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Abstract
General circulation models (GCM) show projections of climate variables that when downscaled can be applied to analyse 
future behaviour in different areas or places. Using them is possible not just to obtain expected values of climate variables 
but also to calculate their distributions and use those values to assess the effects of climate change at a local level. However, 
these calculations depend on the GCM selected. In this paper, daily maximum near-surface air temperatures from 21 climate 
models under representative concentration pathway (RCP) scenarios RCP 4.5 and RCP 8.5 and historic daily maximum 
temperatures (1990–2019) from nine cities in southern Spain are used with two objectives: first, to investigate past behaviour 
broken down into a deterministic part and a stochastic part; second, to compare historical data (2006–2019) with the infor-
mation extracted from the 21 GCMs based on calculating goodness of fit in the period for both deterministic and stochastic 
parts. The methodology proposed may be useful in selecting a model or a range of models for use in a specific study. The 
results show positive historical and future trends in maximum daily temperature for these cities. The GCMs with the best fit 
for each city in this specific case are also presented.

1  Introduction

Extreme temperature events have a great influence on 
health, the economy and the natural and built environments 
(AghaKouchak et al. 2020). Heat waves (HWs) are one of 
the most worrying effects of climate change, and maximum 
daily temperature is a relevant variable. Heat waves and cold 
waves are periods of abnormally high or low temperatures. 
The World Health Organization (WHO 2020) and the World 
Meteorological Organization (WMO 2015) rate HWs as one 
of the most dangerous meteorological events.

Extreme climate anomalies such as those in Texas and 
Oklahoma in 2011 and Moscow in 2010 are a consequence 
of global warming (Hansen et al. 2012). Global warming 

will increase the frequency and severity of heat waves while 
cold waves decline. At the same time, the number of people 
exposed to heat waves in Europe will increase (EU 2021).

Climate change forecasts show an increase in temperatures 
in the twenty-first century, with HWs becoming more fre-
quent and more intense (Fisher and Schär 2010), so that the 
effects of high temperatures increase. According to Muller 
et al. (2016), the probabilities of extremely hot summers in 
many regions of the world are now about ten times greater.

HWs affect socio-economic activities such as water sup-
ply, food and livelihood production, energy and transporta-
tion, among others. Extreme high temperatures are increas-
ingly affecting crops, with yields showing a decline (Zhu 
and Troy 2018). A wide range of terrestrial ecosystems is 
also exposed to HWs. A case in mind is that forests: Allen 
et al. (2010) show that drought and heat stress associated 
with climate change could seriously affect the composition, 
structure and biogeography of forests in many regions. The 
impact of the legacies of past forest management is analysed 
by Heres et al. (2021) to explain the current responses of 
different tree species to climate change.

One of the main negative effects of HWs is the addi-
tional mortality that they cause. HWs increase morbidity 
and mortality in risk groups such as the elderly, children 
and people who suffer from cardiovascular and respiratory 
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diseases (Fisher and Schär 2010; Campbell et al. 2018). The 
World Health Organization (WHO 2020) reports that from 
1998 to 2017 more than 166,000 people died due to heat 
waves, including more than 70,000 during the 2003 heat 
wave in Europe.

The future heat-related mortality induced by climate 
change in 12 US cities is analysed by Lo et al. (2019). The 
expected future mortality caused by HWs in two Spanish 
cities is analysed by Abadie et al. (2019) using a single cli-
mate model with two RCP scenarios and also calculating 
risk measures such as the 95% percentile and the mean of 
the average of the 5% of worst cases. The impact of HWs 
on mortality for each Spanish provincial capital over the 
periods 2021–2050 and 2051–2100 under the RCP 8.5 sce-
nario is analysed by Díaz et al. (2019) with and without 
adaptation.

Global climate models (GCMs) can be used to estimate 
the impact of extreme future events, but there is a great deal 
of uncertainty in their forecasts (IPCC 2012). The probabil-
istic future behaviour of HWs in the city of Madrid is studied 
by Abadie and Polanco-Martínez (2022) using twenty-one 
global climate models under RCP 8.5 and RCP 4.5 scenar-
ios, modelling HWs with three stochastic processes (number 
per annum, duration and intensity). These distributions are 
combined with an epidemiological model to obtain expected 
future mortality and risk measures for the city.

However, when used at a local or regional scale, GCMs 
can predict more widely differing values. It is therefore 
advisable to analyse which models perform best for a spe-
cific application and a specific location. There may be differ-
ences between neighbouring areas, e.g. rural and urban. For 
example, López-Bueno et al. (2021) analyse and compare 
the effects of high temperatures on daily mortality in urban 
and rural populations in the province of Madrid.

Some papers investigate the performance of climate mod-
els, e.g. that of Panjwani et al. (2020), who compare the use 
of six global climate models in simulating extreme tempera-
ture events in the regions of India from 1976 to 2005. Their 
calculations show a hot bias for Central India and a cold bias 
in the Himalayan region; furthermore, two models perform 
better than the others. These authors use root mean square 
errors, correlation coefficients and an agreement index.

Our paper takes a different approach, focusing on the 
evolution of maximum temperature dynamics under uncer-
tainty. Temperatures are assumed to have a deterministic 
part and a stochastic part. The trend, seasonality and sto-
chastic behaviour of historical maximum daily temperatures 
are analysed in nine cities in Southern Spain for a period 
of 30 years, using an Ornstein-Uhlenbeck stochastic model 
with jumps. Twenty-one downscaled GCMs are then used 
for 2006–2019 under scenarios RCP 4.5 and RCP 8.5 to 
calculate the characteristics (stochastic and deterministic) 
and compare them to the current data for the same period by 

applying measures of goodness of fit and classifying GCMs 
according to these results for each city and climate scenario. 
The proposed methodology allows selecting for a city one 
or several climate models that are behaving more closely 
to actual data, taking into account the deterministic and 
stochastic behaviour of temperatures. The approach allows 
focus on the expected value and/or in the risk component in 
the last case using the stochastic part with better goodness 
of fit.

