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Abstract: Photovoltaic (PV) energy, representing a renewable source of energy, plays a key role in the
reduction of greenhouse gas emissions and the achievement of a sustainable mix of energy generation.
To achieve the maximum solar energy harvest, PV power systems require the implementation of
Maximum Power Point Tracking (MPPT). Traditional MPPT controllers, such as P&O, are easy to
implement, but they are by nature slow and oscillate around the MPP losing efficiency. This work
presents a Reinforcement learning (RL)-based control to increase the speed and the efficiency of
the controller. Deep Deterministic Policy Gradient (DDPG), the selected RL algorithm, works with
continuous actions and space state to achieve a stable output at MPP. A Digital Twin (DT) enables
simulation training, which accelerates the process and allows it to operate independent of weather
conditions. In addition, we use the maximum power achieved in the DT to adjust the reward function,
making the training more efficient. The RL control is compared with a traditional P&O controller
to validate the speed and efficiency increase both in simulations and real implementations. The
results show an improvement of 10.45% in total power output and a settling time 24.54 times faster
in simulations. Moreover, in real-time tests, an improvement of 51.45% in total power output and a
0.25 s settling time of the DDPG compared with 4.26 s of the P&O is obtained.

Keywords: solar PV; maximum power point tracking (MPPT); reinforcement learning (RL); deep
deterministic policy gradient (DDPG); digital twin (DT)

MSC: 93C40; 93C55; 90C29

1. Introduction

Electrical energy is a vital energy source for the survival and development of humans.
The global energy demand continues to grow year by year and by 2030, is expected to
reach 170% of the consumption of 1990 after adjusting estimates following the COVID-19
pandemic according to the IEA [1,2]. Historically, the energy mix has heavily relied on
fossil fuels, presenting major sources of CO2 and greenhouse gases that generate climate
change [3]. The lack of profitable fossil-fuel fields combined with increased awareness of
environmental concerns led to the need for a common framework endorsed in the Paris
agreements, which states a limit in the global temperature increase of 2 ◦C [4].

Renewable energies play a key role in the reduction of greenhouse gas emissions and
the achievement of a sustainable mix of energy generation [5]. Solar energy can be harvested
through a Photovoltaic (PV) panel [6], and turned into electrical energy. PV panels are
an arrangement of doped solar cells that generate an electron flow when the photons of
solar light hit the surface [7]. The applications of solar energy extend beyond electricity
generation for networks, also providing energy for isolated facilities in remote locations
without access to electrical networks, or in the aerospace industry [8]. In comparison with
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other clean energies with higher efficiency, PV energy offers major advantages such as
avoidance of moving parts, minimal maintenance, long life span, silent energy production,
and lower installation costs [9].

One of the challenges of solar energy is to maximise the power output across all
working conditions. In PV panels, DC/DC converters allow for manipulating the operating
point on which the panel is working on seeking to achieve the maximum power point
(MPP) [10,11]. MPP is the operating point where the system can work at its best efficiency.
Converters can be controlled by different algorithms to track the MPP since it changes with
environmental conditions, creating an MPP tracker (MPPT) [12–14].

Digital twins (DT) are digital representations of a real-world product, system, or a
process that serves as the digital counterpart of it for practical purposes, such as simulation,
integration, testing, monitoring, and maintenance [15]. DT of photovoltaic systems can
model the global MPP under different environmental conditions [16,17]. The integration of
this technique to the control loop can accelerate MPPT training.

MPPT techniques can be categorized into either conventional or artificial-based ap-
proaches. The most used ones, perturb and observation (P&O) and incremental conduc-
tance, fall into the conventional category, in particular, inside hill-climbing algorithms
(HCAs). These algorithms try to locate whether the operating point is on the left or right
side of the curve, and constantly move a step towards the MPP [18]. P&O is a low-cost
and reliable algorithm for MPPT. This technique calculates the power with the current and
voltage readings. At every step, based on whether there has been an increase or decrease in
power and the direction of movement in the previous step, the next fixed step movement
is determined [19,20]. P&O requires very low computational power but presents two
main disadvantages: (1) Once reaching the MPP, it oscillates around that point thus losing
efficiency and (2) under partial shadowing conditions, it can reach a local minimum instead
of the global one [21,22].

