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Abstract

We live in the information era, which presents an unprecedented opportunity for analyzing

human behavior. Technology has penetrated our lives in such a way that a large part of

our day to day is surrounded by technological devices that record the activities we carry out

every day. Whether using the cell phone to call friends, send a text message, post on a social

network, or pay through electronic devices, it leaves a digital trace that is stored and allows

us to analyze human behavior. A subset of great interest is those digital traces that contain

the geographic location because it allows us to understand the interaction between people

and the urban infrastructure. The use of digital traces covers multiple disciplines associated

with human mobility and its interaction with the city, such as urban planning, infrastructure

management, public transportation management, and public policies. This information is

also widely used to target responses to unfortunate events such as natural disasters or ter-

rorist attacks and study biological viruses’ spread and contagion. This work addresses three

gaps in detecting human behavioral patterns using digital traces. The first gap is related

to the algorithms used for detection, where we challenge the traditional approach relying on

distance-based clustering algorithms like K-Means. The second gap is associated with the

pattern validation process, which demands extensive expert knowledge about the geograph-

ical areas studied. The third gap is the lack of consideration for the temporal dimension,

as classical approaches focus on finding static patterns, but behavioral patterns change over

time. Therefore it is necessary to find a proper approach to analyze how human behavioral
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patterns change over time. We propose a methodology that adapts latent semantic models to

identify human behavioral patterns. In addition, quantitative metrics are proposed to assess

the quality of the patterns obtained. Moreover, two methods are presented to study the

long-term changes in the detected patterns. The methodology is applied to different types of

digital traces, which were grouped into three large datasets: the telecom dataset containing

880 million call detail records; the banking dataset with 85 million geo-tagged credit card

purchases; and the social media dataset, a collection of 32 million geo-tagged urban activities

like tweets, check-ins, and social media comments. The results show that latent seman-

tic models detect human behavioral patterns and identify new behaviors not observed by

distance-based clustering algorithms. Latent Dirichlet Allocation models performed better

than traditional models for the static detection problem, while Dynamic Topic Models over-

performed in the task of detecting spatiotemporal patterns. Moreover, the proposed metrics

allow us to compare human behavioral patterns and thus select the one that best describes

the kinds of actions developed by the individuals while interacting with the city. In future

work, we want to study if there is a hierarchical relationship between the patterns that can

be obtained from the single-cities analysis with other types of spatial aggregation, such as

cities or countries. On the other hand, we want to delve into the mathematical properties of

the proposed metrics, analyze them and test new scenarios for identifying activity patterns.

Keywords: Human Behavioral Patterns ; Topics Models ; Geo-tagged Data ; Multi

Sensor ; Multi Temporal
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Chapter 1

Introduction

This introductory chapter presents the motivation to study land use patterns generated from

human mobility. Section 1.1 starts with the research’s motivation and introduces the research

area addressed in this thesis. Section 1.2 presents the research problem and the thesis’s

general and specific objectives. Then, in Section 1.3, we show the research methodology to

continue with the contributions of this research in Section 1.4, and its results, in the form of

publications, are detailed in the Section 1.5. Finally, the structure of the thesis is presented

in Section 1.6.

1.1. Motivation

Today we have an unprecedented opportunity to analyze human behavior. The increase in

technology penetration means that each person is connected or related to some technological

device for a large part of their day. Whether using the cell phone to call friends, sending

a text message, posting on a social network, or paying through electronic devices, it leaves

a digital trace that is stored, and allows us to analyze human behavior. When individuals

interact with these technological devices, which we will call sensors, they store not only the

interaction details but also include metadata that further enrich the knowledge that can be

extracted. This leads to an unprecedented collection of information. Additionally, most of the

activities mentioned above provide individual geo-referencing information when performing

this action, allowing us to enhance human behavior analysis using geo-spatial data.

Although crowdsourcing and geo-crowdsourcing were coined more than a decade ago to

denote the storage and subsequent analysis of digital traces, using digital traces to analyze

1



human behavior is relatively new. In many cases, surveys are still used to characterize the

behavior. However, this alternative does not allow for making quick decisions nor allows us

to examine the user’s behavior in detail. Using surveys to analyze the users’ interaction with

their surroundings requires a high logistical and human deployment to gather the information

and therefore carries a high cost. Due to the high cost involved, surveys only allow gathering

information from precise strategic points, limiting the granularity of the insights obtained,

and also have a time limitation since data will only be available for the specific time window

over which the survey lasted. Furthermore, these drawbacks restrain the behavior analysis

when the information needs to be collected quickly, such as responding to a catastrophe.

Digital traces have a wide range of uses and provide practical and valuable insights into

different research areas such as urban planning and infrastructure management [1–4]. In the

event of a natural disaster, this information allows identifying areas to focus the aid efforts and

planning the response [5–12]. From a health and environmental perspective, this information

allows us to quantify the effect of climate change [13–17], to analyze the response and impact

of a terrorist attack [18–20] and to study the spread and contagion of biological viruses like

dengue [21], zika [22], ebola [23], HIV [24], and SARS-CoV-2 [25–27]. In transport, digital

traces enable the forecast of vehicle traffic [28–33], people’s crowd flows [34–37], and public

transportation management and public policies [38–40]. Additionally, digital traces have the

potential to significantly improve our knowledge of human behavior and help organizations

make data-driven decisions. Organizations use this information to improve customer analytics

[41–43], marketing decision-making [44, 45], and optimal business facility location [46, 47].

Different types of digital traces record different behaviors. Phone calls allow us to know

the social and relational behavior of people. In the case of credit and debit cards, they detail

the purchasing behavior and the registered events of social networks, allowing us to know

opinions, hobbies, and social life. These digital traces are often associated with a location

that also allows us to know how people interact with their environment. This location can

be exact, like the one delivered by the GPS on the phone or the point of sale associated with

the commerce where the individual bought, as well as being approximate, as is the case of

knowing the nearest cellphone tower that processes the call information. In particular, for

this study, we are interested in those digital traces that allow us to relate an individual’s

behavior with their environment. This information is valuable as it allows decisions that

impact entire communities, whether at the local level of a neighborhood or even at the level

2



of an entire country.

In this thesis work, we will address three main gaps identified in the field of identifying

human behavioral patterns.

• Algorithms: The first gap, related to the algorithms used to detect human behav-

ioral patterns, is addressed by exploring and evaluating alternative algorithms. The

traditional process to detect human behavioral patterns is made using distance-based

clustering algorithms such as K-Means. K-means is the most used classification algo-

rithm in an endless number of applications. However, there is still room to improve

the detected patterns. In fact, when analyzing the patterns obtained by the K-Means

algorithm, the question remains whether these algorithms manage to identify all the

types of behavior that should be observed.

• Patterns validation: The second gap corresponds to how the obtained patterns are val-

idated. Choosing the set of patterns that best describes the behavior observed through

the digital traces is fundamental. The success of this task depends heavily on expert

knowledge about the study population, the area in which the information was collected,

and the behavior that should be observed through the data collection sensor. Inade-

quate selection and validation of patterns can lead to biased conclusions or errors, so it

is crucial to have tools to reduce dependence on domain-specific knowledge to validate

the patterns obtained successfully.

• Time-dependent patterns: The third gap in the behavioral pattern discovery process

is the consideration of the temporal dimension. The classical approaches often focus on

finding static patterns in the data and do not account for the long-term evolution of

behavioral patterns. It is known that behavioral patterns change over time, so finding

ways to incorporate the temporal information in extracting behavioral patterns and thus

consider the long-term effects and changes of these patterns over time is essential.

1.2. Research Problem

3



1.2.1. General Objective

The main objective of this thesis is to extend the general knowledge in the use of digital

traces to study the patterns of human activity and its interaction with the environment.

1.2.2. Specific Aims

This research project aims to explore innovative methods for detecting human behavioral

patterns, addressing the gaps mentioned above, and considering the temporal and spatial

dimensions. The thesis will be structured into a series of three related studies to achieve

this goal. Each study will build on the findings of the previous studies, with the overall

aim of providing a comprehensive answer to the previously identified gaps. In particular, we

introduce the research questions we seek to answer in this study.

1.2.2.1. Aim 1: Formalizing the human behavioral patterns validation

• Research Questions: Is it possible to reduce the dependence on expert evaluators to

identify human behavioral patterns? What should be the main metrics to evaluate and

choose between a set of patterns?

• Broader Implications: Formalizing the evaluation and selection of human behavioral

patterns will facilitate research on this topic because it is no longer dependent on experts

in the geographical areas of study.

1.2.2.2. Aim 2: Modeling human behavioral patterns

• Research Questions: Is it possible to detect human behavioral patterns? What is

the best way to represent digital traces to detect these patterns? What relationship do

these patterns have with the geographic area of data collection?

• Broader Implications: Surveys are the most widespread way to learn about people’s

mobility patterns. A method that allows us to delve into human behavioral patterns

through passively collected information will reduce costs and increase the speed and

frequency with which insights can be obtained.
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1.2.2.3. Aim 3: Temporal and spatial human behavioral patterns

• Research Questions: Are the patterns detected stable over time? How can we incor-

porate the temporal dimension in identifying human behavioral patterns?

• Broader Implications: Human behavior changes, as does their interaction with their

neighborhoods and cities. For this reason, having a methodology that allows us to

observe these changes in behavior is of great help for decision-making in public policies

and all other uses given to this information.

1.3. Proposed Methodology

To address the objectives set out in this thesis, we will use a methodology based on the

KDD (knowledge discovery and data mining) process [48]. To achieve this, we adapt the

methodology to allow insights into human activity patterns and their interaction with the

environment. Our methodology is presented in Figure 1.1.

Data
Collection

Real
World

Data
Transformation Evaluation

Model

Individuals

Sensors

Environments

Modeling Insights

Zi

Z1

Zn

X

Figure 1.1: Methodology

The methodology begins in the real world, where people carry out their day-to-day ac-

tivities, leaving digital traces due to their interaction with technological devices or sensors

that record and store them. People interact with many sensors during their day; however,

for this study, we are interested in those sensors that associate and record the location of

the individual at the time of performing an action. Once the data has been collected, it is

necessary to transform this information and represent it in a way that facilitates its use by

traditional machine learning algorithms. Then, a series of models and techniques are applied

to detect behavior patterns from the digital traces generated by each individual. The pat-

terns obtained by using several methods are evaluated in two large dimensions. The temporal

dimension allows us to determine the cycle of time in which individuals carry out repetitive
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actions and the spatial dimension in which it is analyzed whether these patterns relate to

surrounding areas from where the information was gathered.

1.4. Contributions and outline

This thesis aims to address the problem raised above, and within that scope, this work

contributes with:

• A review of the state-of-the-art using digital traces to study human interaction with the

environment and the city.

• A methodological framework for the evaluation and interpretation of behavioral pat-

terns.

• A novel static method to extract patterns of human behavior and its interaction with

the environment.

• An extension of the method mentioned above to incorporate the temporal dimension of

behavior patterns and thus analyze their changes over long periods.

The solutions proposed in this study complement and challenge how to use digital traces to

identify human behavioral patterns. As will be presented in Chapter 2, traditional approaches

focus on detecting static patterns with clustering algorithms such as K-means and also rely

on exhaustive knowledge of the geographic area where the digital traces were collected. This

work will extend the existing knowledge in this field, enable new studies on the historical

analysis of human behavioral patterns, and strengthen the quantitative evaluation of these

patterns.

1.5. Publications

The following publications are the direct result of the reported work in this Thesis and they

were also developed during the Ph.D. study period:

• Muñoz-Cancino, R., Rios, S. A., Goic, M., & Graña, M. (2021). Non-Intrusive As-

sessment of COVID-19 Lockdown Follow-Up and Impact Using Credit Card Informa-

tion: Case Study in Chile. International Journal of Environmental Research and Public

Health, 18(11), 5507. [49]
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• Muñoz-Cancino, R., Rios, S. A., & Graña, M. (2023). Multi-sensor and multi-temporal

city activity patterns using dynamic topics models. Sensors, Under Review.

Articles related to this thesis that were published before starting doctoral studies.

• Sebastián A. Ríos, Ricardo Muñoz, Land Use detection with cell phone data using topic

models: Case Santiago, Chile, Computers, Environment and Urban Systems, Volume

61, Part A, 2017, Pages 39-48, ISSN 0198-9715. [50]

Other articles were developed and published during the doctoral studies are indirect results

of these doctoral studies.

• Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña, On the

combination of graph data for assessing thin-file borrowers’ creditworthiness, Expert

Systems with Applications, Volume 213, Part A, 2023, 118809, ISSN 0957-4174 [51]

• Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña, On the

dynamics of credit history and social interaction features, and their impact on cred-

itworthiness assessment performance, Expert Systems with Applications, Volume 218,

2023, 119599, ISSN 0957-4174 [52]

• Ricardo Muñoz-Cancino, Cristián Bravo, Sebastián A. Ríos, Manuel Graña (2022). As-

sessment of Creditworthiness Models Privacy-Preserving Training with Synthetic Data.

In: , et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer

Science(), vol 13469. Springer, Cham. [53]

1.6. Structure of the thesis

This work is structured in chapters, which are detailed below:

• Chapter 2: Presents the previous work and delves into the background to understand

the area of study and techniques used.

• Chapter 3: Details the three data sets used in this thesis: The telecom dataset con-

taining 880 million call detail records; the banking dataset with 85 million geo-tagged

credit card purchases; and the social media dataset, a collection of 32 million geo-tagged

urban activities like tweets, check-ins, and social media comments.
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• Chapter 4: Details the methodology proposed in this thesis

• Chapter 5: Presents the experimental setup designed to answer this work’s research

questions and objectives. Additionally, it introduces the results of the experiments

designed, which are addressed in depth in Chapter 6, Chapter 7, and Chapter 8

• Chapter 9: Presents the conclusions and gives possible lines of research for the future.
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Chapter 2

Background and Related Work

This chapter summarizes previous work in the area of study related to this thesis. To do this,

we summarize the work done using digital traces to obtain insights into human mobility and

its relationship with urban areas. Then, we dedicate a section showing how this information

has been used to support decision-making in public policies.

2.1. Digital traces and volunteered geographic infor-

mation

During the last decades, we have experienced unprecedented technological developments;

technology is ubiquitous and is found in everything that surrounds us. People carry multiple

technological devices that act as sensors and record different aspects of their lives throughout

the day. Today, 91% of people in the world own a cell phone [54]; these devices record our

phone call behavior, track our geolocation through GPS [55], and give us access to differ-

ent social media sites where we can share thoughts, opinions, hobbies, and moments. Even

it is possible to interact with other users. Additionally, we carry around credit cards that

track what, when, and where we shop, and some people carry smartwatches that track our

heart rate and monitor how well we sleep. When we collect and use this information to

extract knowledge, we will speak of crowdsourcing [56], and when we restrict the informa-

tion collected to that which refers to the spatial location of the individual, we will speak of

geocrowdsourcing [57]; in both cases, people are understood as a sensor. Goodchild deepens

this phenomenon and coins the term Citizens as Sensors [58]. In geography, Volunteered
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Geographic Information (VGI) [4] refers to all the information collected from geocrowdsourc-

ing. We are interested in VGI since it does not matter what people, technological devices, or

sensors are recording; the combined interpretation of spatial and temporal dimensions allows

us to understand and interpret human behavior in a much more comprehensive manner [59].

2.2. On the use of digital traces

Much research has been done on characterizing patterns in urban areas using social crowd-

based resources like geo-tagged tweets or cell phone records. Fujisaka et al. [60] discovered

regional characteristic patterns from movement histories using aggregation and dispersion

models in order to understand the nature of human mobility. Similar work was developed by

Wakamiya et al. [61], where they defined the geographic regularity of an urban area using

daily crowd activity patterns and analyzing their changes over time. Also, Noulas et al. [62]

applying spectral clustering, modeled crowd activity patterns in two cities using geolocated

information provided by Foursquare. Crandall et al. [63] performed landmark location using

data from geo-tagged photos on Flickr with the mean-shift algorithm. Additionally, Frias-

Martinez et al. [64] evaluated the use of geo-located tweets as a complementary source of

information for urban planning applications using SOM, Voronoi tessellation and K-means

algorithm. Those authors also proposed a technique that automatically determines land uses

in urban areas by clustering geographical regions with similar tweeting activity patterns [65].

The human Digital traces and VGI allow the study of human behavior from its interaction

with urban infrastructure and urban planning. They also allow transportation management

and management of natural disasters and terrorist attacks. The uses are varied and of

significant impact; below, we detail the most important uses of human digital traces.

• Urban planning and infrastructure management [1–4].

• In the event of a natural disaster, this information allows identifying areas where to

focus the aid efforts and plan the response [5–12]. Moreover, this methodology is also

used to quantify the effect of climate change [13–17].

• Analyze the response and impact of a terrorist attack [18–20].

• Management, characterizing, and forecast of vehicle traffic [28–33]
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• Public transportation management and public policies [38–40]

• Forecasting people’s crowd flows [34–37]

• The spread and contagion of biological viruses like dengue [21], zika [22], ebola [23], HIV

[24], and SARS-CoV-2 [25–27]

• Customer analytics [41–43], marketing decision-making [44, 45] , and optimal business

facility location [46, 47].

2.2.1. Urban planning and infrastructure management

The population boom of the last century and the fact that most people live in urban areas

make it necessary to understand human interaction with the infrastructure of cities to plan

the city’s development and understand the needs of infrastructure based on public spaces

[1, 3]. In addition, the projections indicate that most of the growth will occur in urban

cities. These reasons make it even more urgent to understand the complexity of the urban

phenomenon and design the city through the construction of codes, public policies, and

regulations. Noteworthy studies to understand this phenomenon date back to the 1970s with

the work of Pushkarev [66] and Whyte [67], who laid the foundations for recording human

activity and its interaction with public spaces, thus leveraging data-driven decisions in urban

designers and urban planners.

In its beginnings, this discipline starts from the knowledge of experts, traditionally be-

ing data-scarce and going to depend heavily on demographic information [68] or statistics

regarding public and private transport use [69]. More modern approaches use records of

human activities from agreements with telecommunications companies to extract aggregated

information from cell towers [50, 70, 71] or use satellite images [2, 72, 73]. Dembski et al.

[4] raises the need for citizens to participate in this mission through digital traces and geo-

crowdsourcing data and to promote information collection in cities. For this, they developed

a prototype of a digital urban twin in the German city of Herrenberg.

2.2.2. Natural disaster management

The great flow of information generated from digital traces and VGI has become an important

data source to characterize, visualize, analyze and predict natural disasters. This information
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allows changing natural disaster management strategies to reduce the population’s suffering

and economic losses. One of the first uses is monitoring dangerous zones and identifying new

hazard zones. It is also possible to design mitigation strategies for the effects of a natural

disaster, plan assistance teams in disaster zones and manage humanitarian actions, plan relief

efforts and contribute to the design of reconstruction plans [7].

