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Abstract

The three canonical families of the hypergeometric orthogonal polynomials in a

continuous real variable (Hermite, Laguerre, and Jacobi) control the physical

wavefunctions of the bound stationary states of a great number of quantum systems

[Correction added after first online publication on 21 December, 2022. The sentence

has been modified.]. The algebraic Lq-norms of these polynomials describe many

chemical, physical, and information theoretical properties of these systems, such as,

for example, the kinetic and Weizsäcker energies, the position and momentum

expectation values, the Rényi and Shannon entropies and the Cramér-Rao, the

Fisher-Shannon and LMC measures of complexity. In this work, we examine review

and solve the q-asymptotics and the parameter asymptotics (i.e., when the weight

function's parameter tends towards infinity) of the unweighted and weighted

Lq-norms for these orthogonal polynomials. This study has been motivated by the

application of these algebraic norms to the energetic, entropic, and complexity-like

properties of the highly excited Rydberg and high-dimensional pseudo-classical states

of harmonic (oscillator-like) and Coulomb (hydrogenic) systems, and other quantum

systems subject to central potentials of anharmonic type (such as, e.g., some molecu-

lar systems) [Correction added after first online publication on 21 December, 2022.

Oscillatorlike has been changed to oscillator-like.].

1 | INTRODUCTION

The hypergeometric orthogonal polynomials (HOPs) in a continuous real variable [1–6], also known as classical orthogonal polynomials, have been

used in numerous scientific areas ranging from applied mathematics, celestial mechanics and probability theory, to speech science, quantum

mechanics, and coding theory. This is basically because their mathematical structure has a rare combination of simplicity and usefulness. In this

paper, we tackle complement and partially review and solve the various asymptotics (degree, q, and weight-function parameter) of the integral

functionals

N q pn½ �≔
ð
Λ
pn xð Þj jq h xð Þdx ð1Þ

and
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Wq pn½ �≔
ð
Λ
p2n xð Þh xð Þ� �q

dx, ð2Þ

which are known (see e.g., [7, 8]) as the unweighted and weighted Lq-norms of the real hypergeometric polynomials {pn(x)}, orthogonal with

respect to the weight function h(x) on the interval Λ⊆ℝ, respectively. They appear rather naturally in many branches of Mathematics, Quantum

Chemistry and Quantum Physics. The three canonical families of HOPs are the Hermite polynomials Hn(x), the Laguerre polynomials

L αð Þ
n xð Þ, α> �1, and the Jacobi polynomials P α,βð Þ

n xð Þ, α, β > �1. These polynomials are characterized in several ways (see e.g., [9, 10]) and their hyp-

ergeometric character follows from the fact that they are eigenfunctions of a second order differential operator with polynomial coefficients (see

e.g., [3, 11]). The algebraic norms (1) and (2) are closely related to the entropy-like (Shannon [12], Rényi [13, 14]) and complexity-like (Fisher-

Shannon [15, 16], LMC-Rényi [17–20], Fisher-Rényi [21–27]) measures of the Rakhmanov's density [28] or probability density bρn xð Þ associated to

the HOP pn(x), given by

bρn xð Þ¼bp2n xð Þh xð Þ¼ 1
κn
p2n xð Þh xð Þ, ð3Þ

with the normalization constant κn ¼
Ð
Λ pn xð Þj j2h xð Þdx, and where the symbol bpn xð Þ¼ pn xð Þ=κ1

2
n denotes the orthonormal polynomial. In fact, the

algebraic norms here considered for the classical orthogonal polynomials in the continuous real variable x can be defined for any sequence of

polynomials orthogonal with respect to a probability measure supported on the real line.

Mathematically, this density governs the asymptotics of the ratio of two polynomials with consecutive orders [28] when the degree n tends

towards infinity. The algebraic norms (1) and (2) quantify different configurational facets of the spread of the HOPs along the support interval Λ.

They are, at times, much better probability estimators [29] than the ordinary moments νq,n ¼
Ð
Λx

qρn xð Þdx; moreover, they are fairly efficient in the

range where the ordinary moments are fairly inefficient [30–32]. Note that these algebraic norms are non-linear in probabilities and the feasible

set of distributions which they define is non-convex [33]. By increasing or decreasing its value, the q-parameter allows to enhance or diminish the

contribution of the integrand over different regions to the whole integral. Higher values of q make the function [ρn(x)]
q to concentrate around the

local maxima of the distribution, while the lower values have the effect of smoothing that function over its whole domain. It is in this sense that

q provides a powerful tool in order to get information on the structure of the probability density by means of the Lq-norms.

Physically, the Rakhmanov's density describes the Born's probability density of the bound stationary states of numerous one and multi-

dimensional quantum systems [3, 34–37]. Then, the Rakhmanov's density may be often interpreted as the position and momentum density of

single-particle quantum systems depending on the HOPs which control the system's wavefunctions in position and momentum states. So that the

algebraic Lq-norms of the HOPs characterize different fundamental and/or experimentally measurable quantities of physical and chemical sys-

tems. In particular, these norms characterize the kinetic and Weizsäcker energies [38–40], the position and momentum expectation values

(see e.g., [41]), the Heisenberg-like uncertainty relations [42] and numerous physical entropies and complexities of quantum systems with great

scientific and technological interest [43, 44], such as for example, the Shannon, Rényi, and Tsallis entropies so that they are, in fact, the basic vari-

ables of the classical and quantum information theories [45–47].

Up until now most analytical efforts on these algebraic norms have been addressed to bound them in many ways (see e.g., [48–51]), although

some explicit expressions have been derived [52–56], and recently reviewed [57], for the three canonical families of the real HOPs. However,

they are not easily handy in the sense that, at times, they only provide algorithmic expressions to compute them in a symbolic way because they

require the evaluation of (a) Bessel polynomials of Combinatorics at the HOP expansion coefficients [52, 58], (b) some multivariate hyper-

geometric functions at unity (Jacobi case) or at 1/q (Hermite and Laguerre cases) [53], or (c) the logarithmic potential of the HOPs at the polyno-

mial's zeros [8, 35]. Numerically, the naive evaluation of the algebraic norms using quadratures is often not convenient due to the increasing

number of integrable singularities when the polynomial degree n is increasing, which spoils any attempt to achieve reasonable accuracy even for

rather small n (see e.g., [59]). For the most complicated situations (i.e., when n, q or the weight-function's parameter is very high) specific

asymptotical approaches derived from approximation theory need to be developed [7, 8, 57, 60, 61]. They are able to express the unweighted

and weighted Lq-norms of the HOPs in a simple, transparent and compact form.

In this work, we will update and, at times, solve the various asymptotics of the unweighted and weighted Lq-norms of the HOPs keeping in

mind their close connection to the entropy and complexity-like quantities, and because of their relevance in the information theory of special

functions and quantum systems and technologies [62–65], as well as to facilitate their numerical and symbolic computation. The asymptotics of

these algebraic norms for polynomials of degree n (n!∞), weight-function's parameter (α!∞) and norm-parameter (q!∞) types have been

previously considered and discussed in an incomplete form. The degree asymptotics (n!∞) was initiated at the middle of the 90s in the seminal

papers of Aptekarev et al. [7, 66, 67] and will not be considered here because it has been recently reviewed and discussed with some physical and

mathematical applications in 2001 [35] (see also [68]), 2010 [8] and 2021 [57], respectively. The q-asymptotics (q!∞) for unweighted [56] and

weighted [60] Lq-norms was tackled in 2014. The weight-function-parameter asymptotics (α!∞) has been solved for the weighted norms of

Laguerre and Gegenbauer polynomials to a great extent by Temme et al. [61, 62] in 2017. The degree and the weight-function-parameter
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asymptotics have been recently used to evaluate the physical Rényi and Shannon entropies for the highly excited (Rydberg) and high-dimensional

(pseudoclasical) states for quantum systems of harmonic (oscillator-like) [63–65, 69] and coulombian (hydrogenic-like) types [62, 65, 70–72], as

well as for some anharmonic potentials [73, 74]. We do not consider here the norms of HOPs with varying weights (i.e., polynomials whose

weight-function's parameter does depend on the polynomial degree), which are also of great mathematical and physical interest [75–77].