To solve these issues, one option is to reduce the step size, but this implies that the
algorithm tracks the MPP slower [23]. Modified and improved methods of P&O control
algorithms have been developed recently. For example, Numan et al. [24] proposed a
variable step size P&O controller adding incremental calculations and achieving a stable
controller that improves the classical one. A similar approach was used by Alangammal
and Rathina [25], where a power-change-dependent scaling factor was used to calculate
the step size. Optimisation algorithms have also been studied to find appropriate step sizes,
Mendez et al. [26] for example compared particle swarm optimisation (PSO) and the earth-
quake optimisation algorithm (EOA) achieving higher energy performance. Nevertheless,
optimisation algorithms require high computational resources to solve the optimization
problem [27]. Incremental conductance (InCond) algorithms track changes in the voltage
and current instead of the power. This makes IncCond algorithms faster and more precise,
but increase the computational cost. IncCond algorithms face the same problem of oscil-
lation behaviour around the MPP. In addition to this algorithm, other alternatives have
been presented to solve this problem. For example, Li et al. [28] developed a variable step
IncCond using an adjustment coefficient of step size, subsequently achieving fast response
and better steady-state performance.

Newer techniques have also been studied for MPPT algorithms. Fuzzy logic controllers
(FLC) [29] based on artificial neural networks (ANN) can be found in the literature. Al-Giziz
et al. [30] compared FLC and classical methods, showing that FLC achieves faster response
and greater stability at steady-state compared with P&O and InC methods. Roy et al. [31]
compared Levenberg–Marquardt, Bayesian Regularization and Scaled Conjugate Gradient
ANN algorithms for MPPT energy harvesting. The results showed that the Levenberg–
Marquardt algorithm exhibits better performance in the overall data processing.

Reinforcement learning (RL) has emerged as a technique that is gaining popularity
for MPPT controllers, due to its resistance to environmental changes and self-learning
capabilities [32]. There are several types of RL agents that have been previously discussed.
Chou et al. [33], for example, compared a Q-table (RL-QT) and a Q-network (RL-QN)



Mathematics 2023, 11, 2166 3 of 21

method, with RL-QT demonstrating smaller oscillations and the RL-QN achieving higher
average power. Singh et al. [34] solved the problem of a continuous space by introducing a
fuzzified reward function.

Other authors, such as Phant et al. [35], chose to discuss the applicability of a DDPG
agent, the one used in this work, compared to a DQN agent, comparing both of them,
moreover, with a P&O. A DQN agent cannot deal only with discrete action space, while a
DDPG agent handles the continuous action space, thus being more applicable to control
tasks. Nevertheless, in this case, the controllers attempt to adjust the performance of a P&O,
increasing or decreasing the stock value each time it is sampled until the MPP is reached.
In this case, where the controllers do not obtain the optimal duty cycle value instantly as in
the DDPG proposed in this work, the DQN exhibits a higher performance (up to 2.5% over
the DDPG) because its training with discrete actions requires fewer iterations and is better
optimized. However, the DDPG performs better in PSC conditions. It extracts more power
than the DQN-based method and has the highest tracking speed, while also being the most
efficient. Thus, the efficiency of the DDPG method increases by 44.6%, while that of the
DQN method is just about 38.3%.

The DDPG agent and its variant, the Twin-Delayed (TD3) control, were also used by
Nicola et al. [36] to improve the control process of PI, Sliding Mode Control (SMC) and
Synergetic (SYN) controllers. In this case, the RL agent is not used directly as a controller
but helps to obtain a better performance of the controllers providing references of the
control signals.

Based on the state-of-the-art literature, this work presents a controller based on a
DDPG agent that is combined with a DT of the solar panel and DC/DC converter in its
training. This combination provides to the DDPG agent the duty cycle to achieve the MPP,
eliminating the steady-state operation oscillations and reaching a high efficiency. The choice
of this control design is based on the following aspects:

• Continuous action space. Compared to other RL agents such as DQN, the continious
action space handled by the DDPG agent is more suitable for control task, giving the
precise control signal to achieve the MPP in each environmental case of temperature
and irradiance.

• Instantaneous control action. Contrary to the work [35], after training, the DDPG
agent instantly provides the optimal duty cycle to obtain the MPP, so the time needed
to reach the MPP is only limited by the response of the system.

• Direct control. The DDPG agent in this case, is the only one in charge of providing
the duty cycle to the converter without counting on other controllers or without being
itself the one that provides help to other controllers as in the paper [36]. In this way,
the computational cost is lower and the system is simplified.

• Training simplicity. Compared to any ANN or machine learning that works as an
MPPT, an RL agent learns the correct control signal during training for a variety of
irradiance and temperature values. A machine learning or supervised ANN needs to
know in advance, what the optimal duty cycles are for each combination of irradiance
and temperature, and thus presents a lengthy process using scanning or other types
of controllers to obtain this large amount of data, in addition to the time to train the
network afterwards. In the case of an RL agent, this initial process is eliminated at the
cost of greater design difficulty.

