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Abstract: A biobased diglycidyl ether of vanillin (DGEVA) epoxy resin was nanostructured by
poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-PPO-PEO) triblock copolymer. Due
to the miscibility/immiscibility properties of the triblock copolymer in DGEVA resin, different
morphologies were obtained depending on the triblock copolymer amount. A hexagonally packed
cylinder morphology was kept until reaching 30 wt% of PEO-PPO-PEO content, while a more complex
three-phase morphology was obtained for 50 wt%, in which large worm-like PPO domains appear
surrounded by two different phases, one of them rich in PEO and another phase rich in cured DGEVA.
UV-vis measurements show that the transmittance is reduced with the increase in triblock copolymer
content, especially at 50 wt%, probably due to the presence of PEO crystals detected by calorimetry.

Keywords: biobased; epoxy; block copolymer; nanostructuring

1. Introduction

During recent years, bio-based polymers have attracted attention due to the overuse
of fossil fuels as well as the increase in greenhouse gas emissions, which causes important
environmental issues [1,2]. Those polymers can be obtained from renewable materials, such
as lignin [3] or vegetable oils [4,5], among others. Between these different types of polymeric
materials, epoxy-based thermosets are the most popular, due to their broad spectrum of
properties through the selection of epoxy prepolymers and curing agents, and therefore
their use in various applications, such as coatings, adhesives, and composites, among
others [6–8]. Over 90% of these epoxide materials are based on bis(4-hydroxyphenylene)-
2,2-propane, known as bisphenol A, to which the aromatic ring confers good thermal
resistance. Commercialized for more than 50 years, these bisphenol A based thermosets
(DGEBA) have been employed in many common products, such as containers, and human
health applications, such as filling materials or sealants in dentistry. However, bisphenol
A can also mimic the body’s own hormones, and it could lead to severe negative health
effects [9,10], besides cited environmental issues. Recently, poly-functional glycidyl ether
derivatives based on both biobased and barely toxic extracts, such as vanillin [11–15] and
phloroglucinol [16–18], which are extracted from lignins and tannins [1,19], and used as
food flavoring or active ingredient in medicine, have been studied as new feedstock for
thermosets. Between different biobased resins investigated by other authors, diglycidyl
ether of vanillin (DGEVA) have shown good thermomechanical properties [20,21].

On the other hand, the self-assembly of block copolymers (BCP) into different nanoscale
structures makes them interesting polymeric macromolecules from both academic and
industrial points of view. This class of macromolecules consists of two or more covalently
linked polymers, which are thermodynamically incompatible, giving rise to a variety of the
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microstructures. As it is well known, BCPs can self-assemble to form nanoscale structures
with domain spacing that depends strongly on molecular weight, segment size and interac-
tion between the blocks among others. Consequently, microphase separation of BCPs is
determined by the degree of polymerization, N, the volume fraction of each block, f, and
the Flory–Huggins interaction parameter, χ, which depends on temperature. A typical size
of the microphase separated BCP domains is in the range of 10–200 nm.

BCPs can microphase separated in stable structures, such as lamellar, hexagonal-
packed cylinder, body-centered cubic, close-packed spherical, or bicontinuous cubic gyroid
structures. The ability to control both the length scale and the spatial organization of BCP
morphologies makes these polymeric materials attractive candidates for use as templates
for the fabrication of novel multifunctional materials with application in many fields of
nanotechnology and advanced materials.

BCPs can also act as a nanostructuring agent for different homopolymers and ther-
mosetting systems. As the main drawback of epoxy thermosetting polymers, for their
applications as adhesives, surface coatings or composite matrices, is their low fracture
toughness. One of the successful pathways to achieve high improvements on the toughness
of these systems is incorporation of BCPs [22–26]. Use of the BCPs not only improves the
toughness of thermosetting polymers but also leads to nanostructured thermosets, which
can act as templates for dispersion and selective localization of low molecular weight
organic molecules, such as azobenzene or liquid crystals, or inorganic nanoobjects, such as
nanoparticles, carbon nanotubes, nanofibers and others.

Nanostructured thermosetting materials can be formed followed two different mecha-
nisms. In the first one, the epoxy precursor acts as a selective solvent and, consequently,
the microphase separation takes place before the curing reaction, and the epoxy network
formation process only fixed the final morphology. In the second pathway, the microphase
separation of the immiscible block takes place by reaction-induced phase separation (RIPS).
Thus, the mixture of BCP and epoxy precursors is miscible before curing and the phase
separation takes place during network formation.

