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Abstract
Nowadays, considering society’s highly demanding lifestyles, it is important to consider the usefulness of relaxation from

the perspective of both psychology and clinical practice. The response towards relaxation (RResp) is a mind-body

interaction that relaxes the organism or compensates for the physiological effects caused by stress. This work aims to

automatically detect the different mental states (relaxation, rest and stress) in which RResps may occur so that complete

feedback about the quality of the relaxation can be given to the subject itself, the psychologist or the doctor. To this end, an

experiment was conducted to induce both states of stress and relaxation in a sample of 20 university students (average age

of 25:76 � 3:7 years old). The electrocardiographic and electrodermal activity signals collected from the participants

produced a dataset with 1641 episodes or instances in which the previously mentioned mental states take place. This data

was used to extract up to 50 features and train several supervised learning algorithms (rule-based, trees, probabilistic,

ensemble classifiers, etc.) using and not using feature selection techniques. Besides, the authors synthesised the cardiac

activity information into a single new feature and discretised it down to three levels. The experimentation revealed which

features were most discriminating, reaching a classification average accuracy of up to 94:01 � 1:73% with the 6 most

relevant features for the own-collected dataset. Finally, being restrictive, the same solution/subspace was tested with a

dataset referenced in the bibliography (WESAD) and scored an average accuracy of 90:36 � 1:62%.
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1 Introduction

In recent years, the definition of health has got a new

perspective focusing on the person’s physical and emo-

tional well-being. As stated by the World Health Organi-

zation, health is not only the absence of infirmity or disease

but a state in which there is a full physical, mental and

social wellness [1]. Accordingly, healthcare systems

increasingly demand new technologies, ranging from new

medicines to complex diagnosis equipment and better

preventive-health plans. Seeing these new needs, there is

an increasing tendency in the area of engineering and

computer science focused on developing new tools to help

medical teams get either better diagnostics or reduce the

costs of disease detection processes.

In this sense, several physiological computing

researchers are focusing their efforts toward designing

computer systems that can identify and classify patterns in

the physiological signals of patients. These systems can

help in traditional medicine, as for diagnosing peripheral

and central nervous system diseases or disorders, and for

psychological purposes such as identifying mental states by

giving an automatically interpreted feedback of given

physiological deviations taking place in the organism.

This study bases on the principle that living stressful or

relaxing situations produces a direct reflection on the

organism. More precisely, they reflect on either the sym-

pathetic or parasympathetic parts of the autonomic nervous

system (ANS). The ANS has great sensitivity, with such

precision that the physiological reactions produced by

responses towards relaxation (named RResp from now on)
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taking place in the middle of a stressful situation differ

from those occurring in a calm environment.

Following these principles, many research teams have

studied and published about the relationship between stress

and mental health [2–4]. These days, the study of this

relationship has taken importance as there has been an

overall increase in the population’s stress levels as a con-

sequence of the COVID-19 pandemic. But apart from the

social perspective, this increase of stress has also triggered

many disorders related to mental health [5, 6]. And,

accordingly, the detection of stress onsets in humans is still

a relevant topic in the scientific community [7–9].

In previous research, this team contributed to the liter-

ature by presenting an algorithm capable of detecting and

classifying stress in different levels based on the informa-

tion provided by two physiological signals [10]: the RR

signal (which represents the time difference between two

subsequent heartbeats) and the Electrodermal Activity

(EDA hereinafter, which is representative of the sweating

of the body). More recently, the researchers studied that an

algorithm can detect the organism’s RResps by only

monitoring the EDA of a person [11]. The work presented

in this document continues in the same research line and

aims to cover one of the future lines derived from [11]: the

detection of the mental state in which the RResps take

place. It is known that RResp can take place in different

situations and not only during repose. Accordingly, this

study has catalogued the mental contexts in which RResps

can take place in three different types: relaxation happen-

ing during stress, relaxation during rest (basal) or relax-

ation in a sustained relaxing situation. To detect these three

classes, the research team revisited the system they

designed in [11] and modified it by adding new input

features derived from the RR signal. The signals used for

the proposed system were taken from an experiment done

in the university which aimed to induce both stress and

relaxation in the participants.

Concerning usability, knowing the mental state of a

person when RResps occur could be useful in areas like

sophrology, where professionals use the algorithm to assess

how good a specific therapy and/or technology adapts to a

patient and help them adjust it to obtain better results [12].

Branches of medicine other than psychiatry or psychology

could also benefit detecting the mental context in which the

RResps occur. For instance, certain diagnostics of neuro-

physiology rely on the information of the physiological

signals collected from experimental tests. Their principle is

simple: the clinicians record the patient’s basal physio-

logical values and diagnose the disease according to a

comparison between the basal values and the other differ-

ent physiological values recorded during the test. This

explanation matches some of the experimental tests used

for some neurological diseases such as Parkinson’s disease

[13] or autonomic dysreflexia [14]. Subsequently, knowing

the mental state of the patient when going through this type

of test reveals its importance: the physiological signals

collected as basal could be biased in a direction other than

repose and the comparative diagnostic could lead to false

results. Because of these reasons, this team presents the

design of a system capable of discriminating the mental

state of the person when experiencing RResps, produced

either by natural or induced methods (in a higher or lower

intensity).

This work is organised as follows. Section 2 describes

the experimental setup of the experiment from which the

researchers obtained the EDA and RR signals. Besides, it

also presents the different features that were explored to

see which ones are the most discriminating for the pro-

posed objective. Then, Sect. 3 describes the process for

designing the classifier for determining the mental state of

the patients during their RResps. This process includes

both an algorithm performance comparison and an analysis

of the features extracted from the first experiment accord-

ing to their capacity for discriminating between the three

mental states. Besides, the best solution obtained with this

process will also be tested with a reference dataset of the

bibliography. The following Sect. 4 discusses the different

areas in which the tool could have positive outcomes.

Finally, this article presents both the conclusions reached

and the future lines derived from the study in Sect. 5.

2 Materials and methods

This section describes the experiment designed for col-

lecting the physiological signals that were taken later to

analysis. Apart from that, this section also covers the fea-

ture extraction process.

2.1 Experimental setup

The researchers designed and conducted an experiment for

producing stressful and relaxing situations in the partici-

pants. The sample participating in this study consisted of

20 students of the School of Engineering of Bilbao (15

male and 5 female) whose age ranged from 22 to 32 years

old (average = 25.76 years, standard deviation = 3.7 years).

All the students participated voluntarily in the experiment

and all of them signed a consent form before taking part in

the experiment where they gave consent for sharing the

data collected after anonymisation. This way, the

researchers collected their physiological signals and could

use them to automatically detect those mental states in a

later machine learning analysis.

The data collecting experiment consisted of three dif-

ferent stages. First, the participants had to watch a relaxing
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video for getting their physiology to basal levels. Then,

during the second stage, the participants had to complete a

3D wooden puzzle. Third, the participants were shown

again the relaxing video to see whether their physiology

could calm down after the previous stressful situation.

