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ABSTRACT

Automatic Speech Recognition (ASR) systems have become an everyday use tool

worldwide. Their use has spread throughout these last years and they have also

been implemented in Environmental Control Systems (ECS) or Speech Generating

Devices (SGD), among others. These systems might be especially beneficial for people

with physical disabilities, as they would be able to control di↵erent devices with voice

commands, therefore reducing the physical e↵ort they have to make. However, people

with functional diversity usually present di�culties in speech articulation too. One of

the most common speech articulation problems is dysarthria, a disorder in the nervous

system which causes weakness in muscles used for speech. Existing commercial ASR

systems are not able to correctly understand dysarthric speech, so people with this

condition cannot exploit this technology. Some investigation tackling this issue has

been conducted, but an optimal solution has not been reached yet. On the other hand,

nearly all existing investigation on the matter is in English, no previous study has

approached the problem in other languages. Apart form this, ASR systems require

of large speech databases, which are currently very few, most of them in English

and they have not been designed for this end. Some commercial ASR systems o↵er a

customization interface where users can train a base model with their speech data and

thus improve the recognition accuracy. In this thesis, we evaluated the performance of

the commercial ASR system Microsoft Azure Speech to Text. First, we reviewed the

current state of the art. Then, we created a pilot database in Spanish and recorded

it with 3 heterogeneous people with dysarthria and 1 typical speaker to be used

as reference. Lastly, we trained the system and conducted di↵erent experiments to

measure its accuracy. Results show that, overall, the customized models outperform

the base models of the system. However, the results were not homogeneous, but

vary depending on the speaker. Even though the recognition accuracy improved

considerably, the results were far from being as good as those obtained for typical

speech.

Keywords: automatic speech recognition, dysarthria, intelligibility, Spanish
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Chapter 1

Introduction

ASR systems are widely known nowadays. It is a technology that enables the recogni-

tion of spoken language and converts it into text. ASR can be seen as an alternative

to the use of a keyboard, the control of mobile phones or the manipulation of other

devices that everyone uses on a daily basis, such as light switches. One common im-

plementation of ASR systems can be found in environmental control systems. These

refer to systems in charge of controlling one’s home appliances, for example by switch-

ing on and o↵ the lights or television, opening and closing doors or pulling up and

down the shutters. An example of this could be ’Amazon Alexa’ or ’Google Home’,

as they are capable of controlling several smart devices by means of voice commands.

Another common example of ASR implementation are virtual assistants such as ’Siri’

and others. These virtual assistants are able to do tasks such as voice interaction,

checking basic information, setting reminders, or streaming music. Naturally, all these

systems are very convenient for all of us, as they make our lives easier. A group that

can especially benefit from this sort of voice-controlled technologies are people with

physical impairments or reduced mobility. Taking into account that the aforemen-

tioned systems replace the use of keyboard, people with functional diversity would be

able to control their personal devices or home appliances with voice commands. This

would be very favorable for them as they would not need to make movements that

might be di�cult for them or they would not need the help of others, therefore being

more independent. However, many people with disabling conditions also present a

disordered speech associated with neuromotor conditions. This obstructs the accu-

rate recognition of their speech for ASR systems, which are usually not trained to

recognize non-typical voices. Such is the case of dysarthria, a nervous system disorder
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causing weakness in muscles used for speech (Mayo Clinic (2021)).

Dysarthria is one of the most recurrent disordered voices. Unlike typical voices,

dysarthric speech tends to be slurred and slow, and people usually struggle to un-

derstand it. Dysarthric speech has a high degree of variability, not only between

di↵erent people, but even within a single person. Also, there are di↵erent kinds of

dysarthria depending on which area of the neuromotor system is damaged. Condi-

tions that may lead to dysarthria are Amyotrophic Lateral Sclerosis (ALS), cerebral

palsy, Parkinson’s disease or Traumatic Brain Injury (TBI), among others. Due to

communication problems derived from dysarthria, people su↵ering it may face so-

cial di�culties (Mayo Clinic (2021)). Dysarthric ASR lags years behind the progress

that has been achieved for ASR for typical voices, that is, voices that do not present

pathologies. The previously mentioned systems’ accuracy drops when exposed to

dysarthric speech, and people presenting it cannot benefit from them.

In order to develop an ASR system, there is a need to have big amounts of speech

data. The systems are trained with large databases of typical speech samples, but not

with samples of non-typical speech. Although there are some databases in English

dysarthric speech, there are currently none in many other languages, such as Spanish.

Moreover, the existing databases have not been collected for the purpose of training

ASR systems; most of them have impairment severity assessment goals. Besides, even

if databases like these existed, each person with dysarthria presents a great variation

of personal features in their speech. These features may also vary depending on the

energy levels of the speaker or the emotions they are expressing.

Broadly speaking, ASR systems can have two main functioning modes when re-

ferring to speaker dependency: speaker-independent systems and speaker-dependent

systems. Speaker-independent systems do not require any training or adaptation to

a particular user, as they have already been trained with speech samples from sev-

eral subjects with no speech impairments. Commercially available ASR systems are

speaker-independent, and therefore any user with a typical speech can use them. One

option to improve the recognition accuracy of dysarthric speech with these systems

could be the use of a dysarthric speech database to train them. However, as it has

been mentioned, there is a great scarcity of data when it comes to this matter.

On the other hand, speaker-dependent systems require training with samples of the

future user’s speech. The acoustic model is aligned to the speech of the user and gets
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a higher accuracy than speaker-independent systems for this specific user. The main

drawback of these systems is that a big amount of training data is required. Although

being the best solution to recognize dysarthric speech, this training requirements can

be very demanding for people with speech impairments.

As Calvo et al. (2020) claim, speaker-adaptive ASR can be a promising approach

to solve this problem. In this case, a small amount of data is collected from the user

in order to adapt a speaker-independent model. Some commercial ASR systems o↵er

the chance to adapt their base models to the user. This strategy is originally thought

to be used with di�cult accents or domain specific vocabulary, and usually consists

of training a base model with the user’s data or reducing the recognition scope. Such

is the case of the commercial ASR system selected for this study: Microsoft Azure

Speech to Text. This system o↵ers their users a customization interface which can

be used to train the language, acoustic and pronunciation models with the users’

data. We thought that it could be possible to train this system with speech samples

obtained from people with dysarthria.

Some investigation on dysarthric ASR is currently being undertaken. However,

most of this investigation focuses on English dysarthric speech, and therefore cannot

be extrapolated to other languages. Previous studies have determined the accuracy

of commercial ASR systems with dysarthric speech; however, as far as we are con-

cerned, none of them has used the customization interface of such systems to adapt

them to specific users. Besides, no previous study has focused on Spanish dysarthric

speech. There is currently no commercial option for dysarthric ASR. We felt the urge

to experiment with a commercial speaker-adaptive system with Spanish dysarthric

speech and see whether the obtained results are close to the ones obtained with a

person with typical speech. Besides, we felt that there is a need for dysarthric speech

databases, especially in other languages that are not English. By performing this

study, we contributed to the visibility of people with dysarthria. We raised awareness

of the need to create dysarthric speech databases and ASR systems that are able to

understand them.

The main goal of this study is to evaluate the capacity a commercial ASR system

to be personally and individually adapted to people with dysarthria. In order to do

so, we will follow the next steps:

• First we will conduct an investigation of the current state of the art. This

consists on listing the available dysarthric speech databases, accounting the
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commercial ASR systems and whether they provide an adaptation interface,

and reviewing the existing investigation on dysarthric ASR.

• Then, we will create a pilot database based on the needs we think should be

met. In this case, it will consist of commands in Spanish for text creation and

edition programs. This database will be recorded by 3 speakers with dysarthria

and by a person with typical speech to be used as reference for the results.

• Lastly, we will train and evaluate the commercial ASR system with our database.

Results of the speakers with dysarthria will be compared with those obtained

by the reference speaker.

Based on previous results obtained by di↵erent studies, the following hypotheses

were formed:

• The systems will not be able to adapt to dysarthric speech in their default mode,

as it happens with typical speech. The models will have to be personalized

individually for each speaker.

• Results obtained will be very varied, as each person’s dysarthric speech is dif-

ferent. Results will therefore vary depending on the speaker and the type and

grade of dysarthria they present.

• The chosen ASR system will not be able to fully adapt to dysarthric speech and

therefore get the accuracy needed in order to work properly. This conclusion

is based on accuracy results obtained by previous studies, which are very low.

Although having a customization interface, the expected improvement to be

obtained does not seem to be su�cient for ASR systems to work properly.

The next chapter will explain dysarthric speech in more detail, and will overview

ASR services that are available for dysarthric speech. Chapter 3 will introduce the

currently existing most well-known databases of dysarthric speech, the evaluation of

ASR systems that have been conducted, and commercial ASR systems. The experi-

ments conducted in this study will be explained in chapter 4, and the results obtained

will be presented in chapter 5. Finally, the conclusions and discussion of this thesis

will be compiled in chapter 6.
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Chapter 2

Dysarthria and applications of
speech technology to dysarthia

This chapter is devoted to explain the di↵erent types of dysarthria and their char-

acteristics, based on the most commonly used classification. It will also overview

current applications of speech technologies for dysarthia. It is worth highlighting

that the 3 participants of our experiments were di↵erent in age and had di↵erent

levels and types of dysarthria. Although the optimal solution would be to create

speaker-dependent speech recognition systems, another option would be to create

dysarthric speech databases with homogeneous groups of people.

2.1 What is dysarthria?

Dysarthria is a speech disorder caused by disturbances in neuromuscular control of

the speech mechanism and resulting from impairment of any of the basic motor pro-

cesses involved in speech production (Darley et al. (1975)). These disturbances lead

to a weakness in the speech articulatory muscles. Although dysarthria does not a↵ect

the creation of grammatically correct sentences, it leads to a more imprecise articu-

lation of words. Di↵erent types of dysarthria can be categorized depending on the

a↵ected area of the neuromotor system. Symptoms may also vary depending on the

type of dysarthria. The most commonly used classification of types of dysarthria is

the one developed at the Mayo Clinic (Darley et al. (1969)). This study collected

thirty-second speech samples from 212 patients of seven di↵erent neurologic groups.

Each patient had been unequivocally diagnosed as being representative of that diag-

nostic group. Three judges independently rated the samples on each of 38 dimensions
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of speech and voice using a seven-point scale of severity. Based on the results, they

identified six di↵erent types of dysarthria:

Flaccid dysarthria: it is related with lower motor neuron impairment. Charac-

teristics of flaccid dysarthria may vary depending on the nerves and muscles a↵ected

and the reduced muscle tone (Enderby (2013)). The main symptoms are hypernasal-

ity, imprecise consonants, breathy voice, reduced phonation time, monopitch and

monoloudness, poor intelligibility, and abnormalities in the tongue and lips when

doing movements and at rest.

Spastic dysarthria: it is related with damaged upper motor neurons linked to

the motor areas of the cerebral cortex. If damage is bilateral, the tongue and mouth

will be completely impaired of movement; however, if the damage is unilateral, it will

produce weakness of one side of the mouth and tongue. These lesions produce negative

symptoms (losses of function) and positive symptoms (evidences of overactivity).