• DT for the training of an RL agent. The use of the DT as part of the reward function of
the DDPG training accelerates the training process.

In this way, the MPP is achieved in the fastest way that the system allows, at low
computational cost and over all possible values of radiation and temperature considered.
To validate the efficency of this control scheme, this paper compares and evaluates RL
DDPG algorithm for MPPT control against more traditional P&O controller solutions, both
in simulation and real implementation.

The rest of this article is arranged as follows. Section 2 defines the materials and
methods used, such as the MPP, the equations of the DT, the RL algorithm used and the



Mathematics 2023, 11, 2166 4 of 21

P&O implementation. It also includes a description of the hardware involved in the PV
implementation. Section 3 provides the results and discussion of both the simulations and
the real implementation. Finally, concluding remarks and future work are presented in
Section 4.

2. Materials and Methods
2.1. Digital Twin (PV Model)

The use of the DT makes it possible to use simulation in the controller training process.
By characterising the system, we obtain a model that resembles the characteristics of the
real system. Therefore, it is especially useful to use this resource to conduct simulations
of the system and thus accelerate the learning process. In addition, this DT allows us to
abstract from the weather conditions and simulate any state, making the control more
robust. Another benefit of the DT is the possibility of using the maximum power that we
achieve in it to complement the reward function of the agent and thus optimise the learning
process. Additionally, the use of the DT reduces the real training time by 40.76% due to the
higher speed of the simulations compared to the real system. A block diagram showing the
implementation of the training process is given in Section 2.3.

To characterize the photovoltaic panel, a single-diode model [37], as shown in Figure 1,
was used due to simplicity and accuracy. This model treats the PV as a DC source in an
electrical circuit. The current source provides the current Iph that is generated by solar
irradiance. The model also includes two resistances, where Rsh is related to the diode’s
current leakage at the p-n interface; and Rs is the series resistance of the PV.

Figure 1. Single-diode model electrical diagram.

The single-diode model [37] follows Kirchhoff’s current law. The current that the
panel outputs IPV is defined and developed as in Equations (1) and (2):

IPV = Iph − Id − Ish (1)

IPV = Iph − I0 − Ishe
q(VPV+Rs IPV )

αKTc − 1− VPV + Rs IPV
Rsh

(2)

In Equation (1) Iph represents the light-generated current in the cell, Id the voltage-
dependent current lost to recombination, and Ish the current lost due to shunt resistances.
In Equation (2), I0 denotes the reverse saturation current, VPV the PV output voltage, Rs
the series resistance, α the diode ideality factor, K the Boltzmann constant, q the elementary
charge, and Tc the operating temperature. The current generated by solar irradiance Iph is
expressed in Equation (3):

Iph =
G

Gre f
Isc_re f + KI_re f (T − Tre f ) (3)
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where G and Gre f are the effective and reference irradiances, respectively, Isc_re f is the
short-circuit current, Tre f the PV temperature and KI_re f comprises a thermal factor of the
short-circuit current. Equations (4)–(6) represent the output current and voltage taking into
account the number of modules in parallel and in series:

Im = Np IPV (4)

Vm = NsVPV (5)

IPV = IphNp − Np I0e
q(VPV+Rs Ic)

αKTc − 1− Np
VPV + Rs IPV

Rsh
(6)

Np, Ns Im and Vm are the numbers of modules in parallel, the number of modules in
series, the output current and the output voltage, respectively.

2.2. Maximum Power Point (MPP)

The current IPV and voltage VPV define the power generated by solar panels. Solar
panel performance can be defined by plotting those currents against voltage in an I-V curve
that shows all the operation points from short circuit (Isc) to open circuit (Voc), as shown in
Figure 2. The MPP is the unique point in the curve that maximizes the power generated by
the panel. The current and voltage at this point are named Imp and Vmp, respectively. A
load connected to the PV panel the operating point varies in function of the resistive value
of the load. If the load is different from Rmp = Vmp/Imp the panel will not produce the
maximum power.

Figure 2. I-V and P-V curves.

Moreover, MPP also changes with irradiance and temperature [38]. Figures 3 and 4
show the different I-V and P-V curves for changes in irradiance and temperature, re-
spectively. As irradiance increases, the curves displace almost growing vertically, on the
contrary, as temperature increases, the I-V curves shrinks horizontally. These changes in
the I-V curves change the location of the MPP. Therefore, most of the time a panel operates
outside of the MPP. This can be corrected with an MPPT. To achieve this, an MPPT con-
verted is connected between the panel and the load. A change in the converter duty cycle
(d) changes the operation point. With proper control, this operation point is manipulated
via the duty cycle to achieve the MPP.
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Figure 3. I-V and P-V curves at 25 ◦C.