The rest of the paper is organised as follows: Section 2 
describes the materials and methods used. Section 3 pre-
sents and discusses our results. Section 4 presents the main 
conclusions.

2 � Materials and methods

2.1 � Data

This study uses daily maximum near-surface air tempera-
tures (tmax) for nine cities in southern Spain. There are 
four cities very close to the coast (Huelva, Cadiz, Malaga 
and Cartagena) and five inland cities (Seville, Cordoba, 
Jaén, Granada and Murcia). Future daily maximum tem-
peratures and their behaviour for 2006–2100 are drawn 
from the 21 models of NASA Earth Exchange Global 
Daily Downscaled Projections (NEX-GDDP)1, where 
there is only one time series of maximum temperatures 
for each model. The NEX-GDDP comprises downscaled 
climate scenarios for the globe, derived from a general 
circulation model from the Coupled Model Intercom-
parison Project Phase 5 (CMIP5), including projections 
for RCP 4.5 and RCP 8.5 from 21 models and scenarios 

Table 1   GCM models

No. Model No. Model

1 ACCESS1-0 12 IPSL-CM5A-MR
2 BNU-ESM 13 MIROC-ESM
3 CCSM4 14 MIROC-ESM-CHEM
4 CESM1(BGC) 15 MIROC5
5 CNRM-CM5 16 MPI-ESM-LR
6 CSIRO-Mk3.6.0 17 MPI-ESM-MR
7 CanESM2 18 MRI-CGCM3
8 GFDL-CM3 19 NorESM1-M
9 GFDL-ESM2G 20 bcc-csm1-1
10 GFDL-ESM2M 21 inmcm4
11 IPSL-CMSA-LR - -

1  https://​www.​nccs.​nasa.​gov/​servi​ces/​data-​colle​ctions/​land-​based-​
produ​cts/​nex-​gddp

774 L. M. Abadie, M. P. Moral

https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp


1 3

for which daily scenarios were produced and distributed 
under the CMIP5 (Thrasher et  al. 2012; NEX-GDDP 
2021). Table 1 shows these 21 GCM models.

Historic data are drawn from the E-OBS gridded database 
(https://​www.​ecad.​eu/) and correspond to 1990–2019, i.e. 30 
years, with 10957 values for each city. Figure 1 shows past 
maximum daily temperatures for the nine cities from 1990 
to 2019 (30 years). This figure shows that seasonality is an 
important component. Table 2 shows some statistics for daily 
maximum temperatures for the nine cities (1990–2019).

2.2 � Stochastic model specification

The maximum daily temperatures tmaxi
t
 for each city i on day t 

is shown in Eq. (1) broken down as the sum of two components: 
a deterministic component, fi(t), and a stochastic component, Xi

t
:

The second element Xi
t
 is a mean reverting jump diffusion 

process, while the deterministic part includes a linear trend 
(Bloomfield 1992) and a seasonal component. The seasonality 
takes a trigonometric form, which gives a smooth seasonal 
pattern along with a parsimonious formulation (Campbell & 
Diebold, 2005). We consider only low seasonal frequencies 
that are statistically significant for the historical data (1990-
2019). Putting all this together, the deterministic component 
of the model is:

where time is measured in years, so the t-index for the series 
observed ranges from 1/365.25 to the number of years 

(1)tmaxi
t
= f i(t) + Xi

t

(2)
f i(t) = � i

1
+ � i

2
t + � i

3
sin (2�t) + � i

4
cos (2�t)

+ � i
5
sin (4�t) + � i

6
cos (4�t) + � i

7
cos (6�t)

Fig. 1   Historical maximum 
daily temperatures for the nine 
cities from 1990 to 2019

Table 2   Maximum daily 
temperature statistics (1990–
2019)

City Mean Median Minimum Maximum Standard 
deviation

Coefficient 
variation

Asymmetry Excess kurtosis

Huelva 24.17 23.39 4.87 43.64 6.829 0.283 0.281 −0.922
Cadiz 23.45 22.78 8.14 42.05 6.119 0.261 0.318 −0.749
Seville 25.59 24.80 5.23 46.30 7.791 0.304 0.232 −1.048
Cordoba 24.46 23.51 2.83 46.06 8.693 0.355 0.215 −1.122
Malaga 22.59 21.96 6.27 42.68 6.102 0.270 0.240 −0.886
Jaén 22.72 21.63 1.99 44.38 8.561 0.377 0.227 −1.101
Granada 21.14 20.14 0.68 42.34 8.535 0.404 0.175 −1.098
Murcia 23.83 23.56 4.75 43.09 6.574 0.276 0.037 −0.964
Cartagena 22.89 22.74 6.72 40.01 5.668 0.248 0.023 −0.980
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(T=20); � i
1
 and � i

2
 are the intercept and the slope of the linear 

trend, respectively; and � i
3
 to � i

7
 are the seasonal parameters 

of the i-th city.
The stochastic component is assumed to follow an Orn-

stein-Uhlenbeck (O-U) process, which is a flexible way of 
modelling dependence structures (Barndorff-Nielsen and 
Shephard 2001). For example, Swishchuk and Cui (2013) 
propose daily average temperature models driven by O-U 
processes without jumps for data from Canadian cities for 
weather derivative pricing applications. The O-U process 
with jumps is described by the following stochastic differ-
ential equation:

Equation (3) consists of three independent parts. The first 
term is the drift, which implies mean reversion, where the cur-
rent stochastic part of the daily maximum temperature in the 
city i tends to level �

i

� i
 in the long term, with a reversion speed 

κi > 0. Wi
t
 is a standard Wiener process with stationary incre-

ments dWi
t
 . The volatility of the mean reverting process is σi. 

