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A B S T R A C T

International experience has shown that electricity consumers react to pricing policies by switching retailers
or shifting part of their consumption from peak to off-peak hours. This behavior has a direct effect on the
competition between retailers. In the light of this evidence (and considering the increasing penetration of
smart meters) this study presents a theoretical framework in which retailers compete on time-of-use (ToU)
pricing. In this case, the model is calibrated with Spanish data. Our objective is to determine whether the
ToU pricing that emerges from the retail competition makes for greater efficiency than a fixed tariff, and if so,
then to what extent. We also examine how efficiency gains are distributed between retailers and consumers.
According to the results, the price signal to consumers under ToU pricing may be effective for modifying
their consumption patterns and obtaining social welfare gains. As for the intermediate values of consumers’
elasticities, ToU pricing is a win–win for both retailers and consumers. This has substantial implications in
terms of cost-efficiency.
1. Introduction

Dynamic pricing, also known as revenue management, refers to
pricing strategies aimed at increasing profits. These strategies are most
useful when consumption is met at a certain point in time (travel and
leisure, telecommunications, online retailing, etc.) and capacity can
only be increased at a relatively high marginal cost. These characteris-
tics also create the potential for price discrimination. In particular, lib-
eralized electricity markets comply with the requirements for potential
dynamic price discrimination.

Indeed, in electricity systems with large-scale penetration of in-
termittent renewable generation, the supply of reserve capacity has
proven to be insufficient for maintaining balance in the system, due
to its high maintenance costs (Strbac, 2008). Additionally, large-scale
storage technologies are not mature enough to guarantee sufficient ca-
pacity (Fraunholz et al., 2021). For this reason, previous studies (Free-
man, 2005; Conchado and Linares, 2012; Finn and Fitzpatrick, 2014;
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E-mail address: mariacristina.pizarro@ehu.eus (C. Pizarro-Irizar).

1 The intermittence of many renewable technologies (e.g., wind or solar) can affect the technical efficiency of electricity grids. This problem can be reduced
by energy storage systems (currently unavailable or extremely expensive) or by the use of DSM strategies.

2 In this study we use two different concepts related to efficiency: technical efficiency (related to the optimization of the resources for electricity generation)
and economic efficiency (related to the potential welfare gains derived from lower prices).

Wolak, 2019) have suggested that pricing policies directed at demand-
side management (DSM) might foster the penetration of renewable
sources and contribute to the efficiency of electricity systems.1 Part
of the consumption would then be shifted to hours in which gener-
ation, transport and distribution can be handled more efficiently (in
terms of less resources and/or lower prices), thus reducing electric-
ity costs.2 Hence, DSM policies have a two-fold effect of reducing
electricity consumption during peak hours and permitting flexibility
in grid management to establish a better match between supply and
demand, including variations in renewable sources (Pina et al., 2012).
DSM policies that include economic incentives for electricity users can
also induce persistent welfare improvements, particularly when long-
term effects, such as habit formation and habituation, are taken into
account (Ito et al., 2018).

Meanwhile, price mechanisms provide signals for efficient alloca-
tion of resources. In fact, previous research has indicated that the
apparent inelasticity of electricity demand is mainly caused by the
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absence of a price signal to final consumers (Ilic et al., 2002; Lijesen,
2007). The wholesale market price (set on an hourly basis) clearly
reflects the changes in marginal costs on the supply side (electricity
production). However, keeping prices for final consumers invariant can
result in more rigidity in consumption than under the efficient level,
thus generating a major market failure (Borenstein and Holland, 2005;
Jessoe and Rapson, 2015).

This disparity between wholesale and retail prices has long been
a major cause of inefficiency in electricity markets. On the one hand,
rigidities can hinder the optimization of capacity and load factors
(technical efficiency), while on the other hand, invariant prices can
prevent consumers from obtaining possible reductions in the average
price of their electricity bills (economic efficiency). Moreover, the
system as a whole has failed to take full advantage of local natural
resources (e.g., renewable sources) and to reduce the import of fossil
fuels for thermal power generation.

As for DSM policies, they are based on a redistribution of load
over time, shifting consumption from periods of high demand (peak
demand) to periods of lower demand (off-peak demand). Although they
do not necessarily reduce total energy consumption,3 some policies may
(depending on their design) involve a reduction in electricity demand,
not only a shift from peak to off-peak.4 The key element in DSM is the
incentive to modify consumers’ electricity usage habits. This incentive
is usually translated into the variable part of the electricity bill and
may be achieved through smart meters with two-way communication
(i.e., from the smart-meter to utilities and from the smart-meter to
the consumers) to enable users to monitor, control, and predict their
electricity consumption.

International analyzes have proven that when users have access
to information on how much they consume, they tend to react to
dynamic pricing policies by reducing electricity consumption during
peak hours. In fact, one study by Faruqui and George (2005) on the
California market found that the necessary investments for replacing
all conventional meters with smart meters could be fully offset by the
demand response benefits. There is also evidence for substantial hetero-
geneity in preferences for smart home energy products, with younger
consumers being much more likely to perceive their economic value
and showing greater willingness to pay for such products (Daziano,
2020).

According to the European Commission (2019), smart meter systems
in the European Union deliver an overall benefit per customer of
EUR 271, plus energy savings of 7.85%.5 Specifically, the target for
2020 was for 80% of conventional electricity meters to be replaced
by smart meters (European Commission, 2009). However, only Den-
mark, Estonia, Finland, Italy, Malta, Spain, and Sweden reached this
target (European Commission, 2019).

Based on this evidence, we propose a theoretical model in which
competing retailers use time-of-use (ToU) pricing. In our model, con-
sumers may switch between retailers, depending on the price scheme
that they offer. The highlight of our model is retailers’ demand func-
tions that depend on (i) the price change between peak and off-peak
consumption by the retailer and (ii) the price divergence between
different retailers. The literature, which (to date) has mainly focused
on understanding customers’ willingness to adopt dynamic tariffs, sup-
ports the fact that DSM via dynamic pricing of electricity is capa-
ble of stimulating demand response. In particular, according to the
review by Dutta and Mitra (2017), the residential sector reacts to

3 When consumers face reduced prices during certain periods they tend to
ncrease total consumption.

4 There are some additional benefits of dynamic pricing that shift demand
rom peak to off-peak hours, such as avoiding capacity investments that remain
dle during off-peak hours (Dutta and Mitra, 2017).

5 These figures show the average benefit per meter point toward the long
2

erm, especially for countries that have already completed a large-scale rollout. l
price changes more than commercial or small industrial consumers.
Meanwhile, the price responsiveness depends on socio-demographic
characteristics, which are typically larger for customers with high con-
sumption levels and those living in hotter climates. However, there has
been little research on designing suitable pricing schemes and compar-
ing flat rate tariffs to dynamic tariff schemes. Conversely, concerning
retail competition, Mountain and Burns (2021) empirically confirmed
that consumers who switched their electricity retailer in the previous 12
months in Australia paid 4% less than those who remained with their
retailers. This supports the fact that consumers may react to the price
signal, in addition to other considerations such as reputation and brand
reliability. Furthermore, it proves that consumers under ToU pricing
tend to pay lower annual bills than those under flat rate tariffs. In
this sense, analyzing dynamic pricing from the welfare viewpoint can
achieve better informed consumers and regulators, which can enhance
the actual implementation of ToU pricing under retailer competition.

In this study, we calculate the resulting price schemes and calibrate
the model using Spanish data, given its availability at the hourly level.6
Our objective is to determine whether the equilibrium ToU pricing that
emerges from the retail competition model makes for greater efficiency
than a fixed tariff, and if so, then to what extent. We also examine
how efficiency gains are distributed between retailers and consumers,
and argue that the price signal to consumers under ToU pricing may
be quite effective for attaining social welfare gains by modifying users’
consumption patterns. Our results indicate that for intermediate values
of consumers’ elasticities, ToU pricing can be a win–win situation for
both retailers and consumers.

Another contribution of this study is the way in which we model
retailers’ electricity costs. We consider these costs as endogenous, since
they may change when electricity consumers have greater elasticities.
This may place downward pressure on electricity prices and reduce
firms’ profits. The question that we address is whether it is still possi-
ble to increase firms’ profits with ToU pricing, considering that their
revenues may be lower. Our results may be significant for the fu-
ture evolution of the European electricity market, given the growing
penetration of smart meters and dynamic pricing schemes.

The remainder of this study is organized as follows. Section 2
summarizes the empirical evidence on the elasticity of demand, while
our theoretical model is presented in Section 3. Sections 4 and 5
describe the data, our simulations, and the results, respectively. Finally,
Section 6 presents the main conclusions and suggestions for further
research.

2. The price elasticity of electricity demand

Previous literature has mainly focused on aggregate electricity de-
mand (Section 2.1) and provided estimates of the variation in aggregate
consumption when prices change. However, we are also interested in
two other measures of elasticity. The first is inter-hour price elasticity
(Section 2.2) and the second is the elasticity of the demand faced by
the retailer (Section 2.3).