Symptoms include a loss of voluntary movements, di�culty to swallow, imprecise

consonants, monopitch and monoloudness, slow rate with short phrases and hyper

nasality (although in a lesser degree than in flaccid dysarthria).

Ataxic dysarthria: it is primarily caused by cerebellar dysfunction. It is char-

acterized by what is known as “scanning” speech (Charcot 1877), where each syllable

us pronounced slowly and there is a pause after one or some syllables. The speech

rate is slow and the consonants are also imprecise.

Hyperkinetic dysarthria: it is caused by disorders of the extrapyramidal sys-

tem, which results in a increase of the movement. This type of dysarthria is often

related with movement disorders such as dystonia or chorea. Therefore, hyperki-

netic dysarthria can be slow or quick depending on the disorder it is associated with.

Overall, the symptoms result from intermittent or continuous involuntary movements.

There are imprecise consonants, distorted vowels, variable rate, prolonged intervals

and phonemes and some inappropriate silences.

Hypokinetic dysarthria: it is caused by disorders of the extrapyramidal system,

which results in a reduction of the movement. Spontaneous movements are poor and

there may be abnormal involuntary movements. The speech rate is quite variable,

there are monopitch and monoloudness and imprecise consonants. Both breathy and

harsh voices can be present.
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Mixed dysarthria: it is related to damage in more than one area, and thus

has speech characteristics from two or more groups of dysarthria. It is common in

both upper and lower motor neuron degeneration. The signs vary depending on the

location and proportion of damage.

Although this is the most accepted classification of types of dysarthria, it should

be kept in mind that dysarthric speech may also vary depending not only on the type

of dysarthria, but also on the person. Two people with the same kind of dysarthria

may present di↵erent features and di�culties in their speech. Besides, the time of the

day and thus, the energy that the person has in that moment, also a↵ects the final

speech outcome.

Dysarthria may be caused by many di↵erent reasons and it can be congenital or

acquired. It is congenital when the person is born with it or when brain damage hap-

pens during birth; this is the case of cerebral palsy, for example. These cases are often

stable or chronic in their status. On the other hand, acquired dysarthria happens as a

result of brain damage later in life, such as a stroke, brain tumor, Parkinson’s disease

or ALS, among others.

Dysarthria leads to several communication problems, and relationships with other

people may be a↵ected due to this reduction in communication skills. All these issues

may result in social di�culty or depression (Dysarthric speech: Symptoms and causes

(2020)). Speech and language therapy might be helpful. The quality and naturalness

of speech may be improved in cases of mild dysarthria. In the case of severe dysarthria,

therapy would be focused on improving intelligibility and communication competence;

this might include alternative methods of communication (i.e. use of a speaking device

)(Enderby (2013)).

2.2 Applications of speech technologies for dysarthia

Most commercial ASR systems do not meet the requirements to be used by people

with dysarthria, as they still need to improve their accuracy considerably. However,

there are already some services that have been specifically designed for people with
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this condition. These services can be categorized into two di↵erent groups: Environ-

mental Control Systems (ECS) and Speech Generating Devices (SGD). This section

will review some of the most popular services that have been created so far.

2.2.1 Electronic Assistive Technology (EAT) and Environ-
mental Control Systems (ECS)

Many of the commercial Electronic Assistive Technology (EAT) systems and ECS

have been designed to be used by people with typical voices; however, people who

could benefit mostly from them are people with dysarthria. According to Hawley

et al. (2003), these systems should be speaker dependent, therefore trained with the

user’s utterances. They presented the STARDUST project, an approach that con-

sisted of two parts: first, to develop a computerized training package and, second, to

develop a speech recognition system with greater variability of speech utterances than

common ASR systems. The training package would assist dysarthric speakers to im-

prove the recognition likelihood and consistency of their vocalizations. The tolerance

towards variability would be achieved by using the large corpus of data collected in

the training phase. To set up the program, the recognizer had to be trained with

some examples of words. The software would then determine a “best fit” utterance

for each word, which would then become the target; the person would try to produce

as close an articulatory approximation as possible. The “best-fit” is not necessarily

the most “intelligible” word, but the one that best approximates the person’s most

likely production. In training mode, a word is displayed, and the user can play the

“best fit”, can speak the word or can move to the next vocabulary list. The training

phase has three aims: to make each utterance as close as possible to the target, to

imitate a stable target, and, since each utterance is recorded, to create a large corpus

of data.

Eight adults were recruited for the STARDUST ECS trial (Parker et al. (2006)),

five men and three women. These volunteers did not have a rapidly changing neu-

rodegenerative condition. The command function words were determined depending

on the device the users wanted to operate via the speech controlled ECS. Each vo-

cabulary set consisted of ten words, which were recorded thirty times to build the

first recognizer. Speaker dependent recognizers were trained for each individual with

the Hidden Markov Model Toolkit (HTK) using continuous Hidden Markov Models
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(HMM). Seven people completed the self-directed training phase. The pathology,

severity or type of dysarthria did not seem to influence the final results. According to

Parker et al. (2006), “speaker dependent recognizers illustrate that there are acousti-

cally stable elements within the output of severe dysarhtric speech”.

The homeService project (Christensen et al. 2013), aims to assist people with

severe dysarthria by implementing a cloud-based environmental control system. Ac-

cording to the authors, “the only way to acquire substantial amounts of data is from

a system which is being actively used”. This is due to the fact that prolonged speak-

ing for people with dysarthria is usually exhausting; generally speaking, passive data

collection from dysarthric speakers is limited. The homeService system has two main

components: the atHome part and the atLab part. The atHome part is the collection

of components implemented in the users’ home: a laptop to maintain the communica-

tion between the atLab and the atHome, a microphone for data capture, an infrared

transmitter as remote control of the devices and an android tablet as a personalized,

visual interface for the user. On the other hand, the atLab is a server at the univer-

sity and comprises the main server which operates the ASR. It runs remotely “in the

cloud”.

The cloud-based ASR servers allow researchers free access to maintain and update

ASR models without having to modify the equipment in the users’ home. The ASR

will be connected to the homeService users’ home by a broadband link. Each user has

a dedicated ASR, previously loaded with personal acoustic and language models and

grammars. The grammars are intended to restrict the vocabulary according to the

given state the system is in. homeService systems are perceived as the first generation

of Personal Adaptive Listeners (PAL).

Details about the system installation and how words are chosen are described by

(Christensen et al. 2015). First, the command words are defined depending on the

devices the user wants to control. Each command word should be recorded 5-10 times.

The initial baseline models are trained in the lab, using the same data as training and

testing. A grammatical hierarchy is also established, so that the system does not get

confused with the commands and provides better results. Online and o✏ine exper-

iments are also carried out; online experiments could involve changing the acoustic

models, and o✏ine experiments could involve changing the training scenarios with the
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data. There are two di↵erent data collection strategies: the enrolment data, obtained

when the user reads the commands given, and the interaction data, the data recorded

as the user interacts with the system once it has been adapted. The utterances of

the interaction data are not inherently known; therefore, the recordings are saved

and manually annotated afterwards. This system is focused on the “virtuous circle”.

First, an “operating point” is set, a simple task that can provide good performance

and that is useful for the participants. Users pronunciation consistency is improved

by practice, which also leads to more data for ASR training. Therefore, the more the

system is used, the better it gets and the bigger the corpus gets.

All interactions with the devices were recorded, which led to the creation of the

homeService Corpus (Nicolao et al. 2016). As previously mentioned, most existing

dysarthric speech databases were collected in controlled conditions. However, this is

the first “spontaneous” dysarthric speech database, recorded in a real world environ-

ment. Besides, it contains examples recorded over several months, which enables the

study of voice variations over time due to degenerateness.

2.2.2 Speech-Generating Devices (SGD)

There are two existing types of speech-generating devices or systems. The Voice

Output Communication Aids (VOCA) usually take input from the user by means

of a keyboard or switch-based interface and produce spoken output using synthe-

sized or pre-recorded speech (Creer et al. (2013)). On the other hand, the voice-

input voice-output communication aids Voice-Input Voice-Output Communication

Aids (VIVOCA) take users’ voice as input and produce synthesized or pre-recorded

speech as output. These systems usually output pre-recorded speech when the users

have been able to record it themselves; this would be the case when the users have

acquired conditions such as Motor Neuron Disease (MND). However, when users have

congenital conditions such as cerebral palsy, pre-recording with their typical voice is

impossible; therefore, in these cases, synthesized voices are more widely used. In the

study conducted by Creer et al. (2013), they produced synthetic voices for three male

speakers with mild to severe dysarthria. Speech samples from the speakers were used

to create synthetic voices that were close to the original one. As all three speakers

had congenital conditions, a “restorative” process was needed for the samples. The

technique followed was a HMM-based synthesis with data selection and imposition of
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information from the average voice model. A qualitative evaluation was also carried

out, which showed that one of the three speakers was pleased with the resulting per-

sonalized synthetic voice, as it conveyed many of his characteristics.

Hawley et al. (2012), developed a VIVOCA to recognize dysarthric speech and

deliver the same message in synthesized speech. The system works as follows: users

speak to a microphone, speech is processed and recognized words and phrases are

passed to a message building module, and once the message is complete, it is passed

to a speech synthesizer. In this study, HMMs were also used. In order to evaluate the

system, researchers defined a vocabulary of input for each of the participants, which

were then recorded around 20 times. The “best attempt so far” was determined by

the system, and users aimed to replicate it. Once the system was trained, a series

of tests were conducted. Nine people with moderate to severe dysarthria took part

in the project, although a total of five completed the evaluation. The recognition

accuracy during the training phase was 99%. When applied in real usage situations,

the accuracy dropped up to 67%. Overall, most of the participants felt that the pro-

totype should be improved, but that it could be a useful aid to their communication.

Bunnell et al. (2010) also proposed a procedure, named the ModelTalker project,

to “bank” speech recordings from people with progressive condition. These recordings

are meant to be used to create personalized synthetic voices. Another similar project

is proposed by the Aholab group (Erro et al. (2015)); however, in this case, anyone

can donate their voice. This way, both people with progressive conditions and people

with congenital conditions can have a personalized voice.

Voiceitt (Voiceitt (2020)), is an ASR technology that translates non-standard

speech patterns into clear speech in real time. The system is not language-dependent,

unlike standard speech recognition systems, but speaker-dependent; instead of adapt-

ing the system to a new language, it is adapted to each individual’s communication.

Its pattern classification technology is personalized for each speaker. The input used

by this app is the users’ voice itself, and the output is a donor voice. Before using

Voiceitt, a collection of known utterances is necessary. The user needs to provide a

sample of five words, each repeated twice, so that the system learns how the user pro-

nounces these words; as the user keeps using the app, more words are learnt from the
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recordings. Then, clustering techniques are applied to the user’s phonetic inventory,

so as to identify units of sound in the user’s speech (Murero et al. (2020)).

2.3 Summary

Dysarthria is a speech disorder characterized by a low articulation of words and

phonemes. It is caused by a congenital or acquired disorder in the neuromuscular

system. This leads to a weakness in the speech articulatory muscles, which makes it

less consistent in comparison with typical speech. Depending on the a↵ected area,

dysarthric speech can be categorized into di↵erent kinds. However, it also varies

depending on the person and other factors such as fatigue. Some speech features can

be improved in dysarthric speakers by means of therapy.

