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a b s t r a c t

The reasons why Deep Neural Networks are susceptible to being fooled by adversarial examples
remains an open discussion. Indeed, many different strategies can be employed to efficiently generate
adversarial attacks, some of them relying on different theoretical justifications. Among these strategies,
universal (input-agnostic) perturbations are of particular interest, due to their capability to fool a
network independently of the input in which the perturbation is applied. In this work, we investigate
an intriguing phenomenon of universal perturbations, which has been reported previously in the
literature, yet without a proven justification: universal perturbations change the predicted classes for
most inputs into one particular (dominant) class, even if this behavior is not specified during the
creation of the perturbation. In order to justify the cause of this phenomenon, we propose a number of
hypotheses and experimentally test them using a speech command classification problem in the audio
domain as a testbed. Our analyses reveal interesting properties of universal perturbations, suggest
new methods to generate such attacks and provide an explanation of dominant classes, under both a
geometric and a data-feature perspective.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Universal adversarial perturbations [1] are input-agnostic per-
urbations capable of fooling a Deep Neural Network (DNN) while
emaining imperceptible for humans. These perturbations are
enerally created as untargeted attacks, so that no preference over
he (incorrect) output class is assumed [1–4]. However, previous
ork [1,5–7] has reported a phenomenon regarding the effect
f universal perturbations in the attacked model: the preference
f the perturbation to change the class of the inputs into a
articular dominant class, without this being specified or imposed
n the generation of the perturbation. Thus, some classes (or class
egions in the decision space) act as attractors under the effect of
niversal perturbations.
In this paper, we carry out, for the first time, an in-depth study

f this phenomenon with the aim of shedding light on the (still
isunderstood) vulnerability of DNNs to universal perturbations.
he main contributions of our paper are the following:

• First, we propose a number of hypotheses to explain and
characterize the existence of dominant classes linked to
universal adversarial perturbations, and revisit previous hy-
potheses and open questions in the related work.

∗ Corresponding author.
E-mail address: jon.vadillo@ehu.eus (J. Vadillo).
https://doi.org/10.1016/j.knosys.2021.107719
0950-7051/© 2021 The Authors. Published by Elsevier B.V. This is an open access art
• We experimentally test the proposed hypotheses using a
speech command classification task in the audio domain as
a testbed. To the best of our knowledge, this is the first
work in which the analysis of dominant classes is studied
for the audio domain. Apart from providing evidence of
the validity of the proposed hypotheses, our results reveal
interesting properties of the DNN sensitivity to novel types
of perturbations, such as perturbations optimized to prevent
the main dominant classes.
• Overall, our study exposes the connection between the dom-

inant classes and the sensitivity of the model to (I) patterns
in the data distribution that the model recognizes as each
class with high confidence, and (II) to vulnerable directions
in the decision space learned by the model. Our findings
also suggest novel approaches to generate universal per-
turbations, opening the venue for future research on more
effective attacks and defenses.
• Finally, we highlight a number of differences between the

image domain and the audio domain regarding the analy-
sis of adversarial examples, contributing to a more general
understanding of adversarial machine learning.

2. Related work

Universal adversarial perturbations for DNNs were introduced

in [1] for image classification tasks. The goal of such perturbations

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s to fool a DNN for ‘‘most’’ natural inputs when they are applied
o them, and, at the same time, to be imperceptible for humans.
ormally, following the notation used in [8], a perturbation v is
aid to be (ξ, δ)-universal if the following conditions are satisfied:

v∥2 ≤ ξ, (1)

x∼µ [f (x+ v) ̸= f (x)] ≥ 1− δ, (2)

eing µ the distribution of natural inputs in the d-dimensional
nput space Rd, and f (x) the output class assigned to an input x
y a classifier f :Rd

→{y1, . . . , yk}. Thus, universal perturbations
generalize individual (i.e., input dependent) adversarial perturba-
tions [9–13], which are optimized to fool a DNN for one particular
input of interest.

In the seminal work of Moosavi-Dezfooli et al. [1], an iterative
procedure is proposed to generate the universal perturbations.
This procedure accumulates input dependent perturbations [11]
generated for a set of inputs, and projects the universal pertur-
bation after every update in order to bound its norm. Subse-
quent works have proposed alternative approaches to generate
universal adversarial perturbations, such as training generative
networks to learn a distribution of universal adversarial per-
turbations (which, therefore, can be used to sample universal
perturbations) [14–16], or data-free approaches capable of gen-
erating universal perturbations without any access to the data
used to train the target models [2,17–19]. Other works pursue
more particular objectives, such as generating targeted universal
perturbations which change the classification of the model to
one predefined label [15,19], or perturbations that only fool the
model for inputs of one particular class [20,21]. Finally, although
image classification tasks have been the main focus of study,
universal perturbations have also been reported for tasks such
as image segmentation [18,22], speaker recognition [23], speech
recognition [4,24] or text classification [7,25].

The discovery of such attacks for state-of-the-art DNNs has
led to a deeper study of their properties. In [1], the vulnerability
of DNNs to universal perturbations is empirically studied in the
image domain, which is attributed in part to the geometry of
the decision boundaries learned by the DNNs. In particular, it is
shown that, in the vicinity of natural inputs, perturbations normal
to the decision boundaries are correlated, in the sense that they
approximately span a low dimensional subspace (in comparison
to the dimensionality of the input space). Thus, being

vx = argmin
v

∥v∥2 s.t. f (x) ̸= f (x+ v) (3)

he minimal perturbation capable of changing the output of an
nput x (hence normal to the decision boundary at x + vx), it is
ossible to find a subspace S ⊂ X , with dim(S) ≪ dim(X), so
hat vx ∈ S for x ∼ µ. The existence of such a subspace implies
hat even random perturbations (with small norms) sampled
rom S are likely to cause a misclassification for a large number
f inputs [1]. This hypothesis is further developed in [8], also
or the image domain, where the vulnerability of classifiers to
niversal perturbations is formalized, under the assumption of
ocally linear decision boundaries in the vicinity of natural inputs.
n illustration of a linear approximation of the decision boundary
s shown in Fig. 1 (left).

