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Laburpena
Master-lan honen helburua da aztertzea itzultzaile automatiko neuronalek duten eragina

proposatzen dituzten itzulpenetako hizkuntzan, aniztasun eta aberastasun lexikoari,
morfologikoari eta sintaktikoari dagokionez. Horretarako, lau itzultzaile neuronal

entrenatu dira. Entrenamendua, ebaluazioa eta itzulpen automatikoak egin dira domeinu
eta luzera antzeko bi corpus erabilita (bata bereziki lan honetarako sortua). Bi

hizkuntza-pare landu dira, noranzko bietan: ingelesa eta gaztelania batetik, ingelesa eta
kroaziera bestetik. Aberastasun lexikoari erreparatuta, emaitza gehienek adierazten dute

galera maila bat edo beste. Hala ere, metriketako batek aniztasun lexikoaren gehitzea
gertatu izana erakusten du. Aberastasun morfologikoari buruz emaitzak ez dira argiak,

izan ere, metrika gehienek galera txikia edo galerarik eza adierazten dute, eta, bi kasutan,
aberastasunaren igoera. Kategoria gramatikalen eta sintaxiaren distribuzio-analisiari

begiratuta, gure emaitzak bat datoz ikerlariek aurretiaz egindako baieztapenekin, hau da,
itzultzaile neuronalek maiztasun handiko elementuen agerpenak areagotzen dituzte eta

maiztasun gutxikoenenak mugatu.

Abstract
This Master Thesis analyses the effect of neural machine translation on the language of
the translation in terms of lexical, morphological, and syntactical diversity or richness.
Four neural machine translation models are trained. Two different corpora of similar

length and domain, one of which was created in this work, are used to train and evaluate
the models, as well as translate text. Two language pairs were used in both directions:

English and Spanish; and English and Croatian. Regarding lexical richness, the majority
of our results indicate a degree of lexical loss in the translations. One metric shows a gain
of lexical diversity in one of the translations. In morphological richness, the results are

not as clear, with most of the metrics showing slight to no loss, or even a gain of richness
in two of the translations. Part of speech distribution analysis, as well as parse

distribution analyses, both seem to confirm claims made by some that neural machine
translation systems increase the frequency of most and decrease the frequency of least

frequent items.
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1 Introduction

Ever since the 1950s and the first machine translation systems, the branch of machine
translation has been steadily and tirelessly improved. Starting from interlingua systems and
continuing with rule-based and statistical, data driven approaches, today neural machine
translation systems are able to create translations of high quality. The issue of whether
we can use machines to translate was long ago answered, and now, being closer than ever
to actively using machine translations that do not have to be post-edited in everyday life,
it is time to start considering what effect this might have on the language that we are
translating to.

Translation studies have long ago noticed several peculiarities in translations, such as
the effect that source language sometimes had on the target language , but also features
that seem to be persistent in all translations (Laviosa-Braithwaite, 1998). Interestingly
enough, it seems that this effect, often referred to as translationese, can be identified by
machines better than humans (Baroni and Bernardini, 2006); and using translated text
in the source data can be beneficial for training machine translation systems due to their
adaptation to the nature of translationese (Lembersky et al., 2012). Furthermore, human
translations are known to have more explicit, normalized, and less rich or diverse language
in terms of lexicon, syntax, etc. than the original text (Laviosa-Braithwaite, 1998). This
effect is also present in machine translated text, as Vanmassenhove et al. (2019, 2021)
show.

In this work, we analyze the effect of neural machine translation on two transla-
tion pairs across three corpora in total: two corpora for English↔Spanish, and one for
English↔Croatian.

In Section 2 we present some related work on the topic, distinguishing between the-
oretical and practical work. In Section 3, we identify the goals of the work. Section 4
describes the methodology of creating and preparing corpora used for training neural ma-
chine translation systems and the procedure of training, translating, and evaluating the
translation in terms of BLEU (Post, 2018) score. It then continues to describe how we go
about assessing differences in lexical, morphological, and syntactical diversity of reference
and translation texts. Section 5 displays the results of all the work, starting from transla-
tion evaluation, and continuing on to all the metrics and tools used to analyze the effect
of machine translation.
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2 Related Work

In this section, we present some related work on the effect of (machine) translation to the
translated language. This section is divided into theoretical and practical work in order to
make a distinction between the two.

2.1 Theoretical

The effects of translation on texts and language in general have been discussed for quite
some time now in translation studies.

The term translationese, a set of common features that translations exhibit caused
by translating from the source language, was first mentioned by Gellerstam (1986) (as
cited in Santos, 1995). This effect or set of features is also known as interference (Toury,
2012 as cited in Kranich, 2014) and shining-through (Teich, 2003 as cited in Kranich,
2014).1 While some of the first discussions of translationese were focused on inspecting
the specific effect of the source language to the target language in translations (see , for
examplesantos1995grammatical), it has also been established that translationese exhibits
some features regardless of source and target language (Baker et al., 1993, Blum-Kulka
et al., 1996, Laviosa-Braithwaite, 1998; as cited in Kranich, 2014).

Santos (1995) writes about grammatical translationese and tests several specific fea-
tures (tense and aspect) of translations of English to Portugese and vice versa. She iden-
tifies four cases of grammatical translationese and then exemplifies and quantifies their
appearance in translations. She proves the existence of several translationese features in
the translations and notices that a relatively fine analysis was necessary in order to do so.
She also mentions that when comparing the translations to the source, a smaller corpus
suffices for detecting translationese, but that a larger corpus is necessary if only trans-
lated text is available for analysis. The relation of language closeness and translationese is
also mentioned; stating that translationese tends to appear more easily when translating
languages closer to each other.

Laviosa-Braithwaite (1998) lists out some features that appear in (human) translations

1However, it seems that these are not real synonyms: while all terms describe effects of translation
on the target language, based on Koppel and Ordan (2011) shining through and interference seem to be
refer to the effects in specific translation pairs, while translationese refers to general effects of translation
independent of language.
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irrelevant of the source and target texts. Some of the features discussed are simplification,
explicitation, and distinctive distribution of lexical items. Simplification can be lexical,
syntactic, or stylistical, and is the process of making the translation simpler in any of these
three domains, with the actual way of simplifying depends on the domain itself. Blum
and Levenston (1978) (as cited in Laviosa-Braithwaite, 1998) use evidence from several
translation studies and exemplify the cases of simplification in the lexical domain: usage of
superordinate terms if no hyponyms are available in the target language; usage of synonyms
that are more commonly known; concepts approximation etc. In the syntactical and stylis-
tical domain, Vanderauwera (1985) (as cited in Laviosa-Braithwaite, 1998) finds evidence
for changes of non-finite clauses into finite clauses for syntax; and in the stylistical domain
occurrences such as breaking longer sequences into shorter ones, omitting repetition, etc.
Explicitation is the process of translators sacrificing the implicitness found in the source
text in order to improve the clarity of the translation. This is mostly reflected as insertion
or addition of words to the translation in order to provide clearer explanations. Normal-
ization is the process of adapting the translation to the target language conventions, be
it changes in punctuation style or “translating” foreign names. Vanderauwera (1985) (as
cited in Laviosa-Braithwaite, 1998) finds that this process also adds to the clarity of the
text because not only are cultural differences breached, but also incomplete and “clumsy”
sentences are completed and rephrased, and chapters are ordered in a more logical manner,
to name a few.

Tirkkonen-Condit (2002) conducts a study on whether or not humans are able to tell
translations (done by humans) apart from original text. The conclusion of the study is that
humans cannot distinguish between translations and original text. However, the factor that
led subjects to their conclusions were unique or target language-specific items appearing
in the text. Based on this finding, the author states that the role of unique items in
translations needs to be further researched.

Kranich (2014) takes a detailed look into language change caused by (human) transla-
tion. Based on some previous works done in lexical contact through translation (LCTT),
he identifies nine hypotheses about the nature of LCTT, discusses every one and their
plausibility. Some of the hypotheses that have been identified as true by the author are:
1) lexical borrowing is more prominent than structural borrowing; 2) all linguistic domains
are affected; 3) the impact of source language to the target language will be strongest
at situations where the target language community has no (commonly accepted) written
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standard. Several statements are made in this paper that are interesting in the scope of
our work: 1) human translators have awareness of norms and standards given a translation
pair due to their required proficiency in both, and machine translation systems do not;
2) on the other hand, human translators (usually) have no insight into the frequencies of
words, patterns, and structures, while machine translation systems do. The latter might
be what plays into humans’ inability and computer system’s ability to tell translations and
original text apart (see Tirkkonen-Condit, 2002).

2.2 Practical

Other than theoretical work done on translationese, its features, and its potential effects on
language, many authors have attempted to identify translationese using machine learning
approaches (see Baroni and Bernardini, 2006), or to compare qualities of source texts and
translations in terms of, for example, lexical richness (see Vanmassenhove et al., 2021).
Some authors have also done practical work and performed tests on translationese without
using machine learning or computational resources (see Santos, 1995, for example).

Baroni and Bernardini (2006) attempt to train support vector machines for the task
of identifying translations (of high quality, done by humans). Their results score up to
86.7% of accuracy and show that an ensemble of support vector machines outperforms the
average result of a group of humans in this task, even when professional translators are
part of the group. Distribution of function words, morphosyntactical categories and some
certain parts of speech seem to be the clues that help support vector machines identify
translations from text originally written in the language in question.

Lembersky et al. (2012) experiment with using original, translated, and a mixture of
original and translated text to train language models for (phrase-based) machine trans-
lation. Their results show that language models trained on (human) translations, either
from the source language or from other languages, have better performance than language
models trained on texts originally written in the language examined. With regard to
translation types, language models trained with translations from source to target lan-
guage outperform language models trained with translations from other language to target
language.

Zhang and Toral (2019) look into the effect of using translated texts in test sets on
the performance of machine translation systems. The authors’ results show that using
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translations in test sets leads to higher direct assessment scores and even changes the rank
of the systems (in a competitive scenario).

Vanmassenhove et al. (2019) look into the loss and decay of lexical richness in ma-
chine translated data. They argue that machine translation systems have a tendency to
over-accentuate frequent patterns in reference text and ignore less frequent ones; and also
mention the inability of neural models to produce diverse output. Specifically, they state
that neural models are more prone to generalization than statistical models. They trans-
late and back-translate two language pairs (English↔Spanish and English↔French) and
test their hypotheses, as well as lexical diversity using several metrics. They conclude
that lexical diversity and richness do suffer after machine translation (with neural models
retaining the most of it), and that overall machine translation does add to the frequency
of most frequent items and take away the from the frequency of least frequent items.

Vanmassenhove et al. (2021) also test several machine translation architectures for
the effect of loss of lexical and grammatical richness. The results they get are in line
with Vanmassenhove et al. (2019) and confirm the existence of what they call “algorithmic
bias”. For all metrics and language pairs they find a loss of lexical and grammatical
richness between the reference and the translation texts. They also mention that neural
architectures (transformers) to cause the least loss.

In this work, we will continue in the direction of Vanmassenhove et al. (2019, 2021)
and test neural machine translation systems for the effect they cause in the translations
regarding lexical, grammatical, and syntactical richness. Vanmassenhove et al. (2021)
chose Spanish and French as languages to use for their experiments because they are more
morphologically complex than English. In order to further test the effect this might have,
we use Croatian instead of French, as it is even more morphologically complex than Spanish.
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3 Goals

The goal of this work is to analyze the effect machine translation has on two translation
pairs (bidirectional translation): English ↔ Spanish; and English ↔ Croatian. The sce-
nario we want to test this effect in is a “real-life” scenario of training a neural machine
translation model (i.e. the current state-of-the-art architecture) from scratch and looking
into the effect on the test set, i.e. a text for which the translation model is being trained.
Furthermore, the source language for some of our data is unknown, as is sometimes the
case in real life applications.