Concerning the inter-hour price elasticity, own-price elasticity ex-
presses the change in electricity demand in a given period, for a
variation of 1% in the price of electricity in the same period. Cross-
price elasticity represents the change in electricity demand in a given
period, for a variation of 1% in the price of electricity in a different
period. Related to the elasticity of the demand faced by the retailer,
own-price elasticity expresses the change in electricity demand, for a
variation of 1% in the price of electricity for the same retailer in the
same period. Moreover, cross-price elasticity represents the change in
electricity demand, for a variation of 1% in the price of electricity for
a competing retailer in the same period.

6 In Spain, the deployment of smart meters started in 2011. By 2018,
8.14% of the electricity meters for consumers with contracted power levels
f less than 15 kW were smart meters (Comisión Nacional de los Mercados y
a Competencia, 2019).
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2.1. Aggregate price elasticity

There is an important distinction between short- and long-run elas-
ticity. In their meta-analysis of residential electricity demand elastic-
ities, Espey and Espey (2004) reported short-run elasticities between
−2.01 and −0.004 (with a mean of −0.35 and a median −0.28) and
long-run elasticities between −2.25 and −0.04 (with a mean −0.85 and
a median −0.81). In general, there is a large variability in the esti-
mated values of elasticity, depending on the availability of technology
enabling price signals and the price of substitute products, especially
in the long-run. According to Filippini (2011), the short-run own-price
elasticity for the Swiss market is lower than 1%, whereas the long-run
figure is higher than 1%. Thus, although demand in terms of short-run
own-price elasticity is relatively inelastic, in the long-run, it is elastic.
More recent studies have corroborated these findings (Auray et al.,
2019) and found higher values for these elasticities, especially as retail
prices increase over time (Labandeira and López-Otero, 2017; Bueno
et al., 2020).

As for Spain, there are few empirical studies on the elasticity
of residential electricity demand, and none related to dynamic pric-
ing. Blázquez et al. (2013) used econometric techniques based on
household income, weather, and geographical location, among others,
and found estimated own-price elasticity figures of −0.07 in the short-
run and −0.19 in the long-run for the 2000–2008 period. Labandeira
et al. (2006, 2012) estimated the own-price elasticity of electricity
demand in Spain at −0.78 for the 1975–1995 period, while Pellini
(2021) obtained values of −0.699 for the 1975–2018 period. All of
these values fall within the range of the aforementioned international
studies.

2.2. Inter-hour price elasticity

In general, electricity demand shows regular patterns throughout
a typical 24 hour time period. Meanwhile, electricity consumption is
higher during the so-called peak hours, and considerably lower in off-
peak periods. Fig. 1 represents the distribution of electricity demand
in four European countries (Germany, Spain, France, and the United
Kingdom) for three different years (2015, 2018, and 2020).7 For each
year, we plot the demand of a representative day in the winter (the
third Wednesday of January), as shown in Fig. 1(a), and another
representative day in the summer (the third Wednesday of June), as
shown in Fig. 1(b).

Demand patterns for the winter and summer seasons are different,
but consistent across years and countries. Specifically, winter demand
shows two distinct peaks (one in the morning and one in the evening),
while demand in summer shows a single peak (around midday), which
can be longer than the peak-time in the winter. Peaks are also smoother
in the summer. Additionally, the effect of economic cycles is shown in
Fig. 1, with demand levels related to economic activity per country.

Considering this pattern of electricity demand, there is scope for
efficiency gains based on the shift in consumption from peak to off-
peak hours induced by price differences. In fact, the success of any ToU
pricing policy lies in the price elasticity of demand (Fillipini, 1995a).

DSM programs can also be price-oriented or incentive-oriented. In
price-oriented systems, consumers react to different price schemes, by
modifying their consumption patterns according to the electricity price,
e.g., ToU, Critical Peak Pricing (CPP), Inclining Block Rates, and Real-
Time Pricing. In incentive-oriented systems, consumers are rewarded
if they reduce their consumption in a given period, e.g., Critical Peak
Rebate. Our analysis exclusively focuses on price-oriented policies, in
particular, ToU pricing.

7 See Do et al. (2016) for a more detailed analysis of electricity demand
ehavior in Germany and Martin-Rodriguez and Cáceres-Hernández (2005) for
uch information in Spain.
3

s

Empirical evidence has shown that these dynamic pricing pro-
grams can reduce electricity demand during peak hours, with fig-
ures being lower for ToU programs (e.g., Darby and McKenna (2012)
and Di Cosmo et al. (2014) for Ireland) and higher for CPP programs
(e.g., Vesterberg and Krishnamurthy (2016) for Sweden). Moreover,
ToU schemes can achieve load shifting (e.g., Breukers and Mourik
(2013) for the United Kingdom and Fabra et al. (2021) for Spain).
However, the success of these programs depends on demand elasticity.

Finally, King and Chatterjee (2003) reviewed the estimations for
elasticities in 35 studies from the United States and other countries for
domestic customers and small businesses under ToU and CPP between
1980 and 2003, and found that the average own-price elasticity was
−0.3, with figures ranging between −0.1 and −0.8 (between −0.1 and
−0.4 for most studies). In related research, Faruqui and George (2002)
estimated average values of 0.14 (with a range between 0.07 and 0.21)
for elasticity of substitution.

2.3. Retailer demand elasticity

Consumers may perceive the costs for switching from one firm to
another. According to Klemperer (1995), these switching costs ‘‘give
firms a degree of market power over their repeat-purchasers, and mean
that firms’ current market shares are important determinants of their
future profits’’. In this sense, each firm faces a trade-off between (i)
charging a lower price to attract new consumers who will remain with
them in subsequent periods (investing in the market share) and (ii)
charging higher prices to their existing consumers to harvest profits,
at the expense of losing some of the market share in the future. As a
result, switching costs can result in higher prices and welfare losses
for consumers. They may also discourage new entries and diminish
market competition. Wilson (2012) emphasized the importance of con-
sidering the interaction between search costs and switching costs in
eight different markets. Search costs can harm competition more than
switching costs. Such costs can also reduce the incentives for firms
to differentiate their products.8 Simshauser and Whish-Wilson (2017)
laimed that price discrimination in which the marginal offer has a zero
etail profit margin displays positive distributional efficiency effects,
ecause it distributes the firm’s cost recovery from weak (more price-
ensitive) customer segments to strong (less price-sensitive) ones, which
re usually high-income households.

The electricity market, after the creation of retail markets during
he 1990s and early 2000s, is one of many liberalized markets in which
onsumers are allowed to switch retailers. In related research, Keaveney
1995) analyzed the existence of critical events that determine cus-
omers’ decision to switch suppliers, while Gärling et al. (2008) found
hat lower switching in electricity markets is related to the fact that
lectricity costs constitute a small fraction of total expenditures. Harold
t al. (2020) analyzed switching behavior in the energy retail markets
f 27 European Union countries and found that switching in these
arkets is greater for consumers who have switched in at least one

ther retail market and have access to the Internet. In this line, Fabra
nd Reguant (2020) confirmed that sellers charge lower prices when
uyers have a higher perceived willingness to search. The switching
ate is thus an indicator of the level of competition in the retail
lectricity market.9

Ilieva and Gabriel (2014) investigated the effects of regulation in
he Nordic retail market for electricity and concluded that decisions

8 As Giulietti et al. (2014) showed, product differentiation can explain
he price differentials between retailers and be observationally equivalent to
witching costs.

9 Of course, price is not the only variable that affects such decisions. Other
onsiderations, such as the standard of customer service, loyalty, information
earch costs, and lack of economic benefits, may also affect the decision to

witch retailers (Giulietti et al., 2005).
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Fig. 1. Electricity demand in European wholesale markets [MWh].
Note: Germany, Spain, France, and the United Kingdom for 2015, 2018, and 2020. The third Wednesday of January (for the winter) and the third Wednesday of June (for the
summer).
Source: Our own work using data from Operador del Mercado Ibérico de Electricidad (OMIE) (2019).
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ade by one retailer have a strong impact on the market strategy of
nother. Focusing on electricity distribution companies in the United
tates, Ros (2017) found that retail electricity competition is associated
ith lower electricity prices, with the mean total impact of −4.3% for

esidential consumers during the 1972–2009 period. These two studies
ddressed retail competition and found aggregate price elasticity of
emand values of −0.4 and a range from −0.40 to −0.61, respectively.
owever, they did not consider the effect of inter-hour price elasticities
r retailer demand elasticities.

In the present study, our main contribution is to model electricity
rices based on both retail price elasticity and inter-hour price elastic-
ties, in order to understand the impact of retail price competition on
SM policies.

