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Abstract 

The paper presents blisk blades manufactured by different manufacturing processes. In this sense, different milling 
trajectories are presented, and, super abrasive machining strategies and EDM technologies are also tested. Machining 
times, costs and surface finish are analysed in order to determine optimal machining process for blisk manufactured 
in low machinability materials. 
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1. Introduction 

Aeronautic sector predicts that air traffic will continue a growing tendency, and, therefore, airplanes manufacturing 
companies will need to meet required necessities. Aeronautic industry should satisfy this demand according to a series 
of aspects regulated by European regulations such as efficiency, noise, and fuel consumption. Consequently, airplane 
components manufacturing processes should be optimized. A special attention should be paid to motor components 
which are the most expensive parts of the airplanes. Design and manufacturing processes for blisks (blade integrated 
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disks) present alternatives to conventional fir - tree concept. Integrated design presents advantaged related to 
aerodynamic flux and higher efficiency in terms of fuel consumption [1]. However, integral disc manufacturing 
requires blisks to be made of hard to machine alloys (Ti-6Al-4V and Inconel 718) which represents a machining 
technological challenge from the economic and technological point of view [2].    

Selected machining process for component manufacturing will depend on the component material [3] and geometry 
[4]. In this sense, several studies have focused on blisk milling processes, in which the finishing operation is the one 
with most influence on component final quality [5]. Nevertheless, previous operations such as roughing ones do also 
require special attention due to their relation with process productivity.  Morishige and Takeuchi [6] studied 5-axis 
roughing operations optimization. Some CAD-CAM software limitations have motivated researchers towards special 
modules or software development for a better control of complex surface machining trajectories. 5-axis roughing and 
finishing operations are applied to “centrifugal compressor impellers” and studied in [7] an application developed for 
the programming of machining trajectories for these type of components. The use of different programming languages 
[8] for trajectories optimization algorithms is an appropriate alternative for the avoidance of commercial software 
limitations and flexibility improvement. In this line, the use of approximation algorithms for the specific case of 
impeller ruled surfaces with cylindrical tools [9] improves the efficiency of the process. Impeller trajectories 
programing, whose geometry is obtained by inverse engineering, is studied in [10], using a module in CBIMS (Case 
based impeller machining strategy) created for machining process planning [11]. Although there are many machining 
trajectories applicable to blisks and impellers, they can be mainly classified into (i) point milling and (ii) flank milling. 
Point milling trajectories are based on the use of the tool tip whereas in flank milling trajectories the tool flank is 
compromised in the cut of material, which considerably improves the operation productivity. However, it is not always 
possible to include flank milling trajectories. On the other hand, the main disadvantage of flank milling trajectories is 
related to process stability that can be affected by several vibrations if cutting parameters are not correctly selected. 
Flank milling trajectories guarantee tangential contact between the ball-tapered cylindrical tool surface and the 
different generatrixes that define the surface. This way, it is possible to machine with an axial depth equal to the tool 
flank. This strategy allows to machine large quantities of material, which is directly beneficial for the productivity of 
the process. However, to maintain this efficiency of the process it is necessary to resort to a tool of large dimensions 
that would reduce the risk of tool bending and the appearance of vibrations inherent to this type of machining 
operations. Numerous works have been developed in the field of the optimization of flank milling machining strategies 
using the surface of the tool [12] and optimal positioning procedures for flank milling of surface machining with 
cylindrical tools [13]. In the case of ruled developable surfaces, the tool flank is kept tangent to the surface. In the case 
of non-developable ruled surfaces, the situation is a lot more complicated because the tangent plane changes along a 
ruling. This is why it is not possible to adjust the tool flank to the surface [14].  

Moreover, there are also studies for milling strategies based on algorithm development for minimum machining 
error and on the approximation quality between the design surface and the milled conical envelope considering pre-
defined conical milling tools [15]. Traditionally, the initial trajectory of the milling axis is assumed as an input and 
users’ intervention is necessary to provide a meaningful initial trajectory. Here, a recent research on automatic 
detection of conical envelopes [16] is adopted, showing that this initialization strategy, when incorporated to real 
manufacturable process, reduces the milling time significantly by detecting large envelopes within fine machining 
tolerances. 