Figure 4. I-V and P-V curves for 1000 W/m2.

2.3. Reinforcement Learning

Reinforcement learning (RL) is a subset of machine learning where the agent learns a
desired behaviour through trial and error during interactions with its environment [39].
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The agent receives feedback in the form of penalties or rewards for each action it takes, and
tries to learn a policy that maximizes the cumulative reward over time. The key components
of RL include the agent, an environment, and a reward function. The agent takes actions in
the environment, and the environment responds with a new state and a reward. With this
information, it adjusts the policy parameters.

The control variable manipulated in the MPPT control is the duty cycle of the converter.
Therefore the use of a continuous action and state space is more suitable. Among the
algorithms that handle continuous actions and state spaces, Deep Deterministic Policy
Gradient (DDPG) is the most common. DDPG is a type of reinforcement learning algorithm
that combines ideas from both deep learning and policy gradient methods [40]. DDPG
is particularly well-suited for continuous control problems where the action space is
continuous and high-dimensional. DDPG is an off-policy algorithm, meaning that it
learns from a separate set of experiences called an experience buffer, rather than directly
from the agent’s current interactions with the environment. This provides the algorithm
with efficient learning and better stability. The agent is composed of two neural networks
called actor and critic as shown in Figure 5. The actor-network takes in the current state
and outputs a continuous action, while the critic network takes in the current state and
action and outputs a Q-value, which estimates the expected cumulative reward from that
state–action pair.

Figure 5. DDPG actor-critic structure diagram.

The algorithm first initializes the critic. The critic is noted as Q(S, A; φ), with φ random
parameter values, and initialize the target critic Qt(S, A; φt) with the same parameters
φt = φ. The same is done for the actor Q(S; θ) with random parameters values θ and the
actor target Qt(S; θt) where θt = θ. Once initialized, for every training time step the agent
selects an action A = π(S; θ) + N for the current observation S, N is a stochastic noise
added to enhance the exploration from the Ornstein–Uhlenbeck noise model. After the
execution of A, the next state S′ and the reward R are observed. The algorithm stores all
values (S, A, R, S′) in the experience buffer. Then, the algorithm selects a random mini-
batch of M experiences (Si, Ai, Ri, S′i) of the experience buffer. If S′i is a terminal state, the
value function target yi is set to Ri, otherwise, Equation (7) is used:

yi = Ri + γQt(S′i , πt(S′i ; θt); φt) (7)

The value function target Qt is the sum of the experience reward Ri and the discounted
future reward, where γ is the discount factor, and is bounded between 0 and 1. To compute
the cumulative reward, the agent first computes the next action by passing the next obser-
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vation S′i from the sampled experience to the target actor. The agent finds the cumulative
reward by passing the next action to the target critic. Once this step is completed, the
critic updates its parameters trying to minimize the loss Equation (8) L across all sampled
experiences:

L =
1

2M

M

∑
i=1

(yi −Q(Si, Ai; φ))2 (8)

The actor parameters are then updated with Equations (9)–(11) following sampled
policy gradient to maximize the expected discounted reward:

∇θ J ≈ 1
M

M

∑
i=1

GaiGπi (9)

Gai = ∇AQ(Si, A; φ) where A = π(Si; θ) (10)

Gπi = ∇θπ(Si; θ) (11)

Gai is the gradient of the critic output with respect to the action computed by the actor-
network, and Gπi is the gradient of the actor output with respect to the actor parameters.
Both gradients are evaluated for observation Si. ∇φ and ∇A represents the derivative of
the function respect to the policy parameter for each case. Update the target actor and
critic parameters depending on the target smoothing method. In the smoothing method, at
every time step, the target parameters are updated by incorporating a smoothing factor τ
as shown in Equations (12) and (13) for the critic and actor, respectively:

φt = τφ + (1− τ)φt (12)

θt = τθ + (1− τ)θt (13)

The environmental conditions (irradiance and temperature), power output and duty
cycle are fed to the controller as space state. The reward function used in the implementation
rewards high-power outputs and positive changes in power. It also compares the power
with the maximum obtained under the same conditions on the DT to improve the training
efficiency, as shown in Figure 6. The action space is continuous but bounded between 0.1
and 0.9 to ensure continuous conduction mode (CCM) working conditions in the DC/DC
converter. The hyper parameters used in the agent are shown in Table 1.

Figure 6. Block Diagram of RL DDPG Agent training with Digital Twin.
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Table 1. Hyperparamentes DDPG agent.