Many authors, among which our research group can be mentioned, obtained nanos-
tructured thermosetting systems by employing amphiphilic BCPs. Different amphiphilic
BCPs used as nanostructuring agents by different authors can be found in Table 1.

Table 1. Relation of different amphiphilic block copolymers and thermosetting precursors used by
different authors.

BCPs Abbreviation Thermosetting
Precursor References

poly(hexylene oxide)-b-poly(ethylene oxide) PHO-b-PEO DGEBA + PN [24]

poly(ethylene oxide)-b-poly(ethyl ethylene) PEO-b-PEE DGEBA + PA [27]

poly(ethylene oxide)-b-poly(ethylene-alt-propylene) PEO-b-PEP DGEBA + MDA [28]

poly(ethylene oxide)-b-poly(propylene oxide) PEO-b-PPO DGEBA + MDA [29]

poly(ethylene oxide)-b-poly(propylene oxide)-b- poly(ethylene oxide) PEO-b-PPO-b-PEO DGEBA + MDA
DGEBA + DDM

[30,31]
[32–35]

polyethylene-b-poly(ethylene oxide) PE-b-PEO DGEBA + MDA
DGEBA + MCDEA

[36]
[37]

poly(ethylene oxide)-b-poly(dimethylsiloxane) PEO-b-PDMS DGEBA + MDA [38]

poly(ethylene oxide)-b-poly(ε-caprolactone) PEO-b-PCL DGEBA + MOCA [39]

poly(ethylene oxide)-b-polystyrene PEO-b-PS

DGEBA + MDA
DGEBA + MXDA

DGEBA + MCDEA
DGEBA + DDM

[40]
[41–44]
[45,46]

[47]
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Table 1. Cont.

BCPs Abbreviation Thermosetting
Precursor References

poly(ε-caprolactone)-b-polybutadiene-b-poly(ε-caprolactone) PCL-b-PB-b-PCL DGEBA + MOCA [48]

poly(ε-caprolactone)-b-poly(n-butyl acrylate) PCL-b-PBA DGEBA + MOCA [49]

poly(heptadecafluorodecyl acrylate)-b-poly(caprolactone) PaF-b-PCL DGEBA + MCDEA [50]

polydimethylsiloxane-b-poly(ε-caprolactone)-b-polystyrene PDMS-b-PCL-b-PS DGEBA + MOCA [51]

poly(ε-caprolactone)-b-polystyrene PCL-b-PS DGEBA + MOCA [52]

As it can be seen in Table 1, poly(ethylene glycol)-poly(propylene glycol)-poly(ethyleneglycol)
(PEO-PPO-PEO), has been widely employed for nanostructuring epoxy matrices, mainly
DGEBA resin [30–35]. The popularity of PEO-PPO-PEO is due to its commercial availability,
including different ratios of each block as well as the simplicity of the experimental proce-
dure and the absence of any chemical synthesis or reaction with the epoxy system [32]. For
PEO-PPO-PEO/epoxy blends, the formation of the self-assembled nanostructure depends
on the curing conditions, curing agent and the inner characteristics of the BCP [53]. Regard-
ing the effect of BCP composition, Guo et al. [30] obtained different nanostructured features
based on the DGEBA/MDA system and PPO-PEO-PPO copolymers with different block
ratios. For the BCP with 30 wt% of PEO block, it did not find macroscopic phase separation
up to a content of 50 wt%, exhibiting nanostructures based on spherical PPO domains
with an average size of about 10 nm. For blends with the BCP with 80 wt% PEO, blends
were not macroscopically phase-separated over the entire composition range because of the
much higher PEO content, showing composition-dependent nanostructures on the order of
10−100 nm. Sun et al. [31] studied the same systems by solid-state nuclear magnetic reso-
nance (NMR), finding that the domain size and long period depended strongly on the PEO
fraction. They demonstrated that PEO blocks were only partially miscible with the cured
network. Upon curing, the cross-linked rigid epoxy resin formed a separated microphase,
while some PEO were locally expelled out of the cured network, forming another mi-
crophase with PPO. Similar systems but employing diamino diphenyl methane (DDM) as a
hardener have also been deeply analyzed by our group [32–35]. Firstly, the miscibility and
morphological features were studied, together with cure kinetics, by changing cure temper-
atures and copolymer amount [32]. Depending on the curing condition, phase separation
took place at micro or nanoscale due to competition among kinetic and thermodynamic
factors. Two distinct phases were present for every blend studied except for the system
with 10 wt% PEO–PPO–PEO and cured at a low temperature. A thermodynamic model de-
scribing a thermoset/block copolymer considered as only one entity system was proposed.
In a second stage, the effect of copolymer composition (block ratios) and curing conditions
was analyzed [33]. A delay of cure rate was found, which increased as copolymer content
and PEO molar ratio in the block copolymer increased. Infrared spectroscopy showed that
PEO block was mainly responsible for physical interactions between the hydroxyl groups
of growing epoxy thermoset and ether bonds of block copolymer that led to the delay in
cure kinetics. Regarding structural characterization [34], taking into account DGEBA/DDM
systems modifided with PEO or PPO homopolymers for comparison, it was found that,
depending on the molar ratio among blocks, micro or macrophase separated morphologies
were obtained. For high molar ratio among blocks, microphase-separated structures were
obtained for all block copolymer contents and cure temperatures, with the self-assembly
of PPO into nanoscopic entities. For low molar ratio among blocks, however, the physical
interactions among the PEO block and the epoxy matrix were not favourable enough, due
to the lower content of this block. Indeed, the micelles formed initially coalesced, leading to
macroscopic phase separation, where different morphologies were obtained depending on
copolymer content and cure temperature. Finally, the mechanical properties–morphology
relationships were also analyzed [35]. Macrophase-separated systems modified with low
PEO/PPO block ratio showed a similar behaviour to that for rubber-modified systems.
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Increasing the content of a modifier decreases both flexural modulus and strength, while
fracture toughness increases. Microphase-separated systems, on the other hand, did not
present significant changes in both flexural modulus and strength for low contents, but the
critical stress intensity factor increased due to partial miscibility of the PEO block with the
epoxy matrix.