Finally, with the experiment concluded, the participants

were asked to fill out a questionnaire about how they had

felt during the three parts of the experiment. The first

question asked them if they had felt ‘‘relaxed/normal/not

relaxed at all’’ during the relaxing videos; the second and

third questions respectively asked them about the ner-

vousness (‘‘nervous/normal/not nervous’’) and comfort

(‘‘comfortable/normal/not-comfortable’’) they had felt

during the puzzle solving. After that, each participant was

interviewed individually by the researchers. In these

interviews, the researchers asked the participants about

their feelings during the experiment. Also, they asked them

about all the events that had been marked down by the

researchers: puzzle piece falling, the participant drying the

sweat of the hands, etc. All the information collected with

the questionnaires and the interviews was used to establish

the ground truth labels of the registers for the later machine

learning analysis.

Regarding the collection of the signals, the researchers

recorded the participants’ EDA and RR signals during the

whole experiment. To this end, they used a Biopac� MP36

device (sampling at 1000 Hz) and the Studentlab program

(this equipment is a standard for collecting physiological

signals). The signals were collected using electrodes: Two

electrodes were placed in the ring and little fingers to

collect the EDA [15] and a three-electrode configuration

[16] was used for the electrocardiogram (from which the

RR signal derives).

2.2 The biosignals: a key for detecting
the mental state

In previous research, this team proved that it was possible

to detect RResps by only monitoring the changes of the

EDA in [11]. As explained in the introduction, the EDA is

a signal representing the capacity of the skin to conduct

electricity: the conductivity of the skin will be greater

when the person sweats. Sweat glands are only innervated

by the sympathetic nervous system [17], which is the part

of the ANS responsible for the body’s reactions to atten-

tion-demanding situations or circumstances of alert [18].

Because of it, this signal has been widely used in the area

of electrophysiology for detecting a variety of mental

phenomena: mental tiredness and cognitive load [19, 20],

onsets of stress [21], emotional reactions [22–24], etc.

However, the researchers also noted that getting relaxed

varies considerably depending on the situation in which

RResps occur. In this sense, the mental state reflects on

how the RResp impacts the physiology of the person

relaxing Hence, this work seeks to go a step further in the

analysis of RResps and detect not only an occurring RResp

but also the person’s mental state at that moment. Being a

signal derived from the electrocardiogram, the team added

the RR signal to the study as it gives valuable information

about the operation of the cardiac system (e.g., high values

may show bradycardia and low values tachycardia).

In this sense, the cardiovascular system is innervated by

both the sympathetic and parasympathetic branches of the

ANS and thus both situations of stress and relaxation get

reflected on its dynamics. Accordingly, the electrocardio-

gram and its derived RR signal have been widely used for

the automatic detection of these affective states. For

instance, relating to stress, the authors of [25] studied the

different behaviour of the RR signal when a person is under

mental stress, physical stress, at rest or in relaxation (they

did it using Poincare’s non-linear scatter plot, which will

be presented later in Sect. 2.3.3). The study of [26] gives

another example, where the researchers used a combination

of features coming from the electromyogram and the RR

signal to detect mental stress during arithmetic calculations

and Stroop tests. Then, concerning relaxation, in [27], the

researchers measured the effects of meditation to reduce

stress using heart-rate variability analysis (i.e., the varia-

tions of the RR signal). Besides, the researchers of [28]

used both the electroencephalography and the heart-rate

and RR signals to design a real-time algorithm to estimate

the relaxation/meditation levels of the user. Thus, with this

evidence, the authors considered that the RR signal would

be of help for the classification problem addressed in this

work.

Having justified the use of the two signals for this study,

an example of a register collected during the experiment is

given in Fig. 1, where three different charts are shown. The

first two depict the raw RR and EDA signals collected in

the experiment (light grey). As it can be seen, there are

eventual gaps and artefacts in the signals produced by the

participant moving and making the electrodes lose contact

with the skin. Hence, the team filtered the raw signals to

prevent the algorithms that would be used later from mis-

taking decisions because of these noises (the filter will be

discussed in Sect. 2.3. The filtered signals (solid green)

used in this study are the ones superimposed to their raw

version. On the other hand, the third chart shows the

RResps that were detected in those registers using the

algorithm presented in [11].

Apart from the representation of the signals themselves,

Fig. 1 also depicts a good example of a person experi-

encing RResps in three different situations: stress, rest and

relaxation. First, marked by the green box, it is possible to

see that the participant was at rest (basal mental state)

while watching the relaxing video of the initial stage of the
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experiment: the RR heartbeat time intervals were inter-

mediate and the EDA decreased continuously without

perturbation. Then, after approximately 120 seconds, the

participant started the 3D puzzle-solving phase, and at this

moment, the participant also began to stress. During this

period, as a consequence of the sympathetic activation,

both the sweating and the heart rate increased considerably.

However, it is noticeable that the EDA reached a plateau

around second 175 while, instead of stopping, the heart rate

reached values close to the fastest of the whole experiment.

These contradicting signal tendencies inside the red box

indicate that the person felt eventual relaxation inside a

stressful situation. Finally, around t ¼ 800s, Fig. 1 also

depicts how the participant managed to complete the

puzzle and that the experienced RResp corresponded to a

relaxing situation (blue box). This time it is possible to

observe that the cardiac activity of the participant reduced

considerably while the EDA decreased in a very steep and

continuous way. Similar situations like the three explained

can be found throughout the register of Fig. 1 (some of the

clearest have been marked with their corresponding box).

The analysis of Fig. 1 has shown different physiological

events in which RResps could be identified. However, all

of them were produced in a different mental context. Thus,

the ability to detect these mental states could be useful

when assessing if the relaxation taking place is genuine

(relaxation in a relaxed mental state) or not (relaxation

within a mental state of stress). And to do so, it is vital to

extract the information contained by the physiological

signals that permit discriminating better between these

mental contexts.

2.3 Feature extraction

Seeing that the signals could be used to deduce empirically

the different mental states of the participants and, aiming to

replicate it using an algorithm, the researchers continued

their study with the feature extraction process. To this end,

the researchers followed a sliding window methodology for

extracting different features from the signals.

The sliding window methodology is based on chopping

the signals into smaller segments as if they were pictures

taken through a window using a camera. Each segment (or

window) is treated separately to calculate the values of

different features and after extracting all the information,

the analysis is taken forward onto the next signal segment.

When doing this, it is not uncommon to leave a small

overlap between subsequent segments to prevent a pattern

hidden in the signal from being split by two windows. This

process is repeated iteratively and it gives an array or

matrix with the value of each of the calculations done for

every single signal segment. For the case of this study, the

researchers decided that the analysis windows would have

a size of 20 seconds and that they would slide it forward

leaving a 5 second overlapping between consecutive seg-

ments. This decision was taken based on the properties of

the two physiological signals treated in this work, which

are explained in the following two paragraphs.