However, the assumption of locally linear decision boundaries
ecomes insufficient to comprehensively formalize the vulner-
bility of DNNs to universal perturbations. Indeed, there is a
rucial connection between that vulnerability and the curvature
f the decision boundaries [8]: there exist common perturba-
ion directions (i.e., span a low-dimensional subspace) in the
nput space for which, starting from natural inputs, the decision
oundaries are positively curved along these directions. See Fig. 1
right) for a comparison between a positively curved boundary
 t

2

nd a negatively curved boundary. The positive curvature of the
ecision boundaries implies small upper bounds for the amount
f perturbation required to surpass the decision boundaries, as
epicted in Fig. 1 (right). Thus, those positive curvatures increase
he vulnerability of DNNs, as smaller perturbations are required
o fool the model. At the same time, the fact that those directions
re also common for multiple inputs implies the existence of small
nput-agnostic adversarial perturbations.

In a further analysis developed in [26], it is shown that the
irections in the input space for which the decision boundaries
re highly curved are indeed associated by the DNN with class
dentities (the further we move in one of such directions, the
igher – or lower – the confidence of the model in one particular
lass is). Moreover, it is shown that the class features1 associated
o such directions are, indeed, the most relevant ones as far as
he classification performance of the model is concerned, what
inks the accuracy of DNNs with their vulnerability to adversarial
ttacks. A feature-perspective is also employed in [19] to justify
he vulnerability of the models to universal perturbations, exper-
mentally showing that universal perturbations contain features
hich predominate over the features of natural images. Thus, in
he presence of universal perturbations, natural images act like
oise, despite being visually predominant.
The aforementioned theoretical frameworks focus, in particu-

ar, on the vulnerability to universal perturbations. In this paper,
e focus instead on one particular property of universal pertur-
ations: the existence of dominant classes that are significantly
ore frequently predicted for the perturbed (and misclassified)

nputs. This phenomenon was first reported in [1] for image
lassification tasks. Subsequent works have also reported the
xistence of dominant classes in image classification tasks [5,6],
nd in text classification tasks [7]. In this paper, we show that
his happens also for other domains, such as speech command
lassification tasks in the audio domain. Although it is hypothe-
ized in [1] that a possible explanation for the dominant classes is
hat they occupy a larger region in the decision space, it is left as
n open research question. In this paper, we tackle this research
uestion and test multiple hypotheses in the search for a deeper
nderstanding of this phenomenon.
Outside the particular field of universal perturbations, multi-

le theoretical frameworks have been proposed for the explana-
ion of adversarial examples. Whereas most of them focus on the
roperties of the DNNs [9,10,27,28], other alternative explana-
ions have also been proposed. In this paper, special attention is
aid to the one introduced in [29], in which adversarial examples
re explained in terms of the robustness of the features in the
ata. In particular, it is shown that datasets contain non-robust
eatures which, although being highly discriminative (i.e., that
he data is well described by these features), are uncorrelated
ith the ground-truth classes when they are perturbed by small
adversarial) perturbations. Thus, when a classifier learns to rely
n such non-robust features to accurately classify the data, it
ecomes vulnerable to adversarial perturbations. The small ro-
ustness of such features to small perturbations also implies their
ack of meaning for humans, which explains the imperceptibility
f the attacks. In our paper (Section 5.2), we hypothesize that the
igher sensitivity of the model to certain features might explain
he existence of dominant classes.

1 In this paper, unless specified, features are assumed to be abstract represen-
ations derived from patterns in the data distribution (e.g., how round the objects
n an image are), rather than the set of individual attributes that characterize
he data (e.g., the set of pixels of an image).
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Fig. 1. Illustration of the decision boundary approximations introduced in [8]. The left image illustrates the locally linear (flat) decision boundary model, and the
middle figure the locally curved decision boundary model. The solid curve corresponds to the actual boundary, and the dashed lines to the approximations. Note
that in both cases the approximations are estimated at x + vx , being x an input sample and vx a vector normal to the decision boundary (see Eq. (3)). The right
mages compare a positively curved boundary (bottom) with a negatively curved boundary (top) along vx . Two dashed arrows have been included as reference in
oth images, to highlight that positively curved boundaries require smaller norms to be surpassed.
. Proposed framework

Let us consider a machine learning model f : X → Y , with
⊆ Rd and Y = {y1, . . . , yk}, trained to classify inputs x ∈ X

oming from a data distribution x ∼ µ among one of the k
ossible classes in Y . To formally describe dominant classes, let us
enote pv

j the probability of misclassifying an input as the class
j when a universal perturbation v is added to the inputs:
v
j = P x∼µ

f (x)̸=yj

[
f (x+ v) = yj

]
. (4)

Similarly, let tvi,j represent the probability that, departing from an
input of ground-truth yi, the model incorrectly predicts the class
j for the perturbed inputs:
v
i,j = P x∼µ

f (x)=yi
[f (x+ v) = yj]. (5)

In practice, if the distribution µ is unknown, these probabilities
can be estimated using a finite set of input samples X .

Definition 1. ya is an attractor class for another class yi (i ̸= a),
nder a perturbation v, which will be denoted as yi

v
−→ ya, if at

east the α > 1
k−1 proportion of the inputs corresponding to the

lass yi are predicted as ya when they are perturbed with v, that
s:
v
i,a ≥ α. (6)

Notice that the threshold 1
k−1 represents the proportion that

would be achieved if the inputs were evenly distributed among
the k− 1 possible incorrect classes.

Definition 2. yb is a dominant class for the universal perturbation
v if at least the β > 1

k−1 proportion of the inputs are wrongly
lassified as yb when they are perturbed with v, that is:

pv
b ≥ β. (7)

Alternatively, yb can be defined also in terms of the number
of classes that it attracts. Let Y v

b = {yi ∈ Y | yi
v
−→ yb} represent

the set of classes attracted by yb with the perturbation v, and
|Y v

b | the cardinality of the set Y v
b . Precisely, yb is dominant if it

is an attractor class for at least the ζ > 1
k−1 proportion of the

emaining classes:
|Y v

b |

k− 1
≥ ζ . (8)

The choice of the parameters α, β and ζ can determine the exis-
tence of multiple attractor and dominant classes. In this paper, we
assume α, β, ζ ≥ 1

3 since we are interested in those classes which
re incorrectly predicted for a significant proportion of inputs, or
hich attract a significant proportion of other classes.
To explain the relationship between universal perturbations

nd dominant classes, we use a speech command classification
roblem in the audio domain as a testbed. We selected the Speech
3

Command Dataset [30], in which the underlying task consists of
classifying audio signals, of fixed length, into one of the following
classes: silence, unknown, yes, no, up, down, left, right, on, off, stop
and go.