This paper is structured as follows: we begin in Section 2 by briefly describing the relation of the algebraic norms (1) and (2) to the entropic

and complexity-like measures of the Rakhmanov's density of the HOPs. In Section 3, we give the asymptotics (q!∞) for the weighted

Lq-norms Wq[pn] of the HOPs. In Section 4, we show the asymptotics (q!∞) of the (unweighted) Lq-norms N q pnð Þ of Jacobi polynomials

P α,βð Þ
n xð Þ, and we point out that the corresponding norms for the Hermite Hn(x) and Laguerre L αð Þ

n xð Þ polynomials remain open. In Section 5, we

show the parameter asymptotics (α!∞) of the (unweighted) Lq-norms N q pn½ � and the Shannon entropy E[pn] of the Laguerre, Jacobi, and

Gegenbauer C αð Þ
n xð Þ polynomials. In Section 6, we find the parameter asymptotics (α!∞) of the weighted Lq-norms Wq[pn] of the Laguerre,

Jacobi, and Gegenbauer polynomials, respectively. Finally, some concluding remarks are pointed out and a number of open related issues are iden-

tified in Section 7.

2 | RELATION TO ENTROPY AND COMPLEXITY-LIKE MEASURES OF HOPS

In this section, we briefly show the relationship of Lq-norms (1) and (2) of the HOPs to the entropy-like measures (Rényi, Shannon) and

complexity-like (LMC-Rényi, Fisher-Rényi, Fisher-Shannon) measures of their associated probability density or Rakhmanov density ρn(x) given by

Equation (3). The Rényi [13, 14] and Shannon [12,45] entropies of the density ρn(x) are defined by the expressions

Rq ρn½ � ¼ 1
1�q

ln
ð
Λ
ρn xð Þq� �

dx� 1
1�q

lnWq ρn½ �, q>0, q≠1, ð4Þ

and

S ρn½ � ¼ lim
q!1

Rq ρn½ � ¼�
ð
Λ
ρn xð Þ lnρn xð Þdx, ð5Þ

respectively. Now, by keeping in mind (2), one has that the weighted norms of the HOPs are Wq pn½ � ¼Wq ρn½ �. Then, the Rényi entropies [14] of

the HOP pn(x) are related to the weighted Lq-norms as

Rq pn½ � ¼ 1
1�q

lnWq pn½ �, ð6Þ

with q > 0 and q ≠ 1. They quantify numerous q-dependent configurational aspects of the spreading of the density ρn(x) over the support Λ.

When q ! 1 the Rényi entropies tend towards the Shannon-like integral functional S[pn], which measures the total spreading of ρn(x). So, this

functional is the limiting case

S pn½ � ¼ lim
q!1

Rq pn½ � ¼�
ð
Λ
ρn xð Þ lnρn xð Þdx≔ S ρn½ � ¼ E pn½ �þ I pn½ �, ð7Þ

and correspondingly

S bpn½ � ¼�
ð
Λ

1
κn
p2n xð Þh xð Þ ln 1

κn
p2n xð Þh xð Þ

� �
dx¼ lnκnþ 1

κn
E pn½ �þ I pn½ �ð Þ ð8Þ

with the polynomial functionals

I pn½ �≔ �
ð
Λ
p2n xð Þh xð Þ lnh xð Þdx ð9Þ

and
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E pn½ �≔ �
ð
Λ
p2n xð Þh xð Þ lnp2n xð Þdx: ð10Þ

The functional I[pn] have been explicitly determined [78] by means of the coefficients of the second-order differential equation of the HOPs.

However, the explicit determination of the functional E[pn] in terms of the degree and the parameters of the weight function h(x) is a formidable

task, not yet solved for the HOPs except (a) for the Chebyshev polynomials of the first and second type and for some Gegenbauer polynomials

[35, 79], (b) in some extreme cases: when (n!∞) and when the parameters of the weight h(x) go towards ∞, and (c) for Laguerre polynomials by

means of a somewhat highbrow expression which involve the evaluation of a bivariate Appell function of second kind F 2ð Þ
A x1, , x2ð Þ and a multivari-

ate Lauricella function F rð Þ
A x1,…, xrð Þ evaluated at unity and its qth-derivative (see [80, equation (23)]). This functional E[pn], usually called Shannon

entropy of the HOPs pn(x), can be expressed in terms of the unweighted Lq-norms as

E pn½ � ¼2
dN q pn½ �

dq

����
q¼2

, ð11Þ

for orthogonal polynomials, and

E bpn½ � ¼� lim
q!1

1
q�1

ln
ð bpn xð Þj j2qh xð Þdx¼� lim

q!1

∂

∂q
N 2q bpn½ �, ð12Þ

for orthonormal polynomials. In addition, it is also fulfilled [81] that

S ρn½ � ¼�dWq ρn½ �
dq

����
q¼1

: ð13Þ

The (biparametric) LMC-Rényi complexity measure [17–20] of the Rakhmanov's density ρn(x) defined as

Cα,β ρn½ �≔ eRα ρn½ ��Rβ ρn½ � , 0 < α< β <∞, α, β≠1, ð14Þ

can be expressed in terms of the weighted norms as

Cα,β ρn½ � ¼ Wα ρn½ �ð Þ 1
1�α � Wβ ρn½ �� � �1

1�β: ð15Þ

This quantity extends a number of other measures such as the shape-Rényi complexity [21] given by Cα,2 ρn½ � ¼ eRα ρn½ � �W2 ρn½ �, and the plain

LMC (Lopez Ruiz-Mancini-Calbet) complexity [82, 83] given by C1,2 ρn½ � ¼ eS ρn½ � �W2 ρn½ � which measures the combined balance of the deviation of

ρn from the equilibrium or disequilibrium (as given by W2 ρn½ � ¼ e�R2 ρn½ �) and its total extent over the density support (as given by the Shannon

entropy power or Shannon length LS
1 pn½ � ¼ eS pn½ � [84].

The Fisher-Shannon complexity of the polynomial pn(x) is given [15, 16] by

CFS pn½ � ¼ F pn½ �� 1
2πe

e2S pn½ � ¼ 1
2πe

F pn½ �� LS
1 pn½ �� �2

, ð16Þ

where the symbols S[pn] and F[pn] denote the Shannon-like entropic functional of the polynomial pn(x) given by (7) and the Fisher information

[85, 86] of the Rakhmanov density ρn(x) associated to pn(x) defined as

F ρn½ � ¼
ð
Λ

ρ0n xð Þ� �2
ρn xð Þ dx,

respectively. Opposite to the Rényi and Shannon entropies, the Fisher information has a local character because it is a functional of the derivative

of ρn(x), what allows it to be explicitly determined for all the HOPs in terms of the degree and the weight-function's parameters. This has been

done for the first time from the second-order differential equation of HOPS [87] (see also [52, 88]).