The third term of Eq. (3) is a Poisson process with a rate of 
arrival �i;dqi

t
 is a Poisson process such that dqi

t
= 1 with prob-

ability λidt and dqi
t
= 0 with probability 1 − λidt. The jump 

size is Ji
t

(

�i
J
, �i

J

)

 , which is iid N
(

�i
J
, �i

J

)

∶ if there is a jump 
in maximum temperature, its size is normally distributed with 
mean �i

J
 and volatility �i

J
 . Finally, the processes dWi

t
 and dqi

t
 

are independent. Note that Eq. (3) can have negative values, 
and also, the maximum daily temperature can be negative.

The parameter values of the stochastic part are calculated 
using maximum likelihood estimation. The Appendix shows 
how this method is applied to Eq. (3).

2.3 � Goodness of fit indicators

The most common indicator for assessing the forecasting 
performance of each model is the root of the mean square 
error RMSE (Gleckler et al. 2008). Let Ai

t
 be the value of 

the variable at time t in city i and let Fi
t
(j) be its forecast 

given by model j, the RMSE of model j when predicting 
the maximum temperature in city i for t = 1, …, n periods 
is defined as:

The assessment of the goodness of fit per city is comple-
mented by an overall indicator of the performance of each 
model which is computed by aggregating these measures 
across cities. The root of the total mean square error of model 
j, RMSE(j), is as in Eq. (4) but with the square errors averaged 
for the m cities. Then, this indicator is:

(3)dXi
t
=
(

�i − � iXi
t

)

dt + �idWi
t
+ Ji

t

(

�i
J
, �i

J

)

dqi
t

(4)RMSEi(j) =

�

�

�

�

1

n

n
�

t=1

�

Ai
t − Fi

t(j)
�2

=
√

MSEi(j)

Finally, to facilitate comparability between models, we 
normalise the mean error of a model as follows (Gleckler 
et al. 2008, Ruosteenoja 2021):

In this way, RMSE′(j) measures how well a model j is 
doing relative to the median value of the 21 models: a 
negative (positive) value indicates that the model fits better 
(worse) than the median model.

3 � Results and discussion

3.1 � Model application with historical data (1990–
2019)

Calibrating the seven parameters in Eq. (2) with daily maxi-
mum temperatures from 1990 to 2019 using the least squares 
method gives the results shown in Table 3. Standard errors 
are calculated with the heteroscedasticity and autocorrela-
tion (HAC) robust method (Newey and West 1987).

More than 75% of the tmaxi
t
 variation is due to the deter-

ministic component, since the R2 values of the estimations 
are between 0.7555 for Cadiz and 0.8321 for Malaga. The 
slope of the trend is always positive and statistically sig-
nificant at the 0.1% level for eight cities and at the 5% for 
Seville. That is, 30-year data show an increase in maximum 
temperatures over time in all nine cities. This is in line with 
the findings of other authors such as Gadea and Gonzalo 
(2020 and 2021) for Stockholm, Milan and Madrid, among 
others, and Diebold and Rudebusch (2019) for fifteen US cit-
ies. Seville and coastal cities such as Cartagena and Huelva 
show lower increases in the maximum temperature trend. By 
contrast, Granada has the highest growth rate in the trend.

The seasonal annual 
(

� i
3
and � i

4

)

 and biannual � i
5
 param-

eters are significant at the 0.1% level for all cities. However, 
the biannual seasonal parameter � i

6
 is not significant for Cor-

doba and Murcia, while the last seasonal term cos(6πt) is not 
statistically relevant for Malaga. Figure 2 shows the seasonal 
components of coastal cities (panel a) and inland cities 
(panel b). As expected, in general, the seasonal temperature 
changes are greater in non-coastal cities, although there are 
differences between them. For example, the seasonal varia-
tion in Murcia, which is located near the Mediterranean Sea, 
is close to that of coastal cities. The four coastal cities show 
similar seasonal patterns (panel a).

(5)

RMSE(j) =

√

√

√

√

1

mn

m
∑

i=1

n
∑

t=1

(

Ai
t − Fi

t(j)
)2

=

√

√

√

√

1

m

m
∑

i=1

MSEi(j)

(6)RMSE�(j) =
RMSE(j) − median(RMSE(j))

median(RMSE(j))
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As an example, Fig. 3 shows the maximum daily tem-
perature in Seville, with its deterministic part (upper 
panel) and its stochastic component once the trend and the 
seasonality have been removed (lower panel). This figure 

shows that the deterministic part can be used to forecast 
the maximum temperature on a particular day in the near 
future, given that the expected value of the stochastic part 
is zero.

Table 3   Parameters of the deterministic components (1990–2019)

Asterisks denote significance at ***0.1% level; **1%; *5%; “a” 10% (marginally significant)

Parameter 1. Huelva (R2 = 0.7843) 2. Cadiz (R2 = 0.7555) 3. Seville (R2 = 0.78114)
Estimate Standard error Estimate Standard error Estimate Standard error

� i
1

23.6521*** 0.1479 22.8752*** 0.1344 25.2616*** 0.1627
� i
2

0.0343*** 0.0085 0.0381*** 0.0078 0.0217* 0.0093
� i
3

−3.2297*** 0.1051 −3.0556*** 0.0956 −3.3574*** 0.1153
� i
4

−7.7852*** 0.0942 −6.7651*** 0.0891 −9.1956*** 0.0998
� i
5

 1.3237*** 0.1000 1.0066*** 0.0923 1.5601*** 0.1071
� i
6

−0.2218* 0.0990 −0.3463*** 0.0918 −0.1815a 0.1078
� i
7

−0.2781** 0.0995 −0.2226* 0.0918 −0.2961** 0.1074
Parameter 4. Córdoba (R2 = 0.8280) 5. Malaga (R2 = 0.8321) 6. Jaén (R2 = 0.8196)

