
UNIVERSIDAD DEL PAÍS VASCO
EUSKAL HERRIKO UNIBERTSITATEA

Department of Physics

CAMPUS OF 
INTERNATIONAL 
EXCELLENCE

Layered Transition Metal Oxides:
Magnetic Properties and Excitations

Thesis by

Mikel Arruabarrena Larrarte

Supervised by

Prof. Andrés Ayuela Fernández
and

Dr. Aritz Leonardo Liceranzu

Donostia-San Sebastián, March 2023

(cc)2023 MIKEL ARRUABARRRENA LARRARTE (cc by 4.0)



Contents

Resumen 1

I Magnetic properties of layered oxides 5

1 Introduction 7

2 Numerical Methods 13
2.1 The Quantum Many-Body Problem . . . . . . . . . . . . . . . . . . 13

2.1.1 The Born-Oppenheimer Approximation . . . . . . . . . . . 14
2.1.2 Hartree-Fock method . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . 16
2.2.2 Kohn-Sham ansatz . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Exchange and correlation functionals: LDA and GGA . . . 18
2.2.4 Spin in DFT . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Strongly correlated systems: DFT+U method . . . . . . . . 20

2.3 Magnetic Properties From First-Principles . . . . . . . . . . . . . . 23
2.3.1 Magnetic Ordering and Ground State . . . . . . . . . . . . 23
2.3.2 Spin-orbit coupling and MAE . . . . . . . . . . . . . . . . . 24

3 Magnetic Properties of Bulk Ilmenite CoTiO3 27
3.1 Theoretical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Chemical and magnetic structures of CoTiO3 . . . . . . . . 28
3.1.2 Computational methodology . . . . . . . . . . . . . . . . . 29

3.2 Magnetic ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Characterization of the 3d Transition Metal Ilmenenes 37
4.1 Theoretical details . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Crystalline structure and distortions . . . . . . . . . . . . . . . . . 39
4.3 Electronic properties: magnetic semiconductors . . . . . . . . . . . 41
4.4 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Magnetic Order . . . . . . . . . . . . . . . . . . . . . . . . . 43

ii



4.4.2 Magnetic Anisotropy . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Strain-induced magnetic anisotropy transitions in layered
CaMn2Bi2 47
5.1 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Magnetic order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Strain-induced magnetic anisotropy change . . . . . . . . . . . . . 50
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II Excitons in TDDFT 53

6 Introduction 55

7 Numerical Methods 59
7.1 Time Dependent Density Functional Theory . . . . . . . . . . . . . 59
7.2 Linear Response TDDFT . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Dyson equation: optical absorption . . . . . . . . . . . . . . 61
7.2.2 Casida equation: excitation energies . . . . . . . . . . . . . 63
7.2.3 fxc kernel and excitons . . . . . . . . . . . . . . . . . . . . . 64

7.3 Excitation energies beyond TDDFT . . . . . . . . . . . . . . . . . 65

8 Direct calculation of exciton binding energies from first-principles 67
8.1 TDDFT approach: LRC kernel . . . . . . . . . . . . . . . . . . . . 67
8.2 Hybrid TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.1 Wigner-Seitz truncation of the kernel . . . . . . . . . . . . . 71
8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Conclusions and Outlook 77

Appendices

A CoTiO3: All-electron test for the band structure 81

B CoTiO3: Convergence of the MAE 83

C CoTiO3: Effect of U in the MAE 85

D CoTiO3: Orbital moment and non-collinearity 87

E TM Ilmenenes: PDOS and band structures 89

F EXCITONS: Computation of the Correction Terms Ccv 97

List of publications 99

iii



Bibliography 101

iv



RESUMEN

La investigación de las propiedades fundamentales de los materiales es un pilar
imprescindible en el desarrollo de la ciencia. Para crear dispositivos con nuevas e
interesantes aplicaciones es necesario un conocimiento profundo de los materiales
que los componen. En la actualidad, en los laboratorios del mundo se producen e
investigan nuevos materiales diariamente, y este proceso necesita inevitablemente
un estudio teórico que dé explicación a los fenómenos físicos observados. Los
modelos teóricos, además de ayudar comprender las mediciones, también sirven
para generalizar las observaciones y hacer predicciones, ayudando en la búsqueda
de nuevos materiales. No hay que olvidar el trabajo y el coste de producir nuevos
compuestos en el laboratorio, y en este sentido, las simulaciones computacionales
facilitan considerablemente este proceso, proponiendo materiales con propiedades
de interés. En los últimos años, la creación de métodos computacionales eficientes,
junto con el desarrollo de la tecnología, permite calcular con gran precisión las
propiedades de los nuevos materiales. En este contexto, es imprescindible desarrollar
y testear estas herramientas.

Esta tesis tiene como objetivo el estudio de las propiedades magnéticas y ópticas
de diversos materiales semiconductores. Siguiendo esta temática, el análisis se ha
dividido en dos partes: (i) estudio de las propiedades magnéticas de los óxidos
semiconductores compuestos por capas, y (ii) cálculo de las energías de unión de
los excitones en sólidos semiconductores y aislantes. A continuación, se resume la
estructura de la tesis.

En la primera parte, analizaremos las propiedades magnéticas de los óxidos
compuestos por capas. Nuestro objetivo es hacer una descripción detallada del
magnetismo de estos materiales para reforzar las mediciones experimentales actuales
y dar una base teórica sólida a los experimentos futuros. Los resultados que
presentamos están disponibles en las referencias bibliográficas [1, 2].

• En el capítulo 1, haremos una introducción general al magnetismo, destacando
su origen electrónico y su importancia en la nanotecnología. En esta parte
de la tesis se presentan también los materiales que serán objeto de estudio,
revisando para ello algunos estudios experimentales realizados hasta la fecha.
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Resumen

• En el capítulo 2, presentamos el método numérico que utilizaremos para
calcular las propiedades magnéticas: la teoría del funcional de la densidad
(Density Functional Theory, DFT, en inglés). La base de este método
es calcular el estado electrónico fundamental de un sistema de muchos
cuerpos, utilizando para ello un sistema equivalente formado por partículas
que no interactúan, y que tiene la misma densidad que el sistema original.
Presentaremos también el método DFT+U, que es una adición a la DFT
que tiene como objetivo corregir la excesiva delocalización electrónica que
esta produce al aplicarse en los sistemas con una correlación electrónica alta.
Para conseguir esto, la interacción Coulomb entre orbitales electrónicos de
tipo d se corrige mediante la adición de un parámetro de U de tipo Hubbard.
A continuación, explicamos el procedimiento para calcular las propiedades
magnéticas de los materiales y cómo calcular la interacción de intercambio
(exchange coupling, en inglés). Por último, presentamos la interacción espín-
órbita y el concepto de anisotropía magnética.

• En el capítulo 3, estudiamos el mineral de ilmenita CoTiO3 [1]. El titanato de
cobalto es un material que recientemente ha generado mucho interés, ya que
presenta numerosas propiedades físicas de interés. En especial, las propiedades
topológicas de este material son las que más han llamado la atención, ya que
en el titanato de cobalto presenta magnones de tipo Dirac. Esto convierte
este material en un compuesto de gran interés en el campo de la espintrónica,
pues podría emplearse para inyectar magnones en otros compuestos. En
este capítulo, dentro del formalismo GGA+U, hemos calculado el estado
magnético fundamental del material, obteniendo la estructura G-AFM que se
ha observado experimentalmente. También hemos compuesto un diagrama
de sus transiciones de fase en función de la temperatura, demostrando que el
titanato de cobato tiene dos temperaturas críticas. A continuación, hemos
realizado cálculos que tienen en cuenta la interacción spin-órbita, concluyendo
que la anisotropía magnética cristalina del CoTiO3 es perpendicular al plano
hexagonal. En un principio, este hallazgo parece contradecir los datos
experimentales, pero tras calcular otras contribuciones que influyen en la
anisotropía, hemos descubierto que el dopaje del titanato de cobalto puede
provocar que la anisotropía pase a estar en el plano, como se observa en los
experimentos.

• En el capítulo 4, analizamos las propiedades estructurales, electrónicas y
magnéticas [2] de los materiales magnéticos bidimensionales tipo ilmeneno
basados en metales de transición 3d. El ilmeneno de hierro es un material
magnético bidimensional que se exfolió recientemente del mineral de la
ilmenita basada en el hierro. Siguiendo la línea iniciada en el capítulo
anterior, y teniendo en cuenta que las estructuras de la ilmenita de hierro
y el titanato de cobalto son muy similares, en este capítulo analizaremos
toda la familia de ilmenenos TMTiO3 (siendo TM = V, Cr, Mn, Fe, Co, Ni,
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Cu, Zn los metales de transición 3d). Con el formalismo GGA+U, hemos
calculado la estructura cristalina relajada de cada material, desarrollado un
modelo de llenado de niveles electrónicos para los electrones 3d, y calculado
el estado magnético fundamental y la anisotropía magnética. Hemos llegado
a la conclusión de que la mayoría de los ilmenenos son antiferromagnéticos
por capas, y que la anisotropía magnética está fuera del plano (en el plano)
cuando la capa 3d está por debajo (encima) de la mitad del llenado.

• En el capítulo 5, estudiamos las propiedades magnéticas del compuesto
semiconductor y antiferromagnético CaMn2Bi2. Siguiendo el procedimiento
de los capítulos 3 y 4, calculamos el estado magnético básico y la anisotropía
del material. En CaMn2Bi2, los átomos de manganeso están organizados de
forma antiferromagnética y los momentos magnéticos se alinean dentro del
plano. En este capítulo también se ha estudiado como la de la deformación
de la celda influye en el magnetismo, y encontramos que la tensión puede
provocar que la anisotropía magnética cambie de dirección.

En la segunda parte de la tesis nos centraremos en las propiedades ópticas de
los semiconductores. En concreto, nos centraremos en el cálculo de las energías de
enlace de los excitones, utilizando la teoría del funcional de la densidad dependiente
del tiempo (Time-Dependent Density Functional Theory, TDDFT, en inglés). El
objetivo de esta investigación ha sido el desarrollo de un código propio que calcula
estas energías y que se ha desarrollado a lo largo de toda la tesis. Los resultados
que presentamos se pueden encontrar en la referencia [3].

• En el capítulo 6, se introduce el concepto de excitón y las implicaciones de
estos en las propiedades ópticas de los semiconductores. También presentamos
el estado actual del cálculo de energías excitónicas utilizando métodos ab
inito.

• En el capítulo 7, revisamos los métodos númericos que se emplean en el cálculo
de las energías de ligadura de los excitones en sólidos extensos. En primer
lugar, presentaremos la teoría de la densidad del funcional dependiente
del tiempo. Mencionamos los teoremas fundamentales y nos centramos
en el formalismo de la respuesta lineal (Linear-Response TDDFT), en el
que se realizan la mayoría de los cálculos excitónicos. En este formalismo
presentamos el kernel de correlación e intercambio (fxc) y las ecuaciones
de Dyson y Casida que se utilizan para calcular los espectros ópticos de
absorción y las energías de ligadura de los excitones, respectivamente. Por
último, también presentaremos el formalismo híbrido que se está utilizando
últimamente para el cálculo de energías de excitación más allá de la TDDFT
y que combina la ecuación de Casida con la ecuación Bethe-Salpeter (BSE)
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de la teoría de perturbación de los muchos cuerpos.

• En el capítulo 8, presentamos nuestros resultados referentes al cálculo de
las energías de ligadura de los excitones []. Dividimos nuestro análisis en
dos partes. Por una parte, estudiamos las energías de ligadura dentro del
formalismo TDDFT, empleando el kernel Long-Range Corrected (LRC) que
incluye la interacción Coulombiana de largo alcance. En este formalismo,
encontramos que para aplicar el truco del conmutador que se emplea para
el cálculo de los términos singulares de la ecuación de Casida, es necesario
incluir un término de corrección addicional Ccv que aparece al tratar con
sólidos infinitos. Calculamos la magnitud de este término para diferentes
semiconductores, y descubrimos que a menudo es varios órdenes de magnitud
mayor que el própio término singular, dejando claro la necesidad de incluir éste
termino para describir los excitones correctamente. Por otra parte, también
calculamos las energías de ligadura en el formalismo híbrido. Utilizando un
nuevo kernel, que está basado en truncar el kernel Screened Exact Exchange
(SXX) en la supercelda Wigner-Seitz del cristal, obtenemos dichas energías
para diversos materiales semiconductores y aislantes. El kernel SXX incluye
una parte de la energía de intercambio exacta, pero apantallada por la función
dieléctrica del compuesto. Comparamos nuestros resultados teóricos con los
que hay disponibles en la bibliografía, y analizamos la tendencia de las
energías obtenidas respecto a los parametros de convergencia. A pesar de
que las energías que se obtienen son mejores que las del formalismo TDDFT,
descubrimos una preocupante dependencia de los resultados con respecto al
muestreo de la zona de Brillouin. Todo esto dificulta obtener energías de
ligadura bien convergidas, limitando las capacidades predictivas del modelo,
y apunta a la necesidad de desarrollar kernels más avanzados que describan
la interacción electron-hueco en el excitón de una forma más completa.
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1
INTRODUCTION

Magnetism is a property of materials long known to mankind. From the use of
magnetic compasses for navigation to the data storage devices and medical imaging
of today, the study of magnetism has been present in the progress of mankind. The
first references to magnetism date back to ancient Greece, where the attraction
effect of magnetite (Fe3O4) on iron was already observed and studied. However,
it was not until the 19th century that the relationship between magnetism and
electricity was made: the experiments of Ørsted, Ampère, Gauss and Faraday
established the link between magnetism and electricity, which was later synthesized
in Maxwell’s equations. In this framework, the magnetic and electric fields could
be described, but the origin of magnetism in materials was still unknown. In the
20th century, with the advent of Quantum Mechanics, the structure of atoms was
better understood, which lead to de discovery of the spin, and revolutionized the
knowledge about magnetic materials. In the Stern-Gerlach experiment in 1922, it
was observed that a neutral beam of Ag atoms in an inhomogeneous magnetic field
split into two [4]. This finding was the first experimental evidence of the existence
of an intrinsic and quantized angular momentum of atoms1. By the end of 1924,
while studying the anomalous Zeeman effect and ferromagnetism, Pauli proposed
that it was necessary to consider an additional quantum number to describe the
electronic structure and spectral lines of certain elements [5]. Uhlenbeck and
Goudsmit suggested the physical interpretation of this quantum number as the
angular moment of a particle spinning around itself2 [6]. In 1925, Pauli formulated

1 In the case of silver atoms, it was also found that this angular momentum had to be non-
integer, since if the momentum had the minimum integer value of 1, the beam would split into
three, as would correspond to atoms with Lz=1,0,-1.

2 Even if this can work as an intuitive way to visualize the spin, in reality, spin is a quantum
property with no analogous classical counterpart. We consider electrons to be point-like particles
that are not spinning.
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Chapter 1. Introduction

his famous Pauli exclusion principle [5], which states that two electrons cannot be
in the same quantum state; that is, they cannot have the same quantum numbers.
For two electrons in the same orbital (with the same n, l and ml numbers), their
ms number must be different, and therefore their spin projections must be opposite
(+1/2 and -1/2). All of this lead to the concept of electron spin, as an intrinsic
angular momentum of the electron associated with the quantum number ms. The
mathematical description of the spin was established with the relativistic wave
equation Dirac derived in 1928, which naturally included the spin [7]. Analogously
to the orbital momentum L, the spin can be associated with a vector S which is
described by the Pauli matrices. Therefore, the magnetic moment of an electron
has two contributions: one arising from its orbital angular momentum (µL), similar
to a charged particle that is rotating, and the other due to its spin (µS).

In atoms, the total magnetic moment is a consequence of the unpaired electron
spins yielding a non-zero net magnetic moment. As a consequence, isolated atoms
with unpaired electrons show some kind of magnetism. However, in bulk materials
composed of single elements, we find magnetism in few of them, mostly containing
transition metal or rare-earth atoms [8, 9]. This happens because in a bulk
material the electrons from different atoms can interact with each other, and this
interaction can lead to a delocalized behavior, thus weakening the local magnetic
moment of the different atoms. On top of that, the thermal disorder can also
disrupt the alignment of the spins, which decreases the magnetism of the material.
How is it possible to have magnetism in bulk materials then? The answer lies
in the magnetic exchange interaction (J S1 · S2), which is a consequence of the
Pauli exclusion principle and Coulomb interaction, and energetically favors the
alignment of the different spins. If the exchange coupling is large enough, it can
overcome the thermal disorder, and the material will present magnetism. Magnetic
materials can show different spin alignments: ferromagnetic (spins parallel) [10],
antiferromagnetic (spins antiparallel) [11], ferrimagnetic (spins antiparallel, but
the total magnetization is not cancelled) or more complex structures involving
non-collinearity and spin-spirals [12]. Both for ferromagnetic and antiferromagnetic
compounds, there is a critical temperature that marks the ending of the magnetic
ordering and the beginning of paramagnetism. This order parameter is the Curie
(Néel) temperature of the ferromagnetic (antiferromagnetic) materials. Above
these temperatures, the long-range magnetic order is broken, and all the localized
moments point in random directions, resulting in a total magnetic moment of
zero3. Apart from the magnetic exchange, the magnetocrystalline anisotropy
energy (MAE), originating from the spin-orbit coupling, couples the spin magnetic
moment to a certain crystallographic direction, making the magnetic properties of
the system more resistant to an external field.