First, relating to EDA, researchers in the literature have

used many different window sizes, going from 10s to 300s

[29–32]. Besides, the authors of [33] state that features

related to the phasic signal component are usually calcu-

lated using 5s time windows after the onset of the external

stimulus. Moreover, they also state that features extracted

from the tonic component are often computed using time

windows of 20s because the upper cut-off frequency of the
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Fig. 1 Raw (light grey) and low pass filtered RR and EDA signals

(solid green) captured from a participant of the first experiment along

with the RResps detected from them. RResps belonging to the

different mental contexts are marked within colour boxes: blue for

RResps in relaxation, green for basal RResps or in rest and red for

RResps in stress
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tonic component is around 0.05 Hz. In this sense, short-

term instant EDA variations are related to the phasic

component and slower variations are more related to the

tonic component of the EDA. Thus, a 20s window length

combines the information of both the tonic and phasic

components and so it can be considered a good window

size for analysing the EDA.

Nevertheless, the window size has to be appropriate for

the RR too. Concerning this signal, some authors have used

long time windows to treat this signal (Picard and Healey

used 130s in [30]) while others have used much shorter

time windows (De Santos [29] used 10s). Therefore, the

team studied the signal and decided that the 20s window

would be a good option for two reasons. The first reason is

that the frequency spectrum of the RR signal is bounded in

the [0.05–0.5] Hz range [34]. This way, the minimum

frequency of the signal can be used for knowing how slow

can the signal change. In this case, it would be with a

period of 20 s (i.e., the chosen window size). Then, the

other reason is that this size is also appropriate for ana-

lysing the EDA.

However, before chopping the signals with the sliding

window approach, the team filtered first both signals using

a 2 Hz cut-off low-pass filter. Using such a filter is

important to remove high-frequency information and

noises that were not relevant for this study. Recalling the

frequencies mentioned in the previous paragraphs for the

two signals, the authors considered this cut-off frequency

suitable for the analysis. First, it retains the whole fre-

quency spectrum of the RR signal. Second, it keeps

untouched all the information of the EDA’s tonic compo-

nent while maintaining most of the phasic component’s

information.

2.3.1 Time-domain features

The first set of features extracted using sliding windows

belongs to the time-domain analysis. In this process, the

team extracted the 13 features listed in Table 1 for each

signal window. Looking at this table, it may be noted that

the last three features of Table 1 differ from the rest as they

involve a ratio between different signal parameters. The

reason for selecting them for the study was because they

reflect how the ANS regulates the balance between the

sympathetic and parasympathetic systems: when aroused,

the higher frequencies of the signals vary and the surfaces

contained between the instant signals and the linear

regressions increase. In addition to that, it is important to

note that the calculation of the features marked with

‘‘_Norm’’ was done after normalising the whole experi-

ment’s RR signal according to the linear normalisation

expressed in (1).

Xnorm ¼ Xi � Xmin

Xmax � Xmin
ð1Þ

Then, continuing with the time-domain analysis, the team

also calculated the average and standard variation values of

the features of Table 1. However, calculating these statis-

tical parameters for the whole signal does not have sense

because it gives only a single value for the whole register.

Therefore, the team opted for iteratively calculating those

statistics using only the feature values of the last four

windows. By doing so, the statistical parameters based on

the features extracted from each window would act as a

short time memory for the recent physiological events.

These 26 statistical features got the same names as the ones

of Table 1 but added either ‘‘_Avg’’ for the average and

‘‘_Std’’ for the standard deviation. In total, the number of

features extracted from the time-domain analysis resulted

to be 39.

2.3.2 Frequency-domain features

After looking at the two signals from a time-oriented per-

spective, the RR signal windows were also analysed in the

frequency domain. This analysis produced two more fea-

tures related to the spectrum of the signal. Whereas the first

feature corresponds to the frequency band that had the

highest power value in all the spectrum (Pmax feature), the

second feature is the frequency at which that maximum

power took place (fPmax feature). The power spectrum for

extracting these features was calculated for the [0.05–0.5]

Hz frequency range and a 0.05 Hz frequency resolution.

2.3.3 Features obtained from Poincaré’s non-linear analysis

Finally, this work also approached the RR signal from a

nonlinear perspective by using Poincare’s analysis. This

type of analysis is based on representing the time intervals

between the electrocardiogram’s R peaks in a scatter plot.

This representation of the RR times tends to produce an

elliptical shape and it is possible to extract different

information related to the cardiac activity by paying

attention to the bisectors and other aspects related to the

morphology of the ellipse [35, 36].

The first step for doing this analysis is to represent the

scatter plot. To do so, assuming that the RR
!

time vector has

this shape RR
!

¼ RR1;RR2; :::;RRn�1;RRnf g, the points to

plot would have these x~ (horizontal) and y~ (vertical)

coordinates: x~¼ RR1;RR2; :::;RRn�2;RRn�1f g and

y~¼ RR2;RR3; :::;RRn�1;RRnf g. As depicted in Fig. 2, the

process of representing each RR interval related to its

preceding gives as result a scatter plot with an elliptical

shape.
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After obtaining the ellipse, the different features

extracted from Poincare’s plot are derived from the math-

ematical analysis of the ellipse. Accordingly, it is necessary

to calculate the xc; ycf g position of the centroid. This is

done by calculating the average value of vectors x~ and y~:

xc; ycf g ¼ �x; �yf g. Knowing the centroid’s location, it is

possible to calculate the distance from all the points to the

centroid -expressions in (2)- and to use them to calculate

the first two features, SD1c and SD2c, with the equations in

(3) respectively. Concerning their meaning, SD1c repre-

sents the length of the semi-minor axis of the ellipse and

SD2c the length of the semi-major axis (see Fig. 2).

d1
i ¼

jðxi � xcÞ � ðyi � ycÞj
ffiffiffi

2
p ; d2

i ¼
jðxi � xcÞ þ ðyi � ycÞj

ffiffiffi

2
p

ð2Þ

SD1c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðd1
i Þ

2

s

; SD2c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðd2
i Þ

2

s

ð3Þ

Following the analysis, it is possible to split the ellipse

using a straight line whose equation is x ¼ y instead of

using the traditional r1 axis. When doing so, a new

descriptor is obtained, SD1b, which was used as a feature

in this study. This descriptor is obtained according to (4)

and its value is almost equal to SD1c when the n amount of

points in the plot tend to infinity.

SD1b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2n

X

n

i¼1

ðxi � yiÞ2

s

ð4Þ

It is also possible to decompose SD1b into two compo-

nents, SD1e and SD1d, as ðSD1bÞ2 ¼ ðSD1eÞ2 þ ðSD1dÞ2
.

These two components were also used as features for this

study and they are obtained according to (5). It is important

to note that only the ne xi; yif g points located above the

major bisector should be used for calculating SD1e. In the

same way, the points to be used for SD1d are the nd points

under the same bisector. Besides, the amount of ne and nd

points were also used as features for Sect. 3.

SD1e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2n

X

ne

i¼1

ðxi � yiÞ2

s

; SD1d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2n

X

nd

i¼1

ðxi � yiÞ2

s

ð5Þ

Finally, the last two features derived from Poincare’s plot,

Ce and Cd, correspond to how much did SD1e and SD1d

contribute to SD1b. Being, Ceþ Cd ¼ 1, these features

can be obtained by following the expressions of (6).