The existing ASR systems designed for dysarthric speech include environmen-

tal control services and speech-generating devices. These systems should be speaker

dependent. In all cases, the more the systems are used, the better they get. When

training these systems, the “best-fit” is the closest one to the person’s most likely pro-

duction, not the most “intelligible” one. Users are expected to replicate these “best-

fit” words as best as possible; however, this is di�cult for people with dysarthria, as

they do not have a consistent word articulation. It is important that these systems

are trained in a real world environment and over the time, so as to study the voice

variations.
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Chapter 3

Related work and commercial ASR
systems

This chapter will introduce the most well-known databases of dysarthric speech, or-

dered chronologically. It will then review some evaluations of ASR systems that have

been conducted with people with dysarthria. Finally, it will outline some of the most

commonly used commercial ASR systems. The one chosen for this study, Microsoft

Azure Speech to Text, will also be included in this section.

3.1 Existing dysarthric speech databases

There is a wide range of databases composed by typical voices; however, the publicly

available databases for dysarthric speech are very limited. This section includes the

biggest and most well-known databases for dysarthric speech.

3.1.1 The Whitaker Database of dysarthric (cerebral palsy)
speech (1993)

The Whitaker database (Deller Jr et al. (1993)) is presumably the first database

of dysarthric speech. It got its name because it was collected during a Whitaker

Foundation sponsored study into speech recognition technologies for persons with

physical challenges. It was recorded in the Department of Speech and Language

Pathology and Audiology at Northeastern University in Boston. The database is

composed by a collection of 19275 isolated-word utterances. These recordings were

spoken by six male persons aged between 28 and 48 years old with dysarthria due to

cerebral palsy. The participants represented a wide spectrum of articulatory ability.
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Additionally, a speaker with no voice disorders also took part in the study, and his

data were used to provide a control group.

The vocabulary included in the Whitaker database has two parts: the TI-46 word

list and the Grandfather word list. The TI-46 word list comprises utterances of the

26 letters of the alphabet, 10 digits (zero to nine) and the 10 “control” words (start,

stop, yes, no, go, help, erase, rubout, repeat, and enter). The TI-46 word list had

already been used in testing speech recognition algorithms, and was suggested as a

standard by the Texas Instruments Corporation. On the other hand, the Grandfather

is a list of 35 words selected from a passage frequently used by speech pathologists. It

is called Grandfather because it begins with the sentence “Let me tell you about my

grandfather. . . ”. The words selected have an inherent phonetic diversity. Each word

of the lists was uttered at least 30 times by each of the dysarthric speakers, although

in most cases an additional block of 15 repetitions was also included. For the control

data, there are 15 repetitions for the words in both lists.

All recording sessions were conducted in an isolated booth. Utterances were

recorded on TDK type II cassettes using a TEAC W-450R stereo cassette deck with

Dolby-C noise reduction. The data were filtered using an active band-pass, fourth-

order Butterworth filter with a low-pass cuto↵ frequency of 4.7 kHz and a high-pass

cuto↵ of 75 Hz. The sampling rate on the data was 10 kHz. Then, the endpoints of

each utterance were “manually” located by means of a waveform editing program.

The aim of this database was to create a standard collection of speech which

may be used to develop recognition technology for dysarthric speech (Deller Jr et al.

(1993)).

3.1.2 The Nemours database of dysarthric speech (1996)

The Nemours database (Menendez-Pidal et al. (1996)) was designed to test the in-

telligibility of dysarthric speech before and after enhancement by various signal pro-

cessing methods. The participants were 11 male speakers with varying degrees of

dysarthria. They also had a non-dysarthric speaker record all the corpus as a control.

The database was composed by 814 short nonsense sentences (74 sentences spoken by

each participant). Each subject also recorded two paragraphs of connected speech,

taken from the Grandfather passage and the Rainbow passage1. The form of the

1
The Grandfather and the Rainbow passages are texts usually employed by speech therapists
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nonsense sentences was “The X is Y-ing the Z”. X and Z were 74 randomly selected

monosyllabic nouns; Y, on the other hand, was a set of 37 disyllabic verbs. This

created 37 sentences, then, X and Z were swapped, thus creating another set of 37

sentences. The X, Z and Y words were thought to prove closed-set phonetic contrasts

within an associated set of four to six words.

Participants were assessed according to the Frenchay Dysarthria Assessment (En-

derby (1980)), which measures 28 relevant perceptual dimensions of speech grouped

into 8 categories, namely reflex, respiration, lips, jaw, soft palate, laryngeal, tongue,

and intelligibility. This lead to a categorization of dysarthric speakers from “no ab-

normalities” to “severely distorted”.

The recording sessions were was done by using a table mounted microphone con-

nected to a digital audio tape recorder, and they consisted of three parts:

1. first, a speech pathologist conducted an initial assessment of the participant

2. then, the participant would record the 74 nonsense sentences

3. lastly, the participant would record the two speech passages.

In the nonsense sentences recording process, the experimenter read each sentence

aloud first, and then the participant would repeat it. This assisted those subjects with

limited eyesight or literacy. On average, each recording session would last between

two and a half and three hours, including time for breaks.

Once the recordings were complete, the speech materials were digitized from the

audio playback of the DAT recording using a 16 kHz sampling rate at 16-bit sample

resolution with appropriate low pass filtering.

Additional perception experiments were conducted using the speech samples. For

this, a minimum of 5 listeners heard each sentence 12 times; they had to identify the

target words in the nonsense sentences.

The database was labeled at word and phoneme level. The word-level labels were

assigned manually, whereas the phoneme-level ones were assigned using a Discrete

Hidden Markov Model (DHMM) labeler. After doing so, the phoneme-level labels

were inspected and corrected manually. They decided to use a DHMM for the labeling

because it is appropriate for the recognition of a limited training size database. The

main system was composed of a spectral analysis front-end, a vector quantizer system,

and a DHMM Viterbi algorithm used to align the phonetic labels and to train the
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39 phoneme models. In this paper, they tried several variations in the mentioned

components so as to find the best possible combination to get the best accuracy.

They believed that these techniques would be useful in the design of ASR systems

for people with speech disorders.

3.1.3 Dysarthric Speech Database for Universal Access Re-
search (UASpeech) (2008)

The UASpeech database (Kim et al. (2008)) includes speech produced by 19 speakers

with cerebral palsy. Three subjects were recruited in Madison, though a collaboration

with the Trace Research and Development Center, University of Wisconsin-Madison.

The rest of the participants were recruited through personal contact established with

clients of the Rehabilitation Education Center at the University of Illinois at Urbana-

Champaign. Apart from audio data, video data was also recorded. The UASpeech

database wanted to see whether an ASR system with both video and audio informa-

tion would perform better than an audio-only ASR and, if so, whether the degree of

benefit varied depending on the speaker.

In order to record the audio data, 8 microphones were arranged, 6 mm in diam-

eter each, and with 1.5 inches of spacing between them. A Canon ZR500 was used

to record the video data. The speech materials were displayed on a laptop. The

AudioDesk (audio recording software of MOTU) was also run on the same laptop.

The database was constructed with a variety of word categories. In the recording

sessions, subjects would read three blocks of words. Each block contained 255 words,

155 of which were repeated across blocks and 100 uncommon words that di↵ered

across the blocks. The 155 words included 10 digits, 26 radio alphabet letters, 19

computer commands, and 100 common words. The uncommon words were selected

from children’s novels digitized by Project Gutenberg, using a greedy algorithm that

maximized token counts of infrequent biphones.

An intelligibility assessment was conducted using the recordings of the subjects.

The aim was to observe whether di↵erent ASR architectures worked best for speakers

with di↵erent categories of intelligibility. 225 words from the second block were

chosen and randomly ordered. Five listeners were instructed to provide orthographic

transcriptions of each word, together with a number (0 to 2) to indicate the degree of

certainty. Based on the averaged percent accuracy, each speaker was classified in to

one of four categories of intelligibility: very low (0-25%), low (26-50%), mid (51-75%)
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and high (76-100%). The UASpeech database does not have any matching typical

voice control subjects.

3.1.4 The TORGO database of acoustic and articulatory speech
from speakers with dysarthria (2012)

This database (Rudzicz et al. (2012)) is the result of a collaboration between the

departments of Computer Science and Speech-Language Pathology at the University

of Toronto and the Holland-Bloorview Kids Rehab hospital in Toronto. To date,

the TORGO database is the only publicly available one that combines the acoustics

and endogenous articulation (e.g., tongue movement) of dysarthric speech. In the

study, seven dysarthric speakers (4 male and 3 female) resulting from cerebral palsy

were assessed. One subject with diagnosed ALS was recruited. They were matched

with non-dysarthric speakers according to their gender and age (between 16 and 50

years old). Each experimental subject’s motor functions were assessed according to

the Frenchay Dysarthria Assessment (Enderby (1980)) (explained in section 3.1.2).

The TORGO database contains approximately 23 hours of English speech samples,

documentation and transcripts. Di↵erent types of stimuli were included in the data:

non-words, short words, restricted sentences and unrestricted sentences.

Instrumental studies were also conducted through recording sessions. The first one

involved the use of Three Dimensional Electromagnetic Articulograph (ED-EMA),

which allows 3D recordings of articulatory movements inside and outside the vocal

tract; this is achieved through sensors placed on the relevant locations of the speech

articulators. The second one involved video recordings of facial markers; phospho-

rescent markers were placed on relevant landmark positions of the face, and using

specialized software, their positions over time were extracted.

The acoustic data was recorded simultaneously by two microphones, one recording

at 44.1 kHz and placed facing the participant at a distance of 61 cm, and a head-

mounted electret microphone recording audio at 16 kHz. Both signals were temporally

aligned using simple cross-correlation.

This database was conceived as a resource for developing ASR models oriented to

people with dysarthria.
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3.1.5 Dysarthric Speech Database for Development of QoLT
Software Technology (2012)

This is a database (Choi et al. (2012)) designed as part of a national program to help

better life for Korean people. There was a plan to create a database of about 600

middle or moderately severe dysarthric persons in 4 years, which goes as follows:

• in the first year, the creation of a database of 120 dysarthric persons of low or

mild degree of disability and 40 typical speakers.

• in the second year, about a total of 106 persons. The idea was that after

assessing the work of the first year, the degrees and areas of disability and

ranges of age of the speakers would be readjusted.

• in the third and fourth years, the speech of another 200 persons would be added.

Before carrying out the final recordings, a small-sized prototype was created to be

used as a pilot for discussing details about the final database. This prototype was the

recording of 97 words uttered twice by 13 speakers with brain disability (12 males and

1 female). There were 61 words from Assessment of Phonology and Articulation for

Children (APAC) and Test of Korean Articulation/Phoneme (U-TAP) and 36 Korean

phonetic alphabets, or code words used for identifying Korean alphabet letters in voice

communication. They were recorded with a notebook computer and a Plantronics

Audio 750 DSP Stereo Headset.

The prompting items for the database recordings were composed by APAC 37

words for assessment of degree of dysarthria, 100 machine control commands and 36

Korean phonetic alphabets, 452 Phonetically Balanced Words (PBW), and 100 words

and 5 sentences for investigating Korean consonants and vowels reflecting phonetic

environment. The APAC words were later used to assess the speakers’ severity of

dysarthria. A speech therapist distinguished 4 groups according to Percenage of

Consonant Correct (PCC): mild (PCC: 85-100%), mild to moderate (PCC: 65-84.9%),

moderate to severe (PCC: 50-64.9%), and severe (PCC: less than 50%).