A good theoretical description of the magnetic exchange is crucial for
3 Even above this temperature, the magnetic atoms of the compound can present a well-defined

local magnetic moment. The long-range, macroscopic magnetism is what is lost above the critical
temperature.
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understanding the behavior of magnetic materials and for predicting and designing
new compounds with desired properties. In this thesis, we chose Density Functional
Theory [13, 14] as our framework to study the magnetism of transition metal oxides;
such as ilmenites and ilmenenes. DFT is a method that has revolutionized the
field of solid-state physics by providing numerical approaches that yield accurate
results at a moderate computational cost. DFT lightens the burden of solving the
many-body Schrödinger equation by solving an auxilary system of non-interacting
electrons that has the same ground state density (and energy) as the real system.
In its spin-polarized form, DFT allows us to compute the total energy of different
magnetic configurations of the material under analysis. These energies can then
be used to compute the exchange coupling constants between the spin orderings,
and determine the magnetic ground state of the system [15]. If the spin-orbit
coupling is included, the magnetocrystalline anisotropy energy of the material can
also be obtained using DFT, by comparing the total energy of configurations with
the magnetization oriented in different crystalline directions. Therefore, DFT is
a powerful tool that can provide a wide amount of information of the magnetic
properties of systems, at a computationally moderate cost. Nevertheless, albeit
being a formally exact theory, the precision of DFT is limited by the way in
which the exchange and correlation are approximated when performing calculations.
For example, in materials with a strong electron correlation, such as in magnetic
compounds containing 3d transition metals, DFT often fails to even give a good
qualitative description of the system, i.e. predicting a metallic character instead
of insulating [16–18]. There are several methods to improve the description of
the electronic exchange and correlation in DFT. In this thesis, we focus on the
DFT+U method [19], which includes a Hubbard-like correction term that acts in
the localized electrons of the material; correcting the electron delocalization and
giving a better description of the magnetic compounds of our interest.

In this block of the thesis, our goal is the study of the magnetic properties of
layered oxide semiconductors. We focus our analysis in two parts: (i) the study of
the magnetism of the bulk oxide CoTiO3 ilmenite, and (ii) the characterization of
two-dimensional TMTiO3 ilmenenes, where TM are 3d transition metals (TM=V,
Cr, Mn, Fe, Co, Ni, Cu, Zn). Due to the effort required to synthesize these materials
experimentally, the theoretical study of such materials is essential to find ideal
candidates that exhibit the desired properties. For both cases, we systematically
analyze the different magnetic configurations of each compound using Density
Functional Theory in the DFT+U framework, and study the exchange coupling
and the magnetic anisotropy. The aim of this work is to establish a solid theoretical
basis for future and more advanced calculations on these compounds.

On the one hand, bulk ilmenite cobalt titanate CoTiO3 is a layered oxide
that has attracted a lot of interest lately, because of the presence of intriguing
solid-state phenomena in this material, such as ferroelectricity, piezoelectricity or
the magnetodielectric effect [20–23]. In particular, it is the applications of cobalt
titanate in the field of spintronics what has attracted attention to this material.

9



Chapter 1. Introduction

Inelastic neutron scattering (INS) experiments confirm the presence of Dirac
Magnons [24, 25] in cobalt titanate (see Fig. (1.1)). Magnons are quasiparticles
that describe the collective excitation of the spin structure of a compound, and
can be seen as a quantized spin-wave. Magnons are of great interest in spintronics,
because they could be used to transport information in such devices, potentially
leading to faster and more efficient computing. Even though there is considerable
experimental work on ilmenite cobalt titanate, to the best of our knowledge, there is
no theoretical study on the magnetism of this compound. We study the fundamental
magnetic properties of cobalt titanate, aiming to set a solid theoretical basis for
future calculations, such as spin-spiral and magnon dispersions.

Figure 1.1: INS data at 8K observing the magnon dispersions along high-symmetry directions in
the hexagonal plane. Lines are the dispersions ω̃(k) of the XXZ∆ model, the brown dot on the
elastic line indicates the location of the magnetic Bragg peak. The incident neutron energy was
Ei=18meV. The color bars indicate scattering intensity in arbitrary units on a linear scale.
Figure adapted with permission from reference [24].

On the other hand, ilmenene is a promising new two-dimensional non-van
de Waals magnetic material that has been exfoliated from bulk ilmenite [26](see
Fig. (1.2)). In conjunction with titania nanotube arrays, it has been observed
that ilmenene is a promising candidate to be used in photoelectrochemical water
splitting. Based on the similar structure of iron ilmenite and other transition
metal compounds (such as cobalt titanate), it is not difficult to think that new
two-dimensional magnetic ilmenene-like compounds could also be synthesized in
the near future. We expand the analysis to most of the ilmenene–like 3d transition
metal titanates, and describe the structural, electronic and magnetic properties
of these compounds, providing a general background for future experimental and
theoretical work involving these materials.

10



Figure 1.2: Experimental images of iron ilmenene. (a) Bright-field tunneling electron microscope
(TEM) images of monolayer and bilayer ilmenene sheets (scale bar of 0.5 µm). (b) Dark-field
TEM images of a multilayer stack of ilmenene sheets (scale bar of 0.2 µm). (c) HRTEM image
showcasing the interplanar spacing of 2.53 Å (scale bar of 1 nm). This distance corresponds to
the (112̄0) and (21̄10) lattice spacing of the ilmenite structure signifying the (001) plane. (d)
HRTEM image of the (001) ilmenene plane (scale bar of 2 nm). The hexagonal lattice of ilmenene
is clearly observed in this figure.
Figure adapted with permission from reference [26]. Copyright 2018 American Chemical Society.
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2
NUMERICAL METHODS

Ferromagnetism has its origin in the exchange interaction between the spin
momentum of electrons in materials. Therefore, because we are interested in
a quantum effect that happens on the atomic scale, quantum mechanics will be
our working framework.

2.1 The Quantum Many-Body Problem
In general, if we want to study a quantum system with Ne electrons and NI nuclei,
this implies solving the following time-dependent Schrödinger equation

ĤΦ(re,RI , t) = i
∂Φ(re,RI , t)

∂t
, (2.1)

where t is time, Φ(re,RI , t) is the many-body wavefunction that describes the
system, being re = (r1, ..., rNe

) and RI = (R1, ...,RNI
) the electronic and ionic

spatial coordinates, respectively. In many cases, solving the time-independent
stationary problem is all we need to do. Then, the spatial coordinates and time
can be separated, and the stationary Schrödinger equation is obtained:

(Te + TI + Vee + VIe + VII)Ψ(re,RI) = EΨ(re,RI). (2.2)

Here, Ψ(re,RI) is the time-independent wavefunction, and E is the total energy
of the system. Te and TI are the electronic and ionic kinetic energy operators,
and Vee, VII and VIe are the electron-electron, ion-ion and ion-electron Coulomb

13



Chapter 2. Numerical Methods

interactions, which are mathematically described as12

Ĥ =
Ne∑
i

−1
2∇2

i +
NI∑
j

− 1
2M̃I

∇2
j + 1

2

Ne∑
i̸=i′

1
|ri − ri′ |

(2.3)

−
Ne∑
i

NI∑
j

Zj

|Rj − ri|
+ 1

2
∑
j ̸=j′

ZjZj′

|Rj − Rj′ |
. (2.4)

Even though all the information about the system is encoded in the wavefunction
Ψ, and solving the many-body Schrödinger equation (2.2) is all we have to do; in
practice, getting an exact solution is unfeasible. The large size of the system, which
has 3(Ne +NI) variables, in conjunction with the computational cost of calculating
the Coulomb interaction terms, requires approximations.

2.1.1 The Born-Oppenheimer Approximation
The Born-Oppenheimer approximation [27] consists mainly in decoupling the
electronic and ionic parts of Eq. (2.2), by assuming that the wave function of the
system can be written in the following manner:

Ψ(re,RI) =
∑

n

ψn(RI)ϕn(re,RI). (2.5)

Here, ψn(RI) and ϕn(re,RI) are the ionic and electronic wave functions, and n
runs over all ions. The large difference between nuclear and electron masses 3,
allows us to neglect the kinetic energy of the ions, i.e. TI = 0, therefore treating
the system as an electronic problem on top of a frozen ion configuration.

Plugging the wavefunction in Eq. (2.5) into Eq. (2.2) yields the following
equation for the electronic degrees of freedom:

(Te + Vee + VIe + VII)ϕRI
(re,RI) = ERI

ϕRI
(re,RI). (2.6)

Note that in the ionic degrees of freedom enter as parameters in the previous
equation, and that the potential energy term VII is a constant for a given ionic
configuration. The Born-Oppenheimer approximation reduces the size of the system
from 3(NI +Ne) degrees of freedom to 3Ne variables.

1 Throughout all this thesis, and unless stated otherwise, atomic units will be used, so
me = e = ℏ = 1

2 M̃I is the nuclear mass of ion I.
3 Even in the lightest case, the hydrogen atom, the ratio between proton and electron masses

is of the order of Mp/me ≃ 1836, which makes the kinetic energy of the nuclei negligible with
respect to the kinetic energy of the electrons.
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2.1. The Quantum Many-Body Problem

2.1.2 Hartree-Fock method
Even if the Born-Oppenheimer approximation is adopted, the many-body character
of the wavefunction and the electron-electron interaction needs to be addressed to
perform calculations efficiently. The Hartree-Fock method [28] approximates the
total wavefunction of the system using a Slater determinant [29] of the single-particle
electron wavefunctions:

ψ(r1, r2, ..., rNe
) = 1√

Ne!

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) ... ϕNe(r1)
ϕ1(r2) ϕ2(r2) ... ϕNe(r2)

...
...

. . .
...

ϕ1(rNe
) ϕ2(rNe

) ... ϕNe
(rNe

)

∣∣∣∣∣∣∣∣∣ , (2.7)

where ri are the spatial and spin coordinates of each electron. One of the main
features of this approximate wavefunction is that it satisfies the Pauli exclusion
principle, i.e. it is antisymmetric with respect to particle interchange.

Using the wavefunction in Eq. (2.7), the expectation value of the many-body
Hamiltonian of Eq. (2.2) is

⟨Ĥ⟩ =
Ne∑
i

∫
drϕ∗

i (r)
[
−1

2∇2 + Vext

]
ϕi(r)

+ 1
2

Ne∑
ij

∫
drdr′ |ϕi(r)|2|ϕj(r)|2

|r − r′|

− 1
2

Ne∑
ij

∫
drdr′ϕ∗

i (r)ϕ∗
j (r′) 1

|r − r′|
ϕj(r)ϕi(r′). (2.8)

The first row in Eq. (2.8) contains the kinetic energy of each electron and the
external potential acting on the them. The terms in the second and third rows
are the so-called Hartree and exchange terms, respectively. The Hartree term
represents the Coulombic repulsion energy of two charge densities |ϕi|2 and |ϕj |2
integrated over the locations of the two electrons i and j. The exchange term arises
from the Pauli exclusion principle. Note that for i = j the Hartree term includes
an unphysical self-interaction of the electrons, which is exactly canceled by the
exchange term.

To get the ground state energy, the variational principle is used in the Hartree-
Fock method. The energy of the system is minimized using the Lagrange multipliers
ϵi, while imposing that the one-electron wavefunctions are orthogonal:

∂

∂ϕ

[
⟨Ĥ⟩ −

∑
i

ϵi

∫
dr|ϕi(r)|2

]
= 0. (2.9)
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The HF approach is a practical scheme to solve the many-body electron problem
starting from one-electron wavefunctions. However, the HF method neglects the
correlation between electrons (by assuming a single determinant form of the
wavefunction), which can lead to the incorrect description of the systems under
analysis, often overestimating HOMO-LUMO band gaps in insulators [30].

2.2 Density Functional Theory
Density Functional Theory (DFT) is a numerical method that replaces the many-
body wavefunction Ψ(r, r2, ..., rNe) with the electron density n(r) as its main
variable. The electron density is obtained by integrating the wavefunction over all
but one spatial variable

n(r) = N

∫
dr2...

∫
drNe

Ψ∗(r, r2, ..., rNe
)Ψ(r, r2, ..., rNe

), (2.10)

and has the advantage of only depending on 3 spatial coordinates, compared to
the 3Ne variables of the wavefunction.

2.2.1 Hohenberg-Kohn Theorems
The basis of DFT were established by Hohenberg and Kohn [13], which
demonstrated that:

1) For an electronic system in an external potential vext(r), there is a one to one
correspondence between the potential and the ground state density n0(r), except
for a constant.

2) For any external potential vext(r), a universal functional of the total energy
E[n] exists, and the exact ground state of the system is determined by the global
mininum of this functional:

E0[n] = min
ϕ∈Ψ

⟨ϕ|H |ϕ⟩ = min
n∈N

Evext
[n], (2.11)

where Ψ and N represent the ensemble of ground state wave functions and electron
densities, respectively. The energy functional E[n] can be written as

E[n(r)] = F [n(r)] +
∫
vext(r)n(r)dr, (2.12)

where F [n] = T [n] + Vee[n] is the universal functional that accounts for the kinetic
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2.2. Density Functional Theory

energy of the electrons and their interaction, and the right term describes the
interaction of the density with the external potential.

The Hohenberg-Kohn theorems establish a theoretical framework to calculate
the ground state energy of the system using the density n(r) as the main variable,
but without knowing the expression for the functional F [n], its practical application
is not straightforward.

2.2.2 Kohn-Sham ansatz
Kohn and Sham developed a practical application of the HK theorem by studying
one of the simplest systems: the problem of N non-interacting electrons under an
external potential [14]. The energy functional of that system is

Es[n] = Ts[n] +
∫
vs(r)n(r)dr, (2.13)

where Ts =
∑Ne

i

〈
ϕKS

i

∣∣− 1
2 ∇2

i

∣∣ϕKS
i

〉
is the kinetic energy functional of the non-

interacting electrons, and vs is the external effective potential that acts on the
particles. In the non-interacting system, the ground state wavefunction of the
system is the Slater determinant of the single-particle orbitals ϕs, which are
calculated from the N decoupled Schrödinger equations[

−∇2
i

2 + vs(r)
]
ϕs

i (r) = ϵiϕ
s
i (r). (2.14)

As long as the effective potential vs is known, this system can be exactly solved,
as the density is computed from the ϕs orbitals:

ns(r) =
Ne∑
i

|ϕs
i (r)|2. (2.15)

The basis of the Kohn-Sham approach is the following: since the energy is a
functional of the ground state density, an auxiliary system of non-interacting
particles with the same density as the real system (ns(r) = n(r)) can be used to
calculate the energy of the real system.

In the interacting system, the electron-electron interaction can be split into
two terms Vee = EH + Uxc, where EH is the energy due to the classical Coulomb
interaction between two charge densities (also called the Hartree term), and Uxc is a
smaller term that accounts for the exchange and correlation effects of the interaction.
Similarly, the kinetic energy of the electron can be split as T = Ts + Tc, where
Tc is the difference between kinetic energy of the interacting and non-interacting
electrons. All of this allows us to rewrite the energy functional of the interacting
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system as follows

E[n] = Ts[n] + EH [n] + Exc[n] +
∫
vext(r)n(r)dr, (2.16)

where all the terms are known, except for the exchange-correlation energy
Exc = (Vee − EH) + Tc. One of the keys of the Kohn-Sham approach is that
this term is indeed much smaller than the rest of the known contributions, meaning
that a big fraction of the total energy can be calculated exactly.

By minimizing equations (2.13) and (2.16) with respect to the density, the
effective potential acting on the non-interacting electrons is

vs = vKS = vext +
∫
dr′ n(r′)

|r − r′|
+ vxc(r). (2.17)

Here, vxc = δExc

δn(r) is the exchange-correlation potential, which is the unknown term.
In practice, there is no analytical expression for this magnitude, and it has to be
numerically approximated (as we will discuss in section 1.3).

Using all of the above, Kohn and Sham established a self-consistent method
to perform calculations in the framework of the Density Functional Theory, which
we graphically depict in Fig. 2.1: for an initial guess density n(r), the vKS potential
is calculated from Eq. (2.17), which yields a set of single particle wavefunctions by
solving Eq. (2.14). These wavefunctions are used to calculate a new density n′(r)
from Eq. (2.15), which is compared to the initial density. The previous procedure
is repeated until the calculated density is within a certain convergence threshold.
The converged density can then be used to compute the ground-state magnitudes
of interest of which we know the functional, such as the total energy of the system
from Eq.(2.16).

2.2.3 Exchange and correlation functionals: LDA and GGA
Density Functional Theory is formally an exact theory, which would yield the
exact ground state properties of the system, once it is provided that the exchange-
correlation energy functional Exc is known. However, in practice, there is no
known analytic expression for this term, and approximations are needed in order
to perform DFT calculations. The Local Density Approximation (LDA) and the
Generalized Gradient Approximation (GGA) are two of the most used.

In the Local Density Approximation [14], the exchange-correlation
functional Exc is approximated by a local functional of the density in the limit of
the homogeneus electron gas (HEG)

ELDA
xc [n] =

∫
n(r)ϵHEG

xc (n(r))dr, (2.18)
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2.2. Density Functional Theory

Figure 2.1: Schematic representation of the Kohn-Sham self-consistent procedure.

where ϵHEG
xc (n(r)) is the exchange-correlation energy per electron in a homogeneous

electron gas. For a homogeneus electron gas, the exchange part of this term is
known, while the correlation energy needs to be approximated with numerical
methods, such as Monte Carlo methods. The applicability of LDA goes beyond
the homogeneous electron gas, and is currently used in a wide array of materials.
One of the main shortcomings of LDA is the overbinding of the electrons, which
often leads to an underestimation of bond lengths [31] and band gaps [32].

The Generalized Gradient Approximation is a generalization of the LDA
that includes a gradient of the density to take the spatial variations of the density
into account:

EGGA
xc [n] =

∫
n(r)ϵHEG

xc (n(r))Fxc(n(r), |∇n(r)|)dr. (2.19)

Here, ϵHEG
xc is the exchange correlation energy functional of the homogeneous

electron gas, and Fxc is the enhancement function that includes the non-locality of
the density through its gradients. GGA functionals improve the description of the
exchange and correlation, and can yield chemically accurate bond lengths4. Unless
stated otherwise, all the GGA calculations in this thesis were performed in the
parametrization of Fxc given by Perdew, Burke and Ernzerhof (PBE) [33].

4 Band gaps are still underestimated within the GGA.
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2.2.4 Spin in DFT
The generalization of DFT to include spin was done by Barth and Hedin [34].
Using spinor wavefunctions ϕ(r) =

( ϕ↑
ϕ↓

)
, the density matrix n̂(r) can be defined as

n̂(r) = 1
2(n(r)I + σ · s(r)) = 1

2

(
n(r) + sz(r) sx(r) − isy(r)
sx(r) + isy(r) n(r) − sz(r)

)
, (2.20)

where n(r) is the scalar electron density, s(r) is the vectorial spin-density, I is the
2x2 identity matrix, and σ = (σx, σy, σz) are the Pauli matrices.