. The model

In this study we use a price competition model with differentiated
roducts to characterize the optimal prices that a retail company would
pply to residential consumers under ToU pricing. Differentiation is
rovided by the billing services of the retailer, which may not be identi-
al and may induce some customer loyalty. This loyalty is reinforced by
witching costs, which, in this context, refer to the costs that consumers
ace when they switch electricity retailers (see Section 2.3). In this
egard, the higher the costs of shifting from one retailer to another,
he more important the current market share is for future profitability.

When setting hourly prices, a retailer must realize that customers
n this period (e.g., this quarter) could switch to a competitor for
he following period, especially if the other company’s price schedule
s better suited to their needs. For instance, a customer with high
lectricity consumption during peak hours and little propensity to shift
uch consumption to off-peak hours generally prefers a retailer that
ffers moderate prices for peak hours, even if the price for off-peak
ours is higher. The same customer may also be willing to switch
etailers if the advantages of the competitor’s price scheme outweighs
he switching costs.

Taking this into account, we develop a model in which the service
rovided by retailers is heterogeneous and there are switching costs
uch that in the short-run customers are locked-in and it takes one
eriod to change retailers. In this case, the regulator allows price
iscrimination depending on the consumption period, since companies
ave more information about demand and costs than the regulator.

We also consider two symmetric retailers (𝐴 and 𝐵), two periods
𝑡 and 𝑡 + 1), and two intervals (peak and off-peak). Sub-index 1 refers
o peak hours, while sub-index 2 refers to off-peak hours. Consumers
4

uying from a retailer in period 𝑡 must wait until period 𝑡+1 to change
he retailer. There is also a peak and an off-peak interval in periods 𝑡
nd in 𝑡 + 1. Here, consumers distribute their electricity consumption
etween these two intervals, depending on their preferences and the
rice of electricity in each interval. To formalize this decision, we
ssume that the representative consumer’s utility function is given by
(𝑞) = 𝜂′𝑞 − 𝑞′𝛩𝑞

2 , where 𝑞 = (𝑞1, 𝑞2), 𝑞1 is consumption during peak
ours, 𝑞2 is consumption during off-peak hours, 𝜂 = (𝜂1, 𝜂2) is the vector
f strictly positive parameters, and 𝛩 is an asymmetric 2 × 2 matrix10:

=
(

𝜔1 𝛾1
𝛾2 𝜔2

)

(1)

Matrix 𝛩 is positive and definite (equivalent to strict concavity of
the utility function). Thus, the diagonal elements (𝜔1, 𝜔2) are positive.
As for the off-diagonal elements (𝛾1, 𝛾2), they are also positive under
the assumption of weak asymmetric gross substitutability between
consumption during peak and off-peak hours (De Jaegher, 2009).

The representative consumer chooses 𝑞 to solve:

max{𝜂′𝑞 −
𝑞′𝛩𝑞
2

+ 𝑦} subject to 𝑝′𝑞 + 𝑦 = 𝑚 (2)

where 𝑝 is the vector of prices, 𝑦 is the numeraire whose price is
normalized to 1, and 𝑚 > 0 is the income. Matrix 𝛩 and the vectors 𝜂
and 𝑝 satisfy the condition for an interior solution, 𝛩−1(𝜂 − 𝑝) > 0, and
he feasibility condition, 𝑝′𝛩−1(𝜂 − 𝑝) ≤ 𝑚. Thus, the inverse demand
unctions are11:

(𝑞) = 𝜂 − 𝛩𝑞 (3)

hile the demand functions are:

(𝑝) = 𝛩−1(𝜂 − 𝑝) (4)

Equivalently, denoting 𝜃 = 𝜔1𝜔2 − 𝛾1𝛾2, 𝑎𝑖 =
𝜂𝑖𝜔𝑗−𝜂𝑗 𝛾𝑖

𝜃 , 𝑏𝑖 =
𝜔𝑗
𝜃 and

𝑧𝑖 =
𝛾𝑖
𝜃 for 𝑖 = 1, 2 and 𝑖 ≠ 𝑗, the demands for peak and off-peak hours

are, respectively:

𝑞1 = 𝑎1 − 𝑏1𝑝1 + 𝑧1𝑝2 (5)
𝑞2 = 𝑎2 − 𝑏2𝑝𝑖 + 𝑧2𝑝𝑗 (6)

10 See Amir et al. (2017) for a generalization of the quadratic utility function
in Singh and Vives (1984). We allow 𝛾 to differ between peak and off-peak
hours.

11 See Lemma 4 in Amir et al. (2017).
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where 𝑏𝑖 > 𝑧𝑖. Meanwhile, firms 𝐴 and 𝐵 decide their pricing schemes
simultaneously and non-cooperatively, considering that consumers al-
locate their electricity consumption in period 𝑡. This is only based on
the peak and off-peak prices of their retailer. Meanwhile, consumption
in 𝑡 does not depend on the other retailer’s prices, since consumers
cannot switch the supplier in the short-run. However, since consumers
can switch retailers in 𝑡 + 1, the (future) demand in 𝑡 + 1 also depends
on the prices of the two retailers. Our two-firm model can be easily
generalized in the case of more competitors.

As for the retailers, they are multiproduct firms, since they produce
electricity during peak and off-peak hours. Additionally, since it takes
one period to switch retailers, consumers cannot switch a retailer until
the end of period 𝑡 (period 𝑡 + 1). Hence, in period 𝑡, the short-run
demand functions for firm 𝐴 for peak (sub-index 1) and off-peak hours
(sub-index 2) are (symmetric for firm 𝐵):

𝑞𝐴1(𝑡) = 𝑎1 − 𝑏1𝑝𝐴1(𝑡) + 𝑏12𝑝𝐴2(𝑡) (peak) (7)
𝑞𝐴2(𝑡) = 𝑎2 − 𝑏2𝑝𝐴2(𝑡) + 𝑏21𝑝𝐴1(𝑡) (off-peak), (8)

where 𝑎𝑖, 𝑏𝑖, 𝑏𝑖𝑗 > 0.12 Note that the constants 𝑎1 and 𝑎2 may contain
the impact of the rival’s prices in previous periods, which are given in
period 𝑡. Additionally, Eqs. (7) and (8) represent the short-run situation
in which consumers are committed to their retailer, and their only
decision is consumption during peak and off-peak hours. Thus, the
short-run demand during peak hours for retailer 𝐴 only depends on its
own peak and off-peak prices, while the same goes for off-peak demand.

Moreover, retailer prices are assumed to be the same in t and t+1 in
order to reflect the trade-off between setting a high price in the short-
run, and taking advantage of the lock-in effect, but losing the market
share in the long-run when customers switch retailers, or setting a low
price in the short-run and increasing the market share in the long-run.

Given a point on the demand curve, i.e., the pair price-quantity
(𝑞𝑖, 𝑝𝑖), the own-price short-run elasticities (no retailer switching) are:

𝜖𝑖𝑖 =
𝜕𝑞𝑖
𝜕𝑝𝑖

𝑝𝑖
𝑞𝑖

= −𝑏𝑖
𝑝𝑖
𝑞𝑖

(i = 1, 2) (9)

while the cross-price short-run elasticities (no retailer switching)
re:

𝑖𝑗 =
𝜕𝑞𝑖
𝜕𝑝𝑗

𝑝𝑗
𝑞𝑖

= 𝑏𝑖𝑗
𝑝𝑗
𝑞𝑖

(i, j = 1, 2; i ≠ j) (10)

Consumers may switch retailers in period 𝑡 + 1, so during period
firm 𝐴 expects a future (long-run) demand function for period 𝑡 + 1
uring peak and off-peak hours, respectively (symmetric for firm 𝐵):

𝐴1(𝑡 + 1) = 𝐴1 − 𝐵1𝑝𝐴1 + 𝐵12𝑝𝐴2 +𝐷1𝑝𝐵1(𝑡) +𝐷12𝑝𝐵2(𝑡) (peak) (11)

𝐴2(𝑡 + 1) = 𝐴2 − 𝐵2𝑝𝐴2 + 𝐵21𝑝𝐴1 +𝐷2𝑝𝐵2(𝑡) +𝐷21𝑝𝐵1(𝑡) (off-peak),(12)

here 𝐴𝑖, 𝐵𝑖, 𝐵𝑖𝑗 , 𝐷𝑖, 𝐷𝑖𝑗 > 0, and 𝐵𝑖 > 𝐷𝑖. It is also assumed that:
𝑝𝐴1(𝑡) = 𝑝𝐴1(𝑡 + 1) = 𝑝𝐴1 and 𝑝𝐴2(𝑡) = 𝑝𝐴2(𝑡 + 1) = 𝑝𝐴2.

