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Ami Aita y Ama





To know and not to know, to be conscious of complete truthfulness
while telling carefully constructed lies, to hold simultaneously two
opinions which canceled out, knowing them to be contradictory and
believing in both of them, to use logic against logic… to forget what-
ever it was necessary to forget, then to draw it back into memory at
the moment when it was needed, and then promptly to forget it again…

Nineteen Eighty-Four
by George Orwell.
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Abstract

It was some kind of cosmic switching device, routing the traffic of
the stars through unimaginable dimensions of space and time.

2001: A Space Odyssey
by Arthur C. Clarke.

We introduce a covariant effective theory for spherical loop quantum gravity. Quantum cor-

rections in non-homogeneous spacetimes are required to be compatible with matter with

local degrees of freedom, while the whole set-up remains explicitly covariant. The modifi-

cations are implemented at the Hamiltonian level [1–3], and they are then endowed with

an unambiguous geometric description: different gauge choices on phase space correspond

to particular charts of one same metric tensor. The Schwarzschild singularity is completely

resolved [4, 5], and this result is generalised to nearly neutral black holes of large mass em-

bedded in a universe with a small positive cosmological constant [6]. Therefore, the effective

theory provides an entirely regular description of spherical astrophysical black holes.
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Resumen

LOS DATOS SON TODAVÍA INSUFICIENTES PARA UNA RESPUESTA ESCLARECEDORA.

La última pregunta
de Isaac Asimov.

La teoría de la relatividad general de Einstein (1915) rompió con los conceptos clásicos de

espacio y tiempo, esbozando la gravedad como una consecuencia de la geometría de un

nuevo ente llamado «espacio-tiempo». Pero, sin lugar a dudas, la lección fundamental que

nos legaron Einstein y sus coetáneos es el principio general de covariancia, que enuncia que

las leyes físicas deben ser independientes de las coordenadas que utilice el observador. La

dinámica einsteniana se resume de forma cualitativa como sigue: el contenido energético

del universo moldea su forma y la curvatura resultante determina el movimiento subsiguien-

te. Sin embargo, la relatividad general posee una base matemática complicada y cualquier

estudio más detallado exige lidiar con un sistema de ecuaciones diferenciales de segundo

orden altamente acoplado.

Entre tal abrumadora complejidad emerge el concepto relativamente simple de agujero ne-

gro, el testimonio directo de la extrema voracidad de la gravedad. Los agujeros negros son

cuerpos sin mácula, los objetos macroscópicos más sencillos que conocemos. Su compor-

tamiento se encuentra completamente determinado por su masa, carga eléctrica y momento

angular, sin importar cuál fuese el estado previo de sus componentes. No sorprende, por

tanto, que sean también la mayor evidencia de las inconsistencias de la teoría de Einstein,

entre las que se encuentran las singularidades en las que la relatividad general pierde todo

su poder de predicción. Sin embargo, además de ser excelentes laboratorios para fenómenos

de altas energías, se cree que los agujeros negros tienen un papel primordial en la formación

y evolución de las galaxias. Al tratarse de los últimos retazos tras la muerte de las estrellas su-

permasivas, comprender en detalle el proceso autofágico al que sucumben las nebulosas es-

telares, y que finalmente desencadena la formación de los agujeros negros, es esencial para

el estudio de la gravedad y del universo.
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Tanto las bases como el desarrollo de la relatividad general se encuentran inextricablemente

unidos a los agujeros negros. Tan solo unos meses después de que Einstein publicase sus

ecuaciones, Schwarzschild (1916), en plena Primera Guerra Mundial, encontró una solución

exacta bajo la suposición de simetría esférica en vacío. Dicha solución, que hoy en día lle-

va su nombre, ha sido objeto de múltiples e intensas investigaciones, arrojando luz sobre

conceptos fundamentales como la causalidad y las propiedades del propio espacio-tiempo.

Estudios actuales, respaldados por el teorema de unicidad de Jebsen (1921) y Birkhoff (1923),

aportan todavía nuevas pistas en torno a la naturaleza de la gravedad y las singularidades.

Cabe recalcar que el profundo entendimiento de la geometría de Schwarzschild ha sido fruto

de un arduo camino, no exento de controversia. De hecho, la métrica de Schwarzschild mues-

tra un punto singular que ha sido objeto de extenso debate y, a pesar de la celeridad con la que

se descubrieron coordenadas que incluyen esa región —Painlevé (1921), Gullstrand (1922)

y Eddington (1923), entre otros—, no fue hasta la década de los sesenta cuando se aceptó

de forma generalizada que dicho punto describe el horizonte de un agujero negro. Cuando

Synge (1950), Szekeres (1960) y Kruskal (1960) encontraron la máxima extensión analítica

del espacio-tiempo de Schwarzschild, se pudo demostrar que existe una singularidad real

—donde la curvatura diverge y a la que un observador puede llegar tras un tiempo finito—

más allá de la cual el espacio-tiempo es inextendible.

Los resultados de Schwarzschild fueron prontamente generalizados para incluir carga eléc-

trica y constante cosmológica, dando lugar a finales de la década de 1910 a los espacio-tiem-

pos de Reissner-Nordström y Kottler, respectivamente. A pesar de que tanto el número de

horizontes como la estructura asintótica de estas geometrías varían, una de las predicciones

características de Schwarzschild prevalece: la inevitable singularidad central.

Friedmann y Lemaître en los años veinte, y Robertson y Walker en los treinta, fueron los

primeros en emplear la relatividad general para describir el cosmos como un todo. De he-

cho, la solución homogénea e isótropa (FLRW) que encontraron, y que actualmente se sigue

considerando una buena aproximación de nuestro universo, lleva por nombre sus iniciales.

El propio Lemaître (1933) y Tolman (1934) extendieron el estudio a simetría esférica. Dicho

trabajo fue más adelante investigado en detalle por Bondi (1947), por lo que actualmente se

conoce como el modelo LTB. Aunque inicialmente se postuló como una teoría cosmológica,

el origen privilegiado de la simetría esférica choca de lleno con nuestra visión del cosmos.

Sin embargo, el trabajo pionero de Oppenheimer y Snyder (1939) utilizó los resultados de Le-

maître y Tolman para describir el colapso esférico de una estrella de densidad homogénea.
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Sus cálculos demuestran que todos los componentes de la estrella convergen finalmente en

una singularidad. A pesar de la excesiva simplificación del problema, estudios posteriores

más complejos comprobaron que su intuición era correcta: la singularidad central tiene un

origen dinámico. Todo ello queda resumido de forma precisa en los teoremas de singulari-

dades, certificando así la incompletitud de la relatividad general. Por lo tanto, debemos ir

más allá de las enseñanzas de Einstein para comprender los secretos más profundos de la

gravedad.

Es aquí donde entra en juego la gravedad cuántica de lazos, una teoría no perturbativa basada

en el formalismo hamiltoniano de la relatividad general. Al igual que la teoría de Einstein,

su formulación carece de estructuras de fondo sobre las que establecer las leyes físicas y

es, hoy en día, una de las candidatas principales para lograr una descripción cuántica de

la gravedad. Entre sus principales predicciones se encuentra el espectro discreto de magni-

tudes geométricas tales como el área y el volumen, lo que se aplica en el cálculo de la entropía

de agujeros negros y que también proporciona una resolución del Big Bang en modelos cos-

mológicos. Sin embargo, la teoría es aún incompleta; la formulación de la dinámica es un

problema abierto en la gravedad cuántica de lazos. Por ello, se ha realizado un notable es-

fuerzo en lo referido a modelos efectivos que den cuenta de las principales características

cuánticas de la gravedad y que ayuden a desentrañar los aspectos más oscuros de la teoría.

La elaboración de teorías efectivas va de la mano del desarrollo científico. Su propósito es

analizar el comportamiento del sistema bajo estudio ignorando sus fuentes primordiales. De

esta forma se pueden colegir ciertas predicciones de la teoría completa en los regímenes en

los que esta deja de ser manejable o incluso cuando se desconoce la estructura subyacente.

Un ejemplo ampliamente conocido es el modelo para la desintegración beta de Fermi, con-

siderado el precursor de la teoría electrodébil. Su modelo supuso un hito no solo por su ex-

celente armonía con los experimentos, sino porque el fenómeno del que da cuenta ocurre a

energías mucho más altas (tres órdenes de magnitud) que las disponibles en los experimen-

tos de la época. Cabe recalcar que, por desgracia, la brecha entre los experimentos actuales y

las escalas energéticas de los efectos gravitatorio-cuánticos se estima en quince órdenes de

magnitud.

La falta de pruebas observacionales es una barrera difícil de franquear a la hora de comple-

tar cualquier teoría efectiva, así como de la dinámica completa de la gravedad cuántica de

lazos. Además, la extrema concordancia entre las predicciones de la relatividad general y los

datos experimentales (desde la desviación de la luz medida en eclipses solares hasta la re-

ciente observación directa de ondas gravitatorias) aflora descorazonadora, ya que no aporta
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ningún hilo del que tirar. Las únicas líneas consistentes para el futuro desarrollo de modelos

efectivos parecen ser la consistencia matemática y la resolución de las singularidades.

A pesar de todo, contamos con el respaldo de los modelos cosmológicos, en los que las teorías

efectivas concuerdan con la descripción completa de la teoría cuántica de lazos. La genera-

lización de dichas predicciones a escenarios menos simétricos confirmaría la resolución de

las singularidades clásicas. En esta tesis daremos el paso lógico hacia los modelos esférica-

mente simétricos con materia. Aunque las restricciones de simetría son todavía notables, el

salto que daremos es equivalente al que hay entre la mecánica cuántica y las teorías cuán-

ticas de campos. Además, el papel fundamental de las soluciones esféricas en los orígenes

de la relatividad general nos hace pensar que su descripción cuántica arrojará luz sobre el

camino hacia un conocimiento más profundo de la gravedad. No obstante, como ya hemos

comentado, las escalas energéticas en las que se podrían percibir fenómenos gravitatorio-

cuánticos se restringen a los sucesos cósmicos más extremos del universo. De hecho, y al

contrario de lo que ocurre en la cosmología cuántica, los profundos pozos gravitatorios en

los que se esconden las singularidades de los agujeros negros las colocan muy lejos de nues-

tro alcance, por lo que contrastar la teoría con observaciones escapa a nuestras capacidades

actuales.

La cuantización de los agujeros negros y la resolución de las singularidades son problemas

abiertos en la gravedad cuántica de lazos. No sorprende, por tanto, la proliferación de mo-

delos efectivos en tanto que el programa de cuantización llegue a buen puerto. Uno de los

aspectos clave que se debe afrontar es la reconciliación del espacio-tiempo discreto predicho

por la gravedad cuántica de lazos con la noción continua que aporta la simetría de difeomor-

fismos en relatividad general. Por ello, resulta inquietante que los estudios disponibles hasta

la fecha violen consistentemente el principio de covariancia de la teoría de Einstein.

El procedimiento habitual para obtener una descripción efectiva radica en introducir correc-

ciones cuánticas en el Hamiltoniano de la relatividad general y, de esta forma, derivar las

modificaciones en la dinámica. Cabe destacar el caso específico de las correcciones por ho-

lonomías, ya que son las que suscitan mayor éxito en cosmología. Dichos efectos se deben a

que ciertas cantidades no poseen un operador cuántico bien definido. En su lugar, se emplea

su variación a lo largo de un circuito cerrado —un lazo—, lo que, matemáticamente, equivale

a utilizar la exponencial imaginaria de dicha cantidad. A nivel efectivo, se espera que tales

efectos se puedan codificar mediante funciones sinusoidales. Para determinar la escala a

la que las correcciones deben entrar en juego, se suele introducir el llamado parámetro de

«polimerización».
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Este es el punto de partida de la tesis, siendo su principal objetivo elaborar una teoría mate-

máticamente consistente que describa los efectos fundamentales de la gravedad cuántica

de lazos en simetría esférica y que cumpla los siguientes requisitos: (i) respeta el principio

de covariancia general, (ii) tiene la relatividad general como un límite claro y (iii) las correc-

ciones cuánticas son compatibles con la incorporación de materia. De esta forma, la teoría

efectiva será invariante bajo cambios de coordenadas y, por tanto, sus predicciones serán

independientes del observador en cuestión. En consecuencia, podremos dar un paso más

para esclarecer si la resolución de singularidades es una propiedad connatural de la gravedad

cuántica de lazos.

Para superar los obstáculos a los que se enfrentan los modelos efectivos de gravedad cuán-

tica de lazos, realizamos un estudio sistemático y exhaustivo de todas las posibles modifica-

ciones del Hamiltoniano de relatividad general que respetan su estructura de derivadas. El

requisito de covariancia exige que las ligaduras del sistema formen un álgebra de primera

clase y, además, que la función de estructura de dicho álgebra tenga unas propiedades de

transformación características que permitan embeber la teoría efectiva en una variedad cua-

dridimensional. De esta forma, somos capaces de construir de forma unívoca el tensor mé-

trico con correcciones cuánticas en términos de funciones del espacio de fases.

Los resultados positivos de este estudio son los primeros en la literatura. Por un lado, la ob-

tención del Hamiltoniano más general en vacío que cumple con todos los requisitos y, por

otro lado, la incorporación con éxito de grados de libertad locales en la teoría efectiva. El

modelo presenta un parámetro libre directamente relacionado con la escala de «polimeri-

zación» de las correcciones por holonomías de la gravedad cuántica de lazos. Cuando dicho

parámetro se desvanece, recuperamos las predicciones dadas por la relatividad general.

La construcción geométrica nos permite estudiar en detalle la teoría efectiva. En el modelo

de vacío, demostramos que la singularidad de Schwarzschild es reemplazada por una super-

ficie de transición, compuesta por esferas de área finita, dentro del horizonte. Un observador

en caída libre atravesaría el horizonte, y también dicho mínimo, para emerger al exterior por

un nuevo horizonte. Al incorporar carga eléctrica y constante cosmológica al estudio, com-

probamos que las singularidades se resuelven mediante el mismo mecanismo anterior, al

menos para valores realistas de los parámetros del modelo: poca carga eléctrica y constante

cosmológica positiva y pequeña, ambas en comparación con la masa. Cabe destacar que las

correcciones cuánticas también alteran la estructura asintótica de los espacio-tiempos con

constante cosmológica no nula. De hecho, al igual que ocurre con las superficies de área mí-

nima, la teoría predice superficies de área máxima finita. Los observadores que se alejasen
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del centro no podrían huir indefinidamente. Por el contrario, llegarían al citado máximo y,

al intentar ir más allá, se dirigirían paulatinamente hacia una región similar en un universo

paralelo. La teoría también describe modelos cosmológicos, en los que el universo atraviesa

fases sucesivas de expansión y contracción, oscilando entre mínimos y máximos finitos.

En conclusión, nuestra teoría efectiva con correcciones de gravedad cuántica de lazos es co-

variante y proporciona una descripción libre de singularidades para cualquier agujero negro

esférico astrofísico, es decir, aquellos con masas relativamente grandes y prácticamente neu-

tros sumergidos en un universo con una constante cosmológica positiva pequeña.



Introduction

THERE IS AS YET INSUFFICIENT DATA FOR A MEANINGFUL ANSWER.

The Last Question
by Isaac Asimov.

The theory of general relativity [7] forever broke the Newtonian notions of space and time,

illustrating gravity as a consequence of the geometry of a novel entity: spacetime. In all likeli-

hood, the most fundamental lesson encoded in Einstein’s theory is the principle of general co-

variance, stating that physical laws are necessarily independent of the arbitrary coordinates

employed to describe them. It is common to qualitatively summarise Einsteinian dynamics

as follows: The energy content of the universe warps time and space with the resulting cur-

vature determining matter’s forthcoming evolution [8]. Notwithstanding, a deeper analysis

requires dealing with a highly coupled system of ten second-order partial differential equa-

tions, revealing the underlying mathematical intricacy of general relativity.

Rising from those wells of complexity, one finds the yet simple concept of black holes, the

most extreme representatives of gravitational attraction. They are the most seamless macro-

scopic objects in the universe and the simplest ones as well. Their mass, electric charge, and

angular momentum determine their behaviour, regardless of the former state of their con-

stituents. Not startlingly, black holes spark some inconsistencies in Einstein’s theory, and,

in the present thesis, we deal with one of such: the singularities where general relativity is

ill-defined. But beyond fundamental physics, where they provide a unique arena to test Ein-

stein’s predictions in strong-field regimes, black holes are also of utmost importance in as-

trophysics, as they are thought to play a key role in the formation and evolution of galaxies.

Being the final remnant of massive stars, the autophagic process of stellar nebulae that ulti-

mately triggers the formation of black holes is essential for our understanding of gravity and

the universe.

The foundations and development of general relativity are inextricably tied to black holes.

Just in the dawn of the theory, Schwarzschild, and independently Droste months later, found

an exact analytic solution under the assumption of spherical symmetry in vacuum [9, 10].
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The Schwarzschild solution has been the subject of extensive research, raising deep ques-

tions about causality and the properties of spacetime itself. Ongoing studies continue to pro-

vide important insights into the nature of gravity and the singularities, enhanced by Jebsen’s

(1921) and Birkhoff’s (1923) proofs on any asymptotically flat spacetimes outside a spherical

configuration being static and described by the Schwarzschild geometry [11, 12]. The solu-

tion showed a singular point that was, after much controversy, identified as the horizon of

the black hole. Different coordinates including that region were soon suggested [13–15] by

Painlevé (1921), Gullstrand (1922), and Eddington (1923). However, acknowledging them as

coordinate transformations of one same metric, and the final recognition of the Schwarzs-

child radius to be just a coordinate singularity, had to wait until the 1960s, the beginning

of the golden age of general relativity. Synge (1950), Szekeres (1960), and Kruskal (1960) ob-

tained the maximal analytic extension of the Schwarzschild spacetime [16–18]. Besides the

horizon, the solution shows a true physical singularity where curvature scalars diverge. An

infalling observer arrives at this singular point after a finite proper time, and the spacetime

cannot be further extended in a smooth way. The fact that many years had to pass for a com-

plete understanding of that metric, which nowadays bears Schwarzschild’s name, should not

tarnish, but rather laud, its weight and influence.

Schwarzschild’s results were soon generalised to include charge and a cosmological con-

stant while keeping the assumption of spherical symmetry, yielding in the late 1910s the

Reissner-Nordström [19, 20] and Kottler [21] spacetimes, respectively. While the number of

horizons and even the asymptotic structure of these solutions vary, one characteristic pre-

diction remains: the ineludible central singularity.

Concerning the description of the cosmos as a whole, Friedmann [22] and Lemaître [23] in the

1920s, and Robertson [24] and Walker [25] in the 1930s, worked upon the assumption that the

universe is homogeneous and spatially isotropic. These studies led to the well-known FLRW

solution (after their initials), which is still a good approximation to describe current obser-

vations. Lemaître himself (1933) and Tolman (1934) incorporated a spherically symmetric

pressureless perfect fluid to account for possible inhomogeneities. This was later thoroughly

studied by Bondi (1947), and it is usually referred to as the LTB solution for its authors’ last

names [26–28]. Although first thought of as a generalisation of the homogeneous and spa-

tially isotropic spacetime, the privileged origin of the spherical symmetry collides with our

current notion of the cosmos.

All the same, the pioneering work of Oppenheimer and Snyder (1939) considered a star of

homogeneous density and modelled its collapse using Lemaître’s and Tolman’s results. All
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the matter within their assumptions eventually converges into a singularity [29]. Indeed, this

was a first step towards describing the actual formation of black holes, and subsequent stud-

ies, loosening symmetry restrictions and with more realistic matter, proved their intuition

to be true: the central singularity is dynamically generated. The outcome of these investi-

gations, beautifully summarised in the singularity theorems [30–32], gloomily certifies the

incompleteness of general relativity, and it is generally accepted that we must go beyond

Einstein’s teachings to understand gravity’s most profound nature.

While it is firmly expected that a quantum description of gravity ought to cure these flaws,

the unconcluded search for such a theory faces severe obstacles, with the absence of resilient

quantum-gravity tests challenging its construction to a greater extent. A widespread thought

is that gravity per se should be quantised in the same vein as the other fundamental inter-

actions. Since general relativity describes the being of spacetime itself, that may lead to a

quantised notion of time and space.

Loop quantum gravity [33–37] is a non-perturbative and background-independent theory

based on the Hamiltonian description of general relativity. Nowadays it stands for one of

the soundest candidates to achieve the quantisation of Einstein’s theory. It is based on the

idea that the fundamental building blocks of the universe are quanta of area and volume,

providing a robust quantisation of the kinematical structures of general relativity. Although

it has led to several significant results, such as discrete and finite spectra for geometric oper-

ators [38, 39] and the resolution of the Big Bang singularity in cosmological models [40–42],

the formulation of the full dynamics of loop quantum gravity remains open.

To gain insight into the quantum realm of gravity, there has been a considerable effort to

build effective approximations. Effective methods describe the behaviour of a given theory

when it stops being tractable, while ignoring the underlying fundamental structure. Infer-

ring the main predictions of the full framework in a semiclassical regime is their raison d’être.

A well-known example is Fermi’s description of beta decay [43]. The standard model of parti-

cle physics explains that a flavour-changing gauge boson mediates the process, and Fermi’s

effective theory is regarded as the low-energy precursor of the electroweak theory. It was a

major milestone, not only due to its agreement with experiments, but also because the mass

of the mediator was three orders of magnitude above all feasible energy scales at that time.

This effective theory holds the honour of providing the tested result with the largest differ-

ence in energy scales between the effective and the full frameworks. In the case of quantum

gravity, the energetic gap with respect to current experiments is expected to be around fif-

teen orders of magnitude.
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The lack of observational evidence is a large hurdle towards the full dynamics and effective

descriptions of quantum gravity. In addition, the extreme reliability of general relativity in

all experimental tests (from the deflection of light in solar eclipses since 1919 to the latest

measurements of gravitational waves) is somewhat discouraging, as the only steady guide-

lines for developing a quantum-gravity theory seem to be mathematical consistency and the

alleviation of the problem of singularities.

The main reinforcement in our endeavour is that the homogeneous symmetry reduction of

general relativity has been subject to a consistent loop quantisation [44–46]. Further, the ef-

fective models implementing key aspects of the theory have been shown to greatly agree

with the full quantum dynamics [47, 48]. In particular, they both show the resolution of the

initial singularity. The effective approach encodes loop-quantum-gravity predictions in the

Hamiltonian to derive the expected corrected dynamics.

Extending those predictions to less symmetric scenarios should be a consistency check (or

rejection) of the singularity resolution, and we take the natural step towards spherical sym-

metry. Although symmetry assumptions are still strong, the jump from homogeneous to

spherically symmetric models with matter is equivalent to that of quantum mechanics to

quantum field theories. Both the static and the dynamic spherically symmetric solutions

were vital in the advent of general relativity, and they are still essential to understand the

fundamental properties of gravity. Their (effective) quantum description will most probably

enlighten the road to a deeper comprehension of gravity.

However, the energy scales where quantum-gravity phenomena should become noticeable

are restricted to the most extreme events in the cosmos. In contrast to early-universe mea-

surements, quantum effects must leak away from black holes to weigh them, and correlating

the theory with observations is still beyond our current capabilities.

While a complete quantisation of black holes and the resolution of classical singularities are

still open problems in loop quantum gravity [49–51], effective descriptions have proliferated

in the literature, and the variety of their predictions is wide enough to exhibit conflicting re-

sults. But perhaps the most distressing point is to realise that (to the best of our knowledge)

every effective implementation so far violates the covariance of Einstein’s theory [52, 53],

which also lies at the core of loop quantum gravity. With little room for doubt, the central

question any effective model must face is how the underlying spacetime discreteness pre-

dicted by loop quantum gravity is reconciled with the continuous diffeomorphism symmetry

of general relativity.
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The usual approach to obtain effective models is to incorporate the expected quantum cor-

rections at the Hamiltonian level and derive the modified dynamics. We will briefly review

a small sample of the studies in the literature, particularly focusing on those implementing

holonomy corrections. These modifications descend from the fact that the operator associ-

ated with the connection is not well defined in loop quantum gravity [35]. Instead, one consid-

ers the exponential form of parallel-transported connections, the so-called holonomies, with

a definite operator counterpart. The effective approach replaces connections with periodic

and bounded functions, usually sinusoidal ones. It is common to incorporate a “polymerisa-

tion parameter” to account for the scale of quantum effects.

The first attempts relied on the isometry between the homogeneous interior of spherical

black holes and the Kantowski-Sachs universe [54–59]. Therefore, restricting to that region of

the Schwarzschild spacetime, one could import the successful corrections of loop quantum

cosmology. The motivation is that quantum effects should be relevant close to the singular-

ity and negligible near the horizon. These models find bounces for the area of the spheres

of spherical symmetry. Still, without further analysis, it is difficult to tell whether such pre-

dictions are a generic feature or just a coordinate artefact, as those area elements show the

same bouncing behaviour when reaching the horizon. If no previous notion of “exterior” ex-

isted, one would conclude that the minima and maxima entailed the same physical meaning.

In addition, these studies dismiss all factors arising from the lack of homogeneity.

When aiming to describe the complete spacetime, one has to deal with several problems, in-

cluding those of the asymptotics, the slicing independence, and the smoothness of the solu-

tion across horizons. Some recent proposals predict either the formation of an inner horizon

[60], the replacement of the singularity with a spacelike transition surface towards a white

hole [61–65], or the formation of a Euclidean region in the deep quantum regime [66]. Nev-

ertheless, a complete geometric study is mandatory to check whether those are enduring

effects, independent of the specific coordinates or gauge choice.

In spherical symmetry, there are two connection components that could be promoted to si-

nusoidal functions. Whether both variables, or only the one related to the compact direction,

should be subject to corrections [67] and whether the polymerisation scheme should depend

on the scale or not [62] remain open questions.

For instance, a clever transformation from the usual triad and connection variables mim-

ics scale-dependent holonomy corrections while implementing a constant polymerisation

scheme [63, 64], analogous to its cosmological counterpart. Besides, the on-shell identifi-

cation of the new momenta with curvature scalars and the area-radius function opens a
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way to describe the exterior region of the modified Schwarzschild solution. A different study

[61, 62, 65] foliates the exterior region of the Schwarzschild spacetime by level surfaces of con-

stant radial coordinate and “evolves” the timelike homogeneous hypersurfaces along the ra-

dial direction. In that way, one gets a different set of variables and constraints — and, hence,

solutions — which are analogous to those of the interior region. In this last work, the au-

thors choose a polymerisation that remains constant on each trajectory on the phase space

but changes in the space of solutions. In brief, it amounts to considering the polymerisation

parameter to be a function of the constants of motion of the theory, which solves some prob-

lems related to other polymerisation schemes. While both models reproduce general relativ-

ity in asymptotic regions and predict a transition surface that replaces the Schwarzschild sin-

gularity, neither describes the horizon of the black hole. In addition, the black-hole masses

differ in different exterior regions.

A related, though different, approach is based on the abelianisation of constraints [68–70],

which may lead to a consistent theory of spherical loop quantum gravity, even under the

presence of matter fields. This procedure relies on a redefinition of the Lagrange multipli-

ers of the theory that transforms the hypersurface deformation algebra into a Lie algebra

suitable for a Dirac quantisation. The authors also suggest an effective metric with bounded

curvature scalars [71]. Most remarkably, the study incorporates scale-dependent holonomy

modifications, making quantum corrections rapidly vanish in asymptotic regions. Although

these coordinates cross the horizon, they do not cover the expected minimum surface.

In a similar work, scale-dependent holonomy modifications are implemented so that the al-

gebra between constraints remains first class [60]. In this case, the drawback is that correc-

tion functions involving curvature components remain bounded only after a partial gauge

fixing: The area-radius function is required to be the radial coordinate. These coordinates

penetrate the horizon and shows a finite minimum beyond an inner horizon that changes

the trapped nature of the hypersurfaces inside the black hole. Despite not being related by

coordinate transformations, the study shows how the effective metric in Ref. [71] is obtained

from this same Hamiltonian. But, just as in that previous work, one needs to contrast whether

the minimum is a strong prediction or only a consequence of the choice of coordinates.

The program of consistent constraint deformations was considered in Refs. [66, 72–74], and

aims to preserve the first-class nature of the hypersurface deformation algebra. The core idea

is that since the first-class constraints encode both the dynamics and the diffeomorphism in-

variance of general relativity, only modifications that preserve that first-class nature should

be allowed. Nonetheless, having a first-class algebra is a necessary but insufficient condi-
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tion to recover a clear geometric picture because one also needs to embed the canonical

theory in the four-dimensional spacetime manifold. In Ref. [66], the authors suggest that

the metric should be deformed accordingly with the Hamiltonian, making a first attempt in

that direction. The study concludes by suggesting the formation of a Euclidean region in the

deep quantum regime, where all notion of causality would be lost. Nevertheless, the analysis

omits the region nearby the signature change, and it needs to be clarified whether quantum

effects would allow reaching the innermost Euclidean space.

Some of those works extend their predictions to include non-dynamical fields [75, 76] and

even collapsing matter [77–79]. However, they suffer equally from the discussed lack of co-

variance as different solutions to the effective equations provide incompatible predictions.

With all the above, we are ready to unveil the primary goal of this thesis. We aim to con-

struct a mathematically consistent effective theory that describes the main effects of loop

quantum gravity in spherical symmetry, following three important requisites: (i) it respects

general covariance, (ii)Einstein’s theory is recovered in a clear limit, and (iii) the effective cor-

rections are compatible with the addition of matter. The effective description will thus rely

on a classical spacetime picture, and the first requirement will ensure that its predictions are

not induced by any arbitrary choice of coordinates. The second one will hopefully provide

some insight into the future development of loop quantum gravity, and it is a consistency

check for the model. Finally, the third requirement is necessary to eventually describe spher-

ical gravitational collapse. In this way, we will be able to check whether the theory provides

an everywhere smooth description for classical black-hole singularities, and also for the dy-

namical process preventing their formation. These are key questions upon which quantum

gravity is expected to shed light.

Before closing this introductory section, let us comment on the organisation of the thesis. We

begin with some basic notions of loop quantum gravity and its spherical symmetry reduc-

tion in Chapter 1. We also highlight the process of constructing the spacetime metric from

the phase space of canonical general relativity. In Chapter 2, we suggest covariant modifica-

tions of the Hamiltonian of general relativity. First, we find the most general framework in

vacuum that admits a metric interpretation. Second, we incorporate propagating degrees of

freedom with the same requirement. It turns out that demanding the former to be the vac-

uum limit of the latter further constrains possible modifications. Subsequent chapters study

the singularity resolution of the effective model in vacuum (Chapter 3), and in the presence

of a cosmological constant and an electromagnetic field (Chapter 4). Finally, we summarise

the results and point out the main features of the effective theory.





1
Basic Notions for Spherical

LoopQuantumGravity

The board is set, the pieces are moving.
We come to it at last… The great battle of our time.

The Lord of the Rings
by J. R. R. Tolkien.

Loop quantum gravity (LQG) aims to reconcile the quantum world with general relativity (GR).

The theory relies on a canonical quantisation of the gravitational interaction in terms of the

Ashtekar variables, triads and connections, and their respective fluxes and holonomies.

The whole framework still being unravelled, one must stick to quantising symmetry reduc-

tions of GR. For instance, the homogeneous scenario leading to loop quantum cosmology

(LQC) replaces the initial singularity with a quantum bounce at early times. Loosening sym-

metry restrictions increases difficulties in tracking the models, and it is unclear whether they

may answer such critical defects of GR. Hence, there has been a considerable effort to build

the spherical reduction of LQG to confirm whether singularity resolution is an enduring prop-

erty of the theory. Extending mechanisms avoiding the Big Bang to spherical symmetry

would be a robustness check of those predictions.

In this chapter, we briefly overview the foundations of LQG, sketching the primary steps to-

wards its classical formulation (Sec. 1.1). A notorious prediction in this theory is the quantised

notion of spacetime that presumably mends the unavoidable singularities of GR. Besides, it

is based on a specific formulation of GR that allows writing it as a Yang-Mills theory. Finally,

we will reconstruct the explicitly covariant metric picture from the phase space (Sec. 1.2) and

introduce the framework and basic variables adapted to spherical symmetry (Sec. 1.3).
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1.1 Loops: A concise journey

The starting point of this section is the four-dimensional spacetime (M, g). We first need

to split spacetime into space and time to obtain a Hamiltonian formulation for GR. We will

explicitly show that the proper way of doing this does not interfere with the covariance of

Einstein’s theory. The main references followed in this introductory section are [35, 80, 81].

1.1.1 On the 3+1 decomposition

Assuming global hyperbolicity, the spacetime (M, g) can be foliated by spacelike hypersur-

faces defined as level surfaces of a smooth real-valued function t on M. We define a leaf,

Σt := {p ∈ M, t(p) = t}, of the foliation such that Σt1 ∩ Σt2 = ∅ for t1 ̸= t2, and we further

assume that the set of all leaves, {Σt}|∀t∈R, covers M. When convenient, we will exploit the

abstract index notation, where uµ and uµ stand for the components of the vector uµ∂µ and

the covector uµdxµ, respectively. We use lowercase Latin indices (a, b . . . ) taking the values

1, 2 and 3, and Greek indices (µ, ν . . . ) running from 0 to 3.

The notion of evolution is thence provided by the gradient of the function t. The one-form

dt ≡ (∇µt)dx
µ and its metric dual, the timelike vector field (∇µt)∂µ, are both orthogonal to

the slices Σt. We define the unit normal as

nµdx
µ := −Ndt, (1.1a)

nµ∂µ := −
(
N∇µt

)
∂µ, (1.1b)

where

N :=
(
−∇µt∇µt

)−1/2
> 0, (1.2)

is the lapse function. The unit normal is unique up to its orientation, which we have chosen

to be future-pointing for increasing t. That is, nµ∂µt = 1/N is positive.

Besides t, we need three additional functions,xa, onM to define a coordinate basis, which we

say to be adapted to the foliation. We shall call∂t or, equivalently, tµ∂µ the time vector, which

is tangent to the lines of constant xa but not necessarily orthogonal to the hypersurfaces Σt.

The natural basis of the tangent space is {∂t, ∂a} := { ∂
∂t ,

∂
∂xa }, and its associated dual basis

reads{dt, dxa}. Note that the integral curve of the time vector throughp1 ∈ Σt1 will intersect

Σt2 once and only once provided ∂tt = 1, which adapts the flow to the concept of time given

by the function t. Therefore, we may identify that intersection, p2 ∈ Σt2 , as the same spatial

point at a different time, that is, p(t1) := p1 and p(t2) := p2.
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In these coordinates, the unit normal reads nµ∂µ = N−1
(
tµ∂µ −Na∂a

)
, where

Na := −Nnµ∂µxa (1.3)

are the only trivially non-vanishing components of theshiftvector,Nµ∂µ := (tµ−Nnµ)∂µ =

0 ∂t + Na∂a. One can check that nµNµ = 0, so the shift vector is tangent to Σt, and thus a

spatial vector. More precisely, it is the projection of the time vector on the leaf, and we can

write its usual 3 + 1 decomposition:

∂t = tµ∂µ = Nnµ∂µ +Nµ∂µ. (1.4)

We can explicitly compute the components of the metric tensor in the natural basis{dt, dxa},

ds2 = gµνdx
µdxν = −N2dt2 + qab

(
dxa +Nadt

)(
dxb +N bdt

)
, (1.5)

and find that all its information is encoded in the induced three-dimensional Riemannian

metric qabdx
adxb, the lapse functionN , and the shift vectorNa∂a. In particular, the determi-

nant of the spacetime metric is det(g) = −N2det(q). The projectorhµν := gµν+nµnν will al-

low us to decompose every spacetime object into orthogonal and tangential components to

Σt, that is, to find the projection of every quantity onto the spacelike hypersurfaces. Note that

the spatial components of the spacetime metric gab coincide with the induced spatial metric

qab but, generically, the components of their inverses do not, i.e., gab ̸= qab. In contrast, the

projector’s spatial part coincides with the induced three-dimensional metric for every index

ordering: hab = qab, hab = qab, h b
a = q b

a , and hab = qab.