We trained a convolutional neural network as a classifier,
based on the architecture proposed in [31], which is composed of
two convolutional layers with ReLU activations, a fully connected
layer and a final softmax layer. This architecture has been used in
a number of related works [30,32–34]. The audio waveforms (in
the time-domain) from the input space R16000, which take values
in the range [−1, 1], are first converted into spectrograms by
dividing the audios into frames of 20 ms, with a stride of 10 ms,
and applying the real-valued fast Fourier transform (retrieving
512 components) for each frame. As the frequency spectrum of
a real signal is Hermitian symmetric, only the first 257 compo-
nents are retained. The dimension of the resulting spectrogram
is 99 × 257. Finally, the Mel-Frequency Cepstrum Coefficients
(MFCCs) [35] are extracted from the spectrogram, in the space
R99×40, before being sent to the network. It is worth pointing
out that the adversarial perturbations that are generated for this
model are optimized in an end-to-end fashion, directly in the
audio waveform representation of the signal.

We selected the UAP-HC algorithm introduced in [4] to create
the universal perturbations. This algorithm, which is a reformu-
lation for the audio domain of the one proposed in [1], consists
of iteratively accumulating individual untargeted adversarial per-
turbations, generated using the DeepFool algorithm [11]. The
pseudocodes for both the UAP-HC and DeepFool algorithms can
be found in Algorithm 1 and Algorithm 2, respectively. These
algorithms have been generalized to (optionally) prevent them
from reaching certain adversarial classes. This generalization will
be further described and motivated in Section 4.

Finally, we highlight that the rationale of the DeepFool algo-
rithm relies on a geometric approach. In particular, a first-order
approximation of the decision boundaries is used to move the
input towards the estimated closest boundary, being, therefore,
an untargeted attack. Thus, the optimization process of the UAP-
HC algorithm is not biased towards any particular class, although,
in practice, different universal perturbations lead in most of the
cases to the same dominant classes.

4. Dominant classes in speech command classification

In this section, we generate different universal adversarial per-
turbation for the speech command classification task described
in Section 3, in order to investigate whether in this domain
dominant classes are also produced.

We start by generating 10 different universal perturbations
using the UAP-HC algorithm, without restricting any class (R =
∅). We set ξ = 0.1 as threshold for the perturbation ℓ2 norm, and
restricted the UAP-HC algorithm to a maximum of five iterations.
To generate the perturbations, we used a training set of 100
inputs per class, which makes a total of 1200 inputs. Once the
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Algorithm 1: UAP-HC [4].

Input: A classification model f , a set of input samples X , a pro-
jection operator Pp,ξ , a fooling rate threshold δ, a maximum
number of iterations Imax, a set of restricted classes R ⊂ Y

utput: A universal perturbation v

1: v← initialize with zeros
2: FR← 0 ▷ Fooling rate.
3: iter ← 0 ▷ Iteration number.
4: while FR < 1− δ ∧ iter < Imax do
5: X ← randomly shuffle X
6: for xi ∈ X do
7: ▷ Check that xi is not already fooled by v:
8: if f (xi + v) = f (xi) then
9: △vi ← DeepFool(xi + v, f , R)

10: v′ ← Pp,ξ (v+△vi) ▷ Project (v+△vi) in the ℓp ball
of radius ξ and centered at 0.

11: FR′ ← Px∈X
[
f (x) ̸= f (x+ v′)

]
12: ▷ Update v only if adding △vi increases the FR and if

the current class is not in R:
13: if FR < FR′ ∧ f (xi + v +△vi) /∈ R then
14: v← v′

15: FR← FR′
16: end if
17: end if
18: end for
19: iter ← iter + 1
20: end while

Algorithm 2: DeepFool [11].

Input: An input sample x of class yi, a classifier f , a set of
restricted classes R ⊂ Y .

utput: An individual perturbation r .
1: x′ ← x
2: r ← initialize with zeros
3: Y ′ ← Y − (R ∪ {yi})
4: while f (x′) = yi do
5: for yj ∈ Y ′ do
6: f ′j ← fj(x′)− fi(x′)
7: w′j ←▽fj(x

′)−▽fi(x′)
8: end for
9: l← argminj∈Y ′

|f ′j |

||w′j ||

10: r ← r + |f ′l |

||w′l ||
2
2
w′l

11: x′ ← x+ r
12: end while

perturbations are generated, their effectiveness will be measured
in a test set, containing samples that were not used during the
generation of the perturbations. The initial accuracy of the model
in this set is 85.52%.2

According to the results, the algorithm led to universal per-
turbations with left and unknown as dominant classes for almost
ll the experiments. This can be seen in Fig. 2 (top), which shows
he frequency with which each class is wrongly predicted when
he perturbation is applied to the audios in the test set. We only
onsidered those inputs that were initially correctly classified by
he model, but misclassified when the perturbation is applied.
he frequencies are shown individually for the ten universal
erturbations, with each row corresponding to one perturbation.

2 The number of samples per class in the test set and the accuracy of the
odel in each class is reported in Table A.1.
4

As can be seen, both left and unknown arise as dominant classes
in 9 of the 10 experiments, sometimes even at the same time.

It is important to highlight that dominant classes arise without
being imposed in the universal perturbation crafting procedure.
For this reason, an interesting property to study is whether dom-
inant classes remain dominant even if we explicitly avoid them
during the optimization process (see Algorithms 1 and 2). To
shed light on this question, we start by preventing the algo-
rithm from considering those directions that point to the decision
boundaries of the class left. The results obtained for ten new
perturbations generated with this restriction are shown in Fig. 2
(bottom left). As can be seen, the most frequent adversarial class
is now unknown for 9 of the 10 perturbations created.

We went another step further and repeated the experiment,
this time, however, restricting the boundaries corresponding to
both left and unknown classes. The results are shown in Fig. 2
(bottom right). In this case, the two restricted classes were no
longer dominant classes, but different dominant classes were
obtained, precisely, up, right and go. It is also worth emphasizing
that, although dominant classes were obtained in all the exper-
iments, they were different depending on which other classes
were restricted. For instance, whereas the class up rarely ap-
peared as dominant without restrictions, it is the most frequent
dominant class when both left and unknown classes are restricted.