Xin et al. [6] used data collected during the 2003 Cyclone Mahasen in Bangladesh to

describe the change in human behavior after the natural disaster. Additionally, they use

the information collected to analyze population migration patterns and correlate the insights

obtained from mobile data with seasonal episodes of migration in Bangladesh. Podesta et al.

[8] analyzed and studied the community resilience during Hurricane Harvey, which hit and

caused significant damage in the Houston metropolitan area and Southeast Texas in 2017.

To do this, they used the records of visits to different points of interest in the city as a proxy

to understand and quantify the combined effects of disturbances on lifestyle, infrastructure,

and the environment. Another analysis of the effects of Hurricane Harvey is presented by

Farahmand et al. [12]. This time, researchers used Mapbox telemetry data for a quick

assessment of the flood. In this study, a flood indicator is proposed to quantify the changes

in the concentration of human activity. Observing that in the flooded areas, the indicator

presents anomalous activity.

A more general approach is presented in Yabe et al. [10]. In this study, the effects of

five major natural disasters that occurred in three countries will be analyzed, for which the

trajectories of over 1.9 million mobile users will be analyzed. The authors found that despite

the affected regions’ socio-economic diversity, the recovery patterns after the disaster are

similar. Furthermore, using information obtained from household survey data Dargin et al.

[11] analyze how people seek information during disasters and study the perception of the

reliability of social media platforms during these events. This survey collects information

regarding the three major hurricanes that occurred in the United States between 2017 and

2018.

A detailed literature review related to the analysis of natural disaster management and the

role of digital traces and VGI is presented by Yu et al. [7]. The study presents the leading big

data sources, discoveries, associated achievements in each disaster management stage, and

emerging technologies for natural disaster management with Big Data. Additionally, Fan et

al. [9] present a general proposal for managing natural disasters based on collecting data
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from multiple sensors, integrating data and analytics, and a multi-actor approach based on

game theory to support decision-making.

2.2.3. Human digital traces to quantify the effect of climate change

The effects of climate change are already being observed in multiple areas. These changes

bring an increase in natural disasters, human migration flows, effects on tourism, and even

changes in the natural processes of flora and fauna. Several authors have proposed methods

to quantify and understand the effects of climate change. Milojevic et al. [15] present a

systematic review of studies based on machine learning to mitigate and understand the effects

of climate change. They show the benefits of supporting decision-making based on analytical

models and that the implications of the insights obtained from them can be at different scales,

whether at the urban, city, building, or household levels. Finally, they propose a framework

to optimize urban planning based on machine learning.

The effects of climate change cause people to migrate from environmentally affected areas.

Xi et al. [6] studied the long-term and short-term effects on the migratory movement of the

population. This study was designed using mobile phone data obtained during Cyclone

Mahasen in Bangladesh, and in this way, they managed to characterize migration episodes

after natural disasters.

Kubo et al. [14] propose a framework to analyze human welfare under conditions generated

by climate change. His study focuses on challenging the calculation of human welfare on the

tourist coasts of Japan. The incorporation of different scenarios generated by climate change

projects losses in economic value at the national level that are much greater than those used

to manage mitigation resources. Due to these findings, they propose changing the current

ranking of beaches based on economic value, enabling decision-making under climate change.

Alampi et al. [16] study the possible effects of climate change on the tourist flow who visit

rural areas motivated by wine tourism. To do this, they use measurements of precipitation,

temperature, and sea level pressure in addition to VGI gathered from the Flickr photo-

sharing social media platform. They anticipate demand changes for this type of tourism and

a movement of the peak session from summer to spring and suggest that these findings be

used to adapt the services supply and the planning of festivals and tours.

Funada et al. [17] study the effects of climate change through changes in the flowering

phenomenon. Through a model that detects flowers from street-level photos, the authors
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characterize the phenomenon of flowering and thus propose a semi-automatic framework

that also reduces the tremendous economic cost of similar studies.

2.2.4. Response and impact of a terrorist attack

Analyzing collective reactions to traumatic events such as terrorist attacks is necessary be-

cause it allows us to understand the population’s reaction and improve response plans to

these regrettable events. Garcia et al. [18] studied the emotional changes during the terrorist

attack in Paris in 2015 and thus validate Durkheim’s theory on how the collective emotions

resulting from these events lead to higher levels of solidarity in the affected population. The

authors find an increase in negative emotions in response to the event and a long-term in-

crease in lexical indicators related to solidarity. This study analyzed the digital traces of

62,114 Twitter users during a follow-up period after the terrorist attack in Paris. Another

analysis of the terrorist attacks in France using digital traces is featured in Schafer et al. [19],

where the authors analyze the millions of tweets stored by the National Library of France

after the terrorist attacks. This study analyzes the collection process, the guidelines, and the

tools necessary for collecting, storing, and analyzing this information.

Berube et al. [20] developed an unsupervised framework to study the reactions and effects

of the 2017 Manchester Arena bombing. This analysis was developed by applying Latent

Dirichlet Allocation (LDA) on millions of tweets obtained 24 hours after the event. The

findings showed an improvement in social media monitoring compared to the tools used by

law enforcement and other government agencies.

2.2.5. Management, characterizing, and forecast of vehicle traffic

Traffic congestion is a problem affecting citizens’ lives, especially in large cities. Mathematical

models that allow predicting situations and moments of high congestion are used every day

to prevent the saturation of streets and highways. Using GPS information gathered from

vehicles circulating in Tunisia, Elleuch et al. [30] generated a model based on neural networks

to predict the state of congestion in freeways and highways, highlighting the non-linear

behavior of traffic in the different types of roads studied.

Ashwini et al. [31] present a benchmark of multiple data sources used for traffic forecast-
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ing, and each data source shows the value they add to the resolution of the problem. These

data sources include VGI data such as cellphone network data and social media. Within

its complete analysis, the added value of each data source is measured based on its preci-

sion, reliability, difficulty in obtaining and preprocessing, and infrastructure and maintenance

costs.

Salazar et al. [33] propose a framework that allows them to collect geo-referenced Tweets.

Using the collaborative volunteered geographic information, they generate a model to predict

traffic congestion and a spatio-temporal analysis to characterize and describe the traffic

behavior of specific city areas.

Another significant challenge in vehicular traffic management is reducing emissions and

negative externalities. A studied alternative is using machine learning models to reduce public

transportation emissions [74]. On the other hand, Alam et al. [75] propose a methodology to

quantify, estimate and predict vehicle emissions and for this, they use VGI gathered from the

GPS of smartphones used by drivers. Furthermore, Krause et al. [76] present a particular

case of emission measurement, showing the quantification and forecast of emissions associated

with the new German passenger car fleet for 2030.

2.2.6. Public transportation management and public policies

Perola et al. [38] designed a framework for the exploratory and visual analysis of mobility in

the Helsinki metropolitan area. This analysis is carried out at the level of postal code areas

and shows the mobility network between the different areas. This analysis is done through

the aggregation of geotagged Tweets.

Waller et al. [39] designed software for transport demand analysis. This software visualizes

roads, creates zones for traffic analysis, and implements a genetic algorithm to estimate

origin-destination (OD) demand patterns. The authors propose to use this tool for rapid

decision-making for long-term strategic planning. This approach does not directly use VGI

but aggregated behavioral information from pervasive traffic data providers such as TomTom

and Google.

Graff et al. [40] make available a python library to obtain Twitter data from different

domains, which has been collected since December 2015. Although this information has

many uses, such as studying natural disasters, health problems, and natural language pro-

cessing, The most relevant case is the information on the number of trips between more than
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200 countries or territories. This information is relevant since it enables the comparison of

strategies for managing vehicular traffic and the OD demand forecast.

2.2.7. Forecasting people’s crowd flows

The prediction of crowd flows is an important research topic due to the social cost it entails

and the negative externalities it causes in citizens’ lives. The crowd flow is directly related

to the quality of service and infrastructure planning and plays a fundamental role in security

and surveillance monitoring. Three primary data sources are identified for the analysis of

crowd flows, video analysis, Spatio-temporal analysis, and the use of the VGI gathered from

social media. Ebrahimpour et al. [36] present the state-of-the-art and the main data sources,

techniques, and algorithms.

From the characterization of Twitter activity in Singapore City, Goh et al. [34] generated

a model to predict the crowd flow throughout the city. The model shows that it is possible

to have a model to accomplish this objective and complements it by incorporating the tweet

tense and sentiment analysis. The authors use a deep-neural-network architecture that im-

proves the prediction accuracy in some scenarios. Terroso et al. [37] use a similar approach

to the one proposed by Goh et al. [34]. This similarity is at the level of data and models.

The authors also use information from Twitter and combine it with a location-based mobility

dataset provided by cellular networks, thereby generating a model to predict the number of

trips nationwide. The results show the value of geotagged Twitter VGI as a complement and

alternative to mobility attributes based on mobile phone location. The architecture that ob-

tains the best results with Twitter data is based on deep-learning, Long Short-Term Memory

(LSTM) models.

Zhao et al. [35] challenge the traditional use of taxis’ GPS trajectory data and bike-sharing

data taxis because they only present a partial view of crowd movement. To do this, they

use cellphone data and convolution neural networks to forecast crowd flows, obtaining better

results than an estimate based on time series regression models.

2.2.8. The spread and contagion of biological viruses

Tran et al. [23] analyze how the population shares news, thoughts, and concerns in the

face of severe outbreaks. In particular, the authors analyze the diffusion in social media

of information related to Ebola. The authors analyze the reactions regarding Ebola by
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gathering and estimating the geolocation of around 2 billion Ebola-related tweets during the

major Ebola outbreak between August 2014 and December 2014. This study allows us to

understand the citizens’ reactions to the outbreak and analyzes the spread of topic-based

information that can be used for public health crises. In the same way, Masri et al. [22]

used geotagged Twitter data to study the ZIKA virus (ZIKV) outbreak that caused severe

public health consequences in 2016. The authors used two auto-regressive models to estimate

the number of infected cases a week in advance, both for the state of Florida and the entire

country (U.S. model). The resulting models showed a high level of reliability in estimating

the number of cases and a high spatial correlation when contrasting with the confirmed cases

across all 50 U.S. states. These results show the value of using VGI for disease surveillance.

Kraemer et al. [77] also used geotagged Twitter data to study the dengue virus spread. In

this study, they analyzed the virus incidence in Lahore, Pakistan. They showed that the

highest incidence was in high-mobility sectors during the day, which would be explained

since transmission is through a day-biting mosquito. After that, the same authors used the

same methodology for studying dengue spread to study the spread of COVID-19 in China

[26]. This article used geotagged Twitter data gathered before the coronavirus pandemic to

establish a mobility baseline. Then, compare the expected mobility and the mobility during

the coronavirus pandemic. Abdallah et al. [25] implemented a monitoring system capable of

identifying central areas infected or with suspected infected people from the medical records

of the new suspects integrated with cellphone records. The study’s objective was to track

the location’s history of the infected people and then, by distance analysis, to identify other

people who could have had contact with the infected person.

Another important study for dengue spread was proposed by Ramadona et al. [21]. They

use geotagged information from Twitter to study and predict spatiotemporal patterns of

disease spread. In particular, the authors study the intra-urban spread in Jakarta City,

Indonesia, and for this, they build a mobility index. The mobility index is estimated with a

Poisson regression model using lags of up to 6 months. The results show that the mobility

index has the highest predictive power for dengue transmission and that geotagged Twitter

data helps understand the direction and risk of the spread of dengue.

Brugh et al. [24] propose a method to estimate the risk of HIV and map the spatial

heterogeneity of the population. This methodology aims to reduce HIV in adolescent girls

and young women. The authors analyzed geotagged household surveys from Eswatini, Haiti,
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and Mozambique. Using this data and satellite imagery, they applied models to predict the

number and proportion of people at risk of HIV in the studied countries. This information can

help planners design prevention programs in high-risk geographic areas and thus maximize

the impact on reducing HIV incidence.

During the coronavirus pandemic, people’s mobility was restrained and reduced by in-

stalling non-pharmaceutical measures to prevent, contain, and reduce contagion. Luca et

al. [27] used cell phone records to monitor spatiotemporal patterns of international mobility

and thus study changes in the flow of people during the introduction of non-pharmaceutical

measures to control the pandemic. To include the effects of these measures, the authors

developed a tailored gravity model to quantify the effects of non-pharmaceutical measures.

2.2.9. Customer analytics

Contextual information is an indispensable asset for optimizing and monetizing company

information systems’ insights. Ferro et al. [47] present an exhaustive literature review that

comprehensively characterizes analytics systems based on location and geotagged informa-

tion. This study depicts 168 articles and examines their contribution from business aspects,

data sources, and the knowledge extraction process. A similar analysis and literature re-

view are presented by Pachni et al. [45], where the authors focus the study on various mobile

location-based techniques used by businesses and corporations to increase the value delivered

to their customers and offer personalized experiences.

Competitive location problems are location models that explicitly incorporate the fact

that other facilities already exist in the area or that new competitors will enter that market

[78]. Wei et al. [46] present an approach to address the competitive location problem using

social media data and customer evaluation and rating. Combining the Huff model and a

geographically weighted regression (GWR), the authors assess local customers’ sensitivities,

testing their approach with the five most renowned retailers in Beijing. Relevant knowledge

that can be used as input for the competitive location problem is that provided by Chen et al.

In their study, they predict individuals’ future location using geotagged social media data.

They first use a hierarchical clustering model based on density to identify the most visited

areas and then a multi-feature Bayesian model to forecast future spatiotemporal locations.

The proposed approach outperforms a state-of-the-art method.

Miah et al. [44] use geotagged VGI gathered from social media to analyze attractions of
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interest to tourists and characterize visitation patterns by visitor type. This approach was

validated through a focus group using Australian outbound travelers. One of the advantages

of this framework is being generic and can be applied in diverse contexts and geographies

to provide valuable insights for strategic decisions in tourism companies or by government

agencies in charge of promoting and stimulating local tourism. Similarly, Srinon et al[41]

propose a mobility framework to improve the decision-making of tourism suppliers such

as hotels, restaurants, and tourist attractions. To carry out their analysis, they collected

geotagged social media data from the Bangkok metropolitan area, extracting insights into

tourist preferences.

Fan et al. [43] present an analysis and characterization of customer clusters based on

geotagged VGI collected from Sina Weibo and Dianping.com. The data gathered represents

the catering consumer space of the Pearl River Delta region, Guangdong. Using a density-

based clustering algorithm (DBSCAN), the authors are able to identify the location and

characteristics of consumer clusters.

As it has been observed, using geo-tagged digital traces is very useful for multiple dis-

ciplines, where knowing the interaction between individuals and the urban infrastructure is

essential. In summary, Table 2.1 shows a comparative analysis between several previously

mentioned studies.

2.3. Digital Traces to evaluate the impact of COVID-

19

Since the early days of 2020, the COVID-19 pandemic has been shocking [79] the world [80, 81]

with several waves of COVID-19 outbreak hitting all countries across the world differently

[82], even showing different incidence inside the administrative partitions of the countries

[83]. The main tools that have been proposed [84] to control the damage of a viral infection

outbreak are related to either non-pharmacological interventions (NPI) impeding the spread

of the virus or pharmacological interventions aiming to treat the associated disease severity.

Regarding pharmacological developments, many studies are trying to assess the benefits of

several ancient and new molecules against the SARS-CoV-2 virus [85–88]. At the same time,

immunization approaches are tested at large on the world population [89]. Regarding non-

pharmacological interventions [90–92] many countries or their lower administrative divisions

19



(such as states, regions, or counties) have implemented quarantines and other restrictions

of movement, while recommending social distancing, wearing masks and general prophylaxis

measures. Concurrently, there is growing apprehension about the side effects of quarantines,

curfews, and other restrictions of movement on the general and at-risk population, specifically

children and young adults, because they can affect the quality of sleep and physical activity

[93, 94], modify the alcohol consumption and eating habits [95], and increase the stress

levels [96]. Additionally, the use of urban green spaces has significantly been affected by the

pandemic, and it has been valued highly as a resource to overcome the mental burden of the

situation [97].

There is emerging literature about the observation of the economic impact of COVID-19

through the lens of consumer spending obtained from credit card information. For instance,

credit card digital traces from the second biggest bank in Spain shows a sharp v-shape in

the aggregated consumption due to the strict lockdown measures imposed by the Spanish

government [98], while Cakmakli et al. [79] used the aggregate information in a predictive

epidemiological model of pandemic evolution in Turkey. A detailed study over March-August

2020 in the USA credit card market [99] found a sharp decrease in transactions and balances in

mid-March with a slow, incomplete recovery from May onwards. Some economic sectors did

experience sharp decreases in activity while others increased the volume of transactions [100].

The study in Akos et al. [99] compares the effect of NPI measures with the psychological

pressure of the pandemic roughly measured by the number of cases in the surrounding areas,

aka pandemic severity, finding that pandemic severity has a more substantial effect on the

diminishing credit card transactions. Pandemic fatigue implies that this effect has weakened

over time since the outburst. The effect of pandemic severity on over volume of consumer

transactions was also observed in China since the pandemic outbreak in January 2020 [101].

A similar v-shape decrease in the volume of transactions was found in France, where the

decrease in credit card transactions started a couple of weeks before the lockdown measures

[102]. An additional confirmation of the effects of pandemic severity and mandated NPI on

consumer spending is the comparison of the volume of all means of electronic transactions in

Sweden and Denmark during the early months of 2020 [103].

However, more research at a microscopic level needs to be done about the impact on

consumer behavior of stay-at-home mandates and other NPI measures. A relevant research

question is whether the NPI anti-COVID-19 measures have induced behavioral changes in
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the population and whether these changes can be observed by analyzing digital traces. This

analysis is presented in Section 7.3, and the complete detail can be consulted in our previous

research article Muñoz-Cancino et al. [49].

2.4. Data-driven policy-making using digital traces

Recent literature has shown that multiple data sources can be informative in characterizing

the interaction between humans and their environments. This research focuses on three

geo-tagged digital traces data sources, call detail records, credit and debit card physical

purchases, and social media activity. In order to understand their ability to identify novel

human behavioral patterns, it is important to distinguish their basic characteristics. On

the one hand, transactional credit card data have been available for several years, but the

penetration of this payment method has been relatively slow. In many countries, cash is still

the most widely used payment method, but the share of cash payments, in terms of volume

and value relative to credit and debit card payments, has been decreasing [104]. For the

case we analyze in this research, 65% of households use debit cards routinely while 25% use

credit cards [105]. On the other hand, mobile phones are a more recent technology but with

a much faster adoption. According to [54, 106], even in developing countries, mobile phone

ownership spans more than 91% of the population.