Estimate Standard error Estimate Standard error Estimate Standard error
� i
1

23.6368*** 0.1773 21.7252*** 0.1022 21.9939*** 0.1762
� i
2

0.0546*** 0.0100 0.0579*** 0.0057 0.0485*** 0.0099
� i
3

−3.5690*** 0.1262 −3.1579*** 0.0724 −3.5895*** 0.1238
� i
4

−10.3958*** 0.1070 −7.0593*** 0.0658 −10.1595*** 0.1096
� i
5

1.9157*** 0.1167 1.2404*** 0.0708 1.8451*** 0.1174
� i
6

−0.0077 0.1164 0.1319* 0.0670 0.2670* 0.1154
� i
7

−0.3174** 0.1160 −0.0733 0.0718 −0.3248** 0.1158
Parameter 7. Granada (R2 = 0.8073) 8. Murcia (R2 = 0.8129) 9. Cartagena (R2 = 0.8143)

Estimate Standard error Estimate Standard error Estimate Standard error
� i
1

19.9876*** 0.1767 23.1660*** 0.1187 22.4648*** 0.0998
� i
2

0.0769*** 0.0101 0.0443*** 0.0066 0.0283*** 0.0055
� i
3

−3.7068*** 0.1275 −3.2458*** 0.0854 −3.2886*** 0.0712
� i
4

−9.9509*** 0.1110 −7.6050*** 0.0801 −6.3499*** 0.0691
� i
5

1.8733*** 0.1209 1.2128*** 0.0844 0.9697*** 0.0713
� i
6

0.4344*** 0.1171 −0.1096 0.0805 −0.2259*** 0.0683
� i
7

−0.3442** 0.1210 −0.1951* 0.0850 −0.1198 a 0.0715

(a) Coastal cities (b) Inland cities

Fig. 2   Seasonality of daily maximum temperatures (1990–2019)
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Once the deterministic part of the maximum daily tem-
perature is removed, the analysis continues with the decom-
position of the stochastic component. Table 4 shows some 
statistics of the estimates of Xi

t
 . Doornik-Hansen test rejects 

the normal distribution hypothesis in all cases. Three cit-
ies located in the Mediterranean area (Malaga, Cartagena 
and Murcia) present both positive skewness and excess of 
kurtosis. On the other hand, these coefficients are negative 
for four inland cities (Seville, Cordoba, Jaén and Granada). 
Moreover, the autocorrelation analysis reveals covariance-
stationary dynamics. A mean-reverting process with jumps 
of the Ornstein-Uhlenbeck type is able to capture these styl-
ised facts, so such a process is applied to the stochastic part 
of the maximum daily temperature.

The parameter values of the stochastic part and the confi-
dence intervals are shown in Table 5. There are jumps with 
a high mean reverting speed, the price volatility is high and 
in the jump case, negative values with significant volatility 
are expected.

In the case of Seville, when there are no jumps, the sto-
chastic component shows a level of �

Sev

�Sev
= 2.90 to which the 

detrended and seasonal adjusted maximum daily temperature 
tends in the long term, with a reversion speed of κSev = 84.02. 
In this case, with no jumps, this variable deviates from long-
term equilibrium because of the volatility σSev = 30.221. 
Since time is measured in years, there is a probability λidt of 
a jump in the seasonally adjusted and detrended maximum 
temperature on a specific day, with dt = 1/365. For Seville, 

Fig. 3   Daily maximum tem-
perature in Seville (1990–2019) 
with deterministic and stochas-
tic parts

Table 4   Stochastic components of tmaxi
t
 statistics (1990–2019)

r(1) is the first-order autocorrelation coefficient
Q(7) is the Box-Ljung statistic based on the first 7 autocorrelations (with p-values in parentheses)

City Median Minimum Maximum Standard 
deviation

Asymmetry Excess kurtosis r(1) Q(7)

Huelva −0.005 −11.307 12.280 3.172 0.096 −0.074 0.747 12,210 (0)
Cadiz −0.120 −10.328 12.941 3.025 0.277 −0.179 0.723 10,651 (0)
Seville 0.086 −12.714 12.859 3.383 −0.057 −0.114 0.755 12,720 (0)
Cordoba 0.158 −13.429 13.982 3.605 −0.158 −0.088 0.771 13,741 (0)
Malaga −0.139 −10.394 13.105 2.501 0.298 0.801 0.583 6500 (0)
Jaén 0.147 −12.434 13.297 3.636 −0.134 −0.123 0.782 13,464 (0)
Granada 0.202 −13.812 13.638 3.747 −0.200 −0.078 0.771 13,288 (0)
Murcia −0.068 −11.881 13.674 2.844 0.033 0.653 0.645 8420 (0)
Cartagena −0.206 −9.571 11.971 2.443 0.329 1.040 0.615 7668 (0)
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there is a probability λSevdt = 0.393 of a jump on a given day. 
When there is a jump, its size is normally distributed with 
mean �Sev

J
= −1.699 and volatility �Sev

J
= 2.103.

The expected value of the stochastic part is always zero. 
Except for the two cities on the Mediterranean coast (Malaga 
and Cartagena), when there is a jump, its expected value is 
negative. These jumps are offset by an expected positive 
value in the mean-reverting part because the level αi/κi to 
which the detrended and seasonal adjusted maximum daily 
temperature tends in the long term is positive for these six 
cities. In the case of Cartagena and Malaga, the opposite 
happens because the expected value of the jump is positive. 
This explains the signs of αi and �i

J
 obtained for these two 

cities RMSE’(j).

3.2 � Assessment of climate model performance 
(2006–2019)

The climate models show data from 2006 to 2100. The 
results for the 2006–2019 subsample can be compared with 
actual data. In this work, no historical data from models are 
used. In the period analysed (2006–2019), the differences in 
the models between the RCP4.5 and RCP8.5 scenarios are 
minor compared to the growing impact in future decades. 
This section assesses the fit of the 21 climate models (see 
Table 1) to the actual maximum daily temperature in the 
nine cities in southern Spain, and their deterministic and 
stochastic components as established in the model (1).