Regarding the effectiveness of the attacks, the fooling rate of
every perturbation (i.e., the percentage of inputs that are misclas-
sified when the perturbation is applied) is shown in Fig. 3, for
each class independently. The fooling rates have been computed
considering the inputs that were initially correctly classified. As
can be seen, the effectiveness of each perturbation is higher in
some classes than in others, achieving up to ≈69% in some cases.
The fooling rates corresponding to the dominant classes, which
have been highlighted in the figure, are practically zero for most
of the perturbations, which reveals that the perturbation does not
change the prediction of the model for those inputs.

For more informative results, the mean and maximum fooling
rate of all the perturbations are shown in Table 1. To avoid
biases, these aggregated fooling rates have been computed in
three different ways: (I) considering all the inputs, (II) without
considering the inputs corresponding to the dominant classes,
and (III) without considering the dominant classes and the class
silence. The reason for not considering the inputs belonging to
the dominant classes is because the perturbation reinforces the
confidence on those classes, and, as a consequence, there are
practically no misclassifications in those inputs. On the contrary,
the results for the class silence are clearly lower than for the rest
of the classes, which biases the results. Comparing the average
effectiveness of the universal perturbations, we can notice that
the average fooling rate achieved by the perturbations decreases
when the dominant classes are restricted in the UAP-HC algo-
rithm. We confirmed using the Wilcoxon signed-rank test [36]
(with a significance level of 0.05) that, in comparison to the
results obtained when no class is restricted (i.e., R = ∅), the
decrease is significant when the set of classes R = {Left} or
R = {Left,Unknown} is restricted. According to the same test,
the differences observed between the cases in which the sets of
restricted classes are R = {Left} and R = {Left,Unknown} were
not statistically significant.

Overall, these results confirm the existence of dominant classes
in audio tasks, and reveal a number of properties that, to the
best of our knowledge, have not been reported before in related
works. First, we have shown that it is possible to prevent one class
from being dominant during the optimization of the universal
perturbation. However, doing so leads to different dominant
classes. Moreover, the fact that the effectiveness of the universal

perturbations decreases when the most frequent dominant classes



J. Vadillo, R. Santana and J.A. Lozano Knowledge-Based Systems 236 (2022) 107719
Fig. 2. Overview of the frequency with which each class was assigned to the inputs misclassified as a consequence of universal perturbations. The frequencies have
been computed individually (row-wise) for the 10 perturbations generated in each of the following configurations of the UAP-HC algorithm: default algorithm (top),
restricting the algorithm to follow the class left (bottom left) and restricting the algorithm to follow the classes left and unknown (bottom right).
Fig. 3. Fooling rate percentage, computed individually for each class, of the 10 perturbations generated in each of the following configurations of the UAP-HC
algorithm: default algorithm (top), restricting the algorithm to follow the class left (bottom left) and restricting the algorithm to follow the classes left and unknown
(bottom right). In the three figures, the results corresponding to the dominant classes (for each experiment) have been highlighted using bold text.
5
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Table 1
Effectiveness of the UAP-HC algorithm in a set of test samples, not seen during the generation of the perturbations.
Restricted classes in UAP-HC Fooling rate

Considering all the classes w/o considering dominant classes w/o considering dominant & Silence

Mean Max. Mean Max. Mean Max.

None 37.94 46.34 41.68 50.84 44.97 54.76
{Left} 34.90 37.73 37.39 40.60 40.32 43.71
{Left, Unk.} 33.75 37.49 37.08 41.36 39.90 44.37
R

are restricted might suggest that some classes are more dominant
han others. All these findings and properties will serve as a basis
o further study the cause of this phenomenon in the following
ections.

. Hypotheses about the existence dominant classes

In this section, we propose a number of hypotheses to explain
nd characterize the relationship between universal adversarial
erturbations and dominant classes. The proposed hypotheses
re also experimentally tested using the framework described in
ection 3.

.1. Dominant classes occupy a larger region in the input space

In [1], the existence of dominant classes is attributed to a
arger region of such classes in the image space. Nevertheless,
ue to the high dimensionality of the input spaces in current ma-
hine learning problems, exploring the volume that each decision
egion occupies in the whole input space is intractable in practice.

Even so, to test this hypothesis, we randomly sampled and
lassified 1,000,000 inputs from the input space. The values of the
nputs were sampled uniformly at random in the range [−1, 1].
We found that all the samples were classified as the class silence,
which is not a dominant class in our experiments, as shown in
Section 4 (see Fig. 2). Therefore, our results suggest that there is
not necessarily a connection between the volume occupied by the
decision regions of different classes and the frequency with which
inputs perturbed by universal perturbations reach the regions
corresponding to the dominant classes.

5.2. Class properties of universal perturbations

Universal perturbations are capable of changing the output
class of a large number of inputs, and the majority of the misclas-
sified inputs are moved unintentionally towards a dominant class.
In this section, we show that the perturbation itself is predicted
by the model as the dominant class with high confidence.

In fact, we noticed that the following three factors are pos-
itively correlated during the generation process of a universal
perturbation v: the fooling rate (F1), the percentage of inputs
misclassified as the dominant class yb (F2), and the confidence
with which the model considers that the perturbation belongs to
the dominant class (F3)3:

F1(v) = Px∈X [f (x) ̸= f (x+ v)] , (9)

F2(v) = Px∈X [f (x+ v) = yb] , (10)

F3(v) = fb(v), (11)

where X is a set of inputs and fj : X → R represents the output
confidence of the classifier f corresponding to the class yj. An
example of the evolution of these factors during the optimization
process of a universal perturbation, using the UAP-HC algorithm,

3 For those perturbations in which there are two dominant classes at the
ame time, the class f (v) has been considered as the dominant (i.e., the class
ssigned to the perturbation by the model).
 [

6

is shown in Fig. 4. These results correspond to the first experi-
ment of Section 4, for the case in which no class was restricted.
In particular, the left figure shows the evolution of the frequency
with which each class is (wrongly) predicted for the misclassified
inputs, and the right figure shows the output confidences of the
model when the universal perturbation is classified. The fooling
ratio of the perturbation has been included in both figures as a
reference, represented by a dashed line.

More generally, for the 10 different universal perturbations
generated in Section 4 (without restricting any class), the average
Pearson correlation coefficient between F1 and F3 during the first
iteration of Algorithm 1 is 0.79. Similarly, the average correlation
between F1 and F2 is 0.87, and the average correlation between
F2 and F3 is 0.91. These results confirm that the three factors are
being maximized jointly during the optimization process of the
universal perturbation, even if such behavior is not specified by
the model.