The last two terms represent the effect of the competitor’s prices in
the previous period. In this setting, firm 𝐴 can lose customers in 𝑡 + 1,
especially if 𝑝𝐴1 is high or if 𝑝𝐵1 is low in 𝑡. This formulation reflects the
firm’s choice between setting a low price to increase the future market
share and setting a high price to exploit the fact that its customers are
locked-in in the short-run. The terms of this trade-off are affected by
how sensitive consumers are to the other retailer’s offers. We define
the long-run and inter-retailer price elasticities as follows:

Retailer 𝑙’s long-run price elasticities (𝑖 = peak, off-peak) are:

E𝑙𝑖 =
𝜕𝑞𝑙𝑖
𝜕𝑝𝑙𝑖

𝑝𝑙𝑖
𝑞𝑙𝑖

= −𝐵𝑖
𝑝𝑙𝑖
𝑞𝑙𝑖

(13)

12 As pointed out by a reviewer, there are two effects that appear after a
eak price change: (1) peak-off-peak shifting of electricity consumption and
2) electricity conservation. If the first effect dominates, then 𝑏21 > 0, whereas
f the second effect dominates, then 𝑏21 < 0. In our model, we assume that the
irst effect dominates.
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Retailer 𝑙’s long-run cross (inter-hour) price elasticities (𝑖, 𝑗 = peak,
ff-peak) are:

𝑙𝑖𝑙𝑗 =
𝜕𝑞𝑙𝑖
𝜕𝑝𝑙𝑗

𝑝𝑙𝑗
𝑞𝑙𝑖

= 𝐵𝑖𝑗
𝑝𝑙𝑗
𝑞𝑙𝑖

(14)

Inter-retailer 𝑘’s and 𝑙’s price elasticities (𝑖 = peak, off-peak) are:

𝑙𝑘𝑖 =
𝜕𝑞𝑙𝑖
𝜕𝑝𝑘𝑖

𝑝𝑘𝑖
𝑞𝑙𝑖

= 𝐷𝑖
𝑝𝑘𝑖
𝑞𝑙𝑖

(15)

All of the parameters of the model are positive: (i) 𝑎1, 𝑏1, 𝑏12 for peak
hours and 𝑎2, 𝑏2, 𝑏21 for off-peak hours refer to the electricity demand in
𝑡; and (ii) 𝐴1, 𝐵1, 𝐵12, 𝐷1, 𝐷12 for peak hours and 𝐴2, 𝐵2, 𝐷21, 𝐷2, 𝐷21
for off-peak hours, contain information on future demand. In particular,
the consumer reaction in 𝑡+1 to the price of the rival firm in 𝑡 is linked
to the retailer switching rate. In Section 4, we assign values to these
parameters in order to conduct the simulations, since none of them are
directly observable.

At 𝑡, firms maximize their profits for periods 𝑡 and 𝑡 + 1, and
their decision variables are peak and off-peak prices.13 Therefore, the
objective function for 𝐴 (symmetric for firm 𝐵) is:

𝜋𝐴 = (𝑝𝐴1 − 𝑐1)[𝑞𝐴1(𝑡) + 𝑞𝐴1(𝑡 + 1)] + (𝑝𝐴2 − 𝑐2)[𝑞𝐴2(𝑡) + 𝑞𝐴2(𝑡 + 1)]

The parameters 𝑐1 and 𝑐2 are the unit costs for the retailing com-
panies, which are the same for firms 𝐴 and 𝐵 and for periods 𝑡 and
𝑡+1. In this case, 𝑐1 represents the unit costs during peak hours, which
correspond to the average price of the pool during the peak period.
Similarly, 𝑐2 represents the unit costs during off-peak hours, which
reflect the average price of the pool during the off-peak period.

At 𝑡, firm 𝐴 chooses prices 𝑝𝐴1 and 𝑝𝐴2 in order to maximize its
profits (symmetric for firm 𝐵):

max
{𝑝𝐴1 ,𝑝𝐴2}

(𝑝𝐴1 − 𝑐1)[(𝛼1 − 𝛽1𝑝𝐴1 + 𝛽12𝑝𝐴2) +𝐷1𝑝𝐵1 +𝐷12𝑝𝐵2]

+ (𝑝𝐴2 − 𝑐2)[(𝛼2 − 𝛽2𝑝𝐴2 + 𝛽21𝑝𝐴1) +𝐷2𝑝𝐵2 +𝐷21𝑝𝐵1],

where 𝛼𝑖 = 𝑎𝑖 + 𝐴𝑖, 𝛽𝑖 = 𝑏𝑖 + 𝐵𝑖, 𝛽𝑖𝑗 = 𝑏𝑖𝑗 + 𝐵𝑖𝑗 for 𝑖 = 1, 2, 𝑗 = 1, 2, and
𝑖 ≠ 𝑗.

Solving the first-order conditions for firm 𝐴 gives the following
reaction functions for firm 𝐴 during the peak and off-peak periods
(symmetric for firm 𝐵):

𝑝𝐴1 =
𝛼1 + 𝛽1𝑐1 − 𝛽21𝑐2 + (𝛽12 + 𝛽21)𝑝𝐴2 +𝐷1𝑝𝐵1 +𝐷12𝑝𝐵2

2𝛽1

𝐴2 =
𝛼2 + 𝛽2𝑐2 − 𝛽12𝑐1 + (𝛽12 + 𝛽21)𝑝𝐴1 +𝐷2𝑝𝐵2 +𝐷21𝑝𝐵1

2𝛽2
Note that in each period, the prices in the peak and off-peak inter-

als (both the own price and the price of the other firm) are affected
y electricity production costs and by consumer behavior regarding
he switching consumption between retailers and between peak and
ff-peak periods.

By symmetry, it follows that 𝑝𝐴1 = 𝑝𝐵1 and 𝑝𝐴2 = 𝑝𝐵2, so the Nash
quilibrium (Eqs. (16) and (17)) for the peak and off-peak prices is:

𝐴1 = 𝑝𝐵1

=
(2𝛽2 −𝐷2)(𝛼1 + 𝛽1𝑐1 − 𝛽21𝑐2) + (𝛽12 + 𝛽21 +𝐷12)(𝛼2 + 𝛽2𝑐2 − 𝛽12𝑐1)

(2𝛽1 −𝐷1)(2𝛽2 −𝐷2) − (𝛽12 + 𝛽21 +𝐷12)(𝛽12 + 𝛽21 +𝐷21)
(16)

𝐴2 = 𝑝𝐵2

=
(2𝛽1 −𝐷1)(𝛼2 + 𝛽2𝑐2 − 𝛽12𝑐1) + (𝛽12 + 𝛽21 +𝐷21)(𝛼1 + 𝛽1𝑐1 − 𝛽21𝑐2)

(2𝛽1 −𝐷1)(2𝛽2 −𝐷2) − (𝛽12 + 𝛽21 +𝐷12)(𝛽12 + 𝛽21 +𝐷21)
(17)

13 We assume that the discount factor of future payoffs is 1.
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4. Simulations and data

In this section, we present the purpose of the simulations (Sec-
tion 4.1), the procedure for computing the social welfare or total
surplus (Section 4.2), and the data used in this empirical process
(Section 4.3).

4.1. General purpose of the simulations

The main purpose of our simulations is to determine whether the
ToU pricing that emerges from the retail competition makes for greater
efficiency than a fixed tariff, and if so, then to what extent. We also
examine how efficiency gains are distributed between producers and
consumers.

To carry out these simulations, the parameters related to consumers’
elasticity between hours, their willingness to switch retailers, and
the costs of electricity production must be calibrated. We do this by
using real data from the Spanish electricity system provided by the
market operator OMIE,14 the system operator REE,15 and the National
Commission on Markets and Competition CNMC,16 plus the results
from other studies on inter-hour price elasticity (Filippini, 1995a,b)
and self-selected scenarios for retailer price elasticity. We present a
more detailed explanation on the parametrization of these variables
in Section 4.3. In particular, we consider the data on the cost of
electricity for retailers (Section 4.3.1), on inter-hour price elasticity
(Section 4.3.2), and on inter-retailer price elasticity (Section 4.3.3).

The simulations are applied to the ToU model in two periods. Given
the seasonal differences in electricity consumption (recall Fig. 1), we
analyze one representative month in the winter (January) and one in
the summer (June). The simulations are performed for 2013, the last
year without ToU pricing in Spain. Since 2014, Spanish residential
prices have been linked to electricity market prices. Using 2013 data,
the effects of ToU pricing compared to the benchmark without dynamic
pricing can be seen.

We also consider peak and off-peak retail prices for the hours of the
maximum and minimum price spikes in the pool, respectively. In other
words, for a given month, we find the hour in which the average price
is the highest (lowest) for peak (off-peak) hours during the winter and
summer. We do not average winter and summer hours together, but
we treat them separately. For instance, for month 𝑚 (either the winter
or summer), we compute the average hourly price as 𝑃ℎ = 1

𝐻𝑖

∑𝐻𝑖
𝑖=1 𝑃𝐻𝑖

or h=1,. . . ,24 and i=30,31. Then, we take max𝑃ℎ in order to identify
he peak hours and min𝑃ℎ to identify the off-peak hours. The peak
etail prices occur in hour 20 during the winter and in hour 13 during
he summer, while the off-peak retail prices occur in hour 5 during
oth the winter and summer. The purpose of this strategy is to identify
he largest possible gain in electricity consumption variation that is
onsistent with the empirical evidence in Section 2.2.