On the other hand, regarding innovative technologies for blisk manufacturing, super abrasive machining (SAM) 
was presented in [17] as a solution to increase machining productivity during the production of blade and turbine disks. 
SAM technology outstands for combining grinding technology at milling rates. Moreover, in comparison to other 
grinding technologies such as creep fatigue grinding, it improves machining feeds [18], material removal rates and 
dimensional quality [19]. All these characteristics make SAM a reliable alternative for nickel-based super alloy IBRs 
(Integral Blade Rotors) manufacturing [20, 21].  

SEDM (Sink Electro Discharge Machining) studies do also outstand among very hard materials (> HRC) and closed 
blisk geometries. Due to the high process times of EDM (Electro Discharge Machining), it is usually limited to blisk 
with very complex cavities. Most of the authors researching on blisk manufacturing by SEDM, are focused on path 
calculation and electrode design, since commercial software lacks modules for these tasks [22, 23]. Some have 
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disks) present alternatives to conventional fir - tree concept. Integrated design presents advantaged related to 
aerodynamic flux and higher efficiency in terms of fuel consumption [1]. However, integral disc manufacturing 
requires blisks to be made of hard to machine alloys (Ti-6Al-4V and Inconel 718) which represents a machining 
technological challenge from the economic and technological point of view [2].    

Selected machining process for component manufacturing will depend on the component material [3] and geometry 
[4]. In this sense, several studies have focused on blisk milling processes, in which the finishing operation is the one 
with most influence on component final quality [5]. Nevertheless, previous operations such as roughing ones do also 
require special attention due to their relation with process productivity.  Morishige and Takeuchi [6] studied 5-axis 
roughing operations optimization. Some CAD-CAM software limitations have motivated researchers towards special 
modules or software development for a better control of complex surface machining trajectories. 5-axis roughing and 
finishing operations are applied to “centrifugal compressor impellers” and studied in [7] an application developed for 
the programming of machining trajectories for these type of components. The use of different programming languages 
[8] for trajectories optimization algorithms is an appropriate alternative for the avoidance of commercial software 
limitations and flexibility improvement. In this line, the use of approximation algorithms for the specific case of 
impeller ruled surfaces with cylindrical tools [9] improves the efficiency of the process. Impeller trajectories 
programing, whose geometry is obtained by inverse engineering, is studied in [10], using a module in CBIMS (Case 
based impeller machining strategy) created for machining process planning [11]. Although there are many machining 
trajectories applicable to blisks and impellers, they can be mainly classified into (i) point milling and (ii) flank milling. 
Point milling trajectories are based on the use of the tool tip whereas in flank milling trajectories the tool flank is 
compromised in the cut of material, which considerably improves the operation productivity. However, it is not always 
possible to include flank milling trajectories. On the other hand, the main disadvantage of flank milling trajectories is 
related to process stability that can be affected by several vibrations if cutting parameters are not correctly selected. 
Flank milling trajectories guarantee tangential contact between the ball-tapered cylindrical tool surface and the 
different generatrixes that define the surface. This way, it is possible to machine with an axial depth equal to the tool 
flank. This strategy allows to machine large quantities of material, which is directly beneficial for the productivity of 
the process. However, to maintain this efficiency of the process it is necessary to resort to a tool of large dimensions 
that would reduce the risk of tool bending and the appearance of vibrations inherent to this type of machining 
operations. Numerous works have been developed in the field of the optimization of flank milling machining strategies 
using the surface of the tool [12] and optimal positioning procedures for flank milling of surface machining with 
cylindrical tools [13]. In the case of ruled developable surfaces, the tool flank is kept tangent to the surface. In the case 
of non-developable ruled surfaces, the situation is a lot more complicated because the tangent plane changes along a 
ruling. This is why it is not possible to adjust the tool flank to the surface [14].  

