
Citation: Teso-Fz-Betoño, A.; Zulueta,

E.; Cabezas-Olivenza, M.;

Fernandez-Gamiz, U.;

Botana-M-Ibarreta, C. Modification of

Learning Ratio and Drop-Out for

Stochastic Gradient Descendant

Algorithm. Mathematics 2023, 11,

1183. https://doi.org/10.3390/

math11051183

Academic Editor: Georgios

Tsekouras

Received: 25 January 2023

Revised: 23 February 2023

Accepted: 25 February 2023

Published: 28 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Modification of Learning Ratio and Drop-Out for Stochastic
Gradient Descendant Algorithm
Adrian Teso-Fz-Betoño 1 , Ekaitz Zulueta 1,*, Mireya Cabezas-Olivenza 1 , Unai Fernandez-Gamiz 2

and Carlos Botana-M-Ibarreta 1

1 System Engineering and Automation Control Department, University of the Basque Country (UPV/EHU),
Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain

2 Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU),
01006 Vitoria-Gasteiz, Spain

* Correspondence: ekaitz.zulueta@ehu.eus

Abstract: The stochastic gradient descendant algorithm is one of the most popular neural net-
work training algorithms. Many authors have contributed to modifying or adapting its shape and
parametrizations in order to improve its performance. In this paper, the authors propose two modifi-
cations on this algorithm that can result in a better performance without increasing significantly the
computational and time resources needed. The first one is a dynamic learning ratio depending on the
network layer where it is applied, and the second one is a dynamic drop-out that decreases through
the epochs of training. These techniques have been tested against different benchmark function
to see their effect on the learning process. The obtained results show that the application of these
techniques improves the performance of the learning of the neural network, especially when they are
used together.

Keywords: machine learning; neural network training; training algorithms

MSC: 37M05; 37M10; 37M15; 37M20; 37M21; 37M22

1. Introduction

The stochastic gradient descendant algorithm [1] (SGD) is one of the most popular
training algorithms for the multi-layer neural networks based on fully connected lay-
ers [2–7]. It is used as a quick learning algorithm based on its random behavior to reach a
zone near the minimum loss quicker than other gradient-based algorithms. Its major virtue
is also its weakness, as it will not stop naturally in the absolute minimum but will keep
moving around that point constantly [7].

To avoid an unstable behavior of the algorithm, a learning ratio, also known as α, is
applied to the gradient modification caused by the last loss calculated pattern for a certain
synaptic weight; if α is set too high, the instability can have an effect on the training stability
and ruin any progress on it. As for the error propagation from the output to the input in a
supervised training, the deeper a weight is located, the closer it is to the input than to the
output, and the less correction it will receive. This is caused because the gradient of the
error will be vanishing while it is propagated through the layers, and the error portion that
arrives to correct the deeper areas of a network could not be enough to have a powerful
influence on it, needing more epochs of training to be able to move these deep weights. If
α is set too low, this problem could be exacerbated. Generally speaking, α is set when the
parameters of the learning algorithm are defined before the training of the neural network
(NN) and are not varied in any point of the training. If the α set is too big, the synaptic
weights can be modified in an instable manner, as the gradients are applied without any
filter. This affects mainly the output-side weights, where the gradients have not been
nearly vanished. On the contrary, if it is too low, the deeper synaptic weights will remain

Mathematics 2023, 11, 1183. https://doi.org/10.3390/math11051183 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051183
https://doi.org/10.3390/math11051183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6570-1890
https://orcid.org/0000-0001-5025-1711
https://orcid.org/0000-0001-9194-2009
https://doi.org/10.3390/math11051183
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051183?type=check_update&version=1

Mathematics 2023, 11, 1183 2 of 24

stationary as the gradient will not have any influence on them. The previous knowledge
of the network designer and trainer is the one that determines the correct value for this
parameter, and the whole training repetition could be caused in case a wrong value has
been set.

On the other side, to avoid overfitting of the network, usually a drop-out [7–12]
method is applied. This method consists of leaving apart, in a random way, some of the
corrections caused by the gradients in the synaptic weights. This leaving apart makes
the correction of a certain weight not complete, which in the course of the whole training
allows a better generalization of the learned objective function. In a similar way to the
learning ratio, a too big drop-out percentage will cause the network not to learn enough
information from the training patterns, and if it is too low, there is a quite high risk of
overfitting the network in the case where the training patterns bunch is not big enough
or too many training epochs are set. As in the previous case, the network designer and
trainer’s previous experience in NN training will be key to ensuring its correct use.

There are some major SGD modifications, such as the ones based on the AdaGrad
algorithm proposed by Duchi et al. [13], where the observed data geometry is applied to
the learning process, assigning frequent features lower learning rates and assigning higher
rates to the infrequent ones. Since its publication in 2011, it has been modified in different
areas to satisfy the special needs of each of them [14–19]. One of AdaGrad’s most impor-
tant modifications is the RMSProp algorithm, solving the previous weaknesses found on
it [20–25]. There are also other learning methods for the NN that give more precise learning
ratios, such as the Levenberg–Marquard algorithm [26–33]. This method gives good results
on the system loss but requires a high consumption of time and computational resources
that could result in the training process not easily handling even the simplest problems.

The authors worked from the standard SGD, analyzing it thoroughly using the vectors
scalar product between the generated

(
∂Loss
∂W

)
matrixes for each of the learned patterns and

the average of them. To do so, the authors have developed a Matlab library to generate the
neural networks and analyze them in detail by performing their own NN implementation
instead of using the standard one from Matlab itself [34]. The library is able to collect data
from each of the patterns. In the final epoch of training, the data of all the weight matrixes
of the created neural network are stored and processed. The main reason for creating this
library is to be able to collect all these data that are not offered by other NN libraries such
as Keras or Matlab in order to be able to manipulate the learning algorithms and take out
the needed graphical charts to study the behavior of the NN. This way, it is possible to
analyze the impact of the modifications on the behavior of each of the learning patterns
and seen if there is any change in them. The chosen specter of math functions to be the
target functions for the shallow NN used for the experiments offer a graphical way to see if
any of the modifications have effects on them and detect any malfunction during training
as a problem of the learning process instead of a randomness of the training objective.

In this paper, the authors propose a modification in the learning ratio and the learning
drop-out, making them dynamic to obtain a better convergence in a similar time. This way,
the need for an experienced hand on the NN training is made less determinant for the final
result. The proposed modifications are complementary to the authors’ previous works on
the SGD and drop-out modifications. The authors’ goal is to achieve some better results on
the learning process without sacrificing time and computational resources in the process,
being able to make the NN learn better in an inexpensive way.

The paper is organized as follows. First, in Section 2, a background on the SGD
modifications made by other authors is analyzed, where some performance improvements
are displayed. In Section 3, the studied learning ratio and drop-out issues are analyzed, and
modifications for a possible solution are explained. In Section 4, the performed experiments
are displayed as well as the obtained results. Section 5 contains the conclusion; and, finally,
in Section 6, the possible future lines of work are listed.

Mathematics 2023, 11, 1183 3 of 24

2. Background

As said before, the SGD is a very popular training algorithm but suffers from various
weaknesses regarding the training process. Different authors have proposed different kinds
of modifications. Le Roux et al. [35] and Defazio et al. [36] propose a modification on
the algorithm by adding a memory of the past gradients to use the average of it in the
first case and, in the second case, being an evolution of the first, an incremental gradient
modification. In both cases, they claim to obtain quicker convergence than the standard
algorithm. Following a similar approach, Johnson and Zang [37] propose a modification
to use a predictive variance reduction for the SGD achieving also a quick convergence on
the minimum Loss. Zhuang Yang [38] proposes combining a conjugate gradient algorithm
with a stochastic recursive gradient descendent algorithm to take advantage of both the
convergence quickness of the first one and the relative direct way of step shaping of
the second one to achieve a reasonable convergence in a reasonable computational time.
Similarly, Pengfei Wang and Nenggan Zenhg [39] propose two methods to achieve a
linear convergence to the minimal solution by using an asynchronous stochastic recursive
gradient. Li et al. [40] propose a modification of the stochastic parallel gradient descendant
algorithm for the free-space optical communication. Their adaptation follows the work
originally made by Hu et al. [41] for fiber coupling. Their adaptation consists of feeding
the loss feedback with multiple data instead of the loss generated in a single pattern.
Le Trieu Phong and Tran Thi Phoung [42] propose another modification of the SGD by
adding compression and memorization of the gradient to achieve more accuracy and less
noise during the NN training. From a safety and security point of view, Roberts and
Smith [43] propose a simplified convergence theory, which was originally presented by
Blanchard et al. [44] to modify the SGD and make it resilient to the Byzantine type of attacks
in distributed learning.

There are also authors using the SGD algorithm as a basis for other modifications and
experiments. Chen et al. [45] extensively studied the SGD’s behavior during the training
and travel through the loss landscape. They concluded that the SGD algorithm has a
super-diffusion behavior on the initial steps of the training, allowing it to travel fast from
the rough fractal-like loss regions to the flattened, nearly minimal loss regions; once the
training process advances, however, the behavior changes to sub-diffusive, which allows
the grain approach to the minimal loss region once the landscape has become more flat.
They analyzed also the different hyper-parameters of the SGD algorithm and their influence
on the training of the NN. In the same terms, Carmina Fjellström and Kaj Nyström [46]
made a diffusion map out of the different elements that compound the SGD learning and
the loss surface. Sun et al. [6] analyzed the effect of using computer floating numbers
instead of continuous ones in the SGD algorithm and see effects such as overflows on it.
In the neural trees world, Varun Ojha and Giuseppe Nicosia [47] modified a neural tree to
shape it like a single neuron neural tree trained using SGD. Senthil et al. [48] developed
an SGD-based algorithm named Aladelta SGD to be able to store the data from hospital
patients in the most time and space-efficient manner. This way, predictions on diseases can
be more easily achieved.