After some calculations, we can express the Einstein-Hilbert action — up to boundary terms

(total derivatives) that we omit in the following — as three-dimensional quantities:

SEH =

∫
d4x
√
− det(g) (4)R =

∫
dt

∫
d3x
√

det(q)N
(
KabK

ab − (K a
a )2 + (3)R

)
, (1.6)

where (4)R and (3)R denote the four-dimensional and three-dimensional Ricci scalars, re-

spectively,Kabdx
adxb is the extrinsic curvature of the three-dimensional surface embedded

in spacetime, andK a
a stands for its trace. This second fundamental form is the variation of

the spatial metric along the normal direction. It is a symmetric tensor, with components

Kab :=
1

2
Lnqab =

1

2N

(
Ltqab − 2(q)∇(aNb)

)
, (1.7)

where (q)∇ is the covariant derivative compatible with the induced three-metric.
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1.1.2 Hamiltonian formalism

To introduce the Hamiltonian formulation of GR, we start with the usual ADM approach [82]

that takes the induced three-metric to be the configuration variable. One can check that its

conjugate momentum

pab :=
√

det(q)
(
Kab −K c

c q
ab
)
, (1.8)

is directly related to the extrinsic curvature, with {qab(x1), pcd(x2)} = δcaδ
d
b δ(x1, x2). Note

that all these three tensors are symmetric. The above relation is invertible, and we can per-

form a Legendre transformation on (1.6) to obtain the total Hamiltonian of the system,

HTOT =

∫
d3xHTOT :=

∫
d3x

(
q̇abp

ab −
√

det(q)N
(
KabK

ab − (K a
a )2 + (3)R

))
=

∫
d3x
√

det(q)

(
N

(
2pabp

ab − (p a
a )

2

2 det(q)
− (3)R

)
− 2Na(q)∇b

(
p b
a√

det(q)

))
, (1.9)

with p a
a the trace of the momentum, and where we have integrated by parts to remove (spa-

tial) derivatives ofNa. Notice that there are no time derivatives of the lapseN and the shift

Na; they are Lagrange multipliers. Their respective conjugate momenta, P and Pa, are thus

vanishing, and define primary constraints of the system. We can formally compute the evo-

lution of the primary constraints,

C := −∂HTOT

∂N
=
√

det(q) (3)R− pabp
ab√

det(q)
+

(p a
a )

2

2
√

det(q)
≈ 0, (1.10a)

Ca := −∂HTOT

∂Na
= 2
√

det(q) (q)∇b

(
pba√

det(q)

)
≈ 0, (1.10b)

where we use “≈” for equalities obeyed on-shell. These are secondary constraints, and they

are called the Hamiltonian constraint and the diffeomorphism constraint, respectively. There

are no further (tertiary) constraints, and the system is self-consistent. We now realise that the

total Hamiltonian can be expressed as a linear combination of constraints,

HTOT =

∫
d3x
(
NC +NaCa

)
=: C[N ] + Ca[N

a], (1.11)

where we have additionally introduced on the right-hand side the notation of smeared con-

straints that will be employed in the following. In the Hamiltonian description of GR, the con-

straints play a crucial role: They restrict the initial data and generate gauge transformations,

including time evolution. Indeed, the vanishing of C and Ca, along with q̇ab := {qab,HTOT}
and ṗab := {pab,HTOT}, is entirely equivalent to the Einstein vacuum equations. More pre-
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cisely, the two constraints are just contractions of the Einstein tensor with the unit normal

vector such that Ca = 0 and C = 0 implyG0a = 0 andG00 = 0, respectively. The six remain-

ing (second-order) differential equations, Gab = 0, are encoded in the twelve (first-order)

evolution equations for qab and pab.

Although the Hamiltonian formulation loses the manifest diffeomorphism invariance, the

theory remains covariant only if the constraints are preserved under gauge transformations,

which is guaranteed whenever those constraints are first class. That is precisely the case of

GR, and the set of relations between constraints is known as the hypersurface deformation

algebra:

{Ca[s
a
1], Cb[s

b
2]} = Ca[s

b
1∂bs

a
2 − sb2∂bs

a
1], (1.12a)

{Ca[s
a
1], C[s2]} = C[sa1∂as2], (1.12b)

{C[s1], C[s2]} = Ca[F
ab(s1∂bs2 − s2∂bs1)], (1.12c)

with s and sa suitable smearing functions, and F ab = qab in GR. The first bracket stands

for the diffeomorphism symmetry on each hypersurface. The second one ensures that the

Hamiltonian, as defined in (1.11), is a weight-one scalar density. The third bracket relates de-

formations of hypersurfaces as a set. When the structure function in that last bracket is the

inverse of the spatial metric, that is,F ab = qab, the set of three-dimensional spacelike hyper-

surfaces can be embedded in the spacetime manifold, thus providing a foliation with spatial

leaves with metric qab [83, 84]. This is precisely the case in GR but not necessarily in modified

Hamiltonian theories. For that reason, a careful analysis of the hypersurface deformation

algebra is required to relate the phase-space and geometric descriptions.

Finally, a brief side note may be convenient. Note that, up to this point, we did not worry

about matter sources, mainly because their incorporation into the analysis is formally trivial

as long as they are minimally coupled to gravity. One only needs to add a generic Lagrangian

density, Lm, in (1.6), which, after the 3 + 1 splitting and the Legendre transformation yield-

ing (1.9), contributes with respective terms to the Hamiltonian and the diffeomorphism con-

straints. Then, the corresponding combinations of the vacuum and the matter contributions

define the full constraints, which must vanish on-shell. In addition, those full constraints fol-

low the algebra (1.12), with the same structure function as in vacuum. Since these matter

sources do not provide further insight into the remaining subsections, we will omit them in

the following. However, note that, when we write the constraints, they will only contain the

vacuum contribution.
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1.1.3 Connection formulation

The tetrad formalism maps the tangent space at each point of the manifold to the tangent

space of the Minkowski space, and the spacetime metric is the pullback from that flat space

to the tangent one. The projection of tetrads on a constant t hypersurface are the triads,

eai , which provide an alternative (and equivalent) description to that of the metric formula-

tion [85].

Let (Σt, q) be a leaf of the spacetime foliation, (E, δ) a three-dimensional Euclidean space,

and consider the map

e : TΣt → TE (1.13)

ua∂a → uaeia∂i,

and the function δ : TE×TE → R. Then, the metric q : TΣt×TΣt → R is just the pullback

of δ by e at each point. That is, δij(uaeia)(v
bejb) = qabu

aub, and thus qab = δije
i
ae

j
b . We will

label by i, j, k the flat indices running from 1 to 3. The position of these internal indices is not

relevant, ui = ui, and we will write them conveniently opposed to spacetime indices.

Intuitively, the triads provide an orthonormal basis of the tangent space at each point,

qabe
a
i e

b
j = δij , (1.14)

where eai and ebj diagonalise the metric at each point. Note that eiae
a
j = δij and eiae

b
i = δba,

which define eia as the inverse of the three orthonormal vector fields eai .

In addition to the inherent Riemannian geometry, the triad formalism associates an internal

Euclidean space to each point of the hypersurface, and one finds an additional local SO(3)

symmetry due to the rotational degrees of freedom in eai that are not present in the metric

qab. The addition of this internal space requires the extension of the covariant derivative in

such a way that it obeys the Leibniz rule ∇a(ubvi) = (∇aub)vi + ub(∇avi). Consider

∇ae
b
i = ∂ae

b
i + Γb

ace
c
i + Γj

aie
b
j , (1.15)

whereΓb
ac are the Christoffel symbols, and when the above expression vanishes, that is, when

the covariant derivative is compatible with the triad,Γj
ai are the components of the so-called

spin connection. We will denote this as (e)∇a. The Christoffel symbols are symmetric in the

lower indices, Γb
ac = Γb

ca. In contrast, the spin connection is antisymmetric in the internal

space, i.e., Γj
ai = −Γi

aj , as one can check from the symmetry ebi = ebi.
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Rather than the triad, we will use its densitized version,

Ea
i :=

√
det(q) eai , (1.16)

simply because it is a vector density of weight one and thus (e)∇aE
b
i = ∂aE

b
i +Γj

aiE
b
j , which

does not depend on the Christoffel symbols. Note that the positiveness of det(q), plus its

smoothness, imposes a constant sign on the determinant of the triad. Indeed, this is the re-

quirement for the hypersurface to be orientable. Taking now the divergence of the densitized

triad,

0 = (e)∇aE
a
i = ∂aE

a
i + Γj

aiE
a
j =: ∂aE

a
i + ϵijkΓ

j
aE

a
k , (1.17)

we can define Γj
a in the last step based on the antisymmetry of the spin connection in the

internal indices. From the above expression, it is evident thatΓj
a is a function of the densitized

triad and its derivatives only.

In a similar fashion, one definesKi
a := ebiKab, such thatKab = Ki

ae
j
bδij . Since the extrinsic

curvature is symmetric, Ki
a cannot be arbitrary, and it is constrained by Ki

[ae
i
b] = 0. After

a contraction with
√

det(q) eake
b
j , we may express this last relation as Ka[jE

a
k] = 0. This is

equivalent to demanding the vanishing of

Gi := ϵijkK
j
aE

a
k , (1.18)

which is, in fact, the generator of the internal SO(3) rotations within the triad formulation.

Moreover, {Ki
a(x1), E

b
j (x2)} = δbaδ

i
jδ(x1, x2) and {qab(x1), pcd(x2)} = δcaδ

d
b δ(x1, x2) define

the same phase space precisely on the surface Gi ≈ 0. This constraint is usually referred to

as the Gauss law. Let us illustrate this by expressing (1.18) as a total divergence.

For that purpose, we need to find a suitable generalised covariant derivative. Let us point out

that the symplectic structure remains unaltered under the constant transformation Ki
a →

βKi
a and Eb

j → Eb
j/β, where β is known as the Immirzi-Barbero parameter [86]. One can

then check that the Christoffel symbols and the spin connection are invariant under this

rescaling. Thus, the covariant derivative (e)∇a is independent of the parameter β, and it is

straightforward to see that Gi is also insensitive to this rescaling. We are finally in a position

to write the rescaled form of (1.18) as a divergence, simply adding (e)∇aE
a
i /β, which is zero

by (1.17):

Gi =
(e)∇a(E

a
i /β) + ϵijk(βK

j
a)(E

a
k/β) = ∂a(E

a
i /β) + ϵijk

(
Γj
a + βKj

a

)
(Ea

k/β). (1.19)
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Upon the definition of a new covariant derivative,

DaE
a
i := ∂aE

a
i + ϵijk

(
Γj
a + βKj

a

)
Ea

k , (1.20)

we can writeGi = β−1DaE
a
i . The constraint surfaceGi = 0 is thus given byDaE

a
i = 0, that is,

the new derivative annihilates the densitized triad. Note thatDa acts as the usual covariant

derivative on spacetime quantities,Daub =
(q)∇aub, and as a Yang-MillsSU(2)derivative on

the internal space,Davi = ∂avi + ϵijkA
j
avk , with connection components

Aj
a := Γj

a + βKj
a, (1.21)

which is usually referred to as the Ashtekar connection. This element plays a central role in

loop quantum gravity as it forms a canonical pair with the densitized triad,

{Ai
a(x1), E

b
j (x2)} = βδbaδ

i
jδ(x1, x2). (1.22)

In terms of these new variables, the total Hamiltonian reads [35]

HTOT =

∫
d3x

(
ΛiGi +NaCa +NC

)
=: G[Λ] + Ca[N

a] + C[N ], (1.23)

with Gi = DaE
a
i /β the Gauss constraint, Ca = F i

abE
b
i /β the diffeomorphism constraint and

C =
ϵijkE

a
jE

b
k√

det(q)

(
F i
ab − (1 + β2)ϵilmK

l
aK

m
b

)
, (1.24)

the Hamiltonian constraint. In the last expression, F i
ab := 2∂[aA

i
b] + ϵilmA

l
aA

m
b is the curva-

ture of the connection, and det(q) and K l
a must be taken as functionals of Al

a and El
a. As a

final remark, the enhanced constraint structure remains first-class but now with six relations

(only five non-trivial ones, becauseG[Λ] andC[N ] commute off-shell).

1.1.4 Towards the loop representation

We need to find a suitable smearing for the connection variables Ai
a to obtain a non-distri-

butional behaviour of their Poisson bracket with the densitized triadsEb
j . Not all choices are

acceptable, and the smearings must be such that they do not introduce a background metric

(recall that LQG aims for a background-independent theory). In addition, there should be a

direct relation to gauge-invariant objects since, eventually, one will be interested in tracking

such quantities. This problem is common to non-abelian Yang-Mills theories, and we may

import some valuable lessons from their study.
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First, we need to define the concept of holonomy, which is a consequence of the curvature

of a connection in a smooth manifold and measures the variation of geometric quantities

along a closed path. More precisely, making use of the Ashtekar connection (1.21), and its

associated covariant derivative (1.20), vb is said to be parallel-transported along the curve γ ,

with tangent vector γ̇a, provided γ̇aDav
b = 0. This differential equation can be iteratively

solved, and when the path is closed, γ(t) = γ(0), the solution is vb(t) = hγ(A)v
b(0), where

hγ(A) := P
[

exp

(
− i

2

∮
γ
σj γ̇

aAj
a

)]
(1.25)

is the holonomy of the connection along that curve, the elements σj are Pauli matrices and

P
[
x2(t2)x1(t1)

]
≡ P

[
x1(t1)x2(t2)

]
:= x2(t2)x1(t1), for t2 > t1, is the path-ordering oper-

ator. The trace of a holonomy — also known as Wilson loop — is a gauge-invariant scalar

quantity. Furthermore, the set of all possible Wilson loops forms a basis for any observable

that is a function of the connection only.

Second, since the connection has been smeared in one dimension, we define the flux of the

densitized triad across a two-dimensional surface, S ,

ΦS(E, f) :=

∫
S
uaf

jEa
j , (1.26)

with ua the normal one-form to the two-dimensional surface, which is independent of any

background metrics, and f := −if jσj an su(2)-valued scalar smearing function. The Pois-

son bracket between holonomies and fluxes reads

{
hγ(A),ΦS(E, f)

}
= iβδ(γ, S)f jhγ2(A)σjhγ1(A). (1.27)

The function δ(γ, S) vanishes whenever the curve γ does not intersect or is tangential to the

surfaceS . When they do intersect, δ(γ, S) is positive (negative) if the orientation of the curve

and that of the surface is the same (opposite). More precisely, it takes the values ±1/2 when

the intersection point is either the starting or final point of γ. Otherwise, δ(γ, S) = ±1 andS

divides γ in two open paths, γ1 and γ2.

This Poisson structure can be promoted to a commutator algebra upon Dirac’s quantisation

procedure. Eventually, loop quantum gravity leads to geometric operators describing a quan-

tised spacetime, and the geometry becomes discrete at the Planck level.
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1.2 Construction of themetric

We started from a foliated spacetime with induced spatial metric qab. The Poisson brackets

between constraints produced a structure function F ab, which in GR is precisely the inverse

of qab. The way back from the canonical representation to the spacetime picture is, therefore,

trivial. In this section, we will consider some generic C , Ca, andF ab satisfying (1.12), and con-

struct the corresponding metric tensor, without assuming prior knowledge of a spacetime.

That is, indeed, the situation we will be facing when modifying the GR Hamiltonian.

The intuition about how to obtain a geometric description associated with the Hamiltonian

formulation lies at the core of this thesis because we will introduce corrections on the phase

space. Those changes will modify the structure functions in the algebra between constraints,

and the geometry described by the new Hamiltonian will not be generically the same as the

one described by GR.

For the theory to be covariant, diffeomorphism invariance must be read from the gauge free-

dom of the phase space. To deduce the form of the metric associated with the Hamiltonian,

we suggest a generic ansatz,

ds̃2 = −Ñ2dt̃
2
+ q̃ab

(
Ñadt̃+ dx̃a

)(
Ñ bdt̃+ dx̃b

)
, (1.28)

and proceed to express the metric components in terms of phase-space quantities. For that

purpose, we need to identify objects that change accordingly under coordinate and gauge

transformations.

Observe that the time function employed for the 3 + 1 decomposition remains unaltered

when deriving the Hamiltonian formulation. It is thus reasonable to request that the inverse

process preserves the definition of time. Therefore, we will assume that the metric formula-

tion inherits the notion of time from the Hamiltonian formalism, and thus the lapse and the

shift are defined in the same way as in (1.2) and (1.3), respectively. Demanding the function

t̃ = t to define the foliation will lead to Ñ = N . In addition, choosing x̃a = xa for the generic

spatial coordinates fixes Ña = Na, and only q̃ab remains to be specified.

First, we compute the Lie derivative of the metric (1.28) along a generic vector field ξµ∂µ:

LξN = ∂t(ξ
tN) + ξa∂aN −NNa∂aξ

t, (1.29a)

LξN
a = ∂t(ξ

tNa + ξa) + ξb∂bN
a −N b∂bξ

a −
(
NaN b +N2q̃ab

)
∂bξ

t, (1.29b)

Lξ q̃ab = ξt∂tq̃ab + ξc∂cq̃ab + 2q̃ac
(
N c∂bξ

t + ∂bξ
c
)
. (1.29c)
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Second, we study gauge transformations. For a phase-space function Φ, the gauge flow is

generated by the total Hamiltonian with four arbitrary gauge parameters ϵ and ϵa, that is,

δϵΦ := {Φ, C[ϵ] + Ca[ϵ
a]}. (1.30)

In order to relate both transformations, this bracket should describe the coordinate change

defined by the vector field ξµ∂µ above, provided that the gauge parameters are its compo-

nents in the normal-tangential basis, i.e.,

ξµ∂µ = ξt∂t + ξa∂a = ξtNnµ∂µ + (ξtNa + ξa)∂a ⇒

 ϵ := ξtN,

ϵa := ξtNa + ξa,
(1.31)

where we have used (1.4), andnµ∂µ stands for the unit vector orthogonal to the hypersurfaces

of constant t. Then, (1.30) coincides with the Lie derivative of Φ along ξµ∂µ, i.e.,

δϵΦ = LξΦ. (1.32)

As a side remark, note that time evolution is pure gauge: it stands for the particular choice

ξµ = tµ. In that case, ϵ and ϵa are precisely the lapse and the shift:

Φ̇ := {Φ, C[N ] + Ca[N
a]} = LtΦ. (1.33)

The expression (1.30) is valid for all canonical variables, their conjugate momenta, and any

functions constructed from them, but not for the Lagrange multipliers. Hence, one still needs

to study the gauge transformations ofN andNa.

For instance, a way of computing them is given in Ref. [87]. The procedure is as follows. Recall

that at the beginning of Sec. 1.1.2, we said that the momenta conjugate to the lapse N and

the shiftNa,P andPa, define primary constraints. First, we need to restore those constraints

by plugging them in the Hamiltonian with their respective Lagrange multipliers, η and ηa,

so that the lapse and the shift become canonical variables. The smeared form of these con-

straints areP [η]andP [ηa]. The dynamics do not change because the additional terms vanish

on-shell. Second, we need to find the diffeomorphism-induced gauge generators, providing

the gauge transformations for any functions on this extended phase space [87],

δϵΦ :=
{
Φ, PA

[
ϵ̇A + {CB[ϵ

B], CD[N
D]}
]
+ CA[ϵ

A]
}
, (1.34)

where capital Latin indices take values {0, 1, 2, 3}, and one should understand N0 := N ,

ϵ0 := ϵ,C0 := C , andP0 := P . Clearly, enforcing P = 0 and Pa = 0 reduces (1.34) to (1.30).
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To obtain the gauge variations of the lapse and the shift, we substituteΦ byNA in (1.34). The

only relevant term is the first one on the right-hand side of the Poisson bracket, yielding

δϵN
A = ϵ̇A + {CB[ϵ

B], CD[N
D]}. (1.35)

The last bracket is obtained through the commutation relations (1.12). If we split now the

expression to read the transformations for the lapse and the shift, we find

δϵN = ϵ̇+ ϵb∂bN −N b∂bϵ, (1.36a)

δϵN
a = ϵ̇a + ϵb∂bN

a −N b∂bϵ
a + F ab(ϵ∂bN −N∂bϵ). (1.36b)

Now, to make contact with their transformation under an infinitesimal coordinate change,

we proceed to substitute the values of ϵ and ϵa as given in (1.31),

δϵN = ∂t(ξ
tN) + ξa∂aN −NNa∂aξ

t, (1.37a)

δϵN
a = ∂t(ξ

tNa + ξa) + ξb∂bN
a −N b∂bξ

a − (NaN b +N2F ab)∂bξ
t, (1.37b)

We can immediately identify (1.37a) with (1.29a), and see that δϵN = LξN . Comparing (1.37b)

with (1.29b) we find

LξN
a − δϵN

a =
(
F ab − q̃ab

)
N2∂bξ

t. (1.38)

Therefore, since the left-hand side must be vanishing, we deduce that the structure function

F ab must be equal to the inverse of the spatial metric q̃ab. In fact, coming from any Hamil-

tonian formulation, with canonical brackets (1.12), we may consider this identity as the def-

inition of the spatial metric, q̃ab := Fab. However, this definition is not always possible. For

Fab to be understood as the spatial metric, it must transform accordingly to (1.29c), that is,

δϵFab = Lξ q̃ab. In such a case, the metric

ds2 = −N2dt2 + Fab

(
dxa +Nadt

)(
dxb +N bdt

)
, (1.39)

associated with the Hamiltonian satisfying (1.12) will meet the principle of general covari-

ance in the sense that gauge variations on phase space describe coordinate transformations.

A necessary condition for a modified theory to remain covariant is thus that the metric is

changed accordingly to the algebraic deformation. If the inverse of the structure function

did not satisfy the transformation rule (1.29c), we would not be able to recover a consistent

metric description as prescribed here.
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1.3 Spherical symmetry reduction

The Riemannian space (Σt, q) is said to be spherically symmetric when the rotation group

SO(3) acts by isometry, and its orbits on Σt are two-dimensional spheres. In that case, one

can introduce a function x on Σt to be constant on the orbits of SO(3). Outside the fixed

points of the rotation group, x defines a radial direction, with dx vanishing nowhere.

Taking this adapted coordinate, the only trivially non-vanishing component of the shift vec-

tor is the radial one,Nx := −Nnµ∂µx = −Nnx, and with no need of specifying the angular

coordinates on the symmetry orbits, we get

ds2 = −N2dt2 + qxx
(
dx+Nxdt

)2
+ qθθdΩ

2, (1.40)

where the functionsN(t, x),Nx(t, x), qxx(t, x), and qθθ(t, x) are independent of the angular

coordinates, and dΩ2 is the metric of the two-sphere mentioned above.

The spherical symmetry reduction in terms of triads and connections was studied in detail

in Ref. [88]. Here we only summarise the most relevant results. The difference with respect

to metric variables, where the symmetry reduction yields two independent components qxx

and qθθ , is that the spherical symmetry reduction of connections and triads leaves three non-

trivial components for each. However, the Gauss law still has a residual U(1) gauge free-

dom, and we may work only with elements invariant under the action of that group. That

is, the gauge-invariant quantities will be (Ax, Aφ) for the connection and (Ex, Eφ) for the

triad. Similarly, one can decompose the extrinsic curvature and obtain the gauge-invariant

pair (Kx,Kφ). One can check that the conjugate variable ofEφ isKφ, rather thanAφ. Inter-

estingly,Ax andKx turn out to be proportional after solving the reduced Gauss law.

Therefore, the symplectic structure of the phase space is given by the canonical pairs

{Kx(x1), E
x(x2)} = {Kφ(x1), E

φ(x2)} = δ(x1, x2). (1.41)

The constant sign ofEx determines the orientation of the triad, and we choose it as positive.

Now, since the two angular components of the diffeomorphism constraint are identically

vanishing, at this point we introduce a new notation for the constraints. We denote with a

prime the derivative with respect to x, and, in terms of the above variables, we are left with

the radial diffeomorphism constraint,

Dg := −Ex′Kx +K ′
φE

φ, (1.42a)
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and the Hamiltonian constraint,

H(0)
g := − Eφ

2
√
Ex

(
1+K2

φ

)
− 2

√
ExKxKφ +

(Ex′)2

8
√
ExEφ

−
√
Ex

2Eφ2
Ex′Eφ′ +

√
Ex

2Eφ
Ex′′, (1.42b)

as introduced in Ref. [89]. We now recall that the GR Hamiltonian is the sum of the vacuum

constraints (1.42) and the corresponding matter contribution,

D := Dg +Dm, (1.43a)

H(0) := H(0)
g +H(0)

m . (1.43b)

As we want to study dynamical scenarios, we will consider a spherically symmetric matter

field described by a third pair of canonical variables

{ϕ(x1), Pϕ(x2)} = δ(x1, x2). (1.44)

This includes the two cases that we will have in mind for this thesis: a scalar field and a dust

field. Their contribution to the diffeomorphism constraint has the same form,

Dm := ϕ′Pϕ, (1.45)

while the contributions of the scalar field and the dust field to the Hamiltonian constraint are

given by

H(0)
m :=

P 2
ϕ

2
√
ExEφ

+
(Ex)3/2

2Eφ
(ϕ′)2 +

√
ExEφV (Ex, ϕ), (1.46a)

H(0)
m := Pϕ

√
1 +

Ex

(Eφ)2
(ϕ′)2 , (1.46b)

respectively. Both sets of constraints, in vacuum (1.42) and with matter (1.43), obey the hyper-

surface deformation algebra,

{
D[s1], D[s2]

}
= D

[
s1s

′
2 − s′1s2

]
, (1.47a){

D[s1],H
(0)[s2]

}
= H(0)

[
s1s

′
2

]
, (1.47b){

H(0)[s1],H
(0)[s2]

}
= D

[
F (s1s

′
2 − s′1s2)

]
, (1.47c)

with the structure functionF having only one component after the symmetry reduction. As

a result of the symmetry reduction, the angular sector is now trivial and the algebra does not

provide any information about the angular components of the metric tensor.
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In the particular case of GR,

F =
Ex

(Eφ)2
, (1.48)

and the corresponding metric reads

ds2 = −N2dt2 +
(Eφ)2

Ex

(
dx+Nxdt

)2
+ ExdΩ2. (1.49)

As we will show in the next chapter, the modifications performed at the Hamiltonian level

will deform the commutation relations between constraints and thus the metric, if any, de-

scribing such corrections. As commented above, the angular part of the metric is insensitive

to these changes due to the symmetry reduction, so we can only fix its Lorentzian part. Hence,

the metric will generically read

ds2 = −N(t, x)2dt2 +
1

F (t, x)

(
dx+Nx(t, x)dt

)2
+ r(t, x)2dΩ2, (1.50)

with r(t, x) being a spacetime scalar function.

In principle, any such scalar is eligible, but different functions will lead to different geome-

tries. Our choice is simple: As we did for the lapse and the shift, we will assume that the modi-

fications do not affect the angular part of the metric. In other words, the effective corrections

preserve the foliation (the time function) and the area of the orbits of the rotation group (the

area-radius function). Therefore, and as long asEx keeps transforming as a scalar under gen-

eral gauge transformations generated byH[ϵ] +D[ϵx], we will define r(t, x) :=
√
Ex(t, x).





2
Covariant Deformations

of General Relativity

I tested the brackets by hitting them with rocks. This kind of so-
phistication is what we interplanetary scientists are known for.

The Martian
by Andy Weir.

We devote this chapter to the construction of the effective theory. We will incorporate mod-

ifications to the spherically symmetric GR Hamiltonian (1.43), in such a way that it remains

covariant, in the sense that it has an associated geometric picture. We will explicitly show

this by constructing the metric tensor from phase-space functions, as explained in Sec. 1.2.

In Sec. 2.1, we provide a brief review of the successful mechanism inducing singularity res-

olution in effective homogeneous and isotropic cosmological models, and we comment on

some previous attempts to incorporate holonomy corrections in spherical symmetry. The

main body of this chapter is divided in two sections, Sec. 2.2 and Sec. 2.3. The former stud-

ies the vacuum case while the latter incorporates matter. Their structure is very similar: We

start from a generic Hamiltonian constraint and demand that it generates an anomaly-free

algebra. After that, we explicitly construct its associated metric. These two conditions heav-

ily restrict the form of the Hamiltonian. In fact, in Sec. 2.4, we obtain a particular family of

Hamiltonians, which depends only on one free function, that satisfies all our requirements.

The final section (Sec. 2.5) is devoted to relate the effective model with GR.

2.1 Background andmotivation

We depict an effective cosmology, and the unfruitful extension to spherical symmetry.

2.1.1 Homogeneous and isotropic cosmology

The usual variables that are used in the literature to describe homogeneous and isotropic

cosmological models in the context of loop quantum cosmology are b and v, satisfying the
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Poisson bracket {b, v} = 1. The variable b is directly related to the Hubble parameter, and v

describes the volume of the universe. Considering a scalar field ϕ, with conjugate momen-

tumPϕ, as the matter content, the homogeneous and isotropic Hamiltonian reads

C(0) = −c1|v|b2 + c2
P 2
ϕ

|v|
≈ 0. (2.1)

All ck in this section are constants that do not affect the generic derivation presented here.

The energy density for the field is defined as

ρ := c3
P 2
ϕ

v2
≈ c1c3

c2
b2, (2.2)

where the last equality holds on-shell, i.e., when C(0) vanishes. Since v corresponds to the

volume, the Hubble parameter H0 is proportional to v̇/|v|, that is,

H2
0 = c4

v̇2

v2
≈ 4

c1c2c4
c3

ρ, (2.3)

where we have used v̇ = {v, C(0)} = 2c1|v|b and the definition (2.2). Therefore, the Hubble

parameter is not bounded from above and it only vanishes for ρ = 0.

The “usual” polymerisation replaces b by sin(λb)/λ, and defines the effective Hamiltonian

C(pol) = −c1|v|
sin2(λb)

λ2
+ c2

P 2
ϕ

|v|
≈ 0. (2.4)

By definition, the energy density (2.2) is still the same, but its on-shell value in terms of b is

also polymerised as it now corresponds to the vanishing of C(pol). Hence, it is different to its

classical form, that is,

ρ = c3
P 2
ϕ

v2
≈ c1c3

c2

sin2(λb)

λ2
. (2.5)

The effective dynamics, v̇ = {v, C(pol)} = c1|v|λ−1 sin(2λb), yield the Hubble parameter

H2
pol = c4

(v̇)2

v2
= c1

sin2(2λb)

λ2
≈ 4

c1c2c4
c3

ρ

(
1− ρ

ρmax

)
=

(
1− ρ

ρmax

)
H2
0, (2.6)

with ρmax := c1c3/(c2λ
2). This finite value provides the energy density ρ = ρmax where the

Hubble rate vanishes, which corresponds to a minimum value of v (because v̇ = 0 and v̈ > 0

there). This means that the scale factor in this model experiences a bounce when reaching

the critical density ρmax, and the Big-Bang singularity is thus avoided.
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2.1.2 First contact with spherical holonomymodifications

Motivated by the fact that simple effective models, such as the one just presented, agree with

the full quantum dynamics of loop quantum cosmology, there has been a huge effort to build

effective spherical models implementing key attributes of LQG so as to confirm whether sin-

gularity resolution is an enduring property of the theory. The extension of the mechanisms

avoiding the Big Bang to spherical symmetry would be a robustness check of those predic-

tions. Here, we briefly review known results on holonomy corrections that explicitly respect

the first-class nature of the hypersurface deformation algebra.

Following the standard procedure found in the literature [66, 73, 75], let us replace the terms

Kφ andK2
φ in (1.42b) by f1(Kφ)andf2(Kφ), respectively, and define the holonomy-modified

vacuum Hamiltonian constraint,

H(h)
g :=− Eφ

2
√
Ex

(
1 + f2(Kφ)

)
− 2

√
ExKxf1(Kφ)

+
(Ex′)2

8
√
ExEφ

−
√
Ex

2Eφ2
Ex′Eφ′ +

√
Ex

2Eφ
Ex′′, (2.7)

along with its smeared formH
(h)
g [s] :=

∫
sH(h)

g dx. Considering this deformed Hamiltonian

in combination with the classical diffeomorphism constraint (1.42a), one can check that the

first two brackets of the hypersurface deformation algebra, (1.47a) and (1.47b), remain unal-

tered. In turn, the third bracket (1.47c) generates an anomalous term,

{
H(h)

g [s1],H
(h)
g [s2]

}
=Dg

[
F (s1s

′
2 − s′1s2)

]
+

∫
Ex′

4Eφ

(
2f1 −

∂f2
∂Kφ

)
(s1s

′
2 − s′1s2)dx. (2.8)

In order to remove it, one must simply enforce the relation 2f1 = ∂f2/∂Kφ, which leaves f2

as the only free function of the model. The usual choice for this function isf2 = sin2(λKφ)/λ
2,

which is interpreted as parametrising the holonomy corrections, so that (2.7) reads

H(h)
g =− Eφ

2
√
Ex

(
1 +

sin2(λKφ)

λ2

)
−
√
ExKx

sin(2λKφ)

λ

+
(Ex′)2

8
√
ExEφ

−
√
Ex

2Eφ2
Ex′Eφ′ +

√
Ex

2Eφ
Ex′′. (2.9)

The structure function in (2.8) is then

F =
1

2

∂2f2
∂K2

φ

Ex

Eφ2
= cos(2λKφ)

Ex

Eφ2
. (2.10)



28 Covariant deformations of general relativity

Although providing an algebra, the above Hamiltonian faces some conceptual problems.

First, the inverse of the structure function (2.10) does not transform adequately as required by

(1.29c), and there is not a metric associated with the Hamiltonian (2.9) as derived in Sec. 1.2.

Second, the above modification is inconsistent with the addition of (minimally coupled) mat-

ter with local degrees of freedom [73]. To prove it, let us consider a minimally coupled matter

model of the form D = Dg +Dm and H(h) = H(h)
g +Hm, where Hm depends on the matter

variables and their derivatives, and on the triad components, but does not depend on deriva-

tives of the triad nor on curvature components. Due to these restrictions, one can check that

the bracket {H(h)
g [s1],Hm[s2]} is antisymmetric under the change s1 ↔ s2, and

{
H(h)[s1],H

(h)[s2]
}
=
{
H(h)

g [s1],H
(h)
g [s2]

}
+
{
Hm[s1],Hm[s2]

}
. (2.11)

Since the bracket between vacuum Hamiltonian constraints is (2.8), anomaly-freedom de-

mands
{
Hm[s1],Hm[s2]

}
= Dm[F (s1s

′
2−s′1s2)]. That is, the bracket between matter Hamil-

tonian constraints must be proportional to the matter diffeomorphism constraint. Recall

now that our assumptions forHm mean, in particular, thatF must be independent ofKφ. As

a result, the vacuum Hamiltonian constraint is, at most, quadratic in that variable [see (2.10)],

ruling out the holonomy corrections that were allowed in vacuum.

Hence, we must conclude that there is no known way to render the usual holonomy correc-

tions in non-homogeneous vacuum models. And, even if there was, these modifications turn

out to be incompatible with the addition of minimally coupled local degrees of freedom. If

one seeks a consistent notion of holonomy effects, further changes in the Hamiltonian are

needed.

A possible way out to these no-go results for holonomy corrections in non-homogeneous

spacetimes would be that matter and geometric degrees of freedom developed non-minimal

couplings when approaching the quantum regime, which, far from being discarded, seems

a plausible circumstance in the quantum world of gravitation. But, in addition, the vacuum

Hamiltonian must be further deformed because no covariant notion of holonomy correction

exists. Such modifications could involve, for instance, higher powers of curvature compo-

nents, higher derivative terms, and/or couplings between the curvature and derivatives of

the triad (that is, couplings between spatial and time derivatives of the metric).
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2.1.3 Outline

The goal of this chapter is twofold, as we want to find all possible covariant modifications

that can be interpreted as holonomy corrections, but also to learn how those could be made

compatible with matter with local degrees of freedom. For that purpose, we begin with a

general Hamiltonian constraint and impose the following requirements,

i. The derivative structure is the same as in GR.

ii. The constraints must form an anomaly-free algebra.

iii. The model must be embeddable in a four-dimensional manifold as explained in Sec. 1.2.

That is, the structure functions in the algebra must transform adequately in order to de-

fine a metric associated to the Hamiltonian.

iv. The GR Hamiltonian (1.43) ought to be recovered in a suitable limit.

v. There has to be an explicit vacuum limit.

Our initial ansatz will thus assume that the derivative structure of the Hamiltonian constraint

is the same as in GR, i.e., it is linear in second-order radial derivatives and quadratic in first-

order radial derivatives of the momenta. Every other combination of canonical variables will

be allowed, both on their own and coupled to derivative terms. The main body of the com-

putations in this chapter has been performed with computer algebra tools.

Along the whole chapter, we will use the expression “canonical form of the algebra” to refer

to the commutation relations between constraints that read as (1.47), that is,

{
D[s1], D[s2]

}
= D

[
s1s

′
2 − s′1s2

]
, (2.12a){

D[s1],H[s2]
}
= H

[
s1s

′
2

]
, (2.12b){

H[s1],H[s2]
}
= D

[
F (s1s

′
2 − s′1s2)

]
, (2.12c)

with any structure functionF that does not vanish identically.

In Sec.2.2, we will present the construction for vacuum, and we will find the most general

Hamiltonian that satisfies all requirements above. In Sec. 2.3, we will consider an additional

couple of conjugate variables to describe matter with local degrees of freedom, and we will

find the most general Hamiltonian that fulfils (i) and (ii). In Sec. 2.4, we will obtain a particular

solution meeting the five conditions (i)–(v).
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2.2 Covariant holonomy corrections in vacuum

In order to have a compact notation, we define a new set of canonical pairs of variables,

{qi(x1), pj(x2)} = δijδ(x1, x2), (2.13)

with the subindices i, j being 1 or 2. We consider now the most general Hamiltonian con-

straint with two pairs of conjugate variables which is quadratic in radial derivatives of the

momenta and linear in a second-order derivative term:

Hg = a0 + (p′1)
2a1 + p′1p

′
2a2 + (p′2)

2a3 + p′′1a4, (2.14)

whereak = ak(q1, q2, p1, p2), fork = 0, 1, 2, 3, 4. Recall that the prime denotes the derivative

with respect to x. Regarding the diffeomorphism constraint, we will consider its classical

form (1.42a),

Dg = −q1p′1 + q′2p2. (2.15)

where the primed momentum coincides with that of the second-order derivative inHg . The

GR Hamiltonian (1.42) is clearly included in the above ansatz for the specific choice

a0 = −2
√
p1q1q2 −

p2
2
√
p1

(
1 + q22

)
, a1 =

1

8p1p2
, a2 = −

√
p1

2p22
, a4 =

√
p1

2p2
, (2.16)

and a3 = 0, along with the identification

q1 = Kx, p1 = Ex, q2 = Kφ, and p2 = Eφ. (2.17)

In the construction that will be performed in the following subsection, we assume that only

the function a3 can be set to zero. Otherwise, we would not have GR as a limit of the model.