In this framework, the Kohn-Sham equations are the following:[(
−1

2∇2 +
∫

n̂(r′)
|r − r′|

dr′
)

I + v̂ext(r) + v̂xc(r)
](

ϕ↑
i

ϕ↓
i

)
= ϵi

(
ϕ↑

i

ϕ↓
i

)
(2.21)

where v̂ext and v̂xc are now functionals of the density matrix. In the special
case with no external magnetic field and with spins aligned in the z-axis [15],
which describes all the collinear magnetic configurations, Eq. (2.21) splits in two
decoupled equations for the spin-up (ϕ ↑) and spin-down (ϕ ↓) channels:[

−1
2∇2 +

∫
n(r′) + sz(r′)

|r − r′|
dr′ + vext(r) + v↑↑

xc(r)
]
ϕ↑

i = ϵiϕ
↑
i (2.22)

[
−1

2∇2 +
∫
n(r′) − sz(r′)

|r − r′|
dr′ + vext(r) + v↓↓

xc(r)
]
ϕ↓

i = ϵiϕ
↓
i (2.23)

where v↑↑,↓↓
xc = δExc[n↑↑,↓↓]

δn↑↑,↓↓ . In the case where the charge density is not spin-
polarized, i.e. n ↑↑= n ↓↓, both equations are identical.

2.2.5 Strongly correlated systems: DFT+U method
While DFT is a successful method for calculating a wide variety of physical
phenomena, it still presents shortcomings when studying highly correlated systems
[19, 35]. In compounds that contain rare-earth or transition metals, the energy
gap involves bands of the orbitals with d and f character [36]. LDA and GGA
exchange-correlation functionals tend to over-delocalize these electrons, and this
often results in an itinerant electron behavior, which can lead to an incorrect
description of physical properties such as the total energy, local magnetic moments
and magnetic exchange couplings [17, 18]. This behavior is especially notable in
the so-called Mott insulators, where DFT often predicts these insulating materials
to have a metallic character [16].

This delocalization is linked to the inability of the approximated exchange-
correlation functionals to fully cancel out the self-interaction in the Hartree term
[19]. This residual part of the self-interaction can induce a delocalization of the
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otherwise localized electrons. In order to correctly describe the electronic structure
of systems with localized electrons, the Coulomb interaction between localized
states has to be properly corrected. The DFT+U approach adds the Coulomb U
parameter of the Hubbard Hamiltonian to the DFT framework [19].

In DFT+U, the total energy functional of the system is separated in two parts:
a ground state DFT total energy term, and an orbital-dependent Hubbard-like term,
which describes the Coulomb interaction between the electrons in the localized
orbitals. The DFT+U functional [37] is given by

EDF T +U [ρσ, nσ
l ] = EDF T [ρσ] + Eee[nIσ

mm′ ] − EDC [nIσ], (2.24)

where EDF T is the DFT total energy functional, obtained within the LDA or
GGA, Eee is the Hubbard-like electron-electron interaction energy responsible
of correcting the electron delocalization, and EDC is the double counting term
that subtracts the electron-electron interaction of localized states that is already
included in EDF T . Here, ρσ(r) is the spin-dependent electron density (with σ =↑, ↓)
on which the DFT energy depends. The Hubbard and double counting terms have
an explicit orbital dependence, which is included with the orbital occupation
numbers nIσ

m , where I is the atomic site index, and m are the orbitals of the shell l
(m = −l, ..., l).

The occupation matrix nIσ
mm′ is given by a projection of the Ψσ

kv Kohn-Sham
orbitals onto a localized basis set:

nIσ
m,m′ =

∑
k,v

fσ
kv

〈
Ψσ

kv

∣∣ϕI
m′

〉 〈
ϕI

m

∣∣Ψσ
kv

〉
. (2.25)

In Eq. (2.25), fσ
kv are the occupations of the KS states, where the indices k and v

represent the k-point and band, respectively. Using the definitions nIσ
m = nIσ

mm and
nI =

∑
m,σ n

Iσ
m , the DFT+U energy functional can be rewritten as

EDF T +U [ρ(r)] = EDF T [ρ(r)]

+
∑

I

U I

2
∑

m,σ ̸=m′,σ′

nIσ
m nIσ′

m′ − U I

2 nI(nI − 1)

 . (2.26)

To get a qualitative view of the physical effect of the added terms, the Hubbard
contribution to the DFT+U potential can be derived from Eq. (2.26) using the
atomic orbital occupations given in Eq. (2.25):

VDF T +U = V σ
DF T +

∑
I,m

U I

(
1
2 − nIσ

m

) ∣∣ϕI
m

〉 〈
ϕI

m

∣∣ . (2.27)

The Hubbard potential in Eq. (2.27) is repulsive when the orbitals are less than
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half-filled (nIσ
m < 1/2), and attractive otherwise. Therefore, it can be seen that

the DFT+U approach adds an energy penalty to the fractional occupation of the
localized atomic orbitals (which is often a sign of hybridization with neighboring
atoms), and favors the localization of electrons in particular atomic states when
nIσ

m → 1. The difference between the Hubbard potential acting on occupied and
unoccupied orbitals is in the order of the chosen U parameter, which creates an
energy gap in the Kohn-Sham band spectrum.

It should be noted that the quantity in Eq. (2.25) is not invariant under the
rotation of the basis set of atomic orbitals employed, which makes the calculations
depend on the chosen localized basis. Nevertheless, in practice, rotationally invariant
formulations of DFT+U are used, the most widely adopted of which are the ones
by Liechtenstein et al. [37] and the simplified approach by Dudarev et al. [38].
In this thesis, we will focus on the Dudarev approach, where the DFT+U energy
functional is given by

EDF T +U [ρ(r)] = EDF T [ρ(r)] + Ũ

2
∑

σ

(∑
m

nσ
mm −

∑
mm′

nσ
mm′nσ

m′m

)
. (2.28)

Here, Ũ = U − J is the Hubbard electron interaction term, which includes the
Coulomb interaction (U) and exchange terms (J) in an effective way [38]. Even
though they can in principle be determined ab initio; in practice, the U parameters
are often used as a semiempirical or input parameter. It should be noted that in
DFT+U calculations the total energy will depend on the used U (and J) parameter,
which means that only the total energies of calculations performed with the same
Hubbard terms can be compared.

As an example, Figure 2.2 shows the band structure of bulk CoTiO3, calculated
using the GGA and GGA+U approaches (with UT i = 3.9 eV and UCo = 4.5 eV)
[1]. We observe that in the GGA band structure (panel (a)), the band gap of the
system is determined by cobalt bands that are around the Fermi energy, with a
small hybridization with oxygen and titanium atoms. When the DFT+U approach
is used (panel (b)), cobalt orbitals become localized in space, which leads to a
splitting of the cobalt bands, considerably increasing the band gap of the system
from around 0.2 eV to almost 3.0 eV, and yielding a completely different electronic
character. In the GGA+U approach, the valence band consists of hybridized Co-O
bands and a conduction band is formed of Co-Ti bands. The electronic bands of
the system change considerably from GGA to GGA+U, which goes from being an
almost metallic compound to a semiconductor with an interesting layered structure,
where electrons localize around the Co-O layers and holes concentrate in the Co-Ti
layers.
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Figure 2.2: Electronic band structure of bulk CoTiO3, computed using (a) GGA and (b) GGA+U
DFT calculations. The color scheme represents the projection of the Kohn-Sham orbitals into
atomic orbitals of the different elements in the compound. Cobalt is depicted in red, oxygen in
blue, and titanium in green.

2.3 Magnetic Properties From First-Principles

2.3.1 Magnetic Ordering and Ground State
An interesting fact about the spin-polarized Kohn-Sham equations (2.22) and (2.23)
is that for a given spin density s(r), they can lead to metastable solutions that are
not the magnetic ground state of the system [15]; i.e. for a given initial magnetic
state, the system can stay near the input magnetic configuration, even if another
lower energy magnetic configuration exists. This makes it difficult to calculate
the fundamental state of a particular system using DFT, since the final magnetic
configuration is not guaranteed to be the fundamental state of the system. Several
magnetic configurations have to be calculated in order to find the ground state.

The magnetic interactions of the system can also be described using a model
Hamiltonian. The simplest example is the Heisenberg model

H = −
∑
⟨ij⟩

JijSi · Sj , (2.29)

where Si denotes the spin of the magnetic atom at site i, and Jij is the exchange
coupling between the atoms i and j. In this approach, it is assumed that at the
positions of the magnetic atoms, the exchange interaction between atoms is large,
and that each lattice point can be assigned a well-defined magnetic moment within
a sphere centered on the nucleus.
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This description of the system allows us to compute the exchange constants of
the system by comparing the total energies of different magnetic configurations of
the compound (ferromagnetic, antiferromagnetic, ...), since the energy differences
between the magnetic states arise due to the exchange interactions described in
the model.

2.3.2 Spin-orbit coupling and MAE
We now consider the spin-orbit coupling (SOC) of electrons in solids. The spin-orbit
coupling is a relativistic effect that emerges from the interaction between the spin
angular momentum S of an electron and its orbital angular momentum L. In
the non-relativistic limit of the Dirac equation, the spin-orbit coupling HSOC is a
correction term of the Schrödinger equation with the Hamiltonian

H = HNR +HSR +HSOC . (2.30)

Here, HNR is the non-relativistic Hamiltonian, and HSR is the scalar-relativistic
term including relativistic effects that do not include spin. The spin-orbit coupling
term is given by

HSOC = σ · (−∇V (r) × p) = −1
r

dV (r)
dr

σ · (r × p) = ξ(r)σ · L. (2.31)

In the previous expression, σ are the Pauli matrices, V (r) is the potential, L is the
orbital moment, and ξ(r) = − 1

r
dV (r)

dr is the variation of the potential around each
atomic site. Integrating ξ over radial coordinates, and including the spin S = σ/2
in equation 2.31, the spin-orbit coupling is rewritten as

HSOC = λS · L. (2.32)

Here, λ = ⟨ξ⟩/2 is the so-called spin-orbit constant [39]. The SOC can induce the
splitting of degenerated energy bands in the crystalline field of solids.

The spin-orbit coupling is the origin of an array of effects in magnetic systems,
which include the magnetocrystalline anisotropy energy (MAE, from now on),
the antisymmetric magnetic exchange (also known as the Dzyaloshinskii–Moriya
interaction) [40, 41] and the anomalous Hall effect [42–44]. In this thesis, we will
focus on the MAE.

The spin-orbit interaction couples the spin magnetic moment to the symmetry of
the crystal, thus resulting in energetically favored directions for the magnetization.
The magnetocrystalline anisotropy energy is the energy difference between two
magnetic configurations with different magnetization directions. In the DFT
framework, the MAE can be computed by subtracting the total energy of two
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self-consistent calculations with different spin orientations:

MAE = Ea − Eb. (2.33)

In solids, the MAE is usually small (in the order of 10−5-10−6 eV/atom)5,
which means that the total energy calculations have to be carefully performed.
We are going to compare two large values to get a small energy difference, so
the dependence of the calculated results has to be analyzed with respect to the
convergence parameters, such as the energy cutoff and the Brillouin Zone sampling.

5 For cubic systems, this value tends to be in the order of 10−6 eV/atom, while for other
systems with lower symmetry, the value can increase up to the order of 10−5eV [45].
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3
MAGNETIC PROPERTIES OF BULK
ILMENITE CoTiO3

Titanate materials ATiO3 with A being a rare earth or transition metal element have
a wide variety of crystal structures, which result in numerous intriguing physical
phenomena, such as ferroelectricity, magnetism, multiferroicity and piezoelectricity
[20]. In particular, cobalt titanate, CoTiO3, has a broad variety of electronic based
industrial applications including catalysis [23], as a high-κ dielectric1 [22], and as a
gas sensor [46]. In addition, CoTiO3 has been recently reported to exhibit Dirac
magnons [25] and a magnetodielectric effect [21]. Despite the growing interest
in the electronic and magnetic properties of cobalt titanate, to the best of our
knowledge, first-principles theoretical studies of its magnetic properties are absent
in the literature.

Magnetic properties of CoTiO3 ilmenites are ascribed to cobalt atoms in the
form of Co2+ ions distributed in layers, structurally in a C3v symmetry given
by the neighboring oxygen atoms. Magnetic susceptibility studies indicate that
cobalt magnetic moments are antiferromagnetically coupled between layers while
they are ferromagnetically coupled within layers [47, 48]. Neutron diffraction
experiments assign in-plane magnetic moments to cobalt atoms, a fact that lowers
the symmetry around cobalt atoms [25, 47]. However, these studies find that
magnetic excitations recover the C3v symmetry around Co2+ ions. To reconcile the
two pictures, these experimental works have assumed models that include in-plane
structural domains given by staggered trigonal distortions and oxygen twin planes.
Neutron scattering averages over the domains and allows one to recover the C3v

symmetry found in magnetic excitations. Using first-principles calculations, the

1 κ is the dielectric constant.
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phonon vibrational properties were studied to explain Raman observations [21].
Therefore, to complement these lattice dynamics results, and clarify the validity of
the assumptions made to explain neutron scattering data, there is a need to study
the magnetic properties of CoTiO3 ilmenites in a single perfect crystal in detail.

In this chapter, we perform a theoretical analysis of bulk ilmenite CoTiO3, with
the focus on its magnetic properties. In the framework of the Hubbard-corrected
GGA (GGA+U) [19], we calculate the lattice parameters and band structure of
CoTiO3, and find that the G-type antiferromagnetic structure reported in the
experiments [25, 47, 48] is the ground-state of the system. Two critical temperatures
are observed, resulting in a temperature region above the Néel temperature where
the system would still present ferromagnetism within the individual layers. We
also calculate the magnetic anisotropy of the system, which favors out-of-plane
magnetization, a finding that seems to be at odds with previous experimental
findings. However, we analyze the variation of the magnetocrystalline anisotropy
energy (MAE) with respect to the number of electrons in the unit cell, and propose
that the experimental in-plane magnetization could be a result of doping. We
compute the low-doping level that would switch the out-of-plane magnetization to
be in-plane.

3.1 Theoretical Details

3.1.1 Chemical and magnetic structures of CoTiO3

We first discuss the difference between the chemical and magnetic structures of
bulk cobalt titanate. The compound CoTiO3 is reported to have an ilmenite crystal
structure with trigonal space group R3−, which consists of alternating layers of
corner sharing CoO6 and TiO6 octahedra, stacked along the c-axis in the hexagonal
setting, as shown in Fig. 3.1(a) [25, 47]. The lattice can be seen as hexagonal with
a = b = 5.06 Å and c = 13.91 Å, or a = 5.48 Å and θ = 55 in the rhombohedral
setting. The Co, Ti and O atoms are located at the Wyckoff positions (0,0, 0.355),
(0, 0, 0.146) and (0.316, 0.021, 0.246), respectively [21].

The CoTiO3 magnetic configuration is reported as “G-type" antiferromagnetic
ordering below the Néel temperature of 38 K [21, 25, 47, 48, 50]. This configuration
consists of ferromagnetically coupled hexagonal ab-planes, antiferromagnetically
coupled along the c-axis, as shown in Fig. (3.1)(b). It should be noted that
in order to reproduce the periodicity of this magnetic cell in the spin-polarized
formalism implemented in the ab initio codes, building a cell larger than the
chemical rhombohedral or hexagonal cells is needed.

Although the c-axis doubled hexagonal cell, which consists of 60 atoms, is a
straightforward candidate, there is a primitive magnetic cell of just 20 atoms that
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3.1. Theoretical Details

Figure 3.1: Chemical and magnetic unit cells of bulk CoTiO3. (a) The rhombohedral and hexagonal
cells that reproduce the crystalline chemical periodicity. (b) Conventional and primitive magnetic
cells exemplified using the experimentally found “G-AFM" magnetic configuration. Ferromagnetic
hexagonal ab planes of cobalt are antiferromagnetically coupled in the (doubled) hexagonal c-axis.
This figure was prepared using the VESTA software [49].

still satisfies this periodicity [24]. It can be defined by means of the transformationM1
M2
M3

 = 1
3

 1 2 2
−2 −1 2
1 −1 2

a
b
c

 , (3.1)

where a, b and c are the hexagonal lattice vectors. We refer to this cell as the
primitive magnetic cell, and unless stated otherwise, all the calculations in this
chapter are performed using this lattice.

3.1.2 Computational methodology
Electronic delocalization within DFT may lead to an incorrect description of the
magnetic properties. In particular, for systems with localized electrons such as
d-electrons of transition metals acting as dopants in semiconductors or constituting
a component of transition metal oxides, Coulomb interaction effects may lead to
qualitatively different results [51, 51–53]. The DFT+U method is one approach
that aims to correct the tendency of DFT towards itineracy by explicitly correcting
the Coulomb interaction with a Hubbard-like interaction for a subset of states in
the system [54]. By including the on-site Coulomb interaction U and exchange
interaction J terms, the non-integer or double occupation of these states is penalized,
thus localizing them in the atomic sites.

Our DFT calculations were performed using the Vienna Ab-initio Software
Package (VASP) [55, 56] using the projector augmented wave method (PAW). We
employed the GGA for exchange using Perdew–Burke–Ernzerhof (PBE) approach.
Extra electron-electron Coulomb interactions are taken into account with the
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Chapter 3. Magnetic Properties of Bulk Ilmenite CoTiO3

GGA+U approach in the code. We employed the simplified rotationally invariant
approach implemented by Dudarev et al. [38], which includes the U and J terms
as an effective Ueff = U − J parameter. For brevity, and unless stated otherwise,
we refer to the Ueff parameter as U . The electrons Co(3p, 3d, 4s), Ti(3p, 3d, 4s)
and O(2s, 2p) were treated as valence states. Tests using all-electron calculations
were conducted to check that the number of valence electrons per element was
properly considered, as described in Appendix A.