In the case of the drop-out technique, adaptative drop-out techniques are widely
used. Lei Jimmy Ba and Brendan Frey [49] proposed one of the firsts adaptative drop-outs,
decreasing considerably the loss obtained compared to the standard drop-out. Li et al. [50]
propose an adaptative drop-out based on biological principles of the gene theory and
human brain neurons. They claim to obtain an adaptative drop-out that can improve the
feature extraction performance and the classification accuracy. Mirzadeh et al. [51] studied
the relation between the drop-out and the continuous training of a network; they are able
to demonstrate that the NN that incorporates drop-out in their training algorithm is more
stable, maintaining an old learned task while learning new ones. Yuanyuan Chen and
Zhang Yi [52] propose an adaptative sparse drop-out technique that trains a few neurons in
each layer, obtaining them in a probabilistic method based on a sigmoid function. Daniel

Mathematics 2023, 11, 1183 4 of 24

LeJeune et al. [53] also propose another adaptative drop-out approach, the effective penalty
Ω, having good results on sparsening approaches.

3. Learning Ratio and Learning Drop-Out: Issues, Analysis and Possible Solutions

The authors propose two main improvements in order to achieve better results in
training algorithms. The first one is the dynamic learning ratio that depends on the
position of the layer inside in the neural network. The second is a dynamic drop-out
that adapts the drop-out probability among the epochs of training. The main objective of
these two improvements is to reduce the loss function achieved with the training algorithm
without increasing the training time. The authors have tested these two improvements on
their own and together. These possibilities have been tested in order to see the influence of
each improvement.

3.1. Dynamic Alpha

This improvement consists of applying an adaptive layer-wise learning ratio. This
adaptive policy increases the learning ratio in the same epochs if the weight is located in
a layer closer to the input. The authors have noticed that the training algorithm in SGD
propagates the error through the output to the input, and that delays the training process
of weights that are closer to the input layer. So, the weights that are closer to the input learn
slower than the weights that are closer to the output. In order to increase the actualization
of whole weights in a more homogeneous way, the authors propose a bigger learning ratio
in weights that are closer to the input. In Equations (1)–(4), the authors define the training
equations applied in this research work. wi,j,n(t) is the weight that links the j-th output to

i-th input of the n-th layer, mi,j,n(t) is the momentum applied to that weight and
(

∂Loss
∂wi,j,n(t)

)
is the partial derivative of the loss for that particular weight. α and β are the learning
ratio, the one to be adapted, and the momentum appliance ratio. The authors propose in
Equation (4) a modification that introduces an adaptive term. This term depends on n,
Nlayers, ξ and α0 parameters. The ξ parameter is the learning ratio’s increased value for the
whole neural network.

wi,j,n(t + 1) = wi,j,n(t) + ∆wi,j,n(t) (1)

∆wi,j,n(t) = α

(
∂Loss

∂wi,j,n(t)

)
+ β ·mi,j,n(t) (2)

mi,j,n(t + 1) = mi,j,n(t) + ∆wi,j,n(t) (3)

α = α0

(
1 + ξ

n
Nlayers

)
(4)

The authors remind the reader that this improvement has been implemented because
the error propagates from output to input. Thus, the error vanishes when it propagates
from the output layer to the input layer in the SGD training algorithm. The n index is equal
to 0 for the output layer weights and n is equal to Nlayers. This term (see Equation (4)) tries
to increase the actualization of weights that are closer to the input.

3.2. Dynamic Drop-Out

The drop-out is a very well-known regularization technique. This technique equals to
zero an activation in a random way with Pdropout probability. This probability usually is a
constant value for fully connected layers. The authors propose that this probability must
be adaptative in order to modulate its influence along the training epochs.

Pdropout = Pdropout,0 · e−
t
T (5)

This adaptive probability allows the training algorithm to introduce a faster specializa-
tion of each neuron at the initial epochs of the training. In that way, the training algorithm

Mathematics 2023, 11, 1183 5 of 24

allows neurons to learn a specific pattern or feature faster. In the start, the neurons of the
same layer have the same probability to acquire the most important features. There are
several training epochs after the neurons obtain their specific feature or learned pattern. In
order to promote this specialization, the authors propose an adaptive or dynamic probabil-
ity of drop-out. In Equation (5), the authors propose an exponential shape function, where
the vanishing coefficient is T. If this vanishing term must be bigger, this T parameter must
be increased. The Pdropout,0 probaility is the initial drop-out probability.

4. Shallow Neural Network Examples and Results

Based on the authors’ previous work, some experiments were made using Matlab
2022a as the development tool. The authors use a shallow neural network composed
of three fully connected layers separated by two ReLu processing layers. The training
function will be MSE. All three fully connected layers are trained using 0.01 α and β values
and a 20% of drop-out rate. Each of the experiments has been made using the standard
SGD parameters to have a reference of the learning ratios that can be obtained normally
and applying the modification techniques. The authors have applied this kind of neural
network because conceptually, in shallow neural networks, the regularization effects are
less important than in deeper neural networks. So, if the authors obtain goods results in
such shallow neural networks, the benefits must be bigger in very deep neural networks.
The experiments consist of 6241 patterns of learning and 3136 patterns of validation that are
learned in 100 epochs of training. Both data sets have been generated stochastically inside
the data set bound to each of the benchmark examples. The chosen benchmark functions
make it easy enough to trace any problem in the training to the learning process itself and
not to any other complex side effects. The obtained output results are based on the behavior
of the different training patterns compared to the average behavior. These comparisons
are represented by the scalar product between the partial derivative of a pattern loss to
a certain layer

(
∂Loss
∂W

)
and the average one, obtaining j × i weight matrixes in the fully

connected layers. Those matrixes are transformed into a single row vector, ordering them
from output to input and making the scalar product. The shown modules relationship and
cos(ϕ) are the result of those products.

4.1. “Mexican Hat”

This mathematical function is what the authors have used as a starting point of analysis
against the different studied possibilities of mutation of the SGD algorithm. The equation
leading this function is the following one:

z = sinc
(

x2 + y2
)

; x, y ∈ [−0.95, 1], (6)

where x and y are the inputs for the neural network and z is the expected output. We first
train the network without applying any of the techniques proposed in this work to have a
starting point for comparison.

On this particular case, after all the training is completed, the average loss of training
patterns rises to 0.00010586 on the learned patterns and 0.000150754 on the case of the
validation patterns at the end of the 100th epoch of training. Figure 1 shows the evolution
of the training loss on a logarithmical scale. The authors will compare this obtained value
with the ones obtained applying the modifications proposed in this work.

4.1.1. Dynamic Alpha

Applying the dynamic alpha modification, see Section 3.1, and training the same
neural network with the same patterns, through the same number of epochs, the obtained
average loss is 0.000073996 in the case of the training patterns and 0.000104274 in the case
of the validation patterns. In Figure 2, the evolution of the loss during epochs can be seen.

Mathematics 2023, 11, 1183 6 of 24
Mathematics 2023, 11, x FOR PEER REVIEW 6 of 26

Figure 1. Average loss on training patterns in blue and validation patterns in orange for the stand-

ard SGD learning of Mexican Hat.

4.1.1. Dynamic Alpha

Applying the dynamic alpha modification, see Section 3.1, and training the same neu-

ral network with the same patterns, through the same number of epochs, the obtained

average loss is 0.000073996 in the case of the training patterns and 0.000104274 in the case

of the validation patterns. In Figure 2, the evolution of the loss during epochs can be seen.

Figure 2. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha SGD of Mexican Hat.

The authors used the previous work to propose patterns of vectors alignment [34],

using the scalar product method between each of the patterns and the average of all the

patterns. The 20 worst learned patters are barely aligned with the average of the network,

as their cos(φ) values are below 0.5 and their module values are much bigger than the

average vector. In Figure 3 is possible to see this effect.

Figure 1. Average loss on training patterns in blue and validation patterns in orange for the standard
SGD learning of Mexican Hat.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 26

Figure 1. Average loss on training patterns in blue and validation patterns in orange for the stand-

ard SGD learning of Mexican Hat.

4.1.1. Dynamic Alpha

Applying the dynamic alpha modification, see Section 3.1, and training the same neu-

ral network with the same patterns, through the same number of epochs, the obtained

average loss is 0.000073996 in the case of the training patterns and 0.000104274 in the case

of the validation patterns. In Figure 2, the evolution of the loss during epochs can be seen.

Figure 2. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha SGD of Mexican Hat.

The authors used the previous work to propose patterns of vectors alignment [34],

using the scalar product method between each of the patterns and the average of all the

patterns. The 20 worst learned patters are barely aligned with the average of the network,

as their cos(φ) values are below 0.5 and their module values are much bigger than the

average vector. In Figure 3 is possible to see this effect.

Figure 2. Average loss on training patterns in blue and validation patterns in orange for Dynamic
alpha SGD of Mexican Hat.