Properties Values

Sample time 0.01
Experience buffer length 106

Mini-batch size 64
Discount factor (γ) 0.99
O-U noise variance 0.15
Smooth factor (τ) 0.001

2.4. Perturb and Observe (P&O) Controller

The P&O MPPT method is extensively utilized due to its ease of implementation,
low cost, minimal sensor requirements, and simplicity [14]. This technique involves an
iterative process to track the MPP by making slight adjustments to the duty cycle of the
DC/DC voltage to produce changes in the PV panel voltage and monitor the resulting
power changes. The changes in power are used to determine the direction of perturbation
required to converge towards the MPP accurately. The iteration process is continued until
the MPP is achieved. If the voltage is increased, and the power also increases, the PV
module operating point is on the left side of the P-V curve. If the voltage is increased, and
the power decreases, the PV module operating point is on the right side of the P-V curve.
Figure 7 illustrates the steps involved in the operation of the technique.

Figure 7. P&O controller flow chart.
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Figure 7 illustrates the steps involved in the P&O algorithm. First, the algorithm reads
the voltage and intensity to calculate the power. If the power of the current step is equal to
the previous one, the algorithms take no action and start again. If it is different, it checks if
the power is bigger or smaller than the previous one, and whether the voltage has increased
or decreased. Based on these two conditions, the algorithm decides whether the action will
increase or decrease the duty cycle. Finally, it updates the values from the previous step
with the current data before starting again with the new measures.

2.5. Hardware

The proposed control structures were implemented in real-time using commercial
hardware. The main source of power was a Peimar SG340P polycrystalline solar panel
consisting of 72 high-quality module cells arranged in a 12 × 6 array. The panel is designed
for residential and small industrial use and is protected by a low-iron-tempered glass
front cover and a double-wall aluminium frame for mechanical stiffness. Table 2 provides
additional details on the electrical properties of the panel. The irradiance and temperature
were measured using a Meteo Control Si-V-010-T irradiance sensor.

Table 2. Tecnical data of SG340P panel.

Properties Values Units

Dimensions 156 × 156 mm
Open-circuit voltage 45 V
Max power voltage 37 V
Max power current 9 A
Maximum power 340 W
Number of parallel cells 12 units
Number of series cells 6 units
Isc 9.9 A

A TEP-192 boost converter was used in conjunction with the PV panel. This device
increases voltage and regulates the output voltage for various applications while also
provides measurements of input-output current and voltage for monitoring. By utilizing a
metal-oxide-semiconductor field-effect transistor (MOSFET), the input PWM signal can
control this boost converter. The resistive load is set by the BK8500 in series with a fixed
load since the device has a rated power of 300W and the PV panel can supply as far as
340 W. Additional technical information is provided in Tables 3 and 4.

Table 3. TEP-192 Details.

Properties Values Units

Switching frequency 20 kHz
Max input voltage 60 V
Max output voltage 250 V
Max input current 30 A
Max output current 30 A

Table 4. BK8500 Details.

Properties Values Units

Power 300 W
Operating voltage 0–120 V
Rated current 30 A
Load range 0.1–4 k Ω
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The PWM signal was generated using dSPACE’s DS1202 MicroLabBox hardware,
which was specifically developed for mechatronics development and can produce analog,
digital, and PWM signals. The device is powered by a programmable FPGA with a dual-
core processor, allowing for up to 2 GHz, 1 GB DRAM and 128 MB flash memory. It also
supports Real-Time Interface (RTI), a platform for fast and automatic C code generation,
which enables designers to focus solely on the Simulink interface. Additionally, dSPACE
provided ControlDesk, which not only displays measured variables but also allows for the
manipulation of control signals. The circuit was closed with variable resistances that act as
an adjustable load to perform different experimental scenarios. Figure 8 shows a diagram
of the hardware and connections between the elements.

Figure 8. Hardware implementation schematic.

The PC used for training contains a 2.8 GHz Intel i9-10900 CPU with 32 GB of RAM
memory at 1600 MHz and an integrated Intel UHD Graphics 630 GPU. The design, training
and simulation were carried out in Matlab 2022b and Simulink with the RL toolbox over
Windows 10 Enterprise Operating System in its 1809 version. The code was compiled and
uploaded by Matlab in C++ to upload onto the DS1202 MicroLabBox. The data acquisition
of real-time experiments was done using dSapce Controldesk software and imported to
Matlab for data processing and visualisation.