Table 1 Time-domain features extracted from each analysed window

Features Description

RR_Max Maximum value of the RR

RR_Min Minimum value of the RR

RR_Range Signal range of the RR: difference between maximum and minimum values

RR_Mean Mean value of the RR

RR_Norm_Max Maximum value of the normalised RR

RR_Norm_Min Minimum value of the normalised RR

RR_Norm_Range Signal range of the normalised RR: difference between maximum and minimum values

RR_Norm_Mean Mean value of the normalised RR

RR_Slope Slope of the linear regression of the RR in the window

EDA_Slope Slope of the linear regression of the EDA in the window

EDA/EDA_SurfDiff Surface between the instant EDA and its linear regression

EDA/RR_SurfDiff Surface between the instant RR and the EDA’s linear regression

RR/RR_SurfDiff Surface between the instant RR and its linear regression
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RRi (s)

0.5
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Fig. 2 Example of the ellipse obtained from doing Poincare’s scatter

plot
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Ce ¼ ðSD1eÞ2

ðSD1bÞ2
; Cd ¼ ðSD1dÞ2

ðSD1bÞ2
ð6Þ

After Poincare’s analysis, the team obtained 9 features that

were used in the machine learning analysis: SD1c, SD2c,

SD1b, SD1e, SD1d, ne, nd, Ce and Cd. And, to abridge this

section, the sum of all the features extracted from the three

domains produced a set of 50 features per instance of the

dataset.

3 Design of the classification tool

As explained in Sect. 2, the features extracted were used

for automatically differentiating between the three mental

states in which RResps occur. In this section, the authors

present their proposal for doing such a task applying

machine learning techniques. And, to be more precise, the

proposal focuses on the use of classification systems for

achieving this goal. This section will explain how the

researchers trained different classifying algorithms for

discriminating the mental state context of the participants

of the experiment. Besides, this section will also present

how, after analysing the initial results of the classification

process, the researchers proposed a new feature that

resulted to be significant for the classification: the

RR_Band feature.

3.1 Initial approach

The machine learning strategy proposed in this work poses

supervised learning algorithms as candidates for classifying

the mental states of the moment of RResp onsets. The

database used for the machine learning analysis consisted

of 1641 instances from which 586 belonged to RResps

occurring when the participant was feeling relaxed (class

‘‘Relax-RResp’’ from now on). Then, 646 of the resting

instances were fit into the ‘‘Basal-RResp’’ class, mean-

ingful of the neutral mental state of repose. Finally, the

remaining 409 instances corresponded to RResps taking

place under mental pressure (i.e., stress) and were used for

the third class: ‘‘Stress-RResp’’. All these instances con-

tained the 50 features explained in Sect. 2.3.

For getting the best possible classifier for the task, this

work analysed the performance of 12 classifiers which are

state-of-the-art in machine learning: 1R rule, Decision Tree

(DT), k Nearest Neighbours (1-NN and 5-NN), Naı̈ve

Bayes (NB), Radial-basis Network (RBF), Support Vector

Machine (SVM), Logistic Regression (LR), AdaBoost

(AdaB, combining 10 decision trees), Bagging (Bag, using

a combination of 10 decision trees), Random Forest (RF,

10 decision trees) and Multilayer Perceptron (MLP). This

algorithm selection covers different classification

paradigms, going from the simpler rule-based classification

to the ensembles of classifiers. All the classifiers were built

using Weka data-mining software [37] and each algo-

rithm’s defaults settings. Besides, to improve the validity

of the algorithm performance analysis, the process was

conducted following the 10-run tenfold cross-validation

methodology. The results of this first analysis are presented

in Table 2, where the AdaB got the best accuracy

(90:51 � 2:37%). Besides, this algorithm also scored the

best F1 score (meaning that it has the best balance between

the precision and recall performance metrics [38]).

However, Table 2 also shows that the Bag

(89:78 � 2:18%) and RF (89:27 � 2:37%) got accuracies

very close to that obtained by the AdaB. Moreover, the

three algorithms got the same Area Under the ROC Curve

metric (AUC), which gives information on how good the

sensitivity and specificity of the algorithms are. Hence, it is

not trivial to say which of the three is the best one and,

accordingly, the team conducted a statistical analysis of the

results to clarify this point. In this sense, the authors’ first

step was to apply the Friedman test [39] which rejected the

null hypothesis stating that all the algorithms were having

equivalently accurate results (significance level of 0.05).

Then, once statistics confirmed that the algorithms were

not performing equivalently, the authors conducted a sec-

ond statistical test to decide which algorithm was the best.

Traditionally, null hypothesis significance testing (NHST)

would be used for the pairwise comparison between two

competing classifiers. However, this test assumes that the

observations to be compared are independent, which is not

a met condition when using the cross-validation method-

ology. Therefore, Benavoli and his colleagues [40] pro-

posed a more suitable alternative for these cases: the

Bayesian Correlated t-test (BC test, hereinafter).

In this sense, the BC test is uses the likelihood function

and the prior distribution to calculate the posterior distri-

bution of an algorithm performing better than another.

Hence, this method can be used to make pairwise com-

parisons between the performance metrics of two classifiers

and it bases on Bayes’ rule. To calculate the posterior

probability of an algorithm having better performance than

the other, the method uses the generative model of the data

shown in (7), where xnx1 stands for the vector

fx1; x2; x3; :::; xng that contains the differences between the

accuracies (or another metric) obtained by the two classi-

fiers being compared along the n measures taken with the

cross-validation process. Then, 1nx1 is just a vector of ones

multiplied by the parameter of interest l. In this case, as

the parameter to be compared is the accuracy, l stands for

the mean accuracy difference. Finally, m�MVNð0;RnxnÞ is

a multivariate normal noise, whose mean and covariance

matrix Rnxn is zero.
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xnx1 ¼ 1nx1lþ mnx1 ð7Þ

Thanks to this model, Benavoli’s team [40] were able to

obtain the expression for the likelihood model of the data

and the posterior distribution of l, which resulted to be

coincident to a Student distribution. When this is done, it is

possible to compute and plot the posterior probability

density function (PDF) of l and decide whether one of the

algorithms is performing better than the other. Also, the

algorithms may perform equivalently from a statistical

point of view. This would happen when most of the PDF

fell inside the region of practical equivalence (ROPE, see

[41]), which delimits the region in which the difference in

accuracy between the two algorithms is less than ±1%

(i.e., ± 0.01). For the sake of comprehensibility, Fig. 3

shows the posterior PDF of the BC test that compares the

AdaB against the Bag (both of Table 2). In the case of

Fig. 3, the 84% of the PDF is located to the right of the

ROPE, which means that there is a probability of 84% that

the AdaB will get better accuracy for this particular dataset.

Following the pattern of Fig. 3, the authors repeated this

process and compared all the 12 algorithms against their 11

rivals. Nevertheless, instead of plotting all the PDFs, the

results of all the BC test comparisons can be seen more

clearly if they are given in the shape of a matrix (see

Fig. 4), where the algorithms in the rows are compared

against the ones in the columns. To be more visual, the

cells in green mean that the algorithm in the row got a

greater probability (the number in the cell) of getting a

better accuracy than the one in the column. On the

contrary, if the colour of the cell is red, then it means that

the one in the row performs worse (note that the matrix is

symmetric but with opposite green/red colours). Finally,

the cells in light grey mean that most of the probability

density is within the ROPE region and the two algorithms

can be said to be performing equivalently.