Motivated by this finding, we studied whether any pertur-
bation v that is classified by the model as one particular class
with high confidence is capable of producing the same effect as
a universal perturbation, that is, to force the misclassification
of a large number of inputs by pushing them to the class f (v).
For this purpose, we defined the following optimization problem,
in which the objective is to find a perturbation v, with a con-
strained norm, that maximizes the confidence of the model in one
particular class yt , ft (v), that is:

max
v

ft (v) s.t. ∥v∥2 ≤ ξ . (12)

We launched 100 trials for each possible target class, starting
from random perturbations.4 We used a gradient descent ap-
proach to optimize the perturbation, restricting the search to 100
gradient descent iterations, and setting a threshold of ξ = 0.1 for
the perturbation norm.

The mean and maximum fooling rates obtained with the gen-
erated perturbations are shown in Table 2, computed indepen-
dently for each target class. The fooling rate for each class indi-
vidually is shown in Fig. 5 (left). As can be seen in Table 2, for
the classes left and unknown, both the most frequent dominant
classes associated to the universal perturbations generated using
the UAP-HC algorithm (see Fig. 2), a significantly higher effec-
tiveness is achieved than for the rest of classes. We confirmed
this using the Wilcoxon signed-rank statistical test [36], under
a significance level of 0.05. Apart from that, with independence
of the target class, the majority of the samples fooled by these
perturbations were classified as the target class. This is shown
in Fig. 5 (right), in which the average frequency with which
each class is predicted under the effect of the perturbations is
computed, independently for each target class.

These results reveal that a perturbation which is optimized
only to maximize the confidence of a model into one class can be-
have as a universal perturbation, and, more relevantly, that their
effectiveness is maximized when the target class is a dominant

4 The initial perturbations were randomly sampled from the input space
16000 , where each value was sampled uniformly at random in the range
−10−3, 10−3].
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Fig. 4. Evolution of three different factors during the optimization process of a universal perturbation using the UAP-HC algorithm: the frequency with which the
nputs are classified as the dominant class (left), the confidence of the model in the dominant class when the perturbation is predicted (right), and the evolution of
he fooling ratio (FR), which is shown in both plots as a reference. These results have been computed on the training set, and correspond to the first experiment
eported in Section 4, for the case in which no class was restricted. For the sake of clarity, only the information of the four most relevant classes are plotted in each
lot.
Fig. 5. Overview of the effectiveness of the perturbations found by solving the optimization problem defined in (12). In both figures, the results are reported
independently for each target class (row-wise), and are averaged for the 100 trials generated for each target class. Left: average fooling rate obtained by the 100
perturbations found for each target class, computed for each class individually. Right: Average frequency with which each class is wrongly assigned to the fooled
inputs by the model.
Table 2
Effectiveness of the perturbations generated using Algorithm (12), averaged for the 100 perturbations generated for each target class.
Target class Fooling rate

Considering all the classes w/o considering dominant classes w/o considering dominant & Silence

Mean Max. Mean Max. Mean Max.

Sil. 17.85 21.71 19.77 24.05 19.77 24.05
Unk. 30.31 33.88 32.40 36.21 35.00 39.14
Yes 16.91 20.40 18.67 22.52 19.59 23.89
No 23.46 25.82 25.28 27.84 26.91 29.74
Up 25.53 28.19 28.16 31.10 29.79 32.97
Down 22.56 24.68 24.45 26.75 25.95 28.28
Left 32.57 37.25 35.73 40.87 38.37 44.22
Right 23.25 27.28 25.38 29.78 27.07 31.88
On 19.50 22.43 21.25 24.45 22.40 25.94
Off 21.56 24.46 23.39 26.54 24.83 28.48
Stop 25.07 27.21 27.61 29.97 29.64 32.32
Go 22.99 25.66 24.84 27.72 26.03 29.24
class. Based on these findings, we can hypothesize that the model
is more sensitive to some class features than to others, and that,
ltimately, the sensitivity degree to each class feature is what
etermines the dominant classes. In other words, a class yj will
ave a greater dominance the more sensitive the model is to the
atterns in the data distribution that are associated to yj (by the
odel itself).5

5 These results are consistent with previous explanations proposed for the
ulnerability of universal adversarial perturbations. For instance, these results
ould be related to the non-robust data-feature framework introduced in [29],
o the predominance of the features of universal perturbations over the features
f natural inputs [19], or to the link between the class-identity associations of
7

5.3. Singular value decomposition

In [1], the existence of universal perturbations for image clas-
sification DNNs is attributed, in part, to the presence of similar
patterns in the geometry of decision boundaries around differ-
ent points of the decision space. In particular, as described in
Section 2, perturbations normal to the decision boundaries in
the vicinity of natural inputs approximately span a very low-
dimensional subspace, revealing that similar perturbations are
capable of changing the output class of different input samples.

the model and the most vulnerable directions in the input space studied in [26]
(see Section 2 for more details).
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his was assessed experimentally for state-of-the-art DNNs, by
omputing the Singular Value Decomposition (SVD) of a matrix
collecting normalized individual untargeted perturbations gen-
rated using the DeepFool algorithm. The SVD provides a set of
ingular vectors {s1, s2, . . . , sr}, which represent a basis for the
ubspace spanned by the adversarial perturbations in A. Each si
is related to a singular value σi, which indicates the importance or
contribution of that singular vector. As shown in [1], considering
that the singular values are arranged in decreasing order σ1 ≥

σ2 ≥ · · · ≥ σr , the decay of the singular values was consider-
ably faster in comparison to the decay obtained from the SVD
of random perturbations (sampled from the unit sphere). This
implies that the subspace spanned just by the first d′ ≪ d singular
vectors (i.e., those corresponding to the highest singular values)
contained vectors normal to the decision boundaries in the vicin-
ity of natural samples. Indeed, random perturbations sampled
from such a subspace were capable of achieving a fooling rate of
nearly 38% on unseen inputs, whereas random perturbations (of
the same norm) in the input space only achieved a fooling rate of
approximately 10% [1].