Different data sources also present their own strengths and challenges to support policy-

making about human behavioral patterns. For example, credit card data is lighter than

mobile phone data because it only stores a location when a customer is engaged in a com-

mercial transaction. Simultaneously, call detail records are much more massive because they

can create a new location record every time a cell phone connects to an antenna (hundreds

of data points per cell phone per day). In this same sense, interaction with social media

generates high volumes of information because people are constantly publishing their daily

activities.

When analyzing dynamic patterns, credit card data can be less prone to measurement

errors and might provide a more reliable signal of each user’s relevant economic activities. In

this regard, credit card data can provide a robust estimation of the location where citizens

live, work, and conduct their frequent activities. However, mobile phone and social media

data might be more appropriate to characterize other activities not directly associated with
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an economic transaction, such as transportation or outdoor sports. Finally, as transactions

from credit card data are associated with specific vendors, it is relatively easy to assign a label

to characterize the type of transaction; for mobile phones, this association to an economic

area is indirect, requires external information, and presents considerable noise.

Despite the tremendous potential of these new data sources in supporting policy making,

there are important methodological challenges to translating massive data sets into valuable

insights. An important issue is how we translate the raw data into a few aggregated classes

of mobility patterns in the city. For example, this information is the primary source when

developing an origin-destination matrix used worldwide to design the public transportation

system of a city [107]. Similarly, in the present COVID-19 pandemic, this data can help

generate a mobility index to monitor a city’s quarantine policies and later evaluate the

impact of these policies. In Section 7.3 of this article, we precisely illustrate using a massive

digital traces dataset to describe the impact of lock-downs in the context of the COVID-19

pandemic).

Understanding complex human activity patterns using geo-crowdsourced data has been an

active research area in the last decade. There are studies using data from multiples resources

like Foursquare [62], geo-tagged tweets [60, 61, 64], cell phone records [50, 108–111], geo-

tagged Flickr photos [63], and geo-tagged Chinese social media messages [112].

The patterns derived from digital traces are an essential input in decisions associated with

public policies. Many authors seek to explain urban phenomena related to public transport

[113] and traffic flow [114], where human behavioral patterns are one of the factors that influ-

ence them. Hu et al. [115] studied the impact of land use and amenities on the use of public

transport. Other scholars propose new approaches to assess Origin-Destination matrices

through big data analysis, providing faster, more flexible, and more affordable instruments

to adjust public transport policies [107, 116–118]. Besides, human mobility patterns detected

from digital traces have been used in many other public policy domains such as flood risk

management and urban planning [119, 120]. Previous literature also uses new sensors to

describe the relationship between floods and poverty [121], and to study the decrease in

agricultural land use utilizing surveys, high-resolution satellite images [122, 123] and deep

learning techniques [124]. Finally, human behavioral patterns are used to measure the effec-

tiveness of curfew and lockdown policies during the pandemic caused by the SARS-CoV-2

virus [49, 125].
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A detailed description of human behavioral and mobility patterns has proven helpful in

supporting policymaking. Despite the extensive research work devoted to this matter, in

most cases, these patterns are taken as given, and they are not obtained from observed

behavior from the citizens. For example, Lang et al. [126] present a methodology to combine

different sources characterizing land use patterns arising from digital traces in several cities

in China. They identify three types of cities (economically led, governmentally led, and

geographically restricted), but in their research, each cell is described by only one land

use type. In contrast, we represent each cell as a mixture over a set of different human

behavioral patterns in this study. Our approach can be advantageous in describing human

activities in densely populated cities where multiple land uses can coexist in the same cell.

Hu et al. [115] developed a framework that can be applied to urban planning for transit-

oriented development by studying the impact of land-use features on public transportation

in both time and space. They analyze land-use features at two levels: the general land use

by sector type and the compositions of services in each zone. They find that more granular

land usage information increases predictive power. They conclude that high-resolution data

can be more insightful in describing the interdependence of public transportation and land

use. The analysis of call detail records, credit and debit card data, and social media urban

activities we use in this research provide an even better resolution on the information needed

to design urban territories and evaluate land use policies.

Additional interesting applications of human behavioral patterns explaining the interac-

tion between individuals and the city to support public policies is the research of Darabi et

al.[120]. They compare various decision tree-based machine learning techniques and genetic

algorithms to estimate an urban flood risk mapping based on records and surveys for Sari

City, Iran. One of its main conclusions is the role of land use characterization in determining

flood hazards. Hong et al. [119] analyzed communication behavior among people during

floods using call detail records data. The results revealed higher activity than regular during

the crisis, indicating a search for peer support.

Although call detail records and geo-tagged social activities have been used extensively

to study individual mobility patterns and land-use research [50, 108–111], the use of credit

and debit card transactional data have been scarcely investigated Most of the previous work

has been devoted to analyzing human mobility or spending patterns. Brockmann et al. and

Gonzalez et al. [127, 128] studied mobility patterns using credit card and cell phone data.
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The research showed that Levy Law can approximate the distribution of people’s movement.

Clemente et al. [129] present a comprehensive analysis to comprehend lifestyles from credit

card records; this enables them to have a geospatial characterization of peoples’ purchasing

and spending patterns. They analyzed the clients’ purchase sequences using text mining

techniques such as TD– IDF. However, this geospatial characterization is only accomplished

by enhancing their analysis with call detail records. Therefore, the geospatial characteristics

of its analysis are not directly provided by credit card records. Our approach requires only

one data set (credit card records) instead of two massive datasets (credit card records and

call detail records) to derive meaningful patterns. Since we are processing data directly from

the point of sale, we have the geospatial location of the transaction performed.

More needs to be documented regarding the spatial and temporal stability of human be-

havioral patterns using digital traces. Lenormand et al. [110] present one of the few studies on

multi-sensor stability. They performed a cross-check analysis contrasting three data sources:

Twitter, census, and cell phone data. They also examined the correlation between patterns

obtained from these data sets in Madrid and Barcelona. However, the call detail records were

the only helpful information to characterize land use patterns. Additionally, they extended

their research in [130] by applying a functional network approach to detect four major land

uses corresponding to different temporal patterns and compared these patterns over multiple

cities in Spain.
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Tabla 2.1: Main studies on different use cases using digital traces

Objective Topic Article Data Study Area

Urban planning and
infrastructure
management

Land use change tra-
jectories

[2] Remote sensing im-
ages Tianshui, Gansu

Sustainable Urban
Management

[3] Flickr Manchester

Management,
characterizing, and

forecast of vehicle traffic

Traffic Forecast [33] Geo-tagged Tweets Mexico City
Traffic Forecast [30] GPS traces Tunisia
Literature review [31]

Public transportation
management and public

policies

Origin-destination de-
mand

[38] Tweets Helsinki

Origin-destination de-
mand

[39] Travel time data Sydney

Forecasting people’s
crowd flows

Crowd flow prediction [34] Tweets Singapore city
Crowd flow prediction [35] Cell phone data North-east of China
Literature review [36]
Number of trips pre-
diction - nationwide

[37] Tweets Spain

The spread and contagion
of biological viruses

Dengue spread [21] Tweets Jakarta, Indonesia
Dengue spread [77] Tweets Lahore, Pakistan
Covid Spread [26] Tweets China

HIV [24] Surveys Eswatini, Haiti and
Mozambique

Ebola [23] Tweets
ZIKA [22] Tweets Florida, USA

Climate Change

Human migration [14] Cell phone Data Japan
Human welfare under
climate change

[6] Cell phone data

Literature review [15]

Wine Tourism [16] E-OBS project and
Flickr

Cherry blossom flower-
ing

[17] Geo-tagged images

Terrorist Attacks
Paris terrorist attacks [18] Tweets Paris

Paris terrorist attacks [19] Tweets and web-
pages Paris

2017 Manchester
Arena bombing

[20] Tweets Manchester
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Chapter 3

Data Description

In this chapter, we detail the data sources used for this thesis. These data sources were

grouped according to the sensor type that records the individuals’ digital traces. For each

source, we explain the information generation process, the volumetry, the data recorded by

each sensor, and what was used in this studio.

3.1. Privacy protection and ethical guidelines

All data sources used in this thesis do not compromise any individual’s identity or personal

information. The telecom and banking datasets were used at antenna and point of sales

levels, respectively, so they only have aggregate information at the sensor level and in no

case of individuals. On the other hand, the information on online activity was obtained

from public datasets, taking all the safeguards for its storage and processing. They were

aggregated at the city level, so the user or individual performing the action is not considered

for analysis. In addition, any final data produced as a result of this research does not

compromise customers’ privacy, and there is no possibility that this investigation can leak

any personal private information.

3.2. The telecom dataset: Call detail records

3.2.1. Overview

The Base Transceiver Stations (BTSs), also known as antennas or cell tower are responsible

for broadcasting and transmitting between the radio network and mobile phones [131]. The
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antenna tower and the equipment can identify mobile phones. To manage and improve

network efficiency, the BTSs are grouped hierarchically into Location Areas (LA) and are

centrally controlled by a Base Station Controller (BSC). The BSC is responsible for the

assignment and changes at BTS levels within the same LA. Regarding their activity on the

network, mobile phones have two states, active and idle. When a mobile phone is idle, it does

not consume any radio resources. However, it constantly evaluates the signal strength and

decides whether to switch to another cell to improve this signal strength. A mobile phone

spends most of its time idle and only switches to the active state during a phone call or

data transaction. Every time a mobile phone becomes active, that is, during a phone call, a

data transaction, or sending of SMS, a Call Detail Record (CDR) is generated. The CDRs

are generated and collected by telecommunication companies mainly for billing purposes.

They are the ones that store the recorded activity of a mobile phone user and allow them

to determine the temporal and spatial location through the BTS that manages the user’s

activity [132].

A CDR provides information on when, from where, to where, with whom, and for how

long a user communicates [133]. The CDRs contain the BTS information of the caller and

the callee party, a timestamp, and the call duration. Although the structure of the CDRs can

change and is not always standardized, the attributes mentioned above allow the spatiotem-

poral analysis of behavior from mobile cell phone data. Table 3.1 shows, as an example, the

information contained in a CDR. Although each record contains several fields, the example

contains the necessary data for our study. In addition to the information provided in this

table, each BTS has a geographical location described as latitude and longitude.

Tabla 3.1: Sample of a typical Call Detail Record

Caller Phone Number Callee Phone Number Caller BTS Callee BTS Timestamp Call duration (seconds)

0012542872 0042478890 BTS00001 BTS00234 2022-04-10 23:15:18 230
0012542872 0056978425 BTS00041 BTS00934 2022-08-17 08:25:13 37

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0085967423 0012457784 BTS02477 BTS00065 2022-09-30 09:55:23 108

In particular, the telecom dataset used in this research was originally collected by the

major telecommunications company in Chile, the dataset consists of 880 million phone calls

recorded over a 77 day period for approximately 3 million anonymized mobile phone users.

It contains the information about the phone call: date, time, duration and coordinates
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(latitude and longitude) of the BTS (base transceiver station) routing the communication

for each phone call. Furthermore, we only know the coordinates of the BTS routing the

communication, hence exact location of users are not known within a tower’s service area.

3.2.2. Study Area

The study area of this research is the dynamic area of Santiago Metropolitan Region, one

of Chile’s sixteen administrative divisions. Administratively, this region is divided into 52

communes whose borders are shown in Fig.3.1, covering an area of 15, 403.2km2 and a den-

sity of nearly 470 inhabitants per square kilometer. The total population of the region is

approximately 7.3 million inhabitants. This region only covers 2.0% of the country’s total

surface area but represents approximately 40% of the country’s inhabitants.

Figure 3.1: Santiago Metropolitan Region

This dataset only provides an approximate geographic location of the caller and the callee

because the BTS is in charge of broadcasting and transmitting the call. The location of

the BTS is fixed, and each one attends the calls of a respective location area. A Voronoi

tessellation is used to define the area covered by each BTS and thus establish a relationship

between the call behavior and the geographic area where it is developed. The Voronoi

tessellation treats each BTS as the centroid of a region or area called the Voronoi cell. This

region is assigned so that any point inside the Voronoi cell is closer to the centroid of that

cell than to any other centroid of the other Voronoi cells [134].

Figure 3.2(a) shows the result of applying a Voronoi tesselation on the Santiago Metropoli-
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tan Region using the BTS as centroids. In urban areas (see Fig. 3.2 (b)) each BTS server

an area of approximately 0.021 km2 and 74.6 km2 in rural areas (see Fig. 3.2 (c)). There

are 1183 BTS towers routing the communication in Santiago (see Fig. 3.3(a)), the distance

between BTS’s can be a few meters (see Fig. 3.3(b)) in areas up to several kilometers in

rural areas (see Fig. 3.3(c)).

(a) Santiago Tessellation (b) Urban Areas (c) Rural Areas

Figure 3.2: Voronoi Tessellation

(a) Santiago BTS Positions (b) Urban Areas (c) Rural Areas

Figure 3.3: Voronoi tessellation showing antennas positions

3.3. The banking dataset: Credit and Debit card records

3.3.1. Overview

Credit and debit cards are small plastic or metal cards issued to clients of financial institutions

to be used as a payment method. Credit cards allow cardholders to borrow funds to pay

for goods and services in exchange for a promise of future payment to the institution that

issued the card. On the other hand, debit cards are associated with a checking account.

When purchasing goods or services, their cost is immediately deducted from the amount

available in the cardholder’s check account. Both types of cards allow making physical and

virtual purchases. When the purchase is made physically, it is done through a device called

a Point of Sales (POS) which records the payment and validates the information against the

financial institution. Each POS is georeferenced to the business point of sale, so it is possible
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to establish the exact location where the purchase was made.

In particular, the banking dataset stores purchasing activity records for customers of a

financial institution. Each record in the dataset contains the card type (Credit or Debit),

purchase id, latitude and longitude of the POS terminal where the transaction was made,

and the day and hour of the transaction. These fields are the minimal information required

for this research analysis. Furthermore, the dataset contains the business sector related to

the company where the transaction was made. The dataset summarizes transactions made

between 2017 − 01 − 01 and 2017 − 12 − 31 and contains 85 million registers associated with

more than 80 thousand terminals.

3.3.2. Study Area

As with the telecom dataset presented in Section 3.2.2, the study area will be the Santiago

Metropolitan Region. However, due to the particularities of this dataset and the fact that it

has numerous geographical locations due to the large number of deployed POS, the analysis

incorporates new aggregations for the same region. The Santiago Metropolitan Region can

be defined at three geographic levels. Administratively, the city of Santiago is organized

into communes whose borders are shown in Fig.3.4(a), with a high degree of autonomy.

First, we may consider the Metropolitan Region where the city of Santiago is located. The

Metropolitan Region has a population of almost 7 million inhabitants and a total area of

15,400km2. Second, we may consider Santiago City (Fig.3.4(b)), a smaller area of the greater

Metropolitan Region that excludes rural areas. Finally, we may consider Santiago downtown,

where a large fraction of business offices are concentrated, corresponding to Santiago’s two

most crowded communes. These three areas are illustrated in Figure 3.4.

(a) Greater Santiago (b) Santiago City (c) Downtown Santiago

Figure 3.4: Santiago Metropolitan Region

This dataset provides each cardholder’s exact location at the purchase time. However,
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the number of different locations is given by the number of merchants’ points of sale. For

further analyses, we assume that the purchasing activity of cardholders related to the POS

Terminal is similar to other POS terminals in their neighborhood. Therefore we can represent

the set of POS Terminals through a spatial aggregation. This study’s spatial aggregation

results in dividing the city using n × n uniform grids. In this work, we considered two grid

configurations: a 100 × 100 grid (10,000 cells) and a 400 × 400 grid (160,000 cells). Figure

3.5 shows the Spatial Aggregation grids used in this research for Santiago city. These figures

show the total number of credit and debit card transactions made in each cell on a logarithmic

scale.

(a) Santiago City 100 × 100 grid (b) Santiago City 400 × 400 grid

Figure 3.5: Spatial Aggregation Grids

To better illustrate how different economic sectors are geographically distributed in the

area under study, in Figure 3.6 we show the number of transactions per POST for a selected

number of economic sectors in Santiago City. The uneven distribution through different

economic sectors in different areas of the city, illustrates the ability of cardholders’ digital

traces to inform spatiotemporal economic patterns in urban areas.
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(a) Retail-Food Stores (b) Leisure

(c) Car Selling (d) Household Furniture

(e) Restaurants (f) Gasoline Stations

Figure 3.6: Spatial distribution of credit card transactions per POST and
economic sector during year 2017 in Santiago City.
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3.4. The social media dataset: geo-tagged urban ac-

tivity records

3.4.1. Overview

The social media dataset contains geo-tagged urban activities. It corresponds to a subset of

around 32 million geo-tagged urban activities obtained from multiple social activity platforms

such as Twitter, Foursquare, Yelp, Flickr, Gowalla, Brightkite, and Weeplaces. These geo-

tagged urban activities were collected during 17 years. Each urban activity is characterized

at least by its geolocation (latitude and longitude) and a timestamp. Additionally, and

considering that the objective of this study is a city-level analysis, each urban activity was

assigned to the closest city as long as it is less than 30 km from the city center. The cities

and their respective centers were obtained from [135], and we only consider cities with more

than 1MM inhabitants or capitals. In addition, we define a limit of the ten most populated

cities in the country in case many cities meet the conditions mentioned above.

Table 3.2 shows the detail of the dataset used in this study. The source of urban activity:

tweets, images, and check-ins are detailed, along with the number of events, the number of

cities we associate them with, and the period they cover.

Tabla 3.2: Dataset Description

Source Dataset Events #Cities #Year Min Year Max Year

Brightkite checkins [136] 1,639,399 107 3 2008 2010
Foursquare

checkins
[137] 7,515,201 107 6 2010 2015
[138] 109,9826 3 2 2012 2013

GeoTagged Images [139] 4,998,865 130 8 2005 2012

GeoTagged Tweets

[140] 2,041,262 10 4 2007 2010
[141] 187,802 130 2 2020 2021
[142] 47,337 7 1 2020 2020

[141] (Exact Location) 184,547 130 1 2020 2020
[141] (Inferred Location) 2,604,233 136 1 2020 2020

Gowalla checkins [136] 1,992,082 107 2 2009 2010
Weeplaces checkins [136] 4,176,673 107 7 2005 2011

Yelp checkins [143] 5,695,209 2 12 2010 2021

3.4.2. Study Area

The geographical area represented in this dataset corresponds to the world’s large cities, for

which cities with more than 1MM inhabitants or that are capitals of a country are considered.
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Additionally, in order not to represent the behavior of a single country, the number of cities

per country is limited to a maximum of ten cities. Figure 3.7 shows the distribution of

cities that meet the conditions described above. Additionally, Figure 3.8 shows the detail of

geo-tagged urban activities in some cities.