For most of the calculations presented in this chapter, the total energy of the
system was converged with respect to the plane-wave cutoff energy and reciprocal
space samplings. The convergence criterion was less than 1 meV/atom, and we
found that a plane-wave cutoff of 800 eV, and a Γ-centered 8x8x8 Monkhorst-Pack
k-point mesh yield results within the stated precision. In the spin-orbit calculations,
where the energy differences are on the order of 10−1 meV, additional convergence
tests for the magnetocrystalline anisotropy energies (MAE) with respect to the
reciprocal space sampling were performed to ensure numerically precise results (see
Appendix B).

3.2 Magnetic ordering
To analyze the magnetic structure of cobalt titanate, we perform total energy
calculations for various magnetic configurations shown in Fig. 3.2: the G-AFM
structure, and the ferromagnetic (FM) and “full-antiferromagnetic" (F-AFM)
structures. We find that for all considered (UTi, UCo) values, the energy ordering
of the three structures is the same: the G-AFM configuration is the ground-
state, followed by the ferromagnetic FM state, with the full-antiferromagnetic
F-AFM structure presenting a considerable higher energy. We refer to the energetic
difference between the G-AFM and FM structures as ∆E1, and label the difference
between the G-AFM and F-AFM states as ∆E2.

In the G-AFM state, all cobalt atoms have a local magnetic moment of ±|µCo|,
where |µCo| ranges from 2.5 µB (GGA) to 2.8 µB (UTi=6, UCo=5). This change
in the local magnetic moment is also the cause of the localization effect due to
the U parameters, which increases the electronic density around the cobalt atoms
as the U parameters increase. The calculated magnetic moments are close to the
expected S=3/2 value derived from Hund rules, and the slight difference can be
attributed to the fact that the local magnetization is numerically computed by
integrating in the spherical region given by the Wigner-Seitz radius, which can
lead to an underestimation of the measured magnetization. However, it should
not be forgotten that due to the hybridization mentioned in the previous section,
cobalt presents a non-negligible covalence that modifies the ionic Co2+ picture.

The inter-layer superexchange J1 and intra-layer direct exchange J2 couplings
can be calculated from the energy differences ∆E1 = EFM − EG-AFM and
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3.2. Magnetic ordering

Figure 3.2: (a) “G-type" antiferromagnetic, (b) ferromagnetic and (c) full-antiferromagnetic
configurations of ilmenite CoTiO3. J1 and J2 are the inter-layer and intra-layer magnetic couplings,
respectively, and ∆E1 and ∆E2 denote the energetic differences between the configurations. In the
(a) and (b) settings, the intra-layer coupling is ferromagnetic, with (a) antiferromagnetic, or (b)
ferromagnetic, inter-layer coupling. In the configuration (c), both couplings are antiferromagnetic.

∆E2 = EF-AFM − EG-AFM. Applying the Heisenberg Hamiltonian

H = −
∑

ij

JijSi · Sj (3.2)

to the magnetic configurations under analysis yields the following energies per unit
cell:

EG-AFM = E0 + (+2J1 − 6J2)S̃2, (3.3)
EFM = E0 + (−2J1 − 6J2)S̃2, (3.4)

EF-AFM = E0 + (+2J1 + 6J2)S̃2. (3.5)

Here, S̃ is the pseudospin 3/2, and J1 and J2 are the inter-layer and intra-layer
magnetic couplings (given in meV). From the energy differences ∆E1 and ∆E2, we
get the following expressions for the couplings:

J1 = −∆E1

4S̃2
, (3.6)

J2 = ∆E2

12S̃2
. (3.7)

This procedure yields approximate values of J1 = -1.33 meV and J2 = 1.25 meV
in the UCo=UTi=4.0 eV case. These values have not to be confused with the ones
in Refs. [21, 25], which are calculated for different model Hamiltonians and other
DFT approaches.
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Chapter 3. Magnetic Properties of Bulk Ilmenite CoTiO3

Figure 3.3: Magnetic phases of cobalt titanate with temperature. Energy differences ∆E1 and
∆E2 were converted to temperature units. TN is the Néel temperature, which is related to
the breaking of the inter-layer antiferromagnetic ordering, and is shown along the experimental
value of TN=38K indicated by a dashed line. TC is related to the breaking of the intra-layer
ferromagnetic ordering, and represents the starting point of paramagnetic behavior which exists
for higher temperatures.

The previously defined energy differences ∆E1 and ∆E2 can also be linked to
the thermal energies needed to invert the spin ordering of their respective coupling,
which causes phase transitions. A critical temperature can be associated with each
of these transitions, e.g. in the form of kBTi = ∆Ei/NCo. These computed critical
temperatures are shown in Fig. 3.3, where a phase diagram of the system behavior
is presented. For temperatures lower than the Néel temperature (TN ), the system
will exhibit the G-AFM state, which consists of ferromagnetic hexagonal ab planes
antiferromagnetically coupled along the c-axis. When the temperature ranges
between TN and TC , the antiferromagnetic inter-layer ordering will be broken, but
the intra-layer ferromagnetic ordering will still be present. Lastly, TC indicates the
beginning of the fully paramagnetic behavior, where the thermal energy overcomes
the in-layer coupling, breaking the ferromagnetic ordering of the layers. Note that
the Co ions in the paramagnetic state still present disordered local magnetizations,
not being fully spin compensated. These findings suggest that individual layers
can be ferromagnetic in the TN < T < TC range above the Néel temperature,
an interesting result regarding applications that might merit further experimental
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3.3. Magnetic anisotropy

work. It is noteworthy that single layers of iron ilmenene, a material with a similar
structure to cobalt titanate, have already been exfoliated [26].

3.3 Magnetic anisotropy
We next consider the magnetic anisotropy due to the ferromagnetic cobalt layers in
CoTiO3 bulk. In order to determine whether cobalt titanate presents an in-plane
or out-of-plane magnetic anisotropy, we first perform total energy calculations
including the spin-orbit term as implemented in VASP for a number of spin
orientations with respect to the ferromagnetic cobalt layers. The magnetocrystalline
anisotropy energy (MAE) is defined as the energetic difference between the lowest
energy magnetic configuration and the configuration under analysis, and is given
by MAE(θ) = E(θ) - Ez. Here, θ is the polar angle in the hexagonal ac (cartesian
xz) plane. We focus our analysis onto this plane because we found that the effect
of the in-plane orientation was negligible, varying the MAE in the order of µeV for
different values of the azimuthal angle within the hexagonal ab plane.

In the G-AFM setting of the primitive magnetic cell, we calculated the MAE in
the GGA and GGA+U approaches. The MAE values using GGA are larger than
those for the GGA+U cases because the GGA structure is slightly compressed.
In fact, the role of the structural parameters seems key as the MAE for the
experimental lattice is even larger. Some comments on the effect of U in the
anisotropy are included in Appendix C. We then focus on the MAE per atom in
the GGA+U case, as shown in Fig. 3.4(a). We observe that the magnetocrystalline
anisotropy is minimum in the out-of-plane hexagonal c-axis, and increases as spins
align with the hexagonal ab plane. This tendency is observed in both the GGA and
GGA+U approaches, suggesting the easy-axis character of the hexagonal c-axis.
The MAE was also calculated for the ferromagnetic configuration and found to
be out-of-plane. We also performed all-electron Elk calculations that confirm the
out-of-plane MAE (see Appendix B). This finding confirms that the ab layers have
a strong out-of-plane character.

In order to understand the angular dependence of the MAE, we fit our results
to the expresion

MAE(θ) = K1 sin2 (θ) +K2 sin4 (θ), (3.8)

where K1 and K2 are the magnetocrystalline anisotropy constants [57]. Using the
total energies per unit cell, our fitting yields values of K1 = 0.29 (0.52) meV and
K2 = 0.068 (0.025) meV for GGA+U (GGA) cases. The K1 value is much larger
than the K2 one, but not negligible for GGA+U. This indicates the strong uniaxial
character of the anisotropy.

The element dependence of the anisotropy can also be analyzed by fitting the
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Chapter 3. Magnetic Properties of Bulk Ilmenite CoTiO3

Figure 3.4: Magnetic anisotropy of bulk cobalt titanate. (a) Angular dependence of the anisotropy,
where θ changes from the out-of-plane c-axis to the hexagonal ab plane. In red, the MAE is
shown as calculated using DFT. In dark red, the Bruno model fitting obtained with the calculated
µL orbital moments is shown; in black, the fitting to Eq.(3.8); in blue, the magnetic anisotropy
due to the dipole-dipole interaction is shown. (b) Magnetic anisotropy at the ab plane (θ = 90◦)
with respect to the variation of the electron number in the unit cell (δN). The dipole-dipole term
is shown in dashed lines. For an electron excess of around 0.2, the MAE term becomes smaller
than the dipole-dipole term, so that the total anisotropy becomes in-plane.

MAE to the Bruno model [58] given by

MAE(θ) = − ξ

4µB
(µGS

L − µL(θ)) > 0, (3.9)

where ξ ≃ 50 meV is the spin-orbit constant, and µGS
L and µL(θ) are the orbital

magnetic moments of cobalt atoms in the ground-state configuration and in the axis
under analysis, respectively. Our fitting to Eq.(3.9) yielded a spin-orbit constant
of ξ ≃ 48 meV (ξ ≃ 60 meV) in the GGA+U (GGA) approach, close to the
aforementioned value. These MAE values calculated from the orbital magnetic
momenta µL using the Bruno model are in great agreement with the directly
calculated DFT+U values. This agreement suggests that the MAE could be
directly correlated to the angular dependence of the density around cobalt ions in
CoTiO3. In the GGA+U approach, we get values of µL between 0.16 and 0.19 µB ,
in good agreement with the GGA values in Ref. [59]. By being non-negligible, these
µL values are pointing to the relevance of spin-orbit coupling in these cobaltates.
The µL values are noncollinear with µS ones when the field is not exactly aligned
with the easy axis or the hard plane (see Appendix D.

Previous reports point to an in-plane anisotropy for cobalt titanate [24, 25, 47,
48], which is in contrast to our calculations. In order to understand this discrepancy,
we also calculated the anisotropy due to the magnetic dipole-dipole interaction[60].
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3.3. Magnetic anisotropy

This interaction is given by the term

Hd−d = −
∑
i̸=j

µ0

4π|rij |3

(
3(mi · r̂ij)(mj · r̂ij) − mi · mj

)
, (3.10)

where mi and mj are the local magnetic moments around the interacting cobalt
ions pairs, and rij is the vector joining the two cobalt atoms. We computed this
term from the atomic positions and local magnetic moments derived from the DFT
calculations in which the spin-orbit interaction was included. Our results for the
GGA+U structure are shown along the MAE in Fig. 3.4(a). In contrast to the
spin-orbit term, the dipole term favors in-plane spin orientation, and competes
with the MAE term in magnitude. Nevertheless, the total magnetic anisotropy
still favors an out-of-plane orientation in our calculations. This effect presumably
increases with growing temperature, as the dipole-dipole term (approximately
∝ M2(T )) decays faster than the MAE term (∝ M(T )) with the spontaneous
magnetization [61]. This could lead to potential out-of-plane ferromagnetic layers
in the TN < T <TC temperature range.

To reconcile our results with experiments, we analyze the effect of doping in the
system, see Fig. 3.4(b). This is performed by the addition and the substraction
of electrons in the unit cell. Including defects in this compound explicitly implies
a different set of calculations beyond the scope of this actual work. We find that
removing electrons (p-doping) leads to an increase of the MAE, while adding
electrons (n-doping) lowers the MAE even past the dipole-dipole term. This later
mechanism could be a consequence of the presence of Ti atoms at some cobalt sites
in the sample, as suggested in the experimental literature [47, 62]. Our results
indicate that adding 0.2 electrons, which roughly corresponds to 2.5% of cobalt sites
being occupated by titanium, could be enough to turn the out-of-plane anisotropy
to an in-plane anisotropy, consistent with experiments.

In summary, we find that crystalline bulk CoTiO3 presents a strong out-of-plane
magnetocrystalline anisotropy, due to the spin-orbit coupling of cobalt atoms. The
value is larger in magnitude to that of pure hcp cobalt [63, 64], a fact that is
interesting because cobalt can be seen in this compound as a Co2+ ion instead of
being metallic. Furthermore, the dipole-dipole interaction is also estimated to be
significant in this material due to cobalt ferromagnetic coupling in layers. Summing
the two contributions, we observed that the presence of cobalt-titanium anti-site
disorder could be responsible of the experimentally observed in-plane anisotropy
of the bulk CoTiO3. We further remark that the effect of mesoscopic domains,
suggested in the literature [24, 25], may result in domains with in-plane anisotropy.
However, it should be noted that domains with an out-of-plane component could
also lead to the compensation of the MAE, yielding an in-plane anisotropy, as
already shown in magnetic alloys [65, 66].
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3.3.1 Conclusions
In this chapter, we analyzed the magnetism of bulk ilmenite cobalt titanate in the
DFT+U framework. We found that the G-AFM structure is the ground state of
the system with ferromagnetic cobalt layers antiferromagnetically coupled in the
c-axis. Thus, there are two critical temperatures that correspond to the transition
between the G-AFM and ferromagnetic-layered structure, and to the beginning of
the paramagnetic phase. The existence of ferromagnetic planes at temperatures
above TN, could potentially lead to interesting magnetic applications when being
synthesized as layers.

Our calculations including spin-orbit coupling indicate that the anisotropy
would be out-of-plane, a finding in contrast with experiments. However, we found
that the presence of 0.2 electrons in the unit cell, which roughly corresponds to
2.5% of cobalt sites being occupated by titanium, could be enough to turn the
out-of-plane anisotropy to an in-plane anisotropy, consistent with experiments. We
believe that further experimental studies, such as deformation or strain experiments,
could further deepen our understanding of the magnetic anisotropy in this material.
On the theoretical front, slab and single-layer calculations seem of great interest
for future investigations of intriguing thin-film systems.

36



C
h

a
p

t
e

r

4
CHARACTERIZATION OF THE 3d

TRANSITION METAL ILMENENES

The technology for synthesizing two-dimensional materials has greatly improved in
recent years. Since the synthesis of graphene [67, 68], a large number of extensive
systems only a few atoms thick have been obtained. The study of these 2D materials
has brought new physical phenomena with countless applications into play, like
their magnetic properties [69, 70]. Obtaining magnetism in 2D isotropic crystals is
forbidden in the Heisenberg model as explained by the Mermin-Wagner theorem
[71]: the magnon dispersion is reduced with respect to their 3D counterparts, and
it has an abrupt onset, which translates into low thermal agitation and a collapse
of the spin order. However, 2D systems with uniaxial magnetic anisotropy are able
to withstand thermal agitation, allowing magnetic states in mono- and multi-layer
nanostructures.

In the past decades, the study of 2D magnetic properties has been performed
on epitaxially grown thin films, in which phenomena such as oscillating exchange
coupling [72, 73], giant magnetoresistance [74, 75] and Hall effect [76, 77] have
been observed. Nevertheless, the study of the intrinsic magnetic properties of these
2D systems is novel, and most of the materials that have been synthesized today
are magnetic van der Waals crystals [69, 70]. In the last five years, non-van der
Waals two-dimensional materials have also been synthesized, mainly by exfoliating
naturally occurring ores. By liquid exfoliation of natural iron ore hematite (α-
Fe2O3), Balan et al. [78] synthesized a new 2D material which is called hematene.
Contrary to its antiferromagnetic bulk, hematene presents ferromagnetic order.
Similarly, other promising material for 2D magnets is ilmenene [26], which has
been synthesized using liquid phase exfoliation from titanate ore ilmenite (FeTiO3),
as shown in Fig. (1.2).
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Chapter 4. Characterization of the 3d Transition Metal Ilmenenes

In this chapter, motivated by the synthesis of iron ilmenene, we characterize
the whole family of ilmenene-like 3d transition metal titanates (TMTiO3, TM = V
to Zn), setting a first theoretical basis for this group of compounds that could be
exfoliated in the near future. Within the framework of the density functional theory,
we systematically analyze the crystalline structure of these compounds, finding
that most of the ilmenenes exhibit triangular symmetry for TMs on both sides of a
Ti-Ti hexagonal graphene-like sublattice. In the chromium and copper ilmenenes,
we find structural distortions of Jahn-Teller-like origin. Our electronic structure
calculations reveal that most of these compounds are magnetic semiconductors
which have TM layers antiferromagnetically coupled. The calculations including
spin-orbit interactions show a strong magnetic anisotropy, with the magnetization
being oriented out-of-plane (in-plane) below (above) the half-filling of the TM
electronic 3d shell. The presence of out-of-plane anisotropy in some of these
compounds suggests potential applications for spintronics in thin layers and 2D
materials.

4.1 Theoretical details
To study the structural, electronic and magnetic properties of ilmenene-type
materials, we use the projector augmented wave method (PAW) implemented in
the Vienna Ab-initio Software Package (VASP) [55, 56]. For the exchange and
correlation potential we use the Perdew-Burke-Ernzerhof form of the generalized
gradient approximation (GGA), with the formulation of Dudarev [38] for GGA+U
calculations. The Hubbard U parameters for each element are chosen based on
the available literature on transition metal oxides [53], and are shown in Table
4.1 with the considered valence states. A test calculation of the partial density of
states (PDOS) of cobalt titanate using the HSE06 hybrid functional shows that
including a U parameter in the oxygen p-orbitals is needed to correctly describe
the electronic structure. This finding is in agreement with previous investigations
concerning titanium oxide and hematite [79–84]. All calculations are performed
with a well-converged plane-wave cutoff energy of 800 eV, a gamma-centered 4x4x1
Monkhorst-Pack k-point mesh, and a Fermi smearing of 20 meV. Atomic coordinates
are relaxed until forces in all directions were smaller than 0.5 meV/Å. An energy
convergence criterion of 10−7 eV for the energy is used. Further tests using even
a larger plane wave cutoff up to 1000 eV and 6x6x1 k-point mesh do not modify
the presented results. Differences in local charges and local magnetic moments
are univocally analyzed using the Bader method [85, 86]. By including the spin-
orbit coupling, additional tests are performed to converge the magnetocrystalline
anisotropy energy with respect to the Brillouin Zone sampling.