In this section, we take this approach as a framework to study
the existence of dominant classes. First, we will replicate the
previous experiment to assess whether, in the audio domain, it
is also possible to find a low-dimensional subspace of the input
space collecting vectors normal to the decision boundaries of
DNNs. The existence of such a subspace would allow us to test
a number of hypotheses, for example, whether the directions in
such subspaces mainly point towards the decision boundaries
corresponding to the dominant classes. This would explain why
most of the inputs are (incorrectly) classified as the dominant
class when they are adversarially perturbed.

Nevertheless, due to the input transformation process re-
quired to convert the raw audio signal into the MFCC repre-
sentation (see Section 3), the results might differ depending on
the data representation in which the analysis is done. For this
reason, we need to assess first which audio representation is the
most informative one in our case. Thus, we computed the SVD
for a set of individual perturbations and different sets of random
perturbations, under the three main representations for audio
signals: raw audio waveform, spectrogram and MFCC coefficients.

5.3.1. Analysis of the SVD of audio perturbations
Let us consider a set of n natural input samples X = {x1, . . . ,

xn}. The individual perturbations were generated using the Deep-
Fool algorithm, in the raw audio waveform representation:

V = {vi | vi = DeepFool(xi), i = 1, . . . , n} . (13)

The perturbations that these raw waveforms produce in both the
spectrogram and MFCC representations are computed as v′i =

g(xi + vi) − g(xi), being g the input transform function, which
maps the raw audio waveforms into either a spectrogram or the
MFCC features:

SPEC =
{
v
spec
i | v

spec
i = gSPEC(xi + vi)− gSPEC(xi), i = 1, . . . , n

}
,

(14)

VMFCC =
{
vmfcc
i | vmfcc

i = gMFCC(xi + vi)− gMFCC(xi), i = 1, . . . , n
}
.

(15)

The random perturbations were sampled uniformly at random
from the raw input space:

R =
{
ri | ri is sampled u.a.r. from [−1, 1]16000, i = 1, . . . , n

}
.

(16)
 f

8

As in the case of adversarial perturbations, the corresponding per-
turbations in the frequency-domain representation are computed
as:

SPEC =
{
rspeci | rspeci = gSPEC(xi + ri)− gSPEC(xi), i = 1, . . . , n

}
,

(17)

RMFCC =
{
rmfcc
i | rmfcc

i = gMFCC(xi + ri)− gMFCC(xi), i = 1, . . . , n
}
.

(18)

In this case, the random perturbations were scaled to have a fixed
ℓ2 norm of 0.1 before being applied to the inputs in Eqs. (17) and
(18).

Finally, for a more representative analysis, we considered two
additional sets of random perturbations, sampled uniformly at
random from the space of spectrograms and the space of MFCC
coefficients:

RSPEC =
{
ri | ri is sampled u.a.r. from [−1, 1]99×257,

i = 1, . . . , n
}
, (19)

RMFCC =
{
ri | ri is sampled u.a.r. from [−1, 1]99×40,

i = 1, . . . , n
}
. (20)

All the perturbations described in Eqs. (13)–(20) were normalized
before computing the SVD. It is worth highlighting the key dif-
ference between the random perturbations defined in (17) and
(18) and those defined in (19) and (20). The former represent
the changes that randomly perturbing a raw signal produces
on the spectrogram (or MFCC) space. In contrast, the random
perturbations in (19) and (20) are directly generated in the spec-
trogram space or in the MFCC space, respectively. In other words,
the perturbations considered in (19) and (20) are analogous to
those in (13), but in the spaces corresponding to the spectro-
grams or to the MFCC coefficients instead of the space of raw
audio waveforms. Considering all these types of perturbations
and representations is important to better study which of them
are the most informative ones in the audio domain, and to ensure
that our subsequent analyses will be carried out using the most
appropriate representation.

Fig. 6 compares the decay of the singular values (sorted in
decreasing order), for all the sets of perturbations considered in
Eqs. (13)–(20). The results corresponding to the raw waveform,
spectrogram and MFCC representations are shown in the first,
second and third row of the figure, respectively. Whereas the
left column shows the singular values obtained with the SVD
for each data representation, in the right column the decays are
characterized by fitting exponential curves (depicted as dashed
lines) with the following form6:

y = ρ · e−xλ + ω , ρ, λ, ω ∈ R. (21)

A higher value of the decay factor λ represents a faster decay, as is
illustrated in Fig. 7, which shows the behavior of the exponential
curves for different values of the decay factor λ. As can be seen
in the figure, for low values of λ (e.g., λ ≤ 1) the obtained curves
are close to a constant or linear decay (i.e., y = 1 − x), whereas
for λ > 1 the values decay much faster (i.e., exponentially).

Regarding the results in the raw waveform representation
(i.e., V and R), the decay of the singular values is mainly linear for
both individual and random perturbations, which can be assessed
by their decay factor λ (see Fig. 6), since in both cases λ < 1
is obtained. This means that, in both cases, there is not a set
of singular vectors that is considerably more informative than
the rest, and, as a consequence, a large set of vectors would be

6 Note that the singular values have been scaled in the range [0, 1] before
itting the exponential curves, for a more uniform comparison.
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Fig. 6. Left column: singular values obtained in the SVD of individual adversarial perturbations and random perturbations, computed in three feature representations:
aw audio waveforms (top), spectrograms (center) and MFCCs (bottom). Right column: characterization of the decay of the singular values by fitting an exponential
urve (the values in both axes have been scaled in the range [0, 1]).
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Fig. 7. Illustration of an exponential decay y = ρe−xλ+ω for different values of
he decay factor λ. For a more uniform comparison, the values ρ = 1 and ω = 0
ere used in all the cases, and the curves were normalized in the range [0, 1].

eeded to provide an approximate basis for the perturbations.
hus, the perturbations do not show meaningful correlations in
his representation. The same conclusion can be drawn from the
9

erturbations sampled uniformly at random in the space of spec-
rograms (RSPEC) and in the space of MFCC coefficients (RMFCC).
However, considering the perturbations in the frequency domain
produced by the raw waveform perturbations, either random or
adversarial (i.e., VSPEC, RSPEC, VMFCC and RMFCC), the singular values
decay exponentially, achieving decay factors which are at least of
one order of magnitude greater than for the previous cases. For
instance, in the MFCC representation (i.e., VMFCC and RMFCC), the
values obtained are λ = 1

0.131 and λ = 1
0.001 , respectively.