The authors used the previous work to propose patterns of vectors alignment [34],
using the scalar product method between each of the patterns and the average of all the
patterns. The 20 worst learned patters are barely aligned with the average of the network,
as their cos(ϕ) values are below 0.5 and their module values are much bigger than the
average vector. In Figure 3 is possible to see this effect.

On the opposite side, the 20 best learned patterns show a much more aligned situation
to the average vector. The module relationship, instead, is much smaller than the case of
worst learned patterns, with some even being close to a 1:1 relationship with the average
value. Figure 4 shows these results.

In summary, for this particular case, it can be said that the dynamic alpha application
to the learning process improves the learning ratios compared to the original SGD algorithm
in this particular case. The best learned patterns have more presence in the learning of the
network as they are very aligned to the average of the network, while the worst learned
ones have nearly no presence in the final result, as they offer a nearly orthogonal response
to the average of the network.

Mathematics 2023, 11, 1183 7 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 26

Figure 3. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for dynamic alpha modification for Dynamic alpha SGD of Mexican Hat.

On the opposite side, the 20 best learned patterns show a much more aligned situa-

tion to the average vector. The module relationship, instead, is much smaller than the case

of worst learned patterns, with some even being close to a 1:1 relationship with the aver-

age value. Figure 4 shows these results.

Figure 4. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for dynamic alpha modification for Dynamic alpha of Mexican Hat.

In summary, for this particular case, it can be said that the dynamic alpha application

to the learning process improves the learning ratios compared to the original SGD algo-

rithm in this particular case. The best learned patterns have more presence in the learning

of the network as they are very aligned to the average of the network, while the worst

learned ones have nearly no presence in the final result, as they offer a nearly orthogonal

response to the average of the network.

4.1.2. Dynamic Drop-Out

In the case of the of dynamic drop-out, see Section 3.2, the average loss of training

patterns rises to 0.000248867, which is two times bigger than the original, and 0.000330196

for the validation patterns. The numbers were not promising, but still, the authors pro-

cessed the obtained data from the training. Figure 5 shows the evolution of the loss.

Figure 3. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for dynamic alpha modification for Dynamic alpha SGD of Mexican Hat.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 26

Figure 3. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for dynamic alpha modification for Dynamic alpha SGD of Mexican Hat.

On the opposite side, the 20 best learned patterns show a much more aligned situa-

tion to the average vector. The module relationship, instead, is much smaller than the case

of worst learned patterns, with some even being close to a 1:1 relationship with the aver-

age value. Figure 4 shows these results.

Figure 4. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for dynamic alpha modification for Dynamic alpha of Mexican Hat.

In summary, for this particular case, it can be said that the dynamic alpha application

to the learning process improves the learning ratios compared to the original SGD algo-

rithm in this particular case. The best learned patterns have more presence in the learning

of the network as they are very aligned to the average of the network, while the worst

learned ones have nearly no presence in the final result, as they offer a nearly orthogonal

response to the average of the network.

4.1.2. Dynamic Drop-Out

In the case of the of dynamic drop-out, see Section 3.2, the average loss of training

patterns rises to 0.000248867, which is two times bigger than the original, and 0.000330196

for the validation patterns. The numbers were not promising, but still, the authors pro-

cessed the obtained data from the training. Figure 5 shows the evolution of the loss.

Figure 4. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for dynamic alpha modification for Dynamic alpha of Mexican Hat.

4.1.2. Dynamic Drop-Out

In the case of the of dynamic drop-out, see Section 3.2, the average loss of training
patterns rises to 0.000248867, which is two times bigger than the original, and 0.000330196
for the validation patterns. The numbers were not promising, but still, the authors processed
the obtained data from the training. Figure 5 shows the evolution of the loss.

The 20 worst learned patterns show a similar behavior to the dynamic alpha ones,
which is a little more aligned but still having their cos(ϕ) below 0.5; the module relationship
is also big, as the patterns modules are over 100 times bigger than the average. Figure 6
shows this behavior.

On the 20 best learned patterns side, the results are quite similar to the application of
the dynamic alpha. The patterns are generally more aligned and their modules are much
closer to the average value. In Figure 7, this behavior can be observed.

Mathematics 2023, 11, 1183 8 of 24
Mathematics 2023, 11, x FOR PEER REVIEW 8 of 26

Figure 5. Average loss on training patterns in blue and validation patterns in orange for the Dy-

namic drop-out SGD of Mexican Hat.

The 20 worst learned patterns show a similar behavior to the dynamic alpha ones,

which is a little more aligned but still having their cos(φ) below 0.5; the module relation-

ship is also big, as the patterns modules are over 100 times bigger than the average. Figure

6 shows this behavior.

Figure 6. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the dynamic drop-out modification for the Dynamic drop-out SGD of Mex-

ican Hat.

On the 20 best learned patterns side, the results are quite similar to the application of

the dynamic alpha. The patterns are generally more aligned and their modules are much

closer to the average value. In Figure 7, this behavior can be observed.

Figure 5. Average loss on training patterns in blue and validation patterns in orange for the Dynamic
drop-out SGD of Mexican Hat.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 26

Figure 5. Average loss on training patterns in blue and validation patterns in orange for the Dy-

namic drop-out SGD of Mexican Hat.

The 20 worst learned patterns show a similar behavior to the dynamic alpha ones,

which is a little more aligned but still having their cos(φ) below 0.5; the module relation-

ship is also big, as the patterns modules are over 100 times bigger than the average. Figure

6 shows this behavior.

Figure 6. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the dynamic drop-out modification for the Dynamic drop-out SGD of Mex-

ican Hat.

On the 20 best learned patterns side, the results are quite similar to the application of

the dynamic alpha. The patterns are generally more aligned and their modules are much

closer to the average value. In Figure 7, this behavior can be observed.

Figure 6. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the dynamic drop-out modification for the Dynamic drop-out SGD of
Mexican Hat.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 26

Figure 7. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for dynamic drop-out for the Dynamic drop-out SGD of Mexican Hat.

4.1.3. Mixed Together

Finally, another experiment was made combining both modifications at the same

time. After the training, the average loss rose to 0.000076558 in training patterns and

0.000099538 in the validation ones. Figure 8 shows the evolution of these values through

epochs of training. It can be seen that the loss reaches similar values to the case using only

dynamic alpha, but the validation patterns loss is maintained closer to the training ones

than in the previous case, being further from the overtraining.

Figure 8. Average loss on training patterns in blue and validation patterns in orange for the Dy-

namic drop-out and Dynamic alpha SGD of Mexican Hat.

These values are near the dynamic alpha, but analyzing the error on each of the val-

idation points, on the combination method, the peak errors are much lower than in the

first-case ones. In Figure 9, it is possible to see that the peak errors in the case of only using

dynamic alpha are bigger those in than the case of using both dynamic techniques.

Figure 7. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for dynamic drop-out for the Dynamic drop-out SGD of Mexican Hat.

Mathematics 2023, 11, 1183 9 of 24

4.1.3. Mixed Together

Finally, another experiment was made combining both modifications at the same time.
After the training, the average loss rose to 0.000076558 in training patterns and 0.000099538
in the validation ones. Figure 8 shows the evolution of these values through epochs of
training. It can be seen that the loss reaches similar values to the case using only dynamic
alpha, but the validation patterns loss is maintained closer to the training ones than in the
previous case, being further from the overtraining.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 26

Figure 7. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for dynamic drop-out for the Dynamic drop-out SGD of Mexican Hat.

4.1.3. Mixed Together

Finally, another experiment was made combining both modifications at the same

time. After the training, the average loss rose to 0.000076558 in training patterns and

0.000099538 in the validation ones. Figure 8 shows the evolution of these values through

epochs of training. It can be seen that the loss reaches similar values to the case using only

dynamic alpha, but the validation patterns loss is maintained closer to the training ones

than in the previous case, being further from the overtraining.

Figure 8. Average loss on training patterns in blue and validation patterns in orange for the Dy-

namic drop-out and Dynamic alpha SGD of Mexican Hat.

These values are near the dynamic alpha, but analyzing the error on each of the val-

idation points, on the combination method, the peak errors are much lower than in the

first-case ones. In Figure 9, it is possible to see that the peak errors in the case of only using

dynamic alpha are bigger those in than the case of using both dynamic techniques.

Figure 8. Average loss on training patterns in blue and validation patterns in orange for the Dynamic
drop-out and Dynamic alpha SGD of Mexican Hat.

These values are near the dynamic alpha, but analyzing the error on each of the
validation points, on the combination method, the peak errors are much lower than in the
first-case ones. In Figure 9, it is possible to see that the peak errors in the case of only using
dynamic alpha are bigger those in than the case of using both dynamic techniques.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 26

Figure 9. Resulting error on the validation patterns. The dynamic alpha modification on the (left)

and the mixed dynamic alpha and drop-out on the (right).

Analyzing the data obtained from the training, the authors see that the worst learned

patterns are much more aligned with the average value, having their modules relation-

ships closer to 1 than the cases before, and the cos(φ) are over 0.6 in absolute value. Figure

10 shows this behavior. These means that the worst learned patters are more relevant in

the learning process and affect more weights in the fully connected layers.

Figure 10. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the dynamic alpha and drop-out modifications used together.

In the case of the best learned cases, the behavior is similar to the previous cases.

Figure 11 shows how it is similar to the dynamic alpha-only or dynamic drop-out-only

cases. After seen the obtained results, it can be said that the combined methods make the

network learn better than the case of standard SGD is used in the training, and they make

all the patterns more relevant to the training process.

Figure 9. Resulting error on the validation patterns. The dynamic alpha modification on the (left)
and the mixed dynamic alpha and drop-out on the (right).