The remaining free functions a0, a1, a2, and a4, along with the variables q1 and q2, and the

momenta p1 and p2 cannot be identically vanishing.

Recall also that the Hamiltonian must be a weight-one density on the spatial leave, as en-

sured by the bracket (2.12b). In this symmetry-reduced model, one variable of each conjugate

couple is a scalar (on the spatial leave), whereas the other one is a weight-one density [88]. To
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check this, we compute their gauge transformations generated by the constraintDg[v],

{q1, Dg[v]} = vq′1 + v′q1, {p1, Dg[v]} = vp′1, (2.18a)

{q2, Dg[v]} = vq′2, {p2, Dg[v]} = vp′2 + v′p2, (2.18b)

and we compare them with the Lie derivatives along the vector field vx∂x, i.e., Lvq1, Lvp1,

Lvq2, andLvp2, respectively. We see that p1 and q2 are scalars, while q1 and p2 are necessarily

scalar densities of weight one. Therefore, the primed variables in (2.15) are the scalars and

their conjugate momenta retain the weight. Also notice that every radial derivative adds a

density weight one.

2.2.1 Anomaly freedom

Let us define the concept of anomaly. Any terms that prevent the algebra between constraints

being first class are considered anomalous. We now compute the commutation relations be-

tween the above constraints, (2.14) and (2.15), and read the conditions for anomaly freedom.

On the one hand, the bracket of the diffeomorphism constraint with itself still follows,

{Dg[s1], Dg[s2]} = Dg[s1s
′
2 − s′1s2], (2.19)

because the functional form of the diffeomorphism constraint (2.15) remains unaltered. On

the other hand, the remaining two commutation relations in the algebra between constraints

are modified.

We first compute
{
Dg[s1],Hg[s2]

}
, and we remove derivatives of s1 by integration by parts,

until getting an expression of the form

{
Dg[s1],Hg[s2]

}
=

∫
dx s1

(
s2F0 + s′2F1 + s′′2F2

)
, (2.20)

to sistematically find all anomalous terms. Here, F0, F1, and F2 encode expressions that de-

pend on the fiveak functions and their partial derivatives, and also of the canonical variables

and momenta, and their radial derivatives (up to third order). To set apart anomalies from

terms vanishing on-shell, we isolate p′′1 and q2 from the constraints (2.14) and (2.15), that is,

q′2 =
1

q2

(
Dg + q1p

′
1

)
, (2.21a)

p′′1 =
1

a4

(
Hg − a0 − (p′1)

2a1 − p′1p
′
2a2 − (p′2)

2a3
)
, (2.21b)
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and we replace these values in F0, F1, and F2. Recall that the constraints vanish on-shell,

Dg ≈ 0 and Hg ≈ 0, so we need the right-hand side of (2.20) to vanish on-shell to obtain a

first-class algebra. That is,

s2F0 + s′2F1 + s′′2F2 ≈ 0. (2.22)

Clearly, the terms F0, F1, and F2 do not depend on s2 nor its derivatives, so the above gives

rise to three independent equations,

F0 ≈ 0, F1 ≈ 0, and F2 ≈ 0. (2.23)

But, further, the free functions ak do not depend on radial derivatives. Therefore, each coef-

ficient going with any combinations of radial derivatives must vanish by itself off-shell. This

allows us to further split the anomalies into different expressions that must vanish indepen-

dently.

For instance,F2 is given on-shell by

F2 ≈ − (a4 + p2a2) p
′
1 − 2p2a3p

′
2, (2.24)

and, thus, it produces two independent conditions

a2 = −a4
p2

and a3 = 0. (2.25)

We can now enforce these two conditions to simplifyF0 andF1. Let us first focus onF1, which

reads on-shell

F1 ≈ −2a0 + a0

[
q1

∂

∂q1
+ p2

∂

∂p2

]
log

(
a0
a4

)
+ (p′1)

2a1

[
q1

∂

∂q1
+ p2

∂

∂p2

]
log

(
a1
a4

)
. (2.26)

Therefore, F1 ≈ 0 provides two independent requirements: the vanishing of the coefficient

of (p′1)
2, and the vanishing of the remaining terms, that is,

a0

[
q1

∂

∂q1
+ p2

∂

∂p2

]
log

(
a0
a4

)
= 2a0 (2.27a)

a1

[
q1

∂

∂q1
+ p2

∂

∂p2

]
log

(
a1
a4

)
= 0. (2.27b)
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The general solution for these equations is

a0 = p22a4(q1, q2, p1, p2) b0

(
q1
p2
, q2, p1

)
, (2.28a)

a1 = a4(q1, q2, p1, p2) b1

(
q1
p2
, q2, p1

)
. (2.28b)

The above conditions turn out to be already sufficient to solve all anomalies from the bracket

(2.20). It is convenient to redefine a4 = ã4/p2 so that the Hamiltonian constraint reads

Hg = ã4

(
p2b0 +

(p′1)
2

p2
b1 −

p′1p
′
2

p22
+
p′′1
p2

)
, (2.29)

with bk = bk(q1/p2, q2, p1), for k = 0, 1, and ã4 = ã4(q1, q2, p1, p2). Then, any Hamiltonian of

the form (2.29) commutes on-shell with the diffeomorphism constraint (2.15),

{Dg[s1],Hg[s2]} = Hg

[
s1s

′
2 + s′1s2

(
q1
ã4

∂ã4
∂q1

+
p2
ã4

∂ã4
∂p2

)]
. (2.30)

Note that anomaly freedom excludes the term (p′2)
2 from the Hamiltonian, and also requires

the coefficients of p′1p
′
2 and p′′1 to be proportional. The term s′1s2 on the right-hand side of

(2.30) tells us that the density weight of the Hamiltonian constraint Hg is not correct. Recall

that it must be a weight-one scalar density on the leaf, and thus follow (2.12b). Further impos-

ing the coefficient of s′1s2 on the right-hand side to vanish requires that all the arguments in

ã4 are scalar combinations of the variables and momenta, i.e., ã4 = b4(q1/p2, q2, p1),

{Dg[s1],Hg[s2]} = Hg[s1s
′
2]. (2.31)

At this point, there are only three free functions b0, b1, and b4, which only depend on the scalar

combinations of variables q1/p2, q2, and p1.

Now, we turn our attention to the bracket {Hg[s1],Hg[s2]}. Defining s := s1s
′
2 − s′1s2, we

first remove all derivatives of s through integration by parts to write

{
Hg[s1],Hg[s2]

}
=

∫
dx (s1s

′
2 − s′1s2)F3. (2.32)

We can replace (2.21) in F3, and express it as a combination of radial derivatives (up to first

order) of the canonical variables and their conjugate momenta,

F3 ≈
∑
l,n

A l1l2
n1n2

2∏
j=1

(q′j)
lj (p′j)

nj , (2.33)
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where the sum is for every non-negative integer lj and nj , with j = 1, 2. In this way, the

conditions for anomaly freedom are translated to the vanishing of every coefficient on the

right-hand side. That is,

F3 ≈ 0 ⇐⇒ A l1l2
n1n2

= 0 ∀ l1, l2, n1, n2. (2.34)

The simplest conditions are

0 = A00
01 = a24

q1
p2

∂2b0
∂q21

, (2.35a)

0 = A00
21 = a24

q1
p32

∂2b1
∂q21

, (2.35b)

meaning that b0 and b1 must be at most linear in q1, that is,

b0 = c00(p1, q2) +
q1
p2
c01(p1, q2), (2.36a)

b1 = c10(p1, q2) +
q1
p2
c11(p1, q2). (2.36b)

This fixes the dependence on all scalar densities but those of the global factor b4. After enforc-

ing these conditions, the remaining anomalies simplify, and we find that only two equations

remain, namely,

0 = A00
30 =

a24
p32

(
∂c10
∂q2

− ∂c11
∂p1

)
, (2.37a)

0 = A00
10 =

a24
p2

(
∂c00
∂q2

+ 2(c00c11 − c01c10)−
∂c01
∂p1

)
. (2.37b)

The general solution to this system of equations can be written in terms of two free functions

of two variables, f(p1, q2) and g(p1, q2), and two additional functions which only depend on

the moment p1,U(p1) and V (p1), as follows,

c00 =
1

g(q2, p1)

(
1

2p1

(
1 +

√
p1 V (p1) + U(p1)f(q2, p1)

)
+
∂f(q2, p1)

∂p1

)
, (2.38a)

c01 =
1

g(q2, p1)

∂f(q2, p1)

∂q2
, (2.38b)

c10 =
U(p1)

4p1
+

1

2

∂

∂p1

[
log
(
g(q2, p1)

)]
, (2.38c)

c11 =
1

2

∂

∂q2

[
log
(
g(q2, p1)

)]
. (2.38d)
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The Hamiltonian reads

Hg = b4

(
p2
g

(
1

2p1

(
1 +

√
p1 V + Uf

)
+
∂f

∂p1
+
q1
p2

∂f

∂q2

)

+
(p′1)

2

p2

(
U

4p1
+

1

2g

(
∂g

∂p1
+
q1
p2

∂g

∂q2

))
− p′1p

′
2

p22
+
p′′1
p2

)
(2.39)

Note that the function U(p1) is redundant. This is straightforward to check because U(p1)

can be absorbed in a redefiniton of f , g, and V . In brief, the rescalings f → u(p1)f , g →
u(p1)g, and 1 +

√
p1V (p1) → (1 +

√
p1V (p1))u(p1), with the function u(p1) satisfying

U +
2p1
u

∂u

∂p1
= 1, (2.40)

remove U from the Hamiltonian. Equivalently, we fix U(p1) = 1 in (2.39) with no loss of

generality.

With all the above,
{
Hg[s1],Hg[s2]

}
≈ 0, which ensures that we have the same number of

degrees of freedom as in GR: four canonical variables plus two first-class constraints. That is,

there are no propagating degrees of freedom.

2.2.2 Spacetime embedding

Although the above Hamiltonian constraint commutes weakly with itself, the off-shell form

of the Poisson bracket is rather complicated. Schematically,

{Hg,Hg} = F4Dg + F5Hg + F6H′
g + F7DgHg. (2.41)

Our purpose is to construct the metric associated to the Hamiltonian theory. To apply the

procedure explained in Sec. 1.2, we need to find the canonical form of the algebra (2.12). First,

one can check that the coefficientsF6 andF7 in (2.41) are both linear in∂b4/∂q1, so we get rid

of them only when removing the dependence of the global factor b4 on the scalar densities

q1 and p2. Thus, we fix b4 = c4(q2, p1). In this way, the bracket reads

{
Hg[s1],Hg[s2]

}
= Hg

[
(s1s

′
2 − s′1s2)

c4p
′
1

p22

(
∂c4
∂q2

− ∂g

∂q2

)]
(2.42)

+Dg

[
(s1s

′
2 − s′1s2)

c24
g2p22

(
∂f

∂q2

∂g

∂q2
− g

∂2f

∂q22
+

(
p′1
p2

)2
((

∂g

∂q2

)2
− g

∂2g

∂q22

))]
.
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Second, we want to cancel the Hg term on the right-hand side. This means that the partial

derivatives of c4 and g with respect to q2 must be equal. The general solution is

c4 = −√
p1g(p1)g(q2, p1), (2.43)

for a generic function g. Then, the most general Hamiltonian constraint of the form (2.14)

following the canonical algebra (2.12) with the diffeomorphism constraint (2.15) is

Hg = −√
p1g(p1)

(
p2
2p1

(
1−√

p1 V (p1) + f(q2, p1)
)
+ p2

∂f(q2, p1)

∂p1

+
(p′1)

2

2p2

(
g(q2, p1)

2p1
+
∂g(q2, p1)

∂p1
+
q1
p2

∂g(q2, p1)

∂q2

)
+ q1

∂f(q2, p1)

∂q2
− p′1p

′
2

p22
g(q2, p1) +

p′′1
p2
g(q2, p1)

)
. (2.44)

with the yet free functions f(p1, q2), g(p1, q2), and V (p1). The algebra reads

{
Dg[s1], Dg[s2]

}
= Dg

[
s1s

′
2 − s′1s2

]
, (2.45){

Dg[s1],Hg[s2]
}
= Hg

[
s1s

′
2

]
, (2.46){

Hg[s1],Hg[s2]
}
= Dg

[
F (s1s

′
2 − s′1s2)

]
, (2.47)

with the structure function

F = −g2g2
p1
p22

∂

∂q2

[
1

g

∂f

∂q2
+

1

2g

(
p′1
p2

)2 ∂g
∂q2

]
. (2.48)

Following Sec. 1.2, we still need to check whether the inverse of this structure function quali-

fies for being the radial-radial component of the metric. Thence, we must compare the coor-

dinate transformations of qxx := 1/F along a generic vector field, ξµ∂µ = ξt∂t + ξx∂x, given

by [see (1.29c)]

Lξ

(
1

F

)
= ξt∂t

(
1

F

)
+ ξx∂x

(
1

F

)
+ 2

(
1

F

)(
Nx∂xξ

t + ∂xξ
x
)
, (2.49a)

with the gauge transformations of 1/F [see (1.30)],

δϵ

(
1

F

)
=

{(
1

F

)
,H[ϵ] +D[ϵx]

}
=

{(
1

F

)
,H
[
ξtN

]
+D

[
ξtNx + ξx

]}
. (2.49b)

As specified in (1.31) and (1.32), when the gauge parameters of the transformation, ϵ and ϵx,

and the coefficients ξt and ξx are components of the same vector field (in different basis), we
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must have:

Lξ

(
1

F

)
= δϵ

(
1

F

)
. (2.50)

We will be able to construct the metric associated to the Hamiltonian only when this con-

dition is satisfied. In the spherically symmetric configuration, the relations between ϵ, ϵx, ξt,

and ξx are ϵ = ξtN and ϵx = ξtNx + ξx.

Equation (2.50) is not generically satisfied by F as given in (2.48), and this condition restricts

even more the form of the free functions in the Hamiltonian. Just in the same way as when

solving anomalies, the fact that f , g, V , and g do not depend on derivatives of the canonical

variables, nor the momenta, allows us to find two independent equations. In fact, the above

relation holds only when both

g2
∂3f

∂q32
−

(
2g
∂2g

∂q22
−
(
∂g

∂q2

)2) ∂f

∂q2
= 0, (2.51a)

g2
∂3g

∂q32
−

(
2g
∂2g

∂q22
−
(
∂g

∂q2

)2) ∂g

∂q2
= 0, (2.51b)

are satisfied. Most remarkably, these equations completely fix the dependence of the Hamil-

tonian on q2. The general solution to these two equations is

f =
Af

ω2
sin2

(
ω(q2 + φf )

)
+ χ, (2.52a)

g = −1

2
Ag cos2

(
ω(q2 + φg)

)
, (2.52b)

with the six integration functionsAf (p1),Ag(p1),φf (p1),φg(p1),ω(p1) andχ(p1)being com-

pletely free (note, in particular, that the integration functions might be complex, thus making

the trigonometric functions hyperbolic). Notice that we may setχ = 0 with no loss of gener-

ality because it can be absorbed inV (p1) inside the expression of the Hamiltonian (2.44). The

most remarkable property of the solutions for f and g is that their “frequency”ωmust be the

same.
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We thus find that

Hg = −√
p1g

(
q1

(
Af

ω
−
(
p′1
2p2

)2
Agω

)
sin
(
2ω(q2 + φf )

)
(2.53)

+
p2
2p1

(
1−√

p1 V +
Af

ω2
sin2

(
ω(q2 + φf )

)
+ 2p1

∂

∂p1

[
Af

ω2
sin2

(
ω(q2 + φf )

)])

− (p′1)
2

4p2

∂

∂p1

[
Ag cos2

(
ω(q2 + φg)

)]
− Ag

2

(
p′′1
p2

− p′1p
′
2

p22
+

(p′1)
2

4p1p2

)
cos2

(
ω(q2 + φg)

))
,

where g, ω, Af , Ag , φf , φg , and V are free functions of p1, is the most general Hamiltonian

within our initial assumptions that admits a covariant metric interpretation.

The GR Hamiltonian constraint (1.42b) is recovered for the specific choices q1 = Kx, q2 = Kφ,

p1 = Ex, and p2 = Eφ, along with

g = 1, Af = 1, Ag = 1, φf = 1, φg = 0, and ω → 0, (2.54)

and we consider these values to be the “GR limit” in the following. The function V (p1) (or

V (Ex) in the GR limit) stands for a “scalar potential” term in the Hamiltonian. For instance, it

may describe a cosmological constant, in which case V =
√
ExΛ in GR, as it will be studied

in detail in Chapter 4.

2.2.3 Themass

Note that since q1 appears only linearly in both Hg and Dg , we may define the abelianised

constraint (see Refs. [68, 69] for further details on the abelianisation of constraints),

Cg := − 1

2gp2

(
p′1Hg +Dg

∂Hg

∂q1

)
, (2.55)

such that its bracket with itself is zero off-shell, {Cg[s1], Cg[s2]} = 0. A key property of this

constraint is that it does not contain any q1. Its primitive,

M :=

∫
Cg dx =

√
p1

2

(
1 + f + 2g

(
p′1
2p2

)2)
− 1

4

∫
V (p1)dp1, (2.56)

is also independent of q1, and it can be checked that it is a Dirac observable,

Ṁ = {M,Dg[N
x] +Hg[N ]}

= −Hg

[
Nx p′1

2gp2

]
+Dg

[
Nx

p2

∂M

∂q2
+Ngg2

√
p1p

′
1

p32

∂

∂q2

(
1

g

∂M

∂q2

)]
≈ 0. (2.57)
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Let us point out that this result is independent of the specific forms of f(q2, p1) and g(q2, p1).

It turns out convenient to define

m :=

√
p1

2

(
1 + f + 2g

(
p′1
2p2

)2)
, (2.58)

because it is the Hawking mass in the GR limit. To prove it, we compute the Hawking mass

for a spherically symmetric vacuum configuration using the GR metric (1.49), and check that

it coincides with (2.58) when imposing conditions (2.54), which define the GR limit. That is,

M
(0)
H :=

√
Ex

2

(
1− ∂µEx∂µE

x

4Ex

)
=

√
Ex

2

(
1 +K2

φ −
(
Ex′

2Eφ

)2)
, (2.59)

where one needs to use the Einstein equations for Ėx in the last step. Therefore, we will in-

terpret the quantity (2.58) as the mass of the deformed model. Finally, note that m = M

provided V = 0 in the Hamiltonian (2.53), andm is thus a constant of motion.

The quantity m turns out to be extremely useful to express the structure function because

it allows to remove all derivative terms. Then, the Hamiltonian (2.53) follows the canonical

form of the algebra (2.12), with the structure function being

F = g2Ag

(
Af cos2

(
ω(φf − φg)

)
+ ω2

(
1− 2m

√
p1

))
p1
p22
, (2.60)

andm defined in (2.58) along with (2.52). It is straightforward to compute the GR limit (2.54)

and recover the GR resultF = Ex/(Eφ)2.

As prescribed in Sec. 1.2, the metric associated to this Hamiltonian is

ds2 = −N(t, x)2dt2 +
1

F (t, x)

(
dx+Nx(t, x)dt

)2
+ r(t, x)2dΩ2, (2.61)

where r(t, x) is a scalar function still to be determined (see Sec. 2.5).

It is remarkable how the requirement of covariance heavily restricts the form of the Hamil-

tonian. We started from five functions ak of four variables each, and retain only freedom in

terms of six functions of one single variable p1. The dependence of the Hamiltonian on the

other three variables, q1, q2, and p2, is completely fixed.



40 Covariant deformations of general relativity

2.3 Covariant holonomy corrections coupled tomatter

Adding local degrees of freedom makes anomaly resolution much harder to track, and also

restricts more the freedom to modify the Hamiltonian. Making contact with the previous

section, we begin with the ansatz

D = −p′1q1 + p2q
′
2 − p′3q3, (2.62a)

H = a0 + (p′1)
2a1 + p′1p

′
2a2 + (p′2)

2a3 + p′′1a4 + p′1p
′
3a5 + p′2p

′
3a6 + (p′3)

2a7, (2.62b)

where all quadratic combinations of radial derivatives of the three momenta (and one second-

order derivative) are included, each multiplied by a free functionak = ak(q1, q2, q3, p1, p2, p3),

with k running from 0 to 7. The symplectic structure is given by

{qi(x1), pj(x2)} = δijδ(x1, x2), (2.63)

with the subindices i, j running from 1 to 3.

The particular case of GR corresponds to

a0 = −2
√
p1q1q2 −

p2
2
√
p1

(
1 + q22

)
+

q23
2
√
p1p2

+
√
p1p2V (p1, p3),

a1 =
1

8p1p2
, a2 = −

√
p1

2p22
, a4 =

√
p1

2p2
, a7 =

p
3/2
1

2p2
, (2.64)

and a3 = a5 = a6 = 0, along with

q1 = Kx, p1 = Ex, q2 = Kφ, p2 = Eφ, q3 = Pϕ, and p3 = −ϕ. (2.65)

Once again, the bracket between two diffeomorphism constraints (2.62a) is given by (1.47a),

and we thus start with the Poisson bracket between (2.62a) and (2.62b). After integrating by

parts to remove the derivatives of the smearing function of the diffeomorphism constraint,

one gets

{
D[s1],H[s2]

}
=

∫
dx s1

(
s2F0 + s′2F1 + s′′2F2

)
, (2.66)

whereF0, F1, and F2 are independent of the smearing functions s1 and s2, and must vanish

on-shell. Since the free functions ak do not depend on derivatives of the variables, every co-

efficient going with any combination of radial derivatives must be zero on its own. To know

which terms survive after setting the constraints to zero, we replace p′′1 and q′2 by using (2.21),

with D and H as given in (2.62) instead of the vacuum constraints Dg and Hg .
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As in the previous section,F0 andF1 are long expressions, but we can readily solve

F2 ≈ − (a4 + p2a2) p
′
1 − 2p2a3p

′
2 − p2a6p

′
3. (2.67)

Setting F2 ≈ 0, and since the coefficients of p′1, p′2, and p′3 must vanish independently, one

gets

a2 =
a4
p2
, a3 = 0, and a6 = 0. (2.68)

Once these conditions are imposed, the remaining anomalies are greatly simplified. In fact,

similarly to what happened in the vacuum case, the vanishing of F1 leads to four indepen-

dent equations, namely,[
q1

∂

∂q1
+ p2

∂

∂p2
+ q3

∂

∂q3

]
log

(
a0
a4

)
= 2a0, (2.69a)

and [
q1

∂

∂q1
+ p2

∂

∂p2
+ q3

∂

∂q3

]
log

(
ak
a4

)
= 0, (2.69b)

fork = 1, 5, 7. These correspond to the coefficients of the free term (with no derivatives), and

the coefficients of (p′1)
2, p′1p

′
3, and (p′3)

2, respectively, of F1. After solving the equations, we

can express the Hamiltonian constraint as

H = a4

(
p2b0 +

(p′1)
2

p2
b1 +

p′1p
′
3

p2
b5 +

(p′3)
2

p2
b7 −

p′1p
′
2

p22
+
p′′1
p2

)
, (2.70)

with bk = bk(q1/p2, q3/p2, q2, p1, p3) fork = 0, 1, 5, 7. As in vacuum, the bracket of (2.70) with

the diffeomorphism constraint is given by (2.30). In order to recover the canonical form of the

algebra, we must set a4 = b4(q1/p2, q3/p2, q2, p1, p3), which is equivalent to demanding that

a4 is also a scalar function. In that way,

{
D[s1],H[s2]

}
= H

[
s1s

′
2

]
. (2.71)

We continue the study by computing the Poisson bracket of the constraint (2.70), witha4 = b4,

with itself. If we define the combination s := s1s
′
2 − s′1s2, all derivatives of s can be removed

through integration by parts, and we can express

{
H[s1],H[s2]

}
=

∫
dx (s1s

′
2 − s′1s2)F3 , (2.72)
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where F3 does not depend on the smearing functions. After replacing (2.21) with D and H,

instead of Dg and Hg , and setting the constraints to zero, each coefficient in front of a radial

derivative must vanish by itself. We find that the highest derivative order ofF3 is two, so

F3 ≈
∑

l,m,n,o

A l1l2l3m1m2m3
n1n2n3o1o2o3

3∏
j=1

(q′j)
lj (p′j)

nj (q′′j )
mj (p′′j )

oj , (2.73)

where the sum is for every non-negative integer lj ,mj , nj , and oj , with j = 1, 2, 3. The prob-

lem of anomaly resolution is thus translated to the vanishing of every A:

F3 ≈ 0 ⇐⇒ A l1l2l3m1m2m3
n1n2n3o1o2o3 = 0 ∀ l1, l2, l3,m1,m2,m3, n1, n2, n3, o1, o2, o3. (2.74)

We sistematically solve the anomalies, starting from the simplest ones, and we replace those

conditions into the more complicated ones. We first read the equations

0 = A100000
000000 = − b

2
4

p22

∂2b0
∂q21

, (2.75a)

0 = A001000
000000 = − b

2
4

p22

∂2b0
∂q1∂q3

, (2.75b)

0 = A100000
200000 = − b

2
4

p22

∂2b1
∂q21

, (2.75c)

0 = A001000
200000 = − b

2
4

p22

∂2b1
∂q1∂q3

, (2.75d)

0 = A000000
100001 = − b

2
4

p2

∂b5
∂q1

, (2.75e)

0 = A000000
001001 = −2b24

p2

∂b7
∂q1

. (2.75f)

Enforcing these relations, we can reduce the functions b0, b1, b5, and b7 to

b0 = c0(p1, q2, q3/p2, p3) +
q1
p2
d0a(p1, q2, p3), (2.76a)

b1 = c1(p1, q2, q3/p2, p3) +
q1
p2
d1a(p1, q2, p3), (2.76b)

b5 = c5(p1, q2, q3/p2, p3), (2.76c)

b7 = c7(p1, q2, q3/p2, p3). (2.76d)
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We also find the following equations,

0 = A000000
003000 = −2b24

p22
c7
∂c7
∂q3

, (2.77a)

0 = A000000
102000 =

b24
p32

(
2d1ac7 +

∂c7
∂q2

− 2p2c7
∂c5
∂q3

− p2c5
∂c7
∂q3

)
, (2.77b)

0 = A000000
201000 =

b24
p32

(
d1ac5 −

p2
2

∂c25
∂q3

− ∂d1a
∂p3

− q3
p2

∂d1a
∂q2

+
∂c5
∂q2

− 2p2c7
∂c1
∂q3

)
, (2.77c)

0 = A000000
001000 =

b24
p2

(
d0ac5 +

∂d0a
∂p3

+
q3
p2

∂d0a
∂q2

+ 2p2c7
∂c0
∂q3

)
. (2.77d)

Therefore, c7 is independent of q3; c5 is, at most, linear in q3; while c0 and c1 are, at most,

quadratic in that variable. These equations fix the dependence of the Hamiltonian on all the

densities (q1, p2, q3), except in the global factor b4 = b4(q1/p2, q3/p2, q2, p1, p3), i.e.,

H = b4

(
p2

(
q1
p2
d0a + d0b +

q3
p2
d0c +

q23
p22
d0d

)
− p′1p

′
2

p22
+
p′′1
p2

+
(p′3)

2

p2
d7b

+
(p′1)

2

p2

(
q1
p2
d1a + d1b +

q3
p2
d1c +

q23
p22
d1d

)
+
p′1p

′
3

p2

(
d5b +

q3
p2
d5c

))
, (2.78)

where dij = dij(q2, p1, p3), for i = 0, 1, 5, 7 and the corresponding j = a, b, c, d. Now, the re-

maining equationsA = 0can be further split because the free functionsdij do not depend on

the weight-one scalar densities (q1, p2, q3). This means that each functionA is a polynomial

on those variables, and the coefficient of every term of the form qn1 p
m
2 q

o
3 , with non-negative

integers n,m, and o, in each A must vanish independently. In this way, we can translate the

requirement of anomaly freedom to the following eleven partial differential equations:

∂d0a
∂q2

= −d0ad5c − 4d0dd7b, (2.79a)

∂d0b
∂q2

= −2d0bd1a + 2d0ad1b + d0cd5b +
∂d0a
∂p1

, (2.79b)

∂d0c
∂q2

= −2d0cd1a + 2d0ad1c + 2d0dd5b + d0cd5c, (2.79c)

∂d0d
∂q2

= −2(d0dd1a − d0ad1d − d0dd5c), (2.79d)

∂d1b
∂q2

= d1cd5b +
∂d1a
∂p1

, (2.79e)

∂d1c
∂q2

= 2d1dd5b + d1cd5c, (2.79f)

∂d1d
∂q2

= 2d1dd5c, (2.79g)
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∂d5b
∂q2

= −d1ad5b + d5bd5c + 2d1cd7b +
∂d1a
∂p3

, (2.79h)

∂d5c
∂q2

= −d1ad5c + (d5c)
2 + 4d1dd7b +

∂d1a
∂q2

, (2.79i)

∂d7b
∂q2

= −2(d1ad7b − d5cd7b), (2.79j)

∂d0a
∂p3

= −d0ad5b − 2d0cd7b. (2.79k)

A general solution of this system is elusive because it is highly coupled but, since almost all

equations contain derivatives with respect to q2, the dependence on this variable will clearly

be severely restricted. In particular, the choiced1a = 0, thoroughly studied in Ref. [1], showed

that H is at most quadratic in q2 in that case.

When the above relations (2.79) are satisfied, the constraint (2.78) commutes weakly with

itself,
{
H[s1],H[s2]

}
≈ 0, but, as in the vacuum case, it is schematically given by {H,H} =

F4D+F5H+F6H′+F7DH off-shell. In order to remove the last two terms, the global factor

must be independent of the scalar densities (q1, p2, q3). More precisely, F6 = 0 and F7 = 0

only when b4(q1/p2, q3/p2, q2, p1, p3) is independent of q1. Under this condition the bracket

reads

{
H[s1],H[s2]

}
= D

[
(s1s

′
2 − s′1s2)

b24
p22

(
d0ad5c + 4d0dd7b −

(
p′1
p2

)2 ∂d1a
∂q2

)]
(2.80)

−H

[
(s1s

′
2 − s′1s2)

(
p′1
p22

(
2b4d1a −

∂b4
∂q2

)
+

1

p2

∂b4
∂q3

(
2p′3d7b + p′1

(
d5b +

q3
p2
d5c

)))]
.

To remove the H-term on the right-hand side, we first need ∂b4/∂q3 = 0 because the free

functions do not depend on derivatives of the momenta, nor on p2 and q3. Recall that this,

along with the independence of q1, makes b4 to be also independent of p2. We choose the

specific form b4 = −√
p1g(p1, p3)g(q2, p1, p3). In this way, the above bracket reads

{
H[s1],H[s2]

}
=−D

[
(s1s

′
2 − s′1s2)g

2g2
p1
p22

(
∂d0a
∂q2

+

(
p′1
p2

)2 ∂d1a
∂q2

)]

−H

[
(s1s

′
2 − s′1s2)g

√
p1p

′
1

p22

(
∂g

∂q2
− 2d1ag

)]
, (2.81)

where we have used relation (2.79a) to simplify the coefficient going with the diffeomorphism

constraint. To recover the canonical form of the constraint algebra, we must further impose

that the expression inside the last round brackets vanishes, which leads to

d1a =
1

2g

∂g

∂q2
. (2.82)



2.4 The effective model 45

In summary, the most general generator of infinitesimal normal transformations that satis-

fies our initial requirements (i) and (ii) is

H = −√
p1gg

(
p2

(
q1
p2
d0a + d0b +

q3
p2
d0c +

q23
p22
d0d

)
− p′1p

′
2

p22
+
p′′1
p2

+
(p′3)

2

p2
d7b

+
(p′1)

2

p2

(
q1
2p2

1

g

∂g

∂q2
+ d1b +

q3
p2
d1c +

q23
p22
d1d

)
+
p′1p

′
3

p2

(
d5b +

q3
p2
d5c

))
, (2.83)

under the condition that the functions dij(q2, p1, p3) satisfy the anomaly equations (2.79),

with d1a as given in (2.82). The resulting bracket reads

{
H[s1],H[s2]

}
= −D

[
g2g

2 p1
p22

(
∂d0a
∂q2

+
1

2

(
p′1
p2

)2 ∂2 log (g)

∂q22

)
(s1s

′
2 − s′1s2)

]
. (2.84)

The structure function that can be read from this relation resembles its vacuum counterpart

(2.48). In fact, renaming

d0a =
1

g

∂f

∂q2
, (2.85)

with f = f(q2, p1, p3), we see that they both have the same formal expression.

2.4 The effectivemodel

In this section, we seek a particular solution to the anomaly equations (2.79) that allows for co-

variant holonomy modifications coupled to matter with local degrees of freedom. Recall that

the above Hamiltonian satisfies the initial requirements (i) and (ii). Therefore, we still need

to impose conditions (iii), (iv), and (v). The former ensures the embeddability of the model

in a four-dimensional manifold to allow for a metric description. The last one demands an

explicit vacuum limit which must be necessarily included in the family of vacuum Hamil-

tonians (2.53) derived in Sec. 2.2. Recall now the GR Hamiltonian (1.43). Upon identification

(2.65), we see that neither d0d nor d7b can be identically vanishing in order to fulfill the fourth

requirement. If we tried to set to zero the functions coupled to either q3 or p3, then d1a would

become independent of q2, as one can read from (2.79i), which does not reproduce the re-

quired vacuum limit (2.53) for any choices of the remaining free functions. Therefore, we

need at least either d1d or d5c to be non-vanishing.

To obtain a solution to the system (2.79), we make certain particular choices. A careful inspec-

tion shows that setting d1d = 0 slightly decouples the system because d5c always multiplies

the function whose derivative appears on the left-hand side of the equations.
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Setting d0c = 0, d1c = 0, d1d = 0, and d5b = 0, we find a consistent non-trivial system:

∂d0a
∂q2

= −d0ad5c − 4d0dd7b, (2.86a)

∂d0b
∂q2

= 2(d0ad1b − d0bd1a) +
∂d0a
∂p1

, (2.86b)

∂d0d
∂q2

= 2d0d(d5c − d1a), (2.86c)

∂d1b
∂q2

=
∂d1a
∂p1

, (2.86d)

∂d5c
∂q2

− ∂d1a
∂q2

= d5c(d5c − d1a), (2.86e)

∂d7b
∂q2

= 2d7b(d5c − d1a), (2.86f)

∂d0a
∂p3

=
∂d1a
∂p3

= 0. (2.86g)

Then, it is clear that d1a = d5c solves three of the equations provided the matter coefficients

d0d and d7b do not depend on q2. The functions d0a and d1a are independent of p3.

We see that equations (2.86b) and (2.86d) are decoupled from the matter contribution, and

they correspond to vacuum equations (2.37) with the identification d0b = c00, d0a = c01,

d1b = c10, and d1a = c11. The only difference is that now d0b and d1b — and thus U and

V in (2.38) — may also depend on p3. The incorporation of matter generates the additional

condition (2.86a), which after using (2.82) and (2.85), reads

1

2

∂f

∂q2

∂g

∂q2
− g

∂2f

∂q22
= 4g2d0dd7b. (2.87)

Since d0a and d1a are independent of p3, the product d0dd7b only depends on p1, and thus the

above equation can be integrated in q2, leading to

g = −
(
f − χ

)−1

8d0dd7b

(
∂f

∂q2

)2
, (2.88)

withχ = χ(p1, p3)a free integration function. At this point, all anomalies are vanishing, leav-

ing freed0d(p1, p3)andd7b(p1, p3). The easiest choice is to consider that both these functions

retain their classical form. In summary, we obtain the particular solution of the system (2.79),

d0a =
1

g

∂f

∂q2
, (2.89a)

d0b =
1

g

(
1 + Uf

2p1
− V

2
√
p1

+
∂f

∂p1

)
, (2.89b)



2.4 The effective model 47

d1a = d5c =
1

2g

∂g

∂q2
, (2.89c)

d1b =
U

4p1
+

1

2g

∂g

∂p1
, (2.89d)

d7b = (d0d)
−1 = p1, (2.89e)

d0c = d1c = d1d = d5b = 0, (2.89f)

with U = U(p1, p3) and V = V (p1, p3). The solution has been written in a form which

trivially shows that all the dependence on p3 of f can be absorbed inU and V . Therefore, let

us consider f = f(q2, p1). Combining this with (2.89e), we find g = g(q2, p1) and χ(p1) in

(2.88). But, in addition, a shift f → f + χ amounts to a redefinition of V . As a result, let us fix

χ = 0. Moreover, we can absorb U by a suitable rescaling of g, V , f , and g, just in the same

way as we did in vacuum. Equivalently, we take the above solution withU = 1. In that case,

the Hamiltonian constraint reads

H = −√
p1g

(
q1
∂f

∂q2
+ p2

(
1 + f

2p1
− V

2
√
p1

+
∂f

∂p1

)
− g

p′1p
′
2

p22
+ g

p′′1
p2

+ g
p1(p

′
3)

2

p2

+
(p′1)

2

2p2

(
q1
p2

∂g

∂q2
+

g

2p1
+

∂g

∂p1

)
+

q3
2p22

∂g

∂q2
p′1p

′
3 + g

q23
p1p2

)
, (2.90)

which reduces to the vacuum constraint (2.44) when removing all terms that depend on the

matter degrees of freedom (q3, p3). The Poisson bracket takes the same formal expression

as in vacuum, namely, {H[s1],H[s2]} = D[F (s1s
′
2 − s′1s2)], with

F = −g2g2
p1
p22

∂

∂q2

[
1

g

∂f

∂q2
+

1

2g

(
p′1
p2

)2 ∂g
∂q2

]
. (2.91)

In order to analyse the embeddability of the dynamics defined by the above Hamiltonian in

spacetime [requirement (iii)], one needs to check the condition (2.50), i.e.,Lξ(1/F ) = δϵ(1/F ).