3. Results
3.1. Simulation Results

The trained DDPG agent was first tested via simulation by generating different irra-
diation and temperature conditions. Two experiments are presented below: the first one
simulated different irradiation points at a fixed temperature, and the second simulated
different temperature conditions at a fixed irradiation. Therefore, the effect of these two
variables on the maximum power that the panel can offer can be seen separately. In addi-
tion, the DDPG agent was compared with a Perturb and Observe (P&O) controller with a
fixed step size in order to observe whether there is an improvement in the search for the
point of maximum power. It is worth mentioning that both experiments were carried out
with a fixed resistor in the DC/DC converter.

As mentioned above, the first experiment was conducted at a constant temperature of
20 ◦C and varying irradiance, as shown in Figure 9. The maximum power that the solar PV
panel can achieve at those irradiance points are obtained by the described controllers and
shown in Figure 10. The first thing that can be checked is the direct ratio between irradiation
and maximum power described in Section 2.2: when irradiation increases, power increases.
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Regarding the performance of the controllers, it can be observed that both reach the MPP
before the change of irradiance in less than one second. However, the DDPG agent, by
directly supplying the necessary duty cycle to the converter, the time it takes to reach the
maximum power point is only limited by the converter model, 0.096 s. In the case of P&O,
on the other hand, it is the controller itself that limits the time required to reach the MPP,
needing 0.8 s to reach the MPP. This is due to the very nature of P&O control discussed
in Section 2.4 above, and explains why at each change of irradiance, the controller has to
perform a new MPP search. Thus, the DDPG is 8.43 times faster than the P&O in the first
change of irradiation.
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Figure 9. Irradiation conditions.

It should be noted that in the other three irradiation step changes (seconds 1, 2 and 3),
the MPP is reached earlier than in the first one. This is due to the fact that the response of
the converter varies depending on the environmental conditions. With more radiation, and
to a lesser extent, at lower temperatures, the current flowing through the converter is higher
and consequently, the capacitor at the converter output is charged faster. In the opposite
case, with less radiation, the current flowing is lower and therefore the time it takes to
charge the capacitor increases and the response becomes slower, arriving later at the MPP.
All the settling times of the irradiance step changes and the efficiency improvement of the
total power output of the DDPG over the P&O are shown in the following Table 5:

Table 5. Settling times of the DDPG agent and the P&O controller for irradiance changes.

Step Step Time
(s)

DDPG Settling Time
(s)

P&O Settling Time
(s) Settling Time Improvement Overall Efficiency

Improvement

1 0 0.096 0.81 843%

8.59%
2 1 0.011 0.28 2454%

3 2 0.014 0.1 714%

4 3 0.005 0.12 2400%
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It should be noted that the P&O oscillates when it reaches the point of maximum power
with an amplitude that depends on the increment with which it is designed. However,
the increment in this case is very small, 10−5, so that the oscillations in power cannot
be observed.
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Figure 10. Maximum power tracking with DDPG and P&O under constant temperature and vari-
able irradiance.

In the second experiment, simulations were conducted with a fixed radiation of
750 W/m2 and different temperature points, as shown in Figure 11. As in the previ-
ous experiment, the following Figure 12 shows the maximum power points obtained by
the two controllers at different temperatures. In this case, as there are only temperature
changes, it can be concluded that there exists an inverse relationship between power and
temperature: when the temperature decreases, the maximum power increases. Again, the
DDPG controller acts faster compared to the P&O because the only limiting factor on how
fast the MPP is reached is the DC/DC converter, obtaining a settling time of 0.06 s against
the 0.58 s of the P&O. Additionally, as seen in Figure 4, where the panel curves at different
temperature conditions are shown, the higher the temperature, the lower the panel voltage
value that must be obtained to reach the MPP. Therefore, in the second simulation with
higher temperature, the voltage difference between the initial value and the desired value
is smaller than in the first simulation, making the output response in the first simulation
55% slower.

On the other hand, the P&O still needs more time to reach the same point as discussed
above. The temperature change is not very large as in seconds 1 and 2, and the time
needed for the P&O is consequently shorter. However, it is still slower than the DDPG
agent, as shown in Table 6. In the data shown there, an improvement of 10,667% for the
DDPG against the PO stands out. This is due to the fact that the system’s response in these
seconds is faster and therefore reaches the MPP sooner. The DDPG takes advantage of this
improvement because the controller, as mentioned above, produces the control signal with
the optimal duty cycle in an instantaneous manner, while the P&O is still limited by its
own search nature. Therefore, the DDPG can further improve its settling time compared to
the P&O.

It is worth noting that in second 2, the temperature change is even smaller, so the P&O
can reacher closer to the times of the DDPG, which cannot improve its settling time much
more. Thus, the DDPG only has a 480% improvement over the P&O. As in the previous
simulation, the efficiency improvement of the total power output of the DDPG over the
P&O is provided in Table 6.
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Figure 11. Temperature conditions.
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Figure 12. Maximum power tracking with DDPG and P&O under constant irradiation and vari-
able temperature.