Looking at the row of the Adab algorithm in Fig. 4, it is

the only row that has only one cell in grey and it is

therefore the algorithm winning more pairwise compar-

isons. Besides, in the specific case of the AdaB vs. Bag

comparison, there is a probability of 64% that the two

algorithms will perform similarly. Nevertheless, when the

PDF is depicted (recall Fig. 3), the reader will see that

almost all the remaining part of the PDF is to the right of

the ROPE. Consequently, probability favours the AdaB

algorithm when not performing equivalently to the Bag.

Thus, the authors concluded that the AdaB was the best

choice when using all the features in the dataset.

Continuing with the performance analysis, it is a com-

mon strategy to eliminate the less useful information for

aiming to simplify the complexity and computational cost

of the system. In this sense, not all the features have to be

equally relevant when it comes to discriminating between

the three mental states. Accordingly, reducing the dimen-

sion of the problem and using only the most relevant fea-

tures has often a positive impact on the performance of the

classifiers. Therefore, the authors tried different feature

selection strategies to determine which of the 50 were the

most relevant for the desired objective and the best result

was obtained when using Weka’s best-first (greedy)

implementation of the Correlation-based Feature Selection

method (CFS) [42]. This technique chooses a feature as

relevant if it correlates strongly to the class or dependent

variable while correlating very weakly to the other features

or independent variables. For this case of study, the CFS

chose the following 11 features to be most discriminant:

RR_Mean, RR_Norm_Mean, RR_Max, RR_Min,

RR_Norm_Max, RR_Norm_Mean_Avg, RR_Norm_-

Max_Avg, RR_Norm_Min_Std, RR_Slope, EDA_Slo-

pe_Avg, EDA/EDA_SurfDiff.

Table 2 Classifier test performances using the 50 features of the puzzle’s dataset: average and standard deviations of the Accuracy (Acc.), F1

score and Area Under the ROC Curve (AUC)

Metric 1R DT 1-NN 5-NN NB RBF SVM LR AdaB Bag RF MLP

Acc. average (%) 73.14 86.63 88.16 83.88 71.27 74.07 77.01 76.90 90:51 89.78 89.27 86.61

Acc. std. dev. (%) 3.01 2.55 2.20 2.67 3.33 3.80 3.10 3.30 2.37 2.18 2.37 2.73

F1 average 0.73 0.87 0.88 0.84 0.71 0.74 0.77 0.77 0.91 0.90 0.89 0.87

F1 std. dev. 0.03 0.02 0.02 0.03 0.03 0.04 0.03 0.03 0.02 0.02 0.02 0.03

AUC average 0.79 0.92 0.91 0.95 0.87 0.87 0.86 0.91 0.97 0.97 0.97 0.95

AUC std. dev. 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

The bold and underlined cell corresponds to the algorithm scoring the best average accuracy

Fig. 3 Posterior PDF for the AdaB vs. Bag comparison
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The performance of the classifiers using the selected 11

features are shown in Table 3, where the RF scored the best

average accuracy (90:34 � 2:32%), followed by the AdaB

(90:24 � 2:56%) and Bag (89:88 � 2:33%) algorithms.

Furthermore, all three of them obtained the same F1 value

and very similar AUCs.

Thus, having obtained some algorithms with similar

performance metric values, the authors had to conduct the

same statistical tests performed before to see if the algo-

rithms were equivalent or else which was the best. Once

again, the Friedman test discarded the null hypothesis and

so it could be said that not all the algorithms performed

equally. Then, having rejected the null hypothesis, the

authors conducted the BC test to see which algorithm had

the highest probability for getting the best average accu-

racy. In this case, the contestants were the AdaB, Bag and

RF algorithms. In this sense, the BC test stated that in their

respective pairwise comparisons, the maximum probability

density for all 3 algorithms would be within the ROPE

limits. However, looking at Table 3, it can be seen that the

RF not only scored the best accuracy but also did it with

the minimum standard deviation among the 12 algorithms.

For this reason, although the BC test says that the 3 had

equivalent performances, the authors would opt for using

the RF if they had to choose one.

Finally, seeing the results of these tests, it is also pos-

sible to conclude that there are more benefits to applying

the CFS than not doing so: only extracting 11 features

makes the classification easier and faster at the cost of less

than 0.5% of average accuracy (AdaB(50 features) =

90.51% versus RF(11 features) = 90.34%).

Fig. 4 Results of the pairwise comparison using the BC test with the

50 features of the puzzle’s dataset. The values in the cells indicate the

posterior probability of the comparison. The colour indicates if the

algorithm in the row is better (green) or worse (red) when compared

to the one in the column. The more intense the colour, the higher the

probability. Grey cells indicate that the algorithms perform

equivalently

Table 3 Classifier test performances using only the 11 features selected by the CFS algorithm for the puzzle’s dataset: average and standard

deviations of the Accuracy (Acc.), F1 score and Area Under the ROC Curve (AUC)

Metric 1R DT 1-NN 5-NN NB RBF SVM LR AdaB Bag RF MLP

Acc. average (%) 73.14 87.11 89.65 87.87 72.76 72.24 75.46 76.07 90.24 89.88 90:34 81.80

Acc. std. dev. (%) 3.01 2.77 2.39 2.36 3.35 3.32 3.35 3.11 2.56 2.33 2.32 3.25

F1 average 0.73 0.87 0.90 0.88 0.73 0.74 0.76 0.76 0.90 0.90 0.90 0.82

F1 std. dev. 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03

AUC average 0.79 0.92 0.92 0.97 0.88 0.88 0.85 0.90 0.97 0.98 0.98 0.93

AUC std. dev. 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02

The bold and underlined cell corresponds to the algorithm scoring the best average accuracy
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3.2 Refined approach: adding the RR_Band
feature

After analysing the results of Sect. 3.1, the authors

observed that 8 of the 11 features chosen by the CFS were

related to the range and values of the RR signal: RR_Mean,

RR_Norm_Mean, RR_Max, RR_Min, RR_Norm_Max,

RR_Norm_Mean_Avg, RR_Norm_Max_Avg y

RR_Norm_Min_Std. Therefore, the authors decided to

synthesise all these features in a single feature, named

RR_Band, that discretises the signal down to three values:

‘‘1-relaxation band’’, ‘‘2-basal or rest band’’ and ‘‘3-stress

band’’. The boundaries for deciding RR_Band’s value in an

analysis window are defined by dividing the difference

between the absolute maximum and minimum of the whole

signal into three equally sized bands (this is depicted in

Fig. 5). Then, the value of RR_Mean is used to decide the

band to which the analysed window belongs. It is important

to note that, as the reference values used for calculating the

boundaries depend on the person’s physiology, the

RR_Band proves to be an adaptive feature robust to

changes in the subject of study.

Once the value of RR_Band had been calculated for all

the instances, the researchers repeated the experimentation

with the same 12 classifiers to see if the new feature could

improve the classification. The team decided to repeat the

same process of the previous Sect. 3.1 by exploring first

subspace including the 50 original features plus RR_Band

and then the subspace containing only the features selected

by the CFS algorithm (also including RR_Band).