In this case, this is straightforward as we obtain the same two equations (2.51) as in vacuum.

Nevertheless, since g is no longer free, and it is now given in terms off by relation (2.88), those

two equations are no longer independent, and the solution

f =
A

ω2
sin2

(
ω(q2 + φ)

)
+ χ, (2.92a)

withA = A(p1), ω = ω(p1), andφ = φ(p1) which, in turn, implies

g = −1

2
A cos2

(
ω(q2 + φ)

)
, (2.92b)

satisfies the equations (2.51). Note thatχ in (2.92a) and (2.88) must be the same function, and
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we already showed that it can be absorbed trivially inV . In addition, it is easy to see that, since

the coefficientA is the same inf and g, it can be absorbed in a redefinition of the global factor

g and V . Therefore, we setA = 1 with no loss of generality.

The embedabbility condition (iii) is necessary for the covariance of the theory, and, from this

point on, the model univocally defines a spacetime.

Note that the incorporation of matter with local degrees of freedom imposes an additional

restriction, and f and g are no longer independent. Besides, the vacuum limit of (2.90) with

(2.92) is straightforward and given by (2.53), upon the choiceAf = Ag = 1 andφ := φf = φg .

Further, the canonical transformation

q2 → q2 − φ and q1 → q1 − p2
∂φ

∂p1
, (2.93)

removesφ(p1), and thus we can set it to zero with no loss of generality. In this way, we obtain

a family of Hamiltonians satisfying all five conditions (i) to (v),

H = g

(
− p2

2
√
p1

(
1 +

sin2 (ωq2)

ω2

)
−√

p1q1
sin (2ωq2)

ω

(
1 +

(
ωp′1
2p2

)2)

+

(
(p′1)

2

8
√
p1p2

−
√
p1

2p22
p′1p

′
2 +

√
p1

2p2
p′′1 +

q23
2
√
p1p2

+
(p1)

3/2(p′3)
2

2p2

)
cos2 (ωq2)

+ 2
√
p1p2

sin(ωq2)

ω

(
sin(ωq2)

ω
− q2

(
1 +

(
ωp′1
2p2

)2)
cos(ωq2)

)
∂ log(ω)

∂p1

+
√
p1p2V (p1, p3)−

√
p1q3p

′
1p

′
3

4p22
ω sin(2ωp2)

)
, (2.94)

in terms of a free functionω(p1). Conditions (i), (ii), and (iii) are satisfied by construction. Also

note that the GR Hamiltonian corresponds to the vanishing ofω. Although the limitω → 0 is

non-trivial, it is well-defined within this family of solutions, and thus satisfies condition (iv).

The vacuum Hamiltonian (2.53), with Af = Ag = 1 and φf = φg = 0, is straightforwardly

obtained by removing all the terms with q3 or p3, ensuring that requirement (v) is satisfied.

The only remaining free function is the scalar global factorg. However, this freedom is present

in GR, where one can rescaleN and H by scalar functions without changing the total Hamil-

tonian. Recall that it is 1 in the GR limit specified above. Regarding V (p1, p3), we see that it

can be interpreted as the potential of a scalar field by looking at the GR constraint (1.43b).
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For this family of Hamiltonians, the bracket reads {H[s1],H[s2]} = D[F (s1s
′
2 − s′1s2)], with

the everywhere non-negative structure function

F = g2cos2(ωq2)

(
1 +

(
ωp′1
2p2

)2) p1
p22
. (2.95)

At this point, it is interesting to recall the mass function (2.58), which allows us to simplify the

structure function:

F = g2(1 + ω2)

(
1− 2ω2m

(1 + ω2)
√
p1

)
p1
p22
. (2.96)

For simplicity, we fix the global factor as

g =
1√

1 + ω2
, (2.97)

which automatically satisfies the GR limit (2.54), i.e., g → 1 as ω → 0.

The family of Hamiltonians (2.94) describes scale-dependent holonomy corrections. This is,

on its own, a relevant result because it is the first time that spherical holonomy corrections

are implemented in a covariant way, and also consistently coupled to matter in spherical

symmetry. Note that the polymerised variable q2 appears outside the argument of trigono-

metric functions wheneverω is not constant, which agrees with previous studies in the liter-

ature [75]. For simplicity, we will consider a constant polymerisation function ω ≡ λ ∈ R to

account for quantum effects, thus ensuring that the Hamiltonian constraint is bounded and

periodic regarding q2. In addition, the Hamiltonian is greatly simplified when ∂ω/∂p1 = 0.

2.5 Metric interpretation

The metric associated to the Hamiltonian (2.94) is

ds2 = −N(t, x)2dt2 +
1

F

(
dx2 +Nx(t, x)dt2

)
+ r(t, x)2dΩ2, (2.98)

withF given in (2.96), which has the same formal expression as in vacuum (2.61).

Therefore, to complete the geometric interpretation of the model, we only need to specify the

area-radius function r(t, x). Recall that the algebra does not provide any information about

that component of the metric due to the spherical symmetry reduction. But we demand the

modifications to preserve the area of the orbits of the spherical symmetry, just in the same

way as we require them to keep the definition of time (the foliation).
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The constraint (2.94) is tightly related to the GR Hamiltonian (1.43). In fact, it is possible to find

(2.94) from the classical set-up by means of a non-bijective canonical transformation and a

linear combination of the Hamiltonian and the diffeomorphism constraints. The coefficients

of that combination are phase-space dependent functions, and they become ill-defined at

the same points where the canonical transformation breaks down. Although it is possible to

perform these changes with a non-constant functionω(p1) — see equation (42) in Ref. [2] —,

it is more illustrative to considerω ≡ λ ∈ R, matching also the simplicity requirement stated

above. In this way, the expressions are less complicated, and there is a welcome byproduct:

When the polymerisation function is constant, the canonical transformation only affects one

pair of conjugate variables.

More precisely, let us perform the canonical transformation

Kx = q1 and Ex = p1, (2.99a)

Kφ =
sin(λq2)

λ
and Eφ =

p2
cos(λq2)

, (2.99b)

Pϕ = q3 and ϕ = −p3. (2.99c)

It is clear that two degrees of freedom remain unaltered, as compared to GR, while the an-

gular components of the triad and the curvature retain all the changes. Based on the resem-

blance of the effective model with the GR Hamiltonian, we rename Kφ := q2 and Eφ := p2,

such that

Kφ =
sin(λKφ)

λ
and Eφ =

Eφ

cos(λKφ)
, (2.100)

and we use the following three pairs of variables:

{Kx(x1), E
x(x2)} = {Kφ(x1), Eφ(x2)} = {ϕ(x1), Pϕ(x2)} = δ(x1, x2). (2.101)

We will now show that the Hamiltonian (2.94) with ω = λ ∈ R, and p1 = Kx, p2 = Kφ,

p3 = −ϕ, q1 = Ex, q2 = Eφ, and q3 = Pϕ can indeed be obtained from the GR Hamiltonian

(1.43) with (1.46a).

Let us first perform the canonical transformation (2.100). Note that this canonical transfor-

mation leaves invariant the diffeomorphism constraint (1.43a). On the one hand, the bracket

between the transformed GR Hamiltonian constraint,H(0) c.t.−−→ H(0)
, and the unchanged dif-

feomorphism constraint, D, remains unaltered, that is, {D[s1], H
(0)

[s2]} = H
(0)

[s1s
′
2]. On

the other hand, due to the presence of phase-space variables in the structure function, the
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bracket between two transformed Hamiltonian constraints changes accordingly,

{
H

(0)
[s1], H

(0)
[s2]
}
= D

[
Ex

(Eφ)2
cos2(λKφ)(s1s

′
2 − s′1s2)

]
. (2.102)

Notice now that, since the GR Hamiltonian (1.42b) is linear inEφ andKx, the new constraint

H(0)
acquires explicit poles at cos(λKφ) = 0, which correspond to the surfaces where the

canonical transformation (2.100) is not valid. As we want to regularise those potential infini-

ties, we define a rescaled Hamiltonian H̃ := H(0)
cos(λKφ). However, that new constraint is

not the canonical generator of normal deformations since

{
H̃[s1], H̃[s2]

}
=D

[
Ex

Eφ2
cos4(λKφ)(s1s

′
2 − s′1s2)

]
− H̃

[√
ExEx′

4(Eφ)2
λ sin(2λKφ)(s1s

′
2 − s′1s2)

]
. (2.103)

In order to obtain a geometric interpretation, we are forced to find the normal projection of

H̃ , that is, to find the form {H[s1],H[s2]} = D[F (s1s
′
2 − s′1s2)]. One can check that the

suitable combination H[N ] := H̃[N ] − D[NF
H̃
], with F

H̃
the smearing function in the H̃

term on the right-hand side of (2.103), produces the canonical form of the bracket.

More explicitly, the regularised Hamiltonian is defined as

H := H̃+ λ sin(2λKφ)

√
ExEx′

4(Eφ)2
D =

(
H(0)

+ λ sin(λKφ)

√
ExEx′

2(Eφ)2
D

)
cos(λKφ). (2.104)

This last expression turns out to be exactly the same as the Hamiltonian constraint (2.94) with

ω = λ ∈ R, and p1 = Kx, p2 = Kφ, p3 = −ϕ, q1 = Ex, q2 = Eφ, and q3 = Pϕ. Explicitly, the

Hamiltonian with scale-invariant covariant holonomy corrections reads

D =−KxE
x′ +K′

φEφ + ϕ′Pϕ, (2.105a)

H =
1√

1 + λ2

(
− Eφ

2
√
Ex

(
1 +

sin2 (λKφ)

λ2

)
−
√
ExKx

sin (2λKφ)

λ

(
1 +

(
λEx′

2Eφ

)2)

+

(
(Ex′)2

8
√
ExEφ

−
√
Ex

2Eφ2
Ex′Eφ′ +

√
Ex

2Eφ
Ex′′ +

P 2
ϕ

2
√
ExEφ

+
Ex3/2(ϕ′)2

2Eφ

)
cos2 (λKφ)

+
√
ExEφV (Ex, ϕ) +

√
Ex

4Eφ2E
x′ϕ′Pϕλ sin (2λKφ)

)
. (2.105b)

Note that the Hamiltonian constraint is periodic in Kφ, with period π/λ, and that leading-

order corrections go as λ2.
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It is straightforward to compute that the constraints (2.105) satisfy the canonical form of the

algebra,

{D[s1], D[s2]} = D[s1s
′
2 − s′1s2], (2.106a)

{D[s1],H[s2]} = H[s1s
′
2], (2.106b)

{H[s1],H[s2]} = D[F (s1s
′
2 − s′1s2)], (2.106c)

with the everywhere non-negative structure function

F =
cos2 (λKφ)

1 + λ2

(
1 +

(
λEx′

2Eφ

)2) Ex

Eφ2
. (2.107)

As we did before, we can use the mass function (2.58), which now reads

m :=

√
Ex

2

(
1 +

sin2 (λKφ)

λ2
−
(
Ex′

2Eφ

)2
cos2 (λKφ)

)
, (2.108)

to simplify the structure function:

F =

(
1− 2λ−m√

Ex

)
Ex

Eφ2
. (2.109)

In addition, we have defined the new parameter

λ− :=
λ2

1 + λ2
. (2.110)

Note that, by definition, this constant is bounded, and it takes values in the range (0, 1). In-

deed, this is the physically meaningful constant of the model, and it measures the geometric

scale of quantum effects. The limit λ− → 0 corresponds to GR, since the canonical transfor-

mation (2.100) is the identity, H = H(0), and F = Ex/Eφ2. Hence, we expect the effective

regime to be valid forλ− ≪ 1, while the limitλ− → 1would represent the maximum departure

from the classical theory.

As commented before, anomaly freedom is not a sufficient condition for the Hamiltonian to

have a direct geometric interpretation. The transformation properties of the structure func-

tion in the algebra are also constrained if one wants to embed the 3 + 1 theory in a four-

dimensional manifold. By construction, we already have the radial component of the metric,

the inverse of the structure function (2.107). We also know the coefficients of the dt2 and the

dtdx elements of the metric because we required the lapse and the shift to be defined in the

same way as in GR. Therefore, we only need to specify the angular component of the met-
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ric. However, since the canonical transformation leaves invariant the pair (Kx, E
x), andEx

transforms as a scalar quantity, we also argue that the area of the orbits of the rotation group

should still be determined by this variable. That is, we will fix r(t, x) :=
√
Ex(t, x). Gathering

all the above, the metric associated to the Hamiltonian (2.105) is

ds2 =−N2dt2+

(
1− 2λ−m√

Ex

)−1Eφ2

Ex

(
dx+Nxdt

)2
+ExdΩ2, (2.111)

with the functions N(t, x), Nx(t, x), Ex(t, x), Eφ(t, x) and m(t, x) satisfying the two con-

straint equations, D = 0 and H = 0, plus the six Hamiltonian equations of motion.

As we did obtain the Hamiltonian (2.105) in two independent ways, the poles cos(λKφ) = 0

are shown to be consistently regularised and potential ill-definitions at those points are ab-

sent. Moreover, the process consisting of the canonical transformation (2.100) plus the reg-

ularisation (2.104) provides a very simple and systematic way to reach the effective Hamil-

tonian, and it is not restricted to the case of a scalar field. For instance, we can consider

non-rotating dust as the matter component [recall (1.46b)], and implement (2.100) along with

(2.104) to obtain an anomaly-free Hamiltonian with the same structure function (2.95).





3
The Effective Quantum

Schwarzschild Black Hole

Remember, the enemy’s gate is down.

Ender’s Game
by Orson Scott Card.

The Schwarzschild spacetime is a fundamental exact solution of the equations of general rel-

ativity. It describes the gravitational field in vacuum outside a spherically symmetric massive

object in an asymptotically flat spacetime. This solution shows a physical singularity where

curvature scalars diverge. An infalling observer arrives there in finite proper time, and the

spacetime cannot be further extended in a smooth way.

In this chapter, we study the vacuum reduction of our effective model and examine the ge-

ometric properties of the resulting spacetime, comparing them with those of Schwarzschild.

In Sec. 3.1, we obtain solutions for the equations of motion in different gauges and show how

the corresponding line elements are related through coordinate transformations. This fact

is ensured by our covariant construction, and thus different gauge choices just provide dif-

ferent charts of one same metric tensor. In particular, we obtain a chart that covers the

whole spacetime. This is the starting point to study the global structure of the solution in

Sec. 3.2, which eventually provides the maximal analytic extension of the spacetime. The

main properties of the solution are studied in Sec. 3.3. Our analysis shows that the singularity

in the Schwarzschild solution is fully resolved and replaced by a minimal spacelike hypersur-

face. This separates a trapped and an anti-trapped region within a completely regular and

geodesically complete homogeneous region. We also characterise the area of the spheres

in that transition surface, both globally and quasi-locally. Finally, in Sec. 3.4, we show that

Minkowski is a solution of the effective theory, and also that the Schwarzschild spacetime

is recovered in a particular limit of the model. All figures in this chapter were published in

Ref. [5].
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Removing the matter field from the Hamiltonian (2.105), one obtains

Dg =−KxE
x′ +K′

φEφ, (3.1a)

Hg =
−1√
1 + λ2

(
Eφ

2
√
Ex

(
1 +

sin2 (λKφ)

λ2

)
+
√
ExKx

sin (2λKφ)

λ

(
1 +

(
λEx′

2Eφ

)2)

−

(
(Ex′)2

8
√
ExEφ

−
√
Ex

2Eφ2
Ex′Eφ′ +

√
Ex

2Eφ
Ex′′

)
cos2 (λKφ)

)
, (3.1b)

with λ ∈ R. These constraints form the algebra

{Dg[s1], Dg[s2]} = Dg[s1s
′
2 − s′1s2], (3.2a)

{Dg[s1],Hg[s2]} = Hg[s1s
′
2], (3.2b)

{Hg[s1],Hg[s2]} = Dg[F (s1s
′
2 − s′1s2)], (3.2c)

where the everywhere non-negative structure functionF is given by (2.107), that is,

F =

(
1− 2λ−m√

Ex

)
Ex

Eφ2
≥ 0. (3.3)

Recall the definition of the bounded parameter λ− := λ2/(1 + λ2) ∈ (0, 1), which measures

the departure of the effective theory from GR. Indeed, the limit λ− → 0 corresponds to GR. As

we pointed out before,m, as defined in (2.108), is a constant of motion in vacuum,

ṁ = {m,Dg[N
x] +Hg[N ]} = −Hg

[√
1 + λ2

NxEx′

2Eφ

]
(3.4)

+Dg

[√
Ex

2Eφ

(
1 +

(
λEx′

2Eφ

)2
)(

Nx sin(2λKφ)

λ
− N

√
ExEx′ cos2(λKφ)

2
√
1 + λ2Eφ2

)]
≈ 0,

so let us defineM ∈ R as the constant value of the mass function, that is,

M =

√
Ex

2

(
1 +

sin2 (λKφ)

λ2
−
(
Ex′

2Eφ

)2
cos2 (λKφ)

)
. (3.5)

Note that for positive values of M , the function
√
Ex has a positive lower bound. The un-

derlying reason is that the structure function (3.3) is non-negative, forbidding the ranges of
√
Ex for whichF would attain negative values. We will restrict to non-negative values ofM ,

and leave the cases M < 0 for the next chapter. As it will be shown below, from the geo-

metric point of view, the vanishing of F at the critical values
√
Ex = 2λ−M translates to the

appearance of a minimum for the area of the orbits of the spherical symmetry.
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The length

r0 := 2λ−M, (3.6)

will denote those critical values.

Recall that the metric is

ds2 = −N2dt2 +

(
1− 2λ−M√

Ex

)−1 Eφ2

Ex

(
dx+Nxdt

)2
+ ExdΩ2, (3.7)

whereM andλ− are constant, and the functionsN(t, x),Nx(t, x),Ex(t, x)andEφ(t, x) follow

Ėx ={Ex, Dg[N
x] +Hg[N ]} = NxEx′ +N

√
Ex

sin(2λKφ)

λ
√
1+λ2

(
1 +

(
λEx′

2Eφ

)2)
, (3.8a)

Ėφ ={Eφ, Dg[N
x] +Hg[N ]} = (NxEφ)′ + 2N

√
ExKx

cos(2λKφ)√
1+λ2

(
1 +

(
λEx′

2Eφ

)2)

+N
sin(2λKφ)

λ
√
1+λ2

(
Eφ

2
√
Ex

+
λ2

2

(
Ex′

2Eφ

(√
Ex
)′

+
√
Ex

(
Ex′

Eφ

)′))
, (3.8b)

K̇x ={Kx, Dg[N
x] +Hg[N ]} = (NxKx)

′ +N ′′
√
Ex cos2(λKφ)

2
√
1+λ2Eφ

+
N ′√Ex

2
√
1+λ2Eφ2

(
λ sin(2λKφ)

(
Ex′Kx − 2EφK′

φ

)
+ cos2(λKφ)

(
EφEx′

2Ex
− Eφ′

))

+
N√
1+λ2

(
Eφ(sin2(λKφ) + λ2)

4λ2Ex3/2
+

cos2(λKφ)

4
√
ExEφ

(
Ex′′ − (Ex′)2

4Ex
− Ex′Eφ′

Eφ

)

− Kx sin(2λKφ)

2λ
√
Ex

(
1 +

(
λEx′

2Eφ

)2
)

−

[
sin(2λKφ)

λ
√
Ex

2Eφ2
Dg

]′)
, (3.8c)

K̇φ ={Kφ, Dg[N
x] +Hg[N ]} = NxK′

φ +N ′
√
ExEx′

2Eφ2

cos2(λKφ)√
1+λ2

−N
sin2(λKφ) + λ2

2λ2
√
Ex

√
1+λ2

+N
(Ex′)2

8
√
ExEφ2

cos2(λKφ)√
1+λ2

−N
sin(2λKφ)√

1+λ2
λ
√
ExEx′

2Eφ3
Dg, (3.8d)

in addition to the constraint equations Dg = 0 and Hg = 0, as given in (3.1).

3.1 The spacetime solution

We begin with the chart ΨA = {t, x} (plus the angular coordinates, which we omit in the

following) on some domainDA of the spacetime manifoldM, with metric tensor (3.7). From

now on, {·, ·} will denote charts and not Poisson brackets. The allowed ranges of the coordi-

nates define a patch on R2 which is the preimage of the domainDA ⊂ M.



58 The effective quantum Schwarzschild black hole

There is an inherent gauge freedom in the model that allows to fix two among the four phase-

space functions. Since the construction of the metric has been carried out so that coordinate

transformations correspond to gauge changes on phase space, each consistent gauge choice

will lead to a solution of the above system of equations and produce the same metric tensor

in the corresponding chart and domain of definition. The spacetime solution is thus unique.

Although proven in the previous chapter, we will illustrate this by considering different gauge

choices and by seeing how the corresponding line elements are related through coordinate

transformations, thus defining the same geometry. In order to avoid confusion, we will re-

label t and x in a different way for each chart. For the moment, we will exclude degenerate

solutions with identically vanishingN or Eφ.

3.1.1 Static region

We start with the gauge-fixing conditions

√
Ex = x and Kφ = 0, (3.9)

which restrict the range of the radial coordinate to x ≥ 0. Recall that we already have a first

integral of the system, the constant of motion (3.5), from where we obtain

Eφ = ε1x

(
1− 2M

x

)−1/2

, (3.10)

withε21 = 1. In this gauge, the constraints and the dynamical equations are greatly simplified.

The diffeomorphism constraint imposes a vanishingKx,

0 = Dg = −2xKx, , (3.11)

and the conservation of the two gauge conditions (3.9),

0 = Ėx = 2xNx, (3.12a)

0 = K̇φ =
N ′

√
1 + λ2

(
1− 2M

x

)
− mN√

1 + λ2x2
, (3.12b)

require, respectively,

Nx = 0 and N = c1

√
1− 2M

x
, (3.13)

where the constant c1 ̸= 0 can be trivially absorbed in a time redefinition. We thus set c1 = 1.
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The remaining equations, (3.8b), (3.8c), and the vanishing of (3.1b), are automatically satisfied.

We now relabel (t, x) as the pair of real functions (t̃, r̃) on DS ⊂ M that defines the static

chart ΨS = {t̃, r̃} on R2, with the ranges of coordinates specified by the existence of the

above solutions. Then, the domainDS is only restricted by r̃ > 2M , and the metric reads

ds2 = −
(
1− 2M

r̃

)
dt̃

2
+

(
1− 2λ−M

r̃

)−1(
1− 2M

r̃

)−1

dr̃2 + r̃2dΩ2. (3.14)

Before focusing on the study of this geometry, we will obtain additional charts and domains

of definition for that same metric tensor, but we point out that neither r̃ = 2λ−M nor r̃ = 2M

(which are not included in the above chart) will describe a physical singularity, as one can

check by computing the curvature scalars (see Sec. 3.3.2).

3.1.2 Homogeneous region

In this case, we demand the partial gauge fixing

Ex′ = 0 and Eφ′ = 0. (3.15)

It is straightforward to see that the vanishing of the diffeomorphism constraint,

0 = Dg = K′
φEφ, (3.16)

fixes K′
φ = 0, and since the radial derivative of Hg must also vanish,

0 = Hg → 0 = H′
g =

√
ExK ′

x

sin(2λKφ)

λ
, (3.17)

we obtain K ′
x = 0 because a constant Kφ is inconsistent with our assumption N ̸= 0 [see

(3.8d)]. Taking now the time derivative of the gauge-fixing conditions (3.15), we obtain two

equations to solve for the lapse and the shift:

0 = (Ėx)′ = N ′ sin(2λKφ)

λ
√
1 + λ2

→ N ′ = 0, (3.18a)

0 = (Ėφ)′ = Nx′′Eφ + 2N ′√ExKx
cos(2λKφ)√

1 + λ2
→ Nx′′ = 0. (3.18b)

With these results, we use part of the remaining gauge freedom to set a vanishing shift,

Nx = 0, (3.19)

which is consistent with the above condition.
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From the geometric point of view, this represents a diagonalisation of the metric, because

Nx′′ = 0 ↔ Nx = a(t)x + b(t) implies that one can always find a function y such that

dx+Nxdt = exp(−
∫
a(t)dt)dy.

Imposing the commented conditions, the remaining equations of motion are thus

Ėx = N
√
Ex

sin(2λKφ)

λ
√
1 + λ2

, (3.20a)

Ėφ =
N√
1 + λ2

(
2
√
ExKxcos(2λKφ) +

Eφ sin(2λKφ)

2λ
√
Ex

)
, (3.20b)

K̇x =
N

2
√
Ex

√
1 + λ2

(
Eφ

2Ex

(
1 +

sin2(λKφ)

λ2

)
−Kx

sin(2λKφ)

λ

)
, (3.20c)

K̇φ = − N

2
√
Ex

√
1 + λ2

(
1 +

sin2(λKφ)

λ2

)
, (3.20d)

0 = H = − Eφ

2
√
Ex

√
1 + λ2

(
1 +

sin2(λKφ)

λ2

)
−
√
ExKx

sin(2λKφ)

λ
√
1 + λ2

. (3.20e)

We still retain certain gauge freedom since we have not specified completely the form of

Ex(t) and Eφ(t), which we will use in the following to express the metric in two different

coordinate patches.

Half of the homogeneous region

First, we consider

Ex = t2, (3.21)

and, just as in the previous section, we use the constant of motion,

M =
t

2

(
1 +

sin(λKφ)

λ

)
, (3.22)

to solve for one of the variables. In this case,

sin(λKφ)

λ
= ε2

√
2M

t
− 1, (3.23)

where ε22 = 1. Note that this relation imposes the condition t ≤ 2M for the domain of the

coordinate t. We can obtain the lapse from equation (3.20a),

N = ε3

(
1− 2λ−M

t

)−1/2(2M

t
− 1

)−1/2

, (3.24)

with ε23 = 1, which further restricts the range of t to 2λ−M < t < 2M .
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Equation (3.20b) is now

Ėφ = Eφ M(1 + λ−)− t

(2M − t)(t− 2λ−M)
, (3.25)

and, upon integration, we find

Eφ = c2
√
2M − t

√
t− 2λ−M, (3.26)

with a non-vanishing constant c2. The only variable left,Kx, might be directly obtained from

the homogeneous Hamiltonian constraint (3.20e), yielding

Kx = −ε3c2
√
1− λ−

M

2t2
. (3.27)

With all the above, one can check that both (3.20c) and (3.20d) are satisfied. We consider the

pair of real functions (T,X) onDh ⊂ M relabelling (t, x) to define the chart Ψh = {T,X}
on R2, restricted by T ∈ (2λ−M, 2M). The metric (3.7) in that chart is

ds2 = −
(
1− 2λ−M

T

)−1(2M

T
− 1

)−1

dT 2 +

(
2M

T
− 1

)
dX2 + T 2dΩ2, (3.28)

where we have trivially set c2 = 1.

The complete homogeneous region

In this occasion we use the remaining gauge freedom in (3.20) to choose

Kφ =
t

λ
(3.29)

as our time. The constant of motion (3.5) now yields

Ex =

(
2Mλ2

λ2 + sin2 t

)2

, (3.30)

and we can solve either (3.20a) or (3.20d) for the lapse,

N = −
√
1 + λ2

Mλ

(
2Mλ2

λ2 + sin2 t

)2

. (3.31)

Finally, combining (3.20b) and (3.20e) we find

Eφ =
c3λM sin(2t)√

1 + λ2(λ2 + sin2 t)
and Kx =

(λ2 + sin2 t)2

8Mλ4
√
1 + λ2

, (3.32)

with c3 ̸= 0. As in previous occasions, we can set c3 = 1 with no loss of generality.
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We now identify (t, x)with the pair of real functions (T ,X) onDH ⊂ M defining the homo-

geneous chart ΨH = {T ,X}. Due to the periodicity of the solution, the domain DH is the

preimage of the stripe T ∈ (0, π) in R2. Using definition (3.6), we write the metric,

ds2 = − 16M2λ−3(
λ− + (1−λ−) sin2 T

)4dT 2
+

1−λ−
λ−

sin2 T dX
2
+

4λ−2M2(
λ− + (1−λ−) sin2 T

)2dΩ2. (3.33)

It is enlightening to express the above in terms of the area-radius function,

r(T ) :=
√
Ex =

2λ−M

λ− + (1− λ−) sin2 T
, (3.34)

yielding

ds2 = −r(T )
4

λ−M2
dT

2
+

(
2M

r(T )
− 1

)
dX

2
+ r(T )2dΩ2, (3.35)

with the area-radius function being restricted to the range r(T ) ∈ [2λ−M, 2M), correspond-

ing to sin2 T = 1 and sin2 T → 0, respectively. Recall that this last value lies outside the

allowed region but the spacelike hypersurface r(T = π/2) = 2λ−M is contained within it.

3.1.3 The covering domain

We impose time-independence on the functionsEx and Eφ but still leave some gauge free-

dom:

Ėx = 0 and Ėφ = 0. (3.36)

Note that if Ex was everywhere constant, and since we assumed a non-vanishing Eφ, the

Hamiltonian constraint, Hg = 0, would requireKx ̸= 0 and sin(2λKφ) ≠ 0. In such a case,

(3.8a) for Ėx = 0 would yield N = 0, which would not meet our initial assumption for an

identically non-vanishing lapse. Therefore, conditions (3.36) also imply an identically non-

vanishingEx′. Moreover, the constant of motion (3.5) can be expressed as

M =

√
Ex

2λ2

(
1 + λ2 −

(
1 +

(
λEx′

2Eφ

)2
)

cos2(λKφ)

)
, (3.37)

and we see that whenEx′ ̸= 0, the term cos(λKφ) cannot vanish identically ormwould not

be constant. Since the case sin(λKφ) = 0 was studied in Sec. 3.1.1, we shall further assume
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a non-vanishing sin(2λKφ). We solve the above relation to write

cos2(λKφ) =

(
1 +

(
λEx′

2Eφ

)2
)−1(

1 + λ2 − 2Mλ2√
Ex

)
, (3.38)

and we read, from the vanishing of the diffeomorphism constraint (3.1a),

Kx =
EφK′

φ

Ex′ . (3.39)

The lapse and the shift are given by the vanishing of equations (3.8a) and (3.8b). First, we solve

Ėx = 0 for the shift. Inserting that in Ėφ = 0, we obtain

sin(2λKφ)E
x

(
1 +

(
λEx′

2Eφ

)2
)(

N ′Ex′Eφ +N(Eφ′Ex′ − EφEx′′)
)
= 0. (3.40)

Since all the other factors cannot vanish, we find a first-order differential equation for the

lapse. The general solution is

N =
c4
2

Ex′

Eφ
, (3.41)

for some non-zero constant c4. Then, (3.8a) yields

Nx = ε4c4

√
Ex

Eφ

√
1− 2λ−M√

Ex

√
2M√
Ex

− 1 +

(
Ex′

2Eφ

)2
, (3.42)

where ε4 = − sgn
(

sin(2λKφ)
)

, and we can fix c4 = −1 with no loss of generality.

At this point, all the constraints and the evolution equations are satisfied, and we obtain a

family of line elements in terms of the free functionsEx(x) and Eφ(x):

ds2 =−
(
1− 2M√

Ex

)
dt2 + 2

(
1− 2λ−M√

Ex

)−1/2 Eφ

√
Ex

√
2M√
Ex

− 1 +

(
Ex′

2Eφ

)2

dtdx

+

(
1− 2λ−M√

Ex

)−1 Eφ2

Ex
dx2 + ExdΩ2 . (3.43)

The possible values of xwill be restricted by the specific forms ofEx(x) and Eφ(x), and also

by the condition that all the solutions are real, that is, (3.38) and (3.42) must be real. Observe

that the function Eφ(x) may be absorbed through the change of coordinates Eφ(x)dx = dy,

but it is convenient to keep that freedom to find the most convenient chart. Now, we must

fix the gauge forEx(x) and Eφ(x). Let us present two possibilities.
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Horizon-crossing domains

One of the simplest choices is Ex = x2 and Eφ = x, which, after relabelling (t, x) as (τ̃ , ρ̃),

yields the line element

ds2 = −
(
1− 2M

ρ̃

)
dτ̃2 + 2

√
2M

ρ̃− 2λ−M
dτ̃dρ̃+

(
1− 2λ−M

ρ̃

)−1

dρ̃2 + ρ̃2dΩ2. (3.44)

Besides, we notice that the limit Eφ → 0 of the above family of line elements (3.43) is well-

defined, so taking instead Ex = x2 and Eφ = 0, and relabelling (t, x) as (Ũ , X̃), we obtain

the alternative element

ds2 = −
(
1− 2M

X̃

)
dŨ

2
+ 2

(
1− 2λ−M

X̃

)−1/2

dŨdX̃ + X̃2dΩ2, (3.45)

with Ũ a null coordinate (see next section for more details).

These charts of the domainDEF are the equivalents to Gullstrand-Painlevé and Eddington-

Finkelstein coordinates in GR, respectively. Both cross the surface
√
Ex = 2M , but none of

them includes the points where
√
Ex = 2λ−M .

Thewhole covering domain U

Let us now use the definition of the area-radius functionr :=
√
Ex onM, and use it to denote

Ex in the following. Notice that we already have static (3.14) and homogeneous (3.28) non-

intersecting charts, covering r ∈ (2M,∞) and r ∈ (2λ−M, 2M), respectively. We also found

the complete homogeneous solution (3.35) that describes the region with r ∈ [2λ−M, 2M). In

addition, the two last line elements, (3.44) and (3.45), are valid for r ∈ (2λ−M,∞). Our purpose

is to find a chart covering all the above.

From the family (3.43), it is clear that r = 2λ−M presents divergences. Therefore, to reach

those points we must cancel the diverging terms. Let us try, for instance, to set

Eφ = r(x)

√
1− 2λ−M

r(x)
. (3.46)

In this way, divergences coming from the coefficient of dx2 are removed, but there is still one

possible infinity hidden in the shift. Replacing now (3.46) in (3.42), we find

Nx =

√
2M

r(x)
− 1 +

(
1− 2λ−M

r(x)

)−1

r′(x)2. (3.47)
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In order to remove the divergence at r = 2λ−M , we fix the remaining gauge freedom as

r′(x)2 =

(
1− 2λ−M

r(x)

)
. (3.48)

Now, we relabel (t, x) as (τ, z) and we complete the gauge choice by setting

dr(z)

dz
= sgn(z)

√
1− 2λ−M

r(z)
, with r(0) = r0 := 2λ−M. (3.49)

Defined in this way, r(z) is an analytic function on R, it is even, r(−z) = r(z), it attains its

minimum value r0 at z = 0, and r → |z| as z → ±∞. Note that we employ the usual defini-

tion of the sign function sgn, i.e., sgn(z = 0) = 0. Since the sign function is not differentiable

there, we consider sgn(z)2 = 1 in a distributional sense, so that higher derivatives of r(z) are

continuously defined at z = 0.

In fact, one can integrate (3.49) and define r(z) implicitly as

z =
√
r(z)

√
r(z)− r0 + r0 log

√r(z)

r0
+

√
r(z)

r0
− 1

 , for z > 0. (3.50)

In this chart, the metric reads

ds2 = −
(
1− 2M

r(z)

)
dτ2 + 2

√
2M

r(z)
dτdz + dz2 + r(z)2 dΩ2, (3.51)

and the image of the domain U through the chart ΨU
τz = {τ, z} is the whole real plane, that

is, the ranges of coordinates are (τ, z) ∈ R2. Let us remark that the function r on U , i.e., r :

U → R, is bounded from below by r0 > 0.

3.1.4 Coordinate transformations

We have thoroughly said that different gauge choices on phase space yield the same space-

time geometry, but did not provide yet any specific example. In the next section, we shall

study the global structure of the domain U and compute its Penrose diagram. On the way,

we will explicitly show the diffeomorphisms that relate all the above line elements.

In the meanwhile, and since the forthcoming derivation shall result difficult to tackle, we

perform the change of coordinates from (3.50) to (3.14) in two steps.

First, recall the range of the chartΨEF = {τ̃ , ρ̃}, defined onDEF ⊂ M, is given by ρ̃ > 2λ−M .