This work will hopefully further reassure previous findings in this domain and perhaps
raise some further questions and open new directions for future work. Its relevancy stems
from the fact that understanding the effect machine translation has on the translated
language itself can help us (better) understand a) what machines learn when they learn
to translate; b) what we need to keep in mind when training machine translation systems,
and perhaps most importantly, c) what to keep in mind when putting machine translated
texts into use, whether it is administrative, educational, or recreational use.

The first step will be to create and gather data needed for machine translation. After
this, machine translation systems will be trained following Vanmassenhove et al. (2021)
and OpenNMT’s suggested training parameters2. Next, the translated texts will be ana-
lyzed to assess the effect machine translation has had on the texts. More specifically, the
texts will be analyzed on three levels: lexical, morphological, and syntactical diversity or
richness. For lexical diversity, we will report the following metrics and analyses: type-
/token ratio, measure of textual lexical diversity, Yule’s I, lexical frequency profile, and
synonym frequency analyses. Morphological diversity will be analyzed using Shannon’s en-
tropy, Simpson’s diversity index, and part of speech distribution. For syntactical diversity,
we will look into the distribution of parses in the reference and translation texts.

2https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
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4 Methodology

In this section the methodology of the work necessary to analyze the effect of machine
translation on the quality of the (translated) text is explained. Vanmassenhove et al. (2021)
analyzed the lexical and grammatical richness or diversity of machine translated texts in
order to assess the effect machine translation has had on the text itself. Since their work
performs a pretty wide and detailed analyses, it was decided to replicate their approach
and the process of doing so is described below. After recreating part of their work using the
same data, this is used as the “baseline” for some of the lexical and grammatical richness
tests carried out on other datasets with an additional language pair. The preprocessing,
training, translation, and postprocessing of the datasets, as well as the measuring of the
lexical and (most of) the morphological diversity, was replicated and/or adapted from the
work of Vanmassenhove et al. (2021).

4.1 Overview of Vanmassenhove et al. (2021)

Vanmassenhove et al. (2021) train statistical phrase-based and neural models for translation
of English to French, French to English, English to Spanish, and Spanish to English. They
translate texts using the trained models, evaluate the quality of the translation itself using
BLEU and TER scores, and finally, test the translations for lexical and morphological
richness. To test the lexical richness, some of the metrics they use are the following:

• Type-token ratio (TTR)
• Measure of textual lexical diversity (MTLD)
• Yule’s I (the inverse of Yule’s K)
• an adapted version of Lexical frequency profile
• Synonym frequency analysis

For testing grammatical richness, the following tests/metrics are applied:

• Shannon’s entropy
• Simpson’s diversity index

Eva Vanmassenhove was kind enough to provide the authors’ GitHub repository3 for

3https://github.com/dimitarsh1/BiasMT
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the purpose of recreating their work. A different repository4 owned by the same account
contains scripts used to preprocess data, train models, test them, and postprocess the
data, as well as perform the lexical richness analyses. As mentioned above, the authors
performed tests on the translations of a statistical phrase-based system and neural systems
(RNN and Transformer architectures). The recreation described here focuses only on the
transformer model, as it is the current state-of-art, and the primary focus of this work is
not to compare different architectures and their results, but rather to look into the effect
of machine translation.

4.2 Creating a Corpus

Vanmassenhove et al. (2021) chose Spanish and French to compare with English because
both languages are morphologically more complex than English and they wanted to see
how this complexity affects translation quality. In order to widen the work the authors
presented, it was decided to add an additional language pair - English ↔ Croatian. One of
the reasons Croatian was chosen is the fact that it is morphologically even more complex
than Spanish or English. Croatian is a South Slavic language with fusional morphology
and seven cases, and is a low-resource language.

According to one META-NET study (Rehm et al., 2014), Croatian was classified as
having weak to no support in three out of the four categories of language technologies they
looked into (the fourth category having fragmentary support).5 A more recent report6 from
2022, done by Marko Tadić within the European Language Equality (ELE) project, states
that out of 12 categories, Croatian has fragmentary support in seven, and weak support in
six.7

The Europarl corpus (Koehn, 2005), which Vanmassenhove et al. (2021) used as train-
ing data, was first created in 2005 with the latest version released in 2011. Given that
Croatia has become a member of the European Union in 2013, and that the source of
data for Europarl is the proceedings of the European Parliament, no version of Europarl
contains Croatian. To the knowledge of this author, a ready-to-use corpus comparable

4https://github.com/dimitarsh1/NMTScripts
5To make an interesting comparison, Basque was classified as having more support than Croatian in

three out of the four categories; while in the fourth category they have the same level of support.
6Available at: https://european-language-equality.eu/wp-content/uploads/2022/03/ELE___D

eliverable_D1_7__Language_Report_Croatian_.pdf
7For the sake of comparison, according to the same report Basque has weak support in seven and

fragmentary support in five categories.
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in size and domain to Europarl which features Croatian as one of its languages does not
exist. In order to add Croatian to this work, it was decided to create a new corpus using
the European Commission’s Directorate-General for Translation’s data8 (Steinberger et al.,
2012). The data is released yearly as a .zip folder containing an abundance of .tmx files.

As stated above, Croatia became a member of the European Union in 2013, so files
issued before 2013 were not translated to Croatian. Releases 2014 to 2016 were downloaded
from the links available on the Directorate-General for Translation’s Translation Memory
website9, while those from 2017 onwards were not available for download on this website
(there appear to be some technical issues). The first part of the dataset was created using
the files from releases 2014 to 2016.

Directorate-General for Translation Translation Memory’s website10 lists an existing
tool for extracting bilingual pairs - TMXtract.jar, but it did not seem to be functional.
Instead, a custom Python script was written to transform the .tmx files to .xml, and then
extract sentences of the desired language pairs. The files were first transformed to .xml

format because an XML parser11 was used to process them. To ensure alignment between
translation units of all languages is preserved, the script only extracted those translation
units that were aligned in English, Spanish, French, and Croatian. The translation units
were written to separate .txt files, and 1 179 025 translation units (per language) were
extracted from these releases. When one takes into account the cleaning of the dataset
that will come and the split to train, validation, and test sets, it is clear that this dataset
is much smaller than Europarl.

Later, an additional source12 of the Directorate-General for Translation Translation
Memory data was found, and it had releases 2018 to 2020 available for download. More
translation units were added to the corpus after some minor changes to the original Python
script, thus creating a larger corpus which had 2 223 797 translation units (per language)
aligned between English, Spanish, French, and Croatian. Release 2017 was not available

8Available at: https://joint-research-centre.ec.europa.eu/language-technology-resources
/dgt-translation-memory_en, releases 2013-2016. European Commission retains ownership of the data.

9https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt-trans
lation-memory_en#download

10https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt-trans
lation-memory\_en#download

11https://pypi.org/project/beautifulsoup4/
12Available at: https://data.europa.eu/data/datasets/dgt-translation-memory?locale=en,

releases 2018-2020. European Commission retains ownership of the data.
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Decision of the EEA Joint Committee

of 13 December 2013

amending Annex I ([annex name]) to the EEA Agreement

THE EEA JOINT COMMITTEE,

Having regard to the Agreement on the European Economic Area (‘the EEA Agree-
ment’), and in particular Article 98 thereof,

Whereas:

Figure 1: Examples of frequent translation units at the beginning of documents.

for download at any of the sources that were found and is therefore not featured in the
corpus.

The nature of this data is written legislation, regulations, and other such documents
of the EU (more precisely, the data source is documents of Acquis Communautaire, which
is “the entire body of European legislation, comprising all the treaties, regulations and
directives adopted by the European Union”13), and therefore comes with a certain amount
of noise and repetition. As explained in the Directorate-General for Translation Translation
Memory’s website14, the exact source language of files in unknown, but many texts are
originally written in English and then translated to other languages.

Figures 1, 2, 3 and 4 provide examples of translation units which could be considered
noise or too repetitive. For example, almost every document in the corpus starts with a
preamble which consists of one or more of the translation units listed in Figure 1, and
ends with one of the translation units listed in Figure 2. Some translation units provide
no useful data for training a machine translation model, like those listed in Figures 3 and
4.

A Python script was written in order to clean out some of the noise found in the data

13Source: https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt
-translation-memory_en#dgt-memory ; Introduction - view details.

14https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt-trans
lation-memory_en#dgt-memory
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Done at Brussels, 13 December 2013.

For the EEA Joint Committee

The President

College member

Figure 2: Examples of frequent translation units at the end of documents.

Article [number]

Chapter [number]

ANNEX [number]

Figure 3: Examples of frequent, very short and repetitive translation units.

OJ L 202, 27.7.2013, p. 33.

32013 R 0691: Commission Regulation (EU) No 691/2013 of
19 July 2013 (OJ L 197, 20.7.2013, p. 1).’;

Figure 4: Examples of translation units or parts of translation units referencing
documents, articles, etc.
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Article [number] | CHAPTER [number] | ANNEX [number]

For the EEA Joint Committee | Decision of the EEA Joint Committee | THE EEA
JOINT COMMITTEE

Whereas

The President | College Member

Done at [location] | of [date] | HAS ADOPTED THIS DECISION:

Figure 5: Examples of translation units which were removed from the corpus.

Total number of
extracted translation
units per language

Releases 2014-2017 1 179 025
+ Releases 2018-2020 2 223 797

After cleaning 2 113 792

Table 1: Total number of the translation units in the created dataset.

using regular expressions. Specifically, translation units that can be seen in Table 5 were
deleted.

Other translation units which contained references to documents (like those listed in
Figure 4) were also removed (but not all - these were often mentioned in the middle of
sentences and it was very difficult to completely clean them out without jeopardizing the
sentence itself). Some translation units were (deliberately or not) copied to all languages
and those were also deleted from the corpus. More specifically, those translation units
which were identical in all languages were dropped (these were, for example, some non-
linguistic notations such as ‘< α, β < +5◦’, or names of establishments, such as ‘AIR
MADAGASCAR’). A filtering step was added to try and preserve names, but delete other
noise. Finally, all of these data cleaning steps resulted in the removal of 110 005 noisy
translation units, and the cleaned version of the corpus has 2 113 792 translation units
(per language). From this point on, this corpus will be referred to as ‘DGT’.
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4.3 Data Preprocessing

Vanmassenhove et al. (2021) use the OpenNMT library and various other tools to prepro-
cess their data. The preprocessing steps listed in the Github repository Eva Vanmassenhove
provided15 are to:

• 1. split the data
• 2. apply the tokenizer
• 3. apply the truecaser
• 4. train and apply byte-pair encoding (BPE), create dictionary.

In order to ensure maximal clarity and reproducibility, we will now briefly discuss all
the preprocessing steps mentioned above. The recreation is focused only on the English-
Spanish language pair (from now on: ‘EN-ES’, or ‘ES-EN’ for the opposite translation
direction), and the added language pair of English-Croatian (from now on: ‘EN-HR’,
or ‘HR-EN’ for the opposite translation direction). In other words, the French portion
of Europarl was not used in any part of recreating Vanmassenhove et al. (2021). The
same steps and scripts listed in the aforementioned Github repository were employed as
the preprocessing of all the data. It should be mentioned that some of the scripts were
amended in order to fix some existing dependency issues and rename the output files, but
none of the scripts were changed in a way that should affect their output and its quality.

4.3.1 Preprocessing Europarl

Europarl’s data had empty lines which caused errors when calculating the BLEU score.
Therefore, step ‘zero’ was to clean out empty lines from both the source and the target
texts. Splitting the data into train, validation, and test set was done using the author’s
1_split_ttv.sh script, keeping Vanmassenhove et al.’s (2021) splitting ratios in mind
(75.98% for train, 23.72% for validation, and 0.3% of data for test set, as seen in Table 2).