The d-metal ilmenene sheets are obtained by cutting their respective bulk
titanates (TMTiO3, TM = V to Zn) in the hexagonal [001] direction. For the iron
ilmenene FeTiO3, transmission electron microscopy measurements confirm that the
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4.1: Valence electron states and U parameters employed on each element of the TM titanates.

Element Valence states U
O 2s, 2p 6.6
Ti 3p, 3d, 4s 3.9
V 3p, 3d, 4s 3.5
Cr 3p, 3d, 4s 3.5
Mn 3p, 3d, 4s 4.0
Fe 3d, 4s 4.0
Co 3d, 4s 4.5
Ni 3d, 4s 4.5
Cu 3d, 4s 5.0
Zn 3d, 4s 5.0

2D structure are planes in this direction [26]. The layer structure is shown in Fig.
4.1. For all the compounds under analysis, two different layer-ilmenenes are tested:
titanium and transition metal terminated ilmenene layers. This work focuses on
the TM ended layers because they are found to be more stable for all the materials
under analysis.

4.2 Crystalline structure and distortions
The structure of the TM ilmenenes is graphically depicted from two viewpoints
in Fig. 4.1. After structural relaxations, we find that most of the compounds
keep the input symmetry, except for chromium and copper ilmenenes, which show
structural deformations of the perfect lattice due to the Jahn-Teller effect (see Fig.
4.1(b)). The orange area in panel (a) denotes the chemical cell that reproduces
the crystalline structure of the ilmenenes when periodically repeated. We calculate
magnetic configurations using a larger 2x2x1 magnetic cell. For chromium and
copper titanates, due to structural distortions, the unit cell and the magnetic cell
coincide. In the distorted compounds, the two in-plane lattice vectors become
slightly different: for the chromium case a = 10.57 Å and b = 10.00 Å, and
for the copper case a = 10.44 Å and b = 10.21 Å. Note that these ilmenenes
become anisotropic. Overimposed on the global lattice distortions, the inner atomic
distortions become more noticeable. For instance, the pairs of largest-smallest
distances are 6.0 Å - 3.9 Å and 5.4 Å - 4.8 Å for Cr and Cu ilmenenes, respectively.
The large 1D anisotropy of these two Jahn-Teller–like distorted ilmenenes is shown
by the stripes of the green and violet areas in Fig. 4.1 (b).

A summary of the interatomic distances of the TM titanates is shown as a
function of the elements across the period in the periodic table in Fig. 4.1. We find
that the horizontal distance between transition metals in the same layer lT M−T M

increases from V to Mn, then decreases until Ni, and finally increases for the brass
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Chapter 4. Characterization of the 3d Transition Metal Ilmenenes

Figure 4.1: Magnetic unit cell for transition metal ended ilmenene-like systems: (a) symmetric for
most ilmenenes, and (b) distorted for chromium titanate CrTiO3. The color code of the atoms is
as follows: TM (Cr) atoms in blue (purple), titanium in cyan, and oxygen in red. The orange area
in panel (a) represents the smaller chemical cell. For chromium and copper titanates, the chemical
and magnetic cells coincide. Calculated interatomic distances: (c) horizontal TM-TM distance
lT M−T M , (d) layer height hT M−T M and Ti-Ti distances, and (e) Ti-O and TM-O distances. For
the chromium and copper ilmenenes we present an average of the distances in their distorted
structures.
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metals Cu and Zn. The height distance between metals in different layers hT M−T M

generally decreases. The distances involving Ti in the Ti-Ti and Ti-O bonds remain
nearly constant, while the TM-O distances decrease. In essence, TM-ilmenenes can
be thought of as a solid network formed by Ti and O atoms on which the TM atoms
attach on both sides. For the Cr and Cu ilmenenes showing structural distortions,
the TM-TM distances have two values because the triangular symmetry is broken,
and the Ti-O distances are split into several values as shown by the extra marks in
the lower panel of Fig. 4.1.

We find that in comparison with their bulk counterparts, TM ilmenenes are
compacted along the c direction, so that a two-dimensional hexagonal layer of
titanium ions is formed similar to graphene. The Ti-Ti sublattice in ilmenenes
remains almost constant with the distances varying within 3%. 1 This compression
for the iron ilmenene has a minimum height about 2.91 Å, in agreement with another
work [26]. The theoretical value of 2.59 Å for the interplanar space corresponding
to the (112̄0) and (2̄110) lattice spacing compares well with the experimental one
(∼ 2.53 Å) [26], which is also supporting our calculations since the interatomic
distances depend on the chosen U values. For cobalt titanates, a layer thickness of
4.03 Å has been reported [1] in bulk, which decreases to 2.95 Å in the ilmenene
layer, while the horizontal distance between cobalt atoms in the same layer expands
slightly from 5.06 Å in bulk to 5.17 Å in the layer. The significant changes in
the height distances are due to the layer being decorated with half of the TM
atoms than in the corresponding bulk, in order to keep the stoichiometry. It seems
that the ilmenene layers depart largely from those found in ilmenites and not only
their structural properties but their magnetic ones are thus deserving a thoroughly
study.

4.3 Electronic properties: magnetic
semiconductors

We now focus on the electronic structure of ilmenenes and find that they show a
gap opening that is linked to their stability. The calculated electronic band gaps
range between 1.8 and 4 eV, as displayed in Fig. (4.2) (a), with values that are
typical for semiconductors. The gaps are increasing when going from V to Mn,
and they are oscillating for Fe, Co and Ni. In general, the values are smaller than
the gap for TiO2 in the rutile bulk phase (∼ 3.2 eV). Note that the Mn and the
Co ilmenenes remain within the same order of the TiO2 gap values. These trends
follow the filling of 3d TM electronic levels as discussed below.

The TM atoms in the ilmenene compounds show local magnetic moments, which
are calculated using the Bader method, and are shown in panel (b) of Fig. 4.2.

1 However, the chromium titanate layer does not show the fully compacting behavior to a flat
titanium sheet due to distortions(see Fig. 4.1(b)).
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Chapter 4. Characterization of the 3d Transition Metal Ilmenenes

Figure 4.2: (a) Electronic band gaps for TM ilmenenes. Vertical lines separate different regions
with TM below half-filling, TM above half-filling, and brass metals. (b) Calculated local magnetic
moment around transition metal atoms. For each compound, the electronic filling model of the
ground state is also shown. Red levels represent the in-plane dx2−y2 and dxy orbitals; green, the
out-of-plane dz2 orbital; and blue, the dxz and dyz orbitals with in- and out-plane components.
(c) Orbital models of the local magnetization in 3d TMs and brass metals within ilmenenes. Blue
and green regions denote spin polarized regions; grey, spin compensated ones.
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The calculated values are close to the ones expected by applying the Hund rules
to isolated ions. Furthermore, the local magnetic moment as a function of atomic
number follows a Slater-Pauling–like rule, increasing from vanadium to manganese,
then decreasing until it vanishes for zinc. Thus, the 3d ilmenenes behave similarly
as being magnetic semiconductors.

The band structures and the PDOS projected onto the transition metal atoms
are collected in Appendix E. From their analysis, an electronic filling model for
each TM ilmenene is presented in Fig. 4.2(b). We find that the orbitals can be
classified into three groups: (i) out-of-plane dz2 , (ii) in-plane dx2−y2 and dxy, and
(iii) mixing in- and out- of plane contributions for dxz and dyz. The dx2−y2 and
dxy orbitals are highly hybridized, as the dxz and dyz orbitals are. Because the
in-plane degenerated energy levels of chromium and copper titanates are being
partially occupied, they are held responsible for the Jahn-Teller–like distortions
in these structures, where a splitting of these otherwise degenerated orbitals is
observed under distortions.

All these electronic trends can be better understood following the orbital model
in real space for each case, as shown in Fig. 4.2 (c). Below half-filling, we show
how the magnetic moment increases in correlation with the gap values. For next
elements, above half-filling, the Fe case becomes similar to the Ni one which has a
weaker spin distribution. In between, we find the Co ilmenene with a large in-plane
spin distribution has also an out-of-plane component that cannot be neglected, an
extra component that is related to the complexity added to this case when trying
to write down a single spin hamiltonian. For brass metals, the local magnetization
is nearly screened having a spin compensated cloud around the brass metal centers.
This model is going to be interesting in the discussion of magnetic anisotropies
below. For instance, we note that the spin distribution is not anisotropic for the
case of Cr (Cu) having one-electron less below a half-filled (filled) 3d shell.

4.4 Magnetism

4.4.1 Magnetic Order
We next consider the magnetic behavior of the ilmenene-type materials, and
calculate the total energies of the magnetic configurations shown schematically
in Fig. 4.3. We find that, with the exception of ferromagnetic copper and spin-
compensated zinc titanates, the ilmenenes show antiferromagnetism between the
2D TM layers in the so-called AFM-1 configuration.

The magnetic configurations in Fig. 4.3 are used to fit the Heisenberg
Hamiltonian

H = −
∑

ij

JijS̃i · S̃j (4.1)
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Figure 4.3: (a) Magnetic ordering configurations of TM ilmenenes: “FM” Ferromagnetic, “AFM-1”
antiferromagnetic by layers, “AFM-2” and “AFM-3” antiferromagnetic. (b) Couplings between
both layer sides (J1), and within the same side layer of TM ions (J2).

where the S̃i is the pseudospin of each isolated atomic species (e.g: S̃ = 3/2 for Co),
and the Ji with i = 1, 2 are the inter-layer (i = 1) and intra-layer (i = 2) magnetic
couplings schematically depicted in 4.3. The magnetic couplings are computed
from the energy differences ∆E1 = EF M − EAF M1 , ∆E2 = EAF M2 − EAF M1 .

The fitted Ji values are shown in Fig. 4.3 (b). The inter-layer coupling is the
leading interaction because J1 is an order of magnitude larger than J2. The inter-
layer coupling J1 is negative for most of the ilmenenes, that indicates a preference
for antiferromagnetism. The intra-layer coupling J2 is positive in all cases, and
the compounds favor intralayer ferromagnetism. Since the coordination of the TM
atoms on each layer side changes from being hexagonal in bulk to triangular in
the layer, the structural differences between bulk and two dimensional titanates
mentioned above play an important role in the magnetic ordering. It is noteworthy
that the manganese ilmenene even favors ferromagnetism within layers in contrast
with its antiferromagnetic bulk counterpart.

4.4.2 Magnetic Anisotropy
We last study the magnetic anisotropy of d-metal ilmenenes. The spin-orbit
interaction couples the spin magnetic moment to the crystal lattice, which means
that some spin orientations are more stable than others. The magnetocrystalline
anisotropy energy (MAE) is defined as the energetic difference between two magnetic
configurations with different spin orientations. We calculate the total energy of
the ilmenenes for a number of spin orientations, and find that, anisotropy-wise,
ilmenenes can be classified in two groups: out-of-plane ilmenenes, in which the spin
magnetic moment is aligned in the c-axis, and in-plane ilmenenes, with the spin
aligned in any of the directions along TM-Ti bonds projected in the plane, as shown
in Fig. 4.4. Due to symmetry around TM atoms, there are six such equivalent
directions in the ab plane. The vanadium, chromium and manganese titanates in
addition to copper ones have an out-of-plane anisotropy, and the magnetization
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in iron, cobalt and nickel titanates is oriented in-plane. These MAE trends agree
with the electronic filling model, in which below half-filling TMs the electrons near
the Fermi level are those that include an out-of-plane component, and for iron,
cobalt and nickel titanates they are mainly in-plane.

Figure 4.4: Magnetocrystalline anisotropy energy of the transition metal ilmenenes. In blue,
compounds with out-of-plane anisotropy; in red, with in-plane magnetic moments. For the case
of manganese titanate, the magnitude was enhanced by a factor of 3 to make it visible in the
shown range.

The obtained MAE values range between several orders of magnitude from 10−2

meV up to tenths of meVs because the spin-orbit interaction varies greatly for the
different ilmenenes. The chromium, iron and cobalt titanates have a strong MAE
of around 5 meV, and in the case of the vanadium and nickel layers, this value is
still large about 0.6 and 0.13 meV, respectively. The manganese titanate has the
smallest anisotropy (∼ 0.04 meV) because the orbital magnetic moment is nearly
fully quenched. This finding summed to having the energetic difference between
the magnetic AFM-1 and AFM-2 configurations of the manganese titanate being
very small (around 0.25 meV) points to non-collinear magnetic configurations, a
topic that might merit future experimental investigation on this specific layer, but
being beyond the actual scope of the paper. Furthermore, the iron ilmenene is also
a particular 2D layer because it shows a strong in-plane anisotropy, contrary to
the ilmenite bulk with a non-negligible out-of-plane component.

We observe a noticeable trend for the magnetic anisotropy. Below half-filling, the
V and Cr ilmenenes exhibit out-of-plane anisotropy, while the half-filled manganese
ilmenene has a very small MAE. Above half-filling, most the compounds have an in-
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plane anisotropy. In fact, these trends in anisotropy follow the levels depicted in Fig.
4.4 (c). For V and Cr ilmenenes, it shows that the spin density is perpendicular to
the plane. The spin density in manganese ilmenene is isotropic, and this correlates
with its low MAE. Above half-filling, the spin density of Fe, Co and Ni ilmenenes
lies in-plane, in agreement with their in-plane MAE. The case of Cu ilmenene
shows out-of-plane anisotropy even if the spin density lies in-plane, a finding that
can be explained by the out-of-plane changes in the orbitals when the spin-orbit
coupling term is included with the distortions.

We next bring the magnetic results on magnetic ilmenenes into contact with
experimental facts. Note that Fe ilmenenes can be obtained by exfoliation and
deposited on substrates for some experimental setups [26, 78]. Then, further
measurements on the magnetic properties of the Fe ilmenenes can be today
performed in line with our theoretical results. Furthermore, we have studied
Co ilmenenes that could be interesting as they can behave in a similar way to study
magnon physics in two dimensions as their bulk counterpart is already being used
[1, 24, 25]. In fact, Cr ilmenenes seem to become key as they are candidates to
show out-of-plane anisotropy when in the form of ultrathin layers. These findings
are suggesting the future use of TM ilmenenes in spintronics devices for injecting
magnons and study magnetism in exfoliated 2D magnetic layers.

4.5 Conclusions
In this chapter, we have analyzed the structural, electronic and magnetic properties
of TM ilmenene-like systems. Our calculations reveal that most of the layer
materials under analysis present a triangular crystalline structure for TMs, with
an ironed compression of the internal titanium ion layer with respect to its bulk.
The chromium and copper ilmenenes exhibit notable structural distortions, which
seem to have a Jahn-Teller–like origin. All the compounds studied have been
found to be magnetic semiconductors with band gaps in the range between 1.7
and 4 eV. The magnetic ground state is mainly antiferromagnetic between layers,
and ferromagnetic and spin-compensated for CuTiO3 and ZnTiO3, respectively.
Furthermore, spin-orbit calculations revealed that TM ilmenenes can be divided
into two groups: out-of-plane ilmenenes, for less than half-filling of the 3d bands,
and in-plane ilmenenes, above half-filling of these levels, with the spin aligned in
the TM-titanium directions projected in the hexagonal plane. We believe that
this family of materials paves the way to other types of promising magnetic 2D
candidates with potential applications in the field of spintronics.
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5
STRAIN-INDUCED MAGNETIC
ANISOTROPY TRANSITIONS IN
LAYERED CaMn2Bi2

CaMn2Bi2 is a layered semiconductor that has been reported to exhibit large
magnetoresistance and has been proposed to be a candidate for a hybridization
gap semiconductor [87]. CaMn2Bi2 has a hexagonal structure, composed of layers
of manganese and bismuth tetrahedra, separated by calcium layers (see Fig. (5.1)).
The manganese atoms are structured in a so-called puckered honeycomb, and
they are antiferromagnetically aligned in the magnetic ground state configuration.
Regarding the electronic structure, CaMn2Bi2 has a band gap of a few meV [87, 88],
and could exhibit topological properties [89].

We have recently started a collaboration with an experimental group that has
been studying second harmonic generation using lasers. After thermal cycling the
sample, they observed one of two possible signals after each cycling, which could be
a sign of a competition between two magnetic states with close energies. Aiming
to explain the observed phenomena, we theoretically studied the fundamental
magnetic properties of this compound. We determined the magnetic ground state
of the compound, which we confirmed to be the antiferromagnetic structure. We
then studied the MAE, and found that CaMn2Bi2 has an in-plane anisotropy, with
the zigzag-x axis being the easy-axis. When applying strain to the compound,
which in experiments is done by exciting certain vibration modes with incident
light, we found that the easy-axis changes from the zigzag-x to the armchair-y
direction.
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Chapter 5. Strain-induced magnetic anisotropy transitions in layered CaMn2Bi2

Figure 5.1: (a) Lateral view and (b) top view of the crystal structure of CaMn2Bi2. Manganese
atoms are displayed in purple, and calcium and bismuth atoms are represented in cyan and yellow,
respectively. The manganese and bismuth atoms form hexagonal sublattices that are rippled in
the c-axis, as is clearly seen in panel (b).

5.1 Numerical details
The total energy calculations in this chapter have been performed in the DFT+U
approach. We have used the projector augmented wave method (PAW) implemented
in the Vienna Ab-initio Software Package (VASP) [55, 56]. For the exchange and
correlation potential, we use the Perdew-Burke-Ernzerhof form of the generalized
gradient approximation (GGA), which is further corrected with the Coulomb U
parameter following the GGA+U formulation of Dudarev [38]. We performed a
test calculation of the partial density of states (PDOS) using the HSE06 hybrid
functional and compared it to the GGA and GGA+U calculations. We found that
it is necessary to include the correction terms UMn = 4 eV and UBi = 3 eV for a
correct qualitative description of the electronic structure of CaMn2Bi2.

All calculations were performed with a well-converged plane-wave cutoff energy
of 700 eV, a gamma-centered 15x15x8 Monkhorst-Pack k-point mesh, and a Fermi
smearing of 20 meV. Atomic coordinates were relaxed until forces in all directions
were smaller than 0.5 meV/Å. An energy convergence criterion of 10−7 eV was
used. The atomic valence configuration for Ca, Mn and Bi are 3s23p64s24p0.01,
4s23d5 and 6s26p3, respectively.