Figure 3.7: Cities considered in the analysis that meet the conditions de-
scribed

Figure 3.8 shows the density of geotagged urban activities gathered in the abovementioned

dataset. For each city shown, only activities within a 30 km radius are considered to describe

the city’s behavior. In the example, it can be seen that registered activities have a high

concentration in the urban centers of each one. For example, in Amsterdam, we observe

an area of high activity in the surroundings of the Amsterdam Centraal Railway Station

and other sources of high concentration, such as Leidseplein Square, a buzzing nightlife hub

surrounded by bars and restaurants. In the case of Manhattan, although they present activity

throughout practically the entire island, sectors such as Times Square, the Rockefeller Center,

and the One World Trade Center stand out as areas of high activity. Cities that are less

touristy than the previous ones, such as Tampa, also show activity in areas of importance to

the city, as can be seen in the image: Downtown, The Florida Aquarium, Tampa International

Airport.
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(a) Amsterdam (b) Antalya (c) Barcelona (d) Boston

(e) Buenos Aires (f) Madrid (g) Manhattan (h) Salvador

(i) San Francisco (j) Stockholm (k) Tampa (l) Vienna

Figure 3.8: Example of cities included in the dataset. The density of geo-
tagged digital traces. Yellow indicates a larger activity frequency, while
purple indicates a smaller one. Map tiles by Stamen Design under CC BY
3.0, Data by OpenStreetMap contributors under ODbL

35



Chapter 4

Proposed Methodology

This chapter details the proposed methodology to detect human behavioral patterns from

digital traces. As indicated in Figure 1.1. The methodology begins with an allusion to the

real world, where individuals interact with the urban infrastructure. Their interactions are

recorded by the multiple sensors that people carry with them for much of their day. The real

world is analyzed through the lens provided by three digital trace sources, cellphone calls,

credit card purchases, and social media urban activities. This kind of information is the

most used for analyzing human behavioral patterns. It allows a complete description of the

individuals that generate them because the cell phone and the credit card accompany people

for a large part of their day.

Regarding the information gathering, Chapter 3 shows the available datasets and the

information they contain. These datasets store information about phone calls made with a

cell phone, bank transactions made with a credit or debit card, and social media activities

made from a smartphone. Each of these activities takes place at the individual level. However,

in this study, we will develop the analysis with another level of aggregation. We will use the

antenna (BTS) as a record of the call activity, the point of sales (POS) as a record of each

cardholder’s transactional activity, and the activity in social media will be analyzed at the

city level to compare activity worldwide. This way, when we investigate sensor devices, we

will also refer to BTS, POS, cities, or a group of them.

In the remainder of this chapter, some definitions are given to understand the generation

and storage process of digital traces (See Section 4.1). Then, the data transformation is

explained, how to represent the digital traces (See Section 4.2), how they are transformed,
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and the concept of spatial aggregation (See Section 4.3). Section 4.4 presents the algorithms

used to identify human activity patterns. The proposed model to detect static patterns

is presented in 4.4.2, and the model to study spatiotemporal activity patterns is shown in

Section 4.4.3. Additionally, the traditional algorithms to detect human activity patterns

are presented. They will then operate as a comparison benchmark against the proposed

algorithms. Finally, Section 4.6 presents a series of metrics that we propose to validate the

patterns obtained and thus reduce the dependence on expert knowledge to perform this task.

4.1. Definitions

A Base Transceiver Station (BTS) is a component in mobile telecommunications networks

whose primary function is to transmit and emit radio signals between the telecommunica-

tions network and mobile cell phones. The function of the BTS is to provide coverage to a

specific geographic area, and multiple BTSs are used to cover large geographic areas, there-

fore building the whole telecommunication network. BTSs play a crucial role in generating

call detail records (CDR) that contain information about a call’s origin, its recipients, and

duration. For this study, we are only interested in knowing the BTS geographical location

(latitude and longitude) and the date and time of the calls that are processed by it.

A Point of Sale Terminal (POS Terminal) is an electronic device used to process card

payments at business locations. Each time a customer pays with a credit or debit card,

the transaction is processed by the POS Terminal, and it is geographically tagged with the

latitude and longitude of this POS Terminal (business location’s latitude and longitude).

For this work, we will refer to a Sensor Device as any device that allows the recording and

storage of geo-referenced activity.

4.2. Dataset representation

An Activity Pattern (AP) is a vector characterizing the activity of each sensor device s over a

specified period. In this study, we will consider that each AP describes the weekly activity of

the sensor device. We will consider that each AP describes the weekly activity of the sensor

device. Formally speaking, we describe a raw Activity Pattern by a vector XPs, where each

component XP s
t (Activity Block) denotes the number of geo-tagged events or digital traces
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carried out on sensor s during period t. Then, the raw activity pattern of the sensor s is given

by the vector XPs = (XP s
1 , XP s

2 , . . . , XP s
T )(t ∈ T ), where T is the set of activity blocks. In

this study, we set T into hourly periods during a week; therefore, each raw activity pattern

XP s is a vector with card(T ) = 168 components (24 hours, seven days). XP s

XP s records the amount of events in the sensor s, this complicates a comparison between

different sensors. To facilitate the comparison between sensors, we define the normalized

activity pattern APs, where AP s
t = XP s

t∑
t∈T

XP s
t
, i.e., dividing its components by the total

number of events. Therefore we can interpret AP s
t as the percentage of digital traces of the

sensor s processed in hourly time window t.

4.3. Data transformation and spatial aggregation

This work aims to understand human behavior through digital traces but links it with the

environment where it happens. To analyze the geographical environment, we group the

information so that each of these aggregations reflects the behavior of a specific sector or

area. For each of the study datasets, the level of aggregation is different. In the case of the

telecom dataset, the information is already grouped when it is analyzed at the BTS level

because each one records all the calls from the location area; in this case, it only remains

to identify the location area. This identification is made through the Voronoi tesselation, as

presented in section 3.2.2. In the case of the banking dataset, the situation is different, the

number of POS is much greater than the number of BTS, and each POS records the behavior

of a point of sale and not of an entire location area. For this dataset, it is assumed that nearby

POS have similar behaviors, and therefore the behavior of several POS are grouped. This

grouping is done considering the grid presented in Section 3.3.2. Finally, the social media

dataset contains geo-tagged social media events from all over the world, and it is for them

that the level of aggregation for this dataset is through a grouping at the city level.

Under this spatial aggregation scheme, we define XPs as the raw activity pattern for the

aggregated area a. The aggregation area a depends on the dataset we are using. For the

telecom dataset, a ∈ V oronoi(BTS) corresponds to a cell of the Voronoi Tesselation whose

centroid is a BTS. For the banking dataset, the aggregation area a corresponds to a cell

a = (i, j) in the n × n grid defined in Section 3.3.2 (i = 1, ..., n and j = 1, ..., n). For the

social media dataset, the aggregation area corresponds to a city c ∈ C, where C is the set of
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cities that meet the conditions defined in Section 3.4.2. XPa is calculated as follow:

XPa = 1
card(Ha)

∑
h∈Ha

XPh (4.1)

where Ha is the set of sensor inside the aggregated area a. Each aggregated area a is

characterized by the total number of transactions made in the aggregated area a and the

total number of sensor in the aggregated area, denoted card(Ha). In the same way, APa

denotes the normalized activity pattern in the aggregated area a:

APa = 1
card(Ha)

∑
h∈Ha

APh (4.2)

From now on, we will use APa and APs interchangeably to refer to the activity pattern

of the aggregated area a associated with all the activity recorded by sensor s.

In our study we set every AP related to the aggregated area a as the number of digital

traces or geo-tagged events that are managed by the sensor devices in that aggregated area a

every hour in a seven-day week. Therefore, each AP is a vector with N = 168 components (24

Activity Blocks per day, seven days per week) , where every component reveals the activity

of a during one hour. This is achieved by holding the proportion of digital traces during that

hour compared with the amount of digital traces gathered in the whole week.
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Figure 4.1: Activity Patterns example using the telecom dataset

Figure 4.1 illustrates two AP related to different BTSs in the telecom dataset. Every AP

starts on Sunday and finishes on Saturdays.

4.3.1. Determination of activity pattern duration

Before, we declared that each activity pattern is constructed to reflect the behavior of a

seven-day week. The rationale behind this assumption is that human behavior patterns

recorded through digital traces have a cyclical pattern and that this behavior pattern emerges

anew every week. This decision is corroborated below through an analysis of the seasonal

component of the activity pattern. Figure 4.2 displays the time series of the number of

digital traces (upper plot) gathered in the banking dataset, that is, the number of credit and

debit card transactions along with a seasonal decomposition using an additive model from

the python library statsmodels [144].

The trend is obtained by applying a convolutional filter that implements a moving average,

and the seasonal component corresponds to the average for each period of the de-trended

series. The trend component shows an increment at the end of each month, explained because

a significant fraction of Chilean citizens is paid precisely at the end of the month. The trend

40



also shows a moderate increment by the end of the year, associated with Christmas shopping.

The seasonal component has a strong weekly frequency. Based on this weekly regularity, we

define AP s to have a week duration. In other words, one week is our time frame to describe

the activity at each aggregated area and to extract representative patterns (topics) of the

distribution of digital traces for a typical year.

Figure 4.2: Decomposition of the aggregated banking dataset time series
into trend, seasonal,and residual components.

4.4. Proposed Models

4.4.1. Topic Modeling overview

Topic modeling is a probabilistic method for uncovering a set of underlying topics in a col-

lection of documents. It originates in natural language processing and has become a popular

tool for analyzing and understanding extensive collections of unstructured text. The most

widely used technique for topic modeling is Latent Dirichlet Allocation (LDA) [145], which

involves identifying a predetermined number of latent topics and assuming each document

in the collection can be represented as a combination of these topics. LDA uses a generative

process to detect latent topics by considering each one as a distribution of terms.

While LDA has been successful in many applications, it does not consider temporal aspects
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that may be present in many document collections. Dynamic Topic Models (DTM) [146]

address this limitation by allowing latent topics to evolve over time. DTM extends the idea

of LDA by partitioning the collection of documents into defined periods, known as time-slices.

The latent topics are modeled within each time-slice, and it is assumed that each latent topic

evolves into its corresponding topic in the next time-slice.

4.4.2. Static Topic Modeling using geo-tagged digital traces

A topic model is a probabilistic approach for discovering underlying topics that occurs in a

collection of documents. The basic premise is that the words that generate the documents

are related to latent topics. The most common technique for topic modeling is the Latent

Dirichlet Allocation (LDA) [147, 148]. In this work, this concept has been adapted to char-

acterize digital traces and geo-tagged activities in the city using geographically tagged data,

cellphone call, credit and debit transaccions and social media activity. Essentially, we will

assume that any activity pattern APs in a sensor device is drawn from a linear combination

of K Human Behavioral Patterns. Each Human Behavioral Pattern k ∈ K is defined as a

distribution betak over a set of fixed Activity Blocks. Thus, each activity pattern APs will

have its own mixing proportion of topics θs (Human Behavioral Patterns) .

In this context, we represent an Activity Pattern as a mixture of topics drawn from a

probability distribution Zs,a that can produce the Activity Blocks in a activity pattern given

these topics. The join distribution of a Human Behavioral Pattern mixture θ, a set of Human

Behaviors z, and a set of S activity blocks a can be obtained by:

p(θ, z, a|α, β) = p(θ|α)
S∏

s=1
p(zs|θ)p(as|zs, β) (4.3)

The main objective of this model is to learn Human Behavioral Patterns from digital traces

data distribution by inferring latent topics. The joint posterior probability p(θ, z, a|α, β) is

compose of θ, the distribution of Human Behaviors, one for each Activity Pattern; z Human

Behavioral patterns (K) for each sensor device and a the distribution of Activity Blocks,

one for each Human Behavioral Pattern. The parameters β and α are corpus-level hyper-

parameters that are assumed to be sampled once. In this context, α is parameter vector

for each Activity Pattern ( Activity Patterns and Human Behavioral Patterns distribution).

With higher α, activity patterns are built from more Human Behavioral patterns, and with
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lower α, activity patterns contain less Human Behavioral patterns. β is a parameter vector for

each Human Behavioral Pattern (Human Behavioral Patterns - Activity Blocks distribution),

with a higher β, Human Behavioral patterns are made up of most activity blocks, and with

a low β, they consist of few activity blocks.

A formal description of the data generating process for the LDA model:

1. For each Human Behavioral Pattern k ∈ [1, K],

a) Draw a distribution over Activity Blocks β⃗k ∼ DirK(η)

2. For each sensor device s ∈ [1, S],

a) Draw a proportion vector of Human Behavioral Pattern θ⃗S ∼ DirS(α⃗)

b) For each Activity Block a ∈ [1, Ap] in the sensor device s,

i. Draw a Human Behavioral Pattern assignment Zs,a ∼ Mult(θ⃗b), Zs,a ∈ {1, . . . , K}

ii. Draw an Activity Block Ws,a ∼ Mult( ⃗βZs,a), Ws,a ∈ {1, . . . , S}

Where DirS(α⃗) denote a S-dimensional Dirichlet with vector parameter α⃗ and DirK(η)

denote a K dimensional symmetric Dirichlet with scalar parameter η.

4.4.3. Dynamic Topic Modeling using geo-tagged digital traces

Topic modeling, LDA [145] and DTM [146] consider that each human behavioral pattern

can be represented as a linear combination of k latent topics. We write Kt to denote the

set of k latent human behavioral topics that describe the individuals’ activities during the

time-slice t, and we use K to denote the set of latent topics throughout the study period,

i.e, K = ⋃
t∈T Kt. Therefore AP s

t can be expresed as AP s
t = ∑|Kt|−1

k=0 θs
t,kATt,k where ATt,k

correspond to the k-th activity topic of the sensor device s at time-slice t.

Thus, each human behavioral pattern AP s
t is described by mixing of activity topics θs

t,k,

also known in topic modeling as per-document topic distribution. In this study, the per-

sensor topic distribution θs
t,k is modeled using a logit-normal distribution with mean α to

represent uncertainty over proportions, αt|αt−1 ∼ N (αt−1, δ2I) where t and t − 1 are two

adjacent time-slices. Additionally, activity blocks are the equivalent in our problem to the

words in the document processing applications, the activity block distribution of activity

topics at time-slice t follows a logit-normal distribution ATt,k|ATt−1,k ∼ N (ATt−1,k, σ2I).
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The human behavioral topic distribution ηs
t for sensor device s at time-slice t is modeled

as ηs
t ∼ N(αt, a2I). Finally, human behavioral topics and activity blocks are drawn from

multinomial distributions. Similar topic models adaptations for detecting activity patterns

can be found in our previous research [49, 50].

4.5. Traditional algorithms to detect human activity

patterns

4.5.1. K-means

k-means is an unsupervised algorithm that aims to partition a set of observations into k

clusters. k-means assigns each observation to a single cluster in such a way that the ob-

servation is assigned to the closest centroid. Mathematically, given a set of n observations

x1, . . . , xn in Rp, k-means partitions the n observations into k data sets (where k <= n),

where S = S1, . . . , Sk is the resulting partition [149]. To obtain S, k-means minimizes the

within-cluster sum of squares (also known as inertia or variace criterion).

argmin
S

k∑
i=1

∑
x∈Si

||x − µi||2 (4.4)

Where µi denotes the centroid of the observations belonging to Si.

4.5.2. k-Shape

k-Shape [150] is an algorithm for time-series clustering, whose foundation is an iterative

improvement process that creates homogeneous and well-separated clusters. k-Shape uses a

normalized version of cross-correlation as a distance metric, unlike K-means, which generally

uses Euclidean distance. Additionally, it proposes a method based on matrix decomposition

to choose the center of the clusters. This method preserves the shape of the time series.

4.5.3. Time series K-means

Time series K-means [151] is an algorithm for clustering time series data. This algorithm

proposes a new metric to guide the clustering process. It also generates an iterative process

for the cluster search by extracting latent smooth subspaces. The smooth subspaces corre-
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spond to weighted time stamps that represent the relative importance of each time stamp

in determining the cluster associated with each time series object. TSKmeans solves an

optimization problem to assign each time series object to a cluster.

4.6. Human behavioral patterns validation

There are various approaches to characterizing a individuals behavior based on urban activ-

ities, and as a result, there are multiple ways to evaluate the quality of the resulting topics.

However, common points allow us to establish specific guidelines on the quality of the topics

discovered. One common method is to assess the consistency of identified patterns or clusters

using metrics such as [152], and other similar metrics. When the discovered topics present

a spatial component, geospatial metrics such as pattern distribution and coverage over the

study area are used to evaluate the results. Additionally, one of the most used evaluation

method relies on the expertise and deep knowledge of the researcher in the area being in-

vestigated. This approach allows for a more subjective evaluation of the topics and their

relevance to the specific context of the study. However, it can be challenging for researchers

to obtain this knowledge when the study areas are extensive or unfamiliar to them. In such

cases, alternative evaluation methods may need to be considered, such as consulting with

local experts or using additional data sources to gain a better understanding of the area.

To ensure that the human behavioral pattern evaluation method is consistent and reliable,

we have identified a set of desired properties for temporal human behavioral patterns and the

corresponding metrics that can be used to evaluate the results. These properties and metrics

provide a standardized framework for assessing the quality of the patterns discovered and

allow us to make meaningful comparisons between different approaches and methods. Some

of the desired properties of temporal human behavioral patterns that we propose to consider

include:

• Intratemporal Similarity: One of the main expected results is that the topics or patterns

describe different activities carried out in a city. In this way, we expect that human

behavioral topics be as dissimilar as possible between them. Formally speaking, given a

sets of temporal human behavioral patterns K, a time-slice partition S and K temporal
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activity topics the Intratemporal Similarity takes the form:

IntraSim(K) = 1
|S|

∑
s∈S

2
K(K − 1)

K−1∑
k=0

K−1∑
l=0

1k ̸=l · sim(ATs,k, ATs,l) (4.5)

Where sim(x, y) corresponds to a similarity function between two activity patterns, the

objective is to find the set of activity topics that minimizes the Intratemporal Similarity.

The minimization problem becomes a maximization problem when the function used to

compare activity topic is a distance function.

• Intertemporal Stability: When the human behaviour is analyzed over time, it is expected

that the behavior measured from urban activities will not change overnight. We will

measure these gradual changes in individuals behavior from the changes between the

same human behavioral pattern in adjacent time-slices. Formally speaking, given a sets

of temporal human behavioral patterns K, a time-slice partition S and K temporal

human behavioral patterns the Intertemporal Stability takes the form:

InterSta(K) = 1
K

K−1∑
k=0

1
2|S| − 2

|S|−1∑
s=0

|S|−1∑
u=0

1|s−u|=1 · sim(ATs,k, ATu,k) (4.6)

Where sim(x, y) corresponds to a similarity function between two activity patterns, the

objective is to find the set of human behavioral patterns that maximise the Intertemporal

Stability. The minimization problem becomes a minimization problem when the function

used to compare human behavioral patterns is a distance function.