The natural generalization of the Fisher-Shannon measure is the Fisher-Rényi complexity [21–27], which is defined by

4 of 19 SOBRINO AND DEHESA
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CFR pn½ � ¼ F pn½ �� 1
2πe

e2Rq pn½ � ¼ 1
2πe

F pn½ �� LR
q pn½ �

	 
2
, ð17Þ

where the symbol LR
q pn½ � denotes the Rényi entropy power or Rényi length [84] of the HOP pn(x) given by

LR
q ρn½ � ¼ eRq ρn½ � ¼ Wq ρn½ �ð Þ 1

1�q ¼
ð
Λ
ρn xð Þ½ �qdx

� � 1
1�q

: ð18Þ

Note that the Shannon length is the limiting case of the Rényi length since

LS
1 ρn½ � ¼ lim

q!1
LR
q ρn½ � ¼ eS ρn½ � ¼ e

�
ð
Λ
ρn xð Þ lnρn xð Þdx

, ð19Þ

The entropy-like quantities (Rq[ρn], S[ρn], F[ρn]) are complementary because they grasp different single spreading facets of the probability den-

sity ρ(x). The Rényi and Shannon entropies are measures of the various aspects of the extent to which the density is in fact concentrated, and the

Fisher information is a quantitative estimation of the oscillatory character of the density since it estimates the pointwise concentration of the

probability over its support interval Λ. The three complexity measures (CFS[ρn], CFR[ρn], Cα, β[ρn]), which are dimensionless, quantify different two-

fold configurational facets of the spread of the HOPs along the support interval. They are known to be invariant under translation and scaling

transformation [89, 90], universally bounded from below by unity [50, 91–93], and monotonic [94].

In the next sections, we will determine the previously defined weighted and unweighted norms Wq pn½ �,N q pn½ �ð Þ of the HOPs {pn(x), deg

pn = n}, which control the entropy- and complexity-like properties of such polynomials over the orthogonality support interval Λ. These polyno-

mials are orthogonal with respect to the weight function h(x) on the interval Λ� a, bð Þ⊆ℝ, so that [3, 6].

ð
Λ
pn xð Þpm xð Þh xð Þdx¼ κnδn,m, ð20Þ

where the weight function h(x) has the expressions

hH xð Þ¼ e�x2 ; hLα xð Þ¼ xαe�x; hJα,β xð Þ¼ 1�xð Þα 1þxð Þβ , ð21Þ

for the three canonical HOPs families of Hermite Hn xð Þ, x� �∞,þ∞ð Þ, Laguerre L αð Þ
n xð Þ, α> �1, x� 0,þ∞½ Þ, and Jacobi

P α,βð Þ
n xð Þ, α, β > �1ð Þ, x� �1,þ1½ � types, respectively. The corresponding normalization constants are

κHn ¼ ffiffiffi
π

p
n! 2n; κLn,α ¼Γ nþαþ1ð Þ=n!; and

κJn,α,β ¼
2αþβþ1Γ αþnþ1ð ÞΓ βþnþ1ð Þ

n! αþβþ2nþ1ð ÞΓ αþβþnþ1ð Þ ,
ð22Þ

respectively. The special Jacobi case α¼ β¼ λ� 1
2 corresponds to the ultraspherical or Gegenbauer polynomials C λð Þ

n xð Þ, λ> � 1
2 , λ≠0 with slightly

different normalization (see e.g., [6]); so that its weight function hGλ xð Þ¼ 1�x2
� �λ�1

2 and the corresponding normalization constant is

κGn,λ ¼ 21�2λπΓ nþ2λð Þ
Γ λð Þ½ �2 nþλð Þn! . Note that κn = 1 for the orthonormal polynomials bpn xð Þ of Hermite bHn xð Þ, Laguerre bL αð Þ

n xð Þ and Jacobi bP α,βð Þ
n xð Þ types.

3 | WEIGHTED Lq-NORMS WQ[PN] OF HOPS: ASYMPTOTICS (q!∞)

The weighted norms Wq[pn] of the three canonical HOPs families (Hermite, Laguerre, Jacobi) can be evaluated for all n by the two following ana-

lytical/algorithmic approaches: using the multivariate Bell polynomials of Combinatorics [52, 56, 58] when q�ℕ, and by means of some multivari-

ate hypergeometric functions evaluated [53] (see also a recent review in section 5 of [57]) at unity and at 1/q, or by determining the logarithmic

potential of these polynomials evaluated at their zeros [8, 35]. However, these approaches are, at times, very computationally demanding, espe-

cially for high values of the degree n, the norm-parameter q and the weight-function parameter(s). Then, it is almost mandatory to tackle both

asymptotics (n!∞) and (q!∞), and the asymptotics associated to the weight-function parameter(s). The degree asymptotics of HOPs has been

solved and recently reviewed [7,8, 57] as already said. The weight-function-parameter asymptotics will be analyzed later on.

SOBRINO AND DEHESA 5 of 19
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The purpose of this section is to show and discuss the asymptotics q!∞ð Þ for the weighted norms Wq[pn] of the three canonical families of

the real HOPs {pn(x)}, which are defined by (2). To do it we use the Laplace's method, obtaining [60, 95] that

Wq pn½ �≔
ð
Λ
p2n xð Þh xð Þ� �q

dx¼
ð
Λ
eqf xð Þdx

¼ eqf x0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

�qf00 x0ð Þ

s
þO q�1

� �" #
, q!∞,

ð23Þ

where x0 = x0(n), which denotes the value of the abscissa at which the absolute maximum of the function f xð Þ¼ lnh xð Þþ lnp2n xð Þ is achieved, is

given by

p0n x0ð Þ
pn x0ð Þ¼�1

2
h0 x0ð Þ
h x0ð Þ : ð24Þ

So, this asymptotics is basically controlled by the extremum x0.

3.1 | Hermite polynomials

In this case, the absolute maximum x0 is given by the equation

x0Hn x0ð Þ¼2nHn�1 x0ð Þ:

and the second derivative f 00H x0ð Þ has the value

f 00H x0ð Þ¼2x20�4n�2:

Then, according to Equation (23), we obtain that the weighted norms of the Hermite polynomials fulfill the asymptotics

Wq Hn½ � ¼
ðþ∞

�∞
hH xð ÞH2

n xð Þ
h iq

dx

¼2 hH x0ð ÞH2
n x0ð Þ

h iq ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

q 4n�2x20þ2
� �s

þO q�1
� �" #

, q!∞:

ð25Þ

For n = 0, one has H0(x) = 1 and x0 = 0 so that this asymptotical formula gives the exact value
ffiffi
π
q

q
. For n = 1 one has H1(x) = 2x and x0 = 1,

so that the asymptotical value of the corresponding weighted norm is 22qþ1e�q
ffiffiffiffi
π
2q

q
þO q�1

� �� �
. Moreover, for n = 2, we have that H2(x) = 4x 2–2

and x0 ¼
ffiffi
5
2

q
, so that the weighted norm of the corresponding polynomial has the asymptotical value

26qþ1e�
5
2q

ffiffiffiffiffiffi
2π
5q

s
þO q�1

� �" #
: ð26Þ

3.2 | Laguerre polynomials

In this case, according to Equation (24), the absolute maximum x0 = x0(n) is given by

α

x0
�1

� �
L αð Þ
n x0ð Þ¼2L αþ1ð Þ

n�1 x0ð Þ, ð27Þ

and the second derivative f 00L x0ð Þ has the value
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f 00L x0ð Þ¼ α2

2x20
�2nþαþ1

x0
þ1
2
:

Then, according to (23) we obtain the following asymptotics for the weighted norm of Laguerre polynomials L αð Þ
n xð Þ

Wq L αð Þ
n

h i
¼
ðþ∞

0
hLα xð Þ L αð Þ

n xð Þ
h i2� �q

dx

¼ hLα x0ð Þ L αð Þ
n x0ð Þ

h i2� �q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

q � α2

2x20
þ2nþαþ1

x0
�1
2

 !vuuuut þO q�1
� �

2666664

3777775,
ð28Þ

for q!þ∞ and α>0. For the particular cases n = 0;1, one has L αð Þ
0 xð Þ¼1;L αð Þ