5.2 Magnetic order
We first study the Heisenberg spin exchange term that is responsible for the
magnetic order of the compound. In CaMn2Bi2, due to the crystalline symmetry,
the strength of the exchange coupling Je is the same for all the Mn-Mn interactions
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5.2. Magnetic order

Figure 5.2: Ferromagnetic and antiferromagnetic configurations of the 1x1 CaMn2Bi2 cell. The
blue and red spheres represent the spin-up and spin-down magnanese atoms, respectively. To
compute the exchange coupling terms, the interaction with the first neighbors in the adjacent
cells is taken into account.

(see Fig. (5.2)). Therefore, we can use the following Heisenberg Hamiltonian

HEx = −
∑
i,j

JeSi · Sj . (5.1)

In this approach, the total energies of the ferromagnetic (FM) and antiferromagnetic
(AFM) configurations in Fig. (5.2) are given by

EF M = E0 − 4(1
2JeS2) − JeS2 = E0 − 3JeS2, (5.2)

EAF M = E0 + 4(1
2JeS2) + JeS2 = E0 + 3JeS2, (5.3)

where E0 is the total energy of the non-magnetic configuration, and S = 5/2 µB is
the spin around each manganese atom. To obtain these expressions, the interaction
in adjacent cells has to be taken into account, because those atoms are also first
neighbors to the Mn atoms in the reference cell.

We find that the ground state of CaMn2Bi2 is the antiferromagnetic
configuration. In the 1x1x1 cell, the energy difference between the ferromagnetic
and the antiferromagnetic configurations is 208 meV. Subtracting equations (2)
and (3) yields the following expression for the exchange coupling Je:

Je = EF M − EAF M

6S2 = −16.68meV, (5.4)

which is negative, indicating the preference of the system to show antiferromagnetic
coupling between manganese atoms.
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5.3 Strain-induced magnetic anisotropy change
By including the spin-orbit coupling, we then study the magnetocrystalline
anisotropy energy of layered CaMn2Bi2. After computing the total energy of
the compound with the spin aligned in different crystallographic axes, we have
determined that the easy axis is the zig-zag x-axis. The energy needed to align the
spin out-of-plane is 2.4 meV, a value that is about a hundred times larger than the
MAE difference with the armchair y-axis, which is on the order of 0.02 meV.

Figure 5.3: Energy difference between x and y-directions with respect to the easy axis. Blue bars
indicate the zigzag-x direction for the AFM order parameter is preferred, and red bars indicate
the armchair-y direction for the AFM order parameter is preferred. Note that by having strain as
in experiments, the difference energy value changes sign around 0.25 %, indicating a change in
the in-plane magnetic moment direction.

We also studied the effect of strain in the magnetic anisotropy of CaMn2Bi2.
In Fig. (5.3) we show the MAE difference between the x and y directions while
applying strain in the zigzag-x direction. We find that with a strain of around
0.25 %, the easy spin orientation of the crystal changes from the x-axis to lie
along the armchair-y direction. When increasing the strain in the x-axis above
0.4 %, the MAE difference increases and favors the y-axis as the easy axis. This
strain-dependent behavior of the anisotropy could be used as a way to control the
spin orientation of CaMn2Bi2 at will, which could lead to potential applications.
The switching of magnetization in-plane is also interesting for their control by
lasers, as some of the light-excited phonons evolve in some of these directions.
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5.4 Conclusions
In this chapter, we carried out a theoretical study on the magnetism of CaMn2Bi2.
We computed the magnetic ground state of the compound, with the manganese
atoms antiferromagnetically coupled in the puckered honeycomb sublattice. In
addition, we studied the spin-orbit coupling, and found that CaMn2Bi2 has an
in-plane magnetic anisotropy, and that the x-axis is the easy-axis. Lastly, we
applied strain to the material, and observed that above a small of strain, the
easy-axis of the system changes from being in the zig-zag x-axis to the armchair
y-axis. This strain-dependent spin behavior deserves further investigation, since it
could have interesting applications.
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6
INTRODUCTION

Excitons are bound electron-hole pairs that are created when a semiconducting or
insulating material is energetically excited. When an electron in a solid becomes
excited (for example, by absorbing a photon), it goes from the valence to the
conduction band, leaving a positively charged hole behind. This hole is a particle
with positive charge, and therefore, an attractive Coulomb interaction between the
conduction electron and the hole can lead to a bound-state similar to the hydrogen
atom [90]. Excitons are neutral quasiparticles that can move through the crystal,
and carry a momentum k, but no net electric charge (see Fig. 7.1(a)). One of the
main features of excitons is observed in the optical absorption spectra of materials
with a band gap: even though it could be expected those materials not to present
optical absorption until the photon energy is above EGap, sharp discrete absorption
peaks appear below the energy gap. Using the analytic Wannier model [91], which
can be derived from perturbation theory 1, the exciton energy levels arise as a
Rydberg series inside of the band gap (see Fig. 7.1(b)).The exciton binding energy
(EB) is the energetic difference between the lowest excitonic level and the band
gap, and gives a measure of how bound the electron and hole are. Based on the
binding energy, two main types of excitons exist: Wannier excitons, with a low
binding energy and high spatial delocalization, and Frenkel excitons, which are
tightly bound and localized around one atomic site [90, 93]. Even though the single
electron-hole picture can give a qualitative image of excitons, it should be noted
that in reality excitons are collective effects that imply the superposition of the
excitation of different particles in the crystal, which makes it challenging to study.

Excitons have important implications in a wide range of solid-state phenomena,

1 If one assumes the band structure to only consist on one conduction and one valence band,
both parabollic [92].
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Chapter 6. Introduction

Figure 6.1: (a) Spatial representation of an exciton in a crystal lattice. (b) Band structure sketch
of an exciton: excitons can be understood as discrete energy levels that appear below the optical
gap, due to the electron-hole interaction. Here, K represents the Coulomb interaction, and EB

is the exciton binding energy, given by the subtraction between the gap energy EGap and the
lowest excited state inside the gap.

and heavily determine the optical properties of semiconducting and insulating
materials. An exciton can decay when the electron and hole recombine, emitting
a light in the process, which is known as photoluminescence [94, 95]. Therefore,
excitons play an important role in the optical properties of materials and are
crucial for the design of novel materials such as semiconductors for optoelectronics
applications like solar cells and LEDs [96]. For example, low exciton binding
energies in perovskite solar cells promote the electron-hole separation and enhance
power conversion efficiencies in these devices [97].

The correct description of excitation phenomena in matter is a challenging
task of material science. The design of novel man-made materials with desired
properties relies upon the capability to accurately predict their electronic structure,
but calculations for interacting electrons are much more challenging than those
of independent electrons. Over the last two decades, Time Dependent Density
Functional Theory has proven to be very successful for the calculation of neutral
excitations both for finite and extended systems and it is often considered as
the computational cheaper but rigorous alternative to the state-of-the-art MBPT
[98–101]. Excitonic effects in semiconductors and insulating materials have been
successfully described by the Linear response formalism of TDDFT, solving a Dyson
type equation to obtain the density response function which yields good looking
optical spectra of several materials [100, 102]. On the other hand, a completely
equivalent approach based on the same formalism reformulates the equations into
an eigenvalue problem allowing a direct determination of exciton binding energies
[103–105]. Originally for finite system, these equations were known as the Casida
equations [106] and were later extended to periodic solids [107]. In the two methods,
excitonic features are correctly captured using the family of exchange-correlation
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kernels known as long-range corrected (LRC) kernels; however, these kernels are
not capable to produce simultaneously good looking spectra and accurate exciton
binding energies [105]. In other words, when a material dependent α parameter
in the LRC-type kernel is fitted to provide a good optical spectra using ab-initio
calculations, the same parameter will fall by more than an order of magnitude
short in the estimation of binding energies. One of the biggest problems of these
kernels is that the main contribution towards exciton binding has a singular term
(q=0), which is an ill-defined [108, 109].

Lately, hybrid approaches between TDDFT and the Bethe-Salpeter Equation
(BSE) equation have been proposed [92, 110] with success having an affordable
computational cost. Furthermore, a hybrid exchange-correlation term can be
considered by mixing an adiabatic TDDFT kernel with screened exact exchange
(SXX), so that good exciton binding energies were obtained in conjunction with
optical spectra [111, 112]. In fact, the head-only SXX kernel including the divergent
term q=0 yielded identical binding energies to the full kernel [111]. These findings
indicate that the singular term is still crucial in these approaches, and that it
should be studied in detail when dealing with exciton calculations.

In this block of the thesis, we carefully study the effect of the singular long-range
Coulomb term on the calculation of exciton binding energies. On the one hand, in
the pure TDDFT framework, we report the absence of a correction term Cck,vk
that has to be included when applying the commutator relation that is often used
to deal with singularities [109]. We compute the magnitude of this term for set of
semiconductors, and find that it is often larger than the regularized singular term
itself, which could help explain the discrepancy between the absorption spectra and
exciton binding energy calculations. On the other hand, in the hybrid framework,
we propose a Wigner-Seitz Truncated SXX kernel (WS-SXX) with a well-defined
analytical term in the optical limit (q=0). We furthermore analyze the performance
of the kernel with respect to the different convergence parameters, and compare it
with the state-of-the-art methods in the field.
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7
NUMERICAL METHODS

7.1 Time Dependent Density Functional Theory
While DFT succesfully performs calculations for many electronic systems, it can
only be used to describe ground-state properties of these systems (such as total
ground-state energies, electronic density distributions, bond lengths and bond
angles, lattice constants ...) [113, 114]. Time-dependent density functional theory
is a generalization of ground-state DFT that allows us to describe the behavior
of quantum systems that are not in the ground state or in an equilibrium state.
Analogously to DFT, TDDFT replaces the time-dependent electronic wavefunction
by the time-dependent electron density n(r, t) as its working magnitude. TDDFT
is based in two fundamental theorems, which are related to the Hohenberg-Kohn
theorem and to the Kohn-Sham equations, respectively:

Runge-Gross theorem [115]. Two densities n(r, t) and n′(r, t), evolving from
a common initial many-body state Ψ0 under the influence of two different potentials
v(r, t) and v′(r, t) ̸= v(r, t) + c(t) (both assumed to be Taylor-expandable around t0
), will start to become different infinitesimally later than t0. Therefore, there is a
one-to-one correspondence between densities and potentials, for any fixed initial
many-body state.

Van Leeuwen theorem [116]. For a time-dependent density n(r, t) associated
with a many-body system with a given particle-particle interaction w(|r − r′|),
external potential v(r, t), and initial state Ψ0, there exists a different many-body
system featuring an interaction w′(|r − r′|) and a unique external potential v′(r, t)
(up to a purely time-dependent c(t)) which reproduces the same time-dependent
density. The initial state Ψ′

0 in this system must be chosen such that it correctly
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yields the given density and its time derivative at the initial time.

These theorems establish the basis of TDDFT, leading to the derivation of the
time-dependent Kohn-Sham equations, thus deriving a formal framework in which
to compute time-dependent dynamics of a real system by solving an equivalent
system of non-interacting electrons.

Sometimes, calculating the full response of the system to an external potential
is not required or even desirable: when the system does not deviate much from
the ground state, computing the full time-dependent wave function or density and
extracting small deviations of the ground state from it is unefficient, and it is
preferable to calculate these small differences directly. In this thesis, our scope
will be the calculation of excitonic properties in the Linear Response TDDFT
framework, which we will derive in the following section.

7.2 Linear Response TDDFT
For a periodic solid, the linear density response1 to a perturbing potential v1 can
be written as

n1G(k, ω) =
∑
G′

χGG′(k, ω)v1G′(k, ω), (7.1)

where the density response n1G(k, ω) is given in reciprocal space, and χGG′ is the
density-density response function of the system, which includes electron-electron
interactions. In TDDFT, the response function is given by

χGG′(k, ω) = χKS
GG′(k, ω) +

∑
G1,G2

χKS
GG1

(k, ω)fHxc
G1G2

(k, ω)χG2G′(k, ω). (7.2)

Here, we have introduced two key elements: the Kohn-Sham response function
χKS

GG′ and the Hartree-exchange-correlation (Hxc) kernel.

The Kohn-Sham response function can be built from the Kohn-Sham band
structure:

χKS
GG′(k, ω) = 2

V

∑
k′∈BZ

∑
j,l

fjk′ − flk+k′

ω + ϵjk′ − ϵlk+k′ + iη

×
∫

cell

drϕ∗
jk′(r)e−i(k+G)·rϕ∗

lk+k′(r)
∫

cell

drϕ∗
lk+k′(r′)ei(k+G′)·r′

ϕ∗
jk′(r′), (7.3)

where ϕjk(r) are the Kohn-Sham single-particle Bloch wavefunctions, with j band
index and ϵjk energy. fjk are the occupation numbers, equal to 1 (0) if the state
ϕjk is occupied (unoccupied). Eq. (7.3) can be simplified by using the bra-ket

1 The time-dependent density is assumed to be expandable as n(r, t) = n0(r, t) + n1(r, t) + ...
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notation:

χKS
GG′(k, ω) = 2

V

∑
k′∈BZ

∑
j,l

fjk′ − flk+k′

ω + ϵjk′ − ϵlk+k′ + iη

× ⟨jk′| e−i(k+G)·r |lk + k′⟩ ⟨lk + k′| ei(k+G′)·r′
|jk′⟩ , (7.4)

where the terms in the second row are meant to be integrated over the r and r′

variables, respectively.

The Hartree-exchange-correlation kernel is given as

fHxc
GG′(k, ω) = 4πδGG′

|k + G|2
+ fxc

GG′(k, ω), (7.5)

where the first term on the right-side is the Hartree kernel and the second term
is the xc kernel. Similarly to DFT, in TDDFT, the exchange-correlation kernel
does not have a known expression and has to be approximated. A more detailed
discussion on the xc kernel and its effect on TDDFT calculations can be found in
Section 2.2.3.

From equations (7.1) and (7.2), a self-consistent expression for the density
response n1G(k, ω) is obtained.

n1G(k, ω) =
∑
G′

χKS
GG′(k, ω)

[
v1G′(k, ω) +

∑
G′′

fHxc
G′G′′(k, ω)n1G′′(k, ω)

]
. (7.6)

7.2.1 Dyson equation: optical absorption
The optical absorption spectrum of a material is obtained from the imaginary part
of its macroscopic dielectric function ϵM (ω), which is obtained from an averaging
of the inverse microscopic dielectric function ϵGG′(k, ω)2 as [118, 119]

ϵM (ω) = lim
k→0

[
ϵ−1

GG′(k, ω)|G=G′=0
]−1

. (7.7)

In TDDFT, the microscopic dielectric function is given by

ϵGG′(k, ω) = δGG′ − vG(k)χ̃GG′(k, ω), (7.8)

where vG(k) = 4π/|k + G|2 is the Coulomb kernel, and χ̃ is the proper response
function, which is calculated from the Dyson equation (7.2) using fxc

G1G2
instead of

fHxc
G1G2

. Plugging Eq. (7.8) into Eq. (7.7), one obtains the following expression for

2 This is only true for crystals with cubic symmetry. In the general case, the expression is not
that straightforward [117].
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the macroscopic dielectric function:

ϵM (ω) = 1 − lim
k→0

v(k)χ̃00(k, ω). (7.9)

The response function, and therefore ϵM , can be calculated by directly solving
the Dyson equation (7.2), which is a matrix equation of dimension G, and links the
microscopic (χ̃00) and macroscopic (ϵM ) properties of the material under analysis.
To do so, the Kohn-Sham response function χKS

GG′ has to be previously computed
from Eq. (7.4), which implies summing over occupied and empty bands, and over
the number of k-points in the Brillouin Zone.

This approach, which is sometimes called the Dyson approach, is the method
of choice for calculating optical spectra, as it has a moderate computational cost.
However, the method does not allow the precise determination of exciton binding
energies, especially if the excitons are weakly bound. The reason is that, in practice,
calculations are done with an artificial broadening of several tens of meV, in order
to produce spectra that can be compared to experiment. This broadening will
completely wash out any excitonic peaks that are on the order of a few tens of
meV, which is the case for semiconductors [105].

Figure 7.1: Absorption spectrum of lithium fluoride, calculated in different TDDFT approaches.
In red, the absorption spectrum corresponding to the LRC is shown. In blue and grey, the
adiabatic local density approximation (ALDA) and the random phase approximation (RPA)
results, respectively. The black dots represent the experimental data. The optical spectra were
computed using the Yambo package [120].
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7.2.2 Casida equation: excitation energies
The calculation of excitation energies in the linear response TDDFT formalism is
done via the Casida equation. If the external perturbation acting on the system
is set to zero, only self-sustained solutions to the density reponse are considered.
These eigenmodes oscillate with the excitation energies of the system [113]. Setting
the external potential to zero, and after several lines of algebra, Eq. (7.6) can be
rewritten in the following way [92, 113]:∑
v′c′k′

{[(ϵck − ϵvk)δv′vδc′cδkk′ +Kvck,v′c′k′ ]Xv′c′k′ +Kvck,c′v′k′Yv′c′k′} = −ωXvck

(7.10)∑
v′c′k′

{Kcvk′,v′c′k′Xv′c′k′ + [(ϵck − ϵvk)δv′vδc′cδkk′ +Kcvk,c′v′k′ ]Yv′c′k′} = −ωYvck,

(7.11)

which has the form of an eigenvalue problem. The indices v, v′ and c, c′ represent
the occupied (valence) and unoccupied (conduction) states, respectively. The
energetic terms ϵck − ϵvk correspond to single-particle Kohn-Sham excitations, and
q → 0 indicates that the terms are calculated in the optical limit; i.e. with no
momentum transfer and only considering vertical transitions in momentum space
(k = k′). The coupling between the single-particle orbitals is mediated by the
matrices

Kvck,v′c′k′(ω) = lim
q→0

2
V

∑
GG′

⟨vk| ei(q+G)·r |ck⟩ ⟨c′k′| e−i(q+G′)·r |v′k′⟩

×

(
4πδGG′

|q + G|2
(1 − δG,0) + fxc

GG′(q, ω)
)
. (7.12)

It should be noted that the G = 0 term of the Hartree kernel (first term of the
second row of Eq. (7.12)) is omitted. This is done so that the eigenvalues of the
Casida equation correspond to the poles of the dielectric function. In principle, the
xc kernel depends on the frecuency ω, but in practice, this dependence is often
ignored by adopting the adiabatic approximation (fxc

GG′(q, ω) → fxc
GG′(q)).

