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ABSTRACT: The production of chiral pyrrolodiketopiperazines
under organocatalytic conditions demonstrates the capacity of
bicyclic acylpyrrol lactims to perform as pronucleophiles in direct
carbon−carbon bond forming reactions. The good performance of
ureidoaminal-derived Brønsted bases in the Michael addition to
nitroolefins affords these heterocyclic scaffolds with high skeleton
diversity.

Pyrrolodiketopiperazines and (dihydro)pyrrolopiper-
azinones are a hybrid class of heterocyclic scaffolds in

which the privileged pyrrol and (di)ketopyperazine rings are
fused to raise a particular framework that appears within a wide
range of bioactive natural products isolated from various
sources as fungi, plants, or sponges (Figure 1).1 Due to its
relatively recent isolation, methods for the construction of
these peculiar natural compounds remain somewhat limited,
especially in the case of pyrrolodiketopiperazines.

Natural products (NPs) still rank first as the source of
inspiration for the design and discovery of new bioactive
compounds. Collections based on NPs have been developed
using different approaches that go from CtD3 (complexity to
diversity), through scaffold manipulation and decoration, to
BIOS4 (biology-oriented synthesis) strategies. DOS5 (diver-
sity-oriented synthesis) offers a complementary approach to
produce skeletal variety provided by the robust inter- and
intramolecular couplings of building blocks to introduce

stereochemical information. More recently, design principles
for bioactive compound discovery consider that “pseudo-
natural products” built by unprecedented combinations of NP
fragments may provide access to novel scaffolds retaining
chemical and biological properties of NPs.6 On the other hand,
among drug-like descriptors, the Fsp3 factor (the number of
sp3 hybridized carbons/total carbon account) along with the
number of stereocenters of the molecule appear to increase the
clinical success rate by increasing solubility and affinity for
three-dimensional target proteins.7

In this context, the pyrrolodiketopiperazine skeleton
possesses the potential to participate in CtD and DOS-
oriented synthesis and indeed comprises the pseudo NP-design
principles and connectivity patterns established to create
collections for the modulation of many drug targets (Figure
2A).8 Nevertheless, most synthetic efforts have been directed
toward the preparation of representative members, isolated
from natural sources, rather than designing effective catalytic
processes to access pyrrolodiketopiperazine diversity.9 For the
particular case of the construction of three-dimensional
scaffolds, only the aerobic oxidation of α-amino acid-based
pyrrolodiketopiperazine skeletons has been reported (Figure
2B).10,11 α-Hydroperoxy- or α-hydroxy-pyrrolodiketopipera-
zines with an in-ring tetrasubstituted stereocenter were
obtained in good yields by the action of triplet dioxygen
under neutral conditions.
Given the lack of catalytic methodologies12 and continuing

with our interest in exploiting the propitious steric and
electronic features of heterocyclic compounds in organo-
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Figure 1. Selected pyrrolodiketopyperazines and pyrrolopyrazinone
compounds.2
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catalytic transformations,13 we focused our attention on the
unexplored bicyclic acylpyrrol lactims 1. These heterocycles,
which could be considered as Schöllkopf bis-lactim surro-
gates,14 might behave as appropriate platforms to access
pyrrolodiketopyperazines under Brønsted base catalysis
(Figure 2C).
In the presence of weak bases, their suitability toward

deprotonation, through the formation of pseudoaromatic
enolates, would constitute a facile strategy for the creation of
structural and stereochemical diversity from readily available α-
amino acids (Figure 2C). The preparation of 1a was effected
from L-phenylalanine and pyrrole-2-carboxylic acid by peptide
coupling, and subsequent cyclization and lactim formation.15,16

Initial assessment of the behavior of this compound in
conjugate additions was gratifying, as the reaction of 1a with
β-nitrostyrene (2a), in the presence of substochiometric
amounts of base, afforded the corresponding adduct 3a that
features a tetrasubstituted stereocenter and a tertiary adjacent
stereocenter, in a clean and efficient manner. As three-
dimensional structures seem to provide a number of superior
properties in the search of biologically active molecules,
compared with flat aromatic compounds,17,18 we envisioned

that this approach could serve to mitigate the lack of protocols
to generate chiral pyrrolodiketopierazines. In order to address
the indispensable control over the stereoselectivity, we relied
on the proven ability of chiral Brønsted bases linked to
hydrogen bond donors to efficiently perform under proton
transfer conditions.19 Among other possibilities, ureidoaminal-
derived Brønsted bases, previously reported by our group,20

were tested in the Michael reaction of 1a with 2a (Scheme
1).21 These catalysts are readily available by condensation of α-

amino acid-derived isocyanates with chiral amines, a simple
protocol that provides an easy evaluation of the impact of the
catalyst structure in the reaction efficiency. Initially, we
confirmed that catalysts built up from carbamate protected
tert-leucine and (1S,2S)-2-(piperidin-1-yl)cyclohexan-1-amine
(C1−C5) provided adduct 3aa with diastereomeric ratios
greater than 92:8 and high enantioselectivity.22 The replace-
ment of the Brønsted base moiety in catalyst C6 provoked a
noticeable reduction of the enantiomeric excess that was
recovered when ureidopeptide C7 was employed to promote
the Michael addition. As C7 constitutes an unexplored variant
of ureidoaminal-derived Brønsted bases with increased

Figure 2. (A) Structural modularity of the pyrrolodiketopierazine
skeleton for drug discovery. (B) Precedents for the synthesis of
tetrasubstituted pyrrolodiketopierazines. (C) Present work: proof of
concept.