Table 6 summarises the results of the fit of the models to 
the data under scenarios RCP 4.5 and RCP 8.5. All RMSE 
are in a narrow interval, from 4.02 to 4.43. The magnitude 
of the differences between scenarios RCP 4.5 and 4.8 is 
also very small, although their model relative rankings do 
not match.

INMCM4 is the median or typical model under scenario 
RCP 4.5, with RMSE = 4.19, and the other twenty models 
are between the bounds (−4%, +6%) around this median 
value. There is evidence that ACCESS1-0 and CCSM4 out-
perform the rest of the models in the context of RCP 4.5. 
ACCESS1-0 model is the best in the overall indicator, with 
RMSE equal to 4.02 (3.9% below the median). It also has 
the smallest RMSE in 3 of the 9 cities (Cadiz, Murcia and 
Cartagena), whereas CCSM4 is the selected one for Huelva, 
Córdoba and Jaén.

Under scenario RCP 8.5, the median RMSE is 4.15 
(CCSM4 model), and MIROC-ESM-CHEM has the best 
average performance (2.9% below the median). Panjwani 
et al. (2020) conclude that this model also performs rela-
tively better in capturing temperature extreme events over 
the Indian region. According to the indicator per city in col-
umn (7), none of the models dominates. By contrast, BCC-
CSM1-1 shows the worst results in both circumstances, RCP 
4.5 and RCP 4.8.

Figure 4 summarises the RMSEs of the nine cities using 
a colour scheme from yellow (low values) to red (high val-
ues). These heatmaps show that all models are better able to 

Table 5   Parameters of the 
stochastic components 
(1990–2019)

City αi κi
�i
J

Value CI 95% Value CI 95% Value CI 95%
Huelva 98.06 67.92–128.20 84.94 89.47–80.42 −0.708 −0.92–−0.5
Cadiz 17.16 −6.37–40.69 84.62 89.5–79.74 −0.102 −0.25–0.04
Seville 243.89 210.69–277.08 84.02 88.26–79.77 −1.699 −1.95–−1.44
Cordoba 289.49 255.93–323.05 81.94 85.98–77.9 −2.010 −2.27–−1.75
Malaga −32.47 −51.96–−12.98 139.54 145.19–133.89 0.167 0.06–0.28
Jaén 287.76 251.69–323.83 77.48 81.5–73.46 −1.740 −1.94–−1.54
Granada 263.82 236.07–291.56 79.76 83.81–75.72 −1.919 −2.15–−1.69
Murcia 49.61 21.69–77.52 124.24 129.57–118.9 −0.264 −0.43–−0.1
Cartagena −107.59 −125.69–−89.5 138.55 143.98–133.12 0.474 0.38–0.57
City σi

�i
J

λi

Value CI 95% Value CI 95% Value CI 95%
Huelva 31.247 28.96–33.38 2.092 1.94–2.23 138.501 96–181
Cadiz 27.226 25.19–29.12 2.263 2.14–2.38 167.783 137.63–197.93
Seville 30.216 28.39–31.94 2.103 1.98–2.22 143.519 115.85–171.18
Cordoba 30.168 28.45–31.79 2.147 2.02–2.26 143.980 119.21–168.76
Malaga 21.108 19.54–22.57 2.334 2.25–2.41 195.018 176.23–213.8
Jaén 29.089 27.18–30.88 2.140 2.04–2.24 165.420 139.72–191.11
Granada 30.347 28.8–31.82 2.473 2.36–2.58 137.495 118.05–156.94
Murcia 27.709 24.83–30.31 2.251 2.15–2.35 187.568 149.46–225.68
Cartagena 16.519 15.19–17.75 2.164 2.11–2.22 226.762 212.5–241.02
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Table 6   Forecast of maximum daily temperature tmaxi
t
 , (2006–2019)

Columns (3) and (7) report the number of cities where a particular model has the smallest RMSEi(j) (Eq. 4)
Columns (4) and (8) report the number of cities where a particular model has the largest RMSEi(j)
Columns (2), (5), (6) and (9): Maximum values are in bold and minimum values are in italics and underlined

Model j Scenario RCP 4.5 Scenario RCP 8.5

RMSE(j) Best RMSEi(j) Worst 
RMSEi(j)

RMSE'(j) RMSE(j) Best RMSEi(j) Worst 
RMSEi(j)

RMSE'(j)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ACCESS1-0 4.0246 3 - −0.0394 4.0923 1 - −0.0143
BNU-ESM 4.1248 - - −0.0155 4.0879 1 - −0.0154
CCSM4 4.0354 3 - −0.0368 4.1519 - - 0.0000
CESM1(BGC) 4.1468 - - −0.0102 4.0993 2 - −0.0126
CNRM-CM5 4.3041 - 2 0.0273 4.3083 - - 0.0377
CSIRO-Mk3.6.0 4.2947 - - 0.0251 4.2321 - - 0.0193
CanESM2 4.4173 - 3 0.0544 4.2944 - - 0.0343
GFDL-CM3 4.0634 2 - −0.0301 4.0989 2 - −0.0128
GFDL-ESM2G 4.1630 - - −0.0064 4.2450 - - 0.0224
GFDL-ESM2M 4.1977 - - 0.0019 4.1403 - - −0.0028
IPSL-CMSA-LR 4.2190 - - 0.0070 4.3574 - 4 0.0495
IPSL-CM5A-MR 4.2765 - - 0.0207 4.3416 - 3 0.0457
MIROC-ESM 4.0621 1 - −0.0304 4.0699 1 - −0.0197
MIROC-ESM-CHEM 4.1750 - - −0.0035 4.0312 1 - −0.0291
MIROC5 4.2443 - - 0.0130 4.1812 - - 0.0071
MPI-ESM-LR 4.1165 - - −0.0175 4.1616 - - 0.0023
MPI-ESM-MR 4.2658 - 1 0.0182 4.0821 1 - −0.0168
MRI-CGCM3 4.1350 - - −0.0130 4.0992 - - −0.0127
NorESM1-M 4.2422 - - 0.0126 4.1769 - - 0.0060
BCC-CSM1-1 4.4340 - 3 0.0583 4.3782 - 2 0.0545
INMCM4 4.1896 - - 0.0000 4.1292 - - −0.0055

(a) Scenario RCP 4.5 (b) Scenario RCP 8.5

Fig. 4   Heatmap of RMSE of historical daily maximum temperatures by city (2006–2019)
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reproduce the maximum temperature of coastal cities, such as 
Cartagena or Málaga, than inland cities such as Granada, Cor-
doba or Jaén that have greater seasonal temperature changes.