Analyzing the data obtained from the training, the authors see that the worst learned
patterns are much more aligned with the average value, having their modules relationships
closer to 1 than the cases before, and the cos(ϕ) are over 0.6 in absolute value. Figure 10
shows this behavior. These means that the worst learned patters are more relevant in the
learning process and affect more weights in the fully connected layers.

Mathematics 2023, 11, 1183 10 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 26

Figure 9. Resulting error on the validation patterns. The dynamic alpha modification on the (left)

and the mixed dynamic alpha and drop-out on the (right).

Analyzing the data obtained from the training, the authors see that the worst learned

patterns are much more aligned with the average value, having their modules relation-

ships closer to 1 than the cases before, and the cos(φ) are over 0.6 in absolute value. Figure

10 shows this behavior. These means that the worst learned patters are more relevant in

the learning process and affect more weights in the fully connected layers.

Figure 10. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the dynamic alpha and drop-out modifications used together.

In the case of the best learned cases, the behavior is similar to the previous cases.

Figure 11 shows how it is similar to the dynamic alpha-only or dynamic drop-out-only

cases. After seen the obtained results, it can be said that the combined methods make the

network learn better than the case of standard SGD is used in the training, and they make

all the patterns more relevant to the training process.

Figure 10. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the dynamic alpha and drop-out modifications used together.

In the case of the best learned cases, the behavior is similar to the previous cases.
Figure 11 shows how it is similar to the dynamic alpha-only or dynamic drop-out-only
cases. After seen the obtained results, it can be said that the combined methods make the
network learn better than the case of standard SGD is used in the training, and they make
all the patterns more relevant to the training process.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 26

Figure 11. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the dynamic alpha and drop-out modifications used together.

After checking that this effect was working on this particular case, the authors took

some other benchmark functions from Surjanovic and Bingham’s web page [54] to check

if the new discovered method has the same positive effect on the training.

4.2. Ackley Function

The Ackley function presents an absolute minimum in the [0,0] position and many

local maximums and minimums around it. The following equation represents its form:

𝑧 = −20 ∙ 𝑒
(

1
5

√1
2

(𝑥2+𝑦2))
− 𝑒

(
1
2

(𝑐𝑜𝑠(2𝜋𝑥)+𝑐𝑜𝑠 (2𝜋𝑦))
+ 20 + 𝑒; 𝑥, 𝑦 ∈ [−0.95, 1]

(7)

where x and y are the inputs of the neural network and z is its output. After the 100-epoch

training without applying any modification to the SGD, a loss of 0.003114478 is obtained

on the learning patterns and 0.002884209 on the validation patterns. Figure 12 shows the

loss evolution through the epochs, and it can be seen that the loss associated with the

validation patterns set becomes noisier in the final steps of learning.

Figure 12. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Ackley function.

Figure 11. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the dynamic alpha and drop-out modifications used together.

After checking that this effect was working on this particular case, the authors took
some other benchmark functions from Surjanovic and Bingham’s web page [54] to check if
the new discovered method has the same positive effect on the training.

4.2. Ackley Function

The Ackley function presents an absolute minimum in the [0,0] position and many
local maximums and minimums around it. The following equation represents its form:

z = −20· e(
1
5

√
1
2 (x2+y2)) − e(

1
2 (cos(2πx)+cos(2πy)) + 20 + e; x, y ∈ [−0.95, 1] (7)

where x and y are the inputs of the neural network and z is its output. After the 100-epoch
training without applying any modification to the SGD, a loss of 0.003114478 is obtained on
the learning patterns and 0.002884209 on the validation patterns. Figure 12 shows the loss

Mathematics 2023, 11, 1183 11 of 24

evolution through the epochs, and it can be seen that the loss associated with the validation
patterns set becomes noisier in the final steps of learning.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 26

Figure 11. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the dynamic alpha and drop-out modifications used together.

After checking that this effect was working on this particular case, the authors took

some other benchmark functions from Surjanovic and Bingham’s web page [54] to check

if the new discovered method has the same positive effect on the training.

4.2. Ackley Function

The Ackley function presents an absolute minimum in the [0,0] position and many

local maximums and minimums around it. The following equation represents its form:

𝑧 = −20 ∙ 𝑒
(

1
5

√1
2

(𝑥2+𝑦2))
− 𝑒

(
1
2

(𝑐𝑜𝑠(2𝜋𝑥)+𝑐𝑜𝑠 (2𝜋𝑦))
+ 20 + 𝑒; 𝑥, 𝑦 ∈ [−0.95, 1]

(7)

where x and y are the inputs of the neural network and z is its output. After the 100-epoch

training without applying any modification to the SGD, a loss of 0.003114478 is obtained

on the learning patterns and 0.002884209 on the validation patterns. Figure 12 shows the

loss evolution through the epochs, and it can be seen that the loss associated with the

validation patterns set becomes noisier in the final steps of learning.

Figure 12. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Ackley function.
Figure 12. Average loss on training patterns in blue and validation patterns in orange for Standard
SGD of Ackley function.

Viewing the data obtained from the learned patterns, the worst learned are barely
aligned, and comparing their modules to the average calculated value produced values of
over 200 in most of the cases. Figure 13 shows these data. In the case of the best learned
patterns, the situation is similar to the one that was seen before, having a similar behavior
in the cos(ϕ) but with a module relationship to the average that was much lower. Figure 14
displays these data.

After making the training with the dynamic alpha and drop-out, it is possible to see
that the loss has been improved a bit in both cases, being 0.00250811 in the training patterns
and 0.002813870 in the case of the validation patterns. Figure 15 shows the evolution of
loss through epochs: the noisy part of the validation patterns is still there, but its effect has
been reduced.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 26

Viewing the data obtained from the learned patterns, the worst learned are barely

aligned, and comparing their modules to the average calculated value produced values of

over 200 in most of the cases. Figure 13 shows these data. In the case of the best learned

patterns, the situation is similar to the one that was seen before, having a similar behavior

in the cos(φ) but with a module relationship to the average that was much lower. Figure

14 displays these data.

Figure 13. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the standard SGD algorithm.

Figure 14. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the standard SGD algorithm.

After making the training with the dynamic alpha and drop-out, it is possible to see

that the loss has been improved a bit in both cases, being 0.00250811 in the training pat-

terns and 0.002813870 in the case of the validation patterns. Figure 15 shows the evolution

of loss through epochs: the noisy part of the validation patterns is still there, but its effect

has been reduced.

Figure 13. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Ackley function using the standard SGD algorithm.

Mathematics 2023, 11, 1183 12 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 26

Viewing the data obtained from the learned patterns, the worst learned are barely

aligned, and comparing their modules to the average calculated value produced values of

over 200 in most of the cases. Figure 13 shows these data. In the case of the best learned

patterns, the situation is similar to the one that was seen before, having a similar behavior

in the cos(φ) but with a module relationship to the average that was much lower. Figure

14 displays these data.

Figure 13. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the standard SGD algorithm.

Figure 14. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the standard SGD algorithm.

After making the training with the dynamic alpha and drop-out, it is possible to see

that the loss has been improved a bit in both cases, being 0.00250811 in the training pat-

terns and 0.002813870 in the case of the validation patterns. Figure 15 shows the evolution

of loss through epochs: the noisy part of the validation patterns is still there, but its effect

has been reduced.

Figure 14. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Ackley function using the standard SGD algorithm.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 26

Figure 15. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic drop-out mixed together SGD of Ackley function.

Analyzing the patterns, the worst learned ones have a similar behavior in the angle

alignment as before, but the module relationship has been lowered significantly. Figure

16 shows the obtained values. In the case of the best learned patterns, the situation is quite

similar: the cos(φ) remains quite similar while the module relationship has been lowered

significantly; is possible to see in Figure 17. Overall, it can be said that the behavior of the

patterns is closer to the average learning value than in the case without modifications.

Figure 16. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the dynamic alpha and drop-out modifications

for Dynamic alpha and Dynamic drop-out mixed together SGD of Ackley function.

Figure 15. Average loss on training patterns in blue and validation patterns in orange for Dynamic
alpha and Dynamic drop-out mixed together SGD of Ackley function.

Analyzing the patterns, the worst learned ones have a similar behavior in the angle
alignment as before, but the module relationship has been lowered significantly. Figure 16
shows the obtained values. In the case of the best learned patterns, the situation is quite
similar: the cos(ϕ) remains quite similar while the module relationship has been lowered
significantly; is possible to see in Figure 17. Overall, it can be said that the behavior of the
patterns is closer to the average learning value than in the case without modifications.

4.3. Cross-in-Tray Function

On the case of the Cross-in-Tray function, the following equation intended to be achieved:

z = −0.0001

(∣∣∣∣∣sin(x)sin(y)e(|100−
√

x2+y2

π |)
∣∣∣∣∣
)

x, y ∈ [−0.95, 1] (8)

where z is the wanted output for the output and x and y are the inputs. After training the
network with standard SGD and the one with dynamic alpha and drop-out, the obtained
loss is 0.016488167 in the training patterns and 0.006663838 in the validating ones for the
standard SGD. As it can be seen in Figure 18, the validation patterns loss has a quite random
behavior during the training process: it is generally below the training loss, but does not

Mathematics 2023, 11, 1183 13 of 24

have a clear process of learning. The learning parameters loss, instead, has a descendant
tendency, finding probably a local minimum in the final steps of learning.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 26

Figure 15. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic drop-out mixed together SGD of Ackley function.