At the time of publication, the database was composed by recordings of 120

dysarthric speakers with cerebral palsy. They were 30 to 40 years old and were

recruited from Seoul National Cerebral Palsy Public Welfare. The male and female

speakers rate was 2:1. According to the PCC, the severity of dysarthria was mild for
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65 speakers, mild to moderate for 23, moderate to severe for 8 and severe for 4 speak-

ers.The speech data of the other 20 speakers were rechecked to find the intra-rater

and inter-rater reliability. All recordings took place in a quiet o�ce with a Shure

SM12A microphone. Additionally, 40 typical speakers were also recorded as control

group.

Although providing a plan for increasing the database in 4 years time, no recent

papers regarding this dataset have been found. However, it is still the only dysarthric

speech database in a non-English language.

3.2 Evaluation of ASR systems

Hux et al. (2000), present an early evaluation of 3 di↵erent ASR systems (Microsoft

Dictation, Dragon NaturallySpeaking 3.0, and VoicePad Platinum) when used by a

speaker with dysarthria. The main purpose of the study was to compare the accuracy

and improvement pattern of these systems when presented with the speech of a TBI

survivor with mild dysarthria. Microsoft Dictation and Dragon NaturallySpeaking

3.0 are used for continuous speech presentation, and VoicePad Platinum for discrete

words. Another purpose was to compare the scores obtained from a speaker with

and without dysarthria. There were two participants in this study: an 18-year-old

female with ataxic dysarthria (due to TBI) and a 28-year-old female with no speech

impairments. Both participants performed five data collection sessions for each of the

three ASR systems. Each collection included the recitation of 10 read sentences and

the generation of 10 novel sentences using one pre-selected word per sentence. Re-

sults of this study showed that the recognition accuracy of Dragon NaturallySpeaking

was significantly better and more consistent for both speakers. However, it is worth

highlighting that the results of this study are only based on one speaker with and

one speaker without dysarthria. Each dysarthric speaker may display di↵erent speech

characteristics; thus, the results obtained in this study cannot be generalized.

Ballati et al. (2018a) compared the extent to which three virtual assistants could

be used by people with dysarthria: Siri, Google Assistant and Amazon Alexa. They

relied on the dysarthric speech comprehension and the consistency of the answers

from the assistants. In order to do so, they chose 17 sentences from the TORGO

database that looked similar to the commands used to control the assistants. The
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Word Error Rate (WER) was calculated for Siri and Google Assistant, as they pro-

vide the transcription of the request; however, Alexa only gives a binary indication

about whether or not the sentence was understood. Therefore, Alexa could only be

qualitatively compared to the other two assistants. Siri was the only assistant that

tried to understand all sentences by providing a transcription for all of them. The

consistency and appropriateness of the answers was similar for all three assistants.

This study was conducted with a very low number of speech samples, since there are

not many suitable sentences for virtual assistants in the TORGO database. On the

other hand, it also lacked a control group, and results could not be compared with

results obtained from non-dysarthric speakers.

A very similar study to the previous one, and conducted by the same researchers

(Ballati et al. (2018b)), investigated the extent to which people with dysarthria could

use smartphone-based assistants. In this case, they focussed on Italian dysarthric

speech, and the chosen assistants were Siri, Google Assistant and Cortana. As there

was no dysarthric speech database in Italian, they recorded 34 sentences from 8 pa-

tients (4 males and 4 females) with ALS at the Otolaryngology department of the

Molinette hospital, in Turin, Italy. The speakers had di↵erent types of dysarthria:

flaccid, spastic and unilateral upper motor neuron. The sentences were chosen among

recommended questions from Amazon Echo and Google Home, and were modified to

include all the phonemes of the Italian language. Results showed that the tran-

scription was quite better in the case of Google Assistant, although the accuracy

in transcription for all assistants was strictly dependent on the user. Besides, the

answers provided by Google Assistant and Siri were more useful as they suited the

question; in the case of Cortana, it usually provided the default answer. Similarly

to the previously mentioned study, this investigation was conducted without a con-

trol group, and therefore these results cannot be compared to results obtained from

speakers without speech impairments.

A study conducted by De Russis & Corno (2019), compared the accuracy results

obtained by IBM Watson Speech-to-Text, Google Cloud Speech and Microsoft Azure

Bing Speech. The aim was to see whether ASR platforms were suitable for dysarthric

speech recognition, analyze recurrent transcription errors and see if transcription al-

ternatives could be used to improve the recognition result. The ASR systems were fed
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with sentences chosen from the TORGO database. The WER was computed between

the original sentence and the transcribed sentence. In terms of WER for dysarthric

speech, Google Could Speech obtained the best performance. In some cases, the

transcription alternatives were better than the actual transcription; therefore, the

performance could be highly improved by choosing the right sentence among all the

possible answers. However, this improvement was dependent on the knowledge of the

“original sentence”, which is usually not the case in ASR systems.

The aim of the study conducted by Calvo et al. (2020) was to create a user-

friendly speaker-dependent ASR system that could be used anywhere without the

need of large amounts of data. A platform called mPASS was created as a collection

of software tools enabling its users to create their own customized ASR system. It

is an online-based application, where each user can train an acoustic model and

create vocabulary. 20 subjects without dysarthria and 15 with dysarthria took part

in the study. This system was tested in Italian and Polish, and it was used to

recognize single discrete words and sentences. All participants recorded and tested

24 words and 5 sentences for 5 times in a clinical environment using the mPASS

app. The recorded sentences were tested in the mPASS app and in Pocketsphinx,

an open access commercially available speaker-independent ASR software. Results

showed that the recognition accuracy rate for words was higher for both groups in

the speaker-dependent customized system. The mPASS word recognition rate for the

dysarthric speech group was 88.6%, while the sentence recognition accuracy rate was

98.5%. However, as it is highlighted in the study, these results might not indicate a

real accuracy rate for sentences, as the target stimuli was very small (5 sentences), and

usually the recognition accuracy rate decreases as the vocabulary increases. These

accuracy results cannot be generalized. Moreover, the recordings were conducted in a

clinical environment, which means that these results might not be replicated in noisier

environments. Overall, enrolled subjects found mPASS useful and easy to use. Calvo

et al. (2020) argue that, being a speaker-dependent software, intelligibility might

not be crucial in determining accuracy as long as word articulation is consistent.

Therefore, the greater the variability, the poorer the performance will be. Future

studies need to investigate the correlation between accuracy and dysarthria severity.
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3.3 Currently available commercial ASR systems

There is a wide range of commercially available ASR systems. These services leverage

machine intelligence to combine grammar, language structure and the composition

of audio and voice signals. These systems become better as they receive more input.

Most of the existing cloud services support various input and output features. This

section will review some of the most widely known ASR cloud services and comment

on the customization options they might o↵er to their users.

3.3.1 Microsoft Azure Speech to Text

Microsoft Azure (Microsoft Azure (2020)) supports 39 languages and 82 dialects for

the voice service. Besides, each language has one or more base models, which are

updated every 3-6 months in order to improve their accuracy. The input audios for

recognition must be in 16kHz or 8kHz, 16-bit and mono sound. Supported input for-

mats are WAV, PCM, MP3, OPUS/OGG, PLAC, ALAW in wav container, MULAW

in wav container and ANY (for the scenario where the media format is not known). In

addition to the standard Speech service model, users can also create custom models

in the “Speech Studio” section of the system. Custom models are created by adapting

a chosen base model to a particular customer scenario. In order to decide whether

it is necessary to train a custom model, first, test data should be uploaded, in form

of audio files. The system inspects the speech recognition quality of the test data.

The Custom Speech portal provides a WER; the user can decide whether additional

training is necessary based on this result. In case of being satisfied with the outcome,

it is possible to start using the Speech service APIs directly. When not satisfied,

the accuracy can be improved by a relative average of 5% to 20%; in order to do

so, users should use the “Training” tab in the portal to upload additional training

data. This additional data can be composed by audio files and their corresponding

human-labeled transcripts, related text, or both. Besides, the related text can be of

two types: sentences, or pronunciations. Sentences may include domain-specific vo-

cabulary or product names, among others. Pronunciations include acronyms or words

with undefined pronunciations. The audios and human-labeled transcripts must be

uploaded together, so that the system establishes a correlation between each audio

file and its corresponding transcription. The related text is used specially when train-

ing the domain-specific language, such as medicine or engineering, although it can be
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used anytime. After doing so, another test should be conducted, to see whether the

accuracy has been improved. This step can be repeated as needed.

The training stage of Microsoft Azure is meant to improve di↵erent accuracy

issues, and each of them determines which dataset should be used to improve the

accuracy. The documentation on custom models includes Table 3.1, which reports

this information:

Use case Data type
Improve recognition accuracy on
industry-specific vocabulary and
grammar, such as medical terminology
or IT jargon.

Related text (sentences/utterances)

Define the phonetic and displayed form
of a word or term that has
nonstandard pronunciation, such as
product names or acronyms.

Related text (pronunciation).

Improve recognition accuracy on
speaking styles, accents, or specific
background noises.

Audio + human-labeled transcripts.

Table 3.1: Azure Custom Speech training use cases and data types

Once all the steps in the training are completed, a custom endpoint can be de-

ployed to be used with apps, tools and products. The model lifecycle could be sum-

marized in three di↵erent steps:

• Adaptation: taking a base model and customizing it to your domain/scenario

using text data and/or audio data.

• Decoding: using a model and performing speech recognition (decoding audio

into text).

• Endpoint: a user-specific deployment of either a base model or a custom model

that is only accessible by a given user.

As mentioned before, the base models used to create custom models are updated

periodically. This might cause issues with compatibility, therefore, it is important to

bear in mind that both base and custom models have an expiration timeline. For

base models, the adaptation is available for 1 year (after import, it is available for
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1 year to create custom models), and the decoding and endpoints are available for 2

years after import. For custom models, the decoding and the endpoints are available

for 2 years; after this time, the custom model is not lost, but it should be retrained

on the renewed model.

Apart from creating custom models, Microsoft Azure also provides the user with

the chance of using batch transcription, a set of REST API operations that enables

the transcription of large amounts of audio in storage. Batch transcription can be

used with one or more individual files and also with whole storage containers. Both

base and custom models are accepted. One transcription result file is created for each

audio input. The batch pipeline also supports diarization, that is, the capability of

recognizing two speakers. Since Azure Speech to Text has been the chosen speech

recognition system to perform our experiments, a more detailed explanation on the

training and testing phases will be provided in chapter 4.

3.3.2 IMB Watson Speech to Text

The IBM Watson Speech to Text service (High (2012)) o↵ers three interfaces: a Web-

Socket interface, a synchronous HTTP interface, and an asynchronous HTTP inter-

face. The service also provides APIs that can be used for voice-automated chatbots,

analytic tools for customer-service call centers or multi-media transcription among

others. For most languages, the sampling rate should be 16 kHz for broadband and

8 kHz for narrowband.