The Casida equation (7.11) can be recast into its more compact matrix form(
A B
B∗ A∗

)(
Xn

Yn

)
= ω

(
−1 0
0 1

)(
Xn

Yn

)
, (7.13)

where the excitation and de-excitation matrices A and B are defined as

Avck,v′c′k′(ω) = (ϵck − ϵvk)δv′vδc′cδkk′ +Kvck,v′c′k′(ω) (7.14)
Bvck,v′c′k′(ω) = Kvck,v′c′k′(ω). (7.15)
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Solving the Casida equation yields a spectrum of excitation energies ω that
are the real excitation energies of the system. Even though the single-particle
Kohn-Sham spectrum is used as an input, the energy levels that arise from the
Casida equation differ from the KS excitation energies (ϵc − ϵv) because of the
coupling mediated by the K matrices. In this picture, excitons are manifested in
the discrete energy levels that appear inside the Kohn-Sham gap. The exciton
binding energy EB is given by subtracting the energy of the lowest excited state
and the Kohn-Sham band gap Eg(see Fig. (7.1)):

EB = Eg − ω1. (7.16)

Therefore, the Casida equation is a powerful tool that gives us a framework to
directly compute the excitation energies of the system starting from the DFT
single-particle wavefunctions of the ground state, provided that the fxc kernel
correctly includes the electron-hole interaction effects.

7.2.3 fxc kernel and excitons
Although TDDFT is a formally exact theory, the mathematical form of exchange-
correlation potential is unknown, which means that in practice approximations
have to be done. In fact, both of the approaches that we have previously presented
(Dyson and Casida) require an exchange-correlation kernel fxc. Within the linear-
response formalism, the frequency-dependent xc kernel of TDDFT is formally
defined as [92, 121]

fxc(r, r′, ω) =
∫
d(t− t′)eiω(t−t′) δvxc[n](r, t)

δn(r′, t′)

∣∣∣∣
n0(r)

, (7.17)

where vxc[n](r, t) is the xc potential of TDDFT and n0(r) is the ground-state density
of the unperturbed system. In periodic systems, the fxc kernel is transformed into
the reciprocal space: fG,G′(q, ω) (here, G and G’ are reciprocal lattice vectors
and q is a wave vector within the Brillouin Zone).

Even though several formulations for fxc kernels exist, one of the main issues
one has to face when trying to calculate excitons using TDDFT is the long-range
behaviour of the (xc) kernel. Local and semilocal xc kernels that work well in finite
systems (such as the Adiabatic Local-Density Approximation, ALDA) do not yield
bound excitons in solids, since they lack a long-range part [92, 104]. In this block
of the thesis, we will focus on the so-called (static) long-range-corrected kernel,
which is a simple (xc) kernel with a long-range part, which has been succesfully
used to calculate excitonic properties in solids [92, 98, 99, 104, 105]:

fLRC
xc = −α δGG′

|q + G|2
. (7.18)

The α parameter in the previous equation can be experimentally fitted, or calculated
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from first-principles, using the dielectric function as an input [104, 105]. Further
and more detailed discussion on the role of the LRC kernel when calculating
excitons in the TDDFT framework can be found in Chapter 3 of this block.

7.3 Excitation energies beyond TDDFT
Similarly to TDDFT, the Bethe-Salpeter Equation (BSE) of many-body
perturbation theory can be written as an eigenvalue problem that follows Eq.
(7.13). In fact, if the Tamm-Dancoff approximation (TDA) is adopted (i.e. B=0 so
that excitations and de-excitations are decoupled) [105, 111, 113], the following
eigenvalue problem has to be solved in both approaches:

[(ϵck − ϵvk′)δvv′δcc′δkk′ +KHxc
cvk,c′v′k′ ]Yn = ωnYn. (7.19)

Essentially, the matrix in Eq. (7.19) consists of a diagonal of KS excitation energies,
which are coupled by KHxc.

The main difference between the TDDFT and BSE approaches lies in the
mathematical description of the coupling matrix KHxc = KH +Kxc. The Hartree
kernel KH is the same in both approaches:

KH
cvk,c′v′k′ = 2

V

∑
G ̸=0

4π
|G|2

⟨ck| eiG·r |vk⟩
〈
v′k′∣∣ e−iG·r ∣∣c′k′〉 , (7.20)

where V is the crystal volume and the long-range of the Coulomb term 4π/|G|2 is
omitted.

The exchange-correlation Kxc term of the coupling matrix differs for the TDDFT
and BSE approaches. In TDDFT, within the optical limit where the momentum
transfer in negligible (q → 0) the matrix elements are given by

Kxc
cvk,c′v′k′ = 2

V

∑
G,G′

fxc,GG′(q → 0)

× ⟨ck| ei(q+G)·r |vk⟩
〈
v′k′∣∣ e−i(q+G′)·r ∣∣c′k′〉 , (7.21)

where fxc is the exchange-correlation kernel. In the BSE formalism, it has the form

Kxc
cvk,c′v′k′ = − 1

V

∑
G,G’

WG,G′(q, ω)δq,k−k′

× ⟨ck| ei(q+G)·r ∣∣c′k′〉 〈v′k′∣∣ e−i(q+G′)·r |vk⟩ . (7.22)

WG,G′ is the screened Coulomb interaction.
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There are some fundamental differences between the BSE and the Casida
equation approach. On the one hand, in TDDFT the xc matrix elements involve
braket operations between valence and conduction bands, while in MBPT, these
elements are given by c-c′ and v-v′ integrals3. On the other hand, the Coulomb
interaction is described by the exchange-correlation kernel fxc in DFT, and by
the screened Coulomb interaction W in the BSE. The numerical advantage of
TDDFT appears in this term. One of the main numerical bottlenecks of the MBPT
approach is the construction of the screened Coulomb interaction [110, 111], which
depends on the dielectric screening ϵ−1

GG′ as

WG,G′(q, ω) = −
4πϵ−1

GG′(q, ω)
|q + G|

∣∣q + G′∣∣ . (7.23)

Even in the static approach with ω = 0, the calculation of the dielectric function
requires a sum over all q = k − k′ values in the BZ, as well as a double sum
over the reciprocal lattice vectors G and G′. In TDDFT, the fxc kernel is usually
approximated by simpler kernels (such as the LRC kernel), which reduces the
computational cost considerably.

3 This will have implications when we analyze the role of the Coulomb singularity in the
following section.
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8
DIRECT CALCULATION OF EXCITON
BINDING ENERGIES FROM
FIRST-PRINCIPLES

Over the last years, Time Dependent Density Functional Theory has established
itself as a computationally cheaper, yet effective alternative to the Many Body
Perturbation Theory to calculate the optical properties of solids. Within the Linear
Response formalism, it is possible to obtain the optical absorption spectra in good
agreement with experiments, as well as the direct determination of the exciton
binding energies. However, the family of exchange-correlation kernels known as
long-range corrected (LRC) kernels that correctly capture excitonic features are
not capable of simultaneously produce good looking spectra and accurate exciton
binding energies. More recently, this discrepancy has been partially overcomed by
means of an hybrid-TDDFT approach. In this chapter, we show that the key resides
in the numerical treatment of the long-range Coulomb singular term. We carefuly
study the effect of this term, both in the pure-TDDFT and hybrid approach using a
Wigner-Seitz truncated kernel. We find that computing this term presents technical
difficulties that are hard to overcome in both approaches, and that points to the
need for a better description of the electron-hole interaction.

8.1 TDDFT approach: LRC kernel
Since TDDFT is a formally rigorous theory, the solution of eq. (7.21) should
provide us with the exact values of the excitonic energies, as long as we are able
to satisfactorily approximate the unknown exchange-correlation function. The
family of exchange-correlation kernels known as long-range corrected (LRC) kernels
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Figure 8.1: Magnitude of the r-matrix (top) and C-matrix (bottom) elements in bulk GaAs,
z-GaN and MgO. The magnitudes in the left axes are given in Å, while the ones in the right axes
are in units of the momentum matrix element pcv . The horizontal axis represents the cell center
on the [111] line of the conventional unit cell, so that the positions of the cell center are given
by t(a, a, a). The black dots in this axes indicate the positions of the atoms, and the horizontal
dashed lines represent the mean values of the plotted magnitudes.

have proven to correctly capture excitonic features by reproducing experimental
absorption spectra in semiconductors [92, 99, 100, 105, 122]. Even when we employ
its simplest static form of

fLRC
xc = −α δGG′

|q + G|2
(8.1)

the agreement with experimental absorption spectra is remarkable. However, the
empirical parameter α determined from the static dielectric constant of the crystal
(α = 4.615ε−1

∞ − 0.213) fails to reproduce bound excitons, unless α is set ad-hoc
to a much higher value (see Fig [1] in [105]). In the same reference, the authors
propose as a possible solution to the discrepancy, a material dependent non-uniform
scaling factor for Bootstrap-type kernels that correctly reproduces both, the peak
height and the position. The price to be paid, is the necessity of an extra arbitrary
function that contains four parameters that need to be fitted and has no a priory
theoretical justification. In the following, we will try to justify that the nature of
the discrepancy is of numerical origin. In other other words, we will show that
the way in which the q → 0 and G = 0 limit is handled, completely determines
the values of the exciton binding energies, and hence, the value of any empirical
parameter α or function needed for the kernels.

In the optical limit and for G = 0, the matrix elements of Eq. (7.21) have
a 0/0 indeterminate form for fLRC

xc type kernels, as the ground state KS valence
and conduction states are orthogonal to each other. The usual way to handle this
indetermination is to perform a series expansion of the numerator [104, 105]:

⟨ck| eiq·r |vk⟩ ≃ q ⟨ck| r |vk⟩ . (8.2)

which automatically entails a mutual cancellation of the vanishing q vectors in the
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8.1. TDDFT approach: LRC kernel

numerator and denominator, yielding a finite term. Nevertheless, a new problem
arises as the interband transition value of the position operator has to be calculated,
an ill-defined quantity (origin dependent) in infinite crystals with periodic boundary
conditions.

In practice, this issue is alleviated throughout the literature [108, 123] by using
the commutator relation p̂ = i[HSCF, r̂] that transforms the expected value of the
position operator into a well defined expectation value of the momentum operator.
This is commonly known as the p-r relation:

⟨ck| r |vk⟩ = ⟨ck| [HSCF, r̂] |vk⟩
(ϵck − ϵvk) = ⟨ck| p − i[̂r, Vnl] |vk⟩

(ϵck − ϵvk) (8.3)

However, to derive Eq. (8.3), is necessary to employ the above mentioned
commutator relation which holds at each point in r space and to invoke the
Hermiticity of the hamiltonian by ⟨ck|HSCF = ⟨ck| ϵck. In more algebraic detail,
an integration by parts is carried out in the matrix element ⟨ck|HSCFr |vk⟩ and a
surface integral term (Cck,vk) arises that should only be neglected for finite systems
where the wave-function decays to zero far enough at the surface boundary. In
contrast, for infinite solids with periodic boundary conditions [109]:

⟨ck| p̂ |vk⟩ = i(ϵck − ϵvk) ⟨ck| r |vk⟩ + Cck,vk (8.4)

with the additional surface term

Cck′,vk = 1
2

∫
s(v)

dS · [φ∗
ck′(r)p̂φvk(r) + (p̂φck′(r))∗φvk(r)]r (8.5)

Namely, the correct p-r relation contains a surface term that compensates for the
ambiguity related to the position matrix element that depends on the choice of the
unit cell. As the momentum matrix element does not have such an ambiguity, it is
clear that there must be an additional term. We will address the importance of this
surface term, by extending the same quantification performed in [109] for GaAs,
to the GaN semiconductor and MgO insulator (see the reference for calculation
parameters). We will later see the effect it produces in the binding energies of the
excitons.

To do so, we calculated the r and C matrix elements for bulk GaAs, z-GaN
and MgO using a simple Cohen-Bergstresser pseudopotential approach1 [124]. In
Fig. (8.1), the interband position matrix element ⟨ck| r |vk⟩ and the correction
term Cck,vk are shown. Both magnitudes depend on the location of the cell over
which the integrals are taken. We also observe that the magnitude of the r matrix
element is much smaller than that of the correction term. In the case of GaAs,
the mean value of the correction term is around 31.7 times bigger, while in β-
GaN and MgO this value is of 28.04 and 13.6, respectively. These results clearly

1 Details about this approach and the numerical values employed are shown in Appendix F
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Chapter 8. Direct calculation of exciton binding energies from first-principles

show that in periodic systems, the contribution of the correction term is far from
trivial. Therefore, neglecting it yields to the overestimation of the ⟨ck| r |vk⟩ matrix
elements, which, in turn, leads to the need of smaller α parameters to reproduce
experimental binding energies. This unit-cell dependence of the results points to
the need of going beyond pure-TDDFT to consistently calculate exciton binding
energies in solids.

The next step is to determine the contribution of the q=0, G=0 Coulomb
singular term, in the calculation of exciton binding energies. For this, we have
built our own code that evaluates the matrix elements of Eq. [7.21] and solves
the eigenvalue problem of Eq.[7.13] within the TDA approximation. We use as
input for the ground-state, Kohn-Sham wave-functions and energies obtained with
the QUANTUM ESPRESSO code [125]. Experimental lattice parameters and
norm-conserving LDA pseudopotentials without any scissors or GW corrections
were used to compare to reference values [104, 105]. A 20 × 20 × 20 Γ-centered
k-point mesh, 3 valence bands and 5 conduction bands were used for GaAs. These
parameters for the rest of the materials are: 16 × 16 × 16, 3, 6 for β-GaN and MgO;
16 × 16 × 8, 6, 9 α-GaN and AlN; and 8 × 8 × 8, 3, 24 for LiF, Ar and Ne.

The only difference between the calculation presented in reference [105] and this
paper, lies precisely in the numerical treatment of the q = G = 0 term. Instead
of using the p-r relation trick of Eq[8.3], we have directly computed the matrix
elements for a finite, but very small q grid, as implemented in reference [126].
Fig. 8.2 shows the resulting α values that yield the experimental binding energies
of an array of semiconductors and insulators in the following three cases: (a)
Setting fxc(G = 0) = 0 in Eq.[7.21], i.e., neglecting the indetermination; (b) only
considering the fxc(G = 0) term different from zero and neglecting the all the other
terms of the summatory (LRC Head-only); and c) full solution (LRC Diagonal).
Moreover, for comparison purposes, fig 8.2 includes values for α obtained using the
p-r relation taken from reference [105].

The first thing to note is that the resulting α values for the (a) case in in
which the indeterminate head-term is ignored, yields values that lay between 15
and 30 (green dots in Fig. (8.2)), and no noticeable trend with respect to the
material type (semiconductor/insulator) is noticed. These values can be two orders
of magnitude larger for small gap semiconductors and of the same order for large
gap insulators when compared to those in ref [105]. Thus, it necessarily implies
that the Kxc(G = 0) contribution is crucial and completely fixes the final values of
α. In addition, when the Head terms are added, either isolated (magenta diamonds)
or including the complete summation in Eq. 7.21 (blue triangles), the α values
needed to reproduce experimental binding energies decrease significantly but still
differ from the red squares of the above mentioned reference. Lastly, it is worth
mentioning that in our opinion, the parabolic trend shown by red squares as the
bandgap of the materials increase is somehow a contrived consequence due to the
use of the p-r relation in which the surface term is ignored. Note that in Eq (8.3)
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Figure 8.2: Fitted LRC kernel α-parameters that reproduce the experimental exciton binding
energy. In red, values from reference [105]. Values obtained omitting the singular term are given
in green, while the diagonal and head-only kernel are given in blue and magenta, respectively.

the bandgap energy divides each momentum matrix element, (and assuming that
the numerator is bounded), higher values of α are required as we move towards
insulating materials.

8.2 Hybrid TDDFT
One of the biggest computational bottlenecks of solving the Bethe-Salpeter Equation
is building the screened Coulomb interaction matrix WG,G′ in equation (7.22)
[92, 110]. In the Screened Exact Exchange (SXX) approach, this term is given by

WG,G′(q) = −4πγ δGG′

|q + G|2
, (8.6)

where only the diagonal terms of the exact exchange are considered, and the
dielectric screening γ is usually introduced as a parameter. A usual parametrization
for this term is given by γ = ϵ−1, where ϵ is the experimental or ab initio
calculated static dielectric function [110, 111]. This approach has been shown
to give comparable results to the full BSE [92, 110, 111], while considerably
lowering the computation time.

8.2.1 Wigner-Seitz truncation of the kernel
In the SXX approach, a correct treatment for the Coulomb term is crucial. However,
in comparison with TDDFT, the q = G =0 term for the c = c′ and v = v′ matrix

71



Chapter 8. Direct calculation of exciton binding energies from first-principles

elements now diverges as 1/02. Real-space truncation methods to numerically
handle the Coulomb interaction have been previously studied to calculate the exact
exchange energy in solids [127–129]. They found that the real space truncation of
the Coulomb term on a supercell with Wigner-Seitz that naturally includes the
crystal symmetry, is the best choice in terms of fast convergence of the k-point
sampling. In this approach, the coulomb kernel is given as follows:

WWS
G = 4π

G2

(
1 − e

−G2

4α2

)
+ Ω
Nr

∑
r∈WS

e−iq·r erf(αr)
r

, (8.7)

which has a finite, ved value at G=0:

WWS
G=0 = π

α2 + Ω
Nr

∑
r∈WS

erf(αr)
r

. (8.8)

Here, where erf is the error function, and α is the range-separation parameter. In
Fig. (8.3), we compute the Fourier transform to bring the kernel in Eq. (8.7) to the
real space, which allows us to see the great agreement between the Wigner-Seitz
truncated and the 1/r Coulomb potentials.