• Topic Consistency: The human behavioral is based on their daily routines, which is why

there is a certain regularity in the activities carried out on working days and during the

weekend. This consistency can be observed in the empirical results obtained in multiple

studies. In this way, we propose the following metric to study the topic coherence of

weekly human behavioral patterns ATs,k:

TC(ATs,k) = 5
7

∑
i,j∈weekdays

1i̸=j·sim(ATs,k,i, ATs,k,j)+
2
7

∑
i,j∈weekend

1i ̸=j·sim(ATs,k,i, ATs,k,j)

(4.7)
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Where ATs,k,i correspond to components of day i in the human behavioral pattern ATs,k,

i.e, the first 24 components of ATs,k represents a Monday (i = 1), the next 24 components

a Tuesday (i = 2) and so on.

• Topic Smoothness: Human behavior while interacting with the urban infrastructure

is carried out continuously and without significant restrictions that suddenly limit all

activity. For this reason, patterns with smooth changes are preferred to those with high

volatility during the day. We propose a simple and effective method to measure the

smoothness of an behavioral pattern.

TS(ATs,k) =

√√√√ 1
T − 2

T −1∑
i=1

(ds,k,i − d̄s,k)2 (4.8)

Where ATs,k ∈ RT , the difference vector ds,k,i = ATs,k,i+1 − ATs,k,i, i = 1, · · · , T − 1

and d̄s,k = 1
T −1

∑T −1
i=1 ds,k,i

By considering these desired properties and metrics, we can ensure that our evaluation

method is comprehensive and rigorous, allowing us to accurately assess the quality of the

temporal human behavioral patterns that we discover.
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Chapter 5

Experimental Setup and Results

In this chapter, we detail the proposed experimental setup to answer the research questions

presented in Section 1.2. We detail each experiment’s objective, expected results, and rela-

tionship with the research questions. Subsequently, we present an introduction to the results

obtained in this research. Here, we summarize the structure of each study and provide an

overview of the following three chapters, which contain the detailed results of each of the ex-

periments carried out in this investigation. In each of these chapters, the approaches used in

the corresponding experiment are described, as the results obtained and their interpretation.

In addition, the implications of the results are discussed to respond to the objectives of this

thesis, and possible areas of future research are proposed.

5.1. Experimental Setup

In order to answer the research questions, three studies are proposed, each based on the

previous results, to provide a complete and rigorous assessment of the proposed methodology.

The experimental setup for each of the three proposed experiments is presented below in

detail.

5.1.1. Experiment 1: Spatial human behavioral patterns

The first study evaluates the proposed methodology’s feasibility and effectiveness in detecting

human behavioral patterns using new algorithms as an alternative to K-means. To achieve

this, we designed an experiment using the proposed methodology in Chapter 4 to detect

human behavioral patterns using the telecom dataset. This study proposes an alternative
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to K-means to detect static activity patterns. To this end, the results of applying a latent

semantics model, Latent Dirichlet Allocation (LDA), to detect human behavioral patterns are

analyzed. Additionally, the concept of pattern stability is introduced. For this, the telecom

dataset is divided into two subsets, divided in such a way that the first data set contains the

first 38 days of the dataset, and the second dataset contains the following 38 days. There

is no temporal overlap between the digital traces of these two subsets. The LDA model is

applied to obtain between k = 2 and k = 8 patterns. The topics that best represent the

underlying human behavior are selected based on extensive knowledge of the region where the

digital traces were gathered. Afterward, the patterns obtained are analyzed and interpreted

based on their relationship with the geographic area of data collection. This experiment

responds to Aim 2 of this thesis, which seeks to discover if it is possible to detect patterns of

human behavioral patterns, the best way to represent them, and their relationship with the

geographical area of study.

5.1.2. Experiment 2: Spatiotemporal human behavioral patterns:

Multiple static models

In this experiment, the concept of spatiotemporal patterns is introduced. Spatiotemporal

patterns not only describe human activity in a limited time window, that is, the description

of cyclical human activity based on the weekly routine of people, but also seek to explain how

this weekly pattern of activity changes over time when there are data collected at different

times or moments in time. This experiment builds on the previous results and proposes a

spatiotemporal analysis based on extracting human activity patterns at different moments by

training a spatial model with data collected at different moments. This experiment uses the

banking dataset, and the study begins by performing a static analysis. The optimal number of

human behavioral patterns is determined by training the LDA model between k = 2 and k = 6.

The results are compared with additional algorithms for detecting human behavioral patterns,

K-mean, Agglomerative Clustering, Gaussian Mixture, and Bayesian Gaussian. Mixture.

The set of topics that best represents human activity is selected based on the extensive

expert knowledge of the geographical area where the data was collected. Additionally, the

patterns obtained with the banking dataset are compared with those obtained using the

telecom dataset. Finally, a temporal analysis of the patterns obtained is presented. Multiple
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sets of human behavioral patterns are extracted, each with a subset of the digital traces.

Each subset contains digital traces obtained in different periods; therefore, it is possible to

have a spatiotemporal analysis. This spatiotemporal analysis is complemented to study the

effects that the COVID-19 pandemic had, along with all the mobility restrictions imposed,

on activity patterns. This experiment validates again what was expected in Aim 2 of this

thesis. It gives the first approach to respond to Aim 3, which seeks to study how human

behavioral patterns change over time and how this temporal dimension can be incorporated

into modeling.

5.1.3. Experiment 3: Spatiotemporal human behavioral patterns:

Model-embedded patterns

This experiment aims to study spatiotemporal patterns where the temporal dimension is

embedded in the model used to identify human behavioral patterns. This experiment differs

from the previous one because the temporal evolution of the patterns is analyzed by running

the spatial model multiple times. Additionally, this experiment connects all the knowledge

and insights obtained previously to propose a series of metrics that allow us to reduce de-

pendence on extensive expert knowledge of the geographical area of study. These metrics

are proposed to answer the question of Aim 1 of this thesis. In this way, this experiment re-

sponds to the three objectives set out in this thesis, formalizes the human behavioral pattern

validation (Aim 1), collects and transforms digital traces to detect behavior patterns (Aim

2), and finally proposes a method to identify spatiotemporal patterns in such a way that the

temporal evolution of the patterns is captured directly by the proposed model (Aim 3).

Unlike the two previous experiments developed with a dataset of digital traces gathered for

a single city, this experiment uses the social media dataset (See Section 3.4), whose coverage

is worldwide. Consequently, the level of aggregation will no longer be areas of the same city,

and this experiment data is aggregated at the city level.

In summary, this study aims to detect the set of activity topics that best represent and de-

scribe the activities carried out in various cities worldwide. In order to achieve this objective,

a sequence of experiments is defined as follows:

• The first step involves comparing results obtained by applying the methodology proposed

in this study (DTM) with existing models for detecting activity patterns. The state-of-
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the-art models used for comparison are Latent Dirichlet Allocation (LDA), K-Means,

k-Shape (a variation of K-Means specialized in grouping time series), and Time Series K-

Means. These models are static; they do not consider temporal dependency. Therefore,

we train a separate model for each time slice.

• The static models trained for each time slice assign a different label for similar topics

in different time slices. In order to solve this and match activity topics from different

time slices. We create a heuristic to assign the same labels to the most similar activity

topics obtained independently in different time slices. The results of this analysis are

presented in section 8.2.1.

• Additionally, one-year and three-year time slices are compared to determine the best

grouping of the temporal dimension. The results of this analysis are presented in section

8.2.2.

• Finally, the model that best describes the city behavior is selected, and the optimal

number of activity topics is calculated. The results of this comparison and analysis are

presented in section 8.2.3.

5.2. Results

This section introduces the results of applying the methodology described in Chapter 4 in

three different scenarios. Chapter 6: Spatial human behavioral patterns, shows its

application for identifying spatial patterns of human activity using the telecom dataset.

These spatial patterns describe the activity assuming a whole week as the temporal basis.

Therefore these patterns summarize the activity of the entire study period in this spatial

pattern of weekly behavior.

Chapter 7: Spatiotemporal human behavioral patterns: Multiple static models,

shows a first approach to analyzing the temporal evolution of behavioral patterns. This

approach applies the methodology proposed in Chapter 4 multiple times over consecutive

time windows. In this way, these results aggregation summarizes all human activity in a set

of spatiotemporal human activity patterns. This analysis is applied to the banking dataset.

Also, it compares the patterns obtained from purchase behavior with credit and debit cards

with the patterns obtained in Chapter 6 that summarize the behavior of telephone calls.
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Finally, Chapter 8: Spatiotemporal human behavioral patterns: Model-embedded

patterns, presents spatiotemporal human activity patterns obtained directly from a dynamic

model and not by applying the spatial model multiple times over different time windows.

These spatiotemporal patterns characterize social media activity worldwide, showing its evo-

lution for more than a decade. In this analysis, the geographical area of study is at the city

level and not at the neighborhood or commune level as in Chapters 6 and 7. This aims to

understand structural and behavioral changes in the world population.
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Chapter 6

Spatial human behavioral patterns

Today we have the opportunity, without precedents, to analyze human land use or mobility

behavior in a city, country, or even the globe. Some studies have analyzed existing data

generated daily by mobile networks, primarily using geo-localization in Twitter, Foursquare,

or cell phone records. Most of these studies use a small portion of data (a few days or a

few million records). In this Chapter, we will apply latent semantic topic models to detect

Human Activity Patterns as we explained in Chapter 4. This experiment was designed to

address Aim 2 of this thesis (See section 1.2.2.2), determine if it is possible to detect human

behavioral patterns from digital traces and propose alternatives to traditional algorithms for

this task. Our methodology will be applied using the telecom dataset, a real extensive dataset

of 880,000,000 calls made in Santiago City (Chile) over 77 days by about 3 million customers

of a major telecommunications company. We proposed to use a latent variables clustering

technique which allows us to detect four interesting clusters. We discovered that applying

LDA allows us to discover two well-known clusters (residential and office area clusters). We

also discover two new clusters: Leisure-Commerce and Rush Hour patterns.

6.1. Topic modeling using the telecom dataset

A topic model [147] can be considered a probabilistic model that relates documents and words

through variables representing the main topics inferred from the text itself. In this study, this

idea has been adapted to understand human behavioral patterns arising from the activities

in the city by applying Latent Dirichlet Allocation (LDA), a topic model, using the telecom

dataset. The rationale of using LDA in this problem is to model human activity patterns
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as arising from multiple latent variables (topics) of behavioral patterns, where a topic is

defined to be a distribution over a fixed Activity Blocks set. Specifically, we assume that K

Human Activity Patterns (topics) are associated with the set of BTS, and each BTS exhibits

these topics with different proportions. In this context, a Human Activity Pattern can be

considered a mixture of topics, represented by probability distributions that can generate the

Activity Blocks in a Human Activity Patterns given these topics. The inferring process of

the latent variables, or topics, is the key component of this model, whose main objective is

to learn from cell phone data the distribution of the underlying topics in a given dataset of

Human Activity Patterns. The methodological detail to apply LDA on the telecom dataset

is presented in Chapter 4.

6.2. Experimental setup and results

In our study, we set every activity pattern AP related to the sensor (BTS in the telecom

dataset) s as the number of calls managed by that BTS every hour in a seven-day week.

Therefore, each AP is a vector with N = 168 components (24 Activity Blocks per day, seven

days per week), where every component reveals the activity of s during one hour. This

analysis is achieved by holding the proportion of calls during that hour compared with the

number of calls made during the week. Figure 6.1 illustrates two AP related to different

BTSs. Every AP starts on Sunday and finishes on Saturdays.
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Figure 6.1: Activity Patterns example using the telecom dataset

6.2.1. Spatial human activity patterns identification

We have used Latent Dirichlet Allocation (LDA) to detect latent behavioral patterns arising

from the interaction between individuals and the environment. LDA needs as input the

number of topics K (human behavioral patterns) representing different activity patterns. In

order to validate the optimal number of topics, we executed LDA for each value K = 2, . . . , 8

and selected, using expert knowledge, the value of K, which provides the maximal information

and the minimal dimensionality.

Figure 6.2 shows the human behavioral patterns representatives (topics) obtained after

applying LDA using K = 4. An analysis of these topics allowed us to hypothesize about the

behavioral patterns. Figure 6.2(a) describes a behavior characterized by high activity during

weekends, especially on Saturdays. During weekdays the behavior is regular throughout the

days showing an increasing activity with peaks in afternoons (19:00 hrs). This behavior

seems to belong to leisure or commercial areas.
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Figure 6.2: Latent behavioral patterns detected after applying LDA

Figure 6.2(b) shows a human behavior characterized by high and regular activity during

weekdays and almost non-existing activity during weekends. During the day, there is a

decreasing activity at lunchtime (13:00 hrs), indicating probably office areas activity. Similar

behavior to 6.2(b) is presented in Figure 6.2(c), but in this case, the activity during the

day shows a different pattern. Each day is characterized by three peaks which might be

associated with the times when people typically get to work, go for lunch, and leave work.

The first one is in the morning at 09:00 hrs., the second one, and considerably less than

the others, occurs at lunchtime, and the last one is the highest peak during the day, which

occurs in the afternoon at 19:00 hrs. This activity pattern seems to belong to areas with
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high human displacement and traffic jams because every peak occurs at rush hour. Moreover,

the lunchtime peak almost dissipates on Fridays to contribute to the afternoon peak. This

phenomenon could be explained because people leave work early on Fridays.

Finally, Figure 6.2(d) presents human behavior with activity all week, but the behavior

during weekdays and weekends differs. During weekdays the activity starts at 06:00 hrs.,

decreases along the morning, and increases again after 19:00 hrs. with a peak at 21:00 hrs.

Moreover, the activity is higher on weekends, especially on Sundays. This behavior is typical

of residential areas where individuals come from work in the afternoon on weekdays and

weekends and stay at home.

6.2.2. Spatial human activity patterns stability

In order to analyze the stability of the patterns discovered using the methodology presented

in this work, we divided the telecom dataset (S) into two equal data subsets. We applied our

methodology to discover human activity patterns using each subset. The first dataset (S1)

contains calls made between 2013-04-18 and 2013-05-26, and the second one (S2) between

2013-05-27 and 2013-04-07.

To quantify the pattern stability under different datasets, we used Cosine Similarity. This

measure is defined as follows:

COS(APb, APc) =
∑

i=1..N Ab
i · Ac

i√∑
i=1..N(Ab

i)2 ·
√∑

i=1..N(Ac
i)2

This variable varies in the range [−1, 1] and equals one only when the two AP, APb,

and APc are exactly coincident. We examined how the discovered patterns change as the

dataset varies from the first (S1) and the second half (S2) to the whole dataset (S). The

results for the comparison between the patterns discovered using the first half and the whole

dataset are shown in figures 6.3(a), 6.4(a), 6.5(a), 6.6(a). In general, results show that most

discovered human behavioral patterns are stable when the dataset is reduced. Indeed, cosine

similarity between S and S1 are 0.978, 0.982, 0.983, and 0.988 for Rush Hour, Residential,

Leisure/Commerce, and Office Areas, respectively. Similarly, the comparison between S and

S2 – presented in Figures 6.3(b), 6.4(b), 6.5(b), 6.6(b) – also exhibit high rates of similarity:

0.885, 0.936, 0.806, 0.9886 for Rush Hour, Residential, Leisure/Commerce and Office Areas

respectively. Patterns in this subset are lesser stable than patterns from the first half. The

57



most significant differences occur in Rush Hour and Leisure/Commerce patterns. Some of

these differences are explained because the Chilean winter holidays (June to July) are within

this period. This reason causes fewer people to circulate through the city in rush hour and

displaces some of the recreational/commercial activities to weekdays.

As a final remark, discovered patterns are very stable over time. Also, our methodology

persists in finding out the same patterns, although a significant mobility pattern shift was

present in S2 dataset (winter vacations). Of course, as a subject for future work, it would

be interesting to discover the minimum dataset needed to avoid human behavioral pattern

shift or vice versa.

(a) First Half Dataset (b) Second Half Dataset

Figure 6.3: Residential Pattern Stability

(a) First Half Dataset (b) Second Half Dataset

Figure 6.4: Leisure/Commerce Pattern Stability

(a) First Half Dataset (b) Second Half Dataset

Figure 6.5: Rush Hour Pattern Stability
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(a) First Half Dataset (b) Second Half Dataset

Figure 6.6: Office Areas Pattern Stability

6.2.3. An spatial comparison of static human behavioral patterns

In order to validate our human behavioral hypothesis, we used our results as a layer over

the city map to have a geographical representation of the areas where we have real human

interaction behavior. The use of LDA allows capturing the degree to which each human

activity pattern is present for each BTS s. LDA returns a human activity score gks for

human activity pattern (topic) k and sensor or BTS s, ∑
k gks = 1 ∀s. Figure 6.7 illustrates

each human behavioral pattern (topic) over the city, where we see how different every pattern

distribution is. In order to identify behavioral patterns easily, we discard all BTS towers with

a human activity score lower than a given threshold θ.

The validation checks if interpreting the human activity pattern given in Section 6.2.1

correlates with the BTS infrastructure located in a geographical area and its vicinity. Since

a database detailing the actual human behavior of the city and the different uses we have

identified are unavailable, we use our expert knowledge of the city of Santiago.
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(a) Residential (b) Leisure-Commerce

(c) Rush Hour (d) Offices Areas

Figure 6.7: Geographical representation of human behavioral patterns

The Residential activity pattern represented in Figure 6.7(a) shows a higher human ac-

tivity score in the periphery of the city center, where the business and commercial center

is located. The periphery of the city center contains the most extensive residential zones in

Santiago. In this pattern, there is no presence of zones with scores considerably higher than

others, but just one area which covers the Movistar Arena. It is one of South America’s

biggest multi-purpose colosseums behind Brazilian arenas like Ginásio Ibirapuera, HSBC

Arena (Rio de Janeiro), and Maracana Arena. The high score in this area is due to the

events presented in this location being scheduled when the residential pattern presents high

activity.

Figure 6.8(a) presents the Leisure-Commerce behavioral pattern. This human activity

pattern presents a high intensity in some city points. In order to validate this pattern, we

have highlighted these points (See Figure 6.8(b)), where the blue circles contain the main

shopping malls in Santiago. The green circle contains Chile’s largest stadium, with tennis

courts, an aquatic center, a gymnasium, a velodrome, and a BMX circuit.
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(a) Leisure-Commerce (b) Shopping Malls of Santiago

Figure 6.8: Leisure-Commerce pattern validation

The Rush Hour activity pattern is shown in Figure 6.9(a). This pattern has a high human

activity score in two main areas. The first runs horizontally through Santiago, and the second

runs vertically. These patterns are highly correlated to the subway network of Santiago (See

Figure 6.9(b)).