The service supports many languages and dialects (11 languages and 13 dialects)

and provides a customization interface, which can be used to augment speech recogni-

tion capabilities. It needs to be taken into account that this interface is not currently

available for all languages. It supports both custom language models and custom

acoustic models.

This system o↵ers many di↵erent parameters that can be used to tailor the request.

Some of these parameters are interdependent, or can only be used with the customized

interface. For example, the parameter “keyword” is used to introduce an array of

keyword strings that the service spots in the input audio. However, this parameter

does not return anything unless the parameter “keyword threshold” is established,

which indicates the minimum threshold for a positive keyword match. On the other

hand, the parameter “customization weight”, for example, can only be used when
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using custom language models, as it indicates the relative weight that the service

gives to words from a custom language model versus words from the base vocabulary.

By means of the language model customization, the user can expand and tailor

the vocabulary of a base model to include domain-specific terminology. The service’s

base vocabulary contains everyday words, but may lack knowledge of specific terms.

Once the language model is created, corpora and domain-specific words can be added

to it; after training the system with these new data, the interface will improve its

accuracy in speech recognition for the chosen domain.

In the case of the acoustic model customization, the interface can be adapted to

di↵erent environments and speakers. The model should be trained with audio re-

sources that closely match the acoustic characteristics of the audio file we want to

transcribe. Speech recognition can be highly improved by means of acoustic cus-

tomization in cases like having a unique acoustic channel environment, when the

speaker’s speech patterns are atypical or when the speaker has a very pronounced

accent.

The system also enables the use of grammars with customized models. The system

will only be able to recognize words, phrases and strings that are compiled in the

grammar. The use of grammars boosts the accuracy of the system, as the space for

valid matches is limited.

The length of time for training both the language and the acoustic models will

depend on the data available for the model. It is possible to create up to 1024

custom language models and 1024 custom acoustic models per account. The custom

language model can be populated with corpora, grammars or individual words, which

are stored in the “words resource”; here, the pronunciation and spelling of these words

are defined. The user can add a maximum of 90 thousand Out-Of-Vocabulary (OOV)

words to the words resource of each custom model; a total of 10 million words are

accepted per model (including the service’s base vocabulary and OOV words). The

system includes information about n-grams (it is not a word-matching algorithm);

the service analyzes the contents of the corpus file, tokenizing and parsing the data,

extracts OOV words and adds them to the words resource.

The data used for the custom acoustic model should be at least 10 minutes and

maximum 200 hours long, and should only include speech, not silence. All audio and

archive-type resources are limited to a maximum size of 100 MB. The sampling rate

of the audio resources must match the sampling rate of the base model. The audio
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content should reflect the acoustic channel conditions of the audio to be transcribed.

Besides, acoustic model customization alone cannot produce OOV words; thus, a

language model based on transcriptions of the audios might be needed. The service

analyzes the data asynchronously and extracts information about it, such as sampling

rate, length or encoding. The training will usually take the same amount of time as

the length of the audio data.

3.3.3 Google Cloud Speech-to-Text

Google Cloud Speech-to-Text (Google Cloud (2020)) has three methods to perform

speech recognition: Synchronous Recognition (limited to 1 minute audio length),

Asynchronous Recognition (480 minutes), and Streaming Recognition (5 minutes).

The system accepts audio sample rates from 8000 Hz to 48000 Hz, although the ideal

sample would be that of 16000 Hz. Moreover, it also allows the user to specify the

model to be used (“video”, “phone-call”, ”command and search” or “default”), so

that results can be improved as the audio is processed with with a model trained

for that particular type of source. This system supports a wider variety of languages

than Microsoft Azure and IBM Watson (71 languages and 135 accents in total).

Among the features it o↵ers, there is the “speech adaptation” feature, which is

helpful to improve the accuracy of words and phrases that occur frequently in the

audio data, expand the base vocabulary (e.g. by adding proper names or domain-

specific words), and improve the accuracy of speech transcription when the audio is

not very clear. Words or multi-word phrases should be added to the “SpeechContext”

in order to increase the probabilities of the system recognizing them. Classes such

as monetary units and calendar dates can also be added to the “SpeechContext” by

means of class tokens. This resource is limited to 5000 phrases per request, a total of

100,000 characters per request and 100 characters per phrase.

The model bias can be increased by using the “boost” feature, assigning more

weight to some phrases than others. The higher the value, the higher the likelihood

that phrase is chosen as a transcription alternative.

One big drawback of using Google Cloud Speech versus Microsoft Azure is the lack

of acoustic model customization in the former. This is a pivotal feature in order to

enhance the accuracy of ASR systems and adapting them to people with dysarthria.
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3.3.4 Amazon Web Services - Transcribe

Amazon Transcribe (Amazon Web (2020)) is a speech to text system available in 20

languages and 31 dialects. It also has a streaming transcriber for certain languages.

The sampling rate should be 16 kHz (Wideband) or less (Narrowband). Amazon

lets users create a custom vocabulary to help the system recognize words that are

not being recognized or unfamiliar words that are specific to a certain domain. A

custom vocabulary is a list of words, phrases or proper nouns. Each user can have

up to 100 vocabularies in their account, and each custom vocabulary is limited to

50 Kb. The custom vocabulary is specified in a text file; it can be either a list or a

four-column table. For lists, each word or phrase can be placed on di↵erent lines or

be separated by a comma. Each entry must contain fewer than 256 characters and

only characters from the allowed character set. On the other hand, each row from

a table contains a word or phrase, followed by the optional International Phonetic

Alphabet (IPA) 2(to specify the pronunciation, IPA characters can be included here),

SoundsLike (to mimic the pronunciation of the word with standard orthography) and

DisplayAs (defines how the word or phrase should look in the output) fields.

Amazon Web Services also allows the user to create Custom Language Models, to

train and develop domain-specific language models. Text data should be uploaded to

Amazon Simple Storage Service (Amazon S3), provide Amazon with permission to

access the data and choose a base model. The text data can include domain-specific

text or audio-scripts. The provided text data should be as close as possible to the

audio the user will later transcribe; the quality of these data is more important than

the quantity. There are two ways to upload the text data to create a custom language

model:

1. Upload your text as training data. Use training data to train the custom lan-

guage model for the specific use case.

2. Upload the domain-specific text as training data and the audio transcripts as

tuning data. Use tuning data to optimize the custom language model and

increase its transcription accuracy.

2
The IPA is used to provide a unique symbol to each of the distinctive sounds in a language
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The maximum amount of data provided should 2 GB for training data and 200 MB

of tuning data. Amazon Web Services also provides a table (3.2) with advice on how

to upload the data depending on the specificities of it.

If you have Upload this
A large amount of domain-specific text
and a Domain-specific text as training
data.

Upload your much smaller amount of
audio transcript text data
transcription text as tuning data.

A minimum of 10,000 words of audio
transcript text.

Audio transcript text as training data.

At least 100,000 words of audio
transcript text and a large amount of
additional domain-specific text.

Audio transcript text as training data.
Typically, this method leads to the
greatest possible increase in
transcription accuracy. Follow the first
method described in this table if this
method doesn’t produce the desired
increase in transcription accuracy.

Domain-specific text only. Domain-specific text as training data.
We recommend any of the preceding
methods of uploading your data over
this one.

Table 3.2: Amazon Web Services, how to upload data

As opposed to custom vocabularies, custom language models do not only recog-

nize individual terms, but they also use each term’s context to transcribe the audio.

Additionally, they also add words to their recognition vocabularies, so that users do

not need to add the words manually. When having enough text data that represents

the audio to be transcribed, training custom language models can produce improve-

ments in accuracy over using custom vocabularies. Besides, language models and

custom vocabularies cannot be used together. However, this service is only avail-

able in US English for now, therefore, it could not be used to enhance this project’s

transcriptions in Spanish.

3.3.5 Elhuyar Aditu

Aditu is Elhuyar’s ASR system (Elhuyar Aditu (2020)), based on artificial intelligence

and neural networks. For now, the system is able to transcribe in Basque and Spanish,

although they are planning to expand their language o↵er. It accepts most audio
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formats, and also o↵ers the chance of recording oneself through the browser by means

of a microphone. Among other purposes, it is meant to be used to generate subtitles.

Aditu can handle audio and video files and also links to di↵erent webpages. Once

the file or link is transcribed, the system returns di↵erent files to the user: a text file

with the whole transcription, a file with the generated subtitles (in both VTT and

SRT formats), and a JSON file containing each word with its duration, confidence

rate and start and finish time. If the provided transcription is not correct, users can

correct it by means of the online edition interface in Aditu. This interface displays

the subtitles segmented and users can modify each of them separately, delete them,

split them, join them or add new segments with bits of speech that might not have

been recognized by the system.

Another available product in Aditu is the “Aditu live API”, the live ASR system.

This can be done in two di↵erent ways: for long continuous speech by using secure

web socket connections or for short speech sections by using HTTP POST calls. The

transcription is available in monolingual and bilingual mode; however, in order to

work, at least one transcriber needs to be available per language. A JSON message is

received at the beginning of the transcription and each time the number of available

transcribers changes. Therefore, for monolingual transcription 1 transcriber needs to

be available, whereas for bilingual transcription there is a need for 2 transcribers (1

per language). The server sends recognition result to the client using a JSON format.

The results include the hypotheses, transcription, confidence, likelihood and language

of the hypothesis (for bilingual). By default, the server assumes that incoming audio

is sent using 16 kHz, mono, 16 bit little-endian format. This can be overridden using

the ’Content-Type’ header.

One big disadvantage of Aditu is that it does not have a personalization interface,

neither for language models nor for acoustic models. Therefore, each transcription

should be corrected manually, but cannot be improved by training the system. They

claim that, under optimal conditions, the accuracy rate can be over 95%. In order

to get the best accuracy as possible, users should use a good microphone, standard

language, one speaker at a time, adequate volume and pace, formal register, correct

phrases and no background noise.
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3.4 Summary

To the best of our knowledge, there are not available databases of dysarthric speech

in Spanish. Besides, the existing databases in English or other languages have been

designed as part of diagnosis tests, they were not designed for ASR or virtual assis-

tants; also, samples were collected in a professional setting. Final results obtained by

evaluation studies are likely to get higher results than they should; there is much over-

lap, as the sentences used in training and testing are usually the same. On the other

hand, it is worth highlighting that none of the databases mentioned above include

any recordings from children.

The experiments mentioned in section 3.2 try di↵erent ASR systems in order to

see their accuracy when used by people with dysarthria. Results varied depending

on the speaker. The consistency of the answers by virtual assistants depend on

whether they are able to understand the speaker. Some improvement was observed

in the transcription options provided by some ASR systems, although this meant

that the “original sentence” had to be known. Most of them do not train the systems

before being used; since they are all speaker independent, they cannot adapt to

dysarthric speech. In the case of people with dysarthria, it is important to have

speaker-dependent models or to adapt speaker independent models with pre-collected

data. The only mentioned study that trained a system with the users’ speech obtained

very high accuracy rates. However, they are not likely to be replicated in non clinical

environments.