1 xð Þ¼αþ1�x and the absolute maximum values

x0 0ð Þ¼ α;x0 1ð Þ¼ 1
2 2αþ3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8αþ9
p� �

, respectively. Then, theweighted norms of the corresponding Laguerre polynomials have the asymptotical values

αqαe�qα

ffiffiffiffiffiffiffiffi
2πα
q

s
þO q�1

� �" #
and xα0e

�x0 1þα�x0ð Þ2
h iq ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

�qf 00L x0ð Þ

s
þO q�1

� �" #

respectively, with

f 00L x0ð Þ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8αþ9

p �8α�9ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8αþ9

p �2α�3
� �2 :

3.3 | Jacobi polynomials

In this case, according to Equation (24), the absolute maximum x0 = x0(n) is given by

P αþ1,βþ1ð Þ
n�1 x0ð Þ
P α,βð Þ
n x0ð Þ ¼� 1

αþβþnþ1
�α

1�x0
þ β

1þx0

� �
, ð29Þ

and the second derivative f 00J x0ð Þ has the value

f 00J x0ð Þ¼� αþα2

2

� �
1

1�x0ð Þ2
� βþβ2

2

� �
1

1þx0ð Þ2
� αβ

1�x20

�2n nþαþβþ1ð Þ
1�x20

þβ�α� αþβþ2ð Þx0
1�x20

β

1þx0
� α

1�x0

� �
:

ð30Þ

Then, according to (23) we obtain the following asymptotics for the weighted norm of Jacobi polynomials P α,βð Þ
n xð Þ, α, β > �1ð Þ, x� �1,þ1½ �

Wq P α,βð Þ
n

h i
¼
ðþ1

�1
hJα,β xð Þ P α,βð Þ

n xð Þ
h i2� �q

dx

¼ hJα,β x0ð Þ P α,βð Þ
n x0ð Þ

h i2� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

�qf 00J x0ð Þ

s
þO q�1

� �" # ð31Þ

for q!∞ and α, β > 0. Finally, in the particular case where n = 0, α>0 and β >0 we can find from Equations (29) and (30) that

x0 ¼ β�α

αþβ
and f 00J x0ð Þ¼� αþβð Þ3

4αβ
,

respectively. Then, from Equation (31) with these values of x0 and f00J x0ð Þ, we obtain the following value
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Wq P α,βð Þ
0

h i
¼
ðþ1

�1
hJα,β xð Þ P α,βð Þ

0 xð Þ
	 
2� �q

dx

¼2q αþβð Þ α

αþβ

� �αq β

αþβ

� �βq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8παβ

q αþβð Þ3
s

þO q�1
� �" # ð32Þ

for the leading term of the asymptotics (q!∞) of P α,βð Þ
0 xð Þ¼1.

4 | Lq-NORMS N q pn½ � OF HOPS: ASYMPTOTICS (q!∞)—OPEN PROBLEMS

The unweighted norms (1) of the three canonical HOPs families (Hermite, Laguerre, Jacobi) can be evaluated for all n by using the combinatorial

Bell polynomials [56, 58] when q = 2 k and k�ℕ. Indeed, they can be expressed as

N q pn½ � ¼
ð
Λ
pn xð Þj jq h xð Þdx¼

Xnq
t¼0

q!
tþqð Þ!Btþq,q c0, 2!c1,…, tþ1ð Þ!ctð Þμt ð33Þ

where cj denotes the coefficients of the power expansion pn xð Þ¼Pn
k¼0

ckxk and the B-symbol denotes the multivariate Bell polynomials given by

Bm,l c1, c2,…, cm�lþ1ð Þ¼
X
π m, lð Þ

m!

j1!j2!…jm�lþ1!

c1
1!

	 
j1 c2
2!

	 
j2
…

cm�lþ1

m� lþ1ð Þ!
� �jm�lþ1

,

where the sum runs over all partitions π(m, l) such that j1 + j2 + … + jm � l + 1 = l and j1 + 2j2 + … + (m � l + 1)jm � l + 1 = m. Moreover, μt

denotes the moment of order t of the weight function h(x), that is,

μt ¼
ð
Λ
xt h xð Þdx, t¼0, 1,… ð34Þ

whose values are known to be

μ2tþ1 H½ � ¼0, μ2t H½ � ¼Γ tþ1
2

� �
; μt L½ � ¼Γ 1þαþ tð Þ ð35Þ

μt J½ � ¼Γ 1þ tð Þ �1ð Þt Γ 1þβð Þ
Γ 2þ tþβð Þ2

F1 �α, tþ1;2þ tþβ; �1ð Þþ Γ 1þαð Þ
Γ 2þ tþαð Þ2

F1 �β, tþ1;2þ tþα;�1ð Þ�
�

ð36Þ

for Hermite, Laguerre, and Jacobi polynomials, respectively. Then, the expressions (33)–(36), together with the expansion coefficients cj (see

e.g., [6]), provide an algorithmic procedure to determine the unweighted N q norms (1) of the Hermite, Laguerre, and Jacobi polynomials in terms

of q, n and the parameter of the corresponding weight function (see section 2 of [56] for further details). Alternatively, the unweighted quantities

N q pn½ � can be also obtained by using the Srivastava–Niukkanen linearizing formulas [53, 55] of powers of Laguerre and Jacobi polynomials,

already employed for the calculation of the weighted norms. The corresponding results, however, require the evaluation at unity of some multi-

variate hypergeometric functions Lauricella type. These two approaches to find both symbolically and numerically the unweighted norms Nq[pn]

of the HOPs are computationally demanding, especially in the (qualitatively different) extremal cases: q!∞, n!∞ and when the parameters of

the weight function become very large. In such cases, it is more convenient to use specific asymptotical approaches derived from approximation

theory [95–98].

In this section, we tackle and discuss the asymptotics q!∞ for the (unweighted) Lq-norms N q P α,βð
n

h i
of Jacobi polynomials by means of the

Laplace method [95]. Unfortunately, this method is not applicable to Hermite and Laguerre polynomials, as explained later. Therefore, the asymp-

totics q!∞ of the following (unweighted) Lq-norms

N q Hn½ � ¼
ð
Λ
Hn xð Þj jq hH xð Þdx¼

ðþ∞

�∞
e�x2 Hn xð Þj jqdx ð37Þ

and

8 of 19 SOBRINO AND DEHESA
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N q L αð Þ
n

h i
¼
ð
Λ
L αð Þ
n xð Þ

��� ���q hLα xð Þdx¼
ðþ∞

0
xαe�x L αð Þ

n xð Þ
��� ���q dx ð38Þ

remains open for the future.

The evaluation of the unweighted norms of HOPs in the other two extremal situations, that is, when n!∞ and when α!∞, are also rele-

vant problems not yet solved. This problem appears, however, in numerous chemical and physical problems related to the highly excited or

Rydberg (i.e., when n!∞) and the high dimensional or quasi-classical (i.e. when α!∞) quantum states of harmonic and coulombian systems;

indeed, their wavefunctions are controlled by Hermite and Laguerre polynomials for one and multidimensional cases and in both position and

momentum spaces, respectively.

Let us now show the evaluation of the unweighted norms of the Jacobi polynomials for the extremal case q!∞.