Scheme 1. Evaluation of Catalysts and Conditions for the
Michael Additiona

aReaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), catalyst (10
mol %), solvent (0.3 mL). Isolated yields. Diastereomeric ratio and
enantioselectivity determined by chiral HPLC.
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flexibility, we chose to investigate the effect of reaction
conditions in the asymmetric induction exerted by this new
catalyst. Upon the customary screening of temperature and
solvent, we were delighthed to find that C7 furnished 3a with
96:4 diastereomeric ratio and 88% enantiomeric excess in
toluene at −20 °C.23
Encouraged by these results, we proceeded to study the

scope of the reaction (Scheme 2). First, we evaluated the

compatibility of the catalyst system with the electrophilic
counterpart. We were pleased to find that the reaction with 1a
exhibits remarkable scope for a representative selection of
nitroolefins bearing β-aryl substituents, giving the correspond-
ing adducts 3a−e with excellent diastereomeric ratios, typically
greater than 95:5 and ee values of up to 88%. The method also
works with nitroolefins having heteroaromatic β-substituents
to afford adducts 3af, 3ag, and 3ah, and even with recalcitrant
β-alkyl-substituted nitroolefins to produce 3ai, essentially as
single diastereomers and ee values up to 98%. The effectiveness
of the method is highlighted by the fact that pyrrol lactims 1

derived from natural and synthetic α-amino acids are readily
accommodated by this process. The reaction with pronucleo-
philes derived from L-leucine (1b), O-methyl-L-tyrosine (1c),
and L-tryptophan (1e) produced the corresponding adducts in
good yields and as single diastereomers for certain combina-
tions, e.g., 3bf, 3ca,f,h, and 3ea. Nevertheless, the presence of
extra coordinating groups as in pyrrol lactim 1e impairs
enantioselectivity, presumably by the formation of energetically
closer diastereomeric transition states. The incorporation of
D,L-homophenylalanine, D,L-allylglycine, D,L-phenylglycine, and
2-aminocaprylic acid in pyrrol lactims 1d, 1f, 1g, and 1h,
respectively, resulted in efficient transformations, as well.
As is known for certain bifuncional Brønsted bases,24 self-

aggregation may cause reactivity and stereoselectivity to be
strongly dependent on the concentration and temperature at
which the transformations are carried out. Nonetheless, in the
reaction between 1a and 2a, neither the concentration
(referred to 1a) nor the catalyst loading affected the
asymmetric induction exerted over adduct 3aa (Figure 3).

With these experimental results, it might be argued that, under
the conditions in which the Michael addition is performed, the
catalyst appears as a monomeric species in solution and only
one molecule of catalyst would be involved in the stereo-
determining step.25 Among a different hypothesis, the
asymmetric induction exerted over the kinetically produced
adducts26 could be related to the prevalence of a major
conformer of catalyst C7 rather than to the increased steric
demand at the stereogenic centers. Indeed, the most stable
conformation computed for C7 in toluene shows how the tert-
butyl groups, located at both sides of the urea moiety, tend to
separate to minimize steric interactions.27

To corroborate the synthetic utility of this organocatalytic
methodology, we confirmed that adducts 3 are efficiently
converted into the target pyrrolodiketopiperazines 4, under
acidic conditions. Additionally, pyrrolodiketopiperazines 4 may
be adequate platforms to access more diversity by exploiting
the orthogonal properties of the functional groups installed in
the core. For example, the reduction of the nitro group in 3aa,
followed by protection, affords the corresponding protected
primary amine 5 and the manipulation of 3fa, under mild
reaction conditions, produces the complex spiro compound 6
as a single diastereomer (Scheme 3).
In summary, we report here the first enantioselective

construction of chiral pyrrolodiketopiperazines, via a direct
carbon−carbon bond forming reaction, promoted by a
ureidoaminal-derived Brønsted base that affords high skeleton
diversity with chemical and sterochemical efficiency. We
believe that this methodology produces versatile pyrrolodike-
topiperazines that could enter drug discovery programs.

Scheme 2. Scope of the Enantioselective Michael Addition

Figure 3. Impact of concentration and catalyst loading on
stereoselectivity. Most stable computed conformation of C7 in
toluene.
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