The results of the first test are shown in Table 4. With a

quick look at the table, the reader will see that there was a

noteworthy increase in the accuracy of all the algorithms:

the worst-performing algorithms of the previous two

experimentations improved from scoring 71:27 � 3:33%

(NB) and 72:24 � 2:4% (RBF) average accuracies to a

minimum of 89:46 � 2:11% (NB) and 88:40 � 2:39%

(RBF). This means that thanks to the addition of the new

feature (RR_Band) the overall performance of the

algorithms increased considerably, which reinforces the

benefits derived from using this new feature.

In this context, the best performing algorithms were still

the AdaB, Bag and RF algorithms, which scored similar

accuracy, F1 and AUC. Seeing these results, the team

applied the combination of the Friedman test and the BC

test to compare the performance of the algorithms. On the

one hand, the former rejected the hypothesis saying the

algorithms had equivalent performances. On the other

hand, the latter test gave the comparison matrix presented

in Fig. 6. The probabilities in this figure indicate that the

Bag performed equivalently to the AdaB and the RF.

Nevertheless, among the three of them, the Bag algorithm

was the only one getting seven green cells, which means

that it was the algorithm winning the biggest number of

comparisons. Given these results, if the authors were to

pick one, they would use the Bag because apart from being

the algorithm that won more comparisons it was also the

one scoring the best average accuracy with the minimum

standard deviation in Table 4 (Bag = 94:15 � 1:64% vs.

AdaB = 93:90 � 1:67% and RF = 93:46 � 1:76%).

Next, for the sake of consistency and as mentioned

before, the authors repeated the same experiment but with

the subspace including only the features selected by the

CFS. As expected by the researchers, the RR_Band was

among the 6 most relevant features chosen by the selection

algorithm: RR_Band, RR_Mean, RR_Norm_Mean_Std,

EDA/EDA_SurfDiff, EDA/RR_SurfDiff, RR/RR_Surf-

Diff_Std. Consequently, it can be concluded that, at least

for this dataset, this feature helps to synthesise the infor-

mation related to the variations of the RR signal. The

results of analysing the classification problem in this sub-

space have been given in Table 5, where again the pro-

posed RR_Band feature proved to help considerably in the

classification. In this sense, the combination of using the

new feature with the CFS algorithm obtained very similar

performance metrics for all the algorithms with less than

1% of average accuracy between the best and the worst.

This time, the RF algorithm resulted to be the best
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Fig. 5 The RR_Band feature discretises the RR signal span in three bands: 1 for the relaxation band, 2 for the rest band and 3 for the stress band
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Table 4 Classifier test performances after adding the RR_Band feature to the other 50 features of the puzzle’s dataset: average and standard

deviations of the Accuracy (Acc.), F1 score and Area Under the ROC Curve (AUC)

Metric 1R DT 1-NN 5-NN NB RBF SVM LR AdaB Bag RF MLP

Acc. average (%) 93.36 92.52 92.97 92.35 89.46 88.40 93.36 92.22 93.90 94:15 93.46 92.63

Acc. std. dev. (%) 1.86 1.65 1.57 1.91 2.11 2.39 1.86 1.76 1.67 1.64 1.76 1.93

F1 average 0.93 0.92 0.93 0.92 0.89 0.88 0.93 0.92 0.94 0.94 0.93 0.93

F1 std. dev. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

AUC average 0.95 0.95 0.95 0.98 0.97 0.95 0.96 0.98 0.98 0.98 0.98 0.98

AUC std. dev. 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

The bold and underlined cell corresponds to the algorithm scoring the best average accuracy

Fig. 6 Results of the pairwise comparison using the BC test after

adding the RR_Band feature to the other 50 features of the puzzle’s

dataset. The values in the cells indicate the posterior probability of the

comparison. The colour indicates if the algorithm in the row is better

(green) or worse (red) when compared to the one in the column. The

more intense the colour, the higher the probability. Grey cells indicate

that the algorithms perform equivalently

Table 5 Classifier test performances after adding the RR_Band feature and using only the 6 selected by the CFS algorithm for the puzzle’s

dataset: average and standard deviations of the Accuracy (Acc.), F1 score and Area Under the ROC Curve (AUC)

Metric 1R DT 1-NN 5-NN NB RBF SVM LR AdaB Bag RF MLP

Acc. average (%) 93.36 93.38 93.18 93.46 93.29 93.06 93.36 93.26 93.71 93.94 94:01 93.59

Acc. std. dev. (%) 1.86 1.97 1.92 1.85 1.87 1.81 1.86 1.82 1.86 1.75 1.73 1.75

F1 average 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94

F1 std. dev. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

AUC average 0.95 0.97 0.95 0.97 0.97 0.97 0.96 0.97 0.98 0.98 0.98 0.97

AUC std. dev. 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

The bold and underlined cell corresponds to the algorithm scoring the best average accuracy
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performing (94:01 � 1:73%), getting an average accuracy

very close to that of the Bag (93:94 � 1:75%).

With these results, conducting the statistical tests was

crucial fairly compare the classifiers. Regarding these tests,

whereas the Friedman test rejected the null hypothesis (it is

highly sensitive) the BC test gave a matrix stating that all

the algorithms were performing equivalently. In this sense,

according to Table 5, the RF would still be the best option

for the authors if they sought to get the best performance.

However, these results open a new scenario in which there

would not be a big impact on the performance if a simpler

algorithm was used, for instance, in the implementation of

a low-cost hardware device. Also, this new scenario would

permit using a classifier with explanatory properties, which

is an attribute often desired in medical applications (the last

decision is always in the clinicians’ hands, but the algo-

rithm’s explanation can support them taking that decision).

The authors will discuss in Sect. 4 about different scenarios

where using this design could be useful.

Besides, concerning the feature selection, the authors

would want to recall that the RR_Band was among the

most relevant features of this subspace. However, the CFS

also selected the RR_Mean feature as one of the most

important. This captured the authors’ attention, as they

expected that the information contained by this feature

should have also been covered by the RR_Band. Conse-

quently, the researchers removed manually all the features

with a correlation to RR_Band higher than 80% (including

RR_Mean) to see whether RR_Band could also replace

their usage and trained again all the algorithms. Never-

theless, the results of this last attempt showed that the

performances decreased considerably. Therefore, the

researchers concluded that although the values of

RR_Mean are used for calculating the RR_Band, there is

still discriminant information in RR_Mean that make it

irreplaceable (it can be seen as a continuous version of the

RR_Band feature).

It is also interesting to know which mental states are

more complicated to classify. This information is found in

Table 6, where it shows the confusion matrices for the best

classifiers of the two cases studied in Tables 2 and 3 and

the two of Tables 4 and 5. The results given in Table 6

show that using RR_Band improved the performance of the

classifiers independently from using the CFS. Besides,

these results show the robustness of the feature as it pre-

vents the classifiers from confusing the extreme classes

(i.e., ‘‘Relax-RResp’’ and ‘‘Stress-RResp’’) with each

other. Finally, it can also be seen that correctly classifying

the ‘‘Basal-RResp’’ class is the most difficult task. It makes

sense as it is the intermediate class and so it is easier for the

values of the features for this class to get eventually close

to the values expected for any of the other two classes.