Parameswaranpillai et al. [54] nanostructured a DGEBA/DDM system with PEO-
PPO-PEO, finding that the phase separation occurred via self-assembly of PPO blocks,
followed by the reaction-induced phase separation of PEO blocks, and confirming that
phase separated PEO blocks formed the crystalline phase in the amorphous crosslinked
epoxy matrix.

In the present work, as a preliminary study for analyzing the nanostructuring of
bio-based epoxy thermosetting formulation, DGEVA epoxy resin has been modified us-
ing different amounts of PEO-PPO-PEO triblock copolymer ranging from 10 to 50 wt%.
Thermal properties are analyzed in terms of differential scanning calorimetry (DSC) and
thermogravimetric analysis (TGA), while optical properties are characterized by UV-vis
spectroscopy and corroborated by photographs. Finally, the effect of copolymer amount
on the morphology of the nanostructured thermosetting system is analyzed by atomic
force microscopy (AFM). The possibility of nanostructuring and the control of generated
nanostructures will be further employed in future works for the preparation of ternary
systems based on biobased epoxy thermosetts by placing nanofillers at the nanodomains.

2. Materials and Methods
2.1. Materials and Sample Preparation

The biobased epoxy used in this research work was diglycidyl ether of vanillin
(DGEVA) supplied by Specific Polymers, Castries, France. The curing agent was 4,4′-
diaminodiphenylmethane (DDM), purchased from Sigma-Aldrich, Darmstadt, Germany.
The block copolymer used was poly(ethylene oxide-b-propylene oxide-b-ethylene ox-
ide) (PEO-PPO-PEO) triblock copolymer (Pluronic F-127) supplied by Sigma Aldrich,
Darmstadt, Germany. Chemical structures of employed materials are shown in Table 2.
An amine:epoxy ratio of 1:1 was used for the DGEVA/DDM system, while PEO-PPO-
PEO block copolymer content was varied from 10 to 50 wt% to design different BCP-
DGEVA/DDM systems.

Table 2. Chemical structures of employed materials.