4.1 | Asymptotics (q!∞) for the Lq-norms of Jacobi polynomials

In this section, we determine the asymptotics (q!∞) for the unweighted Lq-norms N q P α,βð Þ
n

h i
of the Jacobi polynomials, defined by

N q P α,βð Þ
n

h i
¼
ð
Λ
P α,βð Þ
n xð Þ

��� ���q hJα,β xð Þdx¼
ð1
�1

1�xð Þα 1þxð Þβ P α,βð Þ
n xð Þ

��� ���qdx, ð39Þ

The asymptotic behavior (q!∞) of the unweighted Lq-norms N q pn½ � of the polynomials pn(x) given by Equation (1), can be evaluated by the

extended Laplace method (see Theorem 1 of [95, chapter 2], and [56, section 4]). However, this method demands the existence of a global maxi-

mum of the function jpn(x)j. Then, it is not applicable to Hermite and Laguerre polynomials because the functions jHn(x)j and j L αð Þ
n xð Þ j do not have

such maximum in the intervals of orthogonality �∞,þ∞ð Þ and 0,þ∞ð Þ, respectively. Now, for the Jacobi polynomials P α,βð Þ
n xð Þ the maximum is

achieved at x = �1 if β ≥ α>�1, β ≥ � 1
2 [6, equation 18.14.2], and at x = 1 if α≥ β >�1, α≥ � 1

2 [6, equation 18.14.1], with the values

j P α,βð Þ
n �1ð Þ j¼ βþ1ð Þn

n!
; jP α,βð Þ

n 1ð Þ j¼ αþ1ð Þn
n!

ð40Þ

Now, to obtain the unweighted norms (39) we use the first order asymptotics (q!∞)

ðb
a
ϕ xð Þe�qt xð Þdx¼ e�qt að Þ Γ

γ

μ

� �
b0

μaγ=μ0

q�
γ
μ þO q�

1þγ
μ

	 
 !
: ð41Þ

where the functions t(x) > t(a), 8x � (a, b), and ϕ(x) have the expansions

t xð Þ¼ t að Þþa0 x�að Þμþ�� �, ϕ xð Þ¼ b0 x�að Þγ�1þ���:

Then, for Jacobi polynomials we have that ϕ(x) = (1 � x)α(1 + x)β and t xð Þ¼� ln P α,βð Þ
n xð Þ

��� ���. Now, let us consider first the case when β ≥ α>�1,

β ≥ � 1
2; so, according to Equation (40), themaximumoccurs at x= a=�1, fulfilling the requirement of the Laplacemethod. Thus, we obtain the expansions

ϕ xð Þ¼2α xþ1ð Þβþ���

so that b0 = 2α, γ = β + 1, and

t xð Þ¼� ln P α,βð Þ
n �1ð Þ

��� ����1
2

nþαþβþ1ð ÞP
αþ1,βþ1ð Þ
n�1 �1ð Þ
P α,βð Þ
n �1ð Þ xþ1ð Þþ �� �,

so that μ = 1, and

a0 ¼�1
2

nþαþβþ1ð ÞP
αþ1,βþ1ð Þ
n�1 �1ð Þ
P α,βð Þ
n �1ð Þ ¼1

2
nþαþβþ1ð Þ n

βþ1
:

SOBRINO AND DEHESA 9 of 19
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The substitution of these values of a0, b0, γ, and μ in Equation (41) gives rise to the following values [56] for the unweighted norms of Jacobi

polynomials

N q P α,βð Þ
n

h i
¼ βþ1ð Þn

n!

� �q

2αΓ βþ1ð Þ 2 βþ1ð Þ
nþαþβþ1ð Þn

� �βþ1

q�β�1þO q�β�2
� � !

, ð42Þ

if β ≥ α > �1, β ≥ � 1
2. Similarly, with the change of variable x!�x, the unweighted norms of Jacobi polynomials have the values

N q P α,βð Þ
n

h i
¼ αþ1ð Þn

n!

� �q

2βΓ αþ1ð Þ 2 αþ1ð Þ
nþαþβþ1ð Þn

� �αþ1

q�α�1þO q�α�2
� � !

, ð43Þ

if α ≥ β > �1, α≥ � 1
2. Note the simplicity and transparency of expressions (42) and (43), valid for large q, with respect to the general expressions

(33)–(36) which, although valid for all q, are somewhat highbrow, not analytically handy.

5 | Lq-NORMS N q pn½ � AND SHANNON ENTROPY E pn½ � OF HOPS: PARAMETER ASYMPTOTICS (α!∞)

The unweighted Lq-norms (1) of the three parameter-dependent HOPs families (Laguerre, Jacobi, Gegenbauer) can be explicitly evaluated, as

mentioned above, although in a not so handy way because their analytical expressions require the evaluation of some multivariate hypergeometric

functions in an algorithmic form. The latter is specially true when the parameter(s) of their weight function has large values. Rarely, they can be

determined recursively such as for the Gegenbauer polynomials [41]. Then, it is mandatory to develop some asymptotical approaches derived

from approximation theory to determine these algebraic norms in a simple and transparent way. The asymptotics (n!∞) of the algebraic norms

was already solved in the seminal work of Aptekarev et al. [7] (see also the review [57]).

The leitmotiv of this section is the asymptotics (α!∞) of the Lq-norms N q pn½ � and the Shannon entropy E pn½ � of Laguerre, Jacobi and

Gegenbauer polynomials. We first update the existing approaches for the asymptotics (α!∞) of the algebraic norms N q L αð Þ
n

	 

and N q P α,βð Þ

n

	 

of

Laguerre and Jacobi polynomials, given by Equations (38) and (39), respectively. Then, according to Equation (11), we calculate from these quanti-

ties the Shannon entropies (10) given by the expressions

E L αð Þ
n

h i
≔ �

ð∞
0

L αð Þ
n xð Þ

h i2
hLα xð Þ ln L αð Þ

n xð Þ
h i2

dx¼2
dN q L αð Þ

n

h i
dq

������
q¼2

, ð44Þ

E P α,βð Þ
n

h i
≔ �

ðþ1

�1
P α,βð Þ
n xð Þ

h i2
hJα,β xð Þ ln P α,βð Þ

n xð Þ
h i2

dx¼2
dN q P α,βð Þ

n

h i
dq

������
q¼2

, ð45Þ

and

E C λð Þ
n

h i
¼�

ðþ1

�1
C λð Þ
n xð Þ

h i2
hGλ xð Þ ln C λð Þ

n xð Þ
h i2

dx¼2
d
dq

N q C λð Þ
n

h ih i
q¼2

ð46Þ

for Laguerre, Jacobi, and Gegenbauer polynomials, respectively. Physically, these entropic quantities describe the Shannon entropies of the high-

dimensional quantum states of numerous quantum systems, such as, for example, the D-dimensional oscillator-like and hydrogenic systems (see

e.g., [65,80]). Basically, this is because the wavefunctions of these systems are controlled by the Laguerre and Gegenbauer polynomials, L αð Þ
n xð Þ

and C λð Þ
n xð Þ, where the parameters α and λ are linear functions of the space dimensionality D of the system (see e.g. [80]).

5.1 | Lq-Norms N q L αð Þ
n

	 

and Shannon entropy E L αð Þ

n

h i
of Laguerre polynomials: Parameter asymptotics

To obtain the asymptotics of the unweighted N q L αð
n

	 

norm and the Shannon entropy E L αð

n

h i
of the Laguerre polynomials L αð

n xð Þ, given by Equa-

tions (38) and (44), respectively, we use the following theorem of Temme et al. [61] and its extension (see [61, section 5]). This recent result allows

one to evaluate the general entropy-like functionals of Laguerre polynomials I1(m, α) and I2(m, α) given below, which include the wanted func-

tionals N q Lαn
� �

and E L αð
n

h i
as particular cases.