3.3 Testing the tool with a benchmark dataset

At this point, the tool presented in this paper has only been

used with the own-collected dataset. Nevertheless, its

wellness is to still to be verified and to do so there is no

other way than to use it with a dataset other than the one

used to design it. To this end, the authors looked for a

dataset in the bibliography that deals with the same prob-

lem but could not find one. Instead, the authors found one

that could serve this purpose: the WESAD dataset [43]

from UCI’s1 repository. The authors chose to use this

dataset for benchmarking their tool for two reasons. The

first reason to do it is that it is a well-known dataset in the

bibliography. Second, the physiological signals and label-

ling of the data contained in this dataset are similar to the

dataset collected for designing the proposed tool and,

accordingly, it is suitable for testing the tool presented in

this paper.

The WESAD dataset contains different physiological

signals from the 15 participants of the study (12 male and 3

female) with an average age of 27.5 years and a standard

deviation of ± 2.4 years. In [43], the researchers used two

different devices, each of them collecting certain signals.

On the one hand, the first device was a RespiBan� (from

Plux company) and it was used to collect the electrocar-

diogram, EDA, electromyogram and the skin temperature

from the participants’ chest. On the other hand, the

researchers used an E4 wristband� (from Empatica com-

pany) as the second device to collect the blood volume

pulse, EDA, skin temperature and accelerometer signals of

the non-dominant hand. As explained, the dataset contains

several signals. However, for the comparison presented in

this section, the team has only used the EDA and the RR

signal (the authors of [43] derived it from the electrocar-

diogram and included it in the dataset).

Concerning the mental states, the experiment of

WESAD consisted in taking the participants through five

stages. The first stage consisted in collecting their basal

signal values at rest. Then, the second and fourth stages

could be either stressful or amusing; if the second was

amusing then the fourth would be stressful and vice-versa.

In this sense, during the amusing stages, the participants

had to watch 11 funny video clips. On the contrary, during

the stressful stage, the participants had to both give a

5-minute speech and then do some mathematical calcula-

tions. Finally, the third and fifth stages aimed to induce

relaxation and so the participants had to practise controlled

breathing meditation exercises. To give an example, a

register of the dataset has been depicted in the following

Fig. 7. Figure 7 shows both the EDA and RR signals along

1 Link to the dataset: https://archive.ics.uci.edu/ml/datasets/

WESAD?%28Wearable?Stress?and?Affect?Detection%29.
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with colour boxes that represent the labels corresponding to

each of the stages of the experiment (green-basal, purple-

amusement, blue-meditation and red-stress).

Having presented the dataset, the team used their algo-

rithm to detect all the RResps happening inside the labelled

parts of 15 registers of the dataset. In total, the algorithm

detected 4184 cases of RResp. Nevertheless, these

responses could have taken place in any of the five stages

of the experiment. Hence, the authors labelled each of these

RResps according to the labels of WESAD. If the RResp

took place in the basal stage of the experiment then the

instance would get labelled as Basal-RResp. Then, the

RResps detected in the stressful parts would get the Stress-

RResp label and those detected during the meditation

stages be labelled as Relax-RResp. It is important to note

that the RResps of the amusing parts were not taken into

account as they did not correspond to what was done in this

article. Thus, after this process, all the 4184 had been

labelled with one of the three labels used in this work: 1542

for class ‘‘Relax-RResp’’, 2017 for class ‘‘Basal-RResp’’

and 625 for ‘‘Stress-RResp’’.

Finally, the authors took the two physiological signals

and processed them to extract the 6 features selected in the

last configuration of the tool tuning process (recall

Table 6 Confusion matrices of the best classifiers using the puzzle’s dataset: AdaB neither using CFS nor RR_Band, RF using CFS but not

RR_Band, Bag using RR_Band but not CFS and RF using both CFS and RR_Band

AdaB without feature selection
and not using RR Band

Bag without feature selection
and using RR Band

Av. accuracy 90.51% Av. accuracy 94.15%

RF with feature selection
and not using RR Band

RF with feature selection
and using RR Band

Av. accuracy 90.34% Av. accuracy 94.01%
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Sect. 3.2): RR_Band, RR_Mean, RR_Norm_Mean_Std,

EDA/EDA_SurfDiff, EDA/RR_SurfDiff, RR/RR_Surf-

Diff_Std. After doing this, they trained and tested the same

12 algorithms as before and calculated the average accu-

racy, F1 score and AUC metrics (using a 10-run 10-fold

cross-validation methodology). The reader can see the

results of this experiment in Table 7.

The results of Table 7 show that, when using the pro-

posed approach, the average accuracies scored by the best

algorithms were close to 90% (AdaB = 90:36 � 1:62%,

Bag = 89:68 � 1:52% and RF = 88:92 � 1:45%). These

results are approximately 5% worse than the obtained with

the original dataset (the puzzle’s) used for the design.

Anyway, it is important to bear in mind that the data col-

lecting experimental procedures of the two datasets were

not equal. In this sense, having restricted the classification

to the subspace composed of the 6 features selected for the

puzzle’s dataset is one of the most exigent classification

scenarios for the proposed solution. Thus, the results can

still be said to be good and prove that the proposed

RR_band feature and the proposed best solutions have a

good generalisation capability.

Finally, the authors have also calculated and presented

in Fig. 8 the confusion matrix of the best performing

algorithm (AdaB) when the proposed solution is applied to

the WESAD dataset. From the confusion matrix it can be

concluded that the instances belonging to stress were the

easiest to classify and, on the contrary, the algorithm had

more difficulties differentiating between the RResps

occurring during relaxation (meditation) and basal state.

This is the same behaviour that took place with the puzzle’s

dataset.

Nevertheless, the analysis done so far has only involved

the solution designed in this paper. But, to make a fair

comparison, the results of this work should also be com-

pared to those reported in WESAD’s original reference

[43]. In their study, Schmidt and colleagues scored their

best average accuracy using a Linear Discriminant Anal-

ysis (LDA = 93.12%) algorithm for the ‘‘stress vs. non-

stress’’ problem. In this sense, the best results reported in

[43] corresponded to a two-class problem whose classes

represent opposite mental states. On the contrary, the

problem addressed in this paper is a three-class problem

whose classes are sub-classes of a bigger mental state (the

relaxation). Accordingly, the differences between these

sub-classes can be considered to be more subtle than those

treated in [43]. Being so, the difference in average accuracy

between the obtained in this work and the reference’s

reaffirms the conclusion reached in Sect. 3.3 towards the

good stability of the proposed solution and feature

(RR_Band).

4 Usability of the tool

As mentioned in the introduction, detecting the mental

context in which people are experiencing RResps could be

useful in different areas. Although its applications are

majorly found in the scope of mental health, other disci-

plines related to medicine would also benefit from its use.

In this section, the authors will discuss how the tool

designed in Sect. 3 can be used in those disciplines.