(a) Rush Hour (b) Rush Hour & Subway Network

Figure 6.9: Rush Hour pattern validation

6.3. Experiment conclusions

We have applied the proposed methodology to understand the behavior of a city by discov-

ering human activity patterns. The novelty of our approach is the use of latent variables

over more than 3 million people’s data. Inferring these variables, which are not directly

observed in data, has proved to be highly satisfactory. We discovered four human behavioral

patterns. Two of these patterns are very well known (human activity associated with office
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and residential areas), and two patterns are new information: Leisure-Commerce and rush

hour patterns. The leisure-commerce pattern is related to where people can spend their free

time, which correlates with shopping centers, cinemas, and parks. Rush hour pattern appears

at a specific time and over certain streets, avenues, and highways. This information could

be important for urban planning, traffic management, and public transport public policies.

As future work will be addressed in the following experiments, we are focusing on finding

new sources of information that will allow us to validate our approach with ground truth

and explore a dynamic assignment of human behavioral patterns. We also propose to study

the evolution of a city over some years, find ways to obtain the optimal number of human

behavioral patterns and cross this information with other sources, such as geo-referenced

data from Twitter.
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Chapter 7

Spatiotemporal human behavioral

patterns: Multiple static models

In this Chapter, we use the proposed methodology to analyze the temporal evolution of

human behavioral patterns. We apply the spatial model presented in Section 4.4.2 on multiple

time-windowed datasets. This way, we compared the patterns obtained from information

gathered at different periods. Additionally, we propose and validate a methodology to assess

the actual impact of lockdown measures based on the banking dataset, an anonymized and

geolocated dataset from credit card transactions,

Additionally, we identify human activity patterns in using credit cards using unsupervised

Latent Dirichlet Allocation (LDA) semantic topic discovery. We apply these results to quan-

titatively assess the changes in people’s behavior under the lockdown measures because of

the COVID-19 pandemic. An unsupervised latent topic analysis uncovers the main patterns

of credit card transaction activity that explain the behavior of the inhabitants of Santiago

City. The approach is non-intrusive because it does not require people’s collaboration to

provide anonymous data. It does not interfere with the actual behavior of the people in the

city; hence, it does not introduce any bias.

Splitting the banking dataset into multiple consecutive subsets allows us to analyze the

behavior of the activity patterns over time and, in particular, to focus on the effect of non-

sanitary measures to control the COVID-19 pandemic. We identify a strong downturn of

economic activity as measured by credit card transactions (down to 70%), and thus of the eco-

nomic activity in city sections (communes) subjected to lockdown versus communes without
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lockdown. Independent data from mobile phone connectivity confirm this behavior change.

The activity reduction emerged before the lockdowns were enforced, suggesting that the

population spontaneously implemented the required measures for slowing virus propagation.

7.1. Topic modeling using the banking dataset

In this experiment, we apply the topic modeling approach presented in Chapter 4 to character-

ize human activities in the city using geographically tagged credit and debit card transaction

data. Essentially, topic modeling assumes that any human behavioral pattern APs of a sensor

s (POS) can be expressed as a linear combination of K activity topics
{
AT0, . . . , ATK−1

}
,

that is, APs = ∑K−1
k=0 θs

kATk. Thus, human behavioral pattern APs is described by a mixing

of activity topics θs, aka topic distribution of the document. The generative model of LDA

assumes that θs follows a Dirichlet distribution of symmetric parameter α < 1. Activity

blocks are the equivalent in our problem to the words in the document processing applica-

tions, that is, the possible values of activity at each hour A = {AP s
t }t,s , where t and s extend

over the hours in the week and all sensors (point of sales) respectively, without duplicated

values. Human activity patterns are composed of activity blocks, with mixing parameters

φk that follow another Dirichlet distribution of symmetric parameter β < 1. The topic that

the activity block AP s
t belongs to is denoted by zts, which follows a multinomial distribution

of parameters θs. Finally, the activity block AP s
t in each time position t of the activity pat-

tern APs follows a multinomial distribution of parameters φzts . The LDA generative model

proceeds by generating the topics in the document (activity pattern), the words (activity

blocks) in each document, the precise topic for each word, and the selection of the words in

each position of the document.

In this experiment, we used a python implementation provided by Gensim [153, 154] to

build up the LDA model, that is, to discover the latent activity topics and the decomposition

of the human activity patterns into them.

7.2. Experimental setup and results

In this experiment, we first process the banking dataset well before the pandemic, during

the year 2017, in order to obtain reference human activity patterns extracted by the LDA
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algorithm. LDA finds a small set of human behavioral patterns extracted from the massive

banking dataset. Summarizing vast and sparse data facilitates the decision-making process

in policymaking. The use of LDA to detect behavioral patterns provide highly interpretable

results. In this methodology, the analyst or policymaker must set up the number of patterns

to be detected. For example, if we specify that k = 2, we assume that every activity pattern

AP of a given point of sales terminal is a combination of two human activity patterns. The

parameter K apriori is unknown. Therefore, we need to calibrate it.

To set the parameter k we explored LDA results for each value of k ∈ {2, . . . , 6}. We se-

lected the value of k = 4, which maximizes the information content and the interpretability of

the human activity topics. We measure the information content of the set of extracted topics

by their direction divergence; that is, more divergent vectors provide better representation

axes to describe the space of vectors under analysis, in this case, human activity patterns.

Therefore we compute the cosine similarities between all possible pairs of activity topics,

using the norm of the resulting matrix as the information measure we want to minimize. In

all exploration experiments, k = 4 provided a minimum value of this information measure

relative to other selections of k. As different cells (i, j) contain a different number of termi-

nals, in these evaluations, we weighted the data by the number of terminals |Hij| and the

number of transactions Tij.

To train the LDA model, we used two implementations of LDA provided by two python

libraries: gemsim and sklearn, we denote by LDAg and LDAs respectively. We com-

pare these LDA implementations against other clustering techniques such as Mini Batch

KMeans (MBK), Agglomerative Clustering (AC), Gaussian Mixture (GM) and Bayesian

Gaussian Mixture (BGM), each of these techniques was trained using k clusters, where

k ∈ {2, 3, 4, 5, 6}. Notice that none of these methods directly allow for weighting observa-

tions, and, therefore, we oversampled the dataset using random sampling with replacement.

The resulting dataset has size os times the size of the original dataset, and we executed

experiments for each value of os ∈ {10, 20, 40, 60, 80, 100}. Lower values of ov produced un-

stable land use patterns. Considering all parameter combinations, we ran 4,320 experiments

that were trained toward obtaining land-use patterns over the three geographic levels of the

Metropolitan Region referenced in section 3.3.

To summarize, we run a series of experiments for each geographical area varying the

following parameters:
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• Study Area: [Greater Santiago, Inner Santiago, Downtown Santiago]

• Spatial Aggregation: [100x100 grid, 400x400 grid]

• Weights: [C_x_Cell, T_x_Cell, log(C_x_Cell), log(T_x_Cell)]

• oversampling size: [10,20,40,60,80,100]

• Models: [LDAg, LDAs, MBK, AC, GM , BGM ]

• Number of topics/clusters: [2,3,4,5,6]

Figure 7.1 shows the optimal human behavioral patterns obtained for the area of Santiago

City. The vertical partitions correspond to the days of the week starting from Sunday. The

x-axis is the time measured in hours. The y-axis is the normalized value of the activity pat-

tern computed by dividing all vector components by the value of the maximum component.

Overall, these patterns are consistent with those reported in previous work using other data

sources like the telecom dataset from Section 6 (see, for example, [50] and [155]). We in-

terpret these similarities as preliminary evidence that human activity patterns derived from

payment data are relatively robust to the pattern extraction methods. However, previous

research has shown that LDA models overperform other clustering techniques when detecting

behavioral patterns using the telecom dataset ([50] ). In our experiments also, LDA models

outperform other clustering techniques, especially in interpreting the underlying patterns.

For this reason, in the rest of this experiment, we only refer to the results obtained with the

LDA techniques.
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Figure 7.1: LDA detected topics in Santiago city, k = 4. The vertical
partitions correspond to the days of the week starting from Sunday. The
x-axis is the time measured in hours. The y-axis is the normalized value of
the activity pattern.

The interpretation of these topics is as follows:

• Topic 0 - residential is characterized by two high activity peaks during weekdays,

localized around lunch and dinner. Notice that the second peak on Fridays occurs

around 11:00 hrs, reflecting that people used to have dinner later this day. Also, the

second peak on Sundays is much less pronounced, indicating that citizens were less prone

to go out dining on Sunday evenings.

• Topic 1 - leisure/commerce presents three peaks during the weekdays at 09:00 hrs,

lunchtime, and around 19:00 hrs, roughly corresponding to when people used to commute

to or from school or work. During weekends, this pattern is more evenly distributed

throughout the day. Notice that there are high activities in the early hours of Saturday

and Sunday, corresponding to nightlife habits before the pandemic.

• Topic 2 - office areas is characterized by a high and uniform activity during weekdays
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and less during weekends. During the day, the main activity is between 09:00 hrs and

18:00 hrs, and there is increased activity at lunchtime (13:00 hrs), corresponding to

office areas activity.

• Topic 3 - rush hour has peaks that roughly correspond to when people move from or

to the working places in office/business areas.

7.2.1. Spatiotemporal human activity patterns validation

The LDA discovery of latent topics is unsupervised. Therefore there is no guarantee regarding

the order of discovery or the identity of the topics. In order to establish correspondences

among topics in different sets, for example, discovered from data extracted at different times,

we compare patterns using the cosine similarity metric. This metric is widely used to compare

land use patterns [50, 152, 156, 157] and provides a distance between two human behavioral

patterns (AP), and it is defined as follows

COS(APb, APc) =
∑

i=1..T Ab
i · Ac

i√∑
i=1..T (Ab

i)2 ·
√∑

i=1..T (Ac
i)2

.

Cosine similarity value is in the range [−1, 1] and equals one only when the two activity

patterns, APb and APc, exactly coincide. It measures the relative orientation of the high

dimensional vectors, thus very insensitive to the absolute magnitude of vector components

and equivalent to the correlation measure for zero mean vectors. Cosine similarity has been

extensively used in studies about the geographical distribution of land uses [158] using diverse

information sources such as Twitter activity [159], Flickr tags [160].

For further confirmation of the above interpretation of the human activity patterns ob-

tained from the banking dataset, we compare them with human activity patterns obtained

from the telecom dataset and reported in the previous experiment in Chapter 6

The results for the cosine similarity between the human behavioral patterns discovered

using the banking dataset and the telecom dataset are shown in Table 7.1. These results show

that discovered activity patterns were relatively stable before the pandemic, independently

from the data source and time frame. Indeed, every topic detected from the banking dataset

relates to one detected from the telecom dataset with significant cosine similarity magnitude.
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The interpretation of the human activity patterns [50] is similar to the one above for the

banking dataset. We find cosine similarity above 0.8 for Rush Hour and Residential and

above 0.93 for Leisure/Commerce and Office Areas, respectively.

Tabla 7.1: Cosine Similarity between human behavioral patterns discovered
using the banking and telecom dataset in the Santiago city area.

Telecom dataset
T0 T1 T2 T3

Ba
nk

in
g

da
ta

se
t T0 0.63 0.82 0.72 0.42

T1 0.80 0.76 0.76 0.70
T2 0.60 0.41 0.59 0.93
T3 0.69 0.63 0.94 0.56

When observing the most similar topics among datasets, we have a complete view of human

activity patterns and how different data sources can be informative. Figure 7.2 [Topic 1]

shows the activity pattern associated with Office Areas obtained from both datasets. For the

banking dataset, three patterns (green lines), Office Areas, and human behavioral patterns

for Santiago city are shown. Comparing these two patterns indicates they capture very

similar patterns with a cosine similarity index of 0.93. However, two differences are worth

discussing. The first one occurs from Monday to Friday at lunchtime. While cell phone calls

activity decrease during lunchtime, credit card transaction activity increases. This finding

suggests that people in office areas tend to make fewer cell phone calls during lunch but must

pay for their lunch. Therefore credit card activity increases. The second one occurs during

weekends, especially Saturday, because in the areas where this human activity pattern is

strong, stores are open during weekends. These distinctions suggest that despite the similar

pattern of human behavior recovered by different sensors, an adequate interpretation of the

results requires understanding the nature of the interaction between the sensors and the

individuals.
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Figure 7.2: Comparison between the human activity patterns obtained by
using the telecom dataset (CDR data, blue line) and the banking dataset
(CCR Data, green line)

When we compare similar human activity patterns for leisure and commerce behavior, we

found they are again remarkably similar, but with a few differences (see Figure 7.2 [Topic

2]). For example, this pattern presents higher intensity when detected by credit card data.

In addition, the peak at lunchtime is more clearly identified by the banking dataset. These

dissimilarities can be explained because commerce areas are more clearly identified through

credit and debit card activity.

The comparison of residential area patterns (see Figure 7.2 [Topic 3]) appear to have
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more significant differences. However, they are reasonably consistent when citizens are closer

to their residences, such as on weekends and late at night. The observable differences can

again be attributed to how users interact with their sensors in the corresponding location.

For example, on Sunday evenings, the residence pattern detected using cell phone activity is

high, but the credit card activity is not. This result is consistent with what we expect from

users when staying at their homes. Similarly, on weekdays, mobile phone activity starts early

for this residence pattern, but credit card use does not increase until lunchtime.

We finally compare the patterns associated with urban transportation or rush hours as

illustrated in Figure 7.2 [Topic 4]. Compared to previous cases, this pattern presents the most

significant differences between what is detected from the banking and telecom datasets. On

the one hand, the patterns from payment data are characterized by three peaks associated

with the times when people typically commute to work, go for lunch, and then back home.

On the other hand, the pattern derived from mobile phone data early morning and late

afternoon are very prominent, while the midday peak is more tenuous. These differences

are explained because citizens will likely use their mobile phones while traveling during rush

hours. However, they are less likely to engage in economic transactions when interacting

with transportation infrastructure.

These results suggest that human activity patterns derived from two different data sources

at different times present significant commonalities. Even if human activty patterns might

exhibit some differences, they are mainly attributed to how users interact with the sensor we

consider in the analysis. The patterns for transportation present more considerable differences

indicating that for this particular type of activity, the two sensors might not necessarily

capture the same usage. These analyses compare how different patterns manifest over time in

a typical week. To have a more comprehensive comparison, in the next section we complement

this temporal comparison with a special evaluation of how these activity patterns manifest

through the city.

Additional validation of our interpretation of the banking activity topics comes from ob-

serving the spatial distribution of the topic in Santiago. Remember that LDA’s outcome can

be interpreted as the degree gk,s that each activity topic k contributes to the overall activity

pattern of sensor s, such that ∑
k gk,s = 1 ∀s. Hence, we calculate the contribution of each

activity topic to the aggregated activity of each spatial cell gk,(i,j). Figure 7.3 displays the

spatial distribution of Leisure/Commerce activity patterns in the area of Santiago City over-
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laid with the place of the main shopping malls in Santiago. In the Figure, we have marketed

these shopping landmarks in red, and we observe that their location correlate very well with

the Leisure-Commerce pattern discovered through credit card data. This result corroborates

the interpretation presented above. Later we will explore more in-depth into this human

activity pattern because it is the one that reflects the most significant changes under the

lockdown efforts for contention of the COVID-19 pandemic.

Figure 7.3: Spatial distribution of Leisure-Commerce activity topic obtained
using the banking dataset, overlaid by the localization of the main shopping
malls (Red markers). Blue color blobs spot the localization of POS with a
high contribution of this activity topic in their LDA decomposition.

7.2.2. An spatial comparison of dynamic human behavioral pat-

terns

We use a geographical representation of each human activity pattern to complement the

previous analysis. Remember that LDA’s output can be interpreted as the degree gk,p in

which each sensor s belongs to each activity pattern k, such that ∑
k gk,s = 1 ∀s. Figure 7.4

shows the geographical representation in the city of each human activity pattern detected

using the banking dataset. Similarly, Figure 7.5 displays the human activity patterns from

the telecom dataset. In both cases, more dense areas (color-coded red) correspond to a higher
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degree of belonging of sensor s to the human activity pattern k. For example, in panels (c) of

both Figures displaying activity patterns of Office Areas, we find a more considerable activity

in the upper right of the plot (the northeastern part of the city).

(a) Similar to Residential (b) Similar to Rush Hour

(c) Similar to Office Areas (d) Similar to Leisure-Commerce

Figure 7.4: Geographical representation of behavioral patterns - Santiago
city
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(a) Residential (b) Rush Hour

(c) Office Areas (d) Leisure-Commerce

Figure 7.5: Geographical representation of behavioral patterns using the
telecom dataset

The spatial distribution of different activity patterns is consistent between the two data

sources. This similarity is more clearly seen in the areas more intensively representing each

activity. For example, in both Figures, Office Areas appear concentrated in the city’s center,

while the residential areas are more spread and active in the periphery. Nevertheless, the

spatial distribution of cell towers in the telecom dataset is more concentrated in smaller cells.

In contrast, the sensors in the banking dataset are more uniformly distributed and describe

more complex mixtures of activities. Consistent with the analysis of the previous section,

the most notorious differences are between the Rush-Hour Areas Patterns (Figures 7.4 (b),

7.5(b)). This difference can be explained because the patterns found using cell phone data

are associated with traveling on a congested infrastructure (bus, car, subway);. At the same

time, patterns found using credit card data reflect a different behavior, for example, buying
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something before getting the subway home.

7.3. Spatiotemporal assessment of the impact of COVID-

19 in human behavioral patterns

7.3.1. Human activity patterns during the pandemic

In order to assess the effect of non-pharmacological interventions (NPI) for COVID-19 on the

behavior of the habitants of Santiago, we collected the credit and debit card transactional

data in the pre-pandemic (the year 2019) and pandemic (the year 2020) periods. We remind

the reader that Chile was in a commune-based lockdown between mid-March 2020 and Sept-

2021. Therefore, our 2020 data was gathered during the lockdown period. In order to

have a picture of the evolution of the activity topics, we extract the LDA topics (k = 4)

of activity patterns from windows of 12 consecutive weeks, with an overlap of 10 weeks

between consecutive windows. Therefore we have 13 sets of LDA activity topics per year.

Figure 7.6 shows the overlaid activity topics of the year 2019 (red) and year 2020 (dark

blue). In order to have similar topic assignation, we compute the cosine distance of the

LDA detected topics on a 12-week window against the topics extracted from data of the year

2017 described above. We assign 2017 topics to the topics discovered in the time windows

of 2019 and 2020, which are more similar according to the cosine distance that the meaning

of the topics remains constant. Thus, Topic 1 always corresponds to the Leisure/Commerce

activity topic, which has been most strongly affected by lockdowns and curfews. It can

be appreciated that the late-night expenditures during the weekend have disappeared (red

arrow). For a more quantitative appraisal of the changes between the activity topics assigned

to the Leisure/Commerce from 2019 and 2020, we aggregate 3-hour intervals and compute a

two-sided non-parametric Wilcoxon test to assess the statistical significance of the differences

in activity. We highlighted with a red star those 3-hour periods with strong significant

differences (p < 0.0001). It can be appreciated the strong impact that the non-pharmaceutical

interventions have had on the behavior of the citizens of Santiago City.
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Figure 7.6: Change in activity topics due to the lockdowns and curfews
imposed to curb the pandemic. Dark blue and red lines correspond to topics
extracted from data from 2020 and 2019, respectively. The red dot denotes
statistically significant (p < 0.0001) differences among pre-pandemic and
pandemic activity topics in aggregations of 3 hours.