The currently available dysarthric speech databases are not designed for ASR

training purposes. As far as we are aware, Elhuyar and Google Cloud are currently

the only commercial ASR systems that work with Basque. However, taking into

account that the aim was to improve the accuracy of an ASR system and personalize

it as much as possible, Microsoft Azure was thought to be the most adequate ASR

commercial system. It provides a customization interface for language and acoustic

models and the chance to use di↵erent base models for customization.
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Chapter 4

Experiments

This chapter is devoted to explain the experiments conducted in this thesis. First, the

prompting items will be introduced, followed by a brief description of the participants.

It will later describe the di↵erent experiments carried out.

4.1 Database prototype

The design of a pilot database was one of the objectives of this work. One of the most

important characteristics of our database is that it is in Spanish. There are currently

no available databases of Spanish dysarthric speech. Another important feature is

that this database was recorded by the participants themselves in their own houses.

This is an important point since previous databases were recorded in studios instead

of in a real life use environment. This implies that the results we obtained from the

experiments represent everyday life conditions. 3 people with dysartrhia and 1 person

with typical speech constituted the database.

4.1.1 Prompting items

The prompting items were chosen mainly based on the necessities of the participants.

A preliminary idea was to integrate the customized models in programs participants

use on a daily basis, such as text creation and edition programs, or in the personal

assistant of their personal computers. The prompting items chosen for this end where

commands to control theWord program. It was a collection of 21 di↵erent commands

chosen from among the keyboard shortcuts for Word. The whole list of commands

used in these experiments is the following:
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abrir documento cursiva pegar
alinear deshacer reducir imagen

ampliar imagen encender rehacer
apagar guardar seleccionar

cerrar documento imprimir subrayar
copiar justificar tabular
cortar negrita tachar

The aforementioned integration is not possible as both Word and personal as-

sistants have their own default speech recognizer and do not allow the use of any

other recognizer. However, we decided to stick to these prompting items as they

are standard commands in text creation and edition programs. Besides, this way this

database could be used in future experiments of implementation of speaker-dependent

recognizers in commercial programs.

4.1.2 Description of participants

Enrolled subjects for this study were 1 adult man, 1 adult woman and one child

with dysarthria. These individuals comprised a group of heterogeneous dysarthric

speakers. Recruitment of participants was made through personal contact with them

or with their tutors (in the case of underage participant). Several people get in touch

with the Aholab Laboratory to learn about the choices they have for their particular

cases. The three people involved in this project got in touch with us because they

were interested in the issue this project investigates. They found it very di�cult, if

not impossible, to use commercial ASR systems, as these systems do not normally

recognize their voices. They all wanted to know whether there was a way of taking

advantage of these systems and use them to control their computers with their voices.

Participants volunteered themselves to take part in this study.

These subjects communicate with family and people close to them with their nat-

ural speech. In spite of having dysarthria, their speech is intelligible for people who

know them. However, this is not the case with ASR systems. Apart form the already

mentioned subjects, a person with typical speech was included in the database. Her

results were meant to show the accuracy that a person with typical speech can obtain

and to be used as a reference. We will now introduce the most relevant information

about the subjects who participated in this study:

32



C1 is a 13-year-old girl who has congenital cerebral palsy. She has reduced mo-

bility, although she does not need a wheelchair to move. She has an adapted mouse

and keyboard in her personal computer. Her speech rate is slower than typical speech

rate. She sometimes presents di�culties pronouncing /r/ and /n/ at the end of words,

for example in apagar or imagen. She sometimes needs to make pauses in between

syllables so as to pronounce the right phoneme. Her speech is slow and her syllables

are long, especially the vowel sounds. She has a breathy voice, and her volume is quite

high. She does not seem to have di�culties to sustain any sounds, so her respiratory

muscles are quite powerful.

M1 is a 51-year-old male who has congenital cerebral palsy. He has reduced mo-

bility and uses an electric wheelchair. He has an adapted mouse in his personal

computer. He presents di�culties pronouncing /r/ an the end of words. He also has

di�culties with the double r sound, which is present in many Spanish words such

as cerrar and in words beginning with r. His speech stops in between certain sylla-

bles, when the last sound of the first syllable and the first sound of the next syllable

are consonants. This is the case of words like imprimir, subrayar, justificar or

guardar. He also has di�culties with some consonant clusters that are common in

the Spanish language like /gr/ as in negrita and /cc/ as in seleccionar. His speech

is slurred and somewhat nasal.

W1 is a 59-year-old woman whose dysarthria is due to a brain anoxia. She has re-

duced mobility and uses a wheelchair to move. However, she does not use any special

hardware in her personal computer. Her speech is shorter than usual typical speech;

she presents di�culties to sustain sounds. In general, she is able to di↵erentiate vowel

sounds from one another. She presents di�culties when pronouncing /c/ in its strong

form, as in cortar, copiar or cursiva. This also a↵ects the outcome of the following

vowel sound, therefore in this cases /o/ and /u/ are not very clearly pronounced. This

is not the case when pronouncing /c/ in its weak form, as in cerrar. However, she

struggles with the pronunciation of the plosive /p/ sound, which is often perceived as

the weak /c/. Therefore, pegar and cerrar are often misunderstood. She struggles

with the sound /m/ both when coming before and after a sound, as in imprimir,

when the sound appears before and after the vowel /i/. Consonant clusters such as
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/gr/ are also di�cult for her, as in negrita.

R1 is a 26-year-old woman with typical speech, that is, a speech with no patholo-

gies. Her models have been used to see how a typical speech would perform in the

same circumstances as a dysarthric speech. We call her models R1, standing for

REFERENCE, because the results obtained by this speaker are a reference of what

Azure Speech to Text is capable of. Results obtained in the R1 models should be

considered a goal for the rest of the models.

4.1.3 Recording process

Ethical approval was obtained from the CEISH (Comité de Ética para las Investi-

gaciones con Seres Humanos) of the University of the Basque Country (UPV/EHU)

to conduct these experiments. Enrolled subjects signed informed consent forms. We

decided to use the Nannyrecord platform for the recordings, as we thought it would

be the easiest recording tool to use for non-experienced users. In the case of W1,

GarageBand was used as the recording tool. This was due to the fact that her

personal computer used a Macintosh software, which is not compatible with Nan-

nyrecord. We wanted the users to be as autonomous as possible during the recording

sessions, as they would be conducted in their homes and whenever they wanted. All

recordings were performed in a home environment, so that the system was trained in

the real future environment. This also maximized their comfort, as subjects did not

need to attend recording sessions in remote locations. The need for interaction with

this recording tool is minimal. In some cases, subjects were assisted by their relatives

or assistants during the recording sessions. In other cases, subjects were completely

autonomous and were able to conduct the whole recording process by themselves.

Besides, each individual decided the duration of each recording session. The record-

ing process varied depending on the recording tool they used. Participants that used

Nannyrecord recorded a command at a time, that is, a command was displayed on

the screen and participants had to utter it and record only that command. When

finished, they could move on to the next one. If they felt that the recording was

not good enough, they could overwrite the audio file. When using GarageBand, W1

uttered the complete list of 21 commands in a single audio file. Then, we split the

whole audio into the di↵erent commands. Therefore, C1 and M1 provided us with a

total of 210 audio files, each file containing a command. W1 provided us with a total
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of 10 audio files than we then split into the total of 210.

The recording hardware tools were provided to two of the subjects; this consisted

of a headset. In the third case, the subject had a personal desktop microphone,

which was used for the recordings. The aim was to obtain heterogeneous samples

from the same person. In order to do so, enrolled subjects were asked to conduct

their recording sessions in di↵erent days and at di↵erent times of the day. This

way, the variability of the speech would be greater and the system would not be

customized based on a single recording session. Hence, the recording sessions could

be spanned across the period of days or weeks, and the recording sessions could have

any duration. The average duration of each recording session was between 10 and 15

minutes for C1 and W1 and between 20 and 25 minutes for M1.1 If the system is

trained with little variability in the subject’s performance, results are not reliable, as

the system could become accustomed to the performance of the subject at the moment

of recording. The opposite e↵ect could also be achieved; the recording process is very

tiring for people with speech impairments, and long recording sessions are not feasible

for them. If appropriate duration of recording sessions is exceeded, utterances may be

more unintelligible and therefore the accuracy results would decrease. On the other

hand, the order of the commands that were to be recorded was also altered. This

way, we avoided the predictability of the words that could happen if the order was

always the same.

4.2 Azure Custom Speech to Text

This section will describe the training and testing processes in Azure Custom Speech

to Text. A detailed description of how to do it is provided in the appendix A. In

order to create a customized acoustic language model, it is necessary to have an Azure

account. When creating the new model, the user must provide a name for the project,

a description of the project (this is optional) and choose the language of the model.

The data for the custom model may include Audio data, Audio+Human� labeled

transcripts and Related text. The Audio data is used to inspect the accuracy of

speech recognition with regards to a model’s performance; it is used to test the

1
This information was gathered from a Questionnaire the participants answered to, which will

be introduced in 5.5
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accuracy of Microsoft’s baseline or a custom model. The Audio +Human� labeled

transcript data can be used for both training and testing. The human-labeled data

is used to evaluate accuracy and train the model for future use cases. For optimal

results, it is recommended to provide word-by-word transcriptions for about 10 to

20 hours of audio; however, this is not a realistic approach for dysarthric speech, as

people with this condition get tired faster than typical speakers when talking. The

audios and human-labeled transcriptions must be packaged as a single .zip file, which

must be less than 2GB. Related text data for training helps ensure correct recognition.

Related text can be of two types: sentences or pronunciations. Sentences may include

domain-specific vocabulary or product names, among others. Pronunciations include

acronyms or words with undefined pronunciations. For the related text, each term or

sentence must be written in a single line, and a single .txt file must be uploaded, which

should not exceed 200MB. Pronunciation files, on the other hand, cannot exceed 1MB

.txt files.

Since pronunciation in dysarthric speech tends to be problematic, it is likely to

think that the pronunciation could be customized for each speaker. However, it is not

recommended to use custom pronunciation files to alter the pronunciation of common

words. Apart from this, it is currently only available in English (en-US) and German

(de-DE).

It is important to check whether the desired base model supports training audio

data, as otherwise, it will be ignored. It is recommended to begin with the related

text when training a model, as this will already improve the recognition of special

terms and phrases.

Once the dataset is uploaded, users can navigate to the Testing tab and visually

inspect the audio only or audio + human-labeled transcription data or navigate to

the Training tab and train a custom model. Models can be trained with Audio +

Human� labeled transcript, Related text, or both. A base model among four must

be chosen to this end. Once the training has been completed, di↵erent tests can be

run, both with the training data or with the testing data. When the model is ready,

users must go to the Implementation tab and add a connection point.

4.2.1 Training

The interface o↵ers 4 di↵erent base models to train a customized model: 20200115,

20200619, 20201015, and 20210113. The system was first trained once with each base
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model. The training data was always the same: 9 sets of 21 commands with their

human-labeled transcripts (189 commands and 189 transcriptions), and a related

text containing the 21 commands. This way, we could observe which base model

worked best with the data provided by the users. For all cases, the best results were

obtained with the 20201015 base model. Once the base model had been chosen, we

proceeded to train it based on the jackknife (or leave one out) method. This means

that each time a model is trained, one of the training samples must be left out.