The next step was to tokenize using the script 2_tokenize.sh. The tokenizer used in
this script is Moses tokenizer (Koehn et al., 2007) (.perl). This script also cleaned out
sentences that were too long, and this threshold was left as-is in the original script.

After tokenizing came truecasing the data using (3_truecase_data.sh). The truecaser
script was changed to take the cleaned version of the training data (the final output of the

15https://github.com/dimitarsh1/NMTScripts
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previous script), instead of the only-tokenized version. Finally, training and applying BPE
(3_dictionary_bpe.sh) was carried out with the default setting of 50 000 operations.

From now on, the Europarl corpus will be referred to as ‘EP’.

4.3.2 Preprocessing DGT

The preprocessing of the corpus created for the purpose of this Master Thesis using DGT-
Translation Memory releases 2013-2016, 2018-2020 (DGT) corpora had some additional
steps. Due to the fact that this data source is legislative documents of European Union,
and despite the fact that de-noising was performed, there was still significant overlap
between the training, validation, and test sets. After applying the 1_split_ttv.sh script
on the DGT corpora, the overlap was as follows:

• (EN) percentage of training sentences in the test set: 15.67%

• (ES) percentage of training sentences in the test set: 14.03%

• (EN) percentage of training sentences in the validation set: 14.43%

• (ES) percentage of training sentences in the validation set: 12.62%.

In comparison, the overlap between datasets of Europarl sets were approximately between
0.5 and 1%. It is clear that this overlap is too big for fair and representative training of
a machine translation model. This is why an additional preprocessing step of removing
overlapping sentences from all combinations of the datasets was undertaken twice. The
first removal of overlapping translation units happened during manually splitting the corpus
into train, validation, and test splits, and then again after all other preprocessing steps
had been carried out. Table 2 shows the number of sentences per data split per corpus,
and the percentage of sentences in every split.

After manually spliting the corpus into training, validation, and test splits, the same
tokenizing (2_tokenize.sh) and BPE (3_truecase_data.sh) scripts were applied. For
Croatian the tokenizer reported an issue: WARNING: No known abbreviations for language

‘hr’, attempting fall-back to English version.... This warning was ignored and
the fall-back to the English version was used, and a manual inspection of the tokenization
seemed fine.

It is worth mentioning that the DGT datasets for English-Spanish and English-Croatian
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were processed separately; and that the English corpus used to train English-Spanish and
English-Croatian models is not the same collection of translation units. This is because it
was nearly impossible to ensure that the data for all three languages is processed and split
in the same way due to the removal of overlapping sentences. The removal of overlapping
translation units is also cause for the final number of translation units to be much lower
that the raw number of translation units, and it made it very difficult to manage the ratio
of translation units in the data splits versus the total number of translation units. Table 2
shows, however, that the numbers of translation units and the ratios of splits between all
corpora are somewhat comparable.

Corpus Translation pair (↔) Train Validation Test
Vanmassenhove

EN-ES
1 472 203 (75.9%) 5 734 (0.3%) 459 633 (23.7%)

et al. (2021)
EP 1 486 952 (75.1%) 5 882 (0.3%) 462 712 (23.6%)

DGT 1 289 235 (75.29%) 8 486 (0.49%) 414 591 (24.21%)

DGT EN-HR 1 289 18 (75.21%) 8 493 (0.49%) 416 403 (24.29%)

Table 2: Number of translation units and the ratio of given set as opposed to the final
number of translation units per dataset for EP and DGT data.

4.4 Training Models

Vanmassenhove et al. (2021) report that they used OpenNMT16 (Klein et al., 2017) for
training the transformer machine translation models. The OpenNMT version they use,
however, is not specified. The most recent available version (2.2.0., OpenNMT-py) at
the time of training the models was used. Vanmassenhove et al. (2021) do specify the
parameters they used for training, and they are the same settings described in OpenNMT
FAQ17. Additionally, they mention that the “learning decay [is] enabled” (Vanmassenhove
et al., 2021, p. 2205). All and only the parameters from the FAQ were used, with the
learning decay set to its default value. These parameters include, but are not limited to
those laid out in Figure 618.

Before running the training script, Vanmassenhove et al. (2021) use a preprocess.py

script, which seems to be deprecated in the latest OpenNMT version. Because of this,

16https://opennmt.net/
17https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
18Data taken from https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-

model
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batch_type: ’’tokens’’
batch_size: 4096
accum_count: [4]
accum_steps: [0]

optim: ’’adam’’
learning_rate: 2
warmup_steps: 8000
decay_method: ’’noam’’
label_smoothing: 0.1
param_init: 0
param_init_glorot: true
normalization: ’’tokens’’

position_encoding: true
enc_layers: 6
dec_layers: 6
heads: 8
rnn_size: 512
word_vec_size: 512
transformer_ff: 2048

Figure 6: Some of the parameters used for training models.
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the onmt_build_vocab.py script was ran in order to build the vocabularies necessary
for training. Multiple approaches to building and using the vocabulary were tried out
prior to settling on this one: the first idea was to use the already trained BPE mod-
els to apply on-the-fly tokenization which is introduced in the latest version of Open-
NMT. However, the BPE model created by 3_dictionary_bpe.sh consistently caused
RuntimeError: unsupported BPE version. A different BPE architecture was applied
and tried out, as well as creating a BPE model on-the-fly, but these approaches were either
not performing well, or were deemed too different from the author’s approach. This is why,
in the end, the onmt_build_vocab was used with the preprocessed versions of the data, no
transforms specified, and with the number of samples set to -1 (the whole corpus is used to
create a vocabulary). The vocabularies created were used in both training directions, but
were not shared vocabularies (i.e. there are two separate vocabularies for each language
of the pair, but they are used for both directions). Table 3 shows the sizes of vocabularies
after running onmt_build_vocab on the preprocessed files. It is interesting to note that
even though the same vocabulary files were used for both translation directions, the size
of the loaded dictionaries at the start of training differ by a couple of words.

Corpus Vocab size
Vanmassenhove et al. (2021) EN 47 639
Vanmassenhove et al. (2021) ES 49 283
EP EN (EN-ES) 46 287
EP ES (EN-ES) 48 989
EP EN (ES-EN) 46 289
EP ES (ES-EN) 48 987
DGT EN (EN-ES) 48 131
DGT ES (EN-ES) 48 557
DGT EN (ES-EN) 48 133
DGT ES (ES-EN) 48 555
DGT EN (EN-HR) 48 089
DGT HR (EN-HR) 49 700
DGT EN (HR-EN) 48 091
DGT HR (HR-EN) 49 698

Table 3: Vocabulary sizes for training after building the vocabulary based on the prepro-
cessed files.

After building the vocabularies, the models were trained. Following Vanmassenhove
et al. (2021), all models were trained with one GPU for a maximum of 150 000 steps,
and early stopping was enabled with the criteria of no improvement in perplexity on the
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Model GPUs Total steps Best model at step:
EP EN-ES 1 90 000 40 000
EP ES-EN 1 90 000 40 000
EP EN-ES 1 90 000 40 000
EP ES-EN 1 80 000 30 000

DGT EN-HR 1 90 000 40 000
DGT EN-HR 1 80 000 30 000

Table 4: Model, number of GPUs it was trained on, total steps trained for and the step at
which the best model was identified.

validation set for 5 checkpoints. Due to this early stopping criteria, the models were in
reality trained for 90 000 steps at most. Table 4 shows the exact information of steps for
each model trained.

4.5 Translation

After the model has trained, the best model identified by the training log of OpenNMT was
used to translate the test set. Models were evaluated every 10 000 steps, as is the default
setting of OpenNMT. Even though validating (and saving) a model more frequently might
be better for truly identifying the best model, it was decided to use the default settings
in order to mimic a “real-life” scenario. Perplexity on the validation dataset was used as
the early stopping criteria following Vanmassenhove et al. (2021), with patience set to 5
(stop if there is no improvement in perplexity after evaluating on the validation dataset 5
times).

One big difference is the fact that Vanmassenhove et al. (2021) translate training data
which was completely observed during training because they argue that this is the best
scenario to evaluate and asses the effect of machine translation. In this work we translate
the test data, which is unseen during training, and perform all tests and analyses on test
sets (reference) and translation of test sets (translation). The motivation for this is the
fact that we are interested in seeing and looking into the effect of machine translation in a
realistic scenario.

4.5.1 Postprocessing Translations

The translations were postprocessed using the same postprocessing steps and commands
as Vanmassenhove et al. (2021), but not the postprocessing script itself that is available in
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their Github repository.19 First, BPE segmentation was removed using regular expressions.
Next, detokenizer and detruecaser were applied. Finally, sacrebleu (Post, 2018) was used
in the command line to obtain BLEU scores, which are reported in Table 5 in Section 5.1.
The original train, validation, and test splits of the DGT corpora are also postprocessed
in the same manner in order to calculate metrics and use them for comparison with trans-
lations. This is necessary because the final removal of overlapping translation units was
done after applying all preprocessing steps, and therefore the splits used during training
were segmented into subwords, tokenized and truecased.

4.6 Measuring Lexical Diversity

After training neural machine translation models and successfully translating the test set,
and evaluating the translations in terms of BLEU scores, we can start the analyses of
the translation quality in several linguistic domains. The first domain we will analyze is
lexicon, i.e the lexical diversity or richness.

As in Vanmassenhove et al. (2021), lexical diversity was scored using some common
lexical diversity tools such as type-token ratio (TTR) and measure of textual lexical diver-
sity (MTLD). The authors also used Yule’s I and a number of metrics that they created
or adapted. All metrics will be described below. The authors do have a script which cal-
culates some of the metrics they report in the paper (score_lexical_diversity.py20),
however it was unclear whether the input should be tokenized or untokenized; and it also
gave very unusual results when passing the whole translated text as input (no matter if it
is passed as a Python list, Python string, or a .txt file). Instead of using this script, the
metrics were calculated using a custom written class and its methods, which attempted to
follow the author’s implementation with some improvements. For every metric, the exact
way of its calculation will be described.

Lexical diversity was calculated on the translation, as well as the reference text. For
example, text test.en was translated using the model_en-es, giving us text
translation_en-es. Lexical diversity metrics were calculated for translation_en-es,
which is denoted with TR and also for test.es, which is denoted with REF.

19https://github.com/dimitarsh1/NMTScripts/blob/main/7_postprocess.sh
20Available at: https://github.com/dimitarsh1/NMTScripts/blob/main/score_lexical_diversi

ty.py
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4.6.1 TTR (Type-token Ratio)

Type-token ratio TTR is a measure for scoring vocabulary richness that looks at the ratio
of unique words (types) versus the total words (tokens) in a text (Oakes and Ji, 2012). It
provides an idea of a texts’ repetitiveness or diversity. The higher the TTR, the richer or
more diverse the vocabulary of the text. The main flaw of this metric is the fact that it is
sensitive to text length, meaning that the longer the text, the smaller the TTR score tends
to be (Oakes and Ji, 2012). This is not that surprising given that after reaching a certain
length, a text must become more and more repetitive in terms of lexicon (McCarthy and
Jarvis, 2010).

TTR is calculated by dividing the number of types with the number of tokens. While
Vanmassenhove et al. (2021) calculate TTR manually, in this work it was decided to
calculate TTR using the lexical-diversity21 Python library. The translation units were
first tokenized using lexical-diversity’s tokenizer. This tokenizer tokenizes words on
whitespace and lowercases them; while also removing sentence boundaries. This enables
us to more easily focus on the lexicon itself by ignoring punctuation and casing. The list
of tokens is then passed to the TTR() method of lexical-diversity.

