Applying the inverse Laplace, we get

G1(t,S(t)) = S0

∞

∑
n=0

n

∑
k=0

(−K1(γ))
k

(K0(γ))n

(
n
k

)
tγn−γk+k

Γ(γn− γk + k + 1)
(70)

Take j = n− k. Hence, we obtain

G1(t,S(t)) = S0

∞

∑
n=0

n

∑
k=0

(−K1(γ))
k

(K0(γ))n
(k + j)!

k!j!
tγj+k

Γ(γj + k + 1)

= S0

∞

∑
n=0

n

∑
k=0

(k + j)!
k!j!

[−K1(γ)

K0(γ)
t
]k[ tγ

K0(γ)

]j 1
Γ(γj + k + 1)

(71)

Similarly, we can write the eigenfunctions for others compartments.
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5. Solution of System of Fractional Differential Equations by Using Laplace Adomian
Decomposition Method

Applying the Laplace transform on both sides of equations of system (11) and using
theorem [38], we obtain:

[K1(γ)
s +K0(γ)]sγŜ(s)−K0(γ)sγ−1S(0) = φL[1]− αL[S(t)I(t)] + ωL[V(t)]− q1L[S(t)]

[K1(γ)
s +K0(γ)]sγV̂(s)−K0(γ)sγ−1V(0) = πL[S(t)]− q2L[V(t)]

[K1(γ)
s +K0(γ)]sγÊ(s)−K0(γ)sγ−1E(0) = αL[S(t)I(t)]− q3L[E(t)]

[K1(γ)
s +K0(γ)]sγÎ(s)−K0(γ)sγ−1I(0) = βL[E(t)]− q4L[I(t)]

[K1(γ)
s +K0(γ)]sγĤ(s)−K0(γ)sγ−1H(0) = ρL[I(t)]− q5L[H(t)]

[K1(γ)
s +K0(γ)]sγR̂(s)−K0(γ)sγ−1R(0) = σL[H(t)]− µL[R(t)]

(72)

Equivalently,

L
[
S(t)

]
= S0

s+K1(γ)
K0(γ)

+
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1 s−γ−n
[φ

s
− αL

[
S(t)I(t)

]
+ ωL

[
V(t)

]
− q1L

[
S(t)

]]
L
[
V(t)

]
= V0

s+K1(γ)
K0(γ)

+
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1 s−γ−n
[
πL
[
S(t)

]
− q2L

[
V(t)

]]
L
[
E(t)

]
= E0

s+K1(γ)
K0(γ)

+
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1 s−γ−n
[
αL
[
S(t)I(t)

]
− q3L

[
E(t)

]]
L
[
I(t)

]
= I0

s+K1(γ)
K0(γ)

+
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1 s−γ−n
[

βL
[
E(t)

]
− q4L

[
I(t)

]]
L
[
H(t)

]
= H0

s+K1(γ)
K0(γ)

+
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1 s−γ−n
[
ρL
[
I(t)

]
− q5L

[
H(t)

]]
L
[
R(t)

]
= R0

s+K1(γ)
K0(γ)

+
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1 s−γ−n
[
σL
[
H(t)

]
− µL

[
R(t)

]]

(73)

Assume that the method gives the solutions as an infinite series:

S(t) =
∞

∑
k=0
Sk , V(t) =

∞

∑
k=0
Vk , E(t) =

∞

∑
k=0
EkI(t) =

∞

∑
k=0
Ik , H(t) =

∞

∑
k=0
Hk , R(t) =

∞

∑
k=0
Rk (74)

where the non-linear term S(t)I(t) can be presented as:

S(t)I(t) =
∞

∑
k=0

Ak , and A=
1
k!

(
d

dλ

)k
[

k

∑
i=0

λiSi

k

∑
i=0

λiIi

]
λ=0

, k = 0, 1, 2, 3, · · · (75)

Using Equations (74) and (75), and applying the inverse Laplace to both sides of
Equation (73), we find:

S0(t) = S0 exp
(
− K1(γ)

K0(γ)
t
)
+

∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1
φtγ+n

Γ(γ + n + 1)
, V0(t) = V0 exp

(
− K1(γ)

K0(γ)
t
)

E0(t) = E0 exp
(
− K1(γ)

K0(γ)
t
)

, I0(t) = I0 exp
(
− K1(γ)

K0(γ)
t
)