We trained the system 10 times per speaker, omitting one session of audios on each

occasion. Therefore, 189 commands and 189 human-labeled transcriptions and the

related text were used for each training. The omitted session of audios was then used

for the testing. Using this method, we could evaluate the system better, as we could

calculate the average results based on 10 di↵erent tests. It should be highlighted that

the training data did not include a finite state grammar; that is, a grammar limiting

the possible recognizable words to those included in it. This was performed in the

testing phase, and will be later explained in the following section 4.2.2.1.

4.2.2 Testing

The testing can be performed with both the training data or the testing data. If the

data provided for the tests is onlyAudio data, the platform will provide a transcription

of the audio files. If the data used in the tests is Audio+Human�labeled transcript,

the platform also provides a WER and specifies the insertions, the substitutions and

the deletions. This is done by comparing the model’s transcription with the reference

transcription. The tests can be run with a maximum of two models simultaneously,

which can be base models or customized models. Testing can also be performed by

means of a Python script. This must be the case when willing to include a finite

state grammar, as it cannot be included in the training data before customization. A

Python script must also be used when transcribing directly from the microphone. The

Azure Custom Speech Studio interface only allows conducting testings on previously

recorded data, which must be uploaded to the system. Testing was performed by

using a set of 21 commands. As previously mentioned, the audio files used in the

testing were those omitted in the training phase. So, if the system had been trained

with sessions 1 to 9, the testing was performed with session 10. A total of 10 tests were

performed for each speaker. No testing was conducted with input received through

37



the microphone. This was performed later by means of an online app, which will be

introduced later in this chapter.

4.2.2.1 Finite State Grammars

Azure’s Speech Studio o↵ers its users the chance to conduct the experiments directly

in the interface. However, if users want to use a finite state grammar, a script must

be used in a development environment. For this, we used a Python script. A finite

state grammar limits the recognition to the words included in it. The system is not

able to recognize any words that are not included in it. Even if the audio file tested

has an out-of-grammar word, the system will pick the closest one to it from the

grammar, or will output a blank space instead. Our finite state grammar included

all 21 commands again. By limiting the recognition options to these commands, the

possibilities of each command to be correctly recognized rises. Di↵erent tests were

conducted using the finite state grammar. In an aim to observe the weight of the

grammar in a base model, we tested the 20201015 base model, with no training, using

only grammar, with all the commands. This was done 1 time per speaker. Then, we

tested the customized models using the jackknife method again, and including the

grammar.

4.3 Human evaluation

In an aim to observe whether humans were able to understand our participants, we

conducted a perceptual test 2. Each person had to listen to 30 commands in total

(10 commands from each participant), and had to transcribe what they understood.

Besides, they also had to indicate the di�culty of understanding each of the 30 com-

mands; for this, they had to indicate the e↵ort they made to understand from ”Muy

poco” (very little) to ”Mucho” (a lot). These were then converted into numerical

values from 1 to 5, 1 being the easiest and 5 the most di�cult.

2
https://aholab.ehu.eus/users/margot/test/Listeningtest.php
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Figure 4.1: Perceptual test for human evaluation

Each command could only be listened once, so people had to be focused on the

task on hand. When they did not understand something, they were asked to write

three points (...). The commands for the task were chosen randomly from the whole

database each time a person took the test. Before listening to the commands, people

were asked about any hearing impairments they might have. They were also asked

about any relationship with a person with dysarthria. We had previously theorized

that people with experience in talking with people with dysarthria would be able to

understand the commands better and therefore, get higher scores.

4.4 Implementation

As previously mentioned, a preliminary idea was to integrate the customized models

in programs or in the personal assistant of the users’ computers. These programs were

meant to be those that the participants used on a daily basis, in this case, Microsoft’s

Word. However, Word and similar programs do not allow the implementation of

external speech recognizers into them. The same happens with the default personal

assistants of their laptops. Therefore, in an aim to make our findings more under-

standable for the users, we created an online app. Besides, all previous testings had

been conducted with recorded audio files, but not with live microphone input. By

means of this app, we would be able to observe the accuracy of Azure when used live.
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Users introduce their own login data into the app; each user’s login data is linked to

their customized speech model. The models used for this app were models trained

with all the recordings of each speaker. These models had not been previously tested

in Azure, as there was no left out session on this occasion. Once logged in, they

can try the model with microphone input. The word or phrase the user utters is

transcribed and displayed on the screen. Users will then tell the system whether the

transcription is correct or not. When correct, the audio file and its correspondent

transcription are saved into the Aholab database. When incorrect, users are asked to

provide a correct transcription of what they said. Then, the audio file, Azure’s tran-

scription and users’ corrected transcription are saved into the Aholab database. In

future works, it would be ideal to be able to implement customized speech models into

di↵erent programs so that users can control them through voice commands. Some

text creating and processing programs already employ dictation systems. These sys-

tems transcribe everything the users say into the document. However, they have not

been trained for people with dysarthria or other speech impairments. Besides, these

systems do not allow full control of the programs with voice commands. This is a key

feature that should be implemented, as many speech disorders are accompanied by

a reduced mobility. Therefore, being able to control programs with voice commands

and reducing the need to use a mouse would be of great advantage for these people.

4.5 Summary

The database used for our experiments is composed of a total of 630 commands

produced by dysarthric speakers (210 per speaker) and 210 commands produced by a

typical speaker. The prompting items are commands to control Word. All recording

sessions were performed in the participants’ homes, at their pace.

All the models were trained using the 20201015 base model of Azure, since this

was the model that gave us the best results. The training for each participant con-

sisted of training the system on 10 di↵erent occasions, leaving one session of samples

out on each occasion. For the training, a related text, audio files and their corre-

sponding human-labeled transcriptions were used. The testing was also performed on

10 di↵erent occasions per speaker, using the left out samples. Besides, experiments

using a finite state grammar were also performed, both with the 20201015 base model

and the customized models of each speaker.
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An implementation app was created in order to test the models with live micr-

phone audio input. By means of this app, we also made our findings more understand-

able for the participants of the study, as they were able to test the trained models by

themselves.

A perceptual test was conducted with people who were not involved in the project.

This was made in order to see whether people obtained similar results to Azure. Due

to the fact that speech recognition models cannot be implemented in commercial

programs, we created an online app where the participants of the experiments could

try their customized models. The models used in this app were trained with all the

recordings from each speaker. Data obtained from this app was stored in the Aholab

server to later calculate the WER.
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Chapter 5

Results

This chapter will review the results obtained in the experiments explained in the

previous section. We will also o↵er some theories on the reasons of these results. First,

results obtained from the Azure Custom Speech to Text interface will be explained.

Then, we will review the answers got in the human perceptual test. After this, the

accuracy achieved in the implementation app will be analyzed. Finally, the answers of

a questionnaire undertaken by the participants of the experiments will be summarized.

5.1 Azure Custom Speech to Text

5.1.1 Recognized commands

ASR systems are not always able to understand and recognize every word humans

say. Sometimes, they do recognize something, but it is not the right term. This

section will look at the number of commands that have been correctly recognized,

not recognized, and recognized with errors. As we will see, these results vary between

people and speech recognition models. The graphics included here present the values

for the Azure base model and the Azure custom model, both of them with and without

finite state grammars. The values of the human evaluation are also included in the

dysarthric speech models (C1,M1,W1), but not in the R1 models. There are three

di↵erent values in the bars: correctly recognized, recognized with error(s) and not

recognized. Correctly recognized commands are those that were perfectly recognized,

with no errors. In this case, abrir documento should be recognized as abrir documento

for example. Commands recognized with error(s) refer to commands that were either

completely wrongly recognized or recognized with one or more errors. This is the case

42



for abrir documento recognized as abrir un momento, cerrar recognized as pegar or

rehacer as tienes sed. Lastly, the not recognized commands are those that the system

is not able to recognize and therefore outputs a blank space.

Figure 5.1: R1 recognized commands

Figure 5.1 shows the results obtained with the R1 models. As it can be observed,

the base model failed in 3 commands of the total 210. The rest of the models per-

formed perfectly, recognizing all of the commands. This means that the base model

with grammar, the custom model, and the custom model with grammar improved

by a relative average of 1,45% over the base model. As mentioned in 3.3.1, Azure

states that the accuracy can be improved by a relative average of 5% to 20%. The

relative improvement in this case is quite low because there was nearly no room for

improvement. Besides, the base model’s performance was already very satisfactory.

Graphics 5.2, 5.3, 5.4 and 5.5 show the results achieved with the 3 participants of

the study. The fourth graphic represents the AVERAGE results obtained with C1,

M1 and W1 (the R1 speaker is not included). This way, we can review which of the

models works best for people with dysarthria.
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Figure 5.2: C1 recognized commands Figure 5.3: M1 recognized commands

Figure 5.4: W1 recognized commands Figure 5.5: AVERAGE recognized com-
mands

In the case of C1, the base model got many incorrectly recognized words. After the

training, the amount of wrongly recognized words decreased considerably, while the

correctly recognized words increased; however, the amount of not recognized words

also incremented. The finite state grammar a↵ects very positively the base model,

and enables the correct recognition of a higher number of commands. Nonetheless,

the best model was the custom model with grammar. This model obtained the highest

number of correctly recognized commands and the lowest number of wrongly recog-

nized commands, and improved by a relative average of 3700%.

For M1, the use of a finite state grammar in the base model was slightly better

than the custom model. Customization in the case of M1 was very e↵ective, as the
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number of correctly recognized commands was much grater than in the base model.

Besides, the custom model performs better than the human evaluation 1; this means

that a trained base model is able to understand more commands than a human. The

use of grammar made an impressive di↵erence in the base model. The number of

not recognized commands in the base model with grammar was a bit higher than in

the base model, but the number of correctly recognized commands was much higher.

Still, the best model was the custom model with grammar, with a relative improve-

ment of 2900%.

The customization process for W1 was the less e↵ective one. As the graphic shows,

the customized model performed better than the base model with grammar, but there

were still many wrongly recognized words. The number of not recognized commands

was nearly the same for the base model, the base model with grammar and the custom

model. Actually, W1 got the lowest number of not recognized commands among the

3 participants. The best result was obtained with the custom model with grammar;

the base model did not recognize correctly any of the commands, while the custom

model with grammar recognized 143 commands of 210.

Apart from the number of correctly recognized commands, the total of wrongly

recognized commands and not recognized commands also varies between speakers.

For example, the number of correctly recognized commands in the custom model was

nearly the same for W1 and C1, but the not recognized commands were higher in the

former.

Although the reasons for these results are not completely clear, a feature that may

have influenced the outcome might be the speech rate of each speaker. C1’s speech

was slower than the rest, with a mean duration of 2,28 /pm 0,89. The R1 speech mean

duration was 1,14 seconds /pm 0,29. It may be possible that the custom model of C1

expected the commands to be finished earlier, and stopped the recognition process too

early. Besides, unlike the base model the custom model is influenced by the training

data. These factors could have led to a higher number of not recognized words in

the custom model. Nonetheless, C1 got the higher rate of correctly recognized words

in the human evaluation probably thanks to the longer duration of the speech. The

theories why M1 achieved the best results with the customized models, are that his

1
The Human evaluation process will be introduced in section 5.2
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speech rate is relatively close to that of R1, being the mean duration 1,33 seconds /pm

1,28. Besides, his main pronunciation di�culties were consonant clusters and the need

to make short pauses in between certain syllables. These mispronunciations might

have been easier to get for the system than others. W1’s speech is the shortest of all,

with a mean duration of 1,06 /pm 0,35. It is worth highlighting that she was also

the most di�cult subject to understand for human evaluators. On the other hand,

some of the commands in the custom model were confused with other commands.