If one performs the change (τ̃ , ρ̃) → (τ, z) in (3.44) defined by τ̃(τ) = τ and ρ̃(z) = r(z),
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with r(z) given by (3.49), and taking, for instance, the positive branch so that z is restricted by

z > 0, one obtains (3.51) restricted to the half plane z > 0. The domainDEF is thus isometric

to the subdomain U|z>0, which does not contain r = 2λ−M .

Second, the change {τ̃ , ρ̃} → {t̃, r̃} defined by ρ̃ = r̃ and

t̃ = τ + 2
√
2M
√
r̃ − 2λ−M +

2M√
1− λ−

log

(√
2M

√
1− λ− −

√
r̃ − 2λ−M√

2M
√
1− λ− +

√
r̃ − 2λ−M

)
, (3.52)

which is valid only for ρ̃ = r̃ > 2M , transforms (3.44) into (3.14), and the subdomainDEF |ρ̃>2M

is therefore isometric to DS . As a result, DEF completely covers DS and, in turn, U com-

pletely coversDEF . That is,DS ⊂ DEF ⊂ U .

3.2 Global structure

In this section, we will analyse in detail the spherically symmetric spacetime solution (M, g).

Recall we have a chartΨU
τz = {τ, z}defined over the domainU⊂M, where the line element

is given by (3.51) and the area-radius function r(z) satisfies (3.49). The domainU is foliated by

the level surfaces of τ , which are spacelike hypersurfaces, and we take the unit normal (1.1)

as the representative of the future-pointing direction on U . In these coordinates,

nµ∂µ = −(N∇µτ)∂µ = ∂τ −
√

2M

r
∂z. (3.53)

Looking for the global structure of (U , g), we will first produce appropriate coordinate trans-

formations from (τ, z) to null coordinates so that the metric takes a conformally flat form

on the (τ, z) plane. On the way, we will show that U covers any staticDS , homogeneousDh

and DH , and Eddington-Finkelstein DEF regions. More precisely, the procedure will show

that U contains exactly one globally hyperbolic interior homogeneous domain, isometric to

a region DH , and two static exterior regions, both isometric to a region DS . The study will

end by obtaining the maximal analytic extension of the solution.

Before continuing, we define the relevant subsets of U by taking their restrictions under the

values of the area-radius functionronM. In the following, for any setD ⊂ U , we will also use

the nameD for the image of that domain onR2 under any chart. In addition, we introduce the

auxiliary variableσ, with possible values+1and−1, or just+and−when used as a subindex.

Since r(z) = r(−z), we define two non-intersecting subsets ofD asDσ := D|sgn(z)=σ .

Recall that r0 = 2λ−M by definition. We will use r0 to emphasise that we refer to the positive

lower bound of the area-radius function, but we will keep 2λ−M in the metric.
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First, we define the following subsets of U ,

• E := {r > 2M} ∩ U ,

• Z := {r = 2M} ∩ U ,

• I := {r < 2M} ∩ U ,

• T := {r = r0} ∩ U .

Splitting now the above sets by restricting them under the sign of z, we find

• E = E+ ∪ E−,

• Z = Z+ ∪ Z−,

• I = I+ ∪ T ∪ I−.

We see that I is a connected domain in U , mapped by the chart ΨU
τz to the stripe (−zs, zs)

in R2, with zs being the positive root of r(zs) = 2M . The other two regions, E and Z , are

disconnected, with E+ corresponding to z ∈ (zs,∞), E− to z ∈ (−∞,−zs), Z+ to z = zs,

and Z− to z = −zs. As anticipated by their names, the domainsE and I will correspond to

the “exterior and interior regions of the black hole”, respectively. They are separated by the

null hypersurfaces Z , standing for the horizon, and the connected set T mapped to z = 0

denotes the transition surface that, as we will show, replaces the central singularity.

3.2.1 Radial geodesics

The radial geodesics of the metric (3.51), parametrised as
(
τ(s), z(s)

)
, are determined by

γ = −
(
1− 2M

r(z)

)(
dτ

ds

)2

+ 2

√
2M

r(z)

dτ

ds

dz

ds
+

(
dz

ds

)2

, (3.54a)

E = −
(
1− 2M

r(z)

)
dτ

ds
+

√
2M

r(z)

dz

ds
, (3.54b)

with s the affine parameter, γ = 0, 1,−1 for null, spacelike and timelike geodesics, respec-

tively, and E the conserved quantity associated with the timelike Killing vector field ∂τ (i.e.,

the energy). These two equations may be combined to remove dτ/ds, and obtain

(
dz

ds

)2

= E2 + γ

(
1− 2M

r(z)

)
. (3.55)

In order to find the transformations to null coordinates, we focus on the case γ = 0. When

E ̸= 0, the affine parameter is proportional to the coordinate z, and we choose dz/ds = ε,



68 The effective quantum Schwarzschild black hole

with ε = ±1. The two possible values of ε produce the “outgoing” and “ingoing” geodesic

vectors,

lµ∂µ =

(
1 +

√
2M

r

)−1

∂τ − ∂z, (3.56a)

kµ∂µ =

(
1−

√
2M

r

)−1

∂τ + ∂z. (3.56b)

Observe that lµ∂µ is future-pointing everywhere (nµlµ < 0), whilekµ∂µ is future-pointing on

E (with nµkµ < 0), past-pointing on I (with nµkµ > 0), and it is not defined at r = 2M . In

the case E = 0, dτ/ds cannot be vanishing, and the radial geodesics lie on the horizon (they

are parametrised as z = ±zs). Their tangent vector, ∂τ |r=2M , is null there.

Clearly, null radial geodesics with E ̸= 0 take a finite amount of affine parameter to cross the

interior domain I . It will be further checked (see Sec. 3.3.1) that timelike curves also take a

finite amount of proper time when going from z = zs to z = −zs.

3.2.2 Null coordinates

The affine parametrisation implies that the one-forms associated with lµ∂µ and kµ∂µ are

exact, and we can use the former to define coordinates all over U . With this in mind, we

perform the change (τ, z) → (U,X), defined by dX := dz and

dU := −lµdxµ = dτ +

(
1 +

√
2M

r(z)

)−1

dz. (3.57)

More precisely, the new coordinateU is determined from

∂U

∂τ
= 1, (3.58a)

∂U

∂z
=

(
1 +

√
2M

r(z)

)−1

. (3.58b)

Using now relation (3.49), we find thatU in terms of τ and z reads

U(τ, z) = τ + sgn(z)RU

(
r(z)

)
, (3.59)

where the auxiliary functionRU is the integral

RU (r) =

∫ r

r0

(√
1− 2λ−M

s

(
1 +

√
2M

s

))−1

ds. (3.60)
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Note thatRU vanishes at r0, i.e.,RU (r0) = RU

(
r(0)

)
= 0, and it provides a functionU(τ, z)

that is analytic on the whole plane (τ, z) ∈ R2. We can explicitly perform the above integral,

RU (r) =
4M√
1− λ−

log

(√
λ−

√
r − 2λ−M +

√
2M

√
1− λ−√

r − 2λ−M +
√
r
√
1− λ−

)
(3.61)

+
(√

r − 2
√
2M
)√

r − 2λ−M + 2M(1 + λ−) log

(√
r

2λ−M
+

√
r

2λ−M
− 1

)
.

and check that limr→∞RU (r)/r = 1. Furthermore, RU (r) is strictly increasing. Therefore,

the change of coordinates from (τ, z) to (U,X),

ΦU =
{
X(τ, z) = z, U(τ, z) = τ + sgn(z)RU (z)

}
, (3.62)

provides a diffeomorphism from R2 to R2, and the new chart ΨU
UX = {U,X}, also given by

ΨU
UX = ΦU ◦ΨU

τz is defined all over U . The metric (3.51) in that chart reads

ds2 = −
(
1− 2M

r(X)

)
dU2 + 2dUdX + r(X)2dΩ2, (3.63)

where r(X) is r(z) as given by (3.50), just replacing z byX . This also provides a direct identi-

fication with the line element (3.45), showing that the gauge choices Eφ = 0 andEx = r(x)2,

with r(x) defined in (3.50), yield the metric in the form (3.63). The hypersurfaces of constant

U are clearly null, while those of constantX are timelike onE , null onZ , and spacelike on I .

To produce the Penrose diagram for U , we need to express the metric in the (double) null

chart. Therefore, we need to define a second null coordinate V such that it provides, along

with U , the line element in a conformally flat form. Just as lµdxµ defined U , the one-form

kµdx
µ will define V . However, since it is not defined at r = 2M , we need to analyse each

disjoint domainE+,E−, and I separately.

Exterior domain

We start with the two exterior regions. For eachEσ , we need to construct the diffeomorphism

Φ̂σ : (τ, z)|Eσ → (Uσ, Vσ), where z|E+ = (zs,∞) and z|E− = (−∞,−zs), and Uσ is the

restriction of (3.59) onEσ , that is,Uσ = U |Eσ or, explicitly,

Uσ(τ, z) = τ + σRU (r(z)). (3.64)
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In addition, we define Vσ on eachEσ as

dVσ := −kµdxµ|Eσ = dτ −

(
1−

√
2M

r(z)

)−1

dz|Eσ . (3.65)

We can directly integrate this relation, and we find

Vσ(τ, z) = τ − σR
(E)
V (r(z)), (3.66)

where

R
(E)
V (r) =

∫ (√
1− 2λ−M

r

(
1−

√
2M

r

))−1

dr + CV . (3.67)

A convenient choice of the integration constantCV yields

R
(E)
V (r) =

4M√
1− λ−

log

(√
λ−

√
r − 2λ−M −

√
2M

√
1− λ−√

r − 2λ−M +
√
r
√
1− λ−

)
(3.68)

+
(√

r + 2
√
2M
)√

r − 2λ−M + 2M(2 + λ−) log

(√
r

2λ−M
+

√
r

2λ−M
− 1

)
,

which is analytic and strictly increasing in its domain of definition r ∈ (2M,∞). This can

be clearly seen in (3.67), where the integrand is regular and positive on the whole domain.

The limits limr→∞R
(E)
V (r)/r = 1 and limr→2M R

(E)
V (r) = −∞ are also straightforward to

check. Therefore, each diffeomorphism Φ̂σ maps the half plane r ∈ (2M,∞) ∈ R2 to the

whole real plane, and the images of the charts Ψ̂E
σ = {Uσ, Vσ}, given by Ψ̂E

σ = Φ̂σ ◦ΨU
τz|Eσ ,

cover R2.

Regarding the asymptotic structure, null infinity J is reached as r → ∞ (thus as z → ±∞).

Considering the different orientations of lµ∂µ and kµ∂µ on eachEσ , we find:

• OnE+, J + is reached asU+ → +∞ with fixed V+.

• OnE+, J − is reached as V+ → −∞ with fixedU+.

• OnE−, J + is reached as V− → +∞ with fixedU−.

• OnE−, J − is reached asU− → −∞ with fixed V−.

In addition, spatial infinity i0 is reached as |z| → ∞with fixed τ , i.e., for (U+, V+) → (∞,−∞)

on E+ and for (U−, V−) → (−∞,∞) on E−. Finally, timelike infinities i± are reached as

τ → ±∞ with fixed z, and correspond to (Uσ, Vσ) → (±∞,±∞), respectively.
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Interior domain

We now turn our attention to I . In order to construct the change Φ̂I : (τ, z)|I → (U I , V I),

with z|I = (−zs, zs), we defineU I as the restriction of (3.59) to the domain under considera-

tion,

U I(τ, z) := U |I = τ + sgn(z)RU (r(z)), (3.69)

while we demand V I to satisfy

dV I = kµdx
µ|I = −dτ +

(
1−

√
2M

r(z)

)−1

dz|I . (3.70)

Note the different sign when comparing this expression with (3.65). This choice was taken

because the null vector field kµ∂µ is past-pointing on I . We thus have that

V I(τ, z) = −τ + sgn(z)R(I)
V (r(z)), (3.71)

on I , withR(I)
V (r) given by

R
(I)
V (r) =

∫ r

r0

(√
1− 2λ−M

s

(
1−

√
2M

s

))−1

ds, (3.72)

so that its domain is r ∈ [2λ−M, 2M), and it vanishes at the lower bound, i.e.,R(I)
V (r0) = 0. In

this way, V I(τ, z) is analytic on the whole domain of definition z ∈ (−zs, zs) because

R
(I)
V (r) =

4M√
1− λ−

log

(√
λ−

√
2M

√
1− λ− −

√
r − 2λ−M√

r − 2λ−M +
√
r
√
1− λ−

)
(3.73)

+
(√

r + 2
√
2M
)√

r − 2λ−M + 2M(2 + λ−) log

(√
r

2λ−M
+

√
r

2λ−M
− 1

)

is strictly decreasing, withR(I)
V (r0) = 0 and limr→2M R

(I)
V (r) = −∞.

As one approaches z → ±zs for finite τ , the functionU I remains bounded whileV I diverges

asV I → ∓∞. Also for finite values of τ , the functionU I is bounded, as can be read from the

boundedness ofRU (r)onr ∈ (2λ−M, 2M), and the limitsU I → ±∞correspond toτ → ±∞,

respectively. Therefore, the diffeomorphism Φ̂I maps the stripe z ∈ (−zs, zs) to R, and the

chart Ψ̂I = {U I , V I}, given by Ψ̂I = Φ̂I ◦ΨU
τz|I , thus maps I to the whole real plane.

So far, we have obtained three coordinate changes producing the charts Ψ̂E
σ = {Uσ, Vσ} and

Ψ̂I = {U I , V I}. Each of them maps its corresponding disjoint domain to R2.
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Dropping the indices ofU and V , the metric in all these charts takes the form

ds2 = −
∣∣∣∣1− 2M

r(U, V )

∣∣∣∣ dUdV + r(U, V )2dΩ2, (3.74)

where the area-radius function r(U, V ) is implicitly given by

Uσ − Vσ =σ(RU (r) +R
(E)
V (r))

=σ

{
4M√
1− λ−

[
log
( r

2M
− 1
)
− 2 log

(√
r

2λ−M
− 1 +

√
1− λ−

√
r

2λ−M

)]

+ 2
√
r
√
r − 2λ−M + 4M(2 + λ−) log

(√
r

2λ−M
+

√
r

2λ−M
− 1

)}
, (3.75)

in the exteriorEσ domains, and by

U I + V I = sgn(z)(RU (r) +R
(I)
V (r))

= sgn(z)

{
4M√
1− λ−

[
log
(
1− r

2M

)
− 2 log

(√
r

2λ−M
− 1 +

√
1− λ−

√
r

2λ−M

)]

+ 2
√
r
√
r − 2λ−M + 4M(2 + λ−) log

(√
r

2λ−M
+

√
r

2λ−M
− 1

)}
, (3.76)

in the interior I domain.

Both combinationsRU +R
(E)
V andRU +R

(I)
V satisfy the differential equation

1

2

d(RU +RV )

dr
=

(
1− 2λ−M

r

)−1/2(
1− 2M

r

)−1

(3.77)

on their domains of definition, where we have removed the superindices (E) and (I). It is

straightforward to see that the combinationRU+R
(I)
V is a strictly decreasing function of r on

its domain (2λ−M, 2M), with
(
RU (r)+R

(I)
V (r)

)
|r=2λ−M = 0, and it is thus negative. Therefore,

sgn(U I +V I) = − sgn(z). Conversely,RU +R
(E)
V is strictly increasing on r ∈ (2M,∞), and

its image covers the real line. It is interesting to point out that the above differential equation

defines the tortoise coordinate of the modified geometry, and we conveniently denote

r∗ :=
1

2

(
RU +R

(E)
V

)
, (3.78)

onE , which reduces to the usual tortoise coordinate in the GR limit,

lim
λ−→0

r∗ = r + 2M log
( r

2M
− 1
)
. (3.79)
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3.2.3 Conformal compactification

In this section, we proceed to find a convenient compactification for each of the three charts

Ψ̂E
σ and Ψ̂I by following the standard procedure (see, e.g., Ref. [90]).

Compactification of the exterior domain

For the two exterior regionsEσ , we perform the changes Θσ : {Uσ, Vσ} → {uσ, vσ}, with

Θσ =


uσ = σ arctan exp

[ σ

4M

√
1− λ−Uσ

]
,

vσ = −σ arctan exp
[
− σ

4M

√
1− λ− Vσ

]
 . (3.80)

These maps take R2 to the (open) squaresA+ := {(u+, v+);u+ ∈ (0, π/2), v+ ∈ (−π/2, 0)}
andA− := {(u−, v−);u− ∈ (−π/2, 0), v− ∈ (0, π/2)}, for the corresponding value ofσ. The

metric in each chart ΨE
σ = {uσ, vσ}, given by ΨE

σ = Θσ ◦ Ψ̂E
σ , reads

ds2 =
Γ
(
r(uσ, vσ)

)
cos2 uσ cos2 vσ

duσdvσ + r(uσ, vσ)
2dΩ2, (3.81)

with

Γ(r) :=− 16M2

1−λ−

(
1− 2M

r

)
exp

[
−
√
1− λ−

2M
r∗(r)

]

=− 32M3

(1−λ−)r

(√
1− 2λ−M

r
+
√
1− λ−

)2

exp

[
−
√
1− λ−

2M

√
1− 2λ−M

r
r

]

×

(
1 +

√
1− 2λ−M

r

)−
√

1−λ−(2+λ−)√
2λ−M

r

√
1−λ−(2+λ−)−2

, (3.82)

and where r = r(uσ, vσ) is implicitly determined by

Υ(r) := − exp

[√
1− λ−

2M
r∗(r)

]
= tanuσ tan vσ. (3.83)

It is important to point out that, although we have obtained the functionsΓ(r) andΥ(r)only

on E , definition (3.82), and thus (3.83), can be trivially extended all over U because they are

valid for r ∈ [r0,∞), as it will be shown in the next section. A direct computation yields

ΓΥ =
16M2

1− λ−

(
1− 2M

r

)
, (3.84a)

1 =
√

1− λ−

√
1− 2λ−M

r

Γ

8M

dΥ

dr
. (3.84b)
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Since the functionΓ(r) is always negative, we conclude from (3.84b) thatΥ(r) is a strictly de-

creasing function. In addition, we see in (3.84a) that Υ(2M) = 0. As a result, Υ(r) is positive

for r ∈ [2λ−M, 2M) and negative for r ∈ (2M,∞).

To see the explicit analogy with GR, we take the limit

lim
λ−→0

Γ(r) = −32M3

r
e−r/2M , (3.85)

which yields (3.81) into the usual Kruskal-Szekeres line element of Schwarzschild.

Given relation (3.83), it is easy to see that the sets of constant r have a one-to-one correspon-

dence with the constant values of the product tanuσ tan vσ , which is negative in both exte-

rior regions (r > 2M ) for both σ. The horizon, located at r = 2M , corresponds to the limit

tanuσ tan vσ = 0, that is, to the boundaries uσ = 0 and vσ = 0 of the open squaresA± that

are the image of the charts ΨE
σ given above (see Fig. 3.1).

As done before, we find the following characterisations of the null infinities in terms of (uσ, vσ):

• OnA+, J + corresponds to the segment u+ = π/2.

• OnA+, J − corresponds to the segment v+ = −π/2.

• OnA−, J + corresponds to the segment v− = π/2.

• OnA−, J − corresponds to the segment u− = −π/2.

The spatial infinity i0 is the point (u+, v+) = (π/2,−π/2)onA+ and (u−, v−) = (−π/2, π/2)
on A−. The future timelike infinity i+ is located at (u+, v+) = (π/2, 0) and (u−, v−) =

(0, π/2) onA+ andA−, respectively. The past timelike infinity i− corresponds to (u+, v+) =

(0,−π/2) onA+ and to (u−, v−) = (−π/2, 0) onA−.

Figure 3.1: Penrose diagrams ofE− andE+ through the chartsΨE
σ . The extensions (dotted lines) correspond to

Q− and Q+ , the images of the extended charts ΨVσ (see Sec. 3.2.4).
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On each exterior regionEσ , the full change of coordinates from (τ, z)|Eσ to (uσ, vσ), defined

as Φσ := ΨE
σ ◦ (ΨU

τz)
−1|Eσ = Θσ ◦ Φ̂σ , reads

Φσ =


uσ = σ arctan exp

[√
1− λ−

4M

(
στ +RU

(
r(z)

))]
,

vσ = −σ arctan exp

[√
1− λ−

4M

(
− στ +R

(E)
V

(
r(z)

))]
 . (3.86)

By computing the product of the vector fields ∂uσ and ∂vσ with nµ∂µ, one can check that the

above maps preserve the time orientation. This concludes the construction of the Penrose

diagram for the regions Eσ (see Fig.3.1). Both are asymptotically flat in the sense that their

compactified domainsAσ have the same boundary structure (at infinity) as Minkowski.

As we anticipated at the beginning of the section, it is now straightforward to check that the

change (τ, z)|Eσ → (t̃, r̃), given by

r̃ = r̃(z), (3.87a)

t̃ = τ +
σ

2

(
RU

(
r(z)

)
−R

(E)
V

(
r(z)

))
, (3.87b)

transforms the line element (3.51), restricted to r > 2M , into (3.14), showing that both E+

andE− are isometric toDS . Therefore, the domain U covers two regions that are isometric

to a static domainDS .

Compactification of the interior domain

We now turn our attention to the interior domain I . A convenient compact form of the chart

Ψ̂I is given by ΘI : (U I , V I) → (ū, v̄) such that

ΘI =

{
ū = tanh

(√
1− λ−

U I

8M

)
, v̄ = tanh

(√
1− λ−

V I

8M

)}
. (3.88)

This map takes the whole real plane that is the image of I under the chart Ψ̂I to the open

squareC := {(ū, v̄); ū, v̄ ∈ (−1, 1)}.

The metric in the chart ΨI = {ū, v̄}, given by ΨI = ΘI ◦ Ψ̂I = ΘI ◦ Φ̂I ◦ΨU
τz|I , is

ds2 = −64M2

1− λ−

(
2M

r(ū, v̄)
− 1

)
1

(1− ū2)(1− v̄2)
dūdv̄ + r(ū, v̄)2dΩ2, (3.89)

with r(ū, v̄) satisfying

−
∣∣∣∣ ū+ v̄

1 + ūv̄

∣∣∣∣ = tanh

[√
1− λ−

8M

(
RU (r) +R

(I)
V (r)

)]
, (3.90)
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Figure 3.2: Penrose diagram of the domain I under the chart Ψ̂I .

and where RU and R(I)
V are given in (3.61) and (3.73), respectively. Let us study some prop-

erties of these coordinates. First, RU (r0) = 0 and R(I)
V (r0) = 0, so the curve r = r0 corre-

sponds to the segment ū + v̄ = 0. Second, sgn(ū + v̄) = sgn(U I + V I) = − sgn(z), and

the curves of constant r ∈ (r0, 2M) satisfy ūv̄ < 1. There are thus two curves of constant

r going from (ū, v̄) = (−1, 1) to (ū, v̄) = (1,−1): one through positive values of ū + v̄ and

the other through negative values of ū + v̄, that is, one for each sign of z. Then, we can take

eachCσ to be the image ofΨI under the corresponding restriction of the sign of z. Explicitly,

ΨI |Iσ : Iσ → Cσ , which are given byC+ = {C | ū+ v̄ < 0} andC− = {C | ū+ v̄ > 0}.

Recall now that as r → 2M , the functionRU remains bounded whileR(I)
V → −∞ for finite

values of τ . This is achieved for a bounded ū and v̄ → − sgn(z), and, as a result, Z+ and Z−

are part of the boundary of C , and correspond to v̄ = −1 and v̄ = +1, respectively, with

ū ∈ (−1, 1). Similarly, the limits τ → ±∞ are located at ū = ±1 (see Fig.3.2).

The full change of coordinates ΦI := ΨI ◦ (ΨU
τz)

−1|I = ΘI ◦ Φ̂I : (τ, z)|I → (ū, v̄), reads

ΦI =


ū = tanh

[√
1− λ−

8M

(
τ + sgn(z)RU

(
r(z)

))]
,

v̄ = tanh

[√
1− λ−

8M

(
− τ + sgn(z)R(I)

V

(
r(z)

))]
 . (3.91)

The products of ∂ū and ∂v̄ with the unit normal nµ∂µ are negative on I , showing that these

two vector fields are future-pointing. In other words, ΦI preserves the time orientation.

The coordinate transformation {τ, z}|I → {T ,X} is now given by

r(T ) = r(z) (3.92a)

τ = X − sgn(z)

2

(
RU

(
r(T )

)
−R

(I)
V

(
r(T )

))
(3.92b)



3.2 Global structure 77

with r(T ) given by relation (3.34). More explicitly,

τ =X − 4M√
1− λ−

artanh

√r(T )

2M
cosT

+ 4M
√
1− λ−

√
r(T )

2M
cosT , (3.93a)

z =2λ−M artanh
[√

1− λ− cosT
]
+
r(T ) cosT

2M
√
1− λ−

, (3.93b)

which implies sgn(z) = sgn(cosT ). This diffeomorphism between the stripes z ∈ (−zs, zs)
andT ∈ (0, π)on R2 transforms the metric (3.51) into the form (3.35), showing that the region

I ⊂ U is isometric to a homogeneous domainDH . In addition,Z+,Z−, and T correspond to

z = zs or T = 0, z = −zs or T = π, and z = 0 or T = π/2, respectively.

Finally, the change (τ, z)|Iσ → (T,X) on each interior domain Iσ , which is given by

T = r(z), (3.94a)

X = τ +
σ

2

(
RU

(
r(z)

)
−R

(I)
V

(
r(z)

))
, (3.94b)

brings (3.51), on each Iσ , to the form (3.28). Therefore, I and U cover two interior regions iso-

metric toDh. We must be careful with these transformations because whereas the change

for σ = 1 preserves the time orientation, the change for σ = −1 does not.

3.2.4 Maximal analytic extension

Up to this point, we have constructed the Penrose diagram of the disjoint domainsEσ and I .

On the way, we have shown that bothEσ are isometric to a static domainDS , that each one of

Iσ is isometric to a homogeneous regionDh, and that the connected domain I = I+∪T ∪I−
is isometric to the full homogeneous domainDH . To obtain now the complete diagram for

U , and also its maximal analytic extension, we need to extend the compactified charts ofEσ .

As already commented above, we can do this because Γ(r) and Υ(r), defined in (3.82) and

(3.83), respectively, are valid all over r ∈ [r0,∞). Given their properties,Υ(r) = tanuσ tan vσ

has a solution r(uσ, vσ) for all pairs (uσ, vσ) on R2 that satisfy r ≥ r0. Since Υ(r0) = 1,

then, necessarily, (uσ + vσ)|r=r0 = ±π/2, and since Υ(2M) = 0, we can extend the do-

mains of the charts ΨE
σ across the segments r = 2M in the plane (uσ, vσ). The extended

domains Vσ ⊂M are the preimages of two charts ΨVσ : Vσ → Qσ ⊂ R2, where Qσ =

{(uσ, vσ);uσ, vσ ∈ (−π/2, π/2), |uσ + vσ| < π/2}. The boundaries |uσ + vσ| = π/2 cor-

respond to the points r = r0, as stated above. It turns convenient to define the open tri-

angles Bσ ⊂ Qσ such that B+ := {(u+, v+);u+, v+ ∈ (0, π/2), u+ + v+ < π/2} and

B− := {(u−, v−);u−, v− ∈ (−π/2, 0), u− + v− > −π/2}. This is depicted in Fig. 3.1.
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Now, we need to identify the relevant parts of the extensions of Eσ with some region of I .

In particular, we request that Vσ ∩ I = Iσ , so that the Penrose diagram for U consists of

the conformal diagram for I patched to the exterior part of the diagrams for V+ and V− (see

Fig. 3.4). With exterior we refer to regions where r > 2M . This identification is done through

the diffeomorphisms Λσ : Cσ → Bσ , defined by

Λσ =

{
uσ = σ arctan

(
1 + ūσ
1− ūσ

)σ

, vσ = σ arctan

(
1 + v̄σ
1− v̄σ

)σ}
, (3.95)

where ūσ := ū|Iσ and v̄σ := v̄|Iσ . We now build the charts ΨVσ as ΨVσ(p) = Λσ ◦ ΨI(p) for

any p ∈ Iσ , and, by construction, the coordinate transformations from the charts ΨI |Iσ to

ΨVσ |Iσ are described by Λσ . In this way, the image of Iσ is the correspondingBσ .

Regarding the horizonsZσ , they are clearly included by continuity in the domainsVσ , and we

can extend the chart ΨI to include these sets by mapping them to v̄ = −σ at the boundary

ofC . Defining the diffeomorphismsΛσ as (3.95), plus the relations {vσ = σπ/2 ⇔ v̄σ = −σ},

we see that they are mapped to the corresponding boundaries ofBσ .

Figure 3.3: Penrose diagram of (U , g) (shaded), and the maximal extension (M, g) (outlined). The curves of
constant z and constant τ are drawn in white. The latter denote the hypersurfaces Στ , going from i0 to i0.
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With all the above, we have ended the construction of the Penrose diagram for the domainU ,

depicted in Fig. 3.3, and shown that it covers exactly one homogeneous regionDH and two

static regionsDS .

To end this section, we consider the Kruskal-Szekeres-type extensionsQσ to analytically ex-

tendU to the two domainsVσ . Any such domain constitutes the fundamental domain of the

maximal analytic extension M, which is built following the usual periodic construction. Fi-

nally, given that the boundary of the Penrose diagram forM is completely composed by sets

of the type i0, i±, and J ±, we conclude that M is geodesically complete.

3.2.5 Conformally flat line elements fromphase space

A final consistency check of the model is to see that the above expressions for the metric

solve Hamilton’s equations. With that in mind, let us search for a metric of the form

ds2 = Ψ(u, v)dudv + r(u, v)2dΩ2. (3.96)

In the Hamiltonian formulation, which is based on a 3+1 decomposition, it is convenient to

find instead

ds2 = Ψ(t, x)
(
dt2 − dx2

)
+ r(t, x)2dΩ2, (3.97)

with 2t = u + v and 2x = u − v. Comparing this with (3.7), the above ansatz translates to

Ψ = −N2, r =
√
Ex,Nx = 0, and

Eφ = ε5
√
−Ψ r

√
1− 2λ−M

r
, (3.98)

with ε25 = 1.

The diffeomorphism constraint (3.1a) then fixesKx,

Kx =
Eφ′Kφ

2rr′
, (3.99)

and we use (3.5) to determine Kφ:

cos(λKφ) = ε6

√
1− 2λ−M

r

(
1− λ−

(
1−

(
rr′

Eφ

)2))−1/2

, (3.100)

with ε26 = 1.
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Figure3.4: Sketch of the construction of the conformal diagram of (U , g). We first divide the domainU in subsets
(E and I ) restricted by the values of the area-radius function r. In addition, we further split them under the sign
of the radial coordinate z. We then find the suitable charts that bring E+ , E− , I+ , and I− into a compactified
formA+ ,A− ,C+ , andC− , respectively. Finally, we identify the convenient extended regions ofA+ andA− with
C+ and C−. In this way, we obtain the Penrose diagram as given in Fig. 3.3.
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The evolution equations for Ex and Eφ, namely (3.8a) and (3.8b), restrict the form of these

functions, and we find an expression forΨ in terms ofr and its first-order derivatives, namely,

Ψ(t, x) =

(
1− 2λ−M

r

)−1(
1− 2M

r

)−1
((

∂r

∂t

)2

−
(
∂r

∂x

)2
)
. (3.101a)

When the metric is static, no further restrictions arise, and all the equations of motion are

satisfied. However, when ∂r/∂t ̸= 0, one also finds the condition

∂2r

∂t2
− ∂2r

∂x2
=

(
1 +

λ−

2
− 3λ−M

r

)
2MΓ

r2
. (3.101b)

This allows us to check whether the above line elements (3.74), (3.81), and (3.90) solve Hamil-

ton’s equations.

First, taking x = r∗, and thus ∂r/∂t = 0, we find Ψ = −(1− 2M/r), leading to (3.74) onEσ .

Second, considering Υ(r) = tan(t + x) tan(t − x), with Υ defined in (3.83), we get, from

(3.101a), Ψ = Γ(r) cos−2(t+ x) cos−2(t− x), withΓ given by (3.82), eventually yielding (3.81).

One can check that r(t, x), as implicitly given by (3.84a), and this Ψ(t, x) satisfy (3.101b).

Third, taking r defined by (3.90), one gets (3.89) by following the same procedure as above.

3.3 Geometric properties

In this section we analyse some relevant properties of the spacetime solution (M, g). We

start with a review of its causal structure (Sec. 3.3.1), study the curvature (Sec. 3.3.2), compare

different definitions for the mass (Sec. 3.3.3), and compute the effects on the dynamics of a

test scalar field propagating on the exterior region (Sec. 3.3.4).

3.3.1 Causal structure

The components of the mean curvature vector of the spheres of constant time and radial

coordinates are defined as

Hµ :=
2

r
∇µr =

2

r
gµν∂νr, (3.102)

and they encode all the information regarding the causal structure of each region. In the

chart ΨU
τz = {τ, z}, the mean curvature vector reads

Hµ∂µ = sgn(z)
2

r

√
1− 2λ−M

r

(√
2M

r
∂τ +

(
1− 2M

r

)
∂z

)
. (3.103)
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Notice that the mean curvature vector is identically vanishing at the hypersurface T with

r = 2λ−M , meaning that it is minimal (it has zero extrinsic curvature). More precisely, T has

topology R × S2 with metric ds2 = (λ− − 1)/λ−dτ2 + r20dΩ
2 and, therefore, it is foliated by

totally geodesic surfaces of area 4πr20 > 0. The existence of such a positive minimal area

for the orbits of the spherical symmetry group is the key difference between the spacetime

(M, g) and the Schwarzschild geometry.

We may compute the norm of the mean curvature vector,

HµH
µ =

4

r2

(
1− 2λ−M

r

)(
1− 2M

r

)
, (3.104a)

to see that it is spacelike for r > 2M , timelike for 2λ−M < r < 2M , and null at r = 2M .

Additionally, its product with the unit normal vector,

nµH
µ = − sgn(z)

2

r2

√
1− 2λ−M

r

√
2M

r
, (3.104b)

shows that it is future-pointing for z > 0 and past-pointing for z < 0. Combining (3.104a)

and (3.104b), we deduce that the spheres of constant τ and z are:

• Non-trapped for r > 2M , independently of the sign of z, that is, onE+ andE−.

• Trapped to the future (or just trapped) for r0 = 2λ−M < r < 2M and z > 0, i.e., on I+.

• Trapped to the past (or anti-trapped) for r0 = 2λ−M < r < 2M and z < 0, i.e., on I−.

• Marginally trapped at the apparent horizons r = 2M , that is, on Z+ and Z−.

An additional check of the regularity of this spacetime relies on radial geodesics traversing

the interior homogeneous region in a finite proper time. First, recall that the affine parame-

ter of radial null geodesics is proportional to z (see Sec. 3.2.1), and it is trivial to see that the

amount of affine distance ∆s between the horizons Z+ and Z− is proportional to 2zs. Sec-

ond, for timelike geodesics, let us compute the proper time of a free-falling observer that was

at rest at infinity. That is, we set γ = −1 and E = −1 in (3.54), yielding the equation

dz

ds
= −

√
2M

r(z)
, (3.105)

where we have chosen the minus sign so that z decreases with s. Then, the amount of proper
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time∆s spent to go from r(zs) = 2M to r(−zs) = 2M can be explicitly computed as follows

∆s =

∫ −zs

zs

ds =

∫ zs

−zs

√
r(z)

2M
dz = 2

∫ zs

0

√
r(z)

2M
dz

= 2

∫ 2M

r0

√
r

2M

(
1− 2λ−M

r

)−1/2

dr =
8M

3
(1 + 2λ−)

√
1− λ−, (3.106)

where we have usedr(−z) = r(z) in the third equality and (3.49) in the fourth. The analogous

calculation for Schwarzschild yields a proper time of 4M/3 for an observer to fall from the

horizon to the singularity. The computed proper time ∆s is larger than twice such time.

3.3.2 Curvature

Since the present geometry is free of singularities, from the singularity theorems [30, 31], we

know that some of the eigenvalues of the Einstein tensor become negative in some region of

the trapped black-hole interior I+. In the chart ΨU
τz , the Einstein tensor reads

Gµνdx
µdxν = 4λ−M2

(
r − 2M

r5
dτ2 − 2

√
2M

r9/2
dτdz − r + 2M

2Mr4
dz2 +

r −M

4Mr2
dΩ2

)
. (3.107)

Its eigenvalues at the Lorentzian part (defined by the coordinatesτ andz) areµ0 = −4λ−M2/r4

and µ1 = −2λ−M/r3, with respective eigenvectors vµ0 ∂µ = ∂τ and vµ1 ∂µ =
√

2M/r ∂τ +

(1− 2M/r) ∂z . The moduli of v0 and v1 are (2M/r− 1) and (1− 2M/r), respectively. In the

angular sector, there is a double eigenvalueµθ = λ−M(r−M)/r4. Hence, when interpreting

the Einstein tensor as an effective energy-momentum tensor, one finds that the energy, the

radial pressure, and the angular pressure are, respectively,

ρ(E) := −µ0 =
4λ−M2

r4
, p(E)

r := µ1 = −2λ−M

r3
, and pθ := µθ =

λ−M

r4
(r −M), (3.108a)

on the exterior region r > 2M , and

ρ(I) := −µ1 =
2λ−M

r3
, p(I)r := µ0 = −4λ−M2

r4
, and pθ := µθ =

λ−M

r4
(r −M), (3.108b)

on the interior region r0 ≤ r < 2M . The energy conditions for such an anisotropic fluid read:

• Null energy condition: ρ+ pr ≥ 0 and ρ+ pθ ≥ 0.

