
Citation: Abucide-Armas, A.;

Portal-Porras, K.; Fernandez-Gamiz,

U.; Zulueta, E.; Teso-Fz-Betoño, A.

Convolutional Neural Network

Predictions for Unsteady Reynolds-

Averaged Navier–Stokes-Based

Numerical Simulations. J. Mar. Sci.

Eng. 2023, 11, 239. https://doi.org/

10.3390/jmse11020239

Received: 16 December 2022

Revised: 11 January 2023

Accepted: 16 January 2023

Published: 17 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Convolutional Neural Network Predictions for Unsteady Reynolds-
Averaged Navier–Stokes-Based Numerical Simulations
Alvaro Abucide-Armas 1, Koldo Portal-Porras 2 , Unai Fernandez-Gamiz 2 , Ekaitz Zulueta 1,* and
Adrian Teso-Fz-Betoño 1

1 Automatic Control and System Engineering Department, University of the Basque Country UPV/EHU,
Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain

2 Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country UPV/EHU,
Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain

* Correspondence: ekaitz.zulueta@ehu.eus

Abstract: The application of computational fluid dynamics (CFD) to turbulent flow has been a
considerable topic of research for many years. Nonetheless, using CFD tools results in a large
computational cost, which implies that, for some applications, CFD may be unviable. To date, several
authors have carried out research applying deep learning (DL) techniques to CFD-based simulations.
One of the main applications of DL with CFD is in the use of convolutional neural networks (CNNs)
to predict which samples will have the desired magnitude. In this study, a CNN which predicts the
streamwise and vertical velocities and the pressure fields downstream of a circular cylinder for a
series of time instants is presented. The CNN was trained using a signed distance function (SDF), a
flow region channel (FRC) and the t-1 sample as inputs, and the ground-truth CFD data as the output.
The results showed that the CNN was able to predict multiple time instants with low error rates for
turbulent flows with variable input velocities to the domain.

Keywords: deep learning (DL); computational fluid dynamics (CFD); convolutional neural networks
(CNN); U-Net

1. Introduction

The study of turbulence in fluids has been a significant research topic for many years
due to its impact on a wide variety of applications. The resolution of intricate computational
fluid dynamics (CFD) problems has been made possible through the exponential advances
in computing over the last few decades. Nevertheless, this still remains a constraint for
product development related to applications such as aerodynamic design optimization and
fluid–structure interactions [1]. Despite the fact that CFD simulations are a valuable tool
for the study of turbulent flow when experimental studies are too expensive or impractical,
the computational resources required by CFD simulations may become prohibitive if the
geometry is too complex or if fine meshing is required. Another drawback in the application
of CFD is the influence of the user during the generation of the mesh and the closure model.

In order to solve these issues, in recent years numerous authors have applied deep
learning (DL) techniques to predict the approximated results of CFD simulations. For exam-
ple, Tao and Sun [2], Zhang et al. [3] and Yan et al. [4] targeted aerodynamic optimization
to improve the efficiency of diverse geometries through DL.

Two main approaches have been used to apply DL techniques to CFD. The first
approach focuses on the reduction of the computational time required for studies which
employ coarse meshes. For example, Hanna et al. [5] predicted and lowered the error of
the results obtained for a coarse mesh using a DL algorithm, and Bao et al. [6] proposed a
data-driven guidance framework to improve their coarse mesh modelling and simulation.
In the second approach, the desired fluid characteristics are directly calculated. Through the
development of a convolutional neural network (CNN), Guo et al. [7] predicted stationary

J. Mar. Sci. Eng. 2023, 11, 239. https://doi.org/10.3390/jmse11020239 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11020239
https://doi.org/10.3390/jmse11020239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-4747-963X
https://orcid.org/0000-0001-9194-2009
https://orcid.org/0000-0002-6570-1890
https://doi.org/10.3390/jmse11020239
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11020239?type=check_update&version=1

J. Mar. Sci. Eng. 2023, 11, 239 2 of 16

flow fields around solid objects, accomplishing rapid predictions with low error rates.
Ribeiro et al. [8] developed a very accurate CNN which predicts the streamwise and vertical
velocities and the pressure fields for stationary fluids in the presence of different shaped
geometries, and Kashefi et al. [9] also developed a CNN to obtain an approximation of the
streamwise and vertical velocities and the pressure fields following slight modifications of
the geometry.

Other studies have focused on the prediction of more specific flow characteristics. For
example, Ling et al. [10], remarkably improved the results of CFD simulations by employing
a deep neural network (DNN) for modelling the Reynolds stress tensors using Reynolds-
Averaged Navier–Stokes (RANS) equations. Lee and You [11] predicted the shedding of
non-stationary laminar vortices on a circular cylinder with a generative adversarial network
(GAN). Liu et al. [12] and Deng et al. [13] applied DL-based techniques to the detection of
impacts and vortexes, respectively.

With the exception of some studies which analyzed 3D geometries, such as Guo et al. [7]
and Nowruzi et al. [14], the majority of researchers have studied 2D geometries, due to
the high computational cost involved in the study of 3D geometries [15]. In order to ana-
lyze flow properties, Mohan et al. [15] created a DL-based infrastructure which reduces
the geometry.

Due to the intricacy of the physics of turbulent flows, most studies have been applied
to the prediction of laminar flows. Nonetheless, Fang et al. [16] predicted turbulent flows
in a channel, and Thuerey et al. [17] utilized a CNN to approximate the streamwise and
vertical velocities and the pressure fields of a RANS-based Spalart–Allmaras turbulence
model on airfoils. Abucide-Armas et al. [18] obtained low error rates in their simulations
of turbulent flows with variable inlet velocities, and Portal-Porras et al. [19] developed
various network structures for the prediction of velocity fields for turbulent flows.