To end this section, we analyse the ability of the 21 mod-
els to forecast the deterministic and stochastic components 
found in actual daily maximum temperatures. To that end, 
the model (1)–(3) is calibrated both for the actual data and 
for the climate model data for the forecasting period, from 
1/1/2006 to 31/12/2019. The model is recalibrated for the 
observed series with this subsample to avoid the effects of 
structural changes. Some authors have documented changes 
in the trend or seasonality patterns of climate time series. 
For example, Gay-Garcia et al. (2009) provide strong evi-
dence in favour of a trend-stationary process with a struc-
tural break in the global and hemispheric temperature data-
generating process, and Diebold and Rudebusch (2019) find 
that the seasonality of DTR (difference between the daily 
maximum and minimum temperatures) in the USA may be 
changing over time.

Tables 7 and 8 summarise the results of calibrating the 
deterministic and stochastic elements with actual data from 
2006 to 2019. After a comparison of this seasonal pat-
tern with that given in Eq. (2) and Table 3, the last term 
� i
7
cos (6�t) was eliminated because the parameter � i

7
 was not 

significant at the 5% level in all cases. This change is sup-
ported by the Chow test of the null hypothesis of structural 
stability of seasonality versus the hypothesis of a break on 
1/1/2006. This test statistic is a Wald value based on the 
robust estimator of the covariance matrix for the extended 
regression with evolving seasonality. All but three reject 
the hypothesis of seasonal stability hypothesis: there is no 
evidence of a break in seasonality at the 5% level for the 
Mediterranean cities of Murcia and Cartagena (and for these 
two, the dropped term � i

7
 is also not relevant over the whole 

sample at 5%, see Table 3).
Tables 3 and 7 also reveal that the trend slope for the 

subsample is always steeper than that for the whole period. 
Regarding the stochastic component, Table 8 shows that the 
signs and the significance of the parameters are unchanged, 
but in this subsample, the parameter of the drift αi and the 
mean of the jump �i

J
 are not significant for Malaga at 5%.

Summaries of the performance of the 21 models in pre-
dicting the deterministic and stochastic components are 
shown in Tables 9 and 10, respectively. The size of RMSE(j) 
reveals that the stochastic component is the main source of 
uncertainty in maximum temperature. Under scenario RCP 
4.5, the ACCESS1-0 model is not only the most successful 
in predicting total tmaxi

t
, but it also has the best mean square 

Table 7   Parameters of the deterministic component (2006–2019)

“a” indicates p-value < 0.10, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001

Parameter 1. Huelva (R2 = 0.7922) 2. Cadiz (R2 = 0.7653) 3. Seville (R2 = 0.8205)
Estimate Standard error Estimate Standard error Estimate Standard error

� i
1

24.1568*** 0.1835 23.4296*** 0.1756 25.5664*** 0.1929
� i
2

0.0434a 0.0236 0.0438* 0.0223 0.0283 0.0251
� i
3

−3.6066*** 0.1406 −3.3770*** 0.1274 −3.7583*** 0.1528
� i
4

−7.8974*** 0.1310 −6.8823*** 0.1253 −9.3411*** 0.1371
� i
5

1.1895*** 0.1348 0.8680*** 0.1261 1.3862*** 0.1431
� i
6

−0.3089* 0.1359 −0.5057*** 0.1257 −0.2364 0.1457
Parameter 4. Cordoba (R2 = 0.8333) 5. Malaga (R2 = 0.8414) 6. Jaén (R2 = 0.8314)

Estimate Standard error Estimate Standard error Estimate Standard error
� i
1

24.2852*** 0.2109 22.6715*** 0.1275 22.2301*** 0.2151
� i
2

0.0872** 0.0272 0.0588*** 0.0158 0.1204*** 0.0271
� i
3

−3.9098*** 0.1659 −3.3608*** 0.0952 −3.9151*** 0.1633
� i
4

−10.5154*** 0.1459 −7.1977*** 0.0890 −10.3595*** 0.1469
� i
5

1.6242*** 0.1576 1.1358*** 0.0933 1.5965*** 0.1571
� i
6

−0.1109 0.1536 0.0898 0.0904 0.1116 0.1524
Parameter 7. Granada (R2 = 0.8072) 8. Murcia (R2 = 0.8132) 9. Cartagena (R2 = 0.8174)

Estimate Standard error Estimate Standard error Estimate Standard error
� i
1

21.0398*** 0.2276 23.6475*** 0.1706 22.8163*** 0.1441
� i
2

0.1010*** 0.0289 0.0759*** 0.0201 0.0416* 0.0167
� i
3

−4.0071*** 0.1731 −3.2762*** 0.1199 −3.2984*** 0.0974
� i
4

−10.0381*** 0.1553 −7.7250*** 0.1099 −6.4375*** 0.0944
� i
5

1.5718*** 0.1665 1.0996*** 0.1159 0.9052*** 0.0974
� i
6

0.3353* 0.1617 −0.1385 0.1138 −0.2492** 0.0943
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Table 8   Parameters of the 
stochastic components 
(2006–2019)