• Weak energy condition: ρ+ pr ≥ 0, ρ+ pθ ≥ 0, and ρ ≥ 0.

• Dominant energy condition: ρ ≥ |pr| and ρ ≥ |pθ|.

• Strong energy condition: ρ+ pr ≥ 0, ρ+ pθ ≥ 0, and ρ+ pr + 2pθ ≥ 0.
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Therefore, all the effective energy conditions are violated both inside and outside the horizon.

It is straightforward to check this statement by computing

ρ+ pr = ρ− |pr| = −2λ−M

r4
|r − 2M | , (3.109)

which is always negative except at r = 2M , where it vanishes. This is because the Ein-

stein tensor has a double eigenvalue along the null direction ∂τ |r=2M , given by µ0|r=2M =

µ1|r=2M = −λ−/(4M2). Since µθ|r=2M > 0, all the effective energy conditions are satisfied

on the horizon. In addition, they are also fulfilled at infinity (but not in a neighbourhood) be-

cause the four eigenvalues decay at least as O(1/r3).

The relevant curvature scalars are the Ricci scalar,

R =
6λ−M2

r4
, (3.110)

and the only non-vanishing component of the Weyl tensor, the “Coulomb” term

Ψ2 = −M
r3

(
1 +

λ−

2

)
+

5λ−M2

2r4
, (3.111)

in the usual null frame adapted to the spherical symmetry.

Note that both R and Ψ2 are bounded from above because r ≥ r0 and, in particular, the

Ricci scalar is everywhere positive. It attains its maximum at r = r0, with the value R|T =

3/(8λ−3M2).

To compare with the Schwarzschild geometry, we compute the Kretschmann scalar,

RµνσρRµνσρ =
48M2

r6

(
1 + λ− − 5λ−M

r

)
+

24λ−2M2

r6

(
1− 16M

3r
+

27M2

2r2

)
, (3.112)

which is also always positive and reaches its maximum value at the critical surface T .

3.3.3 Mass

We have referred toM as the mass of the model for it being a constant of motion and because

it is the Schwarzschild mass in the GR limit. Nevertheless, infinitely many combinations of

M and r0 satisfy such requirements. Hence, a more comprehensive analysis of some usual

notions of mass turns out mandatory in order to attain a proper understanding of both con-

stants. Certainly, there is not a unique concept of mass in GR [91–93], and one finds several

geometric definitions, both local and global, that we now compute for the spacetime (M, g).
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Komarmass

The Komar mass is defined in any exterior region r > 2M , and can be intuitively understood

as a quantity proportional to the force an observer at infinity should exert to keep a test par-

ticle in place.

Since this geometric notion is only defined for the exterior static regions, we may employ the

line element (3.14) to compute the Komar mass on any sphere of radius r̃ = r|E > 2M and

time t̃, as specified in Ref. [81].

For that purpose, we need to consider the vectors normal to the surfaces of constant t̃ and r̃.

They are just the metric conjugates to dt̃ and dr̃, that is, t̃µ∂µ and r̃µ∂µ, respectively.

Then, the Komar mass reads

MK :=
1

4π

∫
S

t̃µ√
−t̃ρt̃ρ

r̃ν√
r̃σ r̃σ

∇µt̃ν dS, (3.113)

and, in this particular case, it takes the form

MK(r̃) = r̃2
√

1− 2λ−M

r̃
t̃µr̃νgνα∇µt̃

α = r̃2
√
1− 2λ−M

r̃
t̃µr̃νgνα

(
∂µt̃

α + Γα
µβ t̃

β
)

= r̃2
√

1− 2λ−M

r̃
g11Γ

1
00 =M

√
1− 2λ−M

r̃
. (3.114)

The explicit dependence of MK on the area-radius function descends from Rµν not being

zero, and more precisely from its part normal to the spheres S2. It is interesting to point out

that the limit for large radii tends to the constantM , that is,

lim
r→∞

MK(r) =M. (3.115)

We may also compute the surface gravity, κ, defined on each component Zσ of the horizon,

κτµ := τν∇ντ
µ, with the Killing vector field τµ∂µ. This yields

κ =
σ

4M

√
1− λ−. (3.116)

Note that the usual relation |κ| = r−2MK |r=2M is satisfied [81]. In the limit λ− → 1, which

represents the maximum departure of the effective model from GR, one would get a vanish-

ing surface gravity, in analogy with the extremal Reissner-Nordström spacetime. However,

this limit is out of the scope of the present model since, by definition, λ− < 1.
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Hawkingmass

The Hawking mass — or, equivalently in spherical symmetry, the Misner-Sharp mass — shall

be computed on any sphere of radius r ≥ r0. It is given by

MH(r) :=
r

2

(
1−∇µr∇µr

)
=
r

2

(
1− r2

4
HµH

µ

)
=M

(
1 + λ− − 2λ−M

r

)
, (3.117)

which is always positive and, further, monotonically increasing. The minimum is attained at

MH |T := lim
r→r0

MH(r) =Mλ−. (3.118)

In addition, note that the Hawking mass coincides withM at the horizon,

MH |Z := lim
r→2M

MH(r) =M. (3.119)

Besides, it is interesting to point out the following relation between the values of the Hawking

mass evaluated at different points,

MH |i0 =MH |Z +MH |T . (3.120)

It should be remarked that the Komar and Hawking masses coincide in GR. But, since the

spacetime (M, g)does not satisfy Einstein’s equations, that is no longer true. In fact, we have

checked that a non-vanishing Ricci tensor in vacuum affects both masses in a different way.

ADMmass

The Arnowitt-Deser-Misner (ADM) mass is defined on any spacelike hypersurface. First, we

consider the slicing generated by constant values of the time coordinate t̃ on any exterior

region described by the line element (3.14). It is clear that the corresponding slices Σt̃ have

topology (2M,∞)×S2, while their metric is given bydσ2
t̃
= (1−2λ−M/r̃)−1(1−2M/r̃)−1dr̃2+

r̃2dΩ2. The Ricci scalar of these slices, (3)Rt̃ = 8λ−m2/r4, is integrable and, since they have

vanishing extrinsic curvature, they satisfy the proper fall-off conditions for asymptotic flat-

ness. Thus, the ADM mass is a geometric invariant [93], and it corresponds to the Hawking

mass at i0 [92],

M
(t̃)
ADM ≡MH |i0 := lim

r→∞
MH(r) = (1 + λ−)M. (3.121)

Second, we study the slicing of constant τ onU . The hypersurfacesΣτ ∼ R×S2 start and end

on i0 (see Fig. 3.3), and their metric is dσ2τ = dz2+r(z)2dΩ2. Despite having a vanishing Ricci

scalar, (3)Rτ = 0, these hypersurfaces do not satisfy the conditions for being asymptotically

flat (their extrinsic curvature goes as r−3/2 at infinity), and, therefore, their ADM mass will not
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be the limit of the Hawking mass. Note that in the GR limit these hypersurfaces are defined

by a constant time in Painlevé-Gullstrand coordinates. In that case, they are flat [94], and,

hence, have zero ADM mass.

To compute explicitly M (τ)
ADM , we express the metric of the hypersurfaces Στ in asymptoti-

cally Euclidean coordinates, i.e.,

dσ2τ = dz2 + r(z)2dΩ2 = Ψ(ρ)2(dρ2 + ρ2dΩ2) = Ψ2δijdx
idxj , (3.122)

with ρ2 = δijx
ixj and Ψ2 = 1 + O(1/ρ). A direct inspection shows that sgn(z)dz = Ψdρ

and r = Ψρ, from where

dρ

ρ
= sgn(z)

dz

r(z)
= sgn(z)

dr

r(z)

(
dr

dz

)−1

=

(
1− 2λ−M

r

)−1/2dr

r
. (3.123)

We can integrate this equation and write r(ρ) = 2λ−M (1 + cρ)2 /(4cρ), with an integration

constant c. Then, the conformal factor reads

Ψ =
r

ρ
=
λ−M

2cρ2
(1 + cρ)2 , (3.124)

and, due to the required fall-off conditions, we find c = 2/(λ−M), i.e.,

Ψ =

(
1 +

λ−M

2ρ

)2

= 1 +
λ−M

ρ
+O

(
ρ−2
)
. (3.125)

Making use of the Cartesian coordinates xi, the ADM mass reads

MADM :=
1

16π
lim
ρ→∞

∮
S

∑
i,j

(
∂qij
∂xj

− ∂qjj
∂xi

)
nidS, (3.126)

with qij = Ψ2δij , ni = xi/(Ψρ) and
∮
S dS = 4πΨ2ρ2. The integrand vanishes for i = j and,

therefore,

MADM = −1

2
lim
ρ→∞

Ψ2ρ2
∑
i

∂Ψ2

∂ρ

∂ρ

∂xi
xi

Ψρ
= − lim

ρ→∞
Ψ2ρ2

∂Ψ

∂ρ
, (3.127)

with the additional 2 factor coming from the fact that one needs to sum over i ̸= j . In the

last step, we used the relations ∂ρ/∂xi = xi/ρ and
∑

i(x
i/ρ)2 ≡ 1. Replacing in the last

expression the form of the conformal factor (3.125), one finally gets

M
(τ)
ADM = λ−M. (3.128)
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Gerochmass

Recall that the Hawking mass (3.117) on some closed co-dimension two-surfaceS inM (which

we take to be the orbits of the spherical symmetry group) depends only on the module of the

mean curvature vector. Then, assuming S can be embedded in a spacelike hypersurface Σ,

the Hawking mass can be rewritten as

MH(r) =
r

2

(
1− r2

4

(
k2 −K2

))
, (3.129)

where k andK stand for the traces of the respective extrinsic curvatures of S on Σ and of Σ

on M. The Geroch energy thence provides a positive lower bound for the Hawking mass,

MG(r) :=
r

2

(
1− r2

4
k2
)

≤MH(r). (3.130)

Since the hypersurfaces Σt̃ are minimal (Kabdx
adxb = 0), the Geroch and Hawking masses

coincide. It is more interesting to consider those spheres embedded inΣτ , which have metric

r(z)2dΩ2 and extrinsic curvature r(z)r′(z)dΩ2. Then, k = 2r′(z)/r(z) and

M
(τ)
G = λ−M, (3.131)

that is, one obtains a constant Geroch energy, which is equal to the ADM mass of Στ . Most

remarkably, the Geroch mass being a quasi-local quantity, it does not depend on global prop-

erties (for instance, the asymptotic behaviour) of the specific hypersurfaceΣ. For that reason,

a constantM (τ)
G provides a quasi-local characterisation of λ−M , playing an analogous role to

that ofM on the asymptotically flat hypersurfaces in Schwarzschild.

Additional remarks

The most important aspect to highlight from this section is that, regardless which notion of

mass one considers, the mass has the same exact value in all exterior regions of the maximal

extension M. Of course, this means there is no mass (de)amplification when crossing the

transition surface T .

In addition, all spacelike slicings in M share the same topology R × S2. This applies, in par-

ticular, to the level surfaces of the function τ on U that cross the transition hypersurface T ,

as opposed to other nonsingular black-hole constructions [32, 95, 96].

We have thoroughly said that the constant λ− measures the departure of the effective theory

from GR. With the different definitions of mass, we have also found several characterisations

(both global and quasi-local) for that parameter.
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For instance, one can write

λ− = lim
r→∞

MH

MK
− 1. (3.132)

An equivalent and interesting result is that the minimum area of the orbits of the spherical

symmetry, r0, is just twice the difference between the Hawking and the Komar masses:

r0 = 2 lim
r→∞

(
MH −MK

)
. (3.133)

As a final consistency check, one can see that if Einstein’s equations are satisfied, the right-

hand side in the last two equations vanishes and, thus, λ− and r0 are necessarily zero in GR.

3.3.4 Measurable imprints

Although the transition surface T is always inside the horizon, the effective theory modifies

the spacetime at every point. Of course, that is due to the non-vanishing of the Ricci tensor

and, as we explicitly showed in the previous section, it leaves traces in the asymptotic regions.

Therefore, quantum corrections are measurable by an observer outside the black hole, and

thus the model is testable; that is, future observations could, in principle, constrain the actual

value of λ−.

One may consider additional test fields propagating on this background spacetime to read

deviations from the Schwarzschild geometry. Let us consider the particular simple example

of a massless scalar field. Its dynamics is given by the Klein-Gordon equation,□Φ = 0, which

using the coordinates t̃ and r∗ (3.78) in some exterior regionDS can be expressed as

∂2ψl

∂r2∗
− ∂2ψl

∂t̃2
= V (r(r∗))ψl, (3.134)

where the scalar field has been decomposed in spherical harmonics,

Φ(t̃, r∗) =
1

r(r∗)

∑
l,m

ψl(t̃, r∗)Ylm(θ, ϕ). (3.135)

The main point here is that the potential term,

V (r) =

(
1− 2M

r

)
l(l + 1)

r2
+

1

r

d2r

dr2∗
=

(
1− 2M

r

)(
l(l + 1)

r2
− R

6
− 2Ψ2

)

=

(
1− 2M

r

)(
l(l + 1)

r2
+

(2 + λ−)M

r3
− 6λ−M2

r4

)
, (3.136)
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differs from that of Schwarzschild. Their difference,

V (r)− VSch(r) = V (r)− V (r)|λ−=0 =
2λ−M

r3

(
1− 2M

r

)(
1

2
− 3M

r

)
, (3.137)

is independent of the angular-momentum number l, and thus all the modes are affected in

the same way. In addition, it decays asymptotically asλ−M/r3. Such measurable imprints on

the behaviour of the scalar field are also expected for more general fields.

3.4 Limiting spacetimes

As already shown in the previous chapter, the caseλ− = 0 corresponds to GR. This is trivial on

phase space, where the Hamiltonian (3.1) reduces to its GR form (1.42b) as λ− → 0. But here

we explicitly show that the limit λ− → 0 of (M, g) also corresponds to the Schwarzschild

spacetime.

Furthermore, Minkowski is theM = 0 limit of the spacetime (M, g), just in the same way as

it is the limit of Schwarzschild in GR.

Schwarzschild

When λ− = 0, the minimum for the area-radius r0 is zero by definition. Conversely, λ− = 0 is

required for an identically vanishing Ricci tensor. Thus, λ− = 0 if and only if the spacetime

solves the vacuum Einstein equations in spherical symmetry, and the limit λ− → 0 of the

spacetime (M, g) is clearly the Schwarzschild solution with massM .

Checking this statement in the regions not including the transition surfaceT is trivial, as one

can directly set λ− = 0.

For the covering domain U , however, one should note that (3.50) reduces to r(z) = |z| when

λ− = 0, and that equation is no longer differentiable at z = 0. Then, r(0) is ill-defined. But, fur-

thermore, the area-radius function now reaches r = 0, where the curvature diverges. There-

fore, the transition hypersurface T emerges as the Schwarzschild singularity, and we must

split U in two disconnected domains, one for each sign of z. These correspond to two time-

reversed Eddington-Finkelstein-like domains.

Regarding the global structure, the Kruskal-type “building blocks” are now the maximal an-

alytic extension of the spacetime, which is no longer geodesically complete.
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Minkowski

The limit M → 0 implies r0 → 0 for any λ−. In view of the above, the limit M → 0 of the

spacetime (M, g) corresponds to that of Schwarzschild. But, in addition, we see that the limit

M → 0 holds for any value of the polymerisation parameter, and thus Minkowski is always

a solution of the effective Hamiltonian model.





4
Regular Charged Black Holes
in Cosmological Backgrounds

In my experience, milady, we can never get back to
exactly where we started, no matter how hard we try.

Cetaganda
by Lois McMaster Bujold.

Simple matter models with no local of freedom are of great relevance in general relativity,

and the historical and conceptual importance of the exact solutions of Reissner-Nordström

and Kottler are beyond any doubts. Although in effective theories of loop quantum gravity

these spacetimes are usually regarded as intermediate steps between modified Schwarzs-

child-like and collapsing models, and they are rarely studied, a comprehensive analysis of

these solutions may well give insight into the limits and validity of holonomy corrections.

In general relativity, the incorporation of charge or a cosmological constant changes the glo-

bal structure of the spacetime. The former may introduce an inner Cauchy horizon inside

the black-hole horizon. The latter prevents the spacetime from being asymptotically flat, and

may also generate additional (cosmological) horizons. It is remarkable that, in both cases, the

singularity at the center is always present. In this chapter, we will analyse in detail the effects

of holonomy corrections for charged black holes embedded in cosmological (anti-)de Sitter

backgrounds, extending the previous results in vacuum and checking whether singularity

resolution remains a strong prediction of the effective theory.

After a brief review of the Hamiltonian formulation of these models in GR (Sec. 4.1), we obtain

the metric in different charts for the corresponding gauge choices on phase space in Sec. 4.2.

The effective theory does not show a direct resolution of singularities, and we devote Sec. 4.3

to find the ranges of the parameters of the model in which the singularity is avoided. Finally,

in Sec. 4.4 we study the global structure of the singularity-free spacetimes, and compute their

corresponding conformal diagrams. All figures in this chapter were published in Ref. [6].
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4.1 Non-dynamical scalar fields

The cosmological constant Λ may be thought of as a non-dynamical scalar field, and it only

contributes with a potential term of the form V = Λ/2 to the Hamiltonian constraint. Nev-

ertheless, as already mentioned above, it drastically changes the asymptotic structure of the

spacetime and also its horizon structure.

Coupling a Maxwell field is a bit more complicated. However, we will show that, in the end, its

contribution is also in the form of a non-dynamical spherical scalar field. Electromagnetism

is described in terms of the vector potential, which has only two non-trivial components,A0

andAx, in spherical symmetry. The former is not a dynamical variable because its conjugate

momentum, p0, is identically vanishing, and thus defines a primary constraint. This fact de-

scends directly from the antisymmetry of the electromagnetic field tensor, Fµν = 2∂[µAν].

Hence, a spherical electromagnetic field is described by a single pair of conjugate variables,

{Ax(x1), p
x(x2)} = δ(x1 − x2). (4.1)

The contributions of the electromagnetic field to the constraints are [72]

Dem[Nx] =

∫
NxDemdx =

∫
NxAx(p

x)′dx, (4.2a)

Hem[N ] =

∫
NHemdx =

∫
N

(
Eφ(px)2

2(Ex)3/2
− (px)′A0

)
dx. (4.2b)

SinceA0 only appears in this last component, and knowing that the total Hamiltonian is the

sum of the vacuum part and the matter contribution, it is straightforward to see that the

conservation of the primary constraint p0 = 0 leads to

Gem :=
1

N
{p0,Hem[N ]} = (px)′ ≈ 0, (4.3)

which is the electromagnetic Gauss constraint. LetGem[β̃] =
∫
β̃Gemdx be its smeared form.

Since there are three first-class constraints, and only three pairs of conjugate variables, there

are no propagating degrees of freedom. In addition, the matter contribution decouples from

the vacuum part and it is possible to fix the gauge for the electromagnetic variables with no

loss of generality. Since the vacuum part of the constraints does not have any dependence

on the matter variables (that is, the matter contribution is decoupled), the equations for the
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pair (Ax, p
x) read

Ȧx = {Ax,Hem[N ] +Dem[Nx] +Gem[β +A0N −AxN
x]} =

NEφpx

(Ex)3/2
− β′, (4.4)

ṗx = {px,Hem[N ] +Dem[Nx] +Gem[β +A0N −AxN
x]} = Nx(px)′, (4.5)

where we have trivially absorbed in the Lagrange multiplier ofGem all the coefficients of (px)′

coming from (4.2). We immediately see that the second equation is proportional to the Gauss

constraint, and, hence, px is a conserved quantity. More precisely, it denotes the charge of the

spacetime,

Q := px. (4.6)

This solution strongly enforces the Gauss constraint, and any gauge-fixing condition of the

form Ax = Φ(px,Kx,Kφ, E
x, Eφ) provides the Lagrange multiplier β through the conser-

vation of that condition, Ȧx = Φ̇. Since neitherAx norβ appears in the remaining equations

of motion, their specific forms do not affect the evolution of the geometric variables, which

are thus insensitive to such a partial gauge fixing. This partial gauge fixing makes the elec-

tromagnetic diffeomorphism constraint identically vanishing while its contribution to the

Hamiltonian constraint is simplified to only one term of the formNEφQ2/(2(Ex)3/2).

Therefore, both sources (the cosmological constant and the charge) can be described simul-

taneously by the addition of

Hm =
1

2

√
ExEφ

(
Λ +

Q2

(Ex)2

)
(4.7)

to the Hamiltonian constraint, and both can be thus understood as a potential term for a

non-dynamical scalar field in this spherically symmetric configuration [see (1.46a)]. There-

fore, these matter components are included in the analysis performed in Chapter 2, and the

results obtained there apply [see (2.105)]. That is, the effective spherically symmetric model

with holonomy corrections including charge and a cosmological constant is described by the

following diffeomorphism and Hamiltonian constraints:

D = −KxE
x′ +K′

φEφ, (4.8a)

H = − Eφ

2
√
1 + λ2

√
Ex

(
1 +

sin2 (λKφ)

λ2

)
−
√
ExKx

sin (2λKφ)√
1 + λ2λ

(
1 +

(
λEx′

2Eφ

)2)
(4.8b)

+

(
(Ex′)2

8
√
ExEφ

−
√
Ex

2Eφ2
Ex′Eφ′ +

√
Ex

2Eφ
Ex′′

)
cos2 (λKφ)√

1 + λ2
+

√
ExEφ

2
√
1 + λ2

(
Λ +

Q2

(Ex)2

))
.
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that satisfy the algebra (2.106), with the everywhere non-negative structure function (2.107).

Recall that λ− := λ2/(1 + λ2) is a constant taking values in (0, 1), with λ− → 0 corresponding

to GR, and that the mass functionm, c.f., (2.108), although no longer constant, is still a scalar

function that simplifies some computations. In particular, due to the spherical symmetry,m

will be a sole function ofEx. The metric constructed from the effective Hamiltonian is

ds2 = −N2dt2 +

(
1− 2λ−m√

Ex

)−1
(Eφ)2

Ex

(
dx+Nxdt

)2
+ ExdΩ2, (4.9)

withN(t, x),Nx(t, x),Ex(t, x), Eφ(t, x), andm(t, x) satisfying the two constraint equations,

D = 0 and H = 0, plus the four first-order Hamilton equations

Ėx ={Ex, D[Nx] +H[N ]} = NxEx′ +N
√
Ex

sin(2λKφ)

λ
√
1+λ2

(
1 +

(
λEx′

2Eφ

)2)
, (4.10a)

Ėφ ={Eφ, D[Nx] +H[N ]} = (NxEφ)′ + 2N
√
ExKx

cos(2λKφ)√
1+λ2

(
1 +

(
λEx′

2Eφ

)2)

+N
sin(2λKφ)

λ
√
1+λ2

(
Eφ

2
√
Ex

+
λ2

2

(
Ex′

2Eφ

(√
Ex
)′

+
√
Ex

(
Ex′

Eφ

)′))
, (4.10b)

K̇x ={Kx, D[Nx] +H[N ]} = (NxKx)
′ +N ′′

√
Ex cos2(λKφ)

2
√
1+λ2Eφ

+
NEφ(Λ− 3Q2/(Ex)2)

4
√
1 + λ2

√
Ex

+
N ′√Ex

2
√
1+λ2Eφ2

(
λ sin(2λKφ)

(
Ex′Kx − 2EφK′

φ

)
+ cos2(λKφ)

(
EφEx′

2Ex
− Eφ′

))

+
N√
1+λ2

(
Eφ(sin2(λKφ) + λ2)

4λ2Ex3/2
+

cos2(λKφ)

4
√
ExEφ

(
Ex′′ − (Ex′)2

4Ex
− Ex′Eφ′

Eφ

)

− Kx sin(2λKφ)

2λ
√
Ex

(
1 +

(
λEx′

2Eφ

)2
)

−

[
sin(2λKφ)

λ
√
Ex

2Eφ2
D

]′)
, (4.10c)

K̇φ ={Kφ, D[Nx] +H[N ]} = NxK′
φ +N ′

√
ExEx′

2Eφ2

cos2(λKφ)√
1+λ2

−N
sin2(λKφ) + λ2

2λ2
√
Ex

√
1+λ2

+
N(Ex′)2 cos2(λKφ)

8
√
1+λ2

√
ExEφ2

− Nλ
√
ExEx′ sin(2λKφ)

2
√
1+λ2Eφ3

D +
N
√
Ex(Λ +Q2/(Ex)2)

2
√
1 + λ2

. (4.10d)

By construction,Ex is defined over the whole positive real line. However, the possible values

that it can attain will be, in general, restricted as we will find forbidden ranges for the scalar

Ex where F would be negative. The critical values
√
Ex = 2λ−m for which F vanishes, and

which are only attainable for positivem, will denote the boundaries of the allowed regions.

We will show this by solving the above equations of motion.
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Let us recall that, in order to follow the standard notation, we will use r :=
√
Ex when con-

venient. That is, the scalarEx, as a function on the manifold, is the square of the area-radius

function. We will also see that the charge and the cosmological constant appear in the met-

ric just in the same way as in GR, that is, we could take the vacuum solution in Chapter 3 and

simply replaceM bym(r). However, let us explicitly derive the solution of the equations of

motion in certain gauges, leading to the corresponding charts and domains for the metric

tensor.

4.2 The spacetime solutions

As in the vacuum case, the charts of the spacetime solutions are composed by two coordi-

nates on the spheres S2, which we do not specify, and two coordinates on the Lorentzian

space L2 orthogonal to the spheres, corresponding to the pair (t, x), which we shall conve-

niently rename as functions on the manifold for each gauge choice on phase space.

Knowing beforehand that the spacetime will be composed by static and homogeneous re-

gions, we suggest one gauge choice for each. Further, we will show that these non-overlapping

domains are part of the same spacetime by considering a third gauge that includes the hori-

zons and thus overlaps with both kinds of regions. Finally, we also study the near-horizon

geometries. These particular solutions are free of singularities in GR and also in this effec-

tive model.

4.2.1 Static regions

We partially fix the gauge freedom by choosing Ėx = 0 and sin(λKφ) = 0, and assume that

Ex′ does not vanish identically. This means that Nx = 0 necessarily, and the vanishing of

the diffeomorphism constraint further demandsKx = 0. The remaining equations are

0 = Ėφ, (4.11a)

0 = K̇x =
N

2
√
1 + λ2

√
Ex

((
Ex′

2Eφ

)′
− (Ex′)2

8ExEφ
+

Eφ

2

(
1

Ex
+ Λ− 3

(
Q

Ex

)2
))

+

(
N ′√Ex

2
√
1 + λ2Eφ

)′

, (4.11b)

0 = K̇φ =
N ′√ExEx′

2
√
1 + λ2Eφ2

− N

2
√
1 + λ2

√
Ex

(
1−

(
Ex′

2Eφ

)2
)

+

√
ExN

2
√
1 + λ2

(
Λ +

(
Q

Ex

)2
)
, (4.11c)
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0 = H =
1√

1 + λ2

[
− Eφ

2
√
Ex

+
1

2

(
Ex′

2Eφ

(√
Ex
)′

+
√
Ex

(
Ex′

Eφ

)′
)

+
1

2

√
ExEφ

(
Λ +

(
Q

Ex

)2
)]

. (4.11d)

The last equation can be solved for Eφ, yielding

Eφ = ε1
Ex′

2

(
1− 2M√

Ex
+
Q2

Ex
− Λ

3
Ex

)−1/2

, (4.12)

with ε21 = 1 andM ∈ R an integration constant. The range ofEx is thus restricted so that the

radicand above is positive. This solution automatically satisfies (4.11a), and integrating now

(4.11c), we obtain the lapse up to a trivial non-zero constant:

N = c1

(
1− 2M√

Ex
+
Q2

Ex
− Λ

3
Ex

)1/2

. (4.13)

With all this, equation (4.11b) is satisfied. As a result, the gauge will be completely fixed by

prescribingEx(x). The easiest choice would be
√
Ex(x) = x, yielding a line element of the

form (3.14), upon the identification (t, x) → (t̃/c1, r̃) and the substitutionM → m(r̃), with

m as defined below in (4.16).

Although the novel pole at r̃ = 2λ−m(r̃) is of little relevance as it is not included in such static

regions (note that r̃ > 2m implies, necessarily, r̃ > 2λ−m), it is convenient to try a different

Ex(x) so that the explicit pole is removed. We do so by fixing

(Ex′)2 = 4Ex

(
1− λ−

(
2M√
Ex

− Q2

Ex
+

Λ

3
Ex

))
. (4.14)

Renaming
√
Ex =: r, and (t, x) as the pair of real functions (T/c1, z) on M, the metric is

ds2 = −

(
1−

2m
(
r(z)

)
r(z)

)
dT 2 +

(
1−

2m
(
r(z)

)
r(z)

)−1

dz2 + r(z)2dΩ2. (4.15)

In terms of the scalar r, the functionm defined in (2.108) takes the form

m(r) :=M − Q2

2r
+

Λ

6
r3. (4.16)

After the above relabelling, equation (4.14) implicitly defines r(z) as

(
dr(z)

dz

)2

= 1−
2λ−m

(
r(z)

)
r(z)

. (4.17)
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These coordinates are valid for all T ∈ R, while z is restricted by those values that satisfy

2m
(
r(z)

)
< r(z) and also, by construction, by r(z) > 0. Once 2m

(
r(z)

)
< r(z) holds, we

have 2λ−m
(
r(z)

)
< r(z) (because λ− < 1) and, hence, the right-hand side of equation (4.17) is

always positive in this domain.

4.2.2 Homogeneous regions

We now consider Ex′ = 0 and Eφ′ = 0, with a non-constant Ex. The vanishing of D and

H′ implies K′
φ = 0 and K ′

x sin(2λKφ) = 0, respectively. The second equation means that

K ′
x = 0, because having sin(2λKφ) = 0 would entail either cos(λKφ) = 0 or sin(λKφ) =

0. The former generates an identically vanishing structure function F , with no associated

geometry. The latter requires Ėx = 0because of (4.10a), that is, a constantEx, which collides

with our initial assumption. Now, the radial derivatives of (4.10a) and (4.10b) guarantee that

N ′ = 0andNx′′ = 0, respectively, and we can use part of the remaining gauge freedom to set

Nx = 0. Recall that this can be understood as a coordinate transformation that diagonalises

the metric since the specific form Nx = a(t)x + b(t) ensures the existence of a function y

such that dx+Nxdt = exp(−
∫
a(t)dt)dy.

The remaining equations then read

Ėx = N
√
Ex

sin(2λKφ)

λ
√
1+λ2

, (4.18a)

Ėφ =
N√
1 + λ2

(
2
√
ExKx cos(2λKφ) +

Eφ sin(2λKφ)

2λ
√
Ex

)
, (4.18b)

K̇x =
N

2
√
Ex

√
1 + λ2

(
Eφ

2

(
Λ− 3

(
Q

Ex

)2
)

+
Eφ

2Ex

(
1 +

sin2(λKφ)

λ2

)

−Kx
sin(2λKφ)

λ

)
, (4.18c)

K̇φ =
N

2
√
1 + λ2

(
√
Ex

(
Λ +

(
Q

Ex

)2
)

− 1

2
√
Ex

(
1 +

sin2(λKφ)

λ2

))
, (4.18d)

0 = H =
1√

1 + λ2

(
1

2

√
ExEφ

(
Λ +

(
Q

Ex

)2
)

− Eφ

2
√
Ex

(
1 +

sin2(λKφ)

λ2

)

−
√
ExKx

sin(2λKφ)

λ

)
. (4.18e)

We isolateKx from the last equation,

Kx =
Eφ
(
2λ2ΛEx2 − 2Ex

(
λ2 + sin2(λKφ)

)
+ 2λ2Q2

)
4λEx2 sin(2λKφ)

, (4.19)



100 Regular charged black holes in cosmological backgrounds

and we use (4.18a) to obtain the lapse, i.e.,

N =
λ
√
1 + λ2Ėx

√
Ex sin(2λKφ)

. (4.20)

Inserting this last result in (4.18d) we get, after integration,

sin(λKφ)

λ
= ε2

√
2M√
Ex

− Q2

Ex
+

Λ

3
Ex − 1, (4.21)

with ε22 = 1 and M ∈ R an integration constant. Finally, we plug (4.19) and (4.21) in (4.18b),

and integrate it to obtain

Eφ = c2
√
Ex

√
1− λ−

(
2M√
Ex

− Q2

Ex
+

Λ

3
Ex

)√
2M√
Ex

− Q2

Ex
+

Λ

3
Ex − 1, (4.22)

with some constant c2 ̸= 0. With these relations, all the equations of motion are obeyed. As

in the static regions, the gauge will be completely fixed by choosing
√
Ex(t).

In analogy with the vacuum case, we could consider
√
Ex(t) = t. If we relabelled (t, x)as the

pair of real functions (T,X/c2) onM, the metric would be (3.28) just replacingM withm(T )

as defined in (4.16). The coordinate T would be restricted by 2λ−m(T ) < T < 2m(T ), and

contrary to what happens in the static domains, the explicit pole of the metric at 2λ−m(T )

would restrict the range of T . To remove it and include those surfaces in the analysis, we

make yet another choice of gauge. We fixEx(t) through its derivative by

(Ėx)2 = 4Ex

(
1− 2λ−m(Ex)√

Ex

)
. (4.23)

Renaming
√
Ex(t) =: r(t) and the pair (t, x) as (z, T )1 as real functions onM, the metric in

this chart reads

ds2 = −

(
2m
(
r(z)

)
r(z)

− 1

)−1

dz2 +

(
2m
(
r(z)

)
r(z)

− 1

)
dT 2 + r(z)2dΩ2, (4.24)

with m(r) given in (4.16), and the function r(z) satisfying (4.17). The range of these coordi-

nates is T ∈ R and z constrained by the conditions r(z) > 0 and r(z) < 2m(r(z)), and also

by the domain of existence of the solution of (4.17), i.e., 2λ−m
(
r(z)

)
≤ r(z).

1Mind the order! Note that we use the same names as in the static region above (although in a different order)
just for notational convenience, as it will become clear in the following
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4.2.3 The covering domain

We yet need to find a chart that covers the surfaces r = 2λ−m(r) to look for the global struc-

ture of the solution, so we produce an additional gauge providing a coordinate system that

overlaps static and homogeneous regions.

We partially fix the gauge by requiring Ėx = 0 and Ėφ = 0, and further assumeEx′ does not

vanish identically. From D = 0, we obtain

Kx =
EφK′

φ

Ex′ . (4.25)

We now solve (4.10a) forNx, and introduce it in (4.10b),

EφEx sin(2λKφ)

(
1 +

(
λEx′

2Eφ

)2
)(

N ′Ex′Eφ +N(Eφ′Ex′ − EφEx′′)
)
= 0. (4.26)

The case sin(λKφ) = 0 corresponds to the analysis in Sec. 4.2.1. If cos(λKφ) was zero, the

vanishing of the Hamiltonian constraint would demand Eφ = 0, thus making the metric de-

generate. Hence, we need to enforce the vanishing of the last factor in (4.26), which integrates

to

N =
c3
2

Ex′

Eφ
, (4.27)

for some c3 ̸= 0. Using (4.25) the integration of H = 0 yields

sin(λKφ)

λ
= ε3

(
1 +

(
λEx′

2Eφ

)2
)−1/2

√(
Ex′

2Eφ

)2

−
(
1− 2M√

Ex
− Q2

Ex
+

Λ

3
Ex

)
, (4.28)

with ε23 = 1 and M an integration constant. In terms of the above, the shift isolated from

(4.10a) reads

Nx = ε4c3

√
Ex

Eφ

√
1− λ−

(
2M√
Ex

− Q2

Ex
+

Λ

3
Ex

)

×

√(
Ex′

2Eφ

)2

+
2M√
Ex

− Q2

Ex
+

Λ

3
Ex − 1, (4.29)

where ε4 = − sgn
(

sin(2λKφ)
)

. With this, the last equations, (4.10c) and (4.10d), are satisfied.
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Let us rename the remaining free functions
√
Ex(x) =: r(x) and Eφ(x) =: s(x) so that the

metric reads

ds2 =−
(
1− 2m(r(x))

r(x)

)
dt2 +

(
1− 2λ−m(r(x))

r(x)

)−1(
s(x)

r(x)

)2

dx2 + r(x)2dΩ2

+ 2

(
1− 2λ−m(r(x))

r(x)

)−1/2
s(x)

r(x)

√(
r(x)r′(x)

s(x)

)2

+
2m(r(x))

r(x)
− 1 dtdx, (4.30)

after setting ε4c3 = 1 with no loss of generality. The functionm(r) is defined in (4.16).