Time-based approaches were not considered in most of the aforementioned works.
Nonetheless, CFD applications frequently require knowledge of how the evolution of
the parameters and features of the fluid under study vary over the course of time. The
following studies employed recurrent neural networks (RNNs) in order to analyze time
evolutions in CFD applications: Agostini [20] predicted the streamwise velocity field time
evolution using an autoencoder model; and King et al. [21], Gonzalez and Balajewicz [22]
and Maulik et al. [23] predicted various flow properties via the employment of time-
based approaches.

In this study, the proposed CNN was trained using ground-truth CFD results for
different velocities inputted to the computational domain during a fixed period of time.
The data included the streamwise and vertical velocities and the pressure fields. The aim
was to exploit these data to train a CNN in order to predict the future states of the fluid
given the initial state, by considering the dependency of a fluid’s state on its prior state.
The testing took a random case from the CFD ground-truth data for the initial state, and
used the previously predicted time instant for the remainder of the states. Each result was
compared with the corresponding ground-truth data sample to obtain the ratio of the error
at each instant.

The novelty of this study resides in the ability of our single CNN architecture to predict
the vertical and streamwise velocities and the pressure fields throughout a specific number
of time instants.

2. Materials and Methods
2.1. Numerical Simulations

An unsteady Reynolds Navier–Stokes (URANS) approach was adopted for the cur-
rent simulations since this is the method usually employed when long term periodical
oscillations in a turbulent flow are investigated. The URANS Equations were obtained

J. Mar. Sci. Eng. 2023, 11, 239 3 of 16

using the following procedure. The Navier–Stokes Equations for incompressible flow were
time-filtered according to Equation (1):

δ〈ui〉
δt

+
δ

δxj

(
〈ujui〉

)
= −1

ρ

δ〈p〉
δxi

+ υ
δ2〈ui〉

δx2
k

. (1)

The turbulent stress tensor was defined as:

τij = 〈ui〉〈uj〉 − 〈ujui〉 → 〈ujui〉 = 〈ui〉〈uj〉 − τij. (2)

Replacing 〈ujui〉 for 〈ui〉〈uj〉 − τij in Equation (1):

δ〈ui〉
δt + δ

δxj

(
〈ui〉〈uj〉 − τij

)
= − 1

ρ
δ〈p〉
δxi

+ v δ2〈ui〉
δx2

k
→

δ〈ui〉
δt + δ

δxj

(
〈ui〉〈uj〉

)
− δ

δxj

(
τij

)
= − 1

ρ
δ〈p〉
δxi

+ v δ2〈ui〉
δx2

k
.

(3)

The final URANS equation remains:

δ〈ui〉
δt

+
δ

δxj

(
〈ui〉〈uj〉

)
= −1

ρ

δ〈p〉
δxi

+
δ
(
τij

)
δxi

+ υ
δ2〈ui〉

δx2
k

. (4)

More detailed explanations of the URANS approach are given in [24]. Star–CCM+ [25]
commercial code was used to run the CFD simulations. The CFD code uses discretization
methods to convert the continuous system of equations into a set of discrete algebraic
equations by means of the finite volume method. The vertical and streamwise velocities
and the pressure of the fluid were computed using CFD. The results of these simulations
were used for training, validating and testing the evaluated network. Each simulation
lasted 1 s with a sample frequency of 2 × 10−4 s. This provided a total of 5000 samples in
every simulation. The time intervals were chosen to be small enough to capture the vortex
shedding. An upwind scheme [26] was used to discretize the convective terms, ensuring
the robustness of the solution. The turbulence was modeled using the kω-SST turbulence
model put forward by Menter [27]. Unsteady state computations have previously been
successfully applied to similar cases in the studies of Rajani et al. [28] and Rahman et al. [29].
All the simulations were converged until a satisfactory residual convergence was achieved
for the velocity and pressure quantities.

Regarding the numerical domain, a rectangular two-dimensional computational do-
main with a circular cylinder inside was considered; refer to Aramendia et al. [30]. The
flow moves from the left side of the domain to the right side; therefore, these were set as
the inlet and outlet respectively. No-slip conditions were assigned to the circular cylinder,
and both the top and bottom sides were set as slip walls. The diameter of the circle (D)
was equal to 10 mm, and its center was located at 5D from the inlet and from both slip
walls. The rest of the domain was normalized to the diameter; therefore, the dimensions of
the rectangle were 100 × 256 mm. A detailed view of the computational domain and its
dimensions is provided in Figure 1.

J. Mar. Sci. Eng. 2023, 11, 239 4 of 16J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 16

Figure 1. Computational domain (not to scale).

The design and construction of a high-quality grid is crucial to the success of CFD
analysis, and these have the most direct influence on the precision of, convergence of, and
time required to attain the solution. Within this domain, a mesh consisting of two-dimen-
sional polyhedral cells was generated. Most of the cells were located around and down-
stream of the circular cylinder, in order to capture the vortexes in the wake behind this
geometry. Additionally, a volumetric control was designed to refine the mesh around the
body in order to keep the y+ value below 1, as illustrated in Figure 2.

Figure 2. Mesh distribution around the cylinder.

The fluid was considered to be incompressible, turbulent, unsteady air. The density
(ρ) of this selected fluid is equal to 1.18415 kg/m3 and its dynamic viscosity (µ) is equal to
1.85508·10−5 Pa·s. These values were assumed to be constant. The velocity at the inlet (u)
ranged between 5 and 25 m/s, with an interval of 5 m/s between samples. Hence, a total
of 5 different simulations were carried out. The Reynolds number of the conducted simu-
lations ranged between 3200 and 16,000, depending on each case according to Equation
(5): 𝑅𝑒 = 𝑢 𝐷𝜈 , (5)

where u is the velocity of the fluid, D is the diameter of the circular cylinder and ν is the
kinematic viscosity of the fluid.

Next, the CFD simulation data were interpolated into a 79 × 172 grid in order to fix
the CNN input size.