Table 6. Settling times of the DDPG and P&O under changes in temperature.

Step Step Time
(s)

DDPG Settling Time
(s)

P&O Settling Time
(s) Settling Time Improvement Overall Effiency

Improvement

1 0 0.06 0.58 966%

10.45 %2 1 0.003 0.32 10,667%

3 2 0.0025 0.012 428%

3.2. Real Solar PV Experiments Results

Regarding the experiments with the implementation referenced in Section 2.5, two
tests were conducted with different irradiance and temperature conditions, in which, as
in the simulations, the DDPG agent and a P&O with a fixed step size are compared. This
comparison on the actual solar panel is carried out by running the controllers one imme-
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diately after the other within a short space of time so that the irradiance and temperature
conditions are as even as possible.

The conditions of the first experiments are 240 W/m2 of irradiance and a temperature
of 27 ◦C, and the results of the controller’s performance are shown in Figure 13. The test
starts, as can be seen in Figure 14, with a constant duty cycle of 0.86 until the controllers
are triggered to take action after 2.5 s. At that instant, the DDPG instantly applies the duty
cycle value required to achieve the MPP and the PO starts its search to find the MPP. As
shown in Figure 13, as in the simulations, although the DDPG gives its control signal to
obtain the MPP, the system cannot reach that point as quickly. Because of this and the
designed increase of the PO, the two controllers take almost the same time to reach the MPP,
although the DDPG reaches the MPP 5% faster. However, due to the selected value for
the increment of the P&O, even though it reaches the desired value quickly, the controller
oscillates in the range of 0.1 over the required value of 0.2 given by the DDPG, as shown in
Figure 14. This fact is reflected in the power oscillations with an amplitude of 3 watts in
Figure 13, which leads to an improvement in efficiency of the DDPG of 11.19%.
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Figure 13. Maximum power point tracking with DDPG and P&O at 244 W/m2 and 27 ◦C.

It should be noted that in the control actions of the P&O in Figure 14, around the
second 3, the duty cycle reaches 0.1 and stays there for a short time. This happens because
a saturation has been added so that the duty cycle provided by the controllers does not
go below 0.1 to maintain the DC/DC converter in the CCM mode. Aditionally, the P&O
has been designed with an initial value of 0.9 at which it starts its search for the MPP,
and explains why the first peak of the PO control signal is observed in the second 2.5 of
Figure 14.

In the second experiment, the environmental conditions are as follows: irradiance of
1090 W/m2 and temperature of 43.5 ◦C. In this case, as shown in Figure 15, the experiment
starts with a duty cycle of 0.84 until the controllers, after about 3 s, take action and execute
their control. As in the previous experiment, we observe the immediacy of the DDPG
control action compared to the 4.26 s it takes the P&O to find the MPP. In this second test,
the DDPG needs only 0.25 s to reach the MPP thus being 1704% faster.

It is worth noting that the increment has been reduced 10 times and therefore the
time it takes to find the point is 3.4 times slower compared the the first test, although the
oscillations around the desired value of duty cycle are also 10 times smaller as shown in
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Figure 16, with an amplitude of 0.01. This fact is reflected in the power oscillations with
an amplitude of 0.5 watts in Figure 13, which leads to an improvement in efficiency of the
DDPG of 51.45%.
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Figure 14. DDPG and P&O control actions for MPP tracking at 244 W/m2 and 27 ◦C.
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Figure 15. DDPG and P&O control actions for MPP tracking at 1090 W/m2 and 43.5 ◦C.

As can be seen in Figure 16, the time taken for the DDPG to reach the MPP is 4.1 times
shorter than that seen in the previous experiment (see Figure 13). This phenomenon is the
same as the one explained in the previous Section 3.1 of simulations: When the irradiation is
high, the current flowing through the converter is higher and the charging of the capacitor
in the converter is faster. Consequently, the response of the converter is faster than at
lower irradiation values. Moreover, the temperature also influences the voltage that the
solar panel has to obtain in order to reach the MPP. As shown in Figure 17, the higher the
temperature, the lower the voltage the panel has to deliver and therefore the faster the
converter dynamics become.

It should be noted that the two controllers achieve a different MPP, even though they
are very close. This occurs because the irradiance throughout the experiment has not been
constant, but has undergone a rise of about 10 W/m2 (see Figure 18), which produces a
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slight change in the MPP value. In this case, the P&O control was executed later than the
DDPG control, so the MPP reached is slightly higher.
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Figure 16. Maximum power point tracking with DDPG and P&O at 1090 W/m2 and 43.5 ◦C.
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Figure 17. Solar PV voltage.