Analyzing the patterns, the worst learned ones have a similar behavior in the angle

alignment as before, but the module relationship has been lowered significantly. Figure

16 shows the obtained values. In the case of the best learned patterns, the situation is quite

similar: the cos(φ) remains quite similar while the module relationship has been lowered

significantly; is possible to see in Figure 17. Overall, it can be said that the behavior of the

patterns is closer to the average learning value than in the case without modifications.

Figure 16. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the dynamic alpha and drop-out modifications

for Dynamic alpha and Dynamic drop-out mixed together SGD of Ackley function.

Figure 16. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Ackley function using the dynamic alpha and drop-out modifications for
Dynamic alpha and Dynamic drop-out mixed together SGD of Ackley function.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 26

Figure 17. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the dynamic alpha and drop-out modifications

for Dynamic alpha and Dynamic drop-out mixed together SGD of Ackley function.

4.3. Cross-in-Tray Function

On the case of the Cross-in-Tray function, the following equation intended to be

achieved:

𝑧 = −0.0001 (|𝑠𝑖𝑛(𝑥)𝑠𝑖𝑛 (𝑦)𝑒
(|100−

√𝑥2+𝑦2

𝜋 |)
|) 𝑥, 𝑦 ∈ [−0.95, 1] (8)

where z is the wanted output for the output and x and y are the inputs. After training the

network with standard SGD and the one with dynamic alpha and drop-out, the obtained

loss is 0.016488167 in the training patterns and 0.006663838 in the validating ones for the

standard SGD. As it can be seen in Figure 18, the validation patterns loss has a quite ran-

dom behavior during the training process: it is generally below the training loss, but does

not have a clear process of learning. The learning parameters loss, instead, has a descend-

ant tendency, finding probably a local minimum in the final steps of learning.

Figure 18. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Cross-in-Tray function.

Figure 17. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Ackley function using the dynamic alpha and drop-out modifications for
Dynamic alpha and Dynamic drop-out mixed together SGD of Ackley function.

In the case where both modifications are applied, the loss reaches 0.016340295 for
training patterns and 0.029352279 for the validating ones. The validation patterns’ related
loss is as noisy as before, as can be seen in Figure 19.

In this case, the differences are not very obvious between both cases. Analyzing the
data obtained from the learned patterns, the worst learned ones present a negative cos(ϕ),
which means that all these patterns are pulling the learning the training away from the
average value. The modules’ relationships to the average are all over 100. These values
can be seen in Figure 20. On the best learned patterns side, the cos(ϕ) is quite low, meaning
that even the best learned ones are not very relevant to the training; this can be seen in
Figure 21. Perhaps the network should be changed to fit better the function with this
learning algorithm in its standard mode.

Mathematics 2023, 11, 1183 14 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 26

Figure 17. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Ackley function using the dynamic alpha and drop-out modifications

for Dynamic alpha and Dynamic drop-out mixed together SGD of Ackley function.

4.3. Cross-in-Tray Function

On the case of the Cross-in-Tray function, the following equation intended to be

achieved:

𝑧 = −0.0001 (|𝑠𝑖𝑛(𝑥)𝑠𝑖𝑛 (𝑦)𝑒
(|100−

√𝑥2+𝑦2

𝜋 |)
|) 𝑥, 𝑦 ∈ [−0.95, 1] (8)

where z is the wanted output for the output and x and y are the inputs. After training the

network with standard SGD and the one with dynamic alpha and drop-out, the obtained

loss is 0.016488167 in the training patterns and 0.006663838 in the validating ones for the

standard SGD. As it can be seen in Figure 18, the validation patterns loss has a quite ran-

dom behavior during the training process: it is generally below the training loss, but does

not have a clear process of learning. The learning parameters loss, instead, has a descend-

ant tendency, finding probably a local minimum in the final steps of learning.

Figure 18. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Cross-in-Tray function.
Figure 18. Average loss on training patterns in blue and validation patterns in orange for Standard
SGD of Cross-in-Tray function.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 26

In the case where both modifications are applied, the loss reaches 0.016340295 for

training patterns and 0.029352279 for the validating ones. The validation patterns’ related

loss is as noisy as before, as can be seen in Figure 19.

Figure 19. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic drop-out mixed together SGD of Cross-in-Tray.

In this case, the differences are not very obvious between both cases. Analyzing the

data obtained from the learned patterns, the worst learned ones present a negative cos(φ),

which means that all these patterns are pulling the learning the training away from the

average value. The modules’ relationships to the average are all over 100. These values

can be seen in Figure 20. On the best learned patterns side, the cos(φ) is quite low, meaning

that even the best learned ones are not very relevant to the training; this can be seen in

Figure 21. Perhaps the network should be changed to fit better the function with this learn-

ing algorithm in its standard mode.

Figure 20. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the standard SGD.

Figure 19. Average loss on training patterns in blue and validation patterns in orange for Dynamic
alpha and Dynamic drop-out mixed together SGD of Cross-in-Tray.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 26

In the case where both modifications are applied, the loss reaches 0.016340295 for

training patterns and 0.029352279 for the validating ones. The validation patterns’ related

loss is as noisy as before, as can be seen in Figure 19.

Figure 19. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic drop-out mixed together SGD of Cross-in-Tray.

In this case, the differences are not very obvious between both cases. Analyzing the

data obtained from the learned patterns, the worst learned ones present a negative cos(φ),

which means that all these patterns are pulling the learning the training away from the

average value. The modules’ relationships to the average are all over 100. These values

can be seen in Figure 20. On the best learned patterns side, the cos(φ) is quite low, meaning

that even the best learned ones are not very relevant to the training; this can be seen in

Figure 21. Perhaps the network should be changed to fit better the function with this learn-

ing algorithm in its standard mode.

Figure 20. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the standard SGD.

Figure 20. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Cross-in-Tray function using the standard SGD.

Mathematics 2023, 11, 1183 15 of 24
Mathematics 2023, 11, x FOR PEER REVIEW 16 of 26

Figure 21. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the standard SGD.

In the case of the modified alpha and drop-out, the worst learned patterns are mostly

aligned with the average value, changing completely the direction of them, while the

modules maintained high values, as can be seen in Figure 22. The best learned patterns,

instead, maintain their behavior almost completely; see Figure 23. As said before, perhaps

the network must be modified to be able to train correctly this particular case with the

SGD algorithm.

Figure 22. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the dynamic alpha and drop-out.

Figure 21. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Cross-in-Tray function using the standard SGD.

In the case of the modified alpha and drop-out, the worst learned patterns are mostly
aligned with the average value, changing completely the direction of them, while the
modules maintained high values, as can be seen in Figure 22. The best learned patterns,
instead, maintain their behavior almost completely; see Figure 23. As said before, perhaps
the network must be modified to be able to train correctly this particular case with the
SGD algorithm.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 26

Figure 21. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the standard SGD.

In the case of the modified alpha and drop-out, the worst learned patterns are mostly

aligned with the average value, changing completely the direction of them, while the

modules maintained high values, as can be seen in Figure 22. The best learned patterns,

instead, maintain their behavior almost completely; see Figure 23. As said before, perhaps

the network must be modified to be able to train correctly this particular case with the

SGD algorithm.

Figure 22. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the dynamic alpha and drop-out.

Figure 22. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Cross-in-Tray function using the dynamic alpha and drop-out.

4.4. Drop-Wave Function

In the case of the drop-wave function, the obtained difference is quite significant,
while the loss in the standard SGD reaches 0.035496386 and 0.034738452 in the validation
patterns. Analyzing Figure 24, it is possible to see that the loss evolution happened primary
at the final epochs of training.

Applying the modifications, instead, the loss reaches 0.0066686 in the learning patterns
and 0.006050894 in the validation patterns. Figure 25 shows that similar to the previous
case, the loss evolution happens from the 50th epoch on.

Mathematics 2023, 11, 1183 16 of 24
Mathematics 2023, 11, x FOR PEER REVIEW 17 of 26

Figure 23. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the dynamic alpha and drop-out.

4.4. Drop-Wave Function

In the case of the drop-wave function, the obtained difference is quite significant,

while the loss in the standard SGD reaches 0.035496386 and 0.034738452 in the validation

patterns. Analyzing Figure 24, it is possible to see that the loss evolution happened pri-

mary at the final epochs of training.

Figure 24. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Drop-Wave function.

Applying the modifications, instead, the loss reaches 0.0066686 in the learning pat-

terns and 0.006050894 in the validation patterns. Figure 25 shows that similar to the pre-

vious case, the loss evolution happens from the 50th epoch on.

Figure 23. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Cross-in-Tray function using the dynamic alpha and drop-out.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 26

Figure 23. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Cross-in-Tray function using the dynamic alpha and drop-out.

4.4. Drop-Wave Function

In the case of the drop-wave function, the obtained difference is quite significant,

while the loss in the standard SGD reaches 0.035496386 and 0.034738452 in the validation

patterns. Analyzing Figure 24, it is possible to see that the loss evolution happened pri-

mary at the final epochs of training.

Figure 24. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Drop-Wave function.

Applying the modifications, instead, the loss reaches 0.0066686 in the learning pat-

terns and 0.006050894 in the validation patterns. Figure 25 shows that similar to the pre-

vious case, the loss evolution happens from the 50th epoch on.

Figure 24. Average loss on training patterns in blue and validation patterns in orange for Standard
SGD of Drop-Wave function.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 26

Figure 25. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic drop-out mixed together SGD of Drop-Wave function.