These results indicate, first, that even if the perturbations
are generated in the raw audio waveform representation, it is
necessary to go to the frequency-domain to observe informative
patterns. This might be a fundamental difference between the
image domain and the audio domain, as most of the analyses
done in the former can be done directly in the raw image space.
Secondly, the effect of audio perturbations in the frequency-
domain can be characterized by just a small (in comparison
to the dimensionality of the corresponding spaces) number of
singular vectors. For instance, for the MFCC representation, the
most relevant information is captured in less than the ∼150
first singular vectors (that is, those corresponding to the highest
singular values). The fact that this happens for both random or
adversarial perturbations could imply, however, that the captured
correlations are uninformative about the geometry of the decision
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Fig. 8. Fooling rate produced by random perturbations sampled from the subspace spanned by the first N singular vectors. The results are averaged for 100 random
erturbations. Each perturbation v was normalized and multiplied by different scale factors sf (horizontal axis), so that ∥v∥2 = |sf |. The SVD is computed for
ndividual perturbations (top left) and for random perturbations (top right), in the MFCC feature space. The bottom row shows a direct comparison between the
verage effectiveness of individual and random perturbations for N = 100 (bottom left) and N = 500 (bottom right).
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oundaries around natural inputs, or, alternatively, about the
ulnerability of the network to adversarial attacks. Nevertheless,
n the reminder of this section we show that the SVD of individ-
al adversarial perturbations not only provides a representative
asis for input-agnostic perturbations, but also that this basis is
trongly connected with the dominant classes. For the previous
easons, the rest of the analysis will focus on the MFCC feature
pace.
We start evaluating the fooling rate of randomly sampled per-

urbations in the subspace spanned by the first N = {10, 50, 100,
00, 500} singular vectors, for the cases in which the SVD is
omputed for individual perturbations (VMFCC) and random per-
urbations (RMFCC). Given a value of N , the sampled perturbations
ill be produced as:

′
=

⎡⎢⎢⎢⎣s1 s2 . . . sN

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
x1
x2
...

xN

⎤⎥⎥⎦ , x1, . . . , xN ∼ U(0, 1), (22)

that is, as a linear combination of the first N singular vectors
s1, . . . , sN (computed for either VMFCC or RMFCC). All the sam-
pled perturbations were normalized, and the fooling rate was
evaluated for different scaling factors under the ℓ2 norm, in the
range [−200, 200]. Note that, given a unit vector v, for any scalar
c ∈ R, ∥v · c∥2 = |c|. For reference, the median ℓ2 norm of the
perturbations (in the MFCC) produced by the 10 universal attacks
generated in Section 4, measured in the test set, is approximately
100.

Fig. 8 shows, for each value of N , the average fooling rates ob-
tained for 100 trials (i.e., 100 random perturbations). The fooling
rates have been computed in the test set. The results clearly show
that, when the SVD is computed for individual perturbations
(VMFCC), the fooling rates are remarkably higher than for the case
of random perturbations (RMFCC), even for norms close to zero.
For instance, taking as reference the results corresponding to an
ℓ norm of 100, the average fooling rate is approximately 48%
2

10
for the case of individual perturbations, when N ≤ 100. For the
case of random perturbations, in the same conditions, the average
fooling rate is only 17%.

However, the fooling rate corresponding to individual pertur-
bations considerably decreases when a large number of singular
vectors are considered. Indeed, for N ≥ 200, the fooling rates get
closer to those obtained for random perturbations. For instance,
when N = 500, the average fooling rate (with an ℓ2 norm
of 100) is approximately 18%. This reveals that, whereas the
singular vectors corresponding to the highest singular values are
capturing directions normal to the decision boundaries around
natural inputs (being, therefore, effective in fooling the model for
a large number of inputs), the remaining singular vectors do not
provide additional or relevant information.

5.3.2. Connection with dominant classes
In the previous section, we have shown that, also for speech

command classification models, it is possible to find a low dimen-
sional subspace S containing (input-agnostic) vectors normal to
the decision boundaries in the vicinity of natural inputs. There-
fore, a reasonable hypothesis is that dominant classes can be
explained in terms of the geometric similarity of the decision
boundaries in regions surrounding natural inputs, information
that is captured by the basis of S, that is, by the singular vectors
obtained from the SVD of individual perturbations.

The first hypothesis is that the first singular vectors are also
normal to decision boundaries corresponding to the dominant
classes. To validate this hypothesis, we first computed the fool-
ing rate that each singular vector can achieve individually. This
is shown in Fig. 9 (top left), in which the fooling rate of the
first 250 singular vectors is reported for different ℓ2 norms. For
eference, the results corresponding to a norm of 100 are also
hown independently in the bottom-left part of the figure. The
esults clearly show that the first singular vectors are capable
f fooling the model for a considerable number of test inputs,
articularly for the first 50 vectors (approximately), for which
n average fooling rate of 56.3% is achieved. These fooling rates



J. Vadillo, R. Santana and J.A. Lozano Knowledge-Based Systems 236 (2022) 107719

w
t
u
t
r
v
s
r
r
l
t
t
l
t
8
h
t
b

t
r
s
f
t
t
t
a
7

Fig. 9. Fooling rate percentage achieved when the inputs are perturbed with the first singular vectors computed for individual perturbations (left column) and for
random perturbations (right column), in the MFCC feature space.
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are also remarkably higher than the ones obtained when the SVD
is computed for random perturbations, which are also shown in
Fig. 9 (right column). Indeed, the average fooling rate obtained in
the latter case (considering the first 50 vectors) is 18.7%, which
represents a difference of 37.6%.

To continue with the analysis, we computed the frequency
ith which each class is (wrongly) predicted, considering only
he inputs that were misclassified when the singular vectors were
sed as perturbations. The aim of this analysis is to assess if
here exists a direct connection with the dominant classes. The
esults are shown in Fig. 10, considering the first 100 singular
ectors, scaled to have an Euclidean norm of 100. As can be
een, considering the singular vectors with the highest fooling
ate (those corresponding to the vectors approximately in the
ange [1, 50]), the most frequent wrong classes are unknown and
eft. Indeed, for 84% of the singular vectors in [1,50], the sum of
he frequency corresponding to those two classes exceeds 50%,
hat is, at least 50% of the misclassified inputs are classified as
eft or as unknown. Moreover, for 62% of the singular vectors,
he total frequency corresponding to those two classes exceeds
0%. Therefore, we now know that the singular vectors (with a
igh fooling rate) not only point towards decision boundaries in
he close vicinity of natural inputs, but also that those decision
oundaries correspond mainly to the dominant classes.
We repeated the experiment using the singular vectors ob-