H0(t) = H0 exp
(
− K1(γ)

K0(γ)
t
)

, R0(t) = R0 exp
(
− K1(γ)

K0(γ)
t
) (76)
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and for k ≥ 0,

Sk+1(t) =
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1L
−1
(

s−γ−n[− αL(Ak) + ωL(Vk)− q1L(Sk)
])

Vk+1(t) =
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1L
−1
(

s−γ−n[πL(Sk)− q2L(Vk)
])

Ek+1(t) =
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1L
−1
(

s−γ−n[αL(Ak)− q3L(Ek)
])

Ik+1(t) =
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1L
−1
(

s−γ−n[βL(Ek)− q4L(Ik)
])

Hk+1(t) =
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1L
−1
(

s−γ−n[ρL(Ik)− q5L(Hk)
])

Rk+1(t) =
∞

∑
n=0

(−K1(γ))
n

(K0(γ))n+1L
−1
(

s−γ−n[σL(Hk)− µL(Rk)
])

(77)

and the solutions can be written as an infinite series (74).

6. Result and Discussion

In this section, a simulation of considered model is illustrated in the figures using the
value of the basic parameters from [10], which are φ = 68,027, µ = 0.000309, δ = 0.3720,
π = 0.000001, ω = 0.003286, α = 1× 10−9, β = 0.500000, ρ = 0.036246, and σ = 0.062366
for reproduction number R0 > 1. We have used initial values S0 = 0.440, V0 = 0.230,
E0 = 0.180, I0 = 0.070,H0 = 0.050, andR0 = 0.030 from [10] such that the total population
is N = S + V + E + I + H + R = 1. Figures 1–6 show the plots for the variations
in S , V , E , I , H, and R, for reproductive number Drep > 1, using different fractional
order γ = 0.98, 0.96, 0.94, and 0.92. We plotted the series solutions given in Equation (74)
corresponding to different fractional order in Figures 1–6 using Matlab. We observed that
a low vaccination rate, π, and hospitalization rate, ρ, produced an endemic equilibrium
and the number of infected persons grows rapidly, whereas raising these rates produces a
disease-free equilibrium. We found that the fractional order SVEIHR measles model has
more degrees of freedom as compared to ordinary derivatives. The compartments of the
considered model exhibit noteworthy feedback when non-integer values of the fractional
parameter are used, and at small fractional orders, growth or decay activity moves more
quickly than at larger fractional orders. It has been demonstrated that the fractional order
derivatives, which are the most prominent and trustworthy element as compared to the
classical order case, are more effective at explaining physical processes. Numerical results
that have been provided depict the behaviours of the dynamics that can be found in the
different fractional orders.
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×106 Simulation of S(t)

β = 1
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Figure 1. Simulation of S(t) proposed fractional operator.
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Figure 2. Simulation of V(t) proposed fractional operator.
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Figure 3. Simulation of E(t) proposed fractional operator.
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Figure 4. Simulation of I(t) proposed fractional operator.
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Figure 5. Simulation ofH(t) proposed fractional operator.
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Figure 6. Simulation ofR(t) proposed fractional operator.

7. Conclusions

The control, planning, and reduction in the negative effects of infectious diseases in
society in previous decades are key functions of mathematical modelling. In contrast to
the classical model, the results of the fractional order model have a memory effect on the
epidemic model. The proposed scheme’s qualitative and quantitative analyses are also
covered. We also looked at local and global stability using the Lyapunov function. We
employed various methods to invert the PC and CPC operators in order to assess the
fractional integral operator. We also derived the eigenfunctions of the CPC operator from
the fractional differential equations of our proposed model. Additional analysis on the
CPC and Hilfer generalised proportional operators is covered in great detail. A numerical
simulation of a system of fractional differential equations is created employing the LADM.
To simulate the outcomes for different fractional orders and fractal dimension values, we
used Matlab. We have observed that the considered operator produces excellent results
when applied to the mathematical modelling of a measles epidemic model. The figures
demonstrate that changing the fractal order affects the behaviour of the measles model.
Fractional order derivatives aid in the analysis of infection behaviour from beginning to
end. The diagrams demonstrate the interactions between fractals and fractional orders.
The graphical results lead us to the conclusion that the proposed model can be successfully
used as a modelling tool and provides further insights into the dynamics of infectious
diseases such as measles.
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