The goal function follows the next equation:

𝑧 = −
1 + 𝑐𝑜𝑠(12√𝑥2 + 𝑦2)

0.5(𝑥2 + 𝑦2) + 2
 𝑥, 𝑦 ∈ [−0.95, 1] (9)

where z is the desired output and x and y are the inputs to the network. After analyzing

the patterns, in the case of the standard SGD learning, all the worst learned patterns have

a high negative cos(φ) value with respect to the average, and the modules relationship is

over 100 in all the cases; this can be seen in Figure 26. This means that the worst learned

patterns are pushing all the training in the opposite direction to the rest of the patterns

learning.

Figure 26. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the standard SGD algorithm.

In comparison, the best learned patterns are partially aligned to the average value

and their modules’ relationships to the average are as high as the worst learned ones, as

can be seen in Figure 27. This means that the patterns are poorly learned in general and

the network is not able to offer a satisfactory output to the given inputs for this particular

case.

Figure 25. Average loss on training patterns in blue and validation patterns in orange for Dynamic
alpha and Dynamic drop-out mixed together SGD of Drop-Wave function.

Mathematics 2023, 11, 1183 17 of 24

The goal function follows the next equation:

z = −
1 + cos

(
12
√

x2 + y2
)

0.5(x2 + y2) + 2
x, y ∈ [−0.95, 1] (9)

where z is the desired output and x and y are the inputs to the network. After analyzing
the patterns, in the case of the standard SGD learning, all the worst learned patterns have a
high negative cos(ϕ) value with respect to the average, and the modules relationship is over
100 in all the cases; this can be seen in Figure 26. This means that the worst learned patterns
are pushing all the training in the opposite direction to the rest of the patterns learning.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 26

Figure 25. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic drop-out mixed together SGD of Drop-Wave function.

The goal function follows the next equation:

𝑧 = −
1 + 𝑐𝑜𝑠(12√𝑥2 + 𝑦2)

0.5(𝑥2 + 𝑦2) + 2
 𝑥, 𝑦 ∈ [−0.95, 1] (9)

where z is the desired output and x and y are the inputs to the network. After analyzing

the patterns, in the case of the standard SGD learning, all the worst learned patterns have

a high negative cos(φ) value with respect to the average, and the modules relationship is

over 100 in all the cases; this can be seen in Figure 26. This means that the worst learned

patterns are pushing all the training in the opposite direction to the rest of the patterns

learning.

Figure 26. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the standard SGD algorithm.

In comparison, the best learned patterns are partially aligned to the average value

and their modules’ relationships to the average are as high as the worst learned ones, as

can be seen in Figure 27. This means that the patterns are poorly learned in general and

the network is not able to offer a satisfactory output to the given inputs for this particular

case.

Figure 26. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the drop-wave function using the standard SGD algorithm.

In comparison, the best learned patterns are partially aligned to the average value and
their modules’ relationships to the average are as high as the worst learned ones, as can
be seen in Figure 27. This means that the patterns are poorly learned in general and the
network is not able to offer a satisfactory output to the given inputs for this particular case.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 27. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the standard SGD algorithm.

On the contrary, using the modified version with dynamic alpha and drop-out, the

results are much better. The worst learned patterns are all highly aligned with the average,

having also their modules’ relationships smaller than before, as Figure 28 shows. In the

case of the better learned patterns, the situation is slightly better than before, as the mod-

ules’ relationships to the average are lower; this can be seen in Figure 29. With all these

data, we can say that the network probably needs to be modified to be able to learn this

particular function properly.

Figure 28. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the modified SGD with dynamic alpha and

drop-out.

Figure 27. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the drop-wave function using the standard SGD algorithm.

On the contrary, using the modified version with dynamic alpha and drop-out, the
results are much better. The worst learned patterns are all highly aligned with the average,
having also their modules’ relationships smaller than before, as Figure 28 shows. In the case
of the better learned patterns, the situation is slightly better than before, as the modules’

Mathematics 2023, 11, 1183 18 of 24

relationships to the average are lower; this can be seen in Figure 29. With all these data, we
can say that the network probably needs to be modified to be able to learn this particular
function properly.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 27. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the standard SGD algorithm.

On the contrary, using the modified version with dynamic alpha and drop-out, the

results are much better. The worst learned patterns are all highly aligned with the average,

having also their modules’ relationships smaller than before, as Figure 28 shows. In the

case of the better learned patterns, the situation is slightly better than before, as the mod-

ules’ relationships to the average are lower; this can be seen in Figure 29. With all these

data, we can say that the network probably needs to be modified to be able to learn this

particular function properly.

Figure 28. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the modified SGD with dynamic alpha and

drop-out.

Figure 28. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the drop-wave function using the modified SGD with dynamic alpha
and drop-out.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 26

Figure 29. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the modified SGD with dynamic alpha and

drop-out.

4.5. Goldstein Prize Function

This last function has the following equation:

𝑧 =
1

2.427
[𝑙𝑜𝑔([1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)][30

+ (2𝑥 − 3𝑦)2(18 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)]) − 8.693] 𝑥, 𝑦 ∈ [−0.95, 1]
(10)

where z is the wanted output for the network and x and y are its inputs. After training the

network, the obtained results with the standard SGD were 0.001452047 in the training

patterns and 0.000901638 in the validation ones. Figure 30 shows a continuous descendant

in the loss in both training and validation ranges.

Figure 30. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Goldstein Prize function.

On the dynamic alpha and drop-out, the results were 0.001287429 in the training pat-

terns and 0.002754883 in the validation patterns. Figure 31 shows a similar behavior to the

normal SGD case, with a noisier state of the validation loss in the final epochs of training.

Figure 29. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the drop-wave function using the modified SGD with dynamic alpha
and drop-out.

4.5. Goldstein Prize Function

This last function has the following equation:

z = 1
2.427

[
log
([

1 + (x + y + 1)2(19− 14x + 3x2 − 14y + 6xy + 3y2)][30

+(2x− 3y)2(18− 32x + 12x2 + 48y− 36xy + 27y2)])−8.693] x, y ∈ [−0.95, 1]
(10)

where z is the wanted output for the network and x and y are its inputs. After training
the network, the obtained results with the standard SGD were 0.001452047 in the training
patterns and 0.000901638 in the validation ones. Figure 30 shows a continuous descendant
in the loss in both training and validation ranges.

Mathematics 2023, 11, 1183 19 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 26

Figure 29. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the drop-wave function using the modified SGD with dynamic alpha and

drop-out.

4.5. Goldstein Prize Function

This last function has the following equation:

𝑧 =
1

2.427
[𝑙𝑜𝑔([1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)][30

+ (2𝑥 − 3𝑦)2(18 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)]) − 8.693] 𝑥, 𝑦 ∈ [−0.95, 1]
(10)

where z is the wanted output for the network and x and y are its inputs. After training the

network, the obtained results with the standard SGD were 0.001452047 in the training

patterns and 0.000901638 in the validation ones. Figure 30 shows a continuous descendant

in the loss in both training and validation ranges.

Figure 30. Average loss on training patterns in blue and validation patterns in orange for Standard

SGD of Goldstein Prize function.

On the dynamic alpha and drop-out, the results were 0.001287429 in the training pat-

terns and 0.002754883 in the validation patterns. Figure 31 shows a similar behavior to the

normal SGD case, with a noisier state of the validation loss in the final epochs of training.

Figure 30. Average loss on training patterns in blue and validation patterns in orange for Standard
SGD of Goldstein Prize function.

On the dynamic alpha and drop-out, the results were 0.001287429 in the training
patterns and 0.002754883 in the validation patterns. Figure 31 shows a similar behavior
to the normal SGD case, with a noisier state of the validation loss in the final epochs
of training.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 26

Figure 31. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic Drop-out mixed together SGD of Goldstein Prize function.

Analyzing the patterns, the worst learned patterns present a very low value in the

cos(φ) and the modules are high in relationship to the average; see Figure 32. In the best

learned patterns case, the results are much more aligned and closed in the module rela-

tionship to the average; see Figure 33.

Figure 32. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the standard SGD algorithm.

Figure 31. Average loss on training patterns in blue and validation patterns in orange for Dynamic
alpha and Dynamic Drop-out mixed together SGD of Goldstein Prize function.

Analyzing the patterns, the worst learned patterns present a very low value in the
cos(ϕ) and the modules are high in relationship to the average; see Figure 32. In the
best learned patterns case, the results are much more aligned and closed in the module
relationship to the average; see Figure 33.

In the case of the dynamic alpha and drop-out, the worst learned patterns show a
very low cos(ϕ) and module relationship, making them not relevant for the training; see
Figure 34. The best learned patterns instead have much more presence, having much higher
values for their cos(ϕ); see Figure 35.

Mathematics 2023, 11, 1183 20 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 26

Figure 31. Average loss on training patterns in blue and validation patterns in orange for Dynamic

alpha and Dynamic Drop-out mixed together SGD of Goldstein Prize function.

Analyzing the patterns, the worst learned patterns present a very low value in the

cos(φ) and the modules are high in relationship to the average; see Figure 32. In the best

learned patterns case, the results are much more aligned and closed in the module rela-

tionship to the average; see Figure 33.

Figure 32. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the standard SGD algorithm.

Figure 32. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Goldstein Prize function using the standard SGD algorithm.

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 26

Figure 33. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the standard SGD algorithm.