2.2. CNN Architecture

Figure 1. Computational domain (not to scale).

The design and construction of a high-quality grid is crucial to the success of CFD
analysis, and these have the most direct influence on the precision of, convergence of,
and time required to attain the solution. Within this domain, a mesh consisting of two-
dimensional polyhedral cells was generated. Most of the cells were located around and
downstream of the circular cylinder, in order to capture the vortexes in the wake behind
this geometry. Additionally, a volumetric control was designed to refine the mesh around
the body in order to keep the y+ value below 1, as illustrated in Figure 2.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 16

Figure 1. Computational domain (not to scale).

The design and construction of a high-quality grid is crucial to the success of CFD
analysis, and these have the most direct influence on the precision of, convergence of, and
time required to attain the solution. Within this domain, a mesh consisting of two-dimen-
sional polyhedral cells was generated. Most of the cells were located around and down-
stream of the circular cylinder, in order to capture the vortexes in the wake behind this
geometry. Additionally, a volumetric control was designed to refine the mesh around the
body in order to keep the y+ value below 1, as illustrated in Figure 2.

Figure 2. Mesh distribution around the cylinder.

The fluid was considered to be incompressible, turbulent, unsteady air. The density
(ρ) of this selected fluid is equal to 1.18415 kg/m3 and its dynamic viscosity (µ) is equal to
1.85508·10−5 Pa·s. These values were assumed to be constant. The velocity at the inlet (u)
ranged between 5 and 25 m/s, with an interval of 5 m/s between samples. Hence, a total
of 5 different simulations were carried out. The Reynolds number of the conducted simu-
lations ranged between 3200 and 16,000, depending on each case according to Equation
(5): 𝑅𝑒 = 𝑢 𝐷𝜈 , (5)

where u is the velocity of the fluid, D is the diameter of the circular cylinder and ν is the
kinematic viscosity of the fluid.

Next, the CFD simulation data were interpolated into a 79 × 172 grid in order to fix
the CNN input size.

2.2. CNN Architecture

Figure 2. Mesh distribution around the cylinder.

The fluid was considered to be incompressible, turbulent, unsteady air. The density
(ρ) of this selected fluid is equal to 1.18415 kg/m3 and its dynamic viscosity (µ) is equal
to 1.85508 × 10−5 Pa·s. These values were assumed to be constant. The velocity at
the inlet (u) ranged between 5 and 25 m/s, with an interval of 5 m/s between samples.
Hence, a total of 5 different simulations were carried out. The Reynolds number of the
conducted simulations ranged between 3200 and 16,000, depending on each case according
to Equation (5):

Re =
u·D

ν
, (5)

where u is the velocity of the fluid, D is the diameter of the circular cylinder and ν is the
kinematic viscosity of the fluid.

Next, the CFD simulation data were interpolated into a 79 × 172 grid in order to fix
the CNN input size.

J. Mar. Sci. Eng. 2023, 11, 239 5 of 16

2.2. CNN Architecture

A CNN is a type of non-linear universal approximator of a function, where the
parameters of the non-linear approximator are known as synaptic weights. Thus, a CNN can
be taken to be a non-linear regression. The quantity of input data is of utmost importance
in order to obtain quality results.

The problem was analyzed using a time-based approach. In fact, in fluid dynamics,
the state of a fluid at time t is significantly dependent on its state time, t-1. In other words,
the focus is on the transition of the fluid between states. In regard to a neural network, this
can be transposed to provide the network with the fluid’s state at time t-1 as an input.

A U-Net architecture proposed by Ronneberger et al. [31] was employed. Initially,
this network structure was employed for the segmentation of biomedical images. Since
then, studies such as that by Thuerey et al. [17] have demonstrated the flexibility of this
architecture to be adapted to the application of CFD to turbulent flow analysis. A U-Net
network is a particular type of encoder–decoder network. This network consists of a series
of convolutional layers which reduce the input data into a latent geometry representation
(LGR), which is a representation of the basic features of the initial inputs of the CNN that
enables the CNN to predict the patterns of interest easily and rapidly. Next, the LGR
was extended using transposed convolution layers in order to map the streamwise and
vertical velocities and the pressure fields. Figure 3 shows a simplified diagram of the
network architecture.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 16

A CNN is a type of non-linear universal approximator of a function, where the pa-
rameters of the non-linear approximator are known as synaptic weights. Thus, a CNN can
be taken to be a non-linear regression. The quantity of input data is of utmost importance
in order to obtain quality results.

The problem was analyzed using a time-based approach. In fact, in fluid dynamics,
the state of a fluid at time t is significantly dependent on its state time, t-1. In other words,
the focus is on the transition of the fluid between states. In regard to a neural network,
this can be transposed to provide the network with the fluid’s state at time t-1 as an input.

A U-Net architecture proposed by Ronneberger et al. [31] was employed. Initially,
this network structure was employed for the segmentation of biomedical images. Since
then, studies such as that by Thuerey et al. [17] have demonstrated the flexibility of this
architecture to be adapted to the application of CFD to turbulent flow analysis. A U-Net
network is a particular type of encoder–decoder network. This network consists of a series
of convolutional layers which reduce the input data into a latent geometry representation
(LGR), which is a representation of the basic features of the initial inputs of the CNN that
enables the CNN to predict the patterns of interest easily and rapidly. Next, the LGR was
extended using transposed convolution layers in order to map the streamwise and vertical
velocities and the pressure fields. Figure 3 shows a simplified diagram of the network
architecture.

Figure 3. U-Net with 3 decoders.