10 of 19 SOBRINO AND DEHESA
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Theorem 1. [61] Let α, λ, q, and μ be positive real numbers, and m a positive natural number. Then, the unweighted functional of

Laguerre polynomials

I1 m, αð Þ¼
ð∞
0

xμ�1e�λx L αð Þ
m xð Þ

��� ���q dx, ð47Þ

fulfills the asymptotic expansion

I1 m, αð Þ�αqmΓ μð Þ
λμ m!ð Þq

X∞
k¼0

Dk

αk
, α!∞, and rest of parameters fixed: ð48Þ

The first coefficients are

D0 ¼1, D1 ¼ qm �2μþmλþλð Þ
2λ

, ð49Þ

and

D2 ¼ qm �12μλqm2þ24μλ�12μλqm�4m2λ2�6mλ2þ3m3λ2q �12μ2þ12μ2qm�12μþ12μqmþ6λ2qm2�2λ2þ3λ2qmÞ= 24λ2
� �

:
� ð50Þ

From these expressions, we obtain

ð∞
0
xμ�1e�λx L αð Þ

m xð Þ
��� ���κdx� ακmΓ μð Þ

λμ m!ð Þκ , α!∞:and rest of parameters fixed: ð51Þ

Moreover, by differentiating the expansion (48) with respect to q and taking q = 2 afterwards, we find that the generalized Shannon-like inte-

grals I2(m, α) defined by

I2 m, αð Þ¼
ð∞
0
xμ�1e�λx L αð Þ

m xð Þ
	 
2

ln L αð Þ
m xð Þ

	 
2
dx, ð52Þ

have the following values

I2 m, αð Þ¼2
∂

∂q
I1 m, αð Þ

����
q¼2

� α2mΓ μð Þ
λμ m!ð Þ2

ln
α2m

m!ð Þ2
X∞
k¼0

Dk

αk
þ2

X∞
k¼0

D0
k

αk

 !
, ð53Þ

for α!∞ and the rest of parameters are fixed. The derivatives D0
k are with respect to q.

Furthermore, let us now consider the extension (see [61, section 5]) of the previous theorem for the case μ = O(α) in the special form μ = σ +-

α, λ = 1 and with σ a fixed real number. Then, we can use the limit (see [6, equation 18.7.26])

lim
α!∞

2
α

� �1
2m

L αð Þ
m

ffiffiffiffiffiffi
2α

p
xþα

	 

¼ �1ð Þm

m!
Hm xð Þ, ð54Þ

so that we have the asymptotic relation

L αð Þ
m αxð Þ� α

2

	 
1
2m �1ð Þm

m!
Hm

ffiffiffi
α

2

r
x�1ð Þ

� �
: ð55Þ

Then, we obtain in the first approximation that

SOBRINO AND DEHESA 11 of 19
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ð∞
0

xαþσ�1e�x L αð Þ
m xð Þ

��� ���q dx�ααþσe�α 1

m!ð Þq
α

2

	 
1
2qm

ð∞
�∞

e�
1
2αy

2
Hm

ffiffiffi
α

2

r
y

� ����� ����q dy, ð56Þ

when α!∞ and the rest of parameters (σ, λ = 1, q, m) are fixed. This expression can be alternatively found and rewritten [99] as

ð∞
0

xαþδe�x L αð Þ
m xð Þ

��� ���q dx� cm,q
α

e

	 
α
αδþ mqþ1ð Þ=2, α!∞ ð57Þ

with

cm,q ¼ N q Hm½ �
m!ð Þq2mq�1=2

, ð58Þ

being m a positive integer number, δ a real number and q a positive real number, and N q Hm½ � the unweighted Lq-norm of Hermite polynomials

defined by Equation (37). The constant cm,q, which does not depend on α, is controlled by the unweighted norm of the Hermite polynomials which

can be explicitly found for all m (see e.g., [55]) and in the limit m!∞ (see [98]). From this asymptotical expression and an identity similar to (44),

we obtain the following parameter asymptotics for the extended Shannon entropic functional

ð∞
0

xαþδe�x L αð Þ
m xð Þ

��� ���2 ln L αð Þ
m xð Þ

��� ���2dx� ffiffiffiffiffiffi
2π

p

m�1ð Þ!
α

e

	 
α
αδþmþ1=2 lnα, α!∞: ð59Þ

Finally, putting δ = 1 we have from the last two asymptotical expressions the parameter asymptotics

N q L αð Þ
n

h i
≔
ðþ∞

0
xαe�x L αð Þ

n xð Þ
��� ���q dx� cm,q

α

e

	 
α
α mqþ1ð Þ=2, α!∞ ð60Þ

for the unweighted norms of Laguerre polynomials, and

E L αð Þ
n

h i
≔
ð∞
0

xαe�x L αð Þ
m xð Þ

��� ���2 ln L αð Þ
m xð Þ

��� ���2dx� ffiffiffiffiffiffi
2π

p

m�1ð Þ!
α

e

	 
α
αmþ3=2 lnα, α!∞ ð61Þ

for the Shannon entropy of Laguerre polynomials [99, 100].

5.2 | Lq-Norms and Shannon entropy of Jacobi and Gegenbauer polynomials: Parameter asymptotics

To obtain the parameter asymptotics (α!∞, β fixed) of the unweighted norm N q P α,βð Þ
n

	 

and the Shannon entropy E bP α,βð Þ

n

� �
of the Jacobi poly-

nomials, given by Equations (39) and (45), respectively, we follow the lines of Sobrino et al. [101, section 3.2]. First, from Equation (39) and the

limiting relation

lim
α!∞

P α,βð Þ
n xð Þ

P α,βð Þ
n 1ð Þ¼

1þx
2

� �n

, with P α,βð Þ
n 1ð Þ¼Γ αþnþ1ð Þ

n!Γ αþ1ð Þ , ð62Þ

we find the asymptotics

N p P α,βð Þ
n

h i
�Γ αþnþ1ð Þ

n!
Γ 1þnpþβð Þ

Γ 2þαþnpþβð Þ2
1þαþβ; α!∞, β fixed ð63Þ
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Thus, according to Equations (11) and (63), one has that the asymptotics of the Shannon entropy of the orthogonal Jacobi polynomials

P α,βð Þ
n xð Þ is given as

E P α,βð Þ
n

h i
≔ �

ðþ1

�1
1�xð Þα 1þxð Þβ P α,βð Þ

n xð Þ
h i2

ln P α,βð Þ
n xð Þ

h i2
dx

�22þαþβα�n�β�1 Γ 1þ2nþβð Þ
Γ nð Þ ψ 1þ2nþβð Þ� ln αð Þð ÞþO α�2

� �� � ð64Þ

when α!∞, β fixed and being ψ xð Þ¼ Γ0 xð Þ
Γ xð Þ the digamma function.

A similar result follows for β!∞ by exchanging α$ β. The explicit expression of these entropies is not yet known [57], although their

asymptotical behavior when n!∞ is controlled [8, 66, 67].

From the last two asymptotical expressions (63) and (64) with α = β = λ � 1/2 and taking into account the following relation

C λð Þ
n xð Þ¼ cn,λP

λ�1
2,λ�1

2ð Þ
n xð Þ�Γ λþ 1

2

� �
Γ 2λð Þ

Γ nþ2λð Þ
Γ nþλþ 1

2

� � P λ�1
2,λ�1

2ð Þ
n xð Þ, ð65Þ

one can obtain the asymptotics λ!∞ð Þ of the Lq-norms N q C λð Þ
n

h i
and the Shannon entropy E C λð Þ

n

h i
of Gegenbauer polynomials, respectively.

These entropies have not yet been explicitly evaluated for all (n, λ) except for integer λ, but their asymptotical behavior when n!∞ has been

determined [35, 102, 103].