.2. Methodology for computing the change in social welfare

In this study, we compute social welfare as the sum of the consumer
urplus and the producer surplus. The aim is to determine under
hat conditions the equilibrium prices for peak and off-peak hours
nder the ToU scheme can lead to an efficiency gain and a win–win
ituation for both consumers and producers. First, we determine the
ffect on consumers (Section 4.2.1), and then explore the effect on
etailers (Section 4.2.2). Finally, we obtain the change in social welfare
Section 4.2.3).

14 Operador del Mercado Ibérico de Electricidad.
15 Red Eléctrica de España.
16 Comisión Nacional de los Mercados 𝑦 la Competencia, formerly called
omisión Nacional de la Energía CNE.
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(

4.2.1. Effect on consumers
In order to calculate the variation in consumer surplus, we consider

two different situations, represented in Fig. 2. In Fig. 2(a), the average
price based on ToU pricing (𝑝𝑇𝑂𝑈 ) is lower than the regulated price
(𝑝𝑇𝑈𝑅), i.e., 𝑝𝑇𝑂𝑈 < 𝑝𝑇𝑈𝑅, while the quantity of energy traded under
ToU pricing (𝑞𝑇𝑂𝑈 ) exceeds the quantity of energy traded under the
regulated price (𝑞𝑇𝑈𝑅), i.e., 𝑞𝑇𝑂𝑈 > 𝑞𝑇𝑈𝑅. Note that 𝑝𝑇𝑂𝑈 is the

eighted average of equilibrium prices at different hours, whereas
𝑇𝑈𝑅 represents the fixed price that consumers pay when there is no
rice discrimination (our benchmark).

In Fig. 2(a), the triangle ABC, computed as (𝑝𝑇𝑈𝑅−𝑝𝑇𝑂𝑈 )⋅(𝑞𝑇𝑂𝑈−𝑞𝑇𝑈𝑅)
2 ,

represents the decrease in deadweight loss. The rectangle DABE, com-
puted as 𝑞𝑇𝑈𝑅 ⋅ (𝑝𝑇𝑈𝑅 − 𝑝𝑇𝑂𝑈 ), is a transfer from the retailer to
the consumers, and is therefore not an efficiency loss. The change
in the consumer surplus is the sum of the areas 𝐴𝐵𝐶 and 𝐷𝐴𝐵𝐸:
(𝑝𝑇𝑈𝑅−𝑝𝑇𝑂𝑈 )⋅(𝑞𝑇𝑂𝑈−𝑞𝑇𝑈𝑅)

2 + 𝑞𝑇𝑈𝑅 ⋅ (𝑝𝑇𝑈𝑅 − 𝑝𝑇𝑂𝑈 ), which is positive (gain).
Fig. 2(b) represents the opposite case, where 𝑝𝑇𝑂𝑈 > 𝑝𝑇𝑈𝑅 and 𝑞𝑇𝑂𝑈 <
𝑞𝑇𝑈𝑅 and the change in the consumer surplus is −[ (𝑝𝑇𝑂𝑈−𝑝𝑇𝑈𝑅)⋅(𝑞𝑇𝑈𝑅−𝑞𝑇𝑂𝑈 )

2
+ 𝑞𝑇𝑂𝑈 ⋅ (𝑝𝑇𝑂𝑈 − 𝑝𝑇𝑈𝑅)], which is negative (loss). In sum, consumer
urplus increases when average prices drop, as represented in Fig. 2(a),
nd decreases when average prices rise, as shown in Fig. 2(b).

.2.2. Effect on retailers
The change in profits for the retailer is computed as the change in

evenues minus the change in costs (𝛥𝑝𝑟𝑜𝑓𝑖𝑡 = 𝛥𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝛥𝑐𝑜𝑠𝑡𝑠). The
hange in revenues is the difference between revenues under the ToU
cheme and those under the regulated tariff (𝛥𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑝𝑇𝑂𝑈 ⋅ 𝑞𝑇𝑂𝑈 −
𝑝𝑇𝑈𝑅 ⋅𝑞𝑇𝑈𝑅). The change in costs takes into account the endogeneity of
he pool price, which is higher than the actual value when the quantity
f energy reduces as a result of ToU prices, or lower otherwise. We
se 𝑝𝑃𝑜𝑜𝑙𝑇 𝑜𝑈 to denote the average pool price under a ToU scheme,
.e., when the quantity demanded is 𝑞𝑇𝑂𝑈 , and by 𝑝𝑃𝑜𝑜𝑙, i.e., when the
riginal average pool price that corresponds to a quantity of energy
𝑇𝑈𝑅. Therefore, the change in costs is computed as 𝑝𝑃𝑜𝑜𝑙𝑇 𝑜𝑈 ∗ 𝑞𝑇𝑂𝑈 −
𝑃𝑜𝑜𝑙 ∗ 𝑞𝑇𝑈𝑅. To obtain the corresponding 𝑝𝑃𝑜𝑜𝑙𝑇 𝑜𝑈 for each scenario,
e use the original supply curve and find the intersection with the new
emand after implementing our ToU model.

.2.3. Change in social welfare
In this section, we compute the change in social welfare as the sum

f the variations in consumer surplus and retailer profits.
When the ToU average price is higher than the regulated price,

he deadweight loss is larger and the gain for the retailer fails to
ffset the loss for consumers. In this case, ToU pricing can result in
loss of efficiency, after which social welfare decreases. This loss

s a consequence of retailers’ market power stemming from the low
lasticity of demand.

When the ToU average price is lower than the regulated price,
he lower revenues of retailers may decrease profits by less than the
ain for consumers, thus increasing social welfare. A third and more
nteresting possibility from a policymaking perspective is that under
oU pricing, lower revenue for retailers is offset by lower cost. In this
ase, both consumer surplus and retailer profits increase, resulting in an
ncrease in social welfare and a win–win situation for both consumers
nd retailers.

.3. Data

This section presents the data used in the simulations. Specifi-
ally, we consider the data on the cost of electricity for retailers
Section 4.3.1), on inter-hour price elasticity (Section 4.3.2), and on
nter-retailer price elasticity (Section 4.3.3).

.3.1. Data on the cost of electricity for retailers
We assume that the cost of electricity for a retailer in each period
𝑐1 for peak hours and 𝑐2 for off-peak hours) is the final electricity
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Fig. 2. Consumer surplus.
Table 1
Descriptive statistics of the final electricity wholesale price [EUR/MWh].
Source: Our own work using the pool data from Operador del Mercado Ibérico de Electricidad (OMIE) (2015,
2019).

Season Mean Median Std. deviation Skewness Kurtosis

Winter-peak 89.61 91.15 12.28 −1.06 3.53
Winter-off-peak 33.19 33.43 15.37 −0.16 2.04
Summer-peak 60.49 63.72 9.23 −0.89 3.81
Summer-off-peak 40.69 44.04 11.70 −0.53 1.92

Note: Winter-January 2013, peak-hour 20, off-peak-hour 5. Summer-June 2013, peak-hour 13, off-peak-hour
5. Peak prices correspond to the parameter 𝑐1 in Eqs. (16)-(17), while off-peak prices correspond to the
parameter 𝑐2.
wholesale price reported by the market operator OMIE. This price
includes the day-ahead market, intraday markets, adjustment services
and capacity payments.

Table 1 summarizes the main descriptive statistics of the final
electricity wholesale price used in the simulations. According to the
data, there is a greater dispersion of prices in the winter, with a
greater peak/off-peak difference. Meanwhile, negative asymmetry is
observed for all prices, with leptokurtic distribution for peak hours and
platykurtic distribution for off-peak hours, both in the winter and the
summer.

4.3.2. Data on inter-hour price elasticity
In this section, we use the short-run own-price elasticities obtained

by Filippini (1995a,b) for peak and off-peak periods. These elasticity
values come from actual pricing experiments with ToU rates conducted
in Switzerland. They also represent possible responses of retail cus-
tomers if they perceive the price signal. Since these elasticities are
factored into the average ranges provided by the literature (between
−0.1 and −0.8, see Section 2 for more details) and are close to the
−0.78 reported by Labandeira et al. (2006) for Spain, they are useful for
a discussion on the effect of elasticities. It should be noted that we do
not claim that the evidence from Switzerland in the 1990s is applicable
to today’s elasticities in Spain. The objective is to obtain a variation
range for the elasticities. In any case, more recent studies have provided
elasticities in the same range. In particular, Boogen et al. (2021) found
that the short-run price elasticity of residential electricity consumption
in Switzerland was approximately −0.7 in 2015 and 2016. Concerning
Spain, a more recent study found a value of −0.699 for the electricity
price-elasticity for the 1975–2018 period (Pellini, 2021).
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For cross-price demand elasticities, we select the values that are
lower than own-price demand elasticities.17 Matrix 18 presents the
own-price and cross-price elasticity values. Note that demand is more
elastic during off-peak hours for both own-price changes and cross-price
elasticity.