Four encoder blocks constituted the encoding part, and 3 convolutional layers, with
a kernel size of 5, made up each encoding block. After each convolution, a rectifier linear
unit (ReLU) activation function was added, and after the last convolution layer of each
block, a max pooling layer was included. Each block utilized a different number of filters,
equal to 8, 16, 32 and 32 from the outermost to the innermost. The decoder carried out the
reverse process of the encoder, using deconvolution layers to acquire one of the three var-
iables being studied. The number of filters in the first deconvolution of each decoder block
was multiplied by two. A detailed view of the architecture of the U-Net is provided in
Figure 4. Python 3.9.6 [32] software was used to train and test the network.

Figure 3. U-Net with 3 decoders.

Four encoder blocks constituted the encoding part, and 3 convolutional layers, with a
kernel size of 5, made up each encoding block. After each convolution, a rectifier linear
unit (ReLU) activation function was added, and after the last convolution layer of each
block, a max pooling layer was included. Each block utilized a different number of filters,
equal to 8, 16, 32 and 32 from the outermost to the innermost. The decoder carried out
the reverse process of the encoder, using deconvolution layers to acquire one of the three
variables being studied. The number of filters in the first deconvolution of each decoder
block was multiplied by two. A detailed view of the architecture of the U-Net is provided
in Figure 4. Python 3.9.6 [32] software was used to train and test the network.

J. Mar. Sci. Eng. 2023, 11, 239 6 of 16J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 16

Figure 4. Architecture of the CNN.

2.3. Training Parameters
AdamW was selected as the optimizer for training the network. This algorithm is

based on an adaptative moment estimation (Adam), which updates the gradient vector
and the squared gradient using an exponential moving average. The coefficients β1 and
β2 are the forgetting factors for the gradients and second moments of the gradients, re-
spectively, and their values were both set to 0.5 [33].

AdamW is an updated version of the Adam optimizer, which improves regulariza-
tion by decoupling the weight decay from the gradient-based update [34]. For this work,
a L1-norm was employed as the loss function, the learning rate was set at 0.001, the weight
decay at 0.005, the batch size at 64, and the data was split with a ratio of 0.7 for training
and 0.3 for testing the model.

2.4. CNN Inputs
In this network, three different input layers were considered. The first pair were a

flow region channel (FRC) and a signed distance function (SDF), which refer to the geom-
etry shape and the features of the fluid throughout the different locations of the mesh,
respectively. The latter represents the former instant of the field which is being analyzed.

The FRC input layer was a multi-class channel containing information about the
boundary conditions of the domain. The information was organized into 4 categories: 0
for the geometry, 1 for the free flow region, 2 for the slip conditions, 3 for the inlet and 4
for the outlet. Thus, no-slip conditions were employed in the top/bottom walls. Figure 5
displays a schematic view of the FRC layer.

Figure 5. Diagram of the multi-class labelling of flow regions (not to scale).

Figure 4. Architecture of the CNN.

2.3. Training Parameters

AdamW was selected as the optimizer for training the network. This algorithm is
based on an adaptative moment estimation (Adam), which updates the gradient vector and
the squared gradient using an exponential moving average. The coefficients β1 and β2 are
the forgetting factors for the gradients and second moments of the gradients, respectively,
and their values were both set to 0.5 [33].

AdamW is an updated version of the Adam optimizer, which improves regularization
by decoupling the weight decay from the gradient-based update [34]. For this work, a
L1-norm was employed as the loss function, the learning rate was set at 0.001, the weight
decay at 0.005, the batch size at 64, and the data was split with a ratio of 0.7 for training
and 0.3 for testing the model.

2.4. CNN Inputs

In this network, three different input layers were considered. The first pair were
a flow region channel (FRC) and a signed distance function (SDF), which refer to the
geometry shape and the features of the fluid throughout the different locations of the mesh,
respectively. The latter represents the former instant of the field which is being analyzed.

The FRC input layer was a multi-class channel containing information about the
boundary conditions of the domain. The information was organized into 4 categories: 0 for
the geometry, 1 for the free flow region, 2 for the slip conditions, 3 for the inlet and 4 for the
outlet. Thus, no-slip conditions were employed in the top/bottom walls. Figure 5 displays
a schematic view of the FRC layer.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 16

Figure 4. Architecture of the CNN.

2.3. Training Parameters
AdamW was selected as the optimizer for training the network. This algorithm is

based on an adaptative moment estimation (Adam), which updates the gradient vector
and the squared gradient using an exponential moving average. The coefficients β1 and
β2 are the forgetting factors for the gradients and second moments of the gradients, re-
spectively, and their values were both set to 0.5 [33].

AdamW is an updated version of the Adam optimizer, which improves regulariza-
tion by decoupling the weight decay from the gradient-based update [34]. For this work,
a L1-norm was employed as the loss function, the learning rate was set at 0.001, the weight
decay at 0.005, the batch size at 64, and the data was split with a ratio of 0.7 for training
and 0.3 for testing the model.

2.4. CNN Inputs
In this network, three different input layers were considered. The first pair were a

flow region channel (FRC) and a signed distance function (SDF), which refer to the geom-
etry shape and the features of the fluid throughout the different locations of the mesh,
respectively. The latter represents the former instant of the field which is being analyzed.

The FRC input layer was a multi-class channel containing information about the
boundary conditions of the domain. The information was organized into 4 categories: 0
for the geometry, 1 for the free flow region, 2 for the slip conditions, 3 for the inlet and 4
for the outlet. Thus, no-slip conditions were employed in the top/bottom walls. Figure 5
displays a schematic view of the FRC layer.

Figure 5. Diagram of the multi-class labelling of flow regions (not to scale). Figure 5. Diagram of the multi-class labelling of flow regions (not to scale).