4.6.2 MTLD (Measure of Textual Lexical Diversity)

Measure of textual lexical diversity MTLD is a metric that uses TTR in its calculations -
it reports the mean length of a portion of text in which a given TTR value is maintained
(McCarthy, 2005 as cited in Vanmassenhove et al., 2021). It takes into account the so-
called point of stabilization, i.e. the point where the sharp and drastic changes in TTR
values are stabilized (McCarthy and Jarvis, 2010). According to McCarthy and Jarvis
(2010), it is considered a more sophisticated method of measuring lexical diversity.

MTLD is calculated by dividing the number of words in a text by a factor count; where
the factor count increases by one every time the TTR of a sequence falls under a certain
threshold (the default being .720) (McCarthy and Jarvis, 2010). Vanmassenhove et al.
(2021) calculate MTLD using lexical-diversity’s MTLD() method, and this work uses
the same approach. The input to the MTLD() method of lexical-diversity is a list of
tokens obtained with lexical-diversity’s tokenizer. This ensures that the input to the
calculations of TTR and MTLD is the same.

21https://pypi.org/project/lexical-diversity/
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4.6.3 Yule’s I

Yule’s I is the inverse of Yule’s K (Yule, 1944 as cited in Vanmassenhove et al., 2021).
Yule’s K “measures constancy of text and the repetitiveness of vocabulary” (Vanmassenhove
et al., 2021, p. 2208). It was designed to be more resilient to the aspect of text length, but
is a measure better suited for text uniformity rather than diversity or richness because it
returns lower values for texts which have a richer vocabulary (Oakes and Ji, 2012). Note
that Oakes and Ji (2012) report that Yule’s K also tends to decrease with text length, but
not as smoothly as TTR does.

Yule’s I is calculated as follows:

(M1×M1)/(M2−M1)22

where M1 is the number of tokens, and M2 is the sum of taking a number of words with
a certain count and multiplying it by a square of that count (so, all words that appear
three times will be multiplied by 32). Usually, the MTLD result is multiplied by 10 000
(Oakes and Ji, 2012). The calculation of Yule’s I was taken from Vanmassenhove et al.’s
(2021) score_lexical_richness.py script. The number of tokens and their count were
taken from the lists of tokens obtained by lexical-diversity’s tokenizer. Once again,
this ensures that the input to Yule’s I is the same as the input for TTR and MTLD.

4.6.4 Statistical Significance

Statistical significance of the results of TTR, MTLD, and Yule’s I is established for every
system and translation direction and it was based on statistical significance tests imple-
mented in Vanmassenhove et al.’s (2021) code23.

The authors take a random sample of 1000 sentences and calculate how many times
one text outscored the other (how many times the reference text scored better than the
translation, and vice versa) and calculate the p-value of TTR, MTLD, and Yule’s I scores
on the samples using scipy.stats.ttest_ind.

In our implementation of lexical diversity calculations, it was difficult to take a sample
of sentences since the inputs to TTR, MTLD, and Yule’s I are lists of tokens obtained with

22Formula taken from https://github.com/dimitarsh1/NMTScripts/blob/f08d669ccf51bfe466ba
70d176fdbdf485eef632/score_lexical_diversity.py, line 96.

23Available at: https://github.com/dimitarsh1/NMTScripts/blob/f08d669ccf51bfe466ba70d176
fdbdf485eef632/score_lexical_diversity.py, lines 15-36; 39-54; 130-147
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lexical-diversity’s tokenizer. Instead, we took 1000 random token sequences of 3000
tokens and performed statistical significance calculations on these.

4.6.5 LFP (Lexical Frequency Profile)

As mentioned above, Vanmassenhove et al. (2021) create and/or adapt several metrics for
lexical diversity/richness. The first metric they create or adapt is the Lexical frequency
profile (LFP). LFP (Laufer, 1994; Laufer and Nation, 1995, as cited in Vanmassenhove
et al., 2021) is usually used to score a language learner’s grasp of a language and relies on
the assumption that the better the students’ vocabulary, the more less-frequent words he
or she will use. This in turn makes the text more sophisticated (Kyle, 2019 as cited in as
cited in Vanmassenhove et al., 2021). LFP divides the words of a text into four bands:
percentage of words that are in the 1000 most common words; percentage of words that are
in the 1000-2000 most common words; percentage of academic words not occurring in the
first two bands; and all other words. The word frequencies are taken from outside sources
such as word frequency lists. Following this logic, the less words in first two bands, the
more nuanced the text should be.

Vanmassenhove et al. (2021) adapted this metric to be used for quantifying lexical
richness of a translation by calculating the word frequencies using the training data and
removing band 3 (academic words not featured in bands 1 and 2), calculating only bands
1, 2, and 4 (0-1000, 1000-2000, and 2000-rest). The comparison of frequency bands of
the source and target data provides interesting information about the decrease in text
sophistication after machine translation. The authors do not lowercase, tokenize, remove
numerals, etc; but do use already tokenized text as the input24. In this work, LFP was
implemented on text that was tokenized with lexical-diversity’s tokenizer – which
lowercases tokens and removes punctuation. The reason for this is the fact that our primary
interest is true lexical diversity, and given that this tokenizer removes punctuation and
lowercases all words, we can focus on the lexicon only.

Vanmassenhove et al. (2021) state that they use the original training data to calculate
word frequencies, but also that they use the same data to train, evaluate, and test their
systems, as well as the fact that they translate the training data. This means that the LFP

24This is not mentioned in Vanmassenhove et al. (2021), but in the implementation code at https:
//github.com/dimitarsh1/BiasMT/blob/4b4012c3cb117b7229120afe976ec10fc03228fb/scripts/d
iversity/biasmt_metrics.py, lines 339-341.
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on text A is calculated using frequencies of text A, and the LFP of text B is calculated using
word frequencies of text B. Strictly speaking, this means that the results of text A and text
B are not fully comparable; but one could discuss their relative differences if the fact that
different data was used as the starting point is kept in mind. In this work, we determine
word frequencies using the original training data and calculate LFP on both the reference
and translation texts using the same word frequencies as a starting point. This gives us a
nice compromise between the original LFP implementation, where independent word lists
are used to calculate word frequencies, and the implementation of Vanmassenhove et al.
(2021) who use the same data they are measuring LFP on as the word frequency source.

4.6.6 Synonym Frequency (PTF and CDU)

Vanmassenhove et al. (2021) develop two metrics for analyzing synonym frequency analysis:
primary translation frequency (PTF) and cosine distance of uniform synonym distribution
and the actual synonym distribution (CDU). These metrics are based on the authors’
hypothesis that machine translation systems and their algorithmic bias will cause a certain
word to be overused in the translation at the expense of other, also valid translations. A
difference between synonym frequency of the source and target data could be (further)
evidence of machine translation systems lowering lexical richness and/or diversity of a
text; and possibly even the fact that the semantic richness of the translation is affected
by machine translation. To be more specific: regarding PTF, Vanmassenhove et al. (2021)
argue that a large prevalence of the most frequent option is a sign of algorithmic bias.
Regarding CDU, they argue that even though a uniform distribution is not realistic in
actual translation, the distance value between the uniform and actual distributions still
provides information on the possible effect of machine translation on synonym distribution.

Vanmassenhove et al. (2021) describe the calculation of PTF and CDU as follows. The
source and target texts are lemmatized and only nouns, verbs, and adjectives are used in
this analysis. Next, a list of source words and target words which are their valid translation
is obtained (those translation words make the ‘synonyms’). All the synonyms’ occurrences
in the translated text are then counted. The counts are used to create a vector. Since there
is no available code of these two metrics implementations, they were manually implemented
following the description from the paper. It must be kept in mind that this means there
exists risk of faulty or different implementation from the author’s implementation.

PTF was calculated by taking the count of the most frequent synonym and dividing it
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synonym count: {apropos: [(‘pertinente’, 6229), (‘oportuno’, 829),
(‘a propósito’, 0)]}

synonym distribution vector: [6229, 829, 0]

uniform vector: [6629+829+0 ÷ 3] × 3 = [2352.6, 2352.6, 2352.6]

PTF calculation: 6629 ÷ (829+0) = 0.8825446302068575

CDU calculation:
scipy.spatial.cosine_distance([2352.6, 2352.6, 2352.6], [6229, 829,
0]) = 0.3515295264672129

Figure 7: Calculating PTF and CDU for one example.

by the sum of counts of all other synonyms.

CDU was calculated by taking the sum of all synonym counts and dividing the sum
with the number of synonyms, resulting in a uniform distribution vector. scipy’25

spatial.cosine_distance was used to calculate the cosine distance between the uniform
vector and the actual distribution vector.

For every source word, PTF and CDU were calculated together, and if one of the
calculations caused a ZeroDivisionError (error encountered when attempting to divide
something by zero), both PTF and CDU calculation for this word were skipped. The
average PTF and CDU results for every source word and synonyms pair was taken as
the text’s PTF and CU result. Figure 4.6.6 shows calculation of PTF and CDU for one
example, which was randomly chosen from the DGT EN-ES data.

It must be noted that neither of these metrics take context or domain into account,
which might affect the meaningfulness of the results. For example, Vanmassenhove et al.
(2021) give an example of the English word look and its possible Spanish translations:
mirar, esperar, buscar, parecer, dar, vistazo, aspecto, ojeada, mirada. According to an
online dictionary, WordReference26, ojeada can be translated into English as “glance, quick
look, throw an eye over” or “keep an eye on”.27 It is hard to imagine a legislative text which

25https://scipy.org/
26Available at: https://www.wordreference.com
27This example can be seen here: https://www.wordreference.com/es/en/translation.asp?spen=
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would be using such an expression, and even harder to imagine a legislative text using this
expression often. Furthermore, the same translation can be used to calculate PTF and
CDU of multiple source words.

Following Vanmassenhove et al. (2021), 1) synonym frequency metrics are calculated
only in one direction, with English as the source language; 2) SpaCy28 was used to lem-
matize Spanish texts; and 3) the same bilingual dictionary, “en-es-en Dic”29 was used to
obtain the synonyms. For Croatian, English-Croatian dictionary files30 were used, and the
texts were lemmatized using a fork of Stanford Stanza pipeline for (some) South Slavic
languages named CLASSLA31 (Ljubešić and Dobrovoljc, 2019).

4.7 Measuring Morphological Diversity

Vanmassenhove et al. (2021) use Shannon’s entropy (H) and Simpson’s diversity index (D)
to measure what they call the grammatical diversity of a text. They use the term “gram-
matical diversity” to indicate those elements of language which appear in the morphological
and syntactical domains. For Shannon’s entropy, Simpson’s diversity index and its inverse,
the code from Github repository32 of Vanmassenhove et al. (2021) was used.

4.7.1 Shannon’s Entropy

We can use the following definition to define Shannon’s entropy: “Shannon entropy (H)
measures the level of uncertainty associated with a random variable” (Vanmassenhove et al.
2021, p. 2209). The authors use it to measure the entropy of wordforms of a lemma, i.e.
its inflectional paradigm.

Shannon’s entropy is a concept taken from information theory and was constructed
by Shannon (1948) (as cited in Vanmassenhove et al., 2021). It can also be explained
as the level of information a certain entity provides: if something unexpected appears,
the informativeness or entropy is higher; and lowers in the case of something usual and
expected appearing33. If we apply this to lemmas and their inflectional paradigms, the

ojeada.
28https://spacy.io/. We used es_core_news_lg pipeline.
29https://github.com/mananoreboton/en-es-en-Dic
30https://github.com/gigaly/rjecnik-hrvatskih-jezika
31https://pypi.org/project/classla/
32https://github.com/dimitarsh1/BiasMT/blob/4b4012c3cb117b7229120afe976ec10fc03228fb/s

cripts/diversity/biasmt_metrics.py, lines 114-203.
33https://en.wikipedia.org/wiki/Entropy_(information_theory)
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Wordforms for lemma asociado: ’asociado’: 1672, ’asociados’: 3,
’asociadas’: 1, ’asociada’: 6

total number of wordforms: 1672+3+1+6 = 1682

calculation of p(wf |l) log p(wf |l): (1672 ÷ 1682)× log(1672 ÷ 1682)

Now we sum the p(wf |l) of all wordforms and the negative result is H of this lemma.