City αi κi
�i
J

Value CI 95% Value CI 95% Value CI 95%
Huelva 92.78 46.04–139.51 88.12 94.76–81.48 −0.78 −1.14–−0.42
Cadiz 22.10 −13.86–58.06 87.68 94.88–80.48 −0.13 −0.34–0.09
Seville 230.70 183.84–277.56 87.29 93.57–81.02 −1.67 −2.02–−1.31
Cordoba 267.97 219.21–316.72 86.87 92.89–80.84 −2.07 −2.54–−1.61
Malaga −16.84 −44.27–10.6 136.88 145–128.77 0.08 −0.07–0.24
Jaén 218.02 162.66–273.38 78.75 84.83–72.68 −1.67 −2.06–−1.29
Granada 223.18 181.13–265.23 77.97 84.03–71.91 −1.85 −2.22–−1.47
Murcia 55.08 15.21–94.94 127.75 135.53–119.98 −0.30 −0.53–−0.06
Cartagena −94.87 −120.01–−69.73 139.90 147.9–131.89 0.40 0.27–0.53
City σi

�i
J

λi

Value CI 95% Value CI 95% Value CI 95
Huelva 32.97 29.72–35.92 2.07 1.79–2.31 118.68 53.4–183.95
Cadiz 27.47 23.99–30.56 2.25 2.08–2.41 173.37 124.49–222.24
Seville 30.38 27.78–32.77 2.17 2–2.34 138.40 100.22–176.59
Córdoba 31.61 28.95–34.07 2.21 2–2.4 129.57 90.91–168.23
Malaga 20.47 18.34–22.4 2.32 2.2–2.43 196.85 171.59–222.12
Jaén 31.49 28.5–34.22 2.19 2–2.36 130.20 85.05–175.36
Granada 32.27 29.8–34.56 2.60 2.4–2.78 120.41 89.33–151.49
Murcia 28.01 24.05–31.48 2.31 2.16–2.46 185.62 135.39–235.86
Cartagena 15.38 13.39–17.14 2.19 2.11–2.26 235.61 216.11–255.1

Table 9   Forecasts of deterministic component fi(t) (2006–2019)

See Table 6

Model j Scenario RCP 4.5 Scenario RCP 8.5

RMSE(j) Best RMSEi(j) Worst 
RMSEi(j)

RMSE'(j) RMSE(j) Best RMSEi(j) Worst 
RMSEi(j)

RMSE'(j)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ACCESS1-0 1.0420 - - −0.0296 1.0186 - - −0.0657
BNU-ESM 1.0616 - - −0.0114 1.1653 - 1 0.0689
CCSM4 0.9994 - - −0.0693 1.0616 - - −0.0262
CESM1(BGC) 1.1025 - - 0.0267 1.1351 1 2 0.0411
CNRM-CM5 1.0663 - 1 −0.0070 1.0531 - - −0.0340
CSIRO-Mk3.6.0 1.0801 - - 0.0059 1.0227 2 - −0.0619
CanESM2 1.1977 2 - 0.1154 1.2117 3 2 0.1114
GFDL-CM3 1.1331 - - 0.0553 1.1968 - 2 0.0977
GFDL-ESM2G 1.0968 - - 0.0214 1.1111 2 1 0.0192
GFDL-ESM2M 1.1354 - - 0.0574 1.0925 - - 0.0021
IPSL-CMSA-LR 0.9931 1 - −0.0752 1.0676 - - −0.0207
IPSL-CM5A-MR 1.2887 - - 0.2002 1.2430 - 1 0.1401
MIROC-ESM 1.0661 - - −0.0072 1.0829 - - −0.0067
MIROC-ESM-CHEM 1.0206 1 - −0.0495 0.9827 - - −0.0986
MIROC5 1.0239 - - −0.0465 1.0021 - - −0.0808
MPI-ESM-LR 1.0738 - - 0.0000 1.0164 - - −0.0677
MPI-ESM-MR 1.1648 4 3 0.0848 1.0902 - - 0.0000
MRI-CGCM3 1.0561 - - −0.0165 1.0054 1 - −0.0778
NorESM1-M 1.1399 - - 0.0616 1.1453 - - 0.0506
BCC-CSM1-1 1.2674 1 4 0.1803 1.1876 - - 0.0893
INMCM4 1.0293 - - −0.0414 1.0995 - - 0.0086
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error for the stochastic part in five cities (Cadiz, Malaga, 
Granada, Murcia and Cartagena) together with the derived 
overall indicator RMSE(j). On the other hand, the model with 
a better indicator in predicting the deterministic pattern is 
model IPSL-CMSA-LR. The great variability in the behav-
iour of MPI-ESM-MR is striking: it has the worst fit for the 
deterministic pattern in Cadiz, Malaga and Jaén, but it is the 
most accurate in Huelva, Seville Córdoba and Murcia. The 
results by cities conclude that GCM model BCC-CSM1-1 
provides the worst accuracy when replicating the determin-
istic component in four cities.

Comparisons of the temperature forecasts and their 
breakdown into deterministic and stochastic components 
in scenario RCP 8.5 show discrepancies between the differ-
ent criteria. According to the criterion selected, the models 
that best replicate deterministic patterns are MIROC-ESM-
CHEM (overall RMSE(j)), and CanESM2 (city indicators 
RMSEi). For the stochastic part, the model selected with 
the first criteria is again MIROC-ESM-CHEM, while the 
counts of best RMSEi per city do not indicate a model 
that clearly outperforms the rest. As in scenario RCP 4.5, 
for the deterministic component, the results are mixed 

(or contradictory): for example, the CanESM2 model is 
the best for Malaga, Jaén and Granada, but the worst for 
Huelva and Seville. This may be the reason for the poor 
overall performance of this model, together with IPSL-
CM5A-MR. Finally, the relatively poor performance of 
the GCM model BCC-CSM1-1 in predicting temperature 
tmaxi

t
 under scenarios RCP 4.5 and RCP 8.5 may be due to 

the poor prediction accuracy of its two components and, 
especially, of the stochastic part.