J. Mar. Sci. Eng. 2023, 11, 239 7 of 16

SDF is a mathematical function that measures the relative distance between any
point in the grid and the nearest boundary point of a closed geometry shape. [7]. The
mathematical expression of this function is given by Equation (6):

SDF(x) =
{

d(x, ϑΩ) i f x ∈ Ω
−d(x, ϑΩ) i f x ∈ Ωc , (6)

where Ω is a subset of a metric space, X, with metric, d; and ϑΩ is the boundary of Ω. For
any x ∈ X:

d(x, ϑΩ) := inf
y∈ϑΩ

d(x, y), (7)

where inf denotes the infimum. Grid positions inside the interior of the obstacle (Ωc)
are assigned negative distances [8]. Figure 6 shows the SDF that was generated for this
work using a MATLAB [35] code, which allowed selection of the position and size of the
geometry, as well as the size of the grid.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 16

SDF is a mathematical function that measures the relative distance between any point
in the grid and the nearest boundary point of a closed geometry shape. [7]. The mathe-
matical expression of this function is given by Equation (6): 𝑆𝐷𝐹(𝑥) = 𝑑(𝑥, 𝜗Ω) 𝑖𝑓 𝑥 ∈ Ω −𝑑(𝑥, 𝜗Ω) 𝑖𝑓 𝑥 ∈ Ω , (6)

where Ω is a subset of a metric space, X, with metric, d; and ϑΩ is the boundary of Ω. For
any x ∈ X: 𝑑(𝑥, 𝜗Ω): = inf∈ 𝑑(𝑥, 𝑦), (7)

where inf denotes the infimum. Grid positions inside the interior of the obstacle (Ωc) are
assigned negative distances [8]. Figure 6 shows the SDF that was generated for this work
using a MATLAB [35] code, which allowed selection of the position and size of the geom-
etry, as well as the size of the grid.

Figure 6. SDF of a circle.

During the training of the CNN, the ground-truth CFD results were utilized as the
third input to the CNN. In this case, the previous instant of the current CFD-analyzed
sample was introduced as the third input. This allowed the CNN to learn the time patterns
within the CFD results, and provided the time dependency on the previous state to the
network. For the testing of the CNN, the result predicted in the previous instant was used
as the current reference for the new prediction.

3. Results
The neural network was trained three times, once for each of the variables studied.

As aforementioned, the training was carried out using 70 % of the samples, and the num-
ber of epochs was set to 1000. Then, in the testing part of the study, the network was used
to predict ten time instants for each of the five inlet velocities studied, for each of the three
variables. During testing, the t-1 time instant was selected from the result of the previously
iterated prediction, and the current prediction was compared with the corresponding
ground-truth CFD sample, obtaining the absolute and relative errors. Figure 7 shows the
CFD sample, the CNN prediction and the absolute error of the instants 1, 5 and 10, with
respect to a random initial sample of the test set being used to determine the streamwise
and vertical velocities and the pressure. In this figure, three samples are shown for every
inlet velocity studied. Logically, the error incrementally increases with each of the new
iterations, due to being based on the previous predictions. For higher inlet velocities, the

Figure 6. SDF of a circle.

During the training of the CNN, the ground-truth CFD results were utilized as the
third input to the CNN. In this case, the previous instant of the current CFD-analyzed
sample was introduced as the third input. This allowed the CNN to learn the time patterns
within the CFD results, and provided the time dependency on the previous state to the
network. For the testing of the CNN, the result predicted in the previous instant was used
as the current reference for the new prediction.

3. Results

The neural network was trained three times, once for each of the variables studied. As
aforementioned, the training was carried out using 70 % of the samples, and the number
of epochs was set to 1000. Then, in the testing part of the study, the network was used to
predict ten time instants for each of the five inlet velocities studied, for each of the three
variables. During testing, the t-1 time instant was selected from the result of the previously
iterated prediction, and the current prediction was compared with the corresponding
ground-truth CFD sample, obtaining the absolute and relative errors. Figure 7 shows the
CFD sample, the CNN prediction and the absolute error of the instants 1, 5 and 10, with
respect to a random initial sample of the test set being used to determine the streamwise
and vertical velocities and the pressure. In this figure, three samples are shown for every
inlet velocity studied. Logically, the error incrementally increases with each of the new
iterations, due to being based on the previous predictions. For higher inlet velocities, the
changes between two adjacent samples were greater, which hindered the CNN predictions,

J. Mar. Sci. Eng. 2023, 11, 239 8 of 16

resulting in larger error rates. Comparing the three variables studied, the predictions for
pressure were of better precision than those obtained for both velocities, although the
model still performed adequately for the velocity variables.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 16

changes between two adjacent samples were greater, which hindered the CNN predic-
tions, resulting in larger error rates. Comparing the three variables studied, the predic-
tions for pressure were of better precision than those obtained for both velocities, although
the model still performed adequately for the velocity variables.

(a)

Figure 7. Cont.

J. Mar. Sci. Eng. 2023, 11, 239 9 of 16J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 16

(b)

Figure 7. Cont.

J. Mar. Sci. Eng. 2023, 11, 239 10 of 16J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 16

(c)

Figure 7. Results of the predictions obtained using the CNN for 5, 10, 15, 20 and 25 m/s at (a) the
first time instant, (b) the fifth time instant and (c) the tenth time instant.

The histograms in Figure 8 show at which level the predictions fit with the ground-
truth CFD data. In the cases of pressure and vertical velocity, the predicted values were
very similar to those obtained in the CFD samples, except for the 25 m/s inlet velocity case,
where the CNN outputted a group of excessively high negative values for the vertical
velocity. In some testing cases, when a group of high value points with significant errors
appeared, especially around or downstream from the circular cylinder, the error was
transferred to the following predictions, which produced the data deviations observed in
the histogram. For the streamwise velocity, this phenomenon also occurred, but to a lesser
effect. The arithmetic mean and the variance for each of the inlet velocities is shown in
Tables 1–5. The same conclusion extracted from the analysis of the histograms can be ap-
plied to the evaluation of the arithmetic mean and variance values obtained for the
ground-truth CFD data and the CNN predictions. Here, shown in Table 5, the deviation
produced in the vertical velocity was also appreciable. The arithmetic mean values ob-
tained from the CNN predictions were, for every inlet velocity, higher than those obtained
from the ground-truth CFD data. This occurred due to the aforementioned deviation phe-
nomenon. One of the main objectives of the use of DL in CFD simulations is to reduce
computational time. The duration of the training was 6.5, 6.2 and 6.3 h for the streamwise
and vertical velocities and the pressure, respectively, giving a total of 19 h for the training
phase. In the testing phase, calculating a prediction for 10 samples of any of the three
variables studied took 0.49 s. Both training and testing were carried out using a NVIDIA
Quadro RTX 6000 GPU. An Intel Xeon Gold 5120 CPU was used for the CFD simulations,
which took a total of 15 h.