Figure 8: En example of calculation of H, step by step, for one lemma.

more complex a paradigm (i.e. the greater the number of different wordforms that belong
to it), the higher the entropy of the lemma will be. This is why we can say that higher
value of H indicates higher morphological diversity – it simply means that the inflectional
paradigms of our lemmas tend to be more complex, diverse, and in a way, informative. A
lemma with one wordform has H of 0.0, i.e. is not considered informative at all.

For the calculation of H, we use the code from Vanmassenhove et al.’s 2021 GitHub
repository34. H is calculated using the following formula35:

H(l) = −
∑
wf∈l

p(wf |l) log p(wf |l) (1)

where H(l) is the Shannon entropy for lemma l; and p(wf |l) is the count of one wordform
divided by the count of all wordforms.

The input must be a nested Python dictionary of lemmas and all their wordforms. H
is calculated per lemma. Vanmassenhove et al. (2021) report that while calculating H for
lemmas with single wordforms is useful for analyzing the paradigm in question on its own,
such lemmas affect the overall score of H and do not give useful information for quantifying
the morphological diversity. This is why they do not take lemmas with only one wordform
into account (but do report the number of such lemmas), and we did the same. The final
result is the mean value of H across all lemmas.

34https://github.com/dimitarsh1/BiasMT/blob/4b4012c3cb117b7229120afe976ec10fc03228fb/s
cripts/diversity/biasmt_metrics.py, lines 144-164; 322-336.

35Formula taken from Vanmassenhove et al. 2021, p. 2209.
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Dictionaries of lemmas and their wordforms were created using the same lemmatizers
as for lexical diversity experiments, i.e. SpaCy’s36 es_core_news_lg pipeline for Spanish,
and a fork of Stanford Stanza pipeline for (some) South Slavic languages named CLASSLA37

(Ljubešić and Dobrovoljc, 2019). For English, Spacy’s en_core_web_lg pipeline was used.

4.7.2 Simpson’s Diversity Index

Similarly to Shannon’s entropy, Simpson’s diversity index (D) (Simpson, 1949 as cited
in Vanmassenhove et al., 2021) also measures categorical data diversity (Vanmassenhove
et al., 2021). In general, this measure seems to be used for ecological diversity of an area
– if there are multiple species who live in the area and have similar (large) numbers of
organisms per species, the area is considered more diverse than if fewer organism and
fewer species were to inhabit it38.

Vanmassenhove et al. (2021) apply Simpson’s diversity index to lemmas and their
wordforms and adapt the original formula to lemmas and wordforms calculations. If we
draw a parallel between the original and the author’s impletentation, it could be said that D
is used to calculate the diversity (potential) of a lemma: if the lemma has more wordforms,
it will be considered more diverse. Note that this metric was first implemented by the
authors and there is not much frame of reference or detailed explanations as to why they
change the formula the way they do. We conducted some tests of the calculation of D and
it seems like it favors lemmas with wordforms that have equal counts as more diverse than
lemmas with the same number of wordforms, but different counts. Since in their formula
the authors calculate D by dividing one with the wordform calculations, greater values of
D indicate lower morphological diversity. A lemma with one wordform has D of 1.0.

Vanmassenhove et al. (2021) calculate D using the following formula:

D(l) =
1∑

wf∈l
p(wf |l)2

(2)

Just like for Shannon’s entropy, the input is a Python dictionary with lemmas and
all their wordforms. The final score is the mean of all scores per lemma. Lemmas with

36https://spacy.io/
37https://pypi.org/project/classla/
38https://geographyfieldwork.com/Simpson’sDiversityIndex.htm
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single wordforms are not included in the calculation of the text’s score. For building
the dictionaries of lemmas and their wordforms, we used the SpaCy’s39 es_core_news_lg

pipeline for Spanish, a fork of Stanford Stanza pipeline for (some) South Slavic languages
named CLASSLA40 (Ljubešić and Dobrovoljc, 2019), and Spacy’s en_core_web_lg pipeline
is used for English.

4.7.3 Inverse Simpson’s Diversity

In the code used for calculating Shannon’s entropy and Simpson’s diversity index, Van-
massenhove et al. (2021) also calculate Inverse Simpson’s Diversity by dividing 1 with
Simpson’s diversity score, and the mean value for all lemmas is the final result. Although
Vanmassenhove et al. (2021) do not report this score in their paper, here we do report
it since we calculate it along with Shannon’s entropy and Simpson’s Diversity. The pre-
sumable use of this metric is to make the comparison between Shannon’s Entropy and
Simpson’s diversity easier, since these metrics move in different directions to signify the
loss of morphological diversity (Shannon’s entropy score goes up with morphological di-
versity, while Simpson’s diversity index goes down with morphological diversity); or it was
used during the testing of both metrics, given that they are applied for the purpose of
analyzing morphological diversity for the first time.

4.7.4 Part of Speech Distribution

Another simple analysis was added to measuring morphological richness or diversity, and
it is a simple approach to look into the part of speech (POS) distribution of reference and
translation texts. We are interested to see if some parts of speech are over- or under-used
in translations. Furthermore, a look into POS distributions can perhaps help explain some
lexical diversity results.

Firstly, we count the parts of speech per text.

Secondly, we count the number of times each POS has appeared in the reference and
the translation text. Using these numbers, we establish for each POS whether it appears
more often in the reference or in the translation text. We also report the difference in
counts between texts, based on the text where it is more common (i.e. if the translation
text has the higher count for NOUN, we report reference text count - translation

39https://spacy.io/
40https://pypi.org/project/classla/
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POS: NOUN

EP EN-ES REF count: 2 298 403
EP EN-ES TR count: 2 275 400

EP EN-ES REF normalized count = 2298403 ÷ 57391728 × 100 = 4.005
EP EN-ES TR normalized count = 2275400 ÷ 56667959 × 100 = 4.015

EP ES-EN TR > EP ES-EN REF ; add one point to EP EN-ES TR
the difference is EP EN-ES TR - EP EN-ES REF, i.e. 4.015 − 4.005 = 0.011

Figure 9: Examples of calculation of POS distribution.

text count; and inversely if the reference text has a higher count we report translation
text count - reference text count).

All part of speech tags are obtained using SpaCy41: using es_core_news_lg pipeline for
Spanish, en_core_web_lg pipeline for English, and hr_core_news_lg for Croatian. This
time, we used SpaCy for processing Croatian as well. The reason was speed of processing:
CLASSLA seems to be much slower than SpaCy; lemmatizing texts with CLASSLA took
around 4 hours. We used the same pipeline to tag parts of speech and parse, and since
parsing is a much slower process than lemmatizing, we decided to use SpaCy for Croatian
POS and parse analysis. At the time of conducting tests involving lemmatization, there
was no SpaCy pipeline for Croatian. After testing the Spacy’s lemmatizer, it seemed like
SpaCy’s Croatian pipeline was less accurate than CLASSLA.

Before calculating the counts, SPACE and PUNCT (punctuation) tags were removed, since
we are interested only in POS tags for words. However, we do report SYM (symbol) tag
counts. The counts were normalized by dividing the count for each POS tag with the
total number of POS tags in the text and multiplying this result by 100. This way, we
can compare the relative distributions of reference and translation texts. An example of
calculation of distribution of POS tags per text can be seen in Figure 9.

41https://spacy.io/
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4.8 Syntactical Diversity

For syntactical diversity, a pretty simple and naive approach was taken, inspired by Van-
massenhove et al. (2019). In this paper, the authors deal with the loss of lexical richness
due to machine translation, and amongst other analyses report frequency increases and
decreases in frequent and non-frequent words in the translation texts. The hypothesis is
that machine translation systems will over-use frequent words, and drop the less or least
frequent words due to (over)generalization. This approach is partially applied here, but
on counts of parses. Parses are obtained with SpaCy’s dependency parsers42, and every
translation unit is parsed separately.

Firstly, we count the number of unique parses in each text, as well as the number of
parses which both texts have in common. We expect this analysis to show if there is a
difference in amounts of unique parses between the reference and translation text, which
can directly inform us of (potential) differences in syntactical diversity. Furthermore, by
checking for how many parses do the reference and translation texts have in common, we
can see how many of the parses are “taken” from the reference text, how many parses of the
reference texts have been left out by the machine translation system, and also how many
parses are novel as a result of the text going through the machine translation system.

Secondly, for the parses that are in common to both texts, we counted the number of
times they appear in the texts in order to compare their representation and distribution.
This can once again give us information of differences in syntactical diversity. For example,
one question we can pose for this analysis is: do parses in common appear more frequently
in the translation texts than they do in the reference texts?

Thirdly, we took the 1000 most and 1000 least common parses from the reference text,
and compared their counts in the reference texts with the counts in the translation texts.
This calculation is the closest to what is done in Vanmassenhove et al. (2019), and we can
test their hypothesis of machine translation systems amplifying the most frequent items
and dropping the least frequent items on parses. The hypothesis is the following: the
1000 most common parses will (tend to) be over-represented; while the 1000 least common
parses will be under-represented in the translation.

Normalized counts of parses were used for calculating the distributions of parses in
common, 1000 most frequent, and 1000 least frequent parses. To obtain a normalized

42https://spacy.io/usage/linguistic-features#dependency-parse
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count, every parse’s count was divided by the total number of parses of the text it is
pertaining to, and multiplied by 100. Note that for parses, the normalization of counts was
not necessary because both the reference and the translation texts have the same number
of parses.

As mentioned above, all parses are obtained using SpaCy43: es_core_news_lg pipeline
for Spanish,
en_core_web_lg pipeline is used for English, and hr_core_news_lg for Croatian. This
time, we used SpaCy for processing Croatian as well, for the same reason explained in
4.7.4.

Punctuation (PUNCT) is removed from all parses in an attempt to generalize the lin-
guistic content of the sentences, and avoid two sentences which are otherwise identical to
not be considered as such due to differences in punctuation.

43https://spacy.io/
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5 Analysis

In this section, the results of the work described in Section 4 will be displayed and discussed.

In all tables different translation pairs are colored with a different color, and the trans-
lation text has a lighter shade than the reference text. In most tables, results are grouped
by language pair, except for the tables in Section 5.4 where they are grouped by corpora.
REF indicates reference text, and TR indicates translation text. For example, in the lan-
guage pair of ES-EN, the reference text is the test file in the language we are translating
to, i.e. test.en. The translation file is the translation itself, i.e. translation_es-en.en.

Model and system are used interchangeably and refer to the machine translation model.

5.1 Translation

Translation quality was evaluated using BLEU score by sacrebleu (Post, 2018).

Table 5 shows BLEU scores of all trained systems, with the scores reported in Van-
massenhove et al. (2021) for reference. Please note that Vanmassenhove et al. (2021)
translate the original training data to translate, and in this work we translate unseen test
data.

BLEU scores on the Europarl corpus are a bit lower than results of Vanmassenhove
et al. (2021), but could be considered comparable. On the other hand, BLEU scores on
DGT EN-ES and ES-EN data are much higher than Europarl, and surprisingly high for
EN-HR/HR-EN.

EN-ES ES-EN EN-HR HR-EN
Vanmassenhove et al. (2021) 40.9 41.3 – –

EP 39.4 40.2 – –
DGT 64.0 69.3 59.7 62.7

Table 5: BLEU scores for all recreated systems with scores reported in Vanmassenhove et
al. (2021) for (approximate) reference.