7.3.2. Impact of local policies, lockdowns and curfews

Observing the overall economic activity before the declaration of lockdowns and curfews

allows us to assess their actual implementation and impact. In figure 7.7, we show the weekly

activity pattern inferred from the telecom dataset with and without mobility restrictions.

Considering that the contagion dynamics of the pandemic are not strongly related to each

terminal’s specific activity topic, we display aggregated measures regardless of the underlying
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topics, that is, the average hourly activity. Figure 7.7A plots the average activity gathered

from credit card records (CCR) in the banking dataset before (green) and after (red) lockdown

in communes that did implement lockdown policies, showing a significant decrease in activity.

If additionally, we consider the implementation of curfew for these communes, the box-

plots in Figure 7.7C show a considerable drop in economic activity after curfew is declared.

Communes that did not implement lockdown were less affected, as shown in Figure 7.7B.

Nevertheless, the implementation of curfews significantly impacted them, as shown by the

box-plots of Figure 7.7D.

Figure 7.7: The effect of lockdown and curfew policies in Santiago, Chile.
(A) Average weekly activity before and after lockdown for communes en-
forcing lockdown. (B) Same for communes not enforcing lockdown, (C) Ad-
ditional impact of curfew on communes that enforced lockdown, (D) Same
for communes that didn’t enforce lockdown.

7.3.3. Aggregate activity measurement of impact

To assess the impact of non-pharmaceutical interventions implemented to curb the COVID-

19 pandemic, we are also interested in the overall change in activity inferred from credit card

records (CCR) in the banking dataset and how it compares with changes in activity inferred

from call detail records (CDR) [161]. We compute the overall daily activity levels from both

data sources for communes that have implemented lockdown and those that have not, as

illustrated in Figure 7.8 from the beginning of March until mid-April. A red line highlights

the critical date of March 26th. We can appreciate in both Figure 7.8B and Figure 7.8D that

there is a sharp decrease of activity in both CDR and CCR data for all communes regardless

of their implementation of lockdowns. Also, it can be appreciated in both Figure 7.8A and
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Figure 7.8C that there was a sharp slowdown of activity in both CDR and CCR data almost

ten days before the decision to implement lockdowns. Consistent with the early evidence

presented in other countries [162], a relevant reduction in mobility and economic activity was

voluntarily adopted for many citizens. However, the lockdown policy generated an additional

impact.

Figure 7.8: The effect of lockdown policies in Santiago, Chile. Aggregated
data from the beginning of March 2020 until April 15th. The red line
indicates March 26th. (A) CDR activity for communes with and without
lockdown. (B) Box-plots of CDR activity in communes with and without
lockdown before and after March 26th. (C) CCR activity for communes
with and without lockdown. (D) Box-plots of CCR activity in communes
with and without lockdown before and after March 26th.

Despite some variations, the overall trend captured by both data sources is consistent.

They are associated with similar estimates in reducing activity due to the lockdown policy.

Using CCR data, we estimate a reduction of 45.9% for communes not directly affected by the

lockdowns and a 50.7% reduction if we estimate it using CDR data. Similarly, for communes

implementing a mandatory lockdown, the reduction in activity from both sources is almost

identical, with a 69.6% for the CCR estimate and a 69.7% for the CDR data. This agreement

between data sources comes as a validation of using CCR data to assess the implementation

of non-pharmaceutical interventions.

7.4. Discussion

Regarding assessing the impact of non-pharmaceutical interventions against the COVID-19

pandemic put in place by the Chilean government, the analysis of credit card transactional
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Tabla 7.2: The overall effect of lockdown policies in Santiago, Chile, mea-
sured from mobile phone connectivity (CDR) and credit card transactions
(CCR).

Data Source Lockdown commune Before
march
26th

After
march
26th

Reduction
[%]

CDR No 0.614 0.303 50.7%
CDR Yes 0.604 0.183 69.7%
CCR No 0.503 0.272 45.9%
CCR Yes 0.520 0.158 69.6%

data in the banking dataset can provide information about the mobility of the population

and the effect on the effect on the economic sectors of the changes of population mobility.

In this regard, we use the banking dataset to evaluate if the impact of the mobility of

adopting stay-at-home policies that encourage individuals to reduce non-essential trips has

been reflected in changes in economic activities. Furthermore, we have been able to compare

the estimates in mobility against those derived from CDR data in the period analyzed [161].

Other approaches to assess the economic impact of the pandemic use electric consumption

as a proxy [163].

The analysis of the banking dataset identifies an economic sector that the pandemic-

induced economic crisis has deeply hit. The Leisure/Commerce pattern is the most affected

of the four activity topics identified in the pre-pandemic data. Our results comparing this

activity topic in the year previous to the pandemic and the year of the pandemic show that

Santiago inhabitants have changed their behaviors according to the lockdown and curfew

policies. Though there is some literature on the disruption of supply chains due to COVID-

19 [164], the impact on healthcare [165], forest degradation [166], and the economic impact

in African countries, like the impact on cattle exports [167], on residents of some cities [168],

there is little regarding the evaluation of the impact of COVID-19 on the people that work in

the Leisure/Commerce in developed countries, but for some high-level analysis at corporate

level [169, 170]. However, a large percentage of the labor force enrolled in the leisure and

hospitality sector, that is, more than 13 million employees in March 2021 in the US according

to workforce statistics [171] may fall into poverty with ensuing systemic health critical issues.

One of the facts that we have found is the voluntary reduction of activity that was ap-

parent several days before the implementation of mobility restriction measures taken by the
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governments. This result agrees with reported voluntary reductions in mobility estimated

from the Google human mobility dataset [172]. Accurate information about the pandemic’s

evolution helps citizens make appropriate decisions toward curbing the pandemic. How the

required mobility reduction impacts economic activity is unclear, as some researchers argue

that increasing activity in parks and groceries/pharmacies has much less effect on the repro-

ductive rate than staying at home [173]. Travel patterns appear to significantly impact the

propagation of the virus, requiring a combination of sensible public policies and the willing

collaboration of the community, as demonstrated by the case of Hong Kong [174]. Big data

extensive studies have found that imposed public policies play a small role in the reduction

of mobility [175]. The main factor contributing to reductions in mobility appears to be the

fear of contagion [176]. Mobility and its relation to economic activity during a pandemic

need a further research agenda [177].

7.5. Experiment conclusions

According to the results obtained in this experiment, the proposed methodology not only al-

lows obtaining human behavioral patterns from cell phone digital traces, as we saw in Chap-

ter 4.4.2 but also detects human behavioral patterns using credit and debit card get-tagged

transactions. Therefore, human patterns show a certain degree of consistency independent of

the type of sensor from which the digital traces were gathered. This experiment also intro-

duced an approach to studying how human behavioral patterns change over time by training

multiple spatial models.

Additionally, this experiment shows how the anonymized information about credit card

transactions can be used to assess the follow-up and impact of non-pharmaceutical inter-

ventions implemented to curb the COVID-19 pandemic. We show how unsupervised latent

topic analysis uncovers the main patterns of credit card transaction activity that explain the

behavior of the inhabitants of Santiago City. Topics identified in the pre-pandemic year of

2017 are used to identify the topics produced by the analysis in 2019–2020, including the

pandemic. Specifically, we can assess the impact on the leisure/commerce sector, which has

suffered a substantial activity loss due to the pandemic. Additionally, examining the aggre-

gated activity allows for assessing significant differences between communes that imposed

lockdown and those that did not. Lockdown and curfew interventions lead to a reduction of
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70% in credit card transaction activity.

Additionally, we found a spontaneous reduction of activity before the implementation of

the lockdown of the same magnitude as the reduction achieved with the mandatory restric-

tions. The need for coercive measures to achieve mobility reduction to stop the virus spread

may be reexamined in light of these findings. Future works will be directed to the disaggregate

analysis of the information on the points of sale according to their nominal industrial activity

to ascertain the pandemic’s variable impact on the industry. This analysis will include the

distinction between essential and non-essential services. In addition, a detailed analysis of

the recovery after lockdown should be carried out independently for each commune.
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Chapter 8

Spatiotemporal human behavioral

patterns: Model-embedded patterns

Cities are complex and constantly evolving systems. Understanding their dynamics is crucial

for transport management, urban planning, disaster response, and policy-making. Many

researchers have studied city dynamics based on the information from virtual sensors that

record the digital traces gathered from the people’s interaction with the city’s infrastructure.

Telephone calls, purchases with credit card, check-ins to facilities, GPS records, and geo-

tagged social media activity are key data sources that can be used as virtual sensors to

obtain patterns of mobility and behavior.

This chapter will address the three objectives raised in this thesis. For this, a methodolog-

ical approach is proposed that combines the results obtained previously in chapters 4.4.2 and

7. For this reason, throughout this chapter, a new algorithm (Aim 2) is proposed to extract

spatiotemporal human behavioral patterns (Aim 3). Also, a set of metrics is proposed to

reduce the dependence on extensive knowledge in the geographical areas of study (Aim 1).

In this way, this study addresses this thesis’s main objectives and some gaps detected in the

literature review: Most previous studies are restricted to a single city and a single virtual

sensor. Also, interpreting the patterns obtained depends on an exhaustive knowledge of the

terrain. In addition, algorithms do not manage to incorporate the temporal dependency

among patterns to analyze their change over time.

This experiment presents a methodology for detecting spatiotemporal patterns of city-

level activity, incorporating the temporal evolution of these patterns. A set of metrics is
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proposed to determine the set of patterns that best represent city activity. These metrics

reduce subjective interpretations from analyzing city activity patterns of human behavior

and their dynamics. We applied this methodology over a multi-sensor dataset of 32 million

geo-tagged urban activities collected over 17 years in cities larger than 1 million persons or

country capitals. The virtual sensors these data come from diverse public domain information

sources detailed in Section 3.4. As a result, we report city-level activity patterns consistent

with the known activity profiles carried out in the cities included in the study. Furthermore,

our Dynamic Topic Model-based methodology outperforms classical approaches based on

K-Means and Latent Dirichlet Allocation for spatiotemporal behavior pattern identification.

8.1. Dynamic Topic Modeling using the social media

dataset

8.1.1. Definitions

In order to understand how Dynamic Topic Models (DTM) can be adapted to detect city

activity patterns from human behavior, we need to formalize some definitions. First, we

define an urban activity as the things people do, where they do, and when they do them.

This experiment will represent each urban activity as a combination of its location (latitude

and longitude) and a timestamp. These activities will be assigned to the closest city c ∈ C,

where C represents a set of cities. By aggregating and summing up these individual activities,

we can characterize a city’s activity pattern, denoted as XP c. Understanding city activity

patterns from human behavior is essential for various applications, including urban planning,

transportation management, and resource allocation. By investigating the activity patterns

within a city, we can gain insights into how people use the city’s resources and infrastructure

and identify areas for improvement. Using DTM to detect these patterns allows us to consider

temporal aspects and model the evolution of activity patterns over time. This knowledge

will provide a more comprehensive view of how a city’s activity patterns change and evolve

over time.

To investigate the temporal dependence and evolution of human activity patterns at the

city level, we divide the period of interest into multiple time-slices, denoted as S. Each

time-slice, represented by s ∈ S, corresponds to a defined period such as a month or a year.
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Therefore, XP c
s represents the activity pattern of city c at time-slice s. The city’s activity is

studied over multiple consecutive time-frames during a time slice. A time-frame is a period

shorter than a time-slice, such as one minute, hour, or day; we will call an activity block the

number of events carried out during this time-frame. Figure 8.1 explains the relationship

between time-slices and time-frames.

time slice
time slice

time slice

time frames

Figure 8.1: Time Slice and Time Frames

Formally speaking, we describe a raw human behavior pattern by a vector XP c
s , where each

component or activity block XP c
s,t denotes the number of events carried out on city c during

the time-slice s in period t and therefore XP c
s = (XP c

s,1, XP c
s,2, . . . , XP c

s,T )(t = 1, . . . , T ),

where T is the number of activity blocks. In this study, we set T into hourly periods during

a week; therefore, each raw activity pattern XP c
s is a vector with T = 168 components (24

h, seven days). To facilitate the comparison between cities, we define the normalized city

activity pattern AP c
s , where AP c

s = XP c
s∑

XP c
s
, i.e., dividing its components by the total number

of events of each city c during the time slice s. Therefore, we can interpret AP c
s,t as the

percentage of events of the city c in the hourly time window t.

The complete description of how to adapt and apply DTM to detect human behavior

patterns at the city level is presented in section 4.4.3, dynamic topic modeling using geo-

tagged digital traces.

8.2. Experimental setup and Results

In this Section, we detail the results obtained in this experiment following the experimental

setup proposed in Section 5.1.3.
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8.2.1. Temporal matching heuristic

This section analyzes if it is feasible to align the labeling of human behavior patterns so that

similar topics across sequential time slices get the same label. This re-assignment is crucial

as traditional algorithms ignore the temporal dependence, resulting in activity patterns ex-

hibiting similar behavior being assigned different labels because each time-slice is treated as

an independent pattern.

Table 8.1 presents the results of applying the temporal-matching heuristic to the output

of the state-of-the-art models. The table displays the Intertemporal Stability (See Section

4.6) percentual increment between the new topic label configuration and the original one.

The Intertemporal Stability is measured using cosine similarity. In the table, the first column

indicates the time slice aggregation utilized, and the results for each algorithm are presented

for each aggregation scenario. The results also present different scenarios where we extract

several numbers of topics.

The temporal-matching heuristic aims to increase the similarity of activity topics across

consecutive time slices, thereby maximizing Intertemporal Stability. The results show that

this objective is broadly achieved in all comparisons. Therefore, based on these results, the

activity topic labels reassigned by the time-matching heuristic will be utilized in the following

analysis.

Tabla 8.1: The result of temporal matching heuristic on behavior topics.
Time matching impact is measured using the Intertemporal Stability with
cosine similarity. The percentual increment between the heuristic arrange-
ment and the original topic labels is shown.

Time Aggregation Model
#Topics

2 3 4 5

one-year

K-Means 0.97% 7.57% 5.76% 16.46%
k-Shape 1.09% 2.45% 0.78% 1.70%
LDA 0.00% 0.00% 0.29% 0.09%
TS K-Means 0.98% 0.87% 2.62% 2.41%

three-year

K-Means 3.22% 4.33% 3.53% 4.21%
k-Shape 1.62% 0.05% 0.48% 0.89%
LDA 0.00% 0.00% 0.35% 0.00%
TS K-Means 3.67% 2.70% 4.99% 6.52%
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8.2.2. Time-slices Aggregation

This section compares two time-frame choices to train the activity pattern detection models.

We train several models using the proposed and traditional models in two different setups

to achieve this. Firstly, the models are trained using one-year time-frames, generating 17

pattern subsets, one for each year in the dataset. Secondly, the models are trained using

three-year time frames. The final time frame encompasses only two years, 2020 and 2021,

which were combined due to the inclusion of information gathered during the COVID-19

pandemic. Both setups include the training of models with k=2 to k=5 topics.

Table 8.2 displays the comparison results between the two selected time frames. The

outcomes are presented for the proposed and the traditional models, and for each of these

models, results are shown after extracting between k=2 and k=5 topics. Intertemporal

Stability, Intratemporal Similarity, Topic Smoothness, and Topic Consistency are presented

for each model (See Section 4.6 for metrics details). The values of Intratemporal Similarity

and Intertemporal Stability are computed using cosine distance. For each proposed indicator,

three columns are displayed:

• The average results over the three-year time-slices

• The average results over the one-year time-slices

• The percentage variation between both results based on the three-year results.

The metrics were calculated using the cosine distance, commonly used to evaluate the

similarity between topics [49, 115, 152, 178]. If two topics are identical, their cosine distance

equals zero, reflecting a high similarity between them.

When comparing the results obtained with three-year time-slices on the models presented,

it was found that the Intertemporal Stability index obtained in these experiments is lower

in almost all scenarios. This result indicates that topic sets are more stable over time when

using three-year time-slices than shorter time-slices.

In addition, it was noted that the Intratemporal Similarity index of the three-year time-

slices experiments is lower than the results obtained using one-year time-slices. This outcome

suggests that topics within each three-year time-slice are more similar than topics within

one-year time-slices. However, this result cannot be analyzed independently because it could
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indicate greater volatility and inconsistency in the topics obtained. In order to complement

this matter, it is observed that the Topic Smoothness is less consistent in the topics obtained

in the three-year time-slices, as is the Topic Consistency indicator.

In summary, although the results indicate certain disadvantages in using three-year time-

slices, they also show better Intertemporal Stability, Topic Smoothness, and Topic Consis-

tency than one-year time-slices. Therefore, it was decided to continue the analysis using

three-year time-slice data sets to obtain a more complete and precise view of the topics and

their evolution over time.

Tabla 8.2: Inter-temporal Intra-temporal topic validation metrics for differ-
ent time-slice aggregations. The orange bars correspond to a 1-year time-
slice aggregation, and the blue bars correspond to a 3-year time-slice aggre-
gation.