In the case of the dynamic alpha and drop-out, the worst learned patterns show a

very low cos(φ) and module relationship, making them not relevant for the training; see

Figure 34. The best learned patterns instead have much more presence, having much

higher values for their cos(φ); see Figure 35.

Figure 34. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the dynamic alpha and drop-out.

Figure 33. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Goldstein Prize function using the standard SGD algorithm.

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 26

Figure 33. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the standard SGD algorithm.

In the case of the dynamic alpha and drop-out, the worst learned patterns show a

very low cos(φ) and module relationship, making them not relevant for the training; see

Figure 34. The best learned patterns instead have much more presence, having much

higher values for their cos(φ); see Figure 35.

Figure 34. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the dynamic alpha and drop-out.

Figure 34. Unified worst learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Goldstein Prize function using the dynamic alpha and drop-out.

Mathematics 2023, 11, 1183 21 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 26

Figure 33. Unified best learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the standard SGD algorithm.

In the case of the dynamic alpha and drop-out, the worst learned patterns show a

very low cos(φ) and module relationship, making them not relevant for the training; see

Figure 34. The best learned patterns instead have much more presence, having much

higher values for their cos(φ); see Figure 35.

Figure 34. Unified worst learned patterns cos(φ) on the (left) and |
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| relationship to the average

|
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑛
| on the (right) for the Goldstein Prize function using the dynamic alpha and drop-out.

Figure 35. Unified best learned patterns cos(ϕ) on the (left) and
∣∣∣ ∂Loss

∂Wn

∣∣∣ relationship to the average∣∣∣ ∂Loss
∂Wn

∣∣∣ on the (right) for the Goldstein Prize function using the dynamic alpha and drop-out.

5. Conclusions

The authors have used different functions regressions problems in order to illustrate
the benefits of their proposal. The authors have two main proposals: an adaptive drop-out
policy and a dynamic learning ratio policy.

A dynamic learning ratio lets training algorithms converge in fewer epochs than in a
conventional training algorithm. The researcher must know that the deeper a weight is in a
neural network, the more a training error needs to propagate along more layers in order to
calculate the loss gradient according to this particular weight. This propagation makes the
error vanish. This effect implies more epochs of training to cause enough change in a deep
weight due to this effect. The dynamical learning policy tries to mitigate it. The policy tries
to increase the learning ratio when the weight is deeper. The authors think that the neural
network does not learn the optimal values until the deepest weights arrive to their optimal
values, because the neural network’s output depends on inputs.

On the other hand, a dynamical drop-out allows the system to have a general learning
on the first epochs of the training and a more specific learning to those weights that have
already being trained and need to gain accuracy. This is obtained by making the dropping
probability bigger in the first stages of leaning and making it smaller through the process,
being sufficiently low at the final stages when the loss is low and the resulting gradient
is also. With low drop-out, the remaining information of this gradient is not lost, and the
synaptic weights correct the final touches of accuracy.

Mixing both techniques together allows the system to benefit from the strengths of
both of them and compensates one’s flaws with the other. The results can be seen not only
in the simplest function but also in the other benchmark functions: that there is indeed a
better performance of both techniques applied to the SGD than with the raw standard SGD.

6. Future Works

As future works, from here, we could follow different paths:

• To analyze the SWARM intelligence as an algorithm, using the example of a shallow network.
• To try to apply recursiveness in the shallow neural network alongside the obtained

SGD modifications to try to see if the performance is improved.
• To use pruning algorithms as a basis in order to identify the weakest parts of the

network and then reinforce them.

Author Contributions: Conceptualization A.T.-F.-B. and E.Z.; methodology, E.Z.; software, A.T.-F.-B.;
validation, E.Z. and U.F.-G.; formal analysis, E.Z. and A.T.-F.-B.; investigation, M.C.-O.; resources,
U.F.-G.; writing—original draft preparation, C.B.-M.-I. and E.Z.; writing—review and editing, U.F.-G.,
C.B.-M.-I. and A.T.-F.-B. All authors have read and agreed to the published version of the manuscript.

Mathematics 2023, 11, 1183 22 of 24

Funding: The current study has been sponsored by the Government of the Basque Country-ELKAR
TEK21/10 KK-2021/00014 (“Estudio de nuevas técnicas de inteligencia artificial basadas en Deep
Learning dirigidas a la optimización de procesos industriales”) research program.

Data Availability Statement: The different codes and diagrams are available online at https://
github.com/AdrianTeso/BasqueNetPublic.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
2. Jha, R.; Jha, N.N.; Lele, M.M. Stochastic gradient descent algorithm for the predictive modelling of grate combustion and boiler

dynamics. ISA Trans. 2022. [CrossRef]
3. Bernstein, J.; Wang, Y.-X.; Azizzadenesheli, K.; Anandkumar, A. signSGD: Compressed Optimisation for Non-Convex Problems.

arXiv 2018, arXiv:1802.04434.
4. Xu, X.; Kamilov, U.S. SignProx: One-bit Proximal Algorithm for Nonconvex Stochastic Optimization. In Proceedings of the ICASSP

2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019;
pp. 7800–7804. [CrossRef]

5. Sun, T.; Li, D. Sign Stochastic Gradient Descents without bounded gradient assumption for the finite sum minimization. Neural
Netw. 2022, 149, 195–203. [CrossRef] [PubMed]

6. Sun, T.; Tang, K.; Li, D. Gradient Descent Learning With Floats. IEEE Trans. Cybern. 2020, 52, 1763–1771. [CrossRef]
7. Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.
8. Torres, J. Python Deep Learning, 1.0; MARCOMBO, S.L.: Barcelona, Spain, 2020.
9. Kim, P. MATLAB Deep Learning; Springer: Berlin/Heidelberg, Germany, 2017.
10. Wani, M.A.; Afzal, S. A New Framework for Fine Tuning of Deep Networks. In Proceedings of the 2017 16th IEEE International

Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 359–363. [CrossRef]
11. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.
12. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
13. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn.

Res. 2011, 12, 2121–2159.
14. Giannakas, F.; Troussas, C.; Voyiatzis, I.; Sgouropoulou, C. A deep learning classification framework for early prediction of

team-based academic performance. Appl. Soft Comput. 2021, 106, 107355. [CrossRef]
15. Fang, J.-K.; Fong, C.-M.; Yang, P.; Hung, C.-K.; Lu, W.-L.; Chang, C.-W. AdaGrad Gradient Descent Method for AI Image

Management. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-Taiwan),
Taoyuan, Taiwan, 28–30 September 2020; pp. 1–2. [CrossRef]

16. Wei, H.; Zhang, X.; Fang, Z. An Adaptive Quasi-Hyperbolic Momentum Method Based on AdaGrad+ Strategy. In Proceedings
of the 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an, China,
28–30 October 2022; pp. 649–654. [CrossRef]

17. Li, H.; Li, X.; Dong, H.; Han, F.; Wang, C. Full-waveform inversion with adversarial losses via deep learning. J. Appl. Geophys.
2022, 205, 104763. [CrossRef]

18. Chakrabarti, K.; Chopra, N. Generalized AdaGrad (G-AdaGrad) and Adam: A State-Space Perspective. In Proceedings of the
2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 13–15 December 2021; pp. 1496–1501. [CrossRef]

19. Traoré, C.; Pauwels, E. Sequential convergence of AdaGrad algorithm for smooth convex optimization. Oper. Res. Lett. 2021, 49,
452–458. [CrossRef]

20. Reddy, R.V.K.; Rao, B.S.; Raju, K.P. Handwritten Hindi Digits Recognition Using Convolutional Neural Network with RMSprop
Optimization. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems
(ICICCS), Madurai, India, 14–15 June 2018; pp. 45–51. [CrossRef]

21. Khaniki, M.A.L.; Hadi, M.B.; Manthouri, M. Feedback Error Learning Controller based on RMSprop and Salp Swarm Algorithm
for Automatic Voltage Regulator System. In Proceedings of the 2020 10th International Conference on Computer and Knowledge
Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; pp. 425–430. [CrossRef]

22. Xu, D.; Zhang, S.; Zhang, H.; Mandic, D.P. Convergence of the RMSProp deep learning method with penalty for nonconvex
optimization. Neural Netw. 2021, 139, 17–23. [CrossRef]

23. Yu, Y.; Zhang, L.; Chen, L.; Qin, Z. Adversarial Samples Generation Based on RMSProp. In Proceedings of the 2021 IEEE 6th
International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 9–11 October 2021; pp. 1134–1138. [CrossRef]

24. Zou, F.; Shen, L.; Jie, Z.; Zhang, W.; Liu, W. A Sufficient Condition for Convergences of Adam and RMSProp. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019;
pp. 11119–11127. [CrossRef]

https://github.com/AdrianTeso/BasqueNetPublic
https://github.com/AdrianTeso/BasqueNetPublic
http://doi.org/10.1214/aoms/1177729586
http://doi.org/10.1016/j.isatra.2022.10.036
http://doi.org/10.1109/ICASSP.2019.8682059
http://doi.org/10.1016/j.neunet.2022.02.012
http://www.ncbi.nlm.nih.gov/pubmed/35248809
http://doi.org/10.1109/TCYB.2020.2997399
http://doi.org/10.1109/ICMLA.2017.0-135
http://doi.org/10.1016/j.asoc.2021.107355
http://doi.org/10.1109/ICCE-Taiwan49838.2020.9258085
http://doi.org/10.1109/ICICML57342.2022.10009763
http://doi.org/10.1016/j.jappgeo.2022.104763
http://doi.org/10.1109/CDC45484.2021.9682994
http://doi.org/10.1016/j.orl.2021.04.011
http://doi.org/10.1109/ICCONS.2018.8662969
http://doi.org/10.1109/ICCKE50421.2020.9303718
http://doi.org/10.1016/j.neunet.2021.02.011
http://doi.org/10.1109/ICSIP52628.2021.9688946
http://doi.org/10.1109/CVPR.2019.01138