5.1.1 BLEU Scores: Too good to be true?

Multiple settings for training translation systems were tested out before settling on the
one reported here, and the scores for the DGT corpora were always in the same range, i.e.
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much higher than for EP data. These scores might be caused by overfitting during training
or the nature of the corpus (if the data is not well suited and prepared for training). The
following possible causes of overfitting or data imbalances have been ruled out (to the best
of our abilities):

1) Preprocessing steps, model architecture, and the training and translation procedures:
are the same for all corpora used.

2) Differences in sizes of training, validation and test sets: the sizes are comparable and
are split following roughly the same split, as shown in Table 2 in Section 4.3.

3) Duplicates in corpora: after training one set of systems, it was noticed that the
DGT corpora have a lot of duplicates between training, validation, and test sets. An
additional step was added during preprocessing to remove overlapping translation
units between sets, as described in Section 4.3.2.

4) Different vocabulary sizes: vocabulary sizes of all training systems are comparable,
as shown in Table 3 in Section 4.4.

Translation units in different data splits that are similar, but not identical, still might be
causing overfitting and (falsely) increasing the BLEU score.44 Python library fuzzywuzzy45

was used in order to test string similarity on a random sample of 1000 sentences from the
test sets, and 1000 sentences of training sets. This means that a random sentence of the test
file was compared with 1) 1000 train sentences; and 2) a subset of random 1000 sentences
that are comparable in length to the test sentence (+/- 5 words). Results displayed in
Table 6 show that this seems to not be the culprit for such high BLEU scores since the
similarity results for EP are in the same range as the results for DGT. Note that if a test
sentence did not have any sentences comparable in length in the train sentence, it was not
considered for calculations.

We have already stated that one feature of the raw DGT data is its repetitiveness
(Section 4.2). Although we have removed all overlapping translation units between data
splits, we did not remove duplicate translation units within the splits themselves, i.e. did
not create unique sets of sentences for every data split. The reason for not doing this is the
fear of losing too much of DGT data which is already smaller by roughly 200 000 translation
units than EP. However, as we can see in Table 7, the ratio of duplicated sentences within

44Credit and a big thank you goes to Gorka Labaka for this idea and the code provided in order to test
it.

45https://pypi.org/project/fuzzywuzzy/
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Source Average – all Average – comp. Max – all Max – comp.
EP EN 85.8 52.5 100 100
EP ES 85.7 52.7 100 100

DGT EN 85.4 51.7 97 97
DGT ES 85.5 53.1 95 95

Table 6: Average and maximum score of string similarity results for testing sentences
against all training sentences (all) and a subset of training sentences comparable in length
(comp.).

Data split # of duplicates % of duplicates
EP train EN 43 178 2.89
EP train ES 41 124 2.76

DGT train EN 391 512 30.37
DGT train ES 373 136 28.94
EP test EN 9 677 2.09
EP test ES 9 340 2.02

DGT test EN 17 914 4.32
DGT test ES 16 605 4.01

Table 7: Number and percentage of duplicates per training and test sets of EP EN-ES and
DGT EN-ES corpora.

splits is much larger in DGT than in EP, especially for training sets. This might be
the cause of our high BLEU scores. In future work, it would be interesting to further
investigate the effect of duplicates in training data on machine translation quality; and
even to recreate the work outlined here and compare data with and without (a significant
number of) duplicates.

5.2 Lexical Diversity

In order to analyze lexical diversity, TTR, MTLD, Yule’s I, LFP, PTF, and CDU were
calculated. We compare the results of translated texts with the result of the reference
texts in order to assess the effect of machine translation. Note that we are not focused on
comparing results of manual or human translation versus machine translation - we do not
know the original language of many of our texts, and therefore cannot state whether or
not they are translations. We are merely interested in the differences between the input
to the machine translation system and its output. This stands true for all analyses carried
out in this work.
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5.2.1 TTR, MTLD, Yule’s I

Results of TTR, MTLD and Yule’s I for all systems trained can be seen in Table 8. The
main value in a cell is the metric’s score, the value in parentheses is the p-value, and the
value in square brackets is the percentage of how many times the text in question scored
better results. TTR was multiplied by 1000, and MTLD was multiplied by 10 000. All
results reported in the table are statistically significant.

Text TTR * 1000 MTLD Yule’s I * 10 000
EP EN-ES REF 8.616 (4.1e-33) [66.7%] 77.989 (3.4e-36) [66.1%] 56.669 (4.0e-14) [57.2%]
EP EN-ES TR 6.425 (4.1e-33) [32.7%] 77.063 (3.4e-36) [33.1%] 32.319 (4.0e-14) [42.8%]

DGT EN-ES REF 12.247 (5.5e-25) [62.3%] 72.350 (1.1e-21) [59.6%] 89.141 (1.1e-22) [60.4%]
DGT EN-ES TR 11.392 (5.5e-25) [37.0%] 70.941 (1.1e-21) [39.2%] 76.765 (1.1e-22) [39.6%]

EP ES-EN REF 5.674 (2.1e-10) [58.6%] 81.669 (5.4e-13) [59.4%] 26.041 (6.9e-67) [69.7%]
EP ES-EN TR 4.597 (2.1e-10) [40.9%] 77.116 (5.4e-13) [40.3%] 15.719 (6.9e-67) [30.3%]

DGT ES-EN REF 12.679 (1.0e-38) [65.8%] 99.708 (5.8e-40) [66.6%] 117.626 (3.6e-71) [74.9%]
DGT ES-EN TR 11.656 (1.9e-38) [33.0%] 95.994 (5.8e-40) [32.6%] 93.420 (3.6e-71) [25.1%]

DGT EN-HR REF 21.931 (2.67e-20) [60.3%] 381.072 (1.64e-14) [58.5%] 1076.499 (6.23e-24) [60.9%]
DGT EN-HR TR 20.187 (2/67e-20) [38.7%] 386.976 (1.64e-14) [40.6%] 894.341 (6.23e-24) [39.1%]
DGT EN-HR REF 12.720 (3.11e-68) [71.7%] 99.976 (3.51e-51) [67.8%] 118.389 (7.23e-63) [74.2%]
DGT EN-HR TR 11.712 (3.11e-68) [27.5%] 94.455 (3.51e-51) [31.2%] 95.477 (7.23e-63) [25.8%]

Table 8: Scores of TTR, MTLD, and Yule’s I metrics for each model trained. REF signifies
the reference text (the test split of the target language), while TR signifies translation text.
For better readability, different translation pairs are colored with different colors, and the
translations are indicated with lighter shades.

TTR is consistently smaller in translation texts than it is in reference texts. Fur-
thermore, the samples of reference texts on average score higher than translation texts
(see square brackets in TTR). The largest difference in TTR is between Europarl EN-ES
reference and translation texts and is 2.191; and the smallest TTR difference is in DGT
HR-EN reference and translation texts and is 0.558. TTR values of Spanish texts have
greater variation between splits than English ones do. TTR for Croatian is the highest
overall, which is not surprising given that Croatian is the most morphologically complex
out of all used languages. One simple example for this is the fact that since Croatian
has 7 cases, one lemma could theoretically have 14 different forms (7 forms in singular, 7
forms in plural). In reality, this usually does not happen because of the fusional aspect of
Croatian morphology, but it still has a great effect on the number of types in a text. It
is surprising that Spanish texts consistently have lower TTR than English texts, despite
having more complex morphology. A reason for this could be the use of articles (compare
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“de las páginas 9 a 10” and “on pages 9 and 10”46) and other particles (“a final de mes y
a final de trimestre” vs. “end-month and end-of-quarter”47) which lower the TTR and are
used more extensively than in English. This is, however, just a first impression hypothesis
and needs further research.

MTLD is lower for translation texts in all cases but one: DGT HR-EN, where the
MTLD score is higher for the translation text by 5.905. The largest difference in MTLD
is between DGT HR-EN (5.521); and the smallest difference is in the MTLD of EP EN-
ES (0.926). It is very interesting that MTLD indicates higher lexical diversity on the
translation side of DGT EN-HR; even though the reference text scored higher on the
majority of samples (see square brackets in Table 8). All reference texts score higher than
translation texts in the majority of samples.

The value of Yule’s I is smaller for all translation texts when compared to the reference
texts. Like in TTR and MTLD, the greatest difference is in DGT EN-HR with the trans-
lation text’s score being lower by 182.158. The smallest difference of 10.322 is between
reference and translation texts of EP ES-EN.

Figure 10 shows differences between normalized scores of the reference and translation
texts per every model that was trained. The results per metric were normalized to be in
range between 0 and 1, and then the score of the translation text was deducted from the
score of the reference text. Translations with English as source are colored with shades of
blue, while translations with English as target are colored with shades of orange. With the
help of this visualization, we can notice that TTR indicates greatest losses of lexical diver-
sity in two out of three translations with English as source. This is not unexpected given
that both Spanish and Croatian are morphologically more complex than English. TTR
of the remaining four translations indicates roughly the same loss. Furthermore, lexical
diversity measured by TTR shows greatest loss over all translations. Regarding MTLD,
the loss of lexical diversity indicated by this metric is the lowest in all three translations
with English as source, with one translation (DGT EN-HR) “gaining” lexical diversity. It
is also the metric that indicates least loss of lexical diversity over all translations, possibly
because it supposedly does not depend so greatly on text length as TTR does. On the
other hand, a metric designed to mitigate text length issues, Yule’s I, indicates the great-
est decrease in DGT EN-HR, with the rest of translations being around the same range

46Examples taken from DGT translation texts, line 11.
47Examples taken from DGT translation texts, line 25.
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Figure 10: Normalized differences between reference and translation texts per trained
model. Translations with English as source are colored with shades of blue, while transla-
tions with English as target are colored with shades of orange.

of change. With these results, it is clear that DGT EN-HR seems to be the most affected
by the machine translation system, with it displaying (by far) the greatest loss in Yule’s I
and a gain in the MTLD score.

5.2.2 LFP

The results of LFP are reported in Table 9. As explained in Section 4.6.5, the word
frequencies were calculated based on the training set of the language of the translation, i.e.
the word frequencies of train.es were used to calculate LFP bands for both reference.es

and translation.es. Band 1 stands for the 1000 most frequent words, band 2 stands for
the 1001-2000 most frequent words, and band 3 is all other words.

The results show that we can see an increase of words in band 1 for all translation texts,
meaning that the most common words are used slightly more frequently in the translations.
Furthermore, all translations show a drop in percentage of words in band 3, meaning that
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there is a drop in usage of less frequent words when compared to the reference texts.

These results seem to indicate that machine translation models trained as part of this
work do tend to use frequent words more frequently, possibly in place of their less frequent
synonyms. A qualitative analysis in the future might help answer these questions and
validate or invalidate the hypotheses laid out here.

Text Band 1 Band 2 Band 3
EP EN-ES REF 77.099 7.098 15.146
EP EN-ES TR 78.224 7.182 14.082

DGT EN-ES REF 75.191 7.159 17.232
DGT EN-ES TR 75.757 7.212 16.650
EP ES-EN REF 80.630 7.140 11.667
EP ES-EN TR 81.270 7.290 10.893

DGT ES-EN REF 75.107 8.149 16.287
DGT ES-EN TR 76.115 8.180 15.275

DGT EN-HR REF 59.622 8.634 29.676
DGT EN-HR TR 60.323 8.810 28.880

DGT HR-EN REF 74.980 8.086 15.069
DGT HR-EN TR 75.980 8.130 14.102

Table 9: LFP results for reference texts and translations. All data is expressed in percent-
ages. For better readability, different translation pairs are colored with different colors,
and the translations are indicated with lighter shades.