Topics Model
Intertemporal Stability Intratemporal Similarity Topic Smoothness Topic Consistency
3Y 1Y DIFF 3Y 1Y DIFF 3Y 1Y DIFF 3Y 1Y DIFF

k = 2

K-Means 0.31 0.31 -0.58% 0.36 0.42 -13.6% 5.25 15.39 -65.8% 0.82 0.75 8.6%
k-Shape 0.08 0.14 -40.3% 0.06 0.15 -58.5% 1.78 3.44 -48.1% 0.97 0.92 5.0%
TS K-Means 0.31 0.29 6.5% 0.36 0.39 -8.4% 5.25 11.15 -52.8% 0.82 0.76 7.1%
LDA 0.07 0.07 -2.42% 0.03 0.08 -60.3% 1.93 2.92 -33.9% 0.96 0.92 4.9%
DTM 0.00 0.07 -89.3% 0.32 0.43 -24.4% 1.78 3.78 -52.9% 0.98 0.88 11.0%

k = 3

K-Means 0.29 0.41 -27.4% 0.31 0.48 -35.1% 5.37 18.66 -71.1% 0.81 0.65 24.1%
k-Shape 0.12 0.14 -15.5% 0.05 0.16 -68.5% 1.82 3.62 -49.7% 0.97 0.89 9.0%
TS K-Means 0.29 0.38 -21.8% 0.31 0.46 -32.0% 5.37 14.04 -61.6% 0.81 0.67 21.0%
LDA 0.05 0.12 -60.2% 0.12 0.23 -49.0% 2.51 4.68 -46.2% 0.92 0.85 7.8%
DTM 0.00 0.09 -93.4% 0.40 0.49 -17.4% 2.00 5.91 -66.0% 0.97 0.77 25.2%

k = 4

K-Means 0.34 0.43 -20.5% 0.35 0.47 -24.9% 6.47 20.5 -68.4% 0.76 0.65 17.1%
k-Shape 0.19 0.18 6.3% 0.12 0.15 -21.8% 2.88 3.6 -20.0% 0.91 0.88 3.5%
TS K-Means 0.34 0.41 -15.5% 0.35 0.46 -22.8% 6.47 15.95 -59.4% 0.76 0.66 15.4%
LDA 0.04 0.14 -71.8% 0.15 0.26 -42.3% 2.95 5.17 -42.9% 0.89 0.83 7.7%
DTM 0.00 0.1 -94.7% 0.42 0.52 -18.1% 2.24 6.72 -66.6% 0.96 0.74 30.6%

k = 5

K-Means 0.35 0.57 -37.4% 0.37 0.61 -38.8% 6.38 25.03 -74.4% 0.73 0.54 35.5%
k-Shape 0.15 0.24 -34.8% 0.10 0.21 -49.5% 2.68 5.33 -49.7% 0.92 0.85 8.5%
TS K-Means 0.31 0.46 -32.6% 0.31 0.46 -32.5% 5.64 17.47 -67.6% 0.78 0.65 19.1%
LDA 0.02 0.14 -84.3% 0.14 0.26 -45.9% 2.88 5.47 -47.2% 0.89 0.83 7.3%
DTM 0.00 0.09 -95.1% 0.37 0.63 -39.8% 2.58 9.22 -72.0% 0.95 0.71 33.2%

8.2.3. Model comparison and the optimal number of human be-

havior patterns

In this section, we will determine the number of patterns/topics that best characterize the

activity carried out in the study cities. For this, the previous findings will be considered, and

an evaluation will be carried out based on the models trained using the three-year time-slices.

In addition, the temporal matching heuristic will be applied to the result of each training.

The first analyzed indicator is the Intertemporal Stability Index. Table 8.3 shows the

results obtained for the models trained using the three-year time-slices. Each row shows one

87



of the trained algorithms, and each column shows the index values as the number of extracted

topics varies between k = 2 and k = 5. From now on, we will use this same table structure to

display the other indexes analyzed. For each algorithm, the index values show regularity as

the number of topics varies. When comparing different algorithms, considerable differences

are noted. The K-Means-based models obtain more unstable topics over time, while the

Latent Dirichlet Allocation (LDA) and Dynamic Topic Modeling (DTM) models obtain stable

topics over time. In the case of the Intertemporal Stability Index, our methodological proposal

using DTM obtains the best results in each of the analyzed scenarios.

Tabla 8.3: Intertemporal Stability Index using cosine distance

Model
#Topics

2 3 4 5

K-Means 0.31 0.29 0.34 0.35
k-Shape 0.08 0.12 0.19 0.15
TS K-Means 0.31 0.29 0.34 0.31
LDA 0.07 0.05 0.04 0.02
DTM 0.00 0.00 0.00 0.00

Regarding the Intratemporal Similarity Index, the differences between DTM and the rest

of the models are less notorious than in the previous case. This data can be seen in Table

8.4, where DTM obtains similar results to those obtained by K-Means and TS K-Means.

Despite this, DTM obtains a better Intratemporal Similarity Index except for when k = 2

topics are extracted. Also, the best results for DTM are obtained by extracting k = 3 and

k = 4 Topics.

Tabla 8.4: Intratemporal Similarity Index using cosine distance

Model
#Topics

2 3 4 5

K-Means 0.36 0.31 0.35 0.37
k-Shape 0.06 0.05 0.12 0.10
TS K-Means 0.36 0.31 0.35 0.31
LDA 0.03 0.12 0.15 0.14
DTM 0.32 0.40 0.42 0.37

The analysis of Topic Consistency, as presented in Table 8.5, shows that the DTM model

has the highest Topic Consistency among all models tested. It is important to note that

88



Topic Consistency measures the regularity of patterns obtained by comparing days of the

week so that the components of an urban activity topic should stay the same from one day

to the next. This expected behavior is because the activities carried out in the city reflect

the routine of the people who inhabit them. Unlike previous indices, this metric is calculated

using cosine similarity instead of cosine distance. In this way, the more consistent the topics

obtained, the indicator will be closer to one. However, it is worth mentioning that as the

number of behavior patterns increases, topic consistency tends to decrease, but DTM exhibits

a minor variation.

Tabla 8.5: Topic Consistency - Cosine Similarity

Model
#Topics

2 3 4 5

K-Means 0.82 0.81 0.76 0.73
k-Shape 0.97 0.97 0.91 0.92
TS K-Means 0.82 0.81 0.76 0.78
LDA 0.96 0.92 0.89 0.89
DTM 0.98 0.97 0.96 0.95

Finally, the analysis of Topic Smoothness, as displayed in Table 8.6, indicates that K-

Means and Time-Series K-Means reach the highest values for this indicator among all models

analyzed. This result indicates that patterns obtained from these methods exhibit significant

variations between consecutive hours. This behavior is not expected to be observed in an

Human Behavior Pattern where gradual changes are expected rather than drastic fluctuations

from one hour to the next. Additionally, the remaining models produce results of similar

magnitude, with DTM consistently outperforming in nearly all scenarios. It should be noted

that as the number of urban patterns increases, the Topic Smoothness tends to rise.

Tabla 8.6: Topic Smoothness

Model
#Topics

2 3 4 5

K-Means 5.25 5.37 6.47 6.38
k-Shape 1.78 1.82 2.88 2.68
TS K-Means 5.25 5.37 6.47 5.64
LDA 1.93 2.51 2.95 2.88
DTM 1.78 2.00 2.24 2.58
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In summary, after analyzing the results obtained in this research, we have determined that

k = 3 is the most appropriate number of human behavior topics to represent the behavior

of the cities included in this study. This decision is based on analyzing the Intertemporal

Stability and Intratemporal Similarity. Also, it considers the trade-off of increasing the

number of human behaviors that were observed when analyzing Topic Consistency and Topic

Smoothness.

8.2.4. Final Model: Multi-sensor and multi-temporal city activity

patterns from human behavior

Figure 8.2 shows the activity patterns arising from human behavior obtained after applying

our proposed methodology to a geo-tagged urban activities dataset. The figure presents

three clear columns denoting each extracted topic (human behavior patterns). Each graph

row corresponds to the subset of three topics obtained for that particular time-slice. Each

time-slice can be identified by the time range shown in the column corresponding to Topic

0. The first row is the topics obtained for the time-slice between 2005 and 2007, while the

last row shows the urban activity patterns for 2020-2021. In the diagram, the urban activity

patterns start on Monday and end on Sunday.

Next, we give an interpretation of the human behavior patterns

• Topic 0 is characterized by behavior with certain regularity during the week, behavior

that changes during the weekends. During the week, the activity of this pattern increases

as the day progresses and presents two clearly defined peaks. The first activity peak is

observed at noon and day and then descends to reach a local minimum around 15:00

hrs.; after this, the activity reaches its maximum peak around 09:00 hrs. This behavioral

pattern, already observed in our previous research [49, 50], refers to Leisure & Commerce

activities. During the weekends, both peaks are preserved. However, the noon peak is

much more tenuous to give way to the more significant activity generated during the

night peak.

• Topic 1 shows a relatively low activity during the week, and the most significant activity

occurs during the weekend. During the week, the activity increases between 09:00 hrs.

and 21:00 hrs., without significant variations in activity during this period. During the

weekend, the activity increases from 09:00 hrs., peaking at 15:00 hrs. and then declining.
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This fall is more abrupt on Sunday, leaving little activity until dawn the next day.

• In the same way as the previous urban activity patterns. Topic 2 shows different behav-

iors during the week and at the weekend. During the week, the activity is concentrated

between 09:00 hrs. and 18:00 hrs., and a slight drop in activity around noon. During the

weekend, the pattern presents a similar structure. However, after the 09:00 hrs. peak,

the activity begins to decline during the rest of the day. This pattern is similar to the

office-areas activity pattern detected in our previous investigations [49, 50].

Figure 8.2: Multi-sensor and multi-temporal human behavior patterns ob-
tained using Dynamic Topic Models

One of the advantages of using Dynamic Topic Models to study the temporal behavior

of human activity patterns is the possibility of studying changes over time. Figure 8.3

displays the above topics, allowing us to compare their changes over time. The set of patterns

obtained with each time-slice is displayed on the same figure, and the intensity of each line
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color indicates the periods used for training, the darker the line, the more recent the data

used. The first notable point is the stability of the patterns obtained, maintaining their

structure over time. This stability is observed, even when the data used for training comes

from multiple sensors, and some do not overlap between time-slices. Significant changes to

note are the drop in activity on Friday, Saturday, and Sunday nights in Topic 1. Similar

behavior has been observed during the last few years in Topic 1, with a noticeable drop in

Saturday activity. Finally, a decrease in activity is observed in Topic 2 during the afternoons

of Saturdays and Sundays, as well as in the activity observed on Wednesdays and Thursdays

from 18:00 hrs. In future work, it is necessary to investigate the root cause of this behavior

change. However, the most straightforward hypothesis is due to the changes in mobility

produced by the restrictions established to control the covid 19 pandemic.

Figure 8.3: Temporal comparison of City activity patterns

8.2.5. Human behavior patterns Characterization

After describing each human activity pattern, it is interesting to understand how this in-

formation allows us to characterize the behavior of different cities worldwide. For this, we

generated groups of cities based on how Activity Patterns’ composition varies over time.

To generate these groups, we used the K-Means clustering algorithm. The cities were used

as input records for the model. Each city is characterized based on the average activity of
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each human behavior pattern and according to the standard deviation of these. In order to

determine the optimal number of clusters, the model was trained by varying the number of

clusters between 2 and 20 groups. Figure 8.4 shows the average Silhouette Score obtained

for each model. Based on these results, it is obtained that three groups correspond to the

optimal number of clusters.

Figure 8.4: Silhouette Score over groups multi-temporal human behaviour
patterns at city level

Figure 8.5 shows the result of clustering the cities based on their temporal composition of

the human activity patterns. Each color indicates a different cluster. In addition, the name

of some cities within each cluster is shown. Thus, it can be seen that within Cluster 0 (C0)

are cities such as Campinas (Brazil), Lahore (Pakistan), Jeddah (Saudi Arabia), and Lagos

(Nigeria). Cluster 1 (C1) includes cities such as Porto Alegre (Brazil), Athens (Greece),

Ecatepec (Mexico), and Atlanta and Boston (USA). In Cluster 2 (C2), we find cities such

as Seoul (South Korea), Santo Domingo (Dominica Republic), Nairobi (Kenya), Stockholm

(Sweden), Washington (USA), and Birstall (England). As shown in the figure, the limits

between each cluster are fuzzy, so a strict interpretation requires more elaboration. However,

in general terms, we can understand how to segment and characterize cities based on their

activity.
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Figure 8.5: Cluster of cities based on their human behavior patterns com-
position

Figure 8.6 shows a geographical representation of the clusters. This figure shows the

spatial distribution of the cities that belong to each cluster. The geographical location of

Cluster 0 stands out, whose 20 cities are located mainly in the Middle East, South Asia, and

Africa. The cities corresponding to cluster 1 and cluster 2 are distributed in practically the

same territories, except that we did not find any of the 32 cities of Cluster 1 in East Asia and

Oceania. Finally, Cluster 2 stands out for having several of its 92 cities in central Europe.
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Figure 8.6: Geographical representation of cities clusters

To deepen the segmentation of cities obtained from their composition in the activity pat-

terns, we use additional information that complements the cities analysis adding more details.

The Innovation Cities Index [179], an annual quantitative index to rank the most innova-

tive cities worldwide, is used for this. The quantitative index is based on cities’ cultural

assets, human infrastructure, and networked markets. Cultural assets refer to how culture

is experienced within cities and considers arts districts, civic institutions, museums, music

events, galleries, political protests, books, media, availability of information, and sports. Hu-

man Infrastructure includes the infrastructure deployed in the city for mass transit, finance,

universities, hospitals, rail, roads, law, commerce, start-ups, healthcare, and telecommuni-

cations. Finally, Networked Markets measure a city’s influence and connections in global

markets, considering geography, economics, exports and imports, technology, market size,

geo-political aspects, and diplomacy.

Figure 8.7 shows the innovation index ranking for 2021. The graph on the left corresponds

to a boxplot where each data point corresponds to a city, indicating the position in the

innovation ranking. The graph on the right corresponds to the cumulative distribution.

When analyzing the figure, the difference between the cities that forms Cluster 0 to the rest

of the cities stands out. The cities in Cluster 0 are in the last positions of the innovation

ranking, and half of the cities in this cluster are in the last quintile of the innovation ranking.

Based on this, we notice a relationship between the human behavior patterns detected in

this study and how innovative a city is. Concerning the rest of the clusters, no significant

differences are observed in the location of the cities in the ranking. In both groups, half of
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the cities are within the first 150 most innovative cities.

Figure 8.7: Innovation Cities Index 2021 by Cluster

Additionally, we present the factors that make up the Innovation Cities Index for each city

under study. Figure 8.8 shows how the Cultural Assets (a), Human Infrastructure (b), and

Networked Market (c) indexes are distributed. In addition, the population distribution (d) for

each city is shown. The innovation index explanation by the three factors that make up the

score does not show variations concerning what we already knew. The cities of Cluster 0 are

different from the rest. In this case, these cities have less cultural capital, their infrastructure

is also far from world standards, and their markets need to be sufficiently connected and

integrated with the rest of the world. On the other hand, Cluster 1 and Cluster 2 show little

differences between them when compared based on any of these three indicators. Where it

makes present differences is at the population level. In this case, the cities of Cluster 0 and

Cluster 1 present a very similar population distribution, while within the cities that belong

to Cluster 2, there are some huge ones.
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(a) Cultural Assets (b) Human Infrastructure

(c) Networked Market (d) City Population

Figure 8.8: Cities population and city score factors by Cluster

8.3. Experiment Conclusions

The analysis of urban activities is a central tool for use in urban planning, traffic manage-

ment, and even in the design of public policies to prevent damage caused by natural disasters.

For this reason, the study of urban activities is an important research topic. In this analysis,

we proposed a methodology to address gaps detected in this area. We present a method to

include temporal evolution in the problem of detecting activity patterns. Furthermore, we

proposed four metrics that aim to reduce dependence on expert knowledge when selecting

the set of patterns that best represents the observed activity behavior. The results confirm

that the proposed methodology, particularly the Dynamic Topic Models, is an appropriate

method to characterize urban mobility through human behavior patterns, obtaining better

results when selecting the activity patterns against traditional methods like K-Means and La-

tent Dirichlet Allocation. The results showed that detecting human behavior patterns from

a multi-city dataset where the aggregation level is an entire city is possible. The previous

investigations considered single-city analyses, and the study level was conducted in neigh-

borhoods, grids, or Voronoi zones within the same city. On the other hand, our methodology

allows us to find a way to directly include in the algorithm the temporal evolution of the

activity patterns. We used the proposed metrics to select the best representation of the
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city’s behavior. These metrics allow us to assess the best representation of activity patterns.

The patterns obtained reflect people’s behavior in the city, and two of the patterns obtained

are similar to patterns already observed in previous single-city activity patterns research.

Additionally, this study combines multiple sensors to gather urban activity data, which also

were obtained at various instants over 17 years. Our methodology also proved to be a robust

model that combines information from multiple sources and different timelines. Finally, the

patterns detected are consistent with the proposed metrics and with a validation based on

understanding the behavior shown by each pattern. In addition, it provides an alternative to

the study of cities because it allows us to distinguish how innovative a city is from the behav-

ior of its inhabitants. In future work, we want to study if there is a hierarchical relationship

between the patterns that can be obtained from the single-cities analysis with other types

of spatial aggregation, such as cities or countries. On the other hand, we want to delve into

the mathematical properties of the proposed metrics, analyze them and test new scenarios

for identifying activity patterns.
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Chapter 9

Conclusions and Future Work

In this Chapter, we present the conclusions about the work developed in this thesis and also

give possible future research lines.

9.1. Conclusions

As technology develops, it becomes increasingly present in people’s lives. We interact with

different technological devices daily while carrying out our daily activities. Many techno-

logical devices store the activities, leaving digital traces of individuals’ behavior. A subset

of these digital traces georeferences the location where the individual was while perform-

ing the activity. This information is very useful because it allows studying urban planning,

infrastructure management, public transportation management, and public policies. This

thesis addresses the study of multi-sensor and multi-temporal human behavior patterns from

digital traces. For them, we set ourselves three objectives covered in three extensive studies

presented as experiments in this thesis. In the first experiment, alternatives to traditional

algorithms to identify patterns in digital traces were studied. LDA is proposed as an alter-

native that not only allows us to identify behavioral patterns but also allows us to recognize

behaviors that traditional algorithms do not capture. Then, in the second experiment, the

identification of spatiotemporal human behavior patterns is addressed by training multiple

time-windowed spatial models. This analysis allows us to study the evolution of behavioral

patterns over time, but it has some disadvantages because the pattern detection algorithm

does not directly include the temporal dimension. Finally, in the third experiment, previous

learning is used to formalize the validation of the human behavior pattern through a set of
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metrics that aim to reduce dependency on extensive expert knowledge of the geographical

area studied. In addition, we proposed a model that incorporates the temporal dimension

to detect human behavior patterns. This model, Dynamic Topic Model, overperformed the

traditional models and also LDA to detect spatiotemporal patterns. To develop these ex-

periments, we used three digital traces datasets obtained from different sensors, call detail

records, credit card purchases, and geo-tagged social media activity. In this way, our study

becomes one of the few to study multi-sensor activity patterns and analyze these patterns

over time. Finally, the proposed methodology and the data sets used allow us to respond

to the objectives specified in this thesis and also allow us to extend the knowledge of the

detection of human behavior patterns using multi-sensor and multi-temporal data.

9.2. Future Work

Throughout the study, we aggregated spatial information in various forms, using Voronoi

zones in the telecom dataset analysis, grids for the banking dataset, and cities for the social

media dataset. Regardless of the aggregation unit, similar behavioral patterns emerged

despite being different sensors in different spatial aggregations. One line of future research

is to analyze the impact of spatial aggregation on the patterns obtained and investigate

whether there is any hierarchical dependency in these aggregations. On the other hand,

our last experiment proposes a set of metrics to reduce dependence on extensive expert

knowledge and formalize the validation of the patterns obtained. Future work will study the

mathematical properties of these metrics and measure the impact of these metrics on the

shape that the final patterns will have.
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