ained when the SVD is computed for random perturbations. The
esults are shown in Fig. 11. In this case, it is evident that the re-
ults are more uniform along all the singular vectors, particularly
or those singular vectors with a higher fooling rate (precisely,
hose in the range [1, 50], as shown in Fig. 9). For reference, in
his case, only for 32% of the singular vectors in the range [1, 50]
he total frequency corresponding to unknown or left exceeds 50%,
nd only for 2% of the singular vectors the total frequency exceeds
0%.
11
Overall, the SVD of individual perturbations has shown that
he obtained singular vectors are input-agnostic perturbations
irections for which the model is highly vulnerable: even when
he inputs are slightly pushed in those directions, they surpass
he decision boundary of the model. This reveals that the ge-
metry of the decision boundary has patterns that are repeated
n the vicinity of multiple natural inputs. Apart from that, we
ave shown that such adversarial directions mainly point towards
he decision boundaries corresponding to the dominant classes.
herefore, it can be concluded that the universal perturbation
ptimization algorithms implicitly exploit the shared geometric
atterns of decision boundaries to increase the effectiveness of
he perturbations, leading to the same dominant classes in the
ajority of the cases.

. Conclusion

In this paper, we have proposed and experimentally validated
number of hypotheses to justify the intriguing phenomenon
f why universal adversarial perturbations for DNNs are capable
f sending the majority of inputs towards the same wrong class
i.e., dominant classes), even if such behavior is not specified
uring the optimization of the perturbations. These hypotheses
ere studied in the audio domain, using a speech command
lassification task as a testbed. To the best of our knowledge,
revious work has examined this effect only in the image domain,
roposing open explanations that we revisit. The results obtained
rom our analysis revealed multiple interesting facts regarding
he vulnerability of DNNs to adversarial perturbations. On the
ne hand, we have shown that universal perturbations can be
reated just by optimizing a perturbation to be recognized by
he model as one particular class with high confidence. This
stablishes a new perspective to create universal perturbations,
hile explains that a class is dominant if it contains patterns in
he data distribution for which the model has a higher sensitivity.
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Fig. 10. Frequency with which each class is assigned to the misclassified inputs
under the effect of singular vectors (computed for individual perturbations, see
q. (15)). The (unit) singular vectors have been scaled using two different scale
actors: 100 (left) and −100 (right). For the sake of clarity, the frequencies are
hown individually for the classes unknown and left, while the total frequency
corresponding to the rest of classes has been grouped (others).

Fig. 11. Frequency with which each class is assigned to the misclassified inputs
under the effect of singular vectors (computed for random perturbations, see
Eq. (18)). The (unit) singular vectors have been scaled using two different scale
factors: 100 (left) and −100 (right). For the sake of clarity, the frequencies are
shown individually for the classes unknown and left, while the total frequency
corresponding to the rest of classes has been grouped (others).

On the other hand, we demonstrated that the geometry of the
decision boundaries of audio DNNs contains similar patterns in
the vicinity of natural inputs, and that the most vulnerable di-
rections in the decision space point to the regions corresponding
to the dominant classes. Finally, our work highlights a number
of differences between the image domain and the audio domain,
which contribute to a better and more general understanding of
the field of adversarial machine learning.
12
7. Future research lines

Whereas the frameworks proposed in this paper have shown
to be effective in revealing the connections between dominant
classes and universal perturbations, there are a number of open
lines that could be further investigated in order to achieve a
deeper understanding of the behavior of universal perturbations.

First, focusing on the framework proposed in Section 5.2, an
interesting future line of research could be trying to identify the
data-features that the model recognizes as each class with high
confidence, for instance, following the methodologies proposed in
recent related works [29]. Similarly, the analysis of the geometry
of the decision space carried out in Section 5.3 could be further
extended by considering the curvature of the decision boundaries,
which has proven to be highly informative for the analysis of
universal perturbations [8,26]. Moreover, it could be interesting
trying to unify the data-feature perspective used in Section 5.2
and the one used in Section 5.3, relying on the geometry of the
decision space of the DNN. Finally, a deeper understanding of
the decision spaces of DNNs is necessary to comprehensively
explain why decision boundaries contain large geometric corre-
lations around natural inputs, as well as many other fundamental
questions regarding the learning process of DNNs.

Advances in all these research lines could bring a deeper
understanding of the vulnerability of DNNs to adversarial attacks,
which can be used, for instance, to create more effective attacks.
Indeed, as shown in Section 4, the existence of dominant classes
reduces the effectiveness of universal perturbations, since the
fooling rate in the inputs of those classes is practically zero.
Therefore, preventing the appearance of dominant classes during
the generation of the perturbation can lead to more effective
attacks. At the same time, understanding the vulnerabilities of
DNNs to adversarial attacks also contributes to the generation of
more effective defensive strategies, and, ultimately, more robust
models.
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Appendix A. Clean accuracy of the model in the test set

See Table A.1.

Appendix B. Detailed analysis of the effectiveness of universal
perturbations (UAP-HC)

Table B.1 shows the effectiveness of each universal adversarial
perturbation generated in Section 4, using Algorithm 1.
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Table A.1
Initial accuracy percentage of the DNN on the test set.
Class Accuracy Samples

Silence 99.51 408
Unknown 66.42 408
Yes 94.03 419
No 74.57 405
Up 92.00 425
Down 80.79 406
Left 89.81 412
Right 88.64 396
On 87.12 396
Off 81.59 402
Stop 93.67 411
Go 77.36 402

Average 85.52 –

Table B.1
Fooling rate percentage of the universal adversarial perturbations generated
using Algorithm 1. The results are computed for a set of test samples, which
ere not seen during the generation of the universal perturbations.
Experiment Restricted class

None {Left} {Left,Unk.}

1 46.34 37.73 33.88
2 35.29 31.56 34.24
3 41.25 36.35 37.49
4 38.47 37.42 34.91
5 38.35 32.86 34.31
6 30.13 30.30 29.84
7 32.52 34.55 32.88
8 33.98 34.29 30.94
9 41.08 37.14 33.86
10 41.94 36.80 35.15

Mean 37.94 34.90 33.75
Meana 41.68 37.39 37.08
Meanb 44.97 40.32 39.90

aWithout considering dominant classes.
bWithout considering dominant classes and Silence.
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