5.2.3 Synonym Frequency

As explained in Section 4.6.6, synonym frequency is analyzed only in one direction, and
the lower the score, the higher the lexical diversity quantified by these metrics.

The results of PTF and CDU can be seen in Table 10. For ease of readability, scores
are multiplied by 100. PTF shows that in every translation analyzed there is an increase of
primary translation frequency. This signals the tendency of machine translation systems
to choose the first most frequent translation more often that they should. Similarly, all
translations show a fall in CDU when compared to reference texts. EP EN-ES suffered the
least lexical diversity loss measured by CDU.

Because these metrics are introduced by Vanmassenhove et al. (2021), for frame of
reference we report the difference between their texts, i.e. the reference (ORIG) text
and the text of translation done by a transformer model (TRANS) for Spanish: the PTF
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Text PTF ↓ CDU ↓
EP EN-ES REF 86.552 25.715
EP EN-ES TR 88.517 27.549

DGT EN-ES REF 88.813 28.084
DGT EN-ES TR 89.574 28.814

DGT EN-HR REF 83.337 40.483
DGT EN-HR TR 84.147 41.494

Table 10: Results of two synonym frequency metrics, PTF and CDU, multiplied by 100.
For better readability, different translation pairs are colored with different colors, and the
translations are indicated with lighter shades.

difference they report is -0.154, and for CDU it is -0.148. It is unclear whether or not the
results displayed were multiplied by any factor or not; the PTF for the reference of Spanish
is 9.131, for translation text it is 9.285; the CDU of reference text is 4.539, and 4.687 for
the translation. Given our results, it is presumed that they multiply their results by 10,
but this is not explicitly mentioned anywhere in their paper.

It is good to mention the fact that dictionaries and lemmatizers used might cause
the result to falsely represent the synonym frequency of the texts. Table 11 shows some
numbers to provide an insight into the data used to calculate PTF and CDU. Column “SD
size” represents the size of the synonym dictionaries, i.e. the number of synonyms extracted
from the bilingual dictionaries (not the number of source words for which the synonyms
were extracted). Column “Unique lemmas” indicates the number of unique lemmas per
reference text, and columns “Lemmas in SD” and “Lemmas not in SD” show the number
of lemmas per text that were or were not represented in the synonym dictionaries. The
percentages are based on the unique number of lemmas, therefore indicate the percent
of unique lemmas that are (not) in the synonym dictionaries. These calculations were
only carried out for reference texts. We can see that Croatian has the greatest number of
lemmas found in the synonyms dictionaries, while the Spanish DGT’s lemmas suffered the
most due to under-representation.

File SD size Unique lemmas Lemmas in SD Lemmas not in SD
EP ES 28 738 40 218 12 003 (29.9%) 28 215 (70.3%)

DGT ES 28 738 38 212 10 122 (26.5%) 28 090 (73.5%)
DGT HR 43 904 36 989 15 363 (41.5%) 21 626 (58.5%)

Table 11: Synonym dictionary sizes, number of unique lemmas of texts and their (non)-
representation in the synonym dictionaries.
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EP ES: extrañado (∼surprised), liśın (Lysine), instituimos (we instituted), quite
(quite), a5-0177/2003 (—), surquir (to plough), obliguemos (we obligate (subjunc-
tive)), gasto-utilidad (∼value for money), maquinilla (razor), recogido (∼collected
(adj.))

DGT ES: potentially, turbopropulsado (turboprop), национальный (—), daltons
(Dalton), empujado (pushed (adj.)), preseleccionar (to preselect), resincronización
(resynchronization), vego (—), boissons (—), y1379 (—)

DGT HR: lepezast (in the shape of a fan), nepržen (not fried), propizamid (Propy-
zamide), prispijevati (∼to be arriving), dlizak (—), aminopiralid (Aminopyralid),
stajanka (∼ramp), rasap (dispersal), rafinacija (refinement), stajaćica (gillnet)

Figure 11: Examples of lemmas which were not part of the dictionaries and their
English translation.

To further inspect how this might have influenced PTF and CDU scores, we also provide
a random sample of 10 lemmas not represented in synonym dictionaries per reference text
in Figure 11. In this Figure we can see that some of the lemmas not found in dictionaries
are either numerical representation, not real lemmas (for example, Croatian ‘dlizak’), or
are (presumably) taken literally from source text (see Spanish ‘quite‘).

We can conclude that both metrics indicate slight lexical loss in EP EN-ES and DGT
EN-HR, but for DGT EN-ES the difference is very small for PTF and even indicates a
gain in lexical diversity according to the CDU metric. A study of greater range would be
useful in order to determine how big of a difference in PTF and CDU is relevant and can
be considered important.

5.3 Morphological Diversity

5.3.1 Shannon’s Entropy, Simpson’s Diversity Index, Inverse Simpson’s Di-
versity Index

For the analysis of morphological diversity, we report the results of Shannon’s entropy (H),
Simpson’s diversity index (D), and the inverse of Simpson’s diversity index (inverse D) in
Table 12. As mentioned in Section 4.7, for H higher score indicates higher morphological
diversity, while for D lower score indicates higher morphological diversity. Even though it
is not specified in Vanmassenhove et al. (2021), we presume that higher Inverse D indicates

______________________________________________________
Erasmus Mundus European Masters Program
in Language and Communication Technologies



How does MT affect language? 41/54

higher morphological diversity, given that it is an inverse of D.

The greatest loss of morphological diversity is seen in EP EN-ES, with a difference
of 3.996 points in H, 2.615 points in D, and 4.706 points in Inverse D. Furthermore, in
this translation we also see the greatest difference in the number of lemmas with only one
wordform. While the metrics of lexical diversity overall did not point in this direction, the
results of these morphological diversity metrics might indicate that there is a correlation
between a higher BLEU score and the loss of morphological diversity; or that training a
model with a large portion of duplicates leads to smaller losses of morphological diversity.
The fact that this is noticed in the translation from English to Spanish, but not Spanish
to English, is in line with the idea that translating from a morphologically simpler to
a morphologically more complex language could lead to higher losses in quality. Further
research is needed to claim this with certainty, since only one of our results seems to indicate
this effect and could be uncorrelated with BLEU and the possible overfitting caused by
duplicates in the training data.

The results seem to confirm that these metrics do capture morphological richness or
diversity given that Spanish and Croatian do have better scores in H, D, and Inverse D
than English. Another interesting observation is that the DGT corpora seem to be more
morphologically complex than EP.

5.3.2 Part of Speech Distribution

The distribution of POS tags is analyzed per reference-translation pair in Table 13, and
for each tag we indicate if it appears more often in the reference or the translation text
of the pair. Normalized counts were used and not rounded at the time of comparison,
therefore results of 0.000 can be considered roughly equal and are colored green in the
table. Some thought could be given to the issue of setting a threshold of which difference
to consider relevant for analyses, but in this work we report and take into account all
differences rounded to three decimals that are above 0.000.

Throughout all the reference-translation pairs, adjective (ADJ), numeral (NUM) and
subordinating conjunction (SCONJ) are split equally between appearing more often in
references than in translations, meaning that they appear more often in three reference
texts, and more often in three translation texts of all reference-translation pairs (six in
total).
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Text H ↑ D ↓ Inverse D ↑ One WF Lemmas
EP EN-ES REF 28.687 81.838 130.461 24 422
EP EN-ES TR 24.691 84.450 125.755 17 683

DGT EN-ES REF 32.105 79.531 133.867 23 419
DGT EN-ES TR 31.658 79.851 133.218 20 193
EP ES-EN REF 25.119 85.043 123.246 15 019
EP ES-EN TR 25.727 84.428 124.934 11 229

DGT ES-EN REF 28.032 82.934 127.598 16 636
DGT ES-EN TR 27.318 83.457 126.877 14 263

DGT EN-HR REF 35.222 77.532 137.382 27 339
DGT EN-HR TR 35.338 77.472 137.675 24 582

DGT HR-EN REF 27.397 83.441 126.689 16 842
DGT HR-EN TR 27.865 83.114 127.051 14 132

Table 12: Results of morphological diversity metrics: H, D, and Inverse D, along with
the number of lemmas with only one wordform. Results are multiplied by 100. For better
readability, different translation pairs are colored with different colors, and the translations
are indicated with lighter shades.

Adverb (ADV), auxiliary (AUX), interjection (INTJ), particle (PART), pronoun (PRON),
proper noun (PROPN), verb (VERB), and other (X) are overall more represented in ref-
erence texts than they in translations. More specifically, ADV, INTJ, PRON, and X
appear more frequently in reference texts of all reference-translation pairs, AUX, PART,
and PROPN appear more frequently in four reference texts, while VERB appears more
often in five reference texts.

All remaining POS tags (adposition (ADP), coordinating conjunction (CCONJ), deter-
miner (DET), noun (NOUN), and symbol (SYM)) are represented more in the translations
than they are references of the majority of the reference-translation pairs.

Interestingly, NOUN appears more often in every translation text, but PRON appears
more often in every reference text. This might be indicative of the explicitation effect
which is identified as one of the universals of translation in Laviosa-Braithwaite (1998).

Table 14 lists the total number of POS tags per text (spaces and punctuation excluded).
The parentheses indicate the percentage of the “missing” reference words, i.e. we subtracted
the number of translation POS tags from the number of reference POS tags and divided
by the number of the reference POS tags. We can see that in every translation there is less
POS tags/words than in the reference text, and the loss of reference text words is between
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EP DGT
POS EN-ES ES-EN EN-ES ES-EN EN-HR HR-EN

ADJ REF REF TR TR REF TR
0.002 0.005 0.012 0.013 0.012 0.016

ADP REF TR REF TR TR TR
0.092 0.053 0.012 0.027 0.013 0.028

ADV REF REF REF REF REF REF
0.023 0.068 0.006 0.026 0.012 0.024

AUX TR TR REF REF REF REF
0.063 0.007 0.006 0.003 0.009 0.006

CCONJ TR REF REF TR TR TR
0.020 0.006 0.002 0.007 0.000 0.003

DET TR TR TR TR REF TR
0.036 0.094 0.039 0.073 0.019 0.058

INTJ REF REF REF REF REF REF
0.003 0.001 0.000 0.000 0.000 0.000

NOUN TR TR TR TR TR TR
0.002 0.011 0.045 0.055 0.049 0.081

NUM TR TR TR REF REF REF
0.019 0.020 0.001 0.006 0.003 0.001

PART REF REF TR REF TR REF
0.004 0.030 0.001 0.002 0.001 0.002

PRON REF REF REF REF REF REF
0.082 0.011 0.028 0.004 0.020 0.034

PROPN TR REF REF REF TR REF
0.042 0.027 0.015 0.063 0.002 0.045

SCONJ TR TR REF REF TR REF
0.010 0.012 0.006 0.004 0.004 0.005

SYM TR TR TR REF TR REF
0.000 0.019 0.001 0.009 0.001 0.004

VERB REF REF REF REF TR REF
0.007 0.055 0.011 0.022 0.005 0.036

X REF REF – REF REF REF
0.000 0.003 0.004 0.023 0.003

Table 13: Distribution of POS tags, per tag and reference-translation pair. For every pair,
it is indicated whether it is more frequent in the reference text (REF), or in the translation
text (TR). Differences that, when rounded, are equal to 0.000% are colored in green.
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Text Total number REF - TRof POS tags
EP EN-ES REF 58 104 831
EP EN-ES TR 56 376 715 723 769 (1.261%)

DGT EN-ES REF 55 525 184
DGT EN-ES TR 53 459 901 1 728 116 (2.974%)

EP ES-EN REF 57 391 728
EP ES-EN TR 56 667 959 2 065 283 (3.720%)

DGT ES-EN REF 50 094 813
DGT ES-EN TR 48 961 019 1 133 794 (2.263%)

DGT EN-HR REF 45 816 340
DGT EN-HR TR 44 269 707 1 546 633 (3.376%)

DGT HR-EN REF 50 290 433
DGT HR-EN TR 49 148 636 1 141 797 (2.270%)

Table 14: Total count of POS tags per text and difference between reference and translation
text counts. The percentage of “missing” reference words are expressed in parentheses. For
better readability, different translation pairs are colored with different colors, and the
translations are indicated with lighter shades.