Material Chemical Structure

DGEVA
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Sample preparation was carried out in the following way. First, DGEVA resin and
PEO–PPO–PEO triblock copolymer were blended at 80 ◦C under mechanic stirring. Then,
a corresponding amount of DDM was added with continuous stirring, in an oil bath at
80 ◦C, until a homogeneous mixture was achieved. Finally, the mixture was poured to
the mold, and samples were degassed in a vacuum oven and cured at 120 ◦C for 6 h and
post-cured under vacuum at 190 ◦C for 2 h. In both cases, a mechanical vacuum pump
device was employed.
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2.2. Techniques

Differential scanning calorimetry (DSC) measurements of the individual components,
as well as BCP-DGEVA/DDM systems, were performed using a DSC3+ from Mettler
Toledo equipment (Columbus, OH, USA). Thermal behavior of individual components
and the DGVA/DDM system was evaluated by dynamic scans performed from −80 ◦C to
250 ◦C at 10 ◦C/min scan rate. The miscibility of PEO–PPO–PEO triblock copolymer with
the uncured DGEVA/DDM system was investigated by dynamic scans performed from
−80 ◦C to 50 ◦C at 10 ◦C/min scan rate. The curing processes of all BCP-DGEVA/DDM
systems were analyzed by isothermal scan performed at 80, 100 and 120 ◦C (followed by
a dynamic scan from 25 ◦C to 200 ◦C at 10 ◦C/min). Finally, thermal behavior of BCP-
DGEVA/DDM systems was analyzed by dynamic scans performed from −80 ◦C to 250 ◦C
at 10 ◦C/min scan rate. All experiments were performed under nitrogen atmosphere, with
a flow of 10 mL/min.

Thermogravimetric tests were performed on a TGA 500 from TA Instruments Inc.
(New Castle, DE, USA). Samples were heated from 25 to 800 ◦C at a heating rate of
10 ◦C/min under nitrogen atmosphere.

Fourier-transformed infrared spectroscopy (FTIR) spectra were recorded with a Nicolet
Nexus spectrometer from Thermo Fisher Scientific SL (Bilbao, Spain) with a Golden Gate
ATR sampling accessory. Background was recorded before every sample and the spectra
were obtained in the range of 4000–650 cm−1, performing 32 scans with a resolution
of 4 cm−1.

The morphologies of the cured BCP-DGEVA/DDM systems were studied by atomic
force microscopy (AFM) under ambient conditions, using a scanning probe microscope
Multimode 8 from Bruker (Billerica, MI, USA). Tapping mode (TM) was employed in air
using an integrated tip/cantilever (125 mm in length with a 300 kHz resonant frequency).
Measurements were performed with 512 scan lines and target amplitude around 0.9 V.
Different regions of the cured BCP-DGEVA/DDM systems were scanned to ensure that
the morphology of the investigated materials was a representative one. Samples were cut
using an ultramicrotome Leica Ultracut R with a diamond blade.

UV-vis transmittance spectra of the cured BCP-DGEVA/DDM systems were per-
formed with a Shimadzu UV-3600 (Kioto, Japan) spectrophotometer in the range between
200 and 800 nm.

3. Results and Discussion
3.1. Differential Scaning Calorimetry Analysis

DSC dynamic measurements were carried out in order to investigate the miscibility
between PEO-PPO-PEO triblock copolymer and DGEVA/DDM.

Figure 1A shows thermograms of blend components (PEO-PPO-PEO and DGEVA/DDM).
Moreover, uncured BCP-DGEVA/DDM blends with different BCP amounts were also
included in Figure 1B. PEO-PPO-PEO thermogram shows a Tg at around −68.5 ◦C [32] and
a melting peak centered at 58.0 ◦C, related to the melting of crystalline PEO block. DGEVA
resin presents a Tg at−41.7 ◦C that increased up to−32.5 ◦C when curing agent was added.
This behavior can be related to the partial miscibility between the DGEVA resin and the
amine before curing. In addition, the DGEVA/DDM thermogram shows an exothermic
peak centered around 140 ◦C, indicating the curing reaction of the blend. If the dynamic
thermograms for BCP-DGEVA/DDM systems are compared, the Tg of the DGEVA resin
phase decreases from −36.5 ◦C to −44.0 ◦C with increasing BCP content, owing to the
miscibility of PEO-PPO-PEO and DGEVA [32,37]. Moreover, at the thermogram of the
50BCP-DGEVA/DDM system, the melting of the crystalline phase of the PEO block is
detected and, in contrast to that of neat BCP, the melting happens in two steps, indicating
the presence of different types of crystals. This phenomenon will be further discussed in
the morphology section shown below.
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Figure 1. Dynamic DSC thermograms of (A) the neat components (DGEVA resin and PEO-PPO-PEO
triblock copolymer) and uncured DGEVA/DDM blend, and (B) uncured BCP-DGEVA/DDM blends
with different BCP contents from 10 to 50 wt%. Note: thermograms have been shifted along the
Y-axes for a better visualization.