5.2.1 | Parameter asymptotics for Lq-norms N q C λð Þ
n

	 

and Shannon entropy E C λð Þ

n

h i
of Gegenbauer polynomials

The interest in the asymptotics (λ!∞) of the Gegenbauer polynomial themselves and their algebraic norms has been a long-standing problem [35,

35, 61, 62, 80, 100, 102–105] because of fundamental and quantum applications; this is basically because the Gegenbauer polynomials control

the angular part of the quantum wavefunctions of central potentials in position space and the momentum wavefunctions of Coulomb systems

(see e.g., the reviews [65, 106, 107].

So, let us center around the asymptotics (λ!∞) of the unweighted Lq-norms of orthogonal Gegenbauer polynomials given by

N q C λð Þ
n

h i
≔
ð1
�1
hGλ xð Þ C λð Þ

n

��� ���qdx, ð66Þ

and the Shannon entropy (46), where hGλ xð Þ¼ 1�x2
� �λ�1

2. Then, we take into account the limiting relation

lim
λ!∞

C λð Þ
n xð Þ

C λð Þ
n 1ð Þ¼ xn, with C λð Þ

n 1ð Þ¼ nþ2λ�1ð Þ!
n! 2λ�1ð Þ! , ð67Þ

to obtain [101].

N q C λð Þ
n

h i
� C λð Þ

n 1ð Þ
h iqΓ 1

2 1þnqð Þ� �
Γ 1

2þn
� �

Γ 1þλþ nq
2

� � �Γ 1
2 1þnqð Þ� �

n!q
, λ!∞: ð68Þ

And for the orthonormal Gegenbauer polynomials bC λð Þ
n xð Þ¼C λð Þ

n xð Þ κGn,λ
� ��1

2, we have the following asymptotics

N q
bC λð Þ
n

� �
¼ 1

κGn,λ

	 
q=2N q C λð Þ
n

h i
� C λð Þ

n 1ð Þ
κGn,λ

	 
1=2
264

375
q
Γ

1
2

1þnqð Þ
� �

Γ
1
2
þn

� �
Γ 1þλþnq

2

	 


�
Γ

1
2

1þnqð Þ
� �

n!q
n!

q
2λq

π
q
4

þO λ�
q
4

	 
 !
, λ!∞,

ð69Þ

of the corresponding unweighted norms.

Finally, according to (46) and (69), one has that the Shannon entropy of the orthogonal Gegenbauer polynomials fulfills the asymptotics

SOBRINO AND DEHESA 13 of 19
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E C λð Þ
n

h i
≔
ðþ1

�1
C λð Þ
n xð Þ

h i2
hGλ xð Þ ln C λð Þ

n xð Þ
h i2

dx

�2κGn,λ ln
nþ2λ�1ð Þ!
n! 2λ�1ð Þ!

� �
þ n
2
ψ

2nþ1
2

� �
� n
2
ψ nþ2λþ1ð Þ

� �
,

ð70Þ

with the normalization constant κGn ¼ 21�2λπΓ nþ2λð Þ
Γ λð Þ½ �2 nþλð Þn! . And for the orthonormal polynomials bC λð Þ

n xð Þ, we have the parameter asymptotics

E bC λð Þ
n

� �
�2 ln

nþ2λ�1ð Þ!
n! 2λ�1ð Þ!

� �
þ n
2
ψ

2nþ1
2

� �
� n
2
ψ nþ2λþ1ð Þ

� �
�2ln

λn2n

n!

� �
ð71Þ

in a simple and elegant form.

6 | WEIGHTED Lq-NORMS WQ[PN] OF HOPS: PARAMETER ASYMPTOTICS

This section is devoted to the parameter asymptotics (α!∞) for the weighted Lq-norms of the three parameter-dependent HOPs families of

Laguerre, Jacobi and Gegenbauer types defined by Equation (2) and denoted by Wq L αð Þ
n

h i
, Wq P α,βð Þ

n

h i
and Wq C λð Þ

n

h i
, respectively. These integral

functionals have been of great mathematical interest in the theory of trigonometric series and extremal polynomials since Bernstein's times

[96, 108–110]. More recently, they are explicitly evaluated, as mentioned above, although in a highbrow, not so handy way because the associ-

ated analytical expressions require the evaluation of either the multivariate Bell polynomials so useful in combinatorics or some multivariate hyp-

ergeometric functions of Lauricella or Srivastava-Daoust types in an algorithmic form [53, 58, 111, 112]. This is specially so when the

parameter(s) of their weight function has large values. Then, it is mandatory to develop some asymptotical approaches derived from approxima-

tion theory to determine these algebraic norms.

Physically, the asymptotical values of the weighted Lq-norms for the Laguerre, Jacobi, and Gegenbauer polynomials provide various energy-

dependent quantities and the Rényi, Shannon, and Tsallis entropies of the high-dimensional pseudo-classical states of a great deal of quantum

systems of harmonic and Coulomb types (e.g., the dimensional oscillator- and hydrogenic-like systems) in a simple and transparent way. The latter

is basically because the corresponding wavefunctions of these systems are controlled by the mentioned HOPs where the parameter of their

weight functions is directly dependent on the space dimensionality.

6.1 | Weighted Lq-norms Wq L αð Þ
n

	 

of Laguerre polynomials: Parameter asymptotics

The parameter asymptotics (α!∞) for the weighted Lq-norms Wq L αð Þ
n

	 

of (orthogonal) Laguerre polynomials defined by

Wq L αð Þ
n

h i
¼
ð∞
0

L αð Þ
n xð Þ

h i2
hLα xð Þ

� �q

dx¼
ð∞
0
xqαe�qα L αð Þ

n xð Þ
h i2q

dx, ð72Þ

can be determined by (48) and (51) derived from Theorem 1 of Temme et al. [61]. Then, with the values μ = qα + 1, λ = q and κ = 2q, this general

asymptotical formula provides the required asymptotics for Wq L αð Þ
n

h i
:

Wq L αð Þ
n

h i
� α2qnΓ qαþ1ð Þ

qqαþ1 n!ð Þ2q
, α!∞: ð73Þ

Moreover, the weighted Lq-norms Wq
bL αð Þ
n

� �
of orthonormal Laguerre polynomials fulfill the parameter asymptotics

Wq
bL αð Þ
n

� �
¼ 1

κLn,α
� �q Wq L αð Þ

n

h i
� 1

κLn,∞
� �q α2qnΓ qαþ1ð Þ

qqαþ1 n!ð Þ2q
, α!∞, ð74Þ

with

κLn,∞ ¼ lim
α!∞

κLn,α �
ffiffiffiffiffiffi
2π

p

n!
α

e

	 
α
αnþ1=2, α!∞, ð75Þ
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where we have taken into account that the normalization constant κLn,α is given by Equation (22), and keeping in mind that Γ zð Þ� e�z zz 2π
z

� �1=2
(see

equation 5.11.3 of [6]), one has that

Wq
bL αð Þ
n

� �
� αq n�1

2ð Þþ1
2ffiffiffi

q
p

n!ð Þq 2πð Þ12 q�1ð Þ , α!∞, ð76Þ

which extends to all q the following asymptotics

W2
bL αð Þ
n

� �
¼ α2n

1

2 n!ð Þ2 ffiffiffiffiffiffi
πα

p þO α�3=2
	 
 !

, α!∞ ð77Þ

recently found (see equation 32 of [100]) for the second order norm W2
bL αð Þ
n

� �
, which is a fundamental ingredient of the LMC complexity of the

orthonormal Laguerre polynomials.