Note that, as in the vacuum case, s(x)may be absorbed through a coordinate transformation

dy = s(x)dx. Although several choices are possible, we fix

s =
√
r2 − 2λ−rm(r) (4.31)

to remove explicit divergences in the coefficient of dx2 in the metric. Once again, the gauge

will be completely fixed after choosing the specific form of r(x). Note that the choice of s(x)

introduces explicit poles in the argument of the second square root of the shift (4.29), so we

set

(
r′(x)

)2
= 1− 2λ−m(r(x))

r(x)
. (4.32)

In this way, r(x) is implicitly defined up to its sign. We now rename (t, x) as the pair of real

functions (τ, z) on M. The metric reads

ds2 = −
(
1−

2m
(
r(z)

)
r(z)

)
dτ2 + 2

√
2m
(
r(z)

)
r(z)

dτdz + dz2 + r(z)2dΩ2, (4.33)

with the range of z being the domain of existence of the solution of (4.17) plus the require-

ment m(r(z)) ≥ 0, while τ covers the real line. Note that any hypersurfaces defined by

m
(
r(z)

)
= 0 must be located in static regions because r(z) < m

(
r(z)

)
holds in homoge-

neous regions. Most remarkably, the boundaries r(z) = 2m(r(z)) of the static and homoge-

neous regions that define the horizons are included here. Note that this metric would be the

same as its vacuum analog (3.44) just replacingM bym(r).

In all the three cases above, (4.15), (4.24), and (4.33), the coordinate z can be freely shifted by a

constant, and the allowed intervals of zwill be determined by the zeros of r(z) = 2λ−m
(
r(z)

)
and r(z) = 0, which will be studied in detail in next sections.
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4.2.4 Coordinate transformations

Observe that although the static and homogeneous regions do not overlap, the coordinates

(τ, z) cover them at least partially, and include always the finite boundaries (horizons) of

those regions. Wherem(r) ≥ 0 and 2m
(
r(z)

)
̸= r(z), the change from τ to T , given by

dτ = dT +

(
1−

2m
(
r(z)

)
r(z)

)−1
√

2m
(
r(z)

)
r(z)

dz, (4.34)

is a coordinate transformation from the region2m
(
r(z)

)
< r(z)of (4.33), to any static regions

withm(r) ≥ 0, where (4.15) holds. Besides, that same transformation from the region r(z) <

2m
(
r(z)

)
of (4.33) leads to the whole homogeneous domain where the metric is (4.24). This,

along with the fact thatm(r(z)) = 0 cannot exist in homogeneous regions, proves that the

coordinates (τ, z) cover at least one complete homogeneous region and part of one static

region, depending on whether some surfacem(r(z)) = 0 exists.

4.2.5 Near-horizon geometries

In the starting point of the static and covering domains, we set Ėx = 0, Ėφ = 0, andEx′ ̸= 0.

We now deal with the case in which
√
Ex = ra is a positive constant. In either case, equation

(4.10a) requires sin(2λKφ) = 0. From relation (2.108), the immediate consequence is that

m =
ra
2
. (4.35)

The constraint D = 0 is automatically satisfied and H = 0 provides an equation for ra,

namely

r4aΛ− r2a +Q2 = 0, (4.36)

with two possible solutions:

ra =

√
1±

√
1− 4ΛQ2

2Λ
(4.37)

provided 4ΛQ2 ≤ 1 and Λ > 0. Note that the case Λ = 0 yields ra = |Q|. The case of

vanishingQ also leads to a unique solution, given by ra = 1/
√
Λ.

The above solution also satisfies (4.10d). Further, we can obtain Kx from (4.10b), and, after

introducing it in (4.10c), we find a partial differential equation for the remaining three func-

tions N , Nx, and Eφ. This equation ensures that the reduced two-dimensional Lorentzian
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metric (t, x), explicitly given by

ds2|L2 = −N(t, x)2dt2 +

(
Eφ(t, x)

ra
√
1− λ−

)2 (
dx+Nx(t, x)dt

)2
, (4.38)

is of constant curvature. More precisely, its Gaussian curvature is

k = (1− λ−)

(
Λ− Q2

r4a

)
. (4.39)

To sum up, this gauge choice leads to the spacetimeM = L2 × S2, whereL2 is a Lorentzian

space of constant curvature k and S2 is the sphere of radius ra. These correspond to the so-

called near-horizon geometries [97]. Any consistent choice forN(t, x),Nx(t, x) and Eφ(t, x)

just provides a different chart for these solutions. Let us show three particular choices: the

spatially flat gauge, the symmetric gauge, and the half-null gauge.

Spatially flat gauge

The simplest choice is the diagonal, static, and spatially flat metric withNx = 0, Ṅ = 0, and

Eφ = ra
√
1− λ−. The equation mentioned above reduces to

N ′′ + kN = 0. (4.40)

The general solution clearly depends on the sign of k, and it will have two integration con-

stants, c1 and c2, that can be absorbed by convenient constant shifts on the coordinates. Re-

labelling (t, x) as (T, z), the metric is

ds2 = − sin2(
√
kz)dT 2 + dz2 + r2adΩ

2, (4.41a)

for k > 0, and

ds2 = −|k|−1 sinh2(
√
|k|z)dT 2 + dz2 + r2adΩ

2, (4.41b)

for k ≤ 0. Note that the limit k = 0 defines a flat L2. The coordinate z may take values on

the whole real line when k ≤ 0, and it is restricted to the interval z ∈ (0, π/
√
k) when k > 0.

Most remarkably, the value of ra does not depend on λ−, and the effective modifications only

affect the curvature of the Lorentzian part k by a global constant factor.
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Symmetric gauge

Alternatively, we can considerNx = 0, Ėφ = 0, andN2 = (1−λ−)a2/Eφ2, so that the remain-

ing equation now reads

Eφ′′Eφ − 3Eφ′2 − kEφ4

r2a(1− λ−)
= 0, (4.42)

where we have used (4.36). The general solution is

Eφ = ε5

(
− k

r2a(1− λ−)
(x+ c1)

2 + c2

)−1/2

, (4.43)

with ε25 = 1. Once again, the arbitrary constants c1 and c2 are absorbed by a convenient

rescaling of the coordinates (t, x) → (T, z), and the metric reads

ds2 = −(ϵ− kz2)dT 2 +
1

ϵ− kz2
dz2 + r2adΩ

2, (4.44)

where the range of z is just restricted by ϵ− kz2 > 0.

Half-null gauge

We produce a third gauge that will be useful to understand these geometries as limiting cases

(with degenerate horizons) of the spacetimes above. The choice is Eφ′ = 0,Nx = N2, and

N =
√

1− λ−
ra
Eφ
. (4.45)

The equation for the above variables now reduces to

ËφEφ + (Ėφ)2 = (1− λ−)2
(
1− 2Q2

r2a

)
. (4.46)

The solution for this equation is

Eφ = ε6(1− λ−)

√
1− 2Q2

r2a

√
(t+ c1)2 + c2, (4.47)

with ε26 = 1. Let us rename (t, x) by (Y − c1, ζ), and use (4.36) to express 1 − 2Q2/r2a =

2Λr2a − 1, so that the metric turns to

ds2 = − 1

r2a
(1− 2Λr2a)(1− λ−)(Y 2 + c2)dζ

2 + 2dY dζ + r2adΩ
2. (4.48)

Note that we have left the constant c2, which does not change the geometry but provides dif-

ferent patches [97]. Convenient rescalings of the coordinates allow us to set c2 = {−1, 0, 1}.
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Near-horizon geometries as limits

Let us check that, just as in GR, the near-horizon geometries can be obtained as a limit of

the general family of spacetime solutions. Starting from (4.33), we perform the change of

coordinates (τ, z) → (ζ, Y ), given by

τ =
1

ϵ
ζ, (4.49a)

z = za + ϵY, (4.49b)

where za satisfies r(za) = ra, and ϵ is an arbitrary parameter. If we now expand r
(
z(Y )

)
in ϵ,

i.e., around z = za, and using (4.17), we find

r(z(Y )) = r(za) + r′(za)(z − za) +O((z − za)
2) = ra + σϵ

√
1− λ−Y +O(ϵ2), (4.50)

with σ2 = 1. Recall (4.36) and (4.16), where we need to replace r by r(z(Y )). Further using

(4.51), as specified below, it is a straightforward calculation to insert the above changes in

(4.33) so that the limit ϵ→ 0 yields (4.48) with c2 = 0.

Special cases

We have shown that the near-horizon geometries are achievable through a convenient limit

of the whole family of spacetimes parametrised byM ,Q, and Λ. We now study some partic-

ular cases.

First, readingm(ra) from (4.16) for r = ra, we can obtain

M =
ra
2

+
Q2

2ra
− Λ

6
r3a = ra

(
1− 2

3
r2aΛ

)
, (4.51)

which, along with (4.37), provides a relation between the parametersM ,Q, and Λ. Since nei-

ther of those relations depends onλ−, they are exactly the same as in GR. In particular, ifΛ = 0,

ra =M = |Q| =⇒ k = −1− λ−

r2a
, (4.52)

and, ifQ = 0, which implies necessarily a positive value of Λ,

ra = 3M =
1√
Λ

=⇒ k =
1− λ−

r2a
, (4.53)

which in GR correspond to the Bertotti-Robinson and Nariai spacetimes, that is, to the limits

of Reissner-Nordström and Schwarzschild-de Sitter, respectively.
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For completeness, we include the ultra-extreme case (see Ref. [98]), which can be seen as the

limit where the three horizons coincide, and it is given by

ra =
√
2|Q| = 3

2
M =

1

2
√
Λ

=⇒ k = 0, (4.54)

and also requires Λ > 0.

4.2.6 Curvature invariants

In GR, the family of spherically symmetric solutions of the Einstein-Maxwell equations cou-

pled to a cosmological constantΛhave singularities except the near-horizon geometries and

the maximally symmetric cases with M = 0 and Q = 0, that is, Minkowski (Λ = 0), de Sit-

ter (Λ > 0), and anti-de Sitter (Λ < 0). As expected, the limit λ− → 0 reproduces all these

geometries.

Using the metric in any of the forms (4.15), (4.24), or (4.33), we can compute the Ricci scalar,

R =4Λ

(
1 +

λ−

2

)
+ 2λ−

(
3M2

r4
+
Q2

r4

(
1− 4M

r
+
Q2

r2

)
− Λ

(
4M

r
+Λr2

)
+

4ΛQ2

3r2

)
, (4.55)

and the Kretschmann scalar,

RabcdRabcd =
8Λ2

3
(1 + λ−) +

48M2

r6
− 96MQ2

r7
+

56Q4

r8
(4.56)

− λ−
(
8

3
Λ3r2−152Q6

r10
− 240M3

r7
+
P8(r)

r9

)

+ λ−2

(
20

27
Λ4r4 − 40

27
Λ3r2 +

16

3
MΛ3r +

108Q8

r12
+

324M4

r8
+
P10(r)

r11

)
,

withP8(r) andP10(r) being polynomials of degree 8 and 10 in r, whose specific form is of no

further relevance. Both polynomials depend on the parametersM ,Q, and Λ, but not on λ−.

Therefore, and just as in GR, the curvature diverges if points where r = 0 are reached. More-

over, and in contrast to GR, where the Ricci scalar is always constant, it diverges for all the

cases except forM = 0 andQ = 0. In addition, the Kretschmann scalar diverges faster than

in GR (just compare the inverse powers of r with the case λ− → 0). In addition, note that the

modified model introduces diverging values of the curvature as r → ∞ for all the cases with

Λ ̸= 0, which deviates also from the GR predictions. Therefore, at first sight, the model seems

worse than its GR counterpart.
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For the sake of completeness, we check that the Ricci scalar of the near-horizon geometries

computed from (4.41), and given by

R = 2

(
k +

1

r2a

)
, (4.57)

coincides indeed with (4.55) at r = ra [see (4.37)] using (4.39) and (4.51). Note that in the partic-

ular cases Λ = 0 andQ = 0 this reduces to R = 2λ−/Q2 and R = 4Λ(1− λ−/2), respectively.

This can be also obtained as the direct addition of the curvatures ofL2 and S2 [99].

4.3 Study of singularity resolution

As in GR, non-vanishing values of the mass and the charge make curvature invariants diver-

gent at r = 0. But, in addition, a non-vanishing cosmological constant Λ also produces an

infinite curvature as r → ∞. However, recall now the singularity-resolution mechanism in

vacuum, where curvature divergences were removed by the appearance of a positive lower

bound for the area-radius function (r0), thus making the points r = 0 unreachable. In the

same way, and to avoid the divergences at r → ∞, the existence of a finite maximum (r∞)

will also be necessary in this case.

The appearance of such bounds is not as straightforward as in vacuum, and it heavily relies

on the specific values of the parameters M , Q, Λ, and λ− of the solution. In the following,

we will comprehensively analyse the ranges of these parameters for which singularities are

resolved.

4.3.1 Allowed regions

In addition to r ≥ 0, which is required by construction, the domain of r(z) is restricted by its

defining equation (4.17), which is a nonlinear autonomous differential equation of the form

1

2
(r′)2 + V (r) = 0, (4.58)

with the prime denoting the derivative with respect to the coordinate z. This equation is for-

mally the same as that for the Hamiltonian of a one-dimensional Newtonian particle sub-

merged in the potential V (r) with zero total energy. In this analog model, r would denote

the position of the particle at a certain time z. Since the particle can only move in regions

where V (r) ≤ 0, the roots of the potential define the extremes of r(z). There might be sev-

eral allowed non-overlapping intervals where the lower boundary of each interval is either

a root of V (r) or 0. Correspondingly, the upper boundary is either a root of V (r) or infinity.



4.3 Study of singularity resolution 109

To study the existence and behaviour of the solution r(z)as an analytic function, we first take

the derivative with respect to z of (4.58), and obtain the usual equation for the acceleration,

r′′ = −∂V
∂r

, (4.59)

at all points where r′(z) ̸= 0. Besides, by continuity, the expression for the acceleration is

satisfied at r′(z) = 0.

In contrast to the sign of the velocity r′(z), the acceleration r′′(z) is unambiguously defined.

Consequently, if rα = r(zα) is a simple root ofV (r), the continuity of r′′ at rα demands that:

If
∂V

∂r
< 0, then r′(z) = sgn(z − zα)

√
|V (r(z))| around zα. (4.60a)

If
∂V

∂r
> 0, then r′(z) = − sgn(z − zα)

√
|V (r(z))| around zα. (4.60b)

In the former case, rα will correspond to a lower bound of the domain of definition of r,

whereas it will be an upper bound in the latter. From these relations, one also deduces that

the function r(z) will always be symmetric around any such simple roots, i.e., r(z − zα) =

r(zα − z).

An additional consequence of (4.59) is that if there exists a root rα of the potential V (r) with

multiplicity higher than one, both r′ and r′′ vanish there. In fact, by recursively deriving (4.59),

one sees that all the derivatives of r(z) must be vanishing at that point, and rα is thus an

equilibrium point. Now, consider n > 1 to be the smallest integer for which V (n)(rα) ̸= 0.

On the one hand, if n is odd, rα is an inflection point and V (r) changes sign there. In such a

case, rα determines the lower — if V (n)(rα) < 0 — or upper — if V (n)(rα) > 0 — bound of

some allowed interval, but the particle reaches rα only for infinite values of z. On the other

hand, if n is even, then the potential V (r) has a local minimum — when V (n)(rα) > 0 — or

maximum — whenV (n)(rα) < 0— at rα. In the former case, rα is a stable equilibrium point,

and the particle stays always at r(z) = rα. Therefore, it does not define a finite interval of r.

In the latter case, r(z) = rα is an unstable equilibrium point. The particle takes infinite time

z to reach it from either side, and it defines simultaneously a lower and an upper bound of

two disjoint intervals of r(z).

Summing up, simple roots of V (r) are turning points of r(z) and define also fixed points of

a reflection symmetry. Roots of multiplicity higher than one are only reached at asymptotic

values of z and have no associated symmetry. Each of these last intervals in r thus describes

an independent spacetime.
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In the particular case under study, the potential stands for the rational function

V (r) = −1

2

(
1− 2λ−m(r)

r

)
. (4.61)

The analysis of singularity resolution is thus reduced to the classification of the roots ofV (r),

and the behaviour of V (r) there. This will strongly depend on the specific values ofM ,Q, Λ,

and λ−. We will focus on the cases in which the solution avoids curvature divergences, that

is, those in which a positive lower bound r0 for r(z) exists. This will be accomplished if there

exists a r0 > 0, such that V (r0) = 0 and V (r) is negative on some interval for which r0 is

infimum. Locally, this means that V (r0) = 0 and that the first non-vanishing derivative of

V (r) at r = r0 is negative. In addition, as commented above, we must restrict ourselves to

cases with a finite upper bound r∞ whenever the behaviour at r → ∞ is divergent.

Lemma 4.1. Critical hypersurfaces. Let

P (r, s) :=


sΛ

3
r4 − r2 + 2sMr − sQ2, if Q ̸= 0,

sΛ

3
r3 − r + 2sM, if Q = 0,

(4.62)

so that P is always a polynomial in r with a nonvanishing free term, and fix s ∈ (0, 1]. It is

straightforward to identify

V (r) =
P (r, λ−)

2rℓ
, (4.63)

with ℓ = 2 and ℓ = 1, forQ ̸= 0 andQ = 0, respectively. A given rα > 0 is a root of V (r) if

and only if P (rα, λ−) = 0. Besides, the sign of the gradient dV /dr|r=rα is the same as that of

P ′(rα, λ−). By iteration, the firstn derivatives ofV (r) are vanishing at rα if and only if the first

n derivatives ofP (r, λ−) with respect to its first argument vanish there, that is,

dnV

drn

∣∣∣
r=rα

= 0 ⇔ P (n)(rα, λ−) = 0. (4.64)

In addition, the signs of the subsequent derivatives of both functions coincide. The conve-

nience of having introduced the second argument s is evident asP (r, 1) =
(
2m(r)− r

)
rℓ−1,

with ℓ = 1, 2 forQ = 0 andQ ̸= 0, respectively, will provide the relevant information for the

existence of horizons (see (4.33), for instance). Note, in particular, that P (r, 1) ≥ 0 implies,

necessarily,m(r) > 0. The converse is not true.
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From now on, whenever speaking about the roots and derivatives of P (r, s), we will refer

to the real roots on and the derivatives with respect to its first argument, respectively. The

following results are independent of the specific value of s ∈ (0, 1]. A value r0(M,Q,Λ, s) >

0 such thatP (r0, s) = 0 and either

(a) P ′(r0, s) < 0,

(b) P ′(r0, s) = 0, P ′′(r0, s) < 0,

(c) P ′(r0, s) = P ′′(r0, s) = 0, P ′′′(r0, s) < 0,

(d) P ′(r0, s) = P ′′(r0, s) = P ′′′(r0, s) = 0,P ′′′′(r0, s) < 0,

exists only in the following cases:

1. Λ > 0,Q ̸= 0,M > 0, with 8Q2 < 9sM2 and Λ ∈ (Λ−(s),Λ+(s)) ∩ (0,Λ+(s)), and (a)

holds.

1D. Λ > 0,Q ̸= 0,M > 0, with 8Q2 < 9sM2 < 9Q2 and Λ = Λ−(s), and (b) holds.

2. Λ > 0,Q = 0, and 0 < s3/23
√
ΛM < 1, and (a) holds.

3. Λ = 0 and
√
sM > |Q| and (a) holds.

3D. Λ = 0 and
√
sM = |Q| > 0 and (b) holds.

4. Λ < 0,Q ̸= 0,
√
sM > |Q| and Λ ∈ (Λ−(s), 0) and (a) holds.

4D. Λ < 0,Q ̸= 0,
√
sM > |Q| and Λ = Λ−(s) and (b) holds.

5. Λ < 0,Q = 0, andM > 0 and (a) holds.

The bounds for Λ are

Λ±(s) :=
1

32s2Q6

(
8Q4 − β(β + 4Q2)± 3

√
sM2β3

)
, with β := 9sM2 − 8Q2. (4.65)

Remark 4.1.1 When β > 0, both Λ±(s) are real and distinct. Furthermore, Λ+(s) is always

positive while Λ−(s) is negative, vanishing, or positive when sM2 − Q2 is greater, equal, or

smaller than zero, respectively. The limit β = 0 corresponds to Λ+(s) = Λ−(s) = (2sQ)−2.

Therefore, the conditions in the first case can be expressed as

1. Λ > 0, Q ̸= 0, M > 0, with either

 Q2 ≤ sM2 and Λ ∈ (0,Λ+(s)), or

8Q2 < 9sM2 < 9Q2 and Λ ∈ (Λ−(s),Λ+(s)).
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Remark 4.1.2 Any b such that P (b, s) < 0 and P ′(b, s) < 0 belongs to the interval where

P (r, s) ≤ 0 with infimum r0.

Remark 4.1.3 In cases 1, 1D, and 2, the interval where P (r, s) ≤ 0 with infimum r0 is also

bounded from above. The supremum r∞(M,Q,Λ, s) satisfies r0 ≤ r∞, P (r∞, s) = 0, and

P ′(r∞, s) > 0. In addition, the limiting cases in which the largest root of P (r, s) is a dou-

ble root (say r0 = r∞ in that limit), is given by Λ = Λ+(s), and then P ′(r0, s) = 0 with

P ′′(r0, s) > 0. In the remaining cases, the set P (r, s) ≤ 0 with infimum r0 is unbounded

from above.

Remark 4.1.4 WhenQ ̸= 0 there exists aR(M,Q,Λ, s) > 0 such thatR ≤ r0 andP (r, s) ≤
0 in r ∈ [0, R]. The limit R = r0, with P ′(r0, s) = 0 and P ′′(r0, s) < 0, corresponds to the

double root cases 1D, 3D, and 4D, whileR < r0 and P ′(R, s) > 0 in the rest of cases. When

Q = 0, no positive roots smaller than r0 exist.

Remark 4.1.5 If eitherR, r0, or r∞ exists, then P (r, 1) ≥ 0 at those points. As a result,m(r)

is positive there.

Remark 4.1.6 WhenΛ ≥ 0, the functionm(r) defined in (4.16) is always positive in the inter-

val whereP (r, s) ≤ 0 with infimum r0.

Proof. First, we compute the discriminant of the fourth-order polynomialP (r, s):

∆ =
16

27
s2Λ

[
−16s4Λ2Q6 − 3s2Λ

(
27s2M4 − 36sM2Q2 + 8Q4

)
+ 9(sM2 −Q2)

]
. (4.66)

We have ∆ = 0 if and only if at least two roots are equal. In that case, there are at most two

equal roots if and only if

−1 < −4s2ΛQ2 < 3. (4.67)

When ∆ > 0, there are either four roots or none. If there are four distinct roots, then ∆ > 0

necessarily. When ∆ < 0, there are only two roots.

Case 1. Assume Λ > 0 andQ ̸= 0. For a pictorial representation, see Fig. 4.1.

SinceP (0, s) < 0 andP (r, s) > 0 as r → ±∞, thenP (r, s)has at least two roots of different

sign. We denote the positive one as r1+ > 0 and the negative one as r1− < 0. They satisfy

P ′(r1−, s) ≤ 0 and P ′(r1+, s) ≥ 0. Therefore, r1+ cannot be a local maximum. As a result,

for r0 to exist in this case, we need at least a third positive root. In addition, if more roots exist,

they must be contained in the interval (r1−, r1+). If∆ < 0, there are no more roots, and no r0
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exists. Let∆ > 0, in which case there are necessarily two more roots. Since the product of the

four roots is −3Q2/Λ, the two additional roots cannot be zero, and, further, they must have

the same sign. Since r1+ does not qualify for being r0, we need the additional two roots to be

positive. When∆ = 0, and knowing that we need a third positive root and that the product of

all the roots is negative, we find only two cases where r0 might appear: either the additional

positive root is simple, r1s, and r1+ is a double root, or it is double, r1d, and r1+ is simple. In

the former case,P (r, s) = sΛ(r− r1+)
2(r− r1−)(r− r1s)/3 andP ′(r1s, s) > 0. Thence, r1s

does not satisfy the requirements of r0. In the latter case,P (r, s) = sΛ(r−r1+)(r−r1−)(r−
r1d)

2/3,P ′(r1d, s) = 0, andP ′′(r1d, s) < 0. Therefore, r1d is a local maximum.

Assume that M > 0. If there is a local maximum of P (r, s), it must be for r > 0. Thence,

r1d (if ∆ = 0 and it exists) and the two additional roots (if ∆ > 0) are positive. Let a such

that P ′(a, s) = 0, i.e., 2sΛa3/3 − a + sM = 0. Then, a(3 − 2a2sΛ) > 0. If a < 0, we must

have 3− 2a2sΛ < 0, and, as a result,P ′′(a, s) = −2(1− 2a2sΛ) > 0. A local maximum thus

needsa > 0necessarily. Besides, there is at most one local maximum ofP (r, s). Therefore, if

∆ = 0 then r1d, if it exists, is positive, and if∆ > 0, three roots are positive, and the fourth one

is negative. In the former case, r0 = r1d satisfies the requirements [with (b)], and the intervals

in r ≥ 0whereP (r, s) ≤ 0 are [0, r1d] and [r1d, r1+]. In the latter case, let us denote the three

positive roots as 0 < r1a < r1b < r1+. Clearly, only P ′(r1b, s) < 0 and thus r0 = r1b satisfies

the requirements [with (a)]. The ranges where P (r, s) ≤ 0 in r ≥ 0 are [0, r1a] and [r1b, r1+].

Moreover, since P ′(0, s) = 2sM > 0, and a local minimum must be located at a < 0 (see

above), if b > 0 satisfiesP (b, s) < 0 andP ′(b, s) < 0, then b belongs to the interval (r0, r1+).

∆ > 0 and M > 0 ∆ < 0 and M > 0 M = 0

Λ = Λ+(s) and M > 0 Λ = Λ−(s) and M > 0 Λ = Λ+(s) = Λ−(s) and M > 0

Figure 4.1: Graphical representation of P (r, s) for Λ > 0, Q ̸= 0, and M ≥ 0, with the allowed intervals high-
lighted in green, and r0 marked when it exists. ForM < 0, no r0 appears sinceP (r, s)|M=−A = P (−r, s)|M=A.
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If M = 0, the polynomial is even with only one local maximum at r = 0, and P (0, s) < 0.

Therefore, only r1+ is a positive root, and none of them can satisfy the requirements of r0.

Finally, let M < 0. Since P (r, s) is invariant under the change {M → −M, r → −r}, and

using that r1− cannot be a local maximum either, one needs a third positive root. However,

using the same arguments above under the change r → −r, we see that none of the possible

roots satisfies the requirements, and thus no r0 exists.

Case 2. Take Λ > 0 andQ = 0. For a pictorial representation, see Fig. 4.2.

In this case, P (r, s) is a third-order polynomial and has at least one root, r2o. In addition,

P (0, s) = 2sM , P ′(0, s) = −1, and the points a− = −
√
1/(sΛ) and a+ =

√
1/(sΛ) are a

local maximum and a local minimum, respectively. IfM ̸= 0, the root r2o must have the op-

posite sign ofM , and if there are additional roots, their sign is that ofM because the product

of all of them must equal 2sM .

LetM > 0. Then, r2o < 0, and we need more roots to have a positive one. That condition is

fulfilled when P (a+, s) ≤ 0, i.e., when the local minimum is not positive. Since P ′′(r, s) > 0

for all r > 0, we must also ask P ′(r, s) < 0 at one root. This implies that we need two more

distinct roots, and hence, P (a+, s) < 0. These two roots are positive, 0 < r2a < r2+, and

clearly the smallest of the two, r0 = r2a, (and only that) satisfies P ′(r2a, s) < 0 [i.e., with

(a)]. The domain where P (r, s) ≤ 0 is restricted to the bounded interval [r0, r2+], and since

a+ < r2+ we haveP ′(r2+, s) > 0. Of course, there are no more roots.

9s3ΛM2 < 1 and M > 0 9s3ΛM2 = 1 and M > 0 1 < 9s3ΛM2 and M > 0

M = 0

Figure 4.2: Graphical representation of P (r, s) for Λ > 0, Q = 0, and M ≥ 0. The allowed intervals are high-
lighted in green, andr0 is marked when it exists. The cases withM < 0 satisfyP (r, s)|M=−A = −P (−r, s)|M=A ,
and thus no r0 appears.
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If M = 0, the three roots of the polynomial are r = 0,±
√

3/(sΛ), with P ′(r, s) > 0 at the

positive root. Assume now thatM < 0. Then, r2o > 0 is the only possible positive root, with

P ′(r2o, s) > 0. Therefore, no root fulfills the requirements of r0.

Case 3. Let Λ = 0. For a pictorial representation, see Fig. 4.3.

WhenQ ̸= 0,P (r, s) is just a second-order polynomial in r. The two possible roots are r3± =

sM±
√
s2M2 − sQ2, and the necessary and sufficient condition for their existence is sM2−

Q2 ≥ 0. In particular, this demandsM ̸= 0. Further, when they exist, the roots have the same

sign asM . AssumeM > 0. If sM2−Q2 > 0, we have 0 < r3− < r3+, and the largest of them

clearly satisfies the requirements [with (a)]. In this case, the interval where P (r, s) ≤ 0 with

infimum r0 = r3+ is unbounded from above. When sM2 −Q2 = 0, r3− and r3+ degenerate

into a double root, rd = sM , withP ′(rd, s) = 0. Note thatP ′′(r, s) < 0 everywhere, and thus

rd meets the requirements [with (b)] of r0. Since P (0, s) < 0, there are two intervals where

P (r, s) ≤ 0, given by [0, r0] and [r0,∞) with r0 = rd. Finally, whenM ≤ 0, no root satisfies

the requirements because they are negative (if they exist).

When Q = 0 the polynomial is P (r, s) = −r + 2sM , and we only have one simple root

r3s = 2sM , with P ′(r, s) = −1 everywhere. Thus, r0 = r3s satisfies the requirements [with

(a)] if and only ifM > 0. Further,P (r, s) < 0 only for r > r3s.

Clearly, if b satisfiesP (b, s) < 0 andP ′(b, s) < 0, then b ∈ (r0,∞) in either case.

0 < Q2 < sM2 and M > 0 Q2 = sM2 and M > 0 Q2 > sM2 and M > 0

Q ̸= 0 and M = 0 Q = 0 and M > 0 Q = 0 and M = 0

Figure 4.3: Graphical representation of P (r, s) for Λ = 0 and M ≥ 0. The allowed intervals are highlighted
in green, and r0 is marked when it exists. For the cases with M < 0 no r0 appears because they satisfy
P (r, s)|M=−A = P (−r, s)|M=A.
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Case 4. Consider Λ < 0 andQ ̸= 0. For a pictorial representation, see Fig. 4.4.

Since P ′′(r, s) < 0 for all r and P (r, s) < 0 as r → ±∞, either there are no roots, there is

a double one, or there are two simple roots. In addition, P (r, s) has one and only one maxi-

mum in r.

AssumeM > 0. Then,P ′(0, s) > 0, and the maximum is located at positive values ofr. Since

P (0, s) < 0, the roots (if any) must be positive. To have a root fulfilling the requirements of r0,

we need eitherP ′(r0, s) = 0 and have a double root r4d (recallP ′′(r, s) < 0), orP ′(r0, s) < 0

so that there are two distinct roots 0 < r4a < r4b. In the former case, we need ∆ = 0, while

the latter is only possible when ∆ < 0. The double root r0 = r4d satisfies the requirements

[with (b)]. When ∆ < 0, we have r0 = r4b satisfying the requirements with (a). In both cases,

the interval where P (r, s) ≤ 0 with infimum r0 is unbounded from above. Moreover, there

is a second interval where P (r, s) ≤ 0. In the double root case, the interval is r ∈ [0, r0]

while it is r ∈ [0, r4a] in the two-simple-root case. In either case if b satisfies P (b, s) < 0 and

P ′(b, s) < 0, then b ∈ (r0,∞).

Just as before, the case M < 0 can be treated accordingly by changing r → −r. Then, we

stick to the previous analysis to see that the roots, if any, are negative. Therefore,P (r, s) < 0

for all r ≥ 0.

Similarly,P (r, s) < 0 for all r ≥ 0 whenM = 0.

Λ−(s) < Λ < 0 and M > 0 Λ = Λ−(s) < 0 and M > 0 Λ < Λ−(s) < 0 and M > 0

M = 0

Figure 4.4: Graphical representation of P (r, s) for Λ < 0, Q ̸= 0, and M ≥ 0. The allowed intervals are high-
lighted in green, and r0 is marked when it exists. The cases with M < 0 satisfy P (r, s)|M=−A = P (−r, s)|M=A ,
and thus no r0 appears.
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Λ < 0, Q = 0 and M > 0 Λ < 0, Q = 0 and M = 0

Figure 4.5: Graphical representation of P (r, s) for Λ < 0, Q = 0, and M ≥ 0. The allowed intervals are high-
lighted in green, and r0 is marked when it exists. For the cases with M < 0 no r0 appears because they satisfy
P (r, s)|M=−A = −P (−r, s)|M=A.

Case 5. Assume Λ < 0 andQ = 0. For a pictorial representation, see Fig. 4.5.

In this case,P ′(r, s) < 0 for all r andP (0, s) = 2sM . Therefore there is a positive root if and

only ifM > 0. That root is necessarily simple thus satisfying the requirements of r0 with (a).

The interval whereP (r, s) ≤ 0 is [r0,∞).

It only remains to study the conditions on ∆ for Case 1 and Case 4. With that in mind, let us

consider the discriminant a function of Λ and define f(Λ) := ∆(Λ)/Λ, which is a second-

order polynomial in Λ with f ′′(Λ) < 0 for all Λ. Observe that all conditions on ∆ are equiv-

alent to f(Λ) ≥ 0. The two solutions for f(Λ) = 0 are Λ±(s) as given in (4.65). They exist

and are distinct when and only when β := 9sM2 − 8Q2 > 0. In such a case, f(Λ) ≥ 0 for

Λ ∈ [Λ−(s),Λ+(s)]. In the degenerate case β = 0, we find Λ−(s) = Λ+(s) with f(Λ) = 0

only at that point and f(Λ) < 0 elsewhere. Since f(0) = sM2 −Q2, if f(0) ≥ 0, necessarily

β > 0. In addition, f(0) > 0, f(0) = 0, and f(0) < 0 imply Λ−(s) < 0 and Λ+(s) > 0,

Λ−(s) = 0 andΛ+(s) > 0, and (if they exist)Λ+(s) > 0 andΛ− > 0, respectively. As a result,

when Λ > 0, we have f(Λ) > 0 if and only if β > 0. Then, if f(0) ≥ 0, Λ belongs to the

interval (0,Λ+(s)), and if f(0) < 0, then Λ ∈ (Λ−(s),Λ+(s)).

Besides, in Case 1, and when f(Λ) = 0 and we have a third double root in P (r, s), we need

that (4.67) be satisfied. Since we are sticking toΛ > 0, that relation is just1−4s2Q2Λ±(s) > 0.

One can check that for β ≥ 0, the following equality holds,

1− 4s2Q2Λ±(s) =
β

8Q4

(
β + 4Q2 ∓

√
(β + 4Q2)2 − 16Q4

)
. (4.68)

Therefore, we have at most one double root if and only ifβ > 0 in both cases,Λ = Λ−(s) and

Λ = Λ+(s). Recall that a double root rd must satisfy P (rd, s) = 0 and P ′(rd, s) = 0. First,

we consider 4P (rd, s)− rdP
′(rd, s) = 0, we solve for r2d = 3sMrd − 2sQ2, and substitute it

(recursively) in 2P (rd, s)− aP ′(rd, s) = 0. In that way, we obtain an equation linear in both
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Λ and rd. Solving for 1/Λ, and substitutingQ2/rd by 3M/2− rd/(2s), we obtain the relation

1

Λ
− 4s2Q2 =

2

3
s2β

(
1− sM

rd

)−1

, (4.69)

that must hold forΛ = Λ+(s)andΛ = Λ−(s), thus providingrd+ andrd−, respectively. Since

Λ−(s) < Λ+(s), we read rd− < rd+, and, hence, when Λ = Λ+(s) the double root must

correspond to r1+ (that is, the double root r0 = r∞ in Remark 4.1.3). In contrast, Λ = Λ−(s)

(and as long as Λ−(s) > 0, thus making f(0) < 0) produces the desired double root that

satisfies the conditions of r0 with (b). As a final remark, let us point out that the extremal

case Λ = Λ−(s) = Λ+(s) corresponds to a triple root at r1+.

Finally, in Case 4 (Λ < 0), the only possibility is f(0) > 0. Then, Λ ∈ (Λ−(s), 0) for f(Λ) > 0

and Λ = Λ−(s) when f(Λ) = 0.

We turn our attention to Remark 4.1.5 and Remark 4.1.6.

By construction, the roots R, r0, and r∞ of P (r, s), if they exist, are located at r = 2sm(r),

so that m(R) = R/(2s), m(r0) = r0/(2s), and m(r∞) = r∞/(2s) are necessarily positive.

Then,P (R, 1) = R2(1− s)/s,P (r0, 1) = rℓ0(1− s)/s, andP (r∞, 1) = rℓ∞(1− s)/smust be

non-negative because s ∈ (0, 1]. In particular, they are positive if s < 1 and vanish if s = 1.

Recall that ℓ = 2 ifQ ̸= 0 and ℓ = 1 ifQ = 0.