We have implemented this particular truncation method for the calculation
of the matrix elements in Eq (8.6) and studied its performance for a testing
set of semiconductors and insulators. We calculate the exciton binding energy
with respect to the following convergence parameters: k-point sampling of the
Brillouin Zone and dielectric screening parameter γ. We find that other convergence
parameters, such as the number of valence and conduction bands, have a negligible
impact on the calculated exciton binding energies. In other words, for all the
compounds under analysis, a single valence and conduction band were enough to
yield converged results.

The convergence of the exciton binding energy with respect to the Brillouin
Zone sampling and dielectric screening parameter γ is shown in panels (a) and
(b) of Fig. (8.4), respectively. We find that the exciton binding energy decays as
N

−1/3
k , where Nk is both the number of k-points in the Brillouin Zone and the

number of unit cells in the WS supercell of the crystal in the real space. This slow
convergence requires large k-point meshes, and the numerical results are highly
dependent on Nk. For all the compounds under analysis, the binding energy is
linearly proportional to the dielectric screening γ. To keep all the calculation
ab-initio, our γ values were computed using the RPA dielectric constant. Using the
experimental dielectric constant changed the binding energies less than 10% in the
wide gap insulators, and up to 30% for GaAs and CdS. We therefore conclude that,
even if the dielectric screening γ is an important parameter to precisely determine
the exciton binding energy, Nk is the crucial variable.

In table (8.1), exciton binding energy values obtained in the WS-SXX
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Figure 8.3: (a) Comparison between the coulomb kernel 1/r (grey line) and the real space
Wigner-Seitz truncated kernel (red dots). (b) Difference between the WS truncated and Coulomb
kernel.

Approach GaAs CdS z-GaN w-GaN AlN MgO LiF Ar
BSE [111] 24 59 103 110 181 - 2050 1830
SXX [111] 24 58 101 106 177 - 1930 1750
WS-SXX 25 58 92 95 124 180 588 387
Exp. 4 28 26 20 75 80 1600 1900

Table 8.1: Exciton binding energies obtained with the different hybrid approaches. The
experimental data was extracted from Refs. [130–140].
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Figure 8.4: Calculated exciton binding energies of GaAs with respect to the Brillouin Zone
sampling Nk (panel (a)) and the dielectric screening parameter γ (panel (b)). (a) For the k-point
sampling, the exciton binding energy is proportional to N

−1/3
k

, a trend that has already been
observed in the literature. (b) For the dielectric screening, the binding energies vary linearly with
γ.
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approximation are displayed along reference and experimental values. To compare
our results with the literature, we set the parameters to match those in the reference
[111], with the exception of the number of conduction and valence bands, which in
our case were fixed to nc = nv = 1. We find that for most of the semiconductors,
the exciton binding energies are in good agreement with the theoretical results
reported in the reference. Specifically, the Wigner-Seitz truncated kernel performs
better for Wurtzite type materials, i.e. w-GaN and AlN, because the numerical
truncation of the 1/r potential takes into account the hexagonal lattice symmetry.
However, in the case of the insulators, we observe a clear underestimation of the
binding energies with the WS-SXX kernel. We attribute the underestimation to the
fact that the WS-SXX kernel mostly takes the long-range interaction into account,
without proper consideration of the local effects. In the wide gap insulators with
localized excitons, these effects are not negligible, and this discrepancy might
merit further investigation with fully hybrid kernels beyond the scope of this
paper. Another explanation to the calculated values is that for all the compounds
we observe identical trends with respect to the convergence parameters, with no
qualitative variations with the electronic character. This results in exciton binding
energies that are mostly governed by the chosen k-grid and γ parameters. The
sharp dependence on the k-grid is specially worrying, since fully converged results
could vary greatly with the numerical values that are obtained from the grids that
can be currently handled. All in all, we find that the sharp dependence on the
singular term presents an important numerical bottleneck for the calculation of
precise exciton binding energies in solids, which limits the real applicability of the
simple kernels that are currently used.

8.3 Conclusions
In this chapter of the thesis, we studied the effect of the long-range Coulomb term
in the calculation of the exciton binding energies. We focused our analysis in two
different frameworks: LRC-TDDFT, and hybrid calculations with the SXX kernel.
We find that in the pure TDDFT calculations, the effect of the correction term Ccv

is crucial, and that neglecting it could lead to errors. In the hybrid TDDFT-BSE
framework, we propose a new WS truncated SXX kernel, which yields results close
to the BSE for semiconductors, while falling short for the wide-band insulators. We
once again find that the effect of the long-range Coulomb interaction is the leading
contribution to the calculated exciton binding energies, concluding that a correct
and careful description of this term is essential in this kind of calculation. We
believe that the findings of this work encourage further and more detailed analysis
of the Coulomb singularity that governs the excitonic effects in solids.
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CONCLUSIONS AND OUTLOOK

In this thesis, we studied diverse quantum phenomena occurring in semiconducting
materials. In the framework of the Density Functional Theory and its time-
dependent generalization, we carried out a number of different investigations that
study the magnetism and optical excitations in these compounds. The main findings
and conclusions obtained in this thesis are summarized below:

• In Chapter 3, we performed a fundamental theoretical analysis of the
magnetism of bulk ilmenite cobalt titanate. We obtained the ground state
G-AFM configuration, and computed the exchange couplings between the
cobalt ions. To get a qualitatively accurate description of the 3d electrons,
we employed the GGA+U formalism, and checked the effect of the Hubbard
correction parameters in the material. We derived a magnetic phase-diagram
with respect to the temperature that reveals that CoTiO3 has two critical
temperatures, linked to the breaking of the inter-layer AFM coupling (Néel
temperature) and the beginning of paramagnetism, respectively. We then
studied the effect of the spin-orbit coupling in this compound, and found that,
in apparent contradiction with the experiments, crystalline cobalt titanate
shows an out-of-plane anisotropy. We analyzed the effect of doping in the
material, and found that n-doping, in the form of cobalt-titanium anti-site
disorder, can turn the anisotropy in-plane.

• In Chapter 4, we went from the bulk ilmenite cobalt titanate to the
two-dimensional ilmenene–like compounds. We characterized the whole
family of TMTiO3 ilmenenes, deriving their optimized crystal structures,
electronic structures and magnetic ground-state. We found all the compounds
to be magnetic semiconductors, with an antiferromagnetic-by-layers spin
configuration. By adding the spin-orbit coupling, we then determined the
magnetocrystalline anisotropy of each compound, and found the following
general trend: ilmenenes have an out-of-plane (in-plane) magnetocrystalline
anisotropy below (above) half-filling of the 3d shell. In particular, with a large
out-of-plane MAE, chromium titanate CrTiO3 appears to be a candidate to
find applications in spintronics.

• In Chapter 5, we analyzed the layered semiconductor CaMn2Bi2. Similar
to the previous investigations, we carried out a systematic analysis of the
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fundamental magnetic properties of the compound, and we extended the
analysis to study the effect of strain on the magnetism. We found that
CaMn2Bi2 is an antiferromagnetic semiconductor with the spin aligned in
the zigzag-x direction of the hexagonal plane. Applying a strain of about
0.25% in the x-axis, the easy spin orientation of the crystal changes to the
armchair-y direction.

• In Chapter 7, we focus on the calculation of exciton binding energies of
semiconductors and insulators. We developed a code that calculates exciton
binding energies from input ground-state wavefunctions, and tested different
numerical approaches. In the TDDFT framework, we studied the importance
of the singular G=0 term of the Casida equation, and found that in periodic
solids this term is often computed without including a correction term Ccv.
We found that the magnitude of this singular term completely determines the
obtained excitation energies, and that a more consistent approach is needed
to compute excitation energies via TDDFT in a meaningful way. In the
hybrid framework, we implemented a new kernel, based on the Wigner-Seitz
truncation of the SXX kernel, and obtained exciton binding energies in good
agreement with the reference [111]. However, we found a worrying dependence
of the results with respect to the convergence parameters, mainly the number
of k-points, which limits the predictive capabilities of the implemented
approach.

We hope that this thesis has contributed to giving a better understanding of
the physical phenomena that have been studied throughout it. On the one hand,
we believe that we have set a solid ground for future research on the magnetic
properties of layered ilmenite and ilmenene–like compounds, which pans the way
to perform more advanced calculations, such as investigating the spin-spirals and
magnons. On the other hand, even if we were not successful on implementing a
code that precisely calculates exciton binding energies in a computationally efficient
way, we sincerely believe that our findings in this respect help to point out some
problems in the field. Our research points to the need of correctly addressing
and converging the Coulomb interaction in the coupling matrices, and to develop
kernels that describe the electron-hole interaction in a more precise way.

Looking forward, the results obtained in this thesis already open new questions
that could be addressed. Regarding ilmenite cobalt titanate, apart from spin-spiral
calculations, studying the magnetic properties under strain could lead to interesting
results that we have not studied in this thesis. In the ilmenene–like oxides, the effect
of doping has not been studied, and could have interesting applications by allowing
to turn the anisotropy of the in-plane ilmenene layers out-of-plane. The study of
exciton binding energies within TDDFT and beyond was not very hope-giving, but
there is still work to do in this regard. Testing better kernels, maybe based on
qualitative models for excitons could lead to improved and more stable results.
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Appendix A

CoTiO3: All-electron test for the
band structure

In order to check the validity of the chosen number of valence electrons to be
included per element, we compare the VASP calculation with a more precise all-
electron calculation performed with the Elk code[141]. We find that both band
structures are in great qualitative agreement, which confirms the validity of the
chosen number of valence electrons per element in our calculations.

Figure A.1: F-AFM band structure in the chemical primitive cell, in the GGA (panel (a)) and
all-electron (panel (b)) approaches.
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Appendix B

CoTiO3: Convergence of the MAE

The MAE is a small magnitude, in our case in the order of 10−4 eV/unit cell. To
ensure that our results are numerically correct, we calculate the MAE amplitude
with respect to the Brillouin Zone sampling nk (Fig. B.1). We show that the MAE
has a fast convergence in this system, and that the 8x8x8 Monkhorst-Pack grid
used in our calculations gives well-converged anisotropy energies.

Figure B.1: MAE of the hexagonal ab plane against the Brillouin Zone sampling per unit cell.
Regular Γ-point centered nk × nk × nk Monkhorst-Pack grids were used.

We also calculated the MAE for the hexagonal cell of bulk cobalt titanate. This
cell contains three times the atoms of the primitive magnetic cell, and a k-point
mesh of 8x8x2 was used. The MAE per cobalt atom was of 0.0895 meV, a value
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in great agreement with that of the rhombohedral primitive cell. We find that
the change to FM configuration does not affect the MAE in VASP, which yields a
0.0864 meV/Co atom out-of-plane anisotropy.

We checked the MAE in value and sign with respect to all-electron calculations
using the Elk code. Calculations of the MAE performed with the Elk code show the
same out-of-plane tendency obtained with VASP for the ferromagnetic configuration.
To save computational time, we use the VASP relaxed structure for the FM primitive
cell. Muffin tin radii for the spheres are 2.01, 2.34, and 1.47 au for Ti, Co and O,
respectively. Using well converged energy values with an angular momentum cutoff
of 19 for the muffin tin density and potential and the APW functions, and within
10−6 and 10−5 for the energy and potential, we obtain a MAE of 0.3 meV per cobalt
atom in Elk. This calculated value is even larger than that obtained with VASP
(0.09 meV/Co atom), and the resulting anisotropy remains being out-of-plane. We
consider that at this stage, the Elk results are just reinforcing the trends calculated
using VASP, the difference in the values is related to the considered ...
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Appendix C

CoTiO3: Effect of U in the MAE

As commented in the main text, we find that the MAE values obtained in the
GGA approach are larger than those using GGA+U, as shown in Fig. C.1 in
a systematic way with the angle θ. The structural expansion induced by the U
parameter plays a leading role in this trend, as the GGA structure is considerably
closer to the experimental cell. The GGA+U anisotropy with the experimental
lattice parameters is larger (MAEab/NCo ≃ 0.145 meV), a fact that points to the
structural expansion as the main responsible for the decreasing MAE.

Figure C.1: Comparison between the MAE in the GGA and GGA+U approaches. The MAE
values are given per cobalt atom.

85





Appendix D

CoTiO3: Orbital moment and
non-collinearity

We show the calculated orbital magnetic moment values µL in the GGA+U
approach, as well as the angular difference ∆θ between the spin and orbital
magnetic moments that arises when the spin-orbit coupling is included. Note the
overall non-collinearity between spin and orbital moments unless the θ values are
just θ = 0, π/2 and π.

Figure D.1: (a) Orbital moment µL of cobalt titanate calculated in the GGA+U approximation.
(b) Angular difference ∆θ between the spin and orbital magnetic moments.
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Appendix E

TM Ilmenenes: PDOS and band
structures

We collect the projected densities of states on an atom of each chemical species
in Figures E.1-E.3. More interestingly, Figures E.4-E.6 show the band structures
projected on the electronic orbitals with the transition metal atom ranging from V
to Zn. We divide the analysis of ilmenes into three categories: below half filling (V,
Cr and Mn), above half filing (Fe, Co and Ni), and just below full filling (brass
metals, Zu and Zn).

(i) In the case of the below half filling ilmenenes (Fig. E.4), the dxz, dyz and
dz2 orbitals with an out-of-plane component are the first to be occupied, while
the in-plane ones are the least stable. For the chromium ilmenene, the dxz and
dyz orbitals are splitted: the dxy and dx2−y2 orbitals are highly splitted, with the
dx2−y2 orbital being occupied, and the dxy orbital unoccupied. This splitting is
the source of Jahn-Teller like distortions for Cr ilmenenes.

(ii) Ilemenenes above half filling (Fig. E.5) have the down-spin part of the
orbitals coming into play. For iron ilmenene, the first orbital to fill is dz2 , while
in the case of cobalt, due to degenerate orbitals, the system prefers to fill the dxz

and dyz orbitals first. For nickel titanate, the dz2 orbital is again filled first, while
the others are partially filled. This kind of alternance gives rise to odd-even trends
when the levels are being occupied in going from Fe to Ni oxide ilmenenes.

(iii) Finally, in Fig. E.6, copper ilmenene shows a similar behavior to the
chromium ilmenene: the dxz and dyz orbitals split, as do the dxy and dx2−y2 orbitals,
with the dxy orbital being the unoccupied one. The zinc titanate ilmenene with a
d10 electronic configuration has all orbitals occupied, and is spin compensated.
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Figure E.1: Element-projected density of states (DOS) on a atom of each atomic species. Transition
metal is denoted in blue, titanium in cyan, and oxygen in red.
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Figure E.2: Element-projected density of states (DOS) on a atom of each atomic species. Colors
follow the caption of previous figure.

91



Appendix E. TM Ilmenenes: PDOS and band structures

Figure E.3: Element-projected density of states (DOS) on a atom of each atomic species. Colors
follow the caption of figures above.
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Figure E.4: Electronic band structure and PDOS for the ilmenenes below half-filling. Vanadium
titanate, chromium titanate and manganese titanate are displayed in panels (a), (b) and (c),
respectively.
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Figure E.5: Electronic band structure and PDOS for the ilmenenes above half-filling. Iron titanate,
cobalt titanate and nickel titanate are displayed in panels (a), (b) and (c), respectively.
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Figure E.6: Electronic band structure and PDOS of the brass metal ilmenenes copper titanate
(panel (a)) and zinc titanate (panel (b)).
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Appendix F

EXCITONS: Computation of the
Correction Terms Ccv

In Chapter 8, we compute the correction terms Ccv of Eq. (8.5) for the
semiconductors GaAs, GaN and MgO. To do so, instead of directly calculating the
surface intergrals, from Eq. (8.4) we calculate the correction terms as the difference
of the position- and momentum-operator cell integrals:

Cck,vk = ⟨ck| p̂ |vk⟩ − i(ϵck − ϵvk) ⟨ck| r |vk⟩ . (F.1)

To compute the cell integrals, we calculate the Bloch wavefunctions φ using the
Cohen-Bergstresser approach as in reference [109].

The Cohen-Bergstresser approach [124] is a pseudopotential approach that
consists on solving the following Schrödinger equation

ϵvkcv,Gi
=
∑
i̸=j

Vp(Gi − Gj)cv,Gj
+ (k + Gi)2cv,Gi

, (F.2)

where ϵvk are the eigenvalues, and the coefficients cv,Gi(k) can be used to build
the Bloch wavefunctions φ in Eq. (8.5):

φvk(r) =
∑
G

cv,G(k)ei(k+G)r. (F.3)

The terms Vp in Eq. (F.2) are the Fourier components of the pseudopotential,
which are decomposed into symmetric and antisymmetric parts by

Vp(Gi − Gj) = Vs(|Gi − Gj |a/2π) cos[(Gi − Gj)s]
− iVa(|Gi − Gj |a/2π) sin[(Gi − Gj)s]. (F.4)

Vs and Va are the symmetric and antisymmetric form factors, respectively. Provided
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VS(
√

2) VS(
√

3) VS(
√

8) VS(
√

11) VS(
√

12) VA(
√

3) VA(2) VA(
√

11)
GaAs 0 -0.23 0.01 0.06 0 0.07 0.05 0.01
GaN 0 0.226 0.001 0.157 0 0.305 0.219 0.060
MgO -0.0956 0 0.0705 0 0.0191 0.2471 0 0.0136

Table F.1: Symmetric and antisymmetric form factors of the pseudopotential in Eq. (F.4), given
in Rydbergs.

that these numbers are known, this pseudopotential approach can yield accurate
results for the valence and conduction bands of semiconductors [109]. The vector s
represents the position of an atom of the compound inside a Wigner-Seitz cell with
the origin in the middle of the two basis atoms. In the case of GaAs, with the cell
origin in the middle of both atoms, the position of the Ga atom is s = a/8(1, 1, 1).

In Table F.1, we collected the form factors we employed for GaAs [124],
GaN [142, 143] and MgO [144]. The reciprocal lattice of all three compounds
is a bcc structure, with G = m1b1 + m2b2 + m3b3, and b1 = (2π/a)(−1, 1, 1),
b2 = (2π/a)(1,−1, 1), and b3 = (2π/a)(1, 1,−1). For all the compounds under
analysis, we only considered form factors for |Gi − Gj | ≤ 2π/a

√
12.
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