6.2 | Weighted Lq-norms of Jacobi and Gegenbauer polynomials: Parameter asymptotics

In this section, we show the parameter asymptotics (α!∞, β fixed) for the weighted Lq-norms

Wq P α,βð Þ
n

h i
¼
ðþ1

�1
P α,βð Þ
n xð Þ

��� ���2hα,β xð Þ
� �q

dx¼
ðþ1

�1
1�xð Þqα 1þxð Þqβ P α,βð Þ

n xð Þ
��� ���2q dx, ð78Þ

of (orthogonal) Jacobi polynomials P α,βð Þ
n xð Þ, and the parameter asymptotics (λ!∞) for the corresponding norms

Wq C λð Þ
n

h i
¼
ðþ1

�1
C λð Þ
n xð Þ

��� ���2hGλ xð Þ
� �q

dx¼
ðþ1

�1
1�x2
� �qλ�q=2

C λð Þ
n xð Þ

��� ���2q dx, ð79Þ

of (orthogonal) Gegenbauer polynomials C λð Þ
n xð Þ.

To obtain the parameter asymptotics (α!∞, β fixed) of the weighted norm Wq P α,βð Þ
n

	 

of the Jacobi polynomials P α,βð Þ

n xð Þ, we use the limiting

relation (62) in Equation (78), obtaining the asymptotics

Wq P α,βð Þ
n

h i
� P α,βð Þ

n 1ð Þ
h i2q

4�nq 1
1þ2nqþqβ2

F1 1,�qα, 2þ2nqþqβ,�1ð Þ
�

þ 1
1þqα2

F1 1ð ,�q 2nþβð Þ, 2þqα,�1Þ
�
, α!∞, β fixed

� P α,βð Þ
n 1ð Þ

h i2q21þq αþβð ÞΓ 1þqαð ÞΓ 1þ2nqþqβð Þ
Γ 2þq αþβþ2nð Þð Þ , α!∞, β fixed

ð80Þ

which generalizes to all q the asymptotics given by (equation 35 of [101]) for the second-order norm Wq P α,βð Þ
n

h i
of the orthogonal Jacobi polyno-

mials. Moreover, the weighted Lq-norms Wq
bP α,βð Þ
n

� �
of orthonormal Jacobi polynomials fulfill the parameter asymptotics

Wq
bP α,βð Þ
n

� �
¼ 1

κJn,α,β

	 
q Wq P α,βð Þ
n

h i
� 21�q

n!ð Þqq1þq βþ2nð Þ
Γ 1þ2nqþnβð Þ
Γ βþnþ1ð Þ αq�1, α!∞, β fixed ð81Þ

which extends to all q the asymptotics

W2
bP α,βð Þ
n

� �
¼ 1

κJn,α,β

	 
2 W2 P α,βð Þ
n

h i
� Γ 1þ4nþ2βð Þ
22 1þ2nþβð Þ n!ð Þ2Γ 1þnþβð Þ

α, α!∞, β fixed ð82Þ

recently found (see equation 36 of [101]) for the second-order norm W2
bP α,βð Þ
n

� �
, which is a fundamental ingredient for the measure of complexity

of the orthonormal Jacobi polynomials.
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Finally, to obtain the parameter asymptotics (λ!∞) of the weighted normWq C λð Þ
n

	 

of the Gegenbauer polynomials C λð Þ

n xð Þ, we follow a simi-

lar procedure. We use the limiting relation (67) in Equation (79), obtaining the asymptotics

Wq C λð Þ
n

h i
� C λð Þ

n 1ð Þ
h i2q 1þ �1ð Þ2nq

	 

Γ

1
2
þnq

� �
Γ 1þq λ�1

2

� �� �
2Γ

3
2
þq nþλ�1

2

� �� �
2664

3775
� 1þ �1ð Þ2nq
	 


Γ
1
2
þnq

� �
22nq

q
1
2þnq n!ð Þ2q

λnq�
1
2, λ!∞:

ð83Þ

Moreover, the weighted Lq-norms Wq
bC λð Þ
n

� �
of orthonormal Laguerre polynomials fulfill the parameter asymptotics

Wq
bC λð Þ
n

� �
¼ 1

κGn,λ

	 
q Wq C λð Þ
n

h i
� c q, nð Þλ1

2 q�1ð Þ, λ!∞, ð84Þ

with

c q, nð Þ¼ 1þ �1ð Þ2nq
	 
2nq�1Γ 1

2þnq
� �

q
1
2þnqπ

q
2 n!ð Þq ð85Þ

and where we have also taken into account that κGn,λ � λn�1=22n ffiffiffi
π

p
=n! when λ!∞; and for q = 2, this result simplifies as

W2
bC λð Þ
n

� �
¼ 1

κGn,λ

	 
2 W2 C λð Þ
n

h i
�Γ 1

2þ2n
� �ffiffiffi
2

p
π n!ð Þ2

λ
1
2, λ!∞: ð86Þ

Remark that the last two expressions (83) and (84) extend to all q the corresponding algebraic norms for the orthogonal and orthonormal

Gegenbauer polynomials obtained by equations (65) and (66) of [100], respectively. See also Figure 1, where the coefficients c(q, n), given by (85),

which control the asymptotical power-law (84) of the of the weighted Lq-norms Wq
bC λð Þ
n

� �
of orthonormal Gegenbauer polynomials, are plotted

as function of the degree n for various values of q.

7 | CONCLUSIONS

In this work, the present knowledge of the spreading of the hypergeometric orthogonal polynomials (HOPs) is examined and updated by means of

the unweighted and weighted Lq-norms, given by Equations (1) and (2) respectively. Emphasis is placed on the three possible asymptotics of these

algebraic norms: the degree asymptotics, the q asymptotics and the weight-function parameter asymptotics. The latter two asymptotics are par-

tially reviewed and solved. This study has been motivated by the chemical and physical applications of these norms to the energetic, entropic and

F IGURE 1 Coefficients c(q, n), given by Equation (85), of the weighted Lq-norms WqðbC λð Þ
n Þ of orthonormal Gegenbauer polynomials for

various values of q and n. They control the power-law behavior of such norms when λ!∞, as given by Equation (84).

16 of 19 SOBRINO AND DEHESA
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complexity-like properties of the highly excited Rydberg and high-dimensional pseudo-classical states of harmonic (oscillator-like) and Coulomb

(hydrogenic) systems, and some molecular systems with quantum central potentials of anharmonic type.

A number of related issues remain open. Let us just mention a few of them. The unweighted norms of the HOPs are not yet determined in an

explicit way for all n, nor in the extremal cases n!∞ and when the parameters of the weight function become large. The asymptotics (q!∞) of

the unweighted norms for the Hermite and Laguerre polynomials is also unknown; indeed, a procedure not based on the Laplace formula is

required as it was explained above. The explicit expression of the Shannon entropies of the HOPs in terms of the polynomial's degree and the

parameters of the weight function has not yet been found, despite a recent effort [80, equation (23)] by means of some generalized hyper-

geometric functions evaluated at unity. Moreover, the asymptotics of the Shannon entropy of orthogonal polynomials in the whole Szegö class is

still unsolved; nevertheless, some remarkable results have been obtained [113]. The calculation of the Lq-norms for the varying HOPs (i.e., poly-

nomials whose weight-function's parameter does depend on the polynomial degree), discrete HOPs (Meixner, Hahn, Krawtchouk) and q-HOPs

related to the geometric lattice [5,114] is an open field to a great measure despite the publication of some interesting efforts (see e.g., [75–

77,115]); however, this unsolved problem should be feasible because the technical difficulties involved to find these algebraic norms can be tack-

led with the finest known details of the corresponding polynomials and their mutual relationships according to the Askey (resp. q-Askey) tableau

as a hierarchy of hypergeometric (resp. q-hypergeometric) functions [4,5,114]. Finally, the extension of the discrete Shannon entropy of HOPs

[116,117] to the discrete Lq-norms has not yet been explored.
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