The curing behavior of all BCP-DGEVA/DDM blends was analyzed by isothermal
thermograms at 80, 100 and 120 ◦C (Figure 2).
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along the Y-axes for a better visualization.

As can be observed, the reaction rate increased with the increasing of curing temper-
ature, while BCP addition delayed the exothermic peak of the isothermal thermograms
at all temperatures, due to the dilution effect of PEO-PPO-PEO [32,46]. For systems with
highest amount of BCP, the exothermic peak almost disappeared at 80 and 100 ◦C, as the
full conversion was not reached in the analyzed time scale at 80 and 100 ◦C. For these
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BCP-DGEVA/DDM systems, the curing process would be completed at the post-curing
stage. At 120 ◦C the curing reaction was completed for all investigated BCP-DGEVA/DDM
systems, and all composites were cured at 120 ◦C.

All BCP-DGEVA/DDM systems cured at 120 ◦C were studied by dynamic DSC
analysis (Figure 3). The neat DGEVA/DDM epoxy system showed a Tg at 115.1 ◦C.
With PEO-PPO-PEO triblock copolymer addition, the Tg of the epoxy matrix decreased
from 109.5 ◦C (10BCP-DGEVA/DDM system) to 91.6 ◦C (50BCP-DGEVA/DDM system),
confirming of the epoxy matrix the miscibility between DGEVA epoxy resin and PEO block
of PEO-PPO-PEO [26]. However, the sample with 30 wt% of BCP presented a lower Tg
value of for epoxy matrix than the sample with 50 wt% of BCP. Moreover, the 50BCP-
DGEVA/DDM system presented an additional Tg at −50.2 ◦C, which could be attributed
to the Tg of PEO block of PEO-PPO-PEO. Dynamic thermograms of BCP-DGEVA/DDM
systems with BCP content from 10 to 50 wt% also presented endothermic peaks, related
to the melting of PEO block of the BCP, which is represented by two peaks that tend to
become closer as the BCP content is increased, indicating different types of crystals.
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better visualization.

As has been pointed out by other authors [26,33], the Tg of a blend depends on the
weight fraction of the components. For this reason, it could be expected that the higher
the BCP content in the mixture, the lower the Tg of the system will be. However, in this
case, although the BCP amount is higher for the 50BCP-DGEVA/DDM system than for
the 30BCP-DGEVA/DDM one, the value of the Tg increases. This could indicate that part
of the PEO block phase separates from the DGEVA/DDM matrix, as found in previous
works of our group [26]. These melting peaks increased significantly in the case of the
50BCP-DGEVA/DDM system. The increase in melting peaks, together with the presence of
the Tg of PEO block of BCP and the higher Tg of epoxy matrix when compared with that
for the 30BCP-DGEVA/DDM system, could indicate that the phase separated BCP content
could be remarkably higher in this case than for the rest of the systems.

3.2. Thermogravimetric Analysis

Thermogravimetric analysis of PEO-PPO-PEO triblock copolymer and developed
BCP-DGEVA/DDM systems was also carried out (Figure 4). If the thermal degradation
curves of PEO-PPO-PEO and neat DGEVA/DDM are compared, for both samples the
main degradation step occurs between 350 and 425 ◦C. As a result, for BCP-DGEVA/DDM
systems the main degradation occurs in the same temperature range, showing that BCP
addition does not affect the thermal stability of the system. On the other side, formed char
amount (32 wt% for neat epoxy system) proportionally decreases with BCP content from
29 wt% for the 10BCP-DGEVA/DDM system to 14 wt% for the 50BCP-DGEVA/DDM one.
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3.3. Fourier-Transform Infrared Spectroscopy Analysis

Figure 5A shows FTIR spectra of DGEVA resin and the DGEVA/DDM system. If these
two spectra are compared, in the case of DGEVA/DDM system, a broad band centered
at 3370 cm−1 is detected, attributed to the alcohol groups formed after the reaction of the
epoxy groups of DGEVA and the amine groups of DDM [33]. In addition, the peak related
to the epoxide group (910 cm−1) disappears at the cured spectrum, proving the curing of
the epoxy resin [33,55].
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Regarding the effect of PEO-PPO-PEO triblock copolymer addition, Figure 5B shows
that by increasing BCP content, the intensity of the band related to alcohol groups (broad
band centered at 3370 cm−1, in DGEVA/DDM) decreases and shifts towards higher
wavenumbers (3387 and 3428 cm−1 for 15BCP-DGEVA/DDM and 50BCP-DGEVA/DDM,
respectively). This could be due to the hydrogen bonding interaction between the OH
groups formed in the cured resin and the PEO block of the triblock copolymer [33]. More-
over, in the spectra of systems with higher BCP content (30 and 50 wt%) the bands related
to the PEO-PPO-PEO block copolymer present higher intensity.