After observing the tests performed, it can be concluded that the performance of the
DDPG in finding the MPP under different environmental conditions is better. It reaches
the desired power in a shorter time, as it is only limited by the slow dynamics of the
converter. Furthermore, it does not show any oscillation when reaching the MPP value as
the P&O does. In fact, the DDPG is, both in simulations and in real experiments, the fastest
controller with the highest total power output. This fact is reflected in Table 7, where the
improvement of the DDPG in terms of speed and efficiency is shown. It should be clarified
that the settling time improvement of the simulations is the best improvement value of
all sections of each simulation. From these data, the 51.45% improvement in efficiency
obtained by the DDPG over the P&O stands out. This is because the response of the system
under these conditions is fast and the DDPG agent can reach the MPP quickly. In addition,
the P&O is in this case designed with a small increment, so that although the oscillations
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are almost imperceptible at the MPP, it takes more time to reach that point, which detracts
from its ability to provide a total power output similar to that of the DDPG agent.
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Figure 18. Irradiance over time.

Table 7. Results of improvement of the DDPG over the P&O controller.

Test Settling Time
Improvement

Efficiency
Improvement

1st Simulation 2454% 8.59%

2nd Simulation 10,667% 10.45%

1st Real Test 5% 11.19%

2nd Real Test 1704% 51.45%

In comparison to similar works such as [35], improvements can be observed. Phant et
al. carried out two simulations similar to those conducted in this work, where one of the
two environmental variables was kept constant while the other varied. In the case of the
simulation with constant temperature, they obtained an efficiency of 0.96% compared to
the 8.59% obtained in this work. In the case of the simulation with constant irradiation and
temperature variation, they obtained an efficiency of 2.74% while this work achieved an
efficiency of 10.45%. It should be noted that their simulations and those carried out in this
paper did not employ the same length of time. Their simulations were shorter, so if our
work were to run simulations for the same period, the efficiency would decrease. However,
as the settling time is more important in short periods and our settling time is shorter, the
difference in efficiency would increase. On the contrary, if they were to simulate a period
such as that used in this work, their efficiency would increase; however, as they spend more
time in the MPP, the settling time would lose importance and the difference in efficiency
would decrease.

In another work that also used neural networks, the authors [41] compared their ANN-
INC (incremental method) with a conventional P&O in simulation. They subsequently
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obtained an improvement in efficiency of 5.2% compared to a conventional P&O, 5.25%
less than that obtained in this work.

4. Conclusions and Future Work

The use of a DDPG agent of RL with a DT as the method of MPPT of a solar PV panel
is summarized in this paper. After designing the DDPG agent and training it for all possible
conditions, it was tested, first in simulation, using a solar PV model and a DC/DC converter
model, and proved able to verify the relationship between irradiance and temperature with
the maximum power point. Subsequently, the controller was transferred to a real solar
panel to examine its performance. In addition, both in simulation and in real experiments,
the controller was compared with a P&O controller with fixed step time to observe the
improvements offered by the DDPG agent.

The results showed that the DDPG agent was able to reach the maximum power point
in 25% less time than the P&O controller. This finding is relevant because the ability to
quickly adapt to changing solar light conditions is crucial for the proper functioning of
solar energy systems. Additionally, the findings showed that the DDPG agent achieved an
improvement in efficiency of 11.19% over the P&O control in a time period of four seconds.

The proposed MPPT controller can contribute to the field of solar PV research by
advancing the state-of-the-art MPPT algorithms. By incorporating reinforcement learning
and digital twin technology, the proposed controller can achieve improved performance
over existing MPPT algorithms. The proposed MPPT controller can help to accelerate
the adoption of solar energy by increasing the efficiency and reducing the cost of solar
energy generation.

Despite the promising results, further studies and tests are needed to validate the
effectiveness of the DDPG agent in different operating conditions, such as partial shadowing
condition (PSC). Due to the nature of the RL, it is difficult to find the necessary parameters
to obtain an adequate control. By having to make adjustments through trial and error, the
long training time makes it difficult to obtain optimal controllers. In addition, because of the
dependence on the weather, it is not possible to recreate scenarios where the response of the
controllers can be better observed as can be done in a controlled environment. It would also
be interesting to explore the possibility of combining reinforcement learning techniques or
the use of digital twin with other control optimization methods, such as feedback control or
model predictive control. Additionally, it would be valuable to test reinforcement learning
control with a solar PV array to examine its performance in a more complex system. In
summary, there is great potential for the application of deep learning techniques in solar
energy system control; however, more research is needed to fully exploit it.
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