Figure 7. Results of the predictions obtained using the CNN for 5, 10, 15, 20 and 25 m/s at (a) the
first time instant, (b) the fifth time instant and (c) the tenth time instant.

The histograms in Figure 8 show at which level the predictions fit with the ground-
truth CFD data. In the cases of pressure and vertical velocity, the predicted values were
very similar to those obtained in the CFD samples, except for the 25 m/s inlet velocity
case, where the CNN outputted a group of excessively high negative values for the vertical
velocity. In some testing cases, when a group of high value points with significant errors
appeared, especially around or downstream from the circular cylinder, the error was
transferred to the following predictions, which produced the data deviations observed
in the histogram. For the streamwise velocity, this phenomenon also occurred, but to a
lesser effect. The arithmetic mean and the variance for each of the inlet velocities is shown
in Tables 1–5. The same conclusion extracted from the analysis of the histograms can be
applied to the evaluation of the arithmetic mean and variance values obtained for the
ground-truth CFD data and the CNN predictions. Here, shown in Table 5, the deviation
produced in the vertical velocity was also appreciable. The arithmetic mean values obtained
from the CNN predictions were, for every inlet velocity, higher than those obtained from the
ground-truth CFD data. This occurred due to the aforementioned deviation phenomenon.
One of the main objectives of the use of DL in CFD simulations is to reduce computational
time. The duration of the training was 6.5, 6.2 and 6.3 h for the streamwise and vertical
velocities and the pressure, respectively, giving a total of 19 h for the training phase. In
the testing phase, calculating a prediction for 10 samples of any of the three variables
studied took 0.49 s. Both training and testing were carried out using a NVIDIA Quadro
RTX 6000 GPU. An Intel Xeon Gold 5120 CPU was used for the CFD simulations, which
took a total of 15 h.

J. Mar. Sci. Eng. 2023, 11, 239 11 of 16

Table 1. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 5 m/s.

5 m/s
CFD CNN

ux uy p ux uy p

Arithmetic mean (µ) 4.9956 0.0049 0.3990 5.1363 −0.0079 2.8473

Variance 1.3478 0.9615 18.5783 1.5402 0.8970 15.7479

Table 2. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 10 m/s.

10 m/s
CFD CNN

ux uy p ux uy p

Arithmetic mean (µ) 9.9913 −0.0079 4.3280 10.3442 −0.0247 4.4879

Variance 5.3017 3.4790 209.1635 5.3077 3.1156 193.8350

Table 3. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 15 m/s.

15 m/s
CFD CNN

ux uy p ux uy p

Arithmetic mean (µ) 14.9948 0.0168 21.8190 15.7475 −0.0173 20.1163

Variance 9.0647 12.9719 1129.4713 10.5008 11.4202 962.2498

Table 4. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 20 m/s.

20 m/s
CFD CNN

ux uy p ux uy p

Arithmetic mean (µ) 19.9889 0.0539 46.7396 20.8735 0.0178 43.9651

Variance 21.6513 22.1345 4063.9549 23.2436 19.6142 3615.1444

Table 5. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 25 m/s.

25 m/s
CFD CNN

ux uy p ux uy p

Arithmetic mean (µ) 24.9808 0.0329 72.1601 25.4197 −0.1946 68.5239

Variance 40.7070 33.7651 11124.3126 37.9972 129.3431 8799.3459

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 16

Table 1. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 5 m/s.

5 m/s
CFD CNN

ux uy p ux uy p
Arithmetic mean (µ) 4.9956 0.0049 0.3990 5.1363 −0.0079 2.8473

Variance 1.3478 0.9615 18.5783 1.5402 0.8970 15.7479

Table 2. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 10 m/s.

10 m/s
CFD CNN

ux uy p ux uy p
Arithmetic mean (µ) 9.9913 −0.0079 4.3280 10.3442 −0.0247 4.4879

Variance 5.3017 3.4790 209.1635 5.3077 3.1156 193.8350

Table 3. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 15 m/s.

15 m/s
CFD CNN

ux uy p ux uy p
Arithmetic mean (µ) 14.9948 0.0168 21.8190 15.7475 −0.0173 20.1163

Variance 9.0647 12.9719 1129.4713 10.5008 11.4202 962.2498

Table 4. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 20 m/s.

20 m/s
CFD CNN

ux uy p ux uy p
Arithmetic mean (µ) 19.9889 0.0539 46.7396 20.8735 0.0178 43.9651

Variance 21.6513 22.1345 4063.9549 23.2436 19.6142 3615.1444

Table 5. Comparison of arithmetic mean and variance between the ground-truth CFD data and the
CNN predictions for the streamwise velocity of 25 m/s.

25 m/s
CFD CNN

ux uy p ux uy p
Arithmetic mean (µ) 24.9808 0.0329 72.1601 25.4197 −0.1946 68.5239

Variance 40.7070 33.7651 11124.3126 37.9972 129.3431 8799.3459

Figure 8. Cont.

J. Mar. Sci. Eng. 2023, 11, 239 12 of 16J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 16

(a)

(b)

(c)

Figure 8. Cont.