Moreover, there are also studies for milling strategies based on algorithm development for minimum machining 
error and on the approximation quality between the design surface and the milled conical envelope considering pre-
defined conical milling tools [15]. Traditionally, the initial trajectory of the milling axis is assumed as an input and 
users’ intervention is necessary to provide a meaningful initial trajectory. Here, a recent research on automatic 
detection of conical envelopes [16] is adopted, showing that this initialization strategy, when incorporated to real 
manufacturable process, reduces the milling time significantly by detecting large envelopes within fine machining 
tolerances. 

On the other hand, regarding innovative technologies for blisk manufacturing, super abrasive machining (SAM) 
was presented in [17] as a solution to increase machining productivity during the production of blade and turbine disks. 
SAM technology outstands for combining grinding technology at milling rates. Moreover, in comparison to other 
grinding technologies such as creep fatigue grinding, it improves machining feeds [18], material removal rates and 
dimensional quality [19]. All these characteristics make SAM a reliable alternative for nickel-based super alloy IBRs 
(Integral Blade Rotors) manufacturing [20, 21].  

SEDM (Sink Electro Discharge Machining) studies do also outstand among very hard materials (> HRC) and closed 
blisk geometries. Due to the high process times of EDM (Electro Discharge Machining), it is usually limited to blisk 
with very complex cavities. Most of the authors researching on blisk manufacturing by SEDM, are focused on path 
calculation and electrode design, since commercial software lacks modules for these tasks [22, 23]. Some have 
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ventured to erode the pieces to see the problems that may appear during their manufacturing, but there are few works 
that compare SEDM with other blisk manufacturing processes. 

Concluding, blisk manufacturing is being studied independently, from point of view of various technologies, and, 
process comparison will determine optimal manufacturing parameters depending on component characteristics. In this 
work, blisk blades are manufactured by different manufacturing processes. In this sense, milling strategies based on 
different tool path determinations are compared to super abrasive machining strategies and EDM technology. 
Machining times, costs, and surface finish are analysed in order to determine optimal machining process for Inconel® 
718 blisk blades manufacturing. Followed methodology includes different stages. First of all, blisk CAD geometry is 
defined. Afterwards feasible machining processes are selected for blades manufacturing. Machining strategies, tools 
geometry and machining parameters are programmed in each case. Afterwards, blades are machined according to 
programmed strategies. Finally, each process characteristics such as machining times, costs, and surface finish are 
analysed. 

2. Test design and methodology 

For tests design, blisk type geometries are chosen in order to be manufactured using four different manufacturing 
processes. In section 2.1. milling technology is applied and CAM software is used for milling trajectories programing. 
In section 2.2. milling technology is applied, but, in this case, specific algorithm is developed for machining strategy. 
In section 2.3. SAM technology is performed. Finally, in section 2.4. SEDM technology is described.  

In the following subsections, process equipment, parameters, and results are shown for each technology. The same 
process parameters (feed (F), spindle speed (S), axial depth (ap), and radial depth (ae)) are analysed in every case. 
Tool characteristics such as material and geometry is also described. Besides, performed machining strategy is 
explained. 

2.1. Milling  

Selected geometry for milling technology validation is a Ti6Al4V blisk with 18 blades around a 200mm diameter 
(Fig1a and Fig1b). The tests were carried out in a five-axis high speed machining center Ibarmia ZV25/U600 Extreme. 
Regarding milling operations (Table 1), roughing, semi-finishing, and blade and hub finishing operations are 
programed with NX12 from Siemens. Flat tool geometry is used for roughing strategies whereas tapered ball nose end 
mills and ball nose end mills are used for semi-finishing and finishing operations respectively. In relation to milling 
strategies, zig-zag with lifts is performed for roughing and hub finishing, and, helicoidal strategies are programed for 
semi-finishing and blade finishing. 

     Table 1. Milling process parameters definition. 