Mathematics 2023, 11, 1183 23 of 24

25. Zaheer, R.; Shaziya, H. A Study of the Optimization Algorithms in Deep Learning. In Proceedings of the 2019 Third International
Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 10–11 January 2019; pp. 536–539. [CrossRef]

26. Liu, D.; He, W.; Zhang, C. The research and optimization on levenberg-marquard algorithm in neural net. In Proceedings of the
2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China,
25–26 March 2017; pp. 2442–2446. [CrossRef]

27. Xiangmei, L.; Zhi, Q. The application of Hybrid Neural Network Algorithms in Intrusion Detection System. In Proceedings of the
2011 International Conference on E-Business and E-Government (ICEE), Shanghai, China, 6–8 May 2011; pp. 1–4. [CrossRef]

28. KUcak; Oke, G. RBF neural network controller based on OLSSVR. In Proceedings of the 2013 9th Asian Control Conference
(ASCC), Istanbul, Turkey, 23–26 June 2013; pp. 1–6. [CrossRef]

29. Yadav, A.K.; Singh, A.; Malik, H.; Azeem, A. Cost Analysis of Transformer’s Main Material Weight with Artificial Neural Network
(ANN). In Proceedings of the 2011 International Conference on Communication Systems and Network Technologies, Katra,
Jammu, India, 3–5 June 2011; pp. 184–187. [CrossRef]

30. Yadav, A.K.; Azeem, A.; Singh, A.; Malik, H.; Rahi, O. Application Research Based on Artificial Neural Network (ANN) to Predict
No-Load Loss for Transformer’s Design. In Proceedings of the 2011 International Conference on Communication Systems and
Network Technologies, Katra, Jammu, India, 3–5 June 2011; pp. 180–183. [CrossRef]

31. Ucak, K.; Oke, G. Adaptive fuzzy PID controller based on online LSSVR. In Proceedings of the 2012 International Symposium on
Innovations in Intelligent Systems and Applications, Trabzon, Turkey, 2–4 July 2012; pp. 1–7. [CrossRef]

32. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168.
[CrossRef]

33. Almalki, M.M.; Alaidarous, E.S.; Maturi, D.A.; Raja, M.A.Z.; Shoaib, M. A Levenberg–Marquardt Backpropagation Neural
Network for the Numerical Treatment of Squeezing Flow With Heat Transfer Model. IEEE Access 2020, 8, 227340–227348.
[CrossRef]

34. Teso-Fz-Betoño, A.; Zulueta, E.; Cabezas-Olivenza, M.; Teso-Fz-Betoño, D.; Fernandez-Gamiz, U. A Study of Learning Issues in
Feedforward Neural Networks. Mathematics 2022, 10, 3206. [CrossRef]

35. Roux, N.L.; Schmidt, M.; Bach, F. A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets.
arXiv 2012, arXiv:1202.6258.

36. Defazio, A.; Bach, F.; Lacoste-Julien, S. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex
Composite Objectives. arXiv 2014, arXiv:1407.0202.

37. Jain, P.; Kakade, S.M.; Kidambi, R.; Netrapalli, P.; Sidford, Y.A. Accelerating Stochastic Gradient Descent. arXiv 2017,
arXiv:1704.08227.

38. Yang, Z. Adaptive stochastic conjugate gradient for machine learning. Expert Syst. Appl. 2022, 206, 117719. [CrossRef]
39. Wang, P.; Zheng, N. Convergence analysis of asynchronous stochastic recursive gradient algorithms. Knowl.-Based Syst. 2022,

252, 109312. [CrossRef]
40. Li, Z.; Shang, T.; Liu, X.; Qian, P.; Zhang, Y. Advanced multi-feedback stochastic parallel gradient descent wavefront correction in

free-space optical communication. Opt. Commun. 2023, 533, 129268. [CrossRef]
41. Hu, Q.; Zhen, L.; Mao, Y.; Zhu, S.; Zhou, X.; Zhou, G. Adaptive stochastic parallel gradient descent approach for efficient fiber

coupling. Opt. Express 2020, 28, 13141–13154. [CrossRef] [PubMed]
42. Phong, L.T.; Phuong, T.T. Differentially private stochastic gradient descent via compression and memorization. J. Syst. Arch. 2023,

135, 102819. [CrossRef]
43. Roberts, L.; Smyth, E. A simplified convergence theory for Byzantine resilient stochastic gradient descent. EURO J. Comput.

Optim. 2022, 10, 100038. [CrossRef]
44. Blanchard, P.; Mhamdi, E.M.E.; Guerraoui, R.; Stainer, J. Machine Learning with Adversaries: Byzantine Tolerant Gradient

Descent. Adv. Neural Inf. Process. Syst. 2017, 30.
45. Chen, G.; Qu, C.K.; Gong, P. Anomalous diffusion dynamics of learning in deep neural networks. Neural Netw. 2022, 149, 18–28.

[CrossRef] [PubMed]
46. Fjellström, C.; Nyström, K. Deep learning, stochastic gradient descent and diffusion maps. J. Comput. Math. Data Sci. 2022,

4, 100054. [CrossRef]
47. Ojha, V.; Nicosia, G. Backpropagation Neural Tree. Neural Netw. 2022, 149, 66–83. [CrossRef] [PubMed]
48. Senthil, R.; Narayanan, B.; Velmurugan, K. Develop the hybrid Adadelta Stochastic Gradient Classifier with optimized feature

selection algorithm to predict the heart disease at earlier stage. Meas. Sens. 2023, 25, 100602. [CrossRef]
49. Ba, J.; Frey, B. Adaptive dropout for training deep neural networks. Adv. Neural Inf. Process. Syst. 2013, 26.
50. Li, H.; Weng, J.; Mao, Y.; Wang, Y.; Zhan, Y.; Cai, Q.; Gu, W. Adaptive Dropout Method Based on Biological Principles. IEEE Trans.

Neural Netw. Learn. Syst. 2021, 32, 4267–4276. [CrossRef] [PubMed]
51. Mirzadeh, S.I.; Farajtabar, M.; Ghasemzadeh, H. Dropout as an Implicit Gating Mechanism For Continual Learning. In Proceedings

of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA,
14–19 June 2020; pp. 945–951. [CrossRef]

52. Chen, Y.; Yi, Z. Adaptive sparse dropout: Learning the certainty and uncertainty in deep neural networks. Neurocomputing 2021,
450, 354–361. [CrossRef]

http://doi.org/10.1109/ICISC44355.2019.9036442
http://doi.org/10.1109/IAEAC.2017.8054462
http://doi.org/10.1109/ICEBEG.2011.5882041
http://doi.org/10.1109/ASCC.2013.6606293
http://doi.org/10.1109/CSNT.2011.46
http://doi.org/10.1109/CSNT.2011.45
http://doi.org/10.1109/INISTA.2012.6247020
http://doi.org/10.1090/qam/10666
http://doi.org/10.1109/ACCESS.2020.3044973
http://doi.org/10.3390/math10173206
http://doi.org/10.1016/j.eswa.2022.117719
http://doi.org/10.1016/j.knosys.2022.109312
http://doi.org/10.1016/j.optcom.2023.129268
http://doi.org/10.1364/OE.390762
http://www.ncbi.nlm.nih.gov/pubmed/32403795
http://doi.org/10.1016/j.sysarc.2022.102819
http://doi.org/10.1016/j.ejco.2022.100038
http://doi.org/10.1016/j.neunet.2022.01.019
http://www.ncbi.nlm.nih.gov/pubmed/35182851
http://doi.org/10.1016/j.jcmds.2022.100054
http://doi.org/10.1016/j.neunet.2022.02.003
http://www.ncbi.nlm.nih.gov/pubmed/35193079
http://doi.org/10.1016/j.measen.2022.100602
http://doi.org/10.1109/TNNLS.2021.3070895
http://www.ncbi.nlm.nih.gov/pubmed/33872159
http://doi.org/10.1109/CVPRW50498.2020.00124
http://doi.org/10.1016/j.neucom.2021.04.047

Mathematics 2023, 11, 1183 24 of 24

53. LeJeune, D.; Javadi, H.; Baraniuk, R.G. The Flip Side of the Reweighted Coin: Duality of Adaptive Dropout and Regularization.
arXiv 2021, arXiv:2106.07769.

54. Surjanovic, S.; Bingham, D. Virtual Library of Simulation Experiments: Test functions and Datasets. 2013. Available online:
https://www.sfu.ca/~ssurjano/index.html (accessed on 6 August 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.sfu.ca/~ssurjano/index.html

	Introduction
	Background
	Learning Ratio and Learning Drop-Out: Issues, Analysis and Possible Solutions
	Dynamic Alpha
	Dynamic Drop-Out

	Shallow Neural Network Examples and Results
	“Mexican Hat”
	Dynamic Alpha
	Dynamic Drop-Out
	Mixed Together

	Ackley Function
	Cross-in-Tray Function
	Drop-Wave Function
	Goldstein Prize Function

	Conclusions
	Future Works
	References