𝜖𝑇 𝑜𝑈2 =
[

𝜖11 𝜖12
𝜖21 𝜖22

]

=
[

−0.60 0.20
0.30 −0.79

]

(18)

Given a point in the demand curve, i.e., a price-quantity pair
(𝑞𝑖, 𝑝𝑖),18 and given the values for own- and cross-price elasticities,
we calibrate the parameters of the short-run demand function (when
switching retailers is not possible).

Eqs. (9) and (10) relate parameters 𝑏𝑖 and 𝑏𝑖𝑗 to the price elastici-
ties. Finally, parameter 𝑎𝑖 represents the maximum amount of energy
demanded in period 𝑡 for each hour, i.e., the energy demanded at
zero price in the hourly aggregate demand curve. A summary of the
calibration of these parameters can be found in Tables A.9 and A.10 in
Appendix.

4.3.3. Data on inter-retailer price elasticity
In order to calculate the coefficients 𝐵𝑖 and 𝐷𝑖 from demand

Eqs. (11) and (12), we use price elasticities when consumers are not

17 Initial simulations were performed with those reported in Filippini
(1995a,b). However, we did not obtain interior solutions. Thus, we use the
lowest possible values, which are consistent with the regularity conditions of
the model.

18 We consider that 25% of the aggregate demand stems from the residential
sector, as reported by Instituto para la Diversificación y Ahorro de la Energía
(IDAE) (2011).
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Table 2
Simulated scenarios and retailer elasticities.

Scenario Description E𝐴1 E𝐴2 E𝐴𝐵1 E𝐴𝐵2

Benchmark Actual regulated electricity prices applied in Spain for
the period reported (observed prices).

– – – –

Scenario 1 Very high elasticity (very low switching costs) −3.5 −4.0 2.9 3.21
Scenario 2 High elasticity −3.0 −3.5 2.4 2.71
Scenario 3 Medium/High elasticity −2.7 −3.24 2.1 2.45
Scenario 4 Medium elasticity −2.0 −3.0 1.4 2.21
Scenario 5 Low elasticity (high switching costs) −1.5 −2.0 0.9 1.21

Note: E𝐴1 = retailer peak-price elasticity, E𝐴2 = retailer off-peak-price elasticity, E𝐴𝐵1 = inter-retailer peak-price elasticity,
E𝐴𝐵2 = inter-retailer off-peak-price elasticity; 𝐸𝐴1𝐴2 = 𝜖12; 𝐸𝐴2𝐴1 = 𝜖21, and 𝐸𝐴1𝐵2 = 𝐸𝐴2𝐵1 = 0.
locked-in and can change retailers, i.e., the retailer and inter-retailer
price elasticities. Eqs. (13) and (15) allow us to compute the relevant
coefficients.

For the sake of simplicity in parameter selection, we consider that
the demands in 𝑡 and 𝑡+1 are equivalent, except that in t+1, consumers
may change suppliers. Thus, 𝐷𝑖 = 𝐵𝑖−𝑏𝑖. We also assume that 𝑏12 = 𝐵12
and 𝑏21 = 𝐵21. Moreover, we assume that the effect of inter-hour cross-
price elasticities when choosing a retailer (i.e., the other retailer’s price
in off-peak hours when choosing consumption for peak hours and vice
versa) is negligible. Hence, 𝐷12 and 𝐷21 are zero.19

We consider five scenarios with different retailer and inter-retailer
price elasticities.20 Table 2 describes the varying elasticities for our five
scenarios. The benchmark case is the actual regulated electricity prices
applied in Spain for the period under study. We model the ‘‘very low
switching costs’’ scenario as Scenario 1 and the ‘‘high switching costs’’
scenario as Scenario 5. We also propose three intermediate scenarios,
i.e., Scenarios 2 to 4, with retailer and inter-retailer elasticity values
that are lower than those in the ‘‘very low switching costs’’ scenario and
higher than those in the ‘‘high switching costs’’ scenario. A summary
of all of the parameters calibrated for the simulations can be found in
Tables A.9 and A.10 in Appendix.

5. Results and discussion

Here, we present the results of the simulations for ToU optimal
prices, based on our theoretical model. First, we explore the total
efficiency gains (Section 5.1), and then the effect of ToU pricing on
the cost of electricity (Section 5.2).

5.1. Total efficiency gains

In this study, we modeled the five scenarios with the different
retailer and inter-retailer price elasticities presented in Table 2 and
analyzed the change in social welfare under ToU pricing, compared
to the benchmark case. We used the same values for the short-run
elasticities as in Matrix 18 and the final electricity wholesale prices
presented in Table 1, as a proxy for the cost of electricity during the
peak and off-peak periods. In sum, we used the calibrated parameter
values presented in Tables A.9 and A.10 in Appendix. The endogenous
variables of our model are ToU prices and quantity values for the peak
and off-peak periods.

Note that relatively low switching costs (relatively high inter-
retailer price-elasticity) are necessary for the consumer expenditures
to be lower than the benchmark. Then, the question is under what
conditions is it possible to increase firms’ profits with ToU pricing,
considering that their revenues will inevitably be lower when there are

19 Taylor et al. (2005) found that cross-price elasticities are generally in an
rder of magnitude that is smaller than own-price effects, while Borenstein
nd Holland (2005) and Holland and Mansur (2006) assumed that cross-price
lasticities between demands in different periods are zero.
20 Note that we hold the same values for the inter-hour elasticities (recall
8

atrix 18), with the same electricity costs (recall Table 1) in all of them.
higher elasticities. Increases in profits may come from reductions in
firms’ costs. Furthermore, when pool prices are endogenous and react
to consumers’ demand behavior, ToU pricing (given that it transfers
consumption from peak to off-peak periods) represents an efficiency
gain that translates into lower costs for firms. Determining whether
this decrease in costs is enough to offset the decrease in revenue is the
objective of our simulation. It is important to note that we consider that
electricity costs are endogenous, pool prices may change as a result of
ToU pricing.

Table 3 presents the relevant prices from simulating our model,
while Table 5 presents the impact on social welfare (consumer surplus
plus firms profits), compared to the benchmark, for a representative
month in winter. The retailer and inter-retailer elasticities are taken
from Table 2, while the inter-hour price elasticities from Filippini
(1995a,b).

The first important result in Table 3 is that all scenarios improve
cost efficiency, since average wholesale pool prices are lower than
actual prices. This effect comes from consumers reacting to price signals
and transferring consumption from peak to off-peak periods. However,
a closer examination of the retail prices revealed that only Scenarios
1 and 2 achieve lower average retail prices than the benchmark of
regulated tariffs. Meanwhile, in Scenarios 3 to 5, retailer and inter-
retailer elasticities were too low for price schemes to be lower than
the benchmark.

Regarding the substitution of electricity consumption between the
peak and off-peak hours for one hour, Table 4 shows a clear peak-
shaving effect (between 1.17 and 1.26) with respect to the benchmark
scenario (1.66). Within the scenarios, there is no clear pattern. How-
ever, we found that in the scenarios in which the average price is higher
than the benchmark price, the peak-shaving is larger.

According to the social welfare analysis in Table 5, Scenarios 1 to
4 achieve positive social welfare gains, whereas only Scenario 5 leads
to losses. The gains obtained in Scenario 1 (very high elasticity) are
exclusively from the increase in consumer surplus, in comparison to
the benchmark. When elasticities are high, consumers can take full
advantage of ToU pricing, react to prices, and change retailers more
easily. This also indicates that the optimal prices by retailers are lower
in response to low customer loyalty.

However, in Scenario 5, elasticities are low, and optimal retail prices
and revenues are correspondingly high. In this case, the low elasticities
give market power to retailers, with the resulting deadweight loss
yielding a lower social welfare than in the benchmark case of regulated
tariffs.

In Scenarios 3 and 4, the social welfare gains come from the increase
in firms’ profits. In both scenarios, there is a cost reduction, as a con-
sequence of ToU pricing (consumers transfer part of their consumption
at peak periods to off-peak periods), which is not translated into lower
retail prices. Indeed, the lower elasticities in these scenarios (compared
to Scenarios 1 and 2) increase the loyalty of customers. Hence, optimal
retail prices are higher and consumer surplus is lower than in the
benchmark case.