Operations Tool  

 

Process parameters 

(F,S, ap, ae) 

Strategy 

 

Roughing Flat end ø10 R2.5 630 mm/min, 3000 rpm, 75% tool ø, 20% tool 
ø 

Zigzag with lifts 

Semi-finishing  

 

Tapered ball nose 

end ø6 α4° 

750 mm/min, 4000 rpm, 5mm, 1-2 mm Helicoidal 

Blade finishing Ball nose end ø6 400 mm/min, 4000 rpm, 0.6 mm, 0.5 mm Helicoidal 

Hub finishing Ball nose end ø6 475 mm/min, 6000 rpm, 0.6 mm, 10% tool ø Zigzag with lifts 

Process time, cost and surface finish values are detailed in Table 2. In this case, blade semi-finishing is the operation 
that lasts longer with approximately 3h followed by roughing with 1h. Semi-finishing and hub finishing operations 
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last around 30min each of them. On the other hand, for milling cost determination, machine €/h cost, tool cost, material 
cost and cutting fluid cost is taken into account. Due to confidentiality reasons the price is not being broke down.     

Finally, surface finish is measured for finished component (roughing and semi-finishing surface finish values are 
not obtained). ATOS 5M GOM scanning system is used for surface quality measurement. This equipment is based on 
the triangulation effect with two cameras. In this case surface finish values are 11 μm for blade finishing and 17 μm 
for hub finishing.  

  

Fig. 1. (a) blisk semi-finish process; (b) finished blisk component. 

Table 2. Milling process analysis. 

Operations Time  Cost Surface finish 

Roughing 1h 3min 18s 750 € - 

Semi-finishing  

Blade finishing 

Hub finishing 

25min 12s 

3h 3min 

37min 30s 

700 € 

830 € 

713 € 

- 

11 μm Ra 

17 μm Ra 

2.2. Algorithm based milling 

Due to programming limitations generally associated to CAM software, and, in order to be able to obtain an 
optimized milling strategy for finishing operation, algorithm based strategy is develop in this section.  

Table 3. Algorithm based milling process parameters definition 

Operations Tool  

 

Process parameters 

(F,S, ap, ae) 

Strategy 

 

Finishing  Tapered ball nose 

end ø1.5 α3° 

500 mm/min, 6000 
rpm, 24mm (tool 
length), 0.2 mm 

Flank milling 
(algorithm) 

The algorithm is based on the approximation between the designed surface and the tool conical envelope. 
Automatic detection of conical envelopes [16] is adopted, showing that this initialization strategy, when incorporated 
to real manufacturable process, reduces the milling time significantly by detecting large envelopes within fine 
machining tolerances. Mathematical calculation based on the tangential movability of a truncated cone along a free-
form surface and is used in the algorithm that computes conical envelopes that fit the input reference geometry.  

Milling experiments are conducted in a five-axis KONDIA HS1000 machining center, being numerically controlled 
by Heidenhain iTNC530. Manufactured geometry are Ti6Al4V blisk blades samples (Figure 2b). In this case, roughing 

(a) (b)
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and semi-finishing operations do not present research interest, being the blade finishing strategy the studied operation 
(Table 3).  

 

Fig. 2. (a) tool axis motion and color-coded approximation; (b) manufactured blisk blades 

Table 4 shows algorithm based finishing operation time, cost and surface finish values. Finished components are 
measured with ATOS 5M GOM scanning system. In this case, flank milling operation only consumes a few minutes 
being a very productive operation. Therefore, machining tie is reduced being reduced the price of the machine use 
(€/h). Moreover, developed algorithm provides excellent surface finish results. 

Table 4. Algorithm based milling process analysis. 

Operations Time  Cost Surface finish 

Finishing  2min 640€ 6 μm Ra 

2.3. Super Abrasive machining 

SAM technique is applied to Inconel 718 blisk blades (Figure 3). Experimental tests are carried out in a five-axis 
high speed machining center Ibarmia ZV25/U600 Extreme (Spindle rotation up to 18000 rpm). SAM process 
parameters are defined in Table 5. Selected tool is a diamond & CBN electroplated tool of 20mm diameter. Roughing 
operation is performed following a slotting strategy and flank milling strategy is selected for finishing strategy.  

Table 5. SAM process parameters definition. 