Now, let us define

P(r) := P (r, 1) + rℓ =


Λ

3
r4 + 2Mr −Q2, if Q ̸= 0,

Λ

3
r3 + 2M, if Q = 0,

(4.70)

so thatP(r) = 2rℓ−1m(r). Then, the roots ofP(r) coincide with those ofm(r), as well as the

sign of their first non-vanishing derivatives at those points. Recall that we are restricting the

analysis to Λ ≥ 0, and, as shown above, the existence of r0 is contingent uponM > 0. Then,

it is clear that m(r) > 0 everywhere if Q = 0. When Q ̸= 0, we find that P ′(r) > 0 at all

points r > 0, and also that P(0) < 0. Then, P(r), and consequentlym(r), has one and only

one positive root. Sincem(R) > 0, that root is located in (0, R), withR ≤ r0.
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4.3.2 Existence of a positive infimum

As shown in Lemma 4.1, a positive lower bound r0(M,Q,Λ, λ−) for the area-radius function

exists only whenM > 0, 8Q2 < 9λ−M2, and Λ ∈
[
Λ−(λ−),Λ+(λ−)

)
, with

Λ±(λ−) :=
3

32λ−4Q6

[
36λ−3M2Q2 − 27λ−4M4 − 8λ−2Q4 ±

√
λ−5M2

(
9λ−M2 − 8Q2

)3 ]
. (4.71)

Note that these conditions are valid in the limitQ = 0, where

lim
Q→0

Λ−(λ−) = −∞ and lim
Q→0

Λ+(λ−) =
1

9λ−3M2
, (4.72)

and one should just considerM > 0 and Λ ∈
(
−∞,Λ+(λ−)

)
.

We can refine these conditions by splitting them in terms of the sign of Λ and the value ofQ.

The positive lower bound exists in the following cases:

• C1 :=
{
Λ > 0,Q ̸= 0,M > 0, 8Q2 < 9λ−M2, and Λ∈

(
Λ−(λ−),Λ+(λ−)

)
∩
(
0,Λ+(λ−)

)}
2,

• C2 :=
{
Λ > 0,Q = 0,M > 0, and Λ ∈

(
0, 1/(9λ−3M2)

)}
,

• C3 :=
{
Λ = 0,Q ̸= 0,M > 0, and |Q| <

√
λ−M

}
,

• C4 :=
{
Λ = 0,Q = 0, andM > 0

}
,

• C5 :=
{
Λ < 0,Q ̸= 0,M > 0, |Q| <

√
λ−M , and Λ ∈

(
Λ−(λ−), 0

)}
,

• C6 :=
{
Λ < 0,Q = 0, andM > 0

}
,

where r0(M,Q,Λ, λ−) is a simple root ofP (r, λ−), and

• D1 :=
{
Λ > 0,Q ̸= 0,M > 0, with 8Q2 < 9λ−M2 < 9Q2 and Λ = Λ−(λ−)

}
,

• D3 :=
{
Λ = 0,Q ̸= 0, and |Q| =

√
λ−M

}
,

• D5 :=
{
Λ < 0,Q ̸= 0, |Q| <

√
λ−M , and Λ = Λ−(λ−)

}
,

where r0(M,Q,Λ, λ−) is a double root ofP (r, λ−).

In cases C1, C3, and C5, there are at most three positive bounds, R, r0, and r∞, for the al-

lowed regions. By Remark 4.1.4, the degeneracy of R and r0 into a double root defines the

corresponding degenerate cases D1, D3, and D5. For vanishing charge, r0 is always simple,

andC2,C4, andC6 do not have a degenerate counterpart.

In the following, we will just writeR, r0, and r∞ omitting the dependence onM ,Q, Λ, and λ−.

2By remark 4.1.1, this is either {0 < |Q| ≤
√
λ−M and Λ ∈ (0,Λ+(λ−))} or {0 < 2

√
2|Q| < 3

√
λ−M < 3|Q|

and Λ ∈ (Λ−(λ−),Λ+(λ−)), with Λ−(λ−) > 0}.
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The generic features for the existence of r0 are a positive mass parameterM , an upper bound

for Q2 proportional to λ−M2, and also that Λ must be below a certain maximum threshold.

These requirements are qualitatively similar to the conditions for the existence of horizons in

GR. Far from being a coincidence, it should be clear that the proof for the existence of horizons

is the one just performed in Lemma 4.1 for the specific caseP (r, 1).

For the sake of clarity, we have arranged the singularity-free cases correspondingly to well-

known black-hole solutions in GR. Cases C1 and D1 correspond to Reissner-Nordström-de

Sitter,C2 to Schwarzschild-de Sitter,C3 andD3 to Reissner-Nordström,C4 to Schwarzschild,

C5 andD5 to Reissner-Nordström-anti-de Sitter, andC6 to Schwarzschild-anti-de Sitter. The

“trivial” (in the sense that they do not possess singularities at r = 0) cases of de Sitter, anti-

de Sitter, and the flat Minkowski metric are not included in the above list. Regarding the

near-horizon geometries, Bertotti-Robinson is not in that list, whereas Nariai is included in

C2. This will become evident when studying the global structure and the horizons of these

solutions. However, let us recall that none of the near-horizon geometries are singular.

4.3.3 Existence of a finite supremum

By Remark 4.1.3, the cases in which r0 exists have a supremum r∞ if and only if Λ > 0. In

the cases C1 and C2, r0 and r∞ are simple roots of the polynomial P (r, λ−) and thus define

lower and upper turning points, respectively. In the cases C3, C4, C5, and C6, r0 will be the

only turning point. In all cases, the solution r(z) has support on the whole real line z ∈ R,

and the ranges for the images are given as follows:

• InC1 andC2, the solution r(z) has image on [r0, r∞]. The turning points r0 and r∞ are

reached for finite values of z. Both are symmetry points, and r(z) is thus periodic.

• InC3,C4,C5, andC6, the solution r(z)has image on [r0,∞). The solution is symmetric

around the unique turning point r0. In addition, r(z) → ∞ as z → ±∞.

In the degenerate cases where r0 is a double root, it describes an unstable equilibrium point,

which can only be reached at infinite values of z. Therefore:

• In D1, the solution r(z) has image on (r0, r∞]. The solution is symmetric around the

turning point r∞, and r(z) → r0 as z → ±∞.

• In D3 and D5, the solution r(z) has image on (r0,∞). There are no symmetry points,

and this solution goes from r(z) → r0 as z → −∞ to r(z) → +∞ as z → +∞.
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Since curvature invariants diverge for large radii, the cases with a negative cosmological con-

stant (C5,D5, andC6) will not meet our requirements of singularity freedom. Therefore, the

present model provides singularity-free domains in the cases C1, C2, C3, and C4, as well as

in the degenerate casesD1 andD3.

4.3.4 Non-uniqueness of the spacetime solutions

Whenever Q ̸= 0, certain values of the parameters define two different spacetimes. One

of them is free of singularities and included in the above cases, with r0 being the infimum

of r. The other one contains the origin r = 0 and has an upper bound R ≤ r0. Note that

P (0, λ−) < 0 andP ′(0, λ−) > 0 in these cases.

By Remark 4.1.4, we have the following:

• In C1, C3, and C5, the solution r(z), with image on (0, R], has support on an interval

z ∈ (−z0, z0) ⊂ R. This solution is symmetric around r(0) = R, where R < r0 is a

critical point satisfyingP (R, λ−) = 0 andP ′(R, λ−) > 0. Besides, r(±z0) = 0.

• InD1,D3, andD5, the critical points r0 andR coincide. In these degenerate cases, the

solution r(z), with image on (0, r0), has support on an interval z ∈ (z0,∞) ⊂ R. It is a

monotonic function, and the constant z0 can be chosen so that r(z0) = 0 and r → r0

as z → ∞. The solution has no symmetry points.

This means that different solutions of r(z) provide different spacetimes. Thus, the generali-

sation of the GR Hamiltonian just presented originates the existence of more than one space-

time solution for the same set of values of the constant parametersM ,Q,Λ, andλ− whenever

Q ̸= 0. Nevertheless, the singularity-free requirement singles out only one among the two

possible solutions.

4.4 Globalstructureofthenewsingularity-freespacetimes

We turn our focus to the global structure of the singularity-free spacetime families found

above. That is, we restrict the analysis to the sets of values for the parametersM ,Q,Λ, andλ−

included in casesC1,C2,C3,C4,D1, andD3. This means that r0 exists, and that it is the min-

imum of the area-radius function r. In addition, we can read the generic conditionsM > 0

and Λ ≥ 0. By Remark 4.1.6, the massm(r) will thus be positive in the whole region with in-

fimum r0, which is completely covered by the coordinates (τ, z) and the line element (4.33).

Making contact with the previous study in vacuum, this domain will be named U ∈ M, de-

noting the region with infimum r0 and, when Λ > 0, with supremum r∞.
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Note that we are excluding the near-horizon geometries from this analysis. Their qualitative

properties (and conformal diagrams) are the same as in GR (see Ref. [97]).

4.4.1 Causal structure

The geometry of the hypersurfaces of constant z is described by the induced metric

hµνdx
µdxν = −G(r)dτ2 + r2dΩ2, (4.73)

with constant r = r(z). The functionG can be intrinsically defined as the norm of the Killing

vector field ∂τ , that is,

G := −τµτµ = 1− 2m(r)

r
. (4.74)

Therefore, the hypersurfaces are timelike or spacelike whenG > 0orG < 0, respectively (i.e.,

when ∂τ is timelike or spacelike), and the set of points Z whereG|Z = 0 is a Killing horizon

because ∂τ is null there.

Next, we compute the mean curvature vector, with components Hµ = (2/r)∇µr, of the

surfaces of constant τ and z, which corresponds to spheres of constant area 4πr2:

Hµ∂µ =
2

r

dr(z)

dz

(√
2m(r)

r
∂τ +

(
1− 2m(r)

r

)
∂z

)
. (4.75)

This vector is future-pointing when dr/dz > 0 and past-pointing when dr/dz < 0. Its norm,

HµHµ =
4

r2

(
dr(z)

dz

)2(
1− 2m(r)

r

)
=

4

r2

(
1− 2λ−m(r)

r

)(
1− 2m(r)

r

)
, (4.76)

is manifestly scalar, and thus holds at all points in the manifold. Using thatλ− ∈ (0, 1), we find

thatHµ∂µ is spacelike when r > 2m(r), null (and non-vanishing) when r = 2m(r), timelike

when r < 2m(r) and r ̸= 2λ−m(r), and identically vanishing when r = 2λ−m(r) (because

dr/dz = 0 there).

As a result, the spheres of constant τ and z in U have the following properties:

• They are non-trapped where r > 2m(r).

• They are marginally trapped at the horizons r = 2m(r).

• They are trapped to the future where r < 2m(r) and dr/dz > 0.

• They are trapped to the past where r < 2m(r) and dr/dz < 0.
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In addition, since the hypersurfaces r = 2λ−m(r) belong necessarily to regions with G < 0,

they are minimal and spacelike, and they are covered by two-spheres of constant area 4πr20

or 4πr2∞. The non-trapped regions are static, with a timelike ∂τ , while the homogeneous

regions, with a spacelike ∂τ , are trapped or anti-trapped, depending on the sign of dr/dz.

4.4.2 Horizons

A most relevant fact is that the functionG is independent of the parameter λ−, and therefore

the existence of horizons and their location is determined just as in GR. There are at most

three horizons, rI , rH , and rC , each of them related to one of the “classical” parameters of the

model, namely, Q, M , and Λ. When M > 0, there exists the horizon rH , the null boundary

between a homogeneous (r < rH ) and a static (r > rH ) region. The inner Cauchy horizon rI

may appear only when Q ̸= 0, creating an additional (innermost) static region 0 < r < rI ,

with rI ≤ rH . Finally, there is a cosmological horizon rC ≥ rH whenever Λ > 0, beyond

whichG becomes negative. These horizons correspond to the roots ofG, and may degener-

ate into the extremal cases rI = rH , rH = rC , or rI = rH = rC , when the multiplicity of the

root is higher than one. To analyse the horizon structure of the above solutions, we note that

G(r) = −P (r, 1)
rℓ

, (4.77)

with ℓ = 2 forQ ̸= 0 and ℓ = 1 forQ = 0. The existence of the horizons is thus determined

by Lemma 4.1. The only difference is that the sign of the first non-vanishing derivative of

G(r) and P (r, 1) will be the opposite, but, in contrast to what happened with V (r) for the

existence of r0, the sign does not affect the existence of a horizon. Therefore, the sign of the

first non-vanishing derivative of P (r, 1) is of no relevance. As a side result, the intervals for

the existence of rI , rH , and rC will be closed. Restoring the explicit dependence of the critical

valuesR, r0, and r∞ on the parameters of the model, they correspond to rI := R(M,Q,Λ, 1),

rH := r0(M,Q,Λ, 1), and rC := r∞(M,Q,Λ, 1). Of course, their relative position is the

same as in GR, but we need to study whether they are located inside U or not. Recall that we

are restricting to casesC1,C2,C3,C4,D1, andD3. Note also that the roots of V (r) andG(r)

cannot coincide.

First, the root rI ofG(r) exists if and only ifQ ̸= 0 becauseG(R) < 0, and limr→0+ G(r) > 0

only whenQ ̸= 0. In that case, rI < R ≤ r0, and the Cauchy horizon is always outside U . As

it will be shown later, the conformal diagram does not change when including charge. For

Λ = 0, neither r∞ nor rC exists. Since G(r0) < 0 and limr→∞G(r) = 1, the horizon rH is

always located in U . When Λ > 0, and givenG(r0) = G(r∞) < 0, there can be no horizons,

one degenerate horizon or two horizons.
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Lemma 4.2. Horizons. Consider Λ±(s) defined in (4.65), with µ := (8Q2)/(9M2) < 1, as

functions of s with support on (µ, 1]. Then both Λ±(s) are monotonically decreasing func-

tions attaining their minimum at s = 1.

Remark 4.2.1 The function I(s) := Λ+(1)− Λ−(s) has one and only one root h(M,Q).

Remark 4.2.2 The root rH = r0(M,Q,Λ, 1) of P (r, 1) exists if and only if s ≥ h, and it is

always greater than r0(M,Q,Λ, s). The root is double if Λ = Λ+(1) and simple otherwise.

Proof. Let us define fσ(s) := (32/3)Q6Λσ(s) + 27M4 on (µ, 1], with σ = ±1. Both Λσ(s)

reach their minimum at s = 1 if and only if fσ(s) do. Using 8Q2 = µ9M2, we find

27M4

8
fσ(s) =

(
3
µ

s

(
4− µ

s

)
+ ε8

(
1− µ

s

)3/2)
, (4.78)

with ε = σ sgn(M). It is now a straightforward computation to obtain

27M4

8
f ′σ(s) =

6µ

s3

(
µ− 2s+ 2ε(s− µ)

(
1− µ

s

)−1/2
)

= −6µ

s3
(√
s− µ− ε

√
s
)2
, (4.79)

where we needed to consider s > 0 and s−µ > 0. As a result, f ′(s) < 0 in the whole interval

(µ, 1]. This proves that both Λ±(s) are monotonically decreasing functions of s.

By the above, I(s) := Λ+(1) − Λ−(s) is monotonically increasing for s > µ. In addition,

I(1) > 0 and I(µ) < 0 for µ ∈ (0, 1). Therefore, there can only be one value h such that

I(h) = 0. We can further constrain that value because I(9µ/8) > 0.

Now, the application of Lemma 4.1 and Remark 4.1.1 for s = 1 ensures thatΛ+(1) > 0 exists.

Then, rH = r0(M,Q,Λ, 1) exists only when (i) Λ ∈ (Λ−(1),Λ+(1)) ∪ (0,Λ+(1)) (and it is

a simple root), (ii) Λ = Λ−(1) (and it is a double root), or (iii) Λ = Λ+(1) (and it is a double

root). We include the third case because we are no longer worried about the sign of P (r, 1)

in the surroundings of rH . The intersections of these intervals with those for the existence

of r0(M,Q,Λ, s) yield Λ ∈
[
Λ−(s),Λ+(1)

]
because we proved above that Λ±(1) ≤ Λ±(s).

Note that the interval is empty when I < 0. Then, case (ii) does not satisfy the requirements,

while cases (i) and (iii) produce a non-empty interval if and only if I(s) ≥ 0, meaning that

s ≥ h necessarily because Λ−(s) decreases with s. There are three different possibilities:

s > hwith eitherΛ ∈
[
Λ−(s),Λ+(1)

)
, and rH is simple, orΛ = Λ+(1), and rH is double; and

s = h such that Λ = Λ−(s) = Λ+(1), and rH is a double root by Remark 4.1.3.
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Lemma 4.2 sets the bounds for the existence of rH and rC inU . For caseC2, let us recall (4.72),

so the limiting conditionΛ = Λ+(1) becomes 3
√
ΛM = 1, just as in Schwarzschild-de Sitter.

In summary, each of the familiesC1, C2, andD1 is subdivided in three disjoint and comple-

mentary cases

• CBH
1 :=

{
C1 | Λ+(1) > Λ−(λ−) and Λ ∈

(
Λ−(λ−),Λ+(1)

)
∩ (0,Λ+(1))

}
,

• CEXT
1 :=

{
C1 | Λ+(1) > Λ−(λ−) and Λ = Λ+(1)

}
,

• CCOS
1 :=

{
C1 | Λ+(1) ≤ Λ−(λ−) or Λ ∈

(
Λ+(1),Λ+(λ−)

)}
,

• CBH
2 :=

{
C2 | Λ ∈

(
0, 1/(9M2)

)}
,

• CEXT
2 :=

{
C2 | Λ = 1/(9M2)

}
,

• CCOS
2 :=

{
C2 | Λ ∈

(
1/(9M2), 1/(9M2λ−3)

)}
,

• DBH
1 :=

{
D1 | Λ = Λ−(λ−) < Λ+(1)

}
,

• DEXT
1 :=

{
D1 | Λ = Λ−(λ−) = Λ+(1)

}
,

• DCOS
1 :=

{
D1 | Λ = Λ−(λ−) > Λ+(1)

}
,

with

Λ±(1) :=
3

32Q6

[
36M2Q2 − 27M4 − 8Q4 ±

√
M2 (9M2 − 8Q2)3

]
, (4.80)

whileCBH
3 := C3,CBH

4 := C4, andDBH
3 := D3.

The labels in each subcases are descriptive: We use the superscript “BH” for black hole, so

that in CBH
1 , CBH

2 , and DBH
1 both rH and rC exist with rH < rC . In turn, the superscript

“COS” stands for Kantowski-Sachs-type solutions where neither rH nor rC exists. The cases

labelled with the superscript “EXT” correspond to the extremal cases between “BH” and “COS”,

where the horizons exist and are degenerate, rH = rC . In cases C3, C4, and D3, the critical

hypersurface r = r0 is always hidden inside a horizon rH , and no further horizons exist.
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The deep connection between the horizons rI , rH , and rC , and the critical pointsR, r0, and

r∞, as the corresponding roots of r = 2m(r) and r = 2λ−m(r) allows us to summarise the

singularity resolution principle of this model in the following compact form:

“The solution with parameters (M,Q2,Λ, λ−) avoids the singularity at r = 0 if and only if

the singularity of a GR black hole with parameters (λ−M,λ−Q2, λ−Λ) is not naked.”

This is easy to see because a rescaling (M,Q2,Λ) → (λ−M,λ−Q2, λ−Λ) mapsG = 0 to V = 0.

4.4.3 Compactification of the covering domain

So far, we already know the character of the horizons r = 2m(r), and also that the hypersur-

faces r = 2λ−m(r) are spacelike [by Remark(4.1.5)] when the critical values of r(z) are simple

roots of V (r). However, to eventually complete the form of the Penrose diagrams, we still

need to tackle the nature of the double zeros of V (r), which, as seen previously, correspond

to z → ±∞. We recall that the zeros of V (r) andG(r) cannot coincide.

For that purpose, we study the radial geodesics in the regions around those values of r. Recall

thatm(r) is necessarily positive there, so all the roots ofG(r) and V (r) are covered by or lay

at the boundary of the coordinates (τ, z). Considering the affine parameters (not to be mixed

with the constant s ∈ (0, 1] in Lemma 4.1 and Lemma 4.2), the radial geodesics of (4.33) are

determined by

γ = −
(
1− 2m(r(z))

r(z)

)(
dτ

ds

)2

+

(
dz

ds

)2

+ 2

√
2m(r(z))

r(z)

dτ

ds

dz

ds
, (4.81a)

E = −
(
1− 2m(r(z))

r(z)

)
dτ

ds
+

√
2m(r(z))

r(z)

dz

ds
, (4.81b)

with τ = τ(s) and z = z(s), γ = 0, 1, or −1 for null, spacelike or timelike geodesics, respec-

tively, and E the conserved quantity associated with the timelike Killing vector field ∂τ , that

is, the energy. Combining both equations, we get

(
dz

ds

)2

= E2 + γ

(
1− 2m(r(z))

r(z)

)
. (4.82)

Note that z is an affine parameter of the radial null geodesics with non-zero energy, because

dz/ds is constant. Therefore, the affine distance from any points towards a double root of

V (r) goes to infinity. The same holds for all timelike and spacelike geodesics because of the

r′(z) term in the denominator of the integral for the proper time or affine parameter. In con-
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sequence, geodesics are inextendible at any double roots of V (r), and they must then repre-

sent “infinities” in our manifold.

Following the usual procedure (see Ref. [98, 100]), we write the null geodesic vector fields

lµ∂µ =

(
1 +

√
2m(r)

r

)−1

∂τ − ∂z, (4.83a)

kµ∂µ =

(
1−

√
2m(r)

r

)−1

∂τ − ∂z, (4.83b)

for r ̸= 2m(r). The affine parametrisation means that their metrically associated one-forms

are exact, so we can define the functionsU and V outside the horizons as

dU = −lµdxµ = dτ +

(
1 +

√
2m(r(z))

r(z)

)−1

dz, (4.84a)

dV = −kµdxµ = dτ −

(
1−

√
2m(r(z))

r(z)

)−1

dz. (4.84b)

The additional changesdU = A(u)duanddV = B(v)dv for any arbitrary functionsA(u)and

B(v), as long as they are smooth and nowhere vanishing, produce Kruskal-type coordinates,

with compact ranges for u and v. The metric in terms of these new null coordinates (u, v),

ds2 = −G
(
r(u, v)

)
A(u)B(v)dudv + r(u, v)2dΩ2, (4.85)

is conformally flat at the Lorentzian part. One can check that the determinant of the Jacobian

of the change (τ, z) → (U, V ) isG(r)/2, so this coordinate transformation, and thus the one

to (u, v), is well defined for all r ̸= 2m(r).

To obtain the building blocks for the construction of the Penrose diagrams, we need to obtain

the explicit form of r(u, v) near the roots ofG(r) and V (r). We define the so-called tortoise

function

r∗(r) := sgn(r′)
U − V

2
=

∫
1√

−2V (r)

1

G(r)
dr, (4.86)

up to a trivial integration constant. The crucial point is that r∗ is a function of r only.
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A convenient choice ofA(u) andB(v) thus yields

e2r∗(r(u,v)) = esgn(r′)(U(u)−V (v)) = esgn(r′)U(u)e−sgn(r′)V (v) = (uv)2C , (4.87)

for any chosen constantC , and provides the form of the hypersurfaces of constant r in terms

of u and v. As we are interested in the zeros of G(r) and V (r) (the location of the horizons

and the critical values, respectively) we look for the expansion of (4.86) around them. Recall

that the existence of the solution at a certain point r = a requires a > 0 and V (a) ≤ 0.

The first possibility is that r = a is a simple zero of V (r). Then, around r = a,

r∗ =

∫
dr√
|r − a|

( ∞∑
i=0

Ci(r − a)i

)
= C0 sgn(r − a)

√
|r − a|h(r), (4.88)

whereC0 ̸= 0 and h(r) is a function expandable around r = a, with h(a) = 2. This means

that (4.87), with the choiceC = sgn(r − a)C0, reads

e
√

|r−a|h(r) = uv, (4.89)

and the hypersuface r(u, v) = a is thus mapped to the curve uv = 1. The regions r > a are

located where uv > 1. Conversely, the points with r < a correspond to uv < 1.

The second case corresponds to r = a being either a double zero of V (r) or a single zero of

G(r). Then, around r = a,

r∗ =

∫
dr

r − a

( ∞∑
i=0

Ci(r − a)i

)
= C0 log |r − a|+ h(r), (4.90)

with h(r) expandable around r = a andC0 ̸= 0, so that (4.87) withC = C0 reads

|r − a|eh(r)/C0 = uv, (4.91)

around r = a. In any case, r = a corresponds to the null hypersurface uv = 0.

The third and last possibility is that r = a is a double zero ofG(r). Then, around r = a,

r∗ =

∫
dr

(r − a)2

( ∞∑
i=0

Ci(r − a)i

)
= − C0

r − a
+ C1 log |r − a|+ h(r), (4.92)
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where h(r) is expandable around r = a. Choosing againC = sgn(r − a)C0 in (4.87),

e−1/|r−a||r − a|sgn(r−a)C1/C0esgn(r−a)h(r)/C0 = uv. (4.93)

As a result, r = a corresponds once more to uv = 0.

The immediate consequence of the above results, together with the fact that all zeros ofV (r)

are located at the boundaries of intervals of r in homogeneous regions is that:

• The zeros r = 2m(r) ofG(r) show the usual isolated horizon structure when the root

is either simple or double. The case of a triple root is prevented by the existence of r0.

• If r = 2λ−m(r) is a simple root of V (r), it is a minimal spacelike hypersurface.

• If r = 2λ−m(r) is a double root of V (r), it represents a null past or future boundary at

infinity (J ±).

4.4.4 Conformal diagrams

With all this information at hand, we present the conformal diagrams for each singularity-

free case in Figs. 4.6-4.13. They are supplemented with Fig. 4.14, where we show the plots of

the polynomialP (r, λ−), whose roots indicate the position of the minimal hypersurfaces, and

its intersections with the curve (λ− − 1)rℓ, which denote the values of r where the horizons

are located. This descends from the identity

P (r, λ−) = λ−P (r, 1) + (λ− − 1)rℓ, (4.94)

so the roots of P (r, 1) — equivalently, the roots of G(r) — clearly correspond to the points

where P (r, λ−) = (λ− − 1)rℓ. Recall that ℓ = 2 for Q ̸= 0 and ℓ = 1 for Q = 0. The above

relation holds by construction, showing that λ−G(r) + 2V (r) = λ−− 1, from where we clearly

see that the roots ofG and V cannot coincide.

Although we have twelve different cases, the chargeQ does not change the global structure

of these singularity-free spacetime solutions. Therefore, cases C1 and C2, with the corre-

sponding superindex (BH, EXT, COS) have the same diagram. Similarly,C3 andC4 have also

the same structure, and we only find eight different Penrose diagrams. The shaded regions

correspond to the domain U , covered by the coordinates (τ, z) ∈ R2, with metric (4.33). A

maximal analytic extension M, following the usual periodic construction, is outlined. The

horizons are depicted as red lines, and the critical hypersurfaces as purple lines. Lines are

continuous when they lie in U , and dotted when not. Dashed lines correspond to null in-
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finities (J ±); dark grey for asymptotic ends (r → ∞) and purple for “finite” ends (r → r0).

The small rings are holes in the diagram, corresponding to timelike (i±) and spacelike (i0)

infinities. Thin white curves depict hypersurfaces of constant r, characterising the static (up-

down) or homogeneous (left-right) nature of the corresponding regions. Some diagrams can-

not be depicted over a simple sheet of paper because they bifurcate at the intersections of

horizons and critical hypersurfaces, that is, at the grey rings. Observers coming from diferent

directions to such bifurcations have non-intersecting futures. This is depicted in the draw-

ings by a shadowed overlapping of some parts of the diagram over others.

Figure 4.6: Cases CBH
1 and CBH

2 . The domain U (shaded in grey) is an infinite and periodic stripe. The maximal
extension M is builded up with infinite copies of U along all directions, conveniently layering up (in a helical –
clockwise – manner) around each grey ring, which is captured by the folding of the sheet atop. Those grey rings
denote “holes” in the drawing, and correspond to timelike infinities (i±). The white curves starting and ending on
them are lines of constantr. These geometries modify (and regularise) the singular Reissner-Nordström-de Sitter
spacetime. The minimal hypersurface r = r0 replaces the singularity structure of GR, while both J+ and J−

are substituted by minimal hypersurfaces r = r∞. Radially moving observers starting from a static region (those
bounded by rH and rC ) would find and traverse rH , r0 , rH , rC , r∞ , and rC in finite proper time before reaching
a static region isometric to that of their departure. Accelerated observers, on the other hand, may choose to stay
at their original static region, never crossing rH nor rC , and ending up in the corresponding infinite future i+.
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Figure 4.7: Cases CEXT
1 and CEXT

2 . The horizons rH and rC merge, becoming degenerate and bounding homoge-
neous regions. Therefore, there is no static region in the whole spacetime. The remaining features are the same
as explained in Fig. 4.6. The physical interpretation is that of a periodic bouncing cosmology. The existence of
horizons, however, allows accelerating observers to decouple from the cosmic evolution, and to end at their cor-
responding i+.

Figure 4.8: Cases CCOS
1 and CCOS

2 . There are no horizons, and all hypersurfaces of constant r are spacelike. Note
that the diagram is not compactified, to better show the connection with CEXT

1 and CEXT
2 . As in those cases, this

diagram represents a cyclic cosmology. The universe expands and contracts periodically, oscillating between
hypersurfaces foliated by spheres of area 4πr20 and 4πr2∞. In this case, the flow of time drags all observers, inde-
pendently of their acceleration.
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Figure 4.9: Case DBH
1 . This corresponds to the case where r0 is a double root. The diagram for U is now a fi-

nite rectangle. The surfaces r = r0 represent past and future null infinities (dashed purple lines) located at
(τ, z) → (−∞,∞) and (τ, z) → (∞,−∞), respectively. These infinities are not approached for infinite values
of r, but rather as the spacelike homogeneous slices tend to minimal hypersurfaces foliated by spheres of area
4πr20 . Indeed, there is a maximum r∞ for the area radius function that defines a reflection-symmetry point. Ra-
dially moving observers starting in a static region (those with vertical thin white lines of constant r) reach that
maximum and fall in a different static region after a finite amount of proper time. On the way, they cross a horizon
rC , the critical hypersurface r∞ , and a second horizon rC . In contrast to Fig. 4.6, the hypersurfaces characterised
by r = r0 are no longer traversable. The diagram unfolds at each grey ring.
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Figure 4.10: CaseDEXT
1 . The horizons rH and rC degenerate, and they always bound homogeneous regions. Sim-

ilarly to the previous diagram, all surfaces r = r0 are null infinities.

Figure 4.11: CaseDCOS
1 . As in Fig. 4.8, there are no horizons. The main difference with that diagram is that r = r0

are past and future null infinities. The universe asymptotically expands from and contracts to hypersurfaces
foliated by spheres of area 4πr20 . All observers cross the unique r = r∞ in finite proper time. It is interesting
to point out that this solution represents a closed cosmology and solves both the initial Big-Bang and the final
Big-Crunch singularities, while it does not predict a quantum bounce.
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Figure 4.12: Cases CBH
3 and CBH

4 . It is the same diagram as that in the previous chapter (see Fig. 3.3), but it also
stands for the Reissner-Nordström-like solution. We see that small amounts of charge (within the limits of the
model) do not affect the causal structure of the spacetime.

Figure 4.13: Case DBH
3 . This stands for the degenerate limit of the above solution. The charge is the maximum

allowed by the model, and the surfaces r = r0 become null infinities. Although there is no singularity in this
case, observers falling inside the horizon rH can never leave. In fact, they are doomed to travel forever towards
the unreachable minimal hypersurface defined by r = r0.
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Case CBH
1 . Case Cext

1 . Case Ccos
1 .

Case CBH
2 . Case Cext

2 . Case Ccos
2 .

Case DBH
1 . Case Dext

1 . Case Dcos
1 .

Case CBH
3 . Case CBH

4 . Case DBH
3 .

Figure 4.14: The plot in blue is P (r, λ−), whose roots correspond to the critical points of the area-radius function
r. These are marked with a purple line, continuous if the surface is traversable and discontinuous if the surface
represents a null boundary of the spacetime. The allowed regions as shown in Lemma 4.1 are highlighted in
green. The domain U , i.e., the allowed region with infimum r0 is always shaded in grey. The red plot is either the
half-parabola (λ− − 1)r2 for Q ̸= 0, or the half-line (λ− − 1)r for Q = 0, and its intersections with P (r, λ−) denote
the position of the horizons, marked in red.





Concluding Remarks

The Answer to the Great Question of Life, the Universe and
Everything is… Forty-two… So once you do know what the
question actually is, you’ll know what the answer means.

The Hitchhiker’s Guide to the Galaxy
by Douglas Adams.

A complete theory of quantum gravity is still elusive, and the fate of singularities in general

relativity remains unravelled. In this thesis, we present an effective approach to polymerise

one curvature component in spherical symmetry, as motivated by loop quantum gravity.

The strong point of the model is that it is explicitly covariant. The effective corrections are im-

plemented at the Hamiltonian level and endowed with a clear geometric description. This

ensures that different gauge choices on phase space correspond to different charts (in the

corresponding domains) of the same metric tensor.

To overcome previous no-go results on the covariance of holonomy corrections in non-homo-

geneous spherically symmetric spacetimes, we perform a systematic analysis of possible

deformations of the GR constraints in Chapter 2. More precisely, adhering to the derivative

structure of the GR Hamiltonian, we start from a very general Hamiltonian constraint (2.14)

and demand that it forms a first-class algebra along with the GR diffeomorphism constraint

(2.15). Furthermore, the structure function in that algebra is required to transform adequately

for the theory to be embeddable in a four-dimensional manifold. This allows us to construct

the corresponding metric tensor (2.61) in terms of phase-space functions in a totally unam-

biguous way.

We obtain the most general Hamiltonian (2.53) satisfying these conditions in vacuum. De-

spite starting from a constraint with five generic functions of four variables each, the covari-

ance of the model severely restricts their form, and only seven functions of one same scalar

variable remain free. This unique family of constraints generates the canonical form of the

algebra along with the diffeomorphism constraint (2.15), and shows that the possible defor-

mations must be sinusoidal functions, which we interpret as the expected covariant holon-

omy corrections.
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Furthermore, following the same procedure as in vacuum, we have found, for the first time

in the literature, a Hamiltonian with holonomy corrections consistently coupled to matter

degrees of freedom. The addition of local degrees of freedom produces even more anomalies,

but we have been able to find a particular solution that describes holonomy modifications in

the presence of a scalar field. The effective theory consists of a family of Hamiltonians (2.105),

with corresponding metric (2.111), where quantum corrections are parametrised by a single

positive and bounded constant λ−, which is directly related to the polymerisation scale of the

holonomy corrections.

The covariance of this effective theory allows us to study the spacetime solution equipped

with the full power of differential-geometry techniques. In particular, in Chapter 3, we anal-

yse in detail the vacuum geometry as the simplest application of the model. In this case, the

Schwarzschild singularity is generically replaced by a minimal spacelike transition surface,

foliated by spheres of constant radius r0, inside the horizon. We prove this by explicitly solv-

ing the equations of motion for different gauge choices. We also provide the corresponding

coordinate transformations between the resulting charts, and we further obtain the maxi-

mal analytic extension of the spacetime, which is represented in Fig. 3.4. The computation of

geometric invariants shows that the curvature is everywhere finite. Besides, we find global

and quasi-local characterisations of the parameterλ−, and we check that all energy conditions

are satisfied on the horizon and at infinity.

The subsequent study in Chapter 4 generalises the results in vacuum by incorporating a Max-

well field and a cosmological constant. The analysis shows that singularity resolution de-

pends on the parameters of the model, and we perform a systematic classification of the

singularity-free solutions, which always show an infimum r0 for the area-radius function. In

contrast to general relativity, their global causal structure is independent of the specific value

of the charge, because there is no (inner) Cauchy horizon. In addition, a positive cosmologi-

cal constant sets a maximum r∞ for the area-radius function. When located in the manifold,

both extremes define minimal spacelike hypersurfaces embedded in homogeneous regions

of the spacetime. The GR black hole thus transforms into an endless periodic sequence of

non-trapped, trapped, and anti-trapped regions, which are traversable in finite proper time.

The theory also gives rise to singularity-free cosmologies (with and without horizons) that

describe bouncing universes. They show alternate periods of expansion and contraction,

connecting hypersurfaces foliated by spheres of finite minimum and maximum area. These

generic properties are depicted in Figs. 4.6-4.13. Furthermore, we find a convenient gauge to

solve the effective equations of motion, which provides a chart (4.33) that completely covers

the whole singularity-free spacetimes.
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Most remarkably, the Minkowski spacetime is always a solution of this effective theory for

any value of the positive constantλ−. In turn, the indeterminate but well-defined limit of van-

ishing λ− corresponds to general relativity. In that case, the hypersurfaces r = r0 become

unavailable, thus emerging as the central singularity.

The conditions for singularity resolution are wide enough to include any spherical astrophys-

ical black hole. The effective theory provides an entirely regular description, with everywhere

finite curvature invariants, for nearly neutral black holes of large mass embedded in a uni-

verse with a small positive cosmological constant.
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