3.4. Atomic Force Microscopy

The morphologies of the BCP-DGEVA/DDM systems cured at 120 ◦C were investi-
gated by AFM. As can be observed in Figure 6, all investigated systems show microphase
separation at nanoscale. In the case of the samples with BCP content up to 30 wt%, it is
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remarkable the formation of small nanostructures. For the system with 10 wt% of block
copolymer (Figure 6A), a hexagonally packed cylinder morphology is formed, in which
the dark spherical domains with diameters ranging from 10 to 15 nm correspond to the
PPO block rich phase, while the continuous light phase corresponds to the PEO-epoxy rich
one [31]. As other authors have reported for DGEBA epoxy systems [26,37,46], it seems
that as a result of the interactions between the PEO block and epoxy resin, the PEO block
is miscible with DGEBA epoxy resin, while PPO remains immiscible. In the case of the
system based on DGEVA resin, a similar behavior is observed. As shown in Figure 6B,
an increase of 5 wt% in PEO-PPO-PEO triblock copolymer content seems not to affect the
morphology observed, as the 15BCP-DGEVA/DDM system presents the same morphology
than the 10BCP-DGEVA/DDM one. Moreover, for the 30BCP-DGEVA/DDM system, no
significant morphological changes are detected, observing a similar hexagonally packed
cylinder morphology (marked at the images) than for 10BCP-DGEVA/DDM and 15BCP-
DGEVA/DDM systems. On the contrary, when PEO-PPO-PEO concentration rises up to
50 wt%, the morphology changes drastically. In this case, large worm-like domains (PPO
block) are observed, surrounded by two different phases, one of them rich in PEO (lower
hardness) and the last phase rich in cured DGEVA [56]. This fact could be in agreement
with the dynamic DSC results for the 50BCP-DGEVA/DDM system shown in Figure 3, in
which an additional Tg attributed to the PEO block of PEO-PPO-PEO was detected.
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3.5. UV-Vis Spectroscopy

UV-vis transmittance results of the BCP-DGEVA/DDM systems with different PEO-
PPO-PEO contents are shown in Figure 7. The transmittance of the DGEVA/DDM system
decreases with the addition of triblock copolymer. The DGEVA/DDM system presents a
transmittance value of 77% at 650 nm, while values of 75, 74 and 73% are measured for
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systems with 10, 15 and 30% of BCP, respectively. When the triblock copolymer content
increases to 50 wt%, the transmittance value at 650 nm is reduced to 19%. The presence
of PEO crystals observed by DSC for this system (increase in the melting temperature for
PEO block) could explain the drastic reduction in the transmittance.
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Figure 7. UV-vis transmittance results of BCP-DGEVA/DDM systems with BCP content from 0 to
50 wt% cured at 120 ◦C.

The digital images of samples shown in Figure 8 corroborate the results obtained
by UV-vis transmittance. The systems with PEO-PPO-PEO concentrations up to 30 wt%
allow light transmittance, while the 50BCP-DGEVA/DDM system presents much lower
transmittance and the image behind cannot be clearly seen.
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4. Conclusions

The following conclusions can be extracted from this preliminary work on the nanos-
tructuring of bio-based epoxy matrix by PEO-PPO-PEO block copolymer.

This research work demonstrates that the biobased DGEVA epoxy resin is an adequate
resin to be nanostructured with PEO-PPO-PEO triblock copolymer. The curing temperature
was set at 120 ◦C, as at lower temperatures systems with higher BCP content did not
reach full conversion, as BCP addition delayed the cure reaction by dilution effect. The
investigated systems showed, up to 30 wt% of triblock copolymer, a hexagonally packed
cylinder morphology, with spherical domains ranging from 10 to 15 nm. In the 50BCP-
DGEVA/DDM system, a change in the morphology was detected, forming a more complex
morphology with phase separation of PEO-PPO-PEO triblock copolymer. These results
are in agreement with presented DSC thermograms, in which an additional Tg related to
PEO crystals was detected, and also with the transmittance data obtained by UV-vis, as the
most significant decrease in transmittance was not detected up to a BCP content of 50 wt%,
probably due to the presence of PEO crystals.
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