1 and almost 4 percent. The highest and lowest loss of words happened in the same corpus
(EP), with the highest loss in the ES-EN direction, and the lowest in the EN-ES direction.
This analysis shines a new light on the lexical diversity metrics discussed in Section 5.2,
especially TTR which is known to be affected by the text length. We noticed a drop in
TTR values for every translation text, and here we see that all translations are also shorter
in terms of words than their reference texts. This could mean that the lexical richness loss
measured by TTR could be even greater if TTR wasn’t affected by the text’s length. It
would be interesting to qualitatively analyze which words got omitted in the translation.
This trend could also signify another translationese universal existing in our translations,
the one of simplification (Laviosa-Braithwaite, 1998) by making longer sentences shorter
and possibly more robust.

5.4 Syntactical Diversity

The three analyses of syntactical diversity can be seen in Tables 15, 16, and 17.

We created a dependency parse for every translation unit using SpaCy’s parsers48, as

48https://spacy.io/usage/linguistic-features#dependency-parse
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explained in Section 4.8.

Table 15 shows that the number of parses is lower for every translation text when
compared to the reference text. The greatest difference (6632) can be seen between DGT
EN-HR. This language pair in the opposite direction has the least difference in the number
of parses. The consistent loss of the number of parses in translation texts might indicate a
loss in syntactical diversity. One more interesting thing we can notice is the fact that the
DGT corpora all have around 100 000 parses less than EP, and DGT texts have more than
double the parses in common than EP texts have. These facts also reaffirm the presumed
repetitiveness49 of the DGT corpus, which persists even after the removal of duplicates,
and also exists on a more general level as these parse patterns show.

Text Unique parses Parses in common Total
EP EN-ES REF 435 196
EP EN-ES TR 428 938 19 193

EP ES-EN REF 431 238
EP ES-EN TR 427 235 23 049

462 711

DGT EN-ES REF 331 030
DGT EN-ES TR 325 626 50 861

DGT ES-EN REF 324 349
DGT ES-EN TR 323 146 56 143

414 590

DGT EN-HR REF 335 425
DGT EN-HR TR 328 793 60 446

DGT HR-EN REF 325 494
DGT HR-EN TR 325 341 55 957

416 402

Table 15: Unique parses vs. parses in common per text. For better readability, different
translation pairs are colored with different colors, and the translations are indicated with
lighter shades

Table 16 shows results for the second analysis done for syntactical diversity. For every
corpus, we took sentences that appear in both the reference and translation text and
counted the number of times their count is higher in the reference than it is translation,
and vice-versa. The scores represented in the column “Higher count” are not real counts
of parses in any of the texts, but the number of times a parse that appears in both texts
has a higher count in the text. This was done in the same manner as POS calculations
and one example of it can be seen in Table 9 in Section 4.7.4. The results show that the

49Discussed in Section 4.2.
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majority of parses that are in common to both the reference and the translation have the
same distribution. To directly answer the question posed in 4.8 (Do parses in common
appear more frequently in the translation texts than they do in the reference texts?), the
shared sentences appear more frequently in all translation texts than they do in reference
texts. This seems to indicate some degree of syntactical loss and could mean that systems
tend to over-use those sentence structures that have a) (presumably) been seen before and
b) are prompted by the sentence currently being translated (from the test dataset, i.e.
the reference). A more detailed comparison between parses of the training text and the
translation could shine a light on this question and the results could further exemplify this
effect (or could disprove it).

Text Higher count Equal count Total number of parses
EP EN-ES REF 1884
EP EN-ES TR 3008 14 301 19 193

EP ES-EN REF 2168
EP ES-EN TR 3065 17 816 23 049

DGT EN-ES REF 3402
DGT EN-ES TR 4652 42 807 50 861

DGT ES-EN REF 4043
DGT ES-EN TR 4371 47 729 56 143

DGT EN-HR REF 3312
DGT EN-HR TR 4759 52 375 60 446

DGT HR-EN REF 4172
DGT HR-EN TR 4284 47 501 55 957

Table 16: Comparison of the distribution of parses that appear in both the reference and
translation text. For better readability, different translation pairs are colored with different
colors, and the translations are indicated with lighter shades.

Table 17 shows the comparison between the distributions of the 1000 most and 1000
least common parses from the reference text in both the reference and translation texts.
These results were calculated in the same manner as the results for POS distribution, as
exemplified in Figure 9 in Section 4.7.4. The results for most common sentences show that
the sentences that do not have the same distribution in both texts appear more often in
all translation texts than they do in the reference text. Just like the results of sentences
in common, this could indicate some degree of loss of syntactical diversity. Note that we
did not remove sentences in common from the 1000 most common reference sentences and
that both of these results might be pointing to the same conclusion due to this overlap.
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Furthermore, models trained on EP dropped the most frequent parses far more often than
models trained on DGT did. This could be caused by the nature of the DGT corpus:
either its general repetitiveness, smaller syntactical diversity to begin with, or by the
possible overfitting caused by duplicates in the training data. The results of the 1000 least
common sentences are on par with the results Vanmassenhove et al. (2019) get for testing
the loss of least frequent words caused by machine translation and show that the same
effect happens in parses - in all translations, the majority of least frequent parses do not
appear at all. On the other hand, a very interesting occurrence is the fact that there is if
a parse that appears in both the reference and the translation text, in none of our models
does it appear more often in the reference than it does in translation. This might speak
to the amplification of certain features and total disregard of others; what features get
amplified and what get disregarded seems to depend on the model itself.

______________________________________________________
Erasmus Mundus European Masters Program
in Language and Communication Technologies



How does MT affect language? 48/54

Text Higher count Equal count Not in text
1000 most common sentences

EP EN-ES REF 372 0
EP EN-ES TR 479 77 72
EP ES-EN REF 399 0
EP ES-EN TR 450 77 74

DGT EN-ES REF 390 0
DGT EN-ES TR 461 148 1
DGT ES-EN REF 404 0
DGT ES-EN TR 460 136 0

DGT EN-HR REF 372 0
DGT EN-HR TR 462 163 3

DGT HR-EN REF 410 0
DGT HR-EN TR 444 145 1

1000 least common sentences
EP EN-ES REF 0 0
EP EN-ES TR 4 21 975
EP ES-EN REF 0 0
EP ES-EN TR 5 22 973

DGT EN-ES REF 0 0
DGT EN-ES TR 6 115 879
DGT ES-EN REF 0 0

EP ES-EN TR 10 136 854
DGT EN-HR REF 0 0
DGT EN-HR TR 6 147 847

DGT HR-EN REF 0 0
DGT HR-EN TR 4 142 854

Table 17: Comparison of distribution of the 1000 most and 1000 least frequent parses
of the reference text in reference and translation texts. For better readability, different
translation pairs are colored with different colors, and the translations are indicated with
lighter shades.

6 Conclusions

In this work we trained six neural machine translation systems and analyzed their output
on two language pairs in both directions, as well as compared the translated texts to the
source text. The translations were analyzed in terms of their lexical, morphological, and
syntactical diversity or richness, totaling eight different metrics or methods of analysis. The
procedure of pre- and postprocessing data, training neural machine translation systems,
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translating the texts, and assessing lexical and most of morphological richness is done
following Vanmassenhove et al. (2021). The goal of this work was to analyze the output
of machine translation systems with regard to their lexical, morphological, and syntactical
richness or diversity.

We used two corpora for conducting our experiments. The first one is Europarl (Koehn,
2005), and the second one is DGT, a corpus we constructed from files of Directorate-General
for Translation Translation Memory. The languages chosen for analysis were English, Span-
ish, and Croatian, i.e. translation pairs of English ↔ Spanish, and English ↔ Croatian.
Spanish and Croatian were chosen as languages that are morphologically more complex
than English and therefore considered good candidates for analyzing the effect of transla-
tion.

In most of our metrics we notice a decrease in richness or diversity caused by machine
translation. Regarding lexical richness, TTR and Yule’s I (the inverse of Yule’s K, a
measure designed to be better suited for longer texts) both indicate loss in translations for
all our systems, languages and pairs, while MTLD shows loss in the majority of translations
and a gain in one (DGT EN-HR). LFP, a metric usually used to score a language learner’s
level of the language, adapted by Vanmassenhove et al. (2021) for measuring lexical richness
and further amended in this work, show that machine translated texts use frequent words
more frequently than the reference texts. PFT and CDU, two metrics Vanmassenhove
et al. (2021) use to score synonym frequency, both show loss in all texts and systems.

For morphological richness or diversity we used three metrics that Vanmassenhove
et al. (2021) adapted for this purpose: Shannon’s entropy, Simpson’s diversity index and
Inverse Simpson’s diversity index. These metrics both measure the diversity of categorical
data, with Shannon’s entropy measuring the entropy of a lemma’s inflectional paradigm,
and Simpson’s diversity index measuring the diversity of a lemma’s inflectional paradigm
(and its inverse does the same, but the results move in the opposite direction). We also
performed part of speech analysis distribution. Shannon’s entropy showed slight to no
difference between reference texts and their translations, and so did Simpson’s diversity
index and its inverse. The latter two even showed improvement of morphological richness
in two out of the six translated texts. Given that these three metrics are first used for
this purpose by Vanmassenhove et al. (2021), further research needs to be done in order
to determine how big of a difference can be considered relevant and meaningful when
comparing texts. Part of speech distribution analysis seemed to confirm allegations of
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Vanmassenhove et al. (2019) that machine translation systems use frequent items even
more frequently.

For syntactical richness or diversity, we compared the distribution of parse distribu-
tions in texts of all reference-translation pairs. This analysis also confirmed the increase
of frequent and decrease of infrequent items in translations as a product of machine trans-
lation.

We did not notice a difference in the effect of machine translation systems had on
Spanish and Croatian texts., except in the lexical diversity metrics where some of the
most dramatic changes happened in the direction of English-Croatian, but not in English-
Spanish (TTR, MTLD). We did, however, notice differences between the two that are not
caused by translation, but by the languages’ typology. This is not directly relevant to this
work, but does confirm that the metrics used do behave as expected (see Sections 5.2, LFP;
and 5.3, H, D, Inverse D).

Overall, the majority of our metrics have confirmed that neural machine translation
caused a decrease in lexical, morphological, and syntactical diversity. Unfortunately, in
this work we did not have time to test the metrics in depth nor to qualitatively evaluate
the translations. In the future, it would be beneficial to test the behaviour of many of
the metrics used in this work and establish ranges of increments or decreases that can
be considered relevant for each of the metrics (but especially for the novel and adapted
ones). For example, it would be interesting to compare the results of Shannon’s entropy
and Simpson’s diversity index with a qualitative analysis of certain lemmas and their
wordforms. Both of these metrics indicated the average entropy or diversity of the texts’
inflectional paradigms, but it not clear how the changes in these numbers actually reflect
the effect of a machine translation system and to what extent. A qualitative study of neural
machine translation output would certainly also be helpful in indicating what exactly is
affected by the systems. This could help us answer questions such as why do all translation
texts have less words than the reference texts and whether or not that is very apparent to
the average reader. Furthermore, such an analysis could answer the question if the many
novel parses found in translations are actually valid and would be considered natural to a
native speaker of the language.
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