Scenario 2 is particularly interesting because it presents a win–win
situation in which both producers and consumers are better off, with

positive variations in consumer surplus and firms’ profits, compared
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Table 3
Simulations for ToU prices. Two periods: peak vs. off-peak, winter.
Source: Our own work using the actual regulated tariff from Comisión Nacional de los Mercados y la Competencia (2014)
and the pool data from Operador del Mercado Ibérico de Electricidad (OMIE) (2015, 2019).

Retail price Pool price
[EUR/kWh] [EUR/MWh]

Average Peak Off-peak Average Peak Off-peak

Benchmark 0.150938 – – 63.82 89.61 33.19

Scenario 1 0.140111 0.163880 0.118773 61.75 83.03 42.65
Scenario 2 0.149338 0.173090 0.128048 60.89 81.96 42.00
Scenario 3 0.155474 0.179651 0.133925 60.31 80.96 41.91
Scenario 4 0.167900 0.198009 0.142754 58.60 78.88 41.66
Scenario 5 0.196673 0.221820 0.174722 54.35 76.55 34.98

Note: Winter-January 2013, peak-hour 20, off-peak-hour 5. Short-run price elasticities are from Filippini (1995a,b) (see Matrix
(18)), while other price elasticities are from Table 2.
Table 4
Peak/Off-peak price and quantity ratios, winter.
Source: Our own work using the actual regulated tariff from
Comisión Nacional de los Mercados y la Competencia (2014)
and the pool data from Operador del Mercado Ibérico de
Electricidad (OMIE) (2015, 2019).

Price ratio Quantity ratio

Benchmark 1 1.66
Scenario 1 1.38 1.26
Scenario 2 1.35 1.25
Scenario 3 1.34 1.25
Scenario 4 1.39 1.17
Scenario 5 1.27 1.22

Note: Winter-January 2013, peak-hour 20, off-peak-hour 5.
Short-run price elasticities are from Filippini (1995a,b) (see
Matrix (18)), while other price elasticities are from Table 2.
Prices from Table 3.
Table 5
Welfare analysis for ToU pricing. Two periods: peak vs. off-peak, winter. [kEUR].
Source: Our own work using the actual regulated tariff from Comisión Nacional de los Mercados y la
Competencia (2014) and the pool data from Operador del Mercado Ibérico de Electricidad (OMIE) (2015,
2019).

𝛥Consumer Retailer 𝛥Social

surplus 𝛥Revenue 𝛥Cost 𝛥Profits welfare

Scenario 1 1,784 −915 34 −950 834
Scenario 2 (win–win) 260 −19 −376 357 617
Scenario 3 −731 531 −645 1,177 446
Scenario 4 −2,681 1,505 −1,277 2,781 100
Scenario 5 −6,922 3,304 −2,662 5,966 −956

Note: Winter-January 2013, peak-hour 20, off-peak-hour 5. Short-run price elasticities are from Filippini
(1995a,b) (see Matrix (18)), while other price elasticities are from Table 2. Prices are from Table 3.
to the benchmark case. In this scenario, elasticities are high and the
optimal average ToU prices are slightly lower than in the bench-
mark case (EUR/MWh 149.34 vs EUR/MWh 150.94). This explains
the higher consumer surplus and the lower revenues for firms. The
high elasticity also means that consumers react to price signals by
reassigning consumption between peak and off-peak periods, leading
to a cost reduction that offsets the reduction in firms’ revenues.

The same analysis for a representative summer month is shown in
Tables 6, 7, and 8. Table 6 reveals that Scenarios 1 to 3 give lower retail
prices than in the benchmark case, but average pool prices are higher,
which is different from the outcome for the winter. This is because the
load curve in the summer is flatter than that in the winter (i.e., there
is less difference between peak and off-peak prices), which reduces the
possibilities of obtaining cost reductions by shifting consumption from
peak to off-peak periods.

Table 7 also shows a clear peak-shaving effect (between 1.17 and
1.27) with respect to the benchmark scenario (1.45). As in the winter,
there are scenarios in which the average price is higher than the
benchmark price and the peak-shaving effect is larger. In sum, the peak-
shaving effect is similar in the winter and the summer, but the peak to
9

off-peak price ratio is lower in the summer. Our findings are consistent
with those of Faruqui et al. (2017).

As shown in Table 8, in Scenario 3 (medium/high elasticities),
ToU pricing is a win–win situation, compared to the benchmark of
regulated tariffs. The slight decrease in the average retail price (0.08%),
compared to the benchmark case, increases demand, consumer surplus,
and firms’ revenues (the increase in demand offsets the decrease in
retail price for the given values of the elasticities). The increase in
demand also drives the pool price up and increases retailers’ costs. In
this scenario, the variation in revenues offsets the higher costs, resulting
in higher profits for the firms. Meanwhile, ToU pricing is preferred by
both consumers and firms, which are better off than in the benchmark
case of a regulated tariff. Note that, in this case, the welfare gains do
not mainly come from a shift in consumption from peak to off-peak
periods that decreases costs, as in the simulation for winter. Instead, it
is based on the fact that a slightly lower price is able to increase firms’
revenues by spurring demand.

In Scenarios 4 and 5, the increases in average retail prices with ToU
pricing (10.9% and 27.6%, respectively) lead to a substantial decrease
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Table 6
Price simulations according to ToU. Two periods: peak vs. off-peak, summer.
Source: Our own work using the actual regulated tariff from Comisión Nacional de los Mercados y la Competencia (2014)
and the pool data from Operador del Mercado Ibérico de Electricidad (OMIE) (2015, 2019).

Retail price Pool price
[EUR/kWh] [EUR/MWh]

Average Peak Off-peak Average Peak Off-peak

Benchmark 0.138658 – – 50.77 60.49 40.69

Scenario 1 0.124219 0.134550 0.114884 51.77 60.10 44.25
Scenario 2 0.132796 0.143650 0.123032 51.40 59.92 43.73
Scenario 3 0.138552 0.150134 0.128212 51.23 59.92 43.47
Scenario 4 0.153768 0.168347 0.136126 50.05 58.02 43.42
Scenario 5 0.176946 0.191649 0.164255 47.87 56.99 39.99

Note: Summer-June 2013, peak-hour 13, off-peak-hour 5. Short-run price elasticities are from Filippini (1995a,b) (see Matrix
(18)), while other price elasticities are from Table 2.
Table 7
Peak/Off-peak price and quantity ratios, summer.
Source: Our own work using the actual regulated
tariff from Comisión Nacional de los Mercados y la
Competencia (2014) and the pool data from Operador
del Mercado Ibérico de Electricidad (OMIE) (2015,
2019).

Price ratio Quantity ratio

Benchmark 1 1.45
Scenario 1 1.17 1.27
Scenario 2 1.17 1.26
Scenario 3 1.17 1.25
Scenario 4 1.24 1.17
Scenario 5 1.17 1.21

Note: Summer-June 2013, peak-hour 13, off-peak-
hour 5. Short-run price elasticities are from Filip-
pini (1995a,b) (see Matrix (18)), while other price
elasticities are from Table 2. Prices are from Table 6.

n consumer surplus. This cannot be offset by the gains in firms’ profits,
esulting in lower social welfare.

Finally, a comparison of the prices that lead to social welfare gains
the sum of consumer surplus and profits is higher) in both the winter
nd the summer reveals that such social welfare gains can be obtained,
ven when ToU prices are higher than the benchmark. However, to
btain a win–win situation (in which both consumer surplus and profits
re higher), average ToU prices must be lower than actual prices.

.2. The effect of ToU pricing on the cost of electricity

In order to isolate the effect of ToU pricing on cost efficiency,
e analyzed what would happen if the ToU average price was the

ame as the actual retail price (i.e., the benchmark price). Would this
ead to lower costs? To answer this question, we maintained the inter-
our elasticity figures from Matrix (18), and changed the remaining
lasticities so that the ToU scheme replicates the actual average price.

Note that even if average prices under the ToU scheme are the same
s in the benchmark case, there is an effect on pool prices and the
ost of electricity, due to the different consumption pattern. Thus, we
nalyzed the effect of ToU pricing on electricity market prices in the
ool.

Fig. 3 shows the actual wholesale electricity prices in the benchmark
white blocks) and the simulated electricity wholesale prices under
he ToU scheme (gray blocks) for both the winter (thin lines) and
he summer (thick lines). The blocks represent peak, mean, and off-
eak prices. This figure also shows that, despite average retail prices
eing the same, peak electricity prices are lower and off-peak prices are
igher under the ToU pricing scenario. This effect is present both in the
inter and the summer, although it is greater in the winter because the
eak/off-peak gap is wider. In the winter, since the decrease in the peak
lectricity price more than offsets the increase in the off-peak price,
10

ean prices under the ToU scheme are lower than the actual values
(EUR/MWh 61.00 vs. EUR/MWh 63.82). However, in the summer, the
average wholesale electricity prices under the ToU scheme are slightly
higher than the actual prices (EUR/MWh 51.23 vs. EUR/MWh 50.77),
which indicates that ToU pricing does not necessarily reduce wholesale
electricity prices, despite reducing the peak/off-peak ratio.