Some papers have looked at similar problems as Ruos-
teenoja (2021) and Gleckler et al. (2008) using a somewhat 
different methodology and databases. Gleckler et al. (2008) 
analyse the performance of CMIP3 climate models during 
the twentieth century and propose a model climate perfor-
mance index (MCPI), which is a composite index of the 
RMSEs calculated for a set of relevant climate variables. 
They obtain that the relative ranking of models varies con-
siderably for each variable. Ruosteenoja (2021) analyses 
the CMIP6 model performance for northern and southern 
Europe. This author calculates a performance index using 
1981–2010 data, that is historical model runs. Table 11 
shows the main differences with this work.

Table 10   Forecasts of the stochastic component Xi
t
 (2006–2019)

See Table 6

Model j Scenario RCP 4.5 Scenario RCP 8.5

RMSE(j) Best RMSEi(j) Worst 
RMSEi(j)

RMSE'(j) RMSE(j) Best RMSEi(j) Worst 
RMSEi(j)

RMSE'(j)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ACCESS1-0 3.8874 5 - −0.0398 3.9636 2 - −0.0125
BNU-ESM 3.9859 - - −0.0154 3.9183 1 - −0.0238
CCSM4 3.9097 3 - −0.0343 4.0138 - - 0.0000
CESM1(BGC) 3.9976 - −0.0125 3.9391 1 - −0.0186
CNRM-CM5 4.1699 - 2 0.0300 4.1776 - - 0.0408
CSIRO-Mk3.6.0 4.1566 - - 0.0267 4.1067 - - 0.0231
CanESM2 4.2518 - 5 0.0503 4.1200 - - 0.0264
GFDL-CM3 3.9022 - - −0.0361 3.9203 - - −0.0233
GFDL-ESM2G 4.0159 - - −0.0080 4.0970 - - 0.0207
GFDL-ESM2M 4.0412 - - −0.0018 3.9936 - - −0.0051
IPSL-CMSA-LR 4.1005 - - 0.0129 4.2245 - 3 0.0525
IPSL-CM5A-MR 4.0777 - - 0.0072 4.1598 1 3 0.0364
MIROC-ESM 3.9197 1 - −0.0318 3.9232 2 - −0.0226
MIROC-ESM-CHEM 4.0484 - - 0.0000 3.9096 1 - −0.0260
MIROC5 4.1189 - - 0.0174 4.0593 - - 0.0113
MPI-ESM-LR 3.9739 - - −0.0184 4.0355 - - 0.0054
MPI-ESM-MR 4.1037 - - 0.0137 3.9338 1 - −0.0199
MRI-CGCM3 3.9978 - - −0.0125 3.9740 - - −0.0099
NorESM1-M 4.0861 - - 0.0093 4.0168 - - 0.0007
BCC-CSM1-1 4.2490 - 2 0.0496 4.2140 - 3 0.0499
INMCM4 4.0612 - - 0.0032 3.9801 - - −0.0084
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4 � Conclusions

Information from general circulation models can be used for 
future prediction of variables that affect health, economic 
activities and ecosystems. HWs are one of the most signifi-
cant effects of climate change, and they are manifested mainly 
through daily maximum temperatures. However, numerous 
GCMs are used in practice, and when downscaled to a local 
or regional scale they can give very different results. Selecting 
the model(s) used in an application is thus an important issue.

This paper first analyses the historical daily maximum 
temperatures (1990–2019) from nine cities in southern Spain 
and found that the temperature trend is always positive and 
statistically significant. Also, the stochastic parameters are 
calculated showing the historic volatility behaviour.

Second, this paper presents a method for selecting a GCM 
model for local application under uncertainty. The ability 
of twenty-one GCMs to predict maximum daily tempera-
tures in Southern Spain is investigated for nine cities under 
scenarios RCP 4.5 and RCP 8.5, compared with actual data 
from the period (2006–2019). The results show substantial 
differences in the goodness of fit.

In order to analyse the time series behaviour of actual and model 
data, a decomposition into a deterministic part (trend and seasonality) 
and a stochastic part are used. The stochastic part is a mean-reverting 
Ornstein-Uhlenbeck process with jumps. This approach enables the 
value of both deterministic and stochastic parameters to be analysed 
and used for a specific application based on the expected values and/
or the risk measures depending on each case study. Note that the risk 
measures are associated with the volatility. A model or an ensemble 
of models can be selected for an application.

The proposed methodology can be applied with some parallel 
runs of the same model and after calculating the model perfor-
mance assuming a probability for each parallel run. Note that 
the result obtained is not necessarily valid for other locations or 
other climate variables, but the method proposed could be used 
to select a suitable GCM to be used in each case. The use of the 

proposed methodology depends on the availability of data, with 
more years of information it would be more efficient.

Appendix

It is possible to represent the density function of Xt given Xt − 1:

In this case, Δt is a day, that is Δt = 1/365.
There is a probability λiΔt that there will be a jump; thus, 

Eq. (8) applies:

There is a probability (1 − λiΔt) that there will be no 
jump, in which case Eq. (9) applies:

The parameters �i ≡
{

�i, � i, �i, �i,�i
j
, �i

j

}

 can be calcu-
lated by minimising the negative value of the log likelihood 
function:
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Table 11   Methodology comparison

This paper Ruosteenoja (2021)

Objective Select a model or a set of models for an application 
where the maximum daily temperature is relevant

Evaluate the performance of climate models

Data Scenario runs (2006–2019) Historical models runs (1981–2010)
Scale Local (nine cities in southern Spain) Large areas (mostly northern and southern Europe)
Variables Maximum daily temperature Mostly surface air temperature, precipitation, sea 

level air pressure and incoming solar radiation at the 
surface

Frequency Daily Monthly
GCMs models 21 Initially 38
Structure of time series Decomposed in part deterministic and part stochastic Without decomposition
Runs Only a run If possible use several parallel runs
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