To begin with the examples, the first application pre-

sented in this section belongs to the discipline of mental

health and psychology. This application is the most evident

one and is none other than assessing how good relaxation

or sophrology techniques are performing for the specific

person treated with them. For instance, the study conducted
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in [44] showed that using mindfulness techniques (mind-

fulness breathing and body scanning practice) had a posi-

tive impact on a sample of 52 college students. More

precisely, they confirmed that whereas mindfulness did not

affect positive emotions, it affected negative emotions by

making them reduce (other studies pose the same theory,

e.g., [45]). To reach these conclusions, they used different

indicators such as the Five Facet Mindfulness Question-

naire (FFMQ), the Positive and Negative Affect Scale

(PANAS), the State Anxiety Inventory (S-AI) or neuro-

physiological signal records. Specifically, the signals they

collected are the heart rate (via photoplethysmography),

the EDA and the pulse-rate variability.

Besides, the researchers of [44] also concluded that the

benefits of short-term mindfulness training depended on the

disposition towards using these techniques. In this sense, as

the signals collected in this study are almost the same as in

[44], the classification tool proposed in this work could be

useful for assessing how good did the chosen techniques

perform for each participant of the study. This application

poses as a powerful tool not only for researching but also

for daily use for psychologists and other professionals of

sophrology. Apart from that, it would also help validate the

study as it would be possible to monitor the changes in the

participants’ mental state over time while putting mind-

fulness techniques into practice.

Then, other applications for the proposed system can be

found in between mental health and traditional medicine.

For instance, sophrology has been proposed for reducing

the pain and anxiety levels felt by patients diagnosed with

cancer [46]. In [12], Bertrand and her colleagues study the

benefits of using it with patients with cancer during per-

cutaneous interventional radiology procedures. The study

used sophrology techniques with 42 patients before the

radiologic intervention and the results were compared

versus a control group of 18 patients who did not use them.

The results of [12] show that using relaxation techniques

improved considerably both the anxiety and the pain felt by

the patients: 95% of the patients using sophrology felt less

anxious during the intervention compared to how they felt

before it. On the contrary, although their perception of

anxiety before the intervention was similar to the other

group’s, 71% of the patients from the control group felt

higher anxiety levels during the intervention. Furthermore,

the results for the feeling of pain showed a similar ten-

dency; the average pain perception in the control group was

4.16 points (on a scale from 0 to 10), which is significantly

higher than the average 1.83 points perceived by the group

using relaxation techniques. Seeing these results, it seems

that using relaxation techniques benefitted the patients

going through radiologic interventions. However, benefits

could be maximised if the technicians performing the

therapies knew which type of therapy fits best each patient.

And to do so, the methodology presented in this paper

could be of great help.

The last example of this section leaves mental health

aside and focuses on disease diagnostics. As previously

mentioned in the introduction, some diagnostics rely on

comparing the values of the physiological signals collected

in an experimental test. In this case, the authors give an

example of how diagnosing Autonomic Dysreflexia (AD)

could improve by using the mental state classifier proposed

Table 7 Classifier test performances with the WESAD dataset. The features for the classification were the 6 selected for the puzzle’s dataset

Metric 1R DT 1-NN 5-NN NB RBF SVM LR AdaB Bag RF MLP

Acc. average (%) 55.65 86.11 84.26 82.67 63.37 66.46 65.87 68.31 90:36 89.68 88.92 71.69

Acc. std. dev. (%) 2.54 1.92 1.71 1.91 1.99 2.15 1.74 1.91 1.62 1.52 1.45 2.31

F1 average 0.55 0.86 0.84 0.83 0.61 0.64 0.63 0.67 0.90 0.90 0.89 0.71

F1 std. dev. 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.03

AUC average 0.61 0.92 0.86 0.92 0.75 0.77 0.71 0.79 0.97 0.97 0.96 0.82

AUC std. dev. 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.03

The bold and underlined cell corresponds to the algorithm scoring the best average accuracy

Fig. 8 Average confusion matrix for the AdaB algorithm with the

WESAD dataset. The features used for the classification were the 6

selected for the puzzle’s dataset
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in this work. AD is an acute hypertension episode produced

by the hyperactivity of the sympathetic nervous system that

can have deadly consequences such as haemorrhage or

brain ischemia [47]. When it comes to diagnosing AD, it is

normal that the patient undergoes invasive medical tests:

lumbar puncture, tilt-table testing or bladder filling pro-

cesses, among others. Although it may seem too invasive, it

is important to bear in mind that one of the most common

causes that trigger AD onsets is the filling of the bladder

[48] and so this methodology is usual in the medical study

of AD. This procedure consists in comparing the basal

physiological values recorded at the beginning of the

experiment to the values during the rest of the experiment.

As these tests are relatively invasive, patients often feel

nervous and, as a consequence, the physiological values of

the initial moments of the test could be shifted towards

those that would better match a stressful situation. Know-

ing this, it seems clear that getting to know the mental state

context of the patient during the initial stages of the test

could be useful for warning the clinicians about it. By

doing this, the doctors could apply a corrective factor to the

values registered as basal during the experiment before

applying the aforementioned diagnostic comparison and,

subsequently, increase the precision of the test.

5 Conclusion

In this work, the authors have addressed the problem of

automatically classifying three mental contexts in which a

person may experience a response towards relaxation

(RResp). To this end, they conducted an experiment to

collect the electrodermal activity and electrocardiographic

signals from 20 students to build a dataset consisting of

1641 RResp episodes of three types: Basal-RResps, Relax-

RResps and Stress-RResps. From this dataset, they

extracted up to 50 different features from different domains

and trained a set of 12 different supervised learning algo-

rithms for classifying the previously mentioned three

classes. For this experimentation, when using the Corre-

lation-based Feature Selection (CFS), the Random Forest

(RF) performed best (90:34 � 2:32%) and when not using

it, the AdaBoost (AdaB) obtained the best average accu-

racy (90:51 � 2:37%). Concerning the consistency of the

results presented in this paper, all of them were validated

through a 10-run 10-fold cross-validation methodology.

Moreover, the best performing algorithms were selected

according to state-of-the-art statistical methods (Friedman

test and Bayesian Correlated t-test).

Later, the authors designed a new feature (RR_Band)

that synthesises the information related to the RR signal.

The team repeated the algorithm testing experiment using

RR_Band and all the algorithms improved their

performance when using all features (Bag =

94:15 � 1:64%) and when using the CFS (RF =

94:01 � 1:73%). Besides, when using the proposed

RR_Band there was no confusion between the extreme

classes. Seeing these good results, the team took the sub-

space of the 6 features selected for their dataset and tested

it with the WESAD dataset from UCI repository. When

they did it, the best average accuracy was obtained by the

AdaB algorithm (90:36 � 1:62%). Thus, it could be said

that both the proposed solution and RR_Band feature

translate robustly to datasets of other characteristics.

Finally, after analysing the confusion matrices of all the

algorithms, the authors concluded that the intermediate

‘‘Basal-RResp’’ class was the most troublesome. Hence, to

address this problem, the authors propose the future line of

subdividing this class to improve the rate of errors pro-

duced in the intermediate cases. Besides, the authors would

want to explore the solution in some of the areas explained

in Sect. 4.
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