J. Mar. Sci. Eng. 2023, 11, 239 13 of 16J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 16

(d)

(e)

Figure 8. Data distribution of ux, uy and p for inlet velocities of (a) 5 m/s, (b) 10 m/s, (c) 15 m/s, (d)
20 m/s and (e) 25 m/s.

4. Conclusions
In the current work, a CNN with a U-Net structure was developed for the prediction

of the streamwise and vertical velocities and the pressure fields downstream of a circular
cylinder. Henceforth, a total of five different CFD-based unsteady simulations were car-
ried out with the Reynolds number varying between 3200 and 16,000. The predictions
were accomplished using a time-based approach, predicting the immediate future sample
based on its dependency on its own previous state. The CNN was able to predict ten suc-
cessive streamwise and vertical velocities and pressure fields using a sole architecture,
with reasonably low error rates, particularly for the pressure. The error rate continuously

Figure 8. Data distribution of ux, uy and p for inlet velocities of (a) 5 m/s, (b) 10 m/s, (c) 15 m/s,
(d) 20 m/s and (e) 25 m/s.

4. Conclusions

In the current work, a CNN with a U-Net structure was developed for the prediction
of the streamwise and vertical velocities and the pressure fields downstream of a circular
cylinder. Henceforth, a total of five different CFD-based unsteady simulations were carried
out with the Reynolds number varying between 3200 and 16,000. The predictions were
accomplished using a time-based approach, predicting the immediate future sample based
on its dependency on its own previous state. The CNN was able to predict ten successive
streamwise and vertical velocities and pressure fields using a sole architecture, with reason-
ably low error rates, particularly for the pressure. The error rate continuously increased

J. Mar. Sci. Eng. 2023, 11, 239 14 of 16

throughout the new sample iterations, due to these being based on their previous prediction;
and for larger inlet velocities, the error was higher. However, the approximation obtained
is precise enough to compensate for the huge computational costs of CFD simulations.
For future work, our CNN could be adapted to simulate and predict the fluid dynamics
behavior of more aerodynamic geometries, such as airfoils or wings. Furthermore, the DL
techniques could be applied to predict the best shape for an airfoil with an added gurney
flap, in order to attain aerodynamic optimization.

Author Contributions: Conceptualization, A.A.-A. and E.Z.; methodology, A.A.-A.; software, U.F.-G.
and E.Z.; validation, E.Z. and U.F.-G.; formal analysis, K.P.-P., E.Z. and A.T.-F.-B.; investigation,
K.P.-P. and A.T.-F.-B.; resources, U.F.-G.; writing—original draft preparation, A.A.-A. and E.Z.;
writing—review and editing, U.F.-G. All authors have read and agreed to the published version of
the manuscript.

Funding: The current study was sponsored by the Government of the Basque Country-ELKARTEK21/10
KK-2021/00014 and IT1514-22 research program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data presented in the current study are available upon reasonable
request to the corresponding author.

Acknowledgments: The authors are grateful for the support provided by SGIker of UPV/EHU.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Nomenclature Definition
CFD Computational Fluid Dynamics
DL Deep Learning
CNN Convolutional Neural Network
DNN Deep Neural Network
RANS Reynolds-Averaged Navier–Stokes
GAN Generative Adversarial Network
RNN Recurrent Neural Network
LGR Latent Geometry Representation
ReLU Rectifier Linear Unit
Adam Adaptative Moment Estimation
SDF Signed Distance Function
FRC Flow Region Channel
β1 Forgetting factor for gradients
β2 Forgetting factor for second moment gradients
D Diameter of the circle
F Body forces
K Multiplying constant for the loss functions
Lt Loss function
P Pressure
p Fluid density
Re Reynolds number
ux Streamwise velocity
uy Vertical velocity
u∞ Inlet velocity to the domain

References
1. Anderson, J.D., Jr. Basic Philosophy of CFD. In Computational Fluids Dynamics; Springer: Rhode-Saint-Genèse, Belgium, 2009;

pp. 3–15.
2. Tao, J.; Sun, G. Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization.

Aerosp. Sci. Technol. 2019, 92, 722–737. [CrossRef]

http://doi.org/10.1016/j.ast.2019.07.002

J. Mar. Sci. Eng. 2023, 11, 239 15 of 16

3. Zhang, X.; Xie, F.; Ji, T.; Zhu, Z.; Zheng, Y. Multi-Fidelity Deep Neural Network Surrogate Model for Aerodynamic Shape
Optimization. Comput. Methods Appl. Mech. Eng. 2021, 373, 113485. [CrossRef]

4. Yan, X.; Zhu, J.; Kuang, M.; Wang, X. Aerodynamic Shape Optimization Using a Novel Optimizer Based on Machine Learning
Techniques. Aerosp. Sci. Technol. 2019, 86, 826–835. [CrossRef]

5. Hanna, B.N.; Dinh, N.T.; Youngblood, R.W.; Bolotnov, I.A. Coarse-Grid Computational Fluid Dynamic (CG-CFD) Error Prediction
Using Machine Learning. arXiv 2017, arXiv:1710.09105.

6. Bao, H.; Feng, J.; Dinh, N.; Zhang, H. Computationally efficient CFD prediction of bubbly flow using physics-guided deep
learning. Int. J. Multiph. Flow 2020, 131, 103378. [CrossRef]

7. Guo, X.; Li, W.; Iorio, F. Convolutional Neural Networks for Steady Flow Approximation. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016;
Association for Computing Machinery: New York, NY, USA, 2016; pp. 481–490.

8. Ribeiro, M.D.; Rehman, A.; Ahmed, S.; Dengel, A. DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks. arXiv 2020, arXiv:2004.08826.