6. Conclusions and policy implications

Energy demand management plays a key role in balancing inter-
mittent generation from renewable energy sources. Thus, this study
focused on the design of optimal electricity prices for final residential
consumers. A key element in improving the efficiency of the electricity
system included designing pricing policies that reflect actual genera-
tion costs. In this regard, prices with hourly differentiation serve two
purposes. On the one hand, they make the system easier to manage by
increasing the price signal during peak periods, when energy is more
expensive to produce. This can encourage customers to change their
consumption patterns, which may also reduce the need for investment
in power plants to meet peak demand. On the other hand, the differ-
ence in prices contributes to the efficiency of the system by shifting
consumption from hours when generation is more costly to hours when
it is less expensive, lowering the average wholesale price of electricity.

This study also highlighted the function of the retail market, by
combining a theoretical model with simulations based on real data from
Spain. The standout feature of our model is that it considers consumers
who react to prices by not only changing consumption from peak to
off-peak periods, but also by switching retailers. In this model, optimal
retail prices and the effect of ToU pricing on welfare were based on
the values of elasticities. As expected, we found that the lower the
elasticities, the lower the consumer surplus and social welfare, and the
higher the retailers’ profits. More interestingly, we found intermediate
levels of elasticities at which both the consumer surplus and firms’
profits were higher than the benchmark figures. For these elasticity
values, ToU pricing is a Pareto improvement (a win–win policy).

Our empirical work started by computing the optimal pricing sched-
ule according to the ToU, with a tariff in two periods and endogenous
electricity costs. In this regards, we considered a market with two retail
companies and inter-hour price elasticities taken from the literature.
This indicates that the residential electricity demand for each of the
defined periods depends on the prices of the periods themselves and the
prices of the rest of the hours. We also incorporated switching costs into
our model, since consumers may react to prices by deciding to switch
retailers. We then simulated several scenarios with different elasticity
values and compared them to the benchmark of a regulated tariff.

We found that the cost for consumers (economic efficiency) is
lower when both inter-hour and retailer price elasticities increase. For
scenarios with high enough elasticities, we observed peak-shaving and
lower average prices for consumers in both the winter and the summer,
with even lower prices as elasticities increase. Conversely, when retailer
price elasticities are low (the ‘‘high switching costs’’ scenario), the

highest cost (lowest economic efficiency) emerges.
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Table 8
Welfare analysis according to ToU. Two periods: peak vs. off-peak, summer. [kEUR].
Source: Our own work using the actual regulated tariff from Comisión Nacional de los Mercados y la Competencia (2014)
and the pool data from Operador del Mercado Ibérico de Electricidad (OMIE) (2015, 2019).

Consumer Retailer 𝛥Social

surplus 𝛥Revenue 𝛥Cost 𝛥Profits welfare

Scenario 1 2,152 −1,154 539 −1,693 459
Scenario 2 862 −366 279 −645 217
Scenario 3 (win–win) 15 129 120 9 24
Scenario 4 −1,733 1,107 −320 1437 −305
Scenario 5 −5,243 2,628 −1,215 3843 −1,400

Note: Summer-June 2013, peak-hour 13, off-peak-hour 5. Short-run price elasticities are from Filippini (1995a,b) (see Matrix
(18)), while other price elasticities are from Table 2. Prices are from Table 6.
Fig. 3. Electricity prices with endogenous costs [EUR/MWh]. Actual prices (white blocks) vs. ToU prices (gray blocks), winter (thin lines) and summer (thick lines). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
When retailers optimally choose ToU prices, welfare gains are most
likely found, unless elasticities are low. Moreover, for intermediate
elasticity values, it is possible to achieve a win–win situation, which is
preferred by consumers and retailers over the benchmark case of a regu-
lated tariff. In other words, it is possible for retailers to increase profits,
despite the fact that ToU pricing may reduce electricity prices. We also
performed an analysis in which we only considered the surpluses of the
participants in this market, without taking into account the externalities
associated with electricity consumption. Therefore, our framework did
not provide answers to certain questions related to optimizing energy
consumption. In this regard, another framework will be necessary to
analyze these issues.

Since the application of ToU electricity prices to residential cus-
tomers is currently limited, their impact on the future and their poten-
tial effects on consumers’ behavior are still unknown. In this regard, the
simulations presented in this study are a first step, with field studies
on consumers’ reactions to inter-hour and retailer prices necessary
in future research. Furthermore, in our study, retail competition was
modeled on prices without explicitly considering additional services
that provide product differentiation, including price structures that
ensure against price fluctuations. However, note that we assumed that
11
there is a product differentiation in the way that demand functions are
modeled. Without product differentiation, competition on prices would
yield a Bertrand result. Thus, we implicitly allowed the representative
consumer to have heterogeneous preferences for these services pro-
vided by retailers and/or switching costs, so that a price increase by
a retailer does not imply that it loses all of its customers. In fact, the
elasticity values may reflect consumers’ preferences for these additional
services that a retailer may provide. In other words, the more valuable
the services of a particular retailer from the consumers’ point of view,
the less elastic its demand.

Finally, our model could be extended in further research, e.g., by
increasing the number of retailers (there were only two in the current
model), by differentiating companies according to their market share,
and by introducing individual consumer heterogeneity (we assumed
that there were no differences between consumers and that they all
faced the same price schedule), price schemes broken down into periods
(not just peak and off-peak), or market uncertainty in order to enrich
the menu of contracts of consumers averse to price volatility. In any
event, our model illustrated the potential of ToU pricing to achieve
welfare gains and even win–win situations in which both consumers
and retailers are better off than under a regulated tariff.
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Table A.9
Calibration of the parameters of the model for winter (mean values).

Parameter Data Equation Values

(source) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Demand parameters:

𝑏1 Short-run (9) 17.45 17.45 17.45 17.45 17.45
𝑏2 price elasticity 13.82 13.82 13.82 13.82 13.82

𝑏12 Cross short-run (10) 5.82 5.82 5.82 5.82 5.82
𝑏21 price elasticity 5.25 5.25 5.25 5.25 5.25

𝐵1 Long-run (13) 101.81 87.26 78.54 58.17 43.63
𝐵2 price elasticity 69.99 61.24 56.69 52.49 34.99

𝐵12
Long-run

(14)
5.82 5.82 5.82 5.82 5.82inter-hour

𝐵21
price 5.25 5.25 5.25 5.25 5.25elasticity

𝐷1 Inter-retailer (15) 84.35 69.81 61.08 40.72 26.18
𝐷2 price elasticity 56.16 47.42 42.87 38.67 21.17

Inter-hour Negligible
0 0 0 0 0𝐷12 = 𝐷21 inter-retailer by

price elasticity assumption

𝑎1 = 𝐴1 Electricity at (7), (11) 6146.50 6146.50 6146.50 6146.50 6146.50
𝑎2 = 𝐴2 price=0 (OMIE) (8), (12) 3934.88 3934.88 3934.88 3934.88 3934.88

Cost parameters:

𝑐1 Electricity – 89.61 89.61 89.61 89.61 89.61
𝑐2 price (OMIE) 33.19 33.19 33.19 33.19 33.19
Table A.10
Calibration of the parameters of the model for summer (mean values).

Parameter Data Equation Values

(source) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Demand parameters:

𝑏1 Short-run (9) 15.99 15.99 15.99 15.99 15.99
𝑏2 price elasticity 14.51 14.51 14.51 14.51 14.51

𝑏12 Cross short-run (10) 5.33 5.33 5.33 5.33 5.33
𝑏21 price elasticity 5.51 5.51 5.51 5.51 5.51

𝐵1 Long-run (13) 93.30 79.97 71.97 53.31 39.99
𝐵2 price elasticity 73.47 64.29 59.51 55.10 36.73

𝐵12
Long-run

(14)
5.33 5.33 5.33 5.33 5.33inter-hour

𝐵21
price 5.51 5.51 5.51 5.51 5.51elasticity

𝐷1 Inter-retailer (15) 77.30 63.98 55.98 37.32 23.99
𝐷2 price elasticity 58.95 49.78 45.00 40.59 22.22

Inter-hour Negligible
0 0 0 0 0𝐷12 = 𝐷21 inter-retailer by

price elasticity assumption

𝑎1 = 𝐴1 Electricity at (7), (11) 5174.67 5174.67 5174.67 5174.67 5174.67
𝑎2 = 𝐴2 price=0 (OMIE) (8), (12) 3794.75 3794.75 3794.75 3794.75 3794.75

Cost parameters:

𝑐1 Electricity – 60.49 60.49 60.49 60.49 60.49
𝑐2 price (OMIE) 40.69 40.69 40.69 40.69 40.69
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