Operations Tool  

 

Process parameters 

(F,S, ap, ae) 

Strategy 

 

Roughing Diamond & CBN 
Electroplated tool 
ø20mm 

450mm/min, 
14000 rpm, 20mm, 
0.2 mm  

Slotting 

Finishing  Diamond & CBN 
Electroplated tool 
ø20mm 

500mm/min, 
14000 rpm, 20mm, 
0.2 mm 

Flank milling 

Finished components are measured with ATOS 5M GOM scanning system. Roughing surface finish results are not 
measured. In this case, both operations only consume a few seconds. 

Table 6. SAM process analysis. 

Operations Time  Cost Surface finish 

Roughing 1min 43s 740 - 
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Finishing  14s 690 7 μm Ra 

 

 

Fig. 3. (a) SAM blisk blades. 

2.4. SEDM 

For the SEDM process, a shrouded blisk with an outside diameter of 300mm and 35 blades/cavities was chosen 
(see images 4a and 4b). Although normally aeronautical materials (for example, nickel base alloys) are used for this 
type of pieces, for this disc AISI 403L stainless steel was used. Since for the SEDM process the behavior of both 
materials is similar and getting more steel simple. 

Both electrode design and the erosion trajectories were obtained using the methodology proposed in Ayesta et al. 
[22]. Two axis, linear axis Z and the rotary axis C (around Z), were interpolated during trajectory. In addition, an 
additional rotary axis (axis B) has been used for positioning. Figure 4c shows an image of the previous tests carried 
out before the erosion of the disk. In this test, a blade wear cut in order to measure it and its shape can be seen. Due 
to the shape of the cavity, erosion was carried out in two clamping positions. First the erosion of half of the cavity (in 
height) of one side of the disk (upper cavity) was made, the disk was rotated and the other half (lower cavity) was 
finished until the channel between blades was opened. 

     Table 7. SEDM process parameters definition. 

 Tool  

(geometry and material) 

Process parameters 

(I,V,ti,t0,S) 

Strategy 

 

Roughing Upper and lower. POCO 200 14A, 160V, 200μs, 25 μs, 35V [22]. Z linear axis 
and C rotary axis 
interpolation 

Finishing  Upper and lower. POCO 200 4A, 200V, 25μs, 15μs, 60V 

 
The geometry of the disc allows the use of multiple electrodes to erode several cavities at the same time. Thus, 

more energetic parameters can be used and save time. Even a single electrode could have been used to erode all the 
cavities at once, but in this case triple electrodes were chosen due to the manufacturing of a single electrode was 
complex. Four different types of electrode were used, two for roughing and two for finishing, one of each type for 
each side of the disc. All the electrodes were triples and the material used was graphite POCO 200. Table 7 shows 
SEDM process parameters.  

The erosion was carried out in an ONA NX5 machine, first roughing and then finishing. Table 8 shows process 
parameters. The whole erosion of the disk lasted around 170h, of which 98 h correspond to roughing. 

Table 8. SEDM process analysis. 
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Operations Time  Cost Surface finish 

Roughing 98 h 2450 € 8 μm Ra 

Finishing  72 h 1800 € 2.2 μm Ra 

 

 
Fig. 4. (a) The whole blisk and the electrodes; (b) cavity image; (c) a previous test in which a cut was made to measure. 

 
3. Results and conclusions 

After the machining of blisk blades geometries in different difficult to cut materials (titanium alloys, nickel alloys 
and steel alloys) using milling, algorithm based milling, SAM and SEDM technologies, measured process values are 
analysed. In this case, in the four cases, machining times, cost and surface finish values are measured.  

Regarding machining times, algorithm based technologies and SAM technologies are faster than milling 
technologies. Moreover, SEDM is the one with longer machining times due to process performance. 

On the other hand, in relation to surface finish, SEDM is the one that provides better surface finish values. However, 
very good results are also obtained with SAM and algorithm based milling technologies, both under 10 μm. 

Finally, cost estimation, although approximated shows the difference between machining times. For longer 
machining process, machine cost increments. Tool cost expensive in SEDM, being necessary to manufacture the 
electrodes. Besides SAM tools are also more expensive that standard milling tools. 
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