9. Kashefi, A.; Rempe, D.; Guibas, L.J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular
geometries. Phys. Fluids 2021, 33, 027104. [CrossRef]

10. Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded
invariance. J. Fluid Mech. 2016, 807, 155–166. [CrossRef]

11. Lee, S.; You, D. Prediction of Laminar Vortex Shedding over a Cylinder Using Deep Learning. arXiv 2017, arXiv:1712.07854.
12. Liu, Y.; Lu, Y.; Wang, Y.; Sun, D.; Deng, L.; Wang, F.; Lei, Y. A CNN-based shock detection method in flow visualization. Comput.

Fluids 2019, 184, 1–9. [CrossRef]
13. Deng, L.; Wang, Y.; Liu, Y.; Wang, F.; Li, S.; Liu, J. A CNN-based vortex identification method. J. Vis. 2019, 22, 65–78. [CrossRef]
14. Nowruzi, H.; Ghassemi, H.; Ghiasi, M. Performance predicting of 2D and 3D submerged hydrofoils using CFD and ANNs. J. Mar.

Sci. Technol. 2017, 22, 710–733. [CrossRef]
15. Mohan, A.; Daniel, D.; Chertkov, M.; Livescu, D. Compressed Convolutional LSTM: An Efficient Deep Learning Framework to

Model High Fidelity 3D Turbulence. arXiv 2019, arXiv:1903.00033.
16. Fang, R.; Sondak, D.; Protopapas, P.; Succi, S. Deep Learning for Turbulent Channel Flow. arXiv 2018, arXiv:1812.02241.
17. Thuerey, N.; Weißenow, K.; Prantl, L.; Hu, X. Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of

Airfoil Flows. AIAA J. 2020, 58, 25–36. [CrossRef]
18. Abucide-Armas, A.; Portal-Porras, K.; Fernandez-Gamiz, U.; Zulueta, E.; Teso-Fz-Betoño, A. A Data Augmentation-Based

Technique for Deep Learning Applied to CFD Simulations. Mathematics 2021, 9, 1843. [CrossRef]
19. Portal-Porras, K.; Fernandez-Gamiz, U.; Ugarte-Anero, A.; Zulueta, E.; Zulueta, A. Alternative Artificial Neural Network

Structures for Turbulent Flow Velocity Field Prediction. Mathematics 2021, 9, 1939. [CrossRef]
20. Agostini, L. Exploration and prediction of fluid dynamical systems using auto-encoder technology. Phys. Fluids 2020, 32, 067103.

[CrossRef]
21. King, R.; Hennigh, O.; Mohan, A.; Chertkov, M. From Deep to Physics-Informed Learning of Turbulence: Diagnostics. arXiv 2018,

arXiv:1810.07785.
22. Gonzalez, F.J.; Balajewicz, M. Deep Convolutional Recurrent Autoencoders for Learning Low-Dimensional Feature Dynamics of

Fluid Systems. arXiv 2018, arXiv:1808.01346.
23. Maulik, R.; Lusch, B.; Balaprakash, P. Reduced-Order Modeling of Advection-Dominated Systems with Recurrent Neural

Networks and Convolutional Autoencoders. Phys. Fluids 2021, 33, 037106. [CrossRef]
24. Iaccarino, G.; Ooi, A.; Durbin, P.; Behnia, M. Reynolds averaged simulation of unsteady separated flow. Int. J. Heat Fluid Flow

2003, 24, 147–156. [CrossRef]
25. Siemens Software. Available online: https://www.plm.automation.siemens.com/global/en/ (accessed on 20 November 2022).
26. Osher, S.; Chakravarthy, S. Upwind schemes and boundary conditions with applications to Euler equations in general geometries.

J. Comput. Phys. 1983, 50, 447–481. [CrossRef]
27. Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [CrossRef]
28. Rajani, B.; Kandasamy, A.; Majumdar, S. Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model. 2009,

33, 1228–1247. [CrossRef]
29. Rahman, M.; Karim, M.; Alim, A. Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume

method. J. Nav. Arch. Mar. Eng. 1970, 4, 27–42. [CrossRef]
30. Aramendia, I.; Fernandez-Gamiz, U.; Guerrero, E.Z.; Lopez-Guede, J.M.; Sancho, J. Power Control Optimization of an Underwater

Piezoelectric Energy Harvester. Appl. Sci. 2018, 8, 389. [CrossRef]
31. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image

Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture
Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241.

32. Welcome to Python.Org. Available online: https://www.python.org/ (accessed on 20 November 2022).
33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1016/j.cma.2020.113485
http://doi.org/10.1016/j.ast.2019.02.003
http://doi.org/10.1016/j.ijmultiphaseflow.2020.103378
http://doi.org/10.1063/5.0033376
http://doi.org/10.1017/jfm.2016.615
http://doi.org/10.1016/j.compfluid.2019.03.022
http://doi.org/10.1007/s12650-018-0523-1
http://doi.org/10.1007/s00773-017-0443-0
http://doi.org/10.2514/1.J058291
http://doi.org/10.3390/math9161843
http://doi.org/10.3390/math9161939
http://doi.org/10.1063/5.0012906
http://doi.org/10.1063/5.0039986
http://doi.org/10.1016/S0142-727X(02)00210-2
https://www.plm.automation.siemens.com/global/en/
http://doi.org/10.1016/0021-9991(83)90106-7
http://doi.org/10.2514/3.12149
http://doi.org/10.1016/j.apm.2008.01.017
http://doi.org/10.3329/jname.v4i1.914
http://doi.org/10.3390/app8030389
https://www.python.org/

J. Mar. Sci. Eng. 2023, 11, 239 16 of 16

34. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

35. MATLAB. MathWorks. Available online: https://www.mathworks.com/products/matlab.html (accessed on 20 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.mathworks.com/products/matlab.html

	Introduction
	Materials and Methods
	Numerical Simulations
	CNN Architecture
	Training Parameters
	CNN Inputs

	Results
	Conclusions
	References