This might have been due to the fact that she has di�culties with some relevant

consonants for this task and also with some vowels. Besides, a bit of echo can be

perceived in her audio files, which might have a↵ected the final outcome.

Overall, as we can observe in the AVERAGE graphic(5.5), the relative improve-

ment of the base models thanks to the training is quite good. However, the highest

score was obtained by training the base model and including a finite state grammar.

It could be stated that, in order to get optimal results, Azure’s recognizer should be

trained and later tested including a finite state grammar. Nonetheless, if we compare

the results obtained for C1, M1 and W1 with those of R1, we can observe that there

is still much improvement to achieve.

5.1.2 WER

The previous section showed the number of correctly recognized commands, not rec-

ognized commands, and recognized commands with errors. This section will look

at the total WER and at the sort of errors committed by the models. The WER

represents the total number of wrongly recognized words. It is calculated as follows:

WER = (S +D + I)/N

S is the number of substitutions, D is the number of deletions, I is the number of

insertions, C is the number of correctly recognized words and N is the total number

of words in the reference. The lower the value is, the better the output has been.

The lowest value possible is 0. It should be highlighted that a very high WER might

mean that there is an elevated number of insertions. The WER is composed by

substitutions, deletions, and insertions. Substitutions occur when a term has been

replaced by a di↵erent one. Deletions refer to those words that have been omitted

and not replaced by another one. Insertions are words that have been added to the

reference, they can be one or more.
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Table 5.1 shows the WER committed by each of the models. The WER value for

each of the models is the average of their 10 cross-validation tests.

MODEL WER STANDARD DEVIATION
R1 BASE MODEL 0,0120 0,018
R1 BASE MODEL WITH GRAMMAR 0 0
R1 CUSTOM MODEL 0 0
R1 CUSTOM MODEL WITH GRAMMAR 0 0
C1 BASE MODEL 2,132 0,157
C1 BASE MODEL WITH GRAMMAR 0,713 0,134
C1 CUSTOM MODEL 0,780 0,107
C1 CUSTOM MODEL WITH GRAMMAR 0,836 0,079
M1 BASE MODEL 1,884 0,270
M1 BASE MODEL WITH GRAMMAR 1,269 0,124
M1 CUSTOM MODEL 0,320 0,196
M1 CUSTOM MODEL WITH GRAMMAR 1,133 0,047
W1 BASE MODEL 1,256 0,183
W1 BASE MODEL WITH GRAMMAR 1,147 0,057
W1 CUSTOM MODEL 0,704 0,115
W1 CUSTOM MODEL WITH GRAMMAR 0,100 0,094

Table 5.1: WER value per model

The R1 base model has a WER of 0,0120, which was due to 3 wrongly recognized

commands of all the 210. The rest of the R1 models have WER of 0, which is the

lowest possible, and means that no errors were made. A key idea is that although the

WER might be very high in some cases, it does not necessarily mean that the model

it corresponds to is the worst. As previously mentioned, the WER is composed of

di↵erent features. Two models might have the same number of correctly recognized

commands, however the type of errors of each model might lead to di↵erent WER

values. For example, the missed words produce substitution and deletion errors;

these types or error will never be higher than the total number of words. However,

substitution errors do not have a top limit. This means that, theoretically, if a

model is really bad there could be much more words in the proposed model than in

the reference, which would increase the total WER value. This idea will be better

understood with the graphic 5.6, which shows the type of error per speaker in both

their custom model and their base model. Each color corresponds to one type of

error. It can be appreciated that the bars have di↵erent heights; this is because each
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speaker has a di↵erent total number or errors. The sum of all the errors gives the

WER per speaker and model. The high of the bar represents the WER. The WER

contemplates the following:

• words that have been recognized with errors, such as recognizing encender as

enciendes (represented by substitutions)

• words that have not been recognized and therefore omitted in the proposed

model; this is the case when not recognizing a command or part of it, for

example not recognizing cortar or recognizing imagen from reducir imagen

(represented by deletion)

• words that have been invented and substitute the reference words, for example

recognizing cortar as compra (represented by substitutions)

• extra words that are not part of the reference and and therefore increase the

total number or words, as in copiar recognized as fue copiar (represented by

insertions)

Figure 5.6: WER per speaker and model
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As it can be observed in the graphic above, the total WER drops in dysarthric

speech models after the customization. As seen in graphics 5.2, 5.3, 5.4 and 5.5,

the base model with the worst results was that of W1, as it did not recognize a

single command. However, we can observe that it is also the base model with the

lowest WER. This is due to the types of error that conform the total WER value.

Substitutions and insertions are the most common errors in the base models, while

deletion is quite rare. However, in the case of C1 CUSTOM MODEL, we can see that

deletion is the most common type of error. This means that although the system

has been able to improve its substitution and insertion errors, there are still many

words that it is not able to understand and therefore displayed a blank space in the

recognition. On the contrary, we can see that W1 CUSTOM MODEL has nearly

no deletions, thus the system is able to recognize most of the terms. Nonetheless,

there is a great number of substitutions, which means that the system is recognizing

many non existing incorrect words. After performing the training, we can see that

the best custom model in terms of WER (without taking the R1 model into account)

is M1. There are still errors in this model, but the total WER is the lowest of all three

dysarthric speech custom models. In in graphics 5.2, 5.3, 5.4 and 5.5, we saw that the

custom model with grammar got the highest number of well recognized commands

for all speakers. In the case of figure 5.6, we can see that the custom models with

grammar are not the models with the lowest WER value.

5.1.3 Confidence

Another interesting feature to bare in mind is the confidence level of the recognized

commands. The confidence tells us how sure the system is about the recognized

word(s). The confidence level goes from 0 to 1, being one the highest confidence

level. We have calculated the confidence per word and represented the distribution of

the confidence in histograms. In green, we have the confidence of the well recognized

commands; in red, we have the confidence of the wrongly recognized commands.

49



Figure 5.7: R1 BASE MODEL confidence

Figure 5.8: R1 BASE MODEL WITH GRAMMAR confidence

Figure 5.9: R1 CUSTOM MODEL confidence
Figure 5.10: R1 CUSTOM MODEL WITH GRAMMAR con-
fidence

In the case of R1 models, we can see that there are only 3 instances of wrongly rec-

ognized terms in the base model. The rest of the models performed perfectly, without

errors. However, it is interesting to see that the distribution of the confidence is not

the same for all models. In the R1 custom model with grammar, nearly all instances

are concentrated in 0,99 of confidence. In the rest of the models, the confidence is

more scattered, even though the confidence levels are very high.
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Figure 5.11: C1 BASE MODEL confidence
Figure 5.12: C1 BASE MODEL WITH GRAMMAR confi-
dence

Figure 5.13: C1 CUSTOM MODEL confidence
Figure 5.14: C1 CUSTOM MODEL WITH GRAMMAR con-
fidence

In C1 BASE MODEL, the very few instances of well recognized commands are

between 0,83 and 1. The wrongly recognized commands have very high levels of

confidence. The clearest di↵erent between the instances of well recognized and the

wrongly recognized commands for C1 is the CUSTOM MODEL WITH GRAMMAR.

In this case, the confidence levels of both sorts of commands is very high; however,

the number of well recognized commands is much higher than that of the wrongly

recognized ones. In C1 BASE MODEL WITH GRAMMAR, we can see how the

confidence is more spread between 0,58 and 1. It is worth highlighting that in C1

CUSTOM MODEL some words were correctly recognized with a very low confidence

level, around 0,08.
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Figure 5.15: M1 BASE MODEL confidence
Figure 5.16: M1 BASE MODEL WITH GRAMMAR confi-
dence

Figure 5.17: M1 CUSTOM MODEL confidence
Figure 5.18: M1 CUSTOM MODEL WITH GRAMMAR
confidence

A similar situation happens with M1. In the base model, all confidence levels

are very high, the highest being those for well recognized commands. In M1 BASE

MODELWITH GRAMMAR, the confidence levels are more spread going from 0,55 to

1. M1 CUSTOMMODEL presents sporadic instances of wrong recognized words with

very low confidence levels. M1 CUSTOM MODEL WITH GRAMMAR also presents

this sort of instances, although in this case the confidence level is around 0,72. In

both these models we can observe how the well recognized commands outnumber the

wrongly recognized ones, although the confidence levels for both are very high.
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Figure 5.19: W1 BASE MODEL confidence Figure 5.20: W1 BASE MODEL WITH GRAMMAR confi-
dence

Figure 5.21: W1 CUSTOM MODEL confidence
Figure 5.22: W1 CUSTOM MODEL WITH GRAMMAR
confidence

W1 BASE MODEL did not recognize any commands, therefore, all confidence

levels in the graphic belong to wrong recognized commands, which go from 0 to 1.

Similarly, in W1 CUSTOM MODEL all values are spread between 0,20 and 1, al-

though there are well recognized commands in this model. In W1 BASE MODEL

WITH GRAMMAR, the confidence values are not that spread, but concentrate be-

tween 0,60 and 1. In this model, we can see how the highest confidence values

correspond to well recognized commands. In the case of W1 CUSTOM MODEL

WITH GRAMMAR, we can see how the confidence values have accumulated but not

as much as in custom models with grammar for C1 and M1. Besides, we can see
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that this speaker had more errors than the previous ones in the custom model with

grammar.

So, we could conclude that overall the confidence levels are more scattered in the

base model and the base model with grammar. When using the custom model or

the custom model with grammar, we can see that the confidence levels rise and most

instances accumulate in between 0,90 and 1. Although this is not always the rule,

because we have seen how the confidence levels of W1 CUSTOM MODEL WITH

GRAMMAR were more spaced than those of this same model for other speakers. We

have also observed that in C1 CUSTOM MODEL, there were words recognized at

0,08 confidence. Ideally, well recognized words should get high levels of confidence

while wrongly recognized words should get low levels of confidence. This is not the

case in any of the presented models.

5.2 Human evaluation

A total of 85 people took part in the perceptual test. The aim of the human evaluation

was to observe how di�cult it is for humans to understand the commands uttered

by the participants of the study. The audios employed in this perceptual test were

the same audios used in the experiments. Apart from the WER value, there is also

the ” perceived di�culty” value. These scores are subjective, as people who did the

perceptual test marked the commands they listened to based on their perception.

Thus, this value is only included in the human evaluation, and not in the rest of the

results. Table 5.2 shows the mean WER and perceived di�culty of the perceptual

test per speaker and their corresponding standard deviations (S.D.).

WER S.D. PERCEIVED DIFFICULTY S.D.

C1 HUMAN EVALUATION 0,635 0,680 3,685 1,302
M1 HUMAN EVALUATION 0,749 0,692 3,880 1,283
W1 HUMAN EVALUATION 1,095 0,443 4,540 0,801
AVERAGE 0,827 0,646 4,030 1,210

Table 5.2: Human evaluation results

As it can be inferred from the results, C1 got the lowest WER score, which means

it was the speaker with the most accurate results. It was followed by M1 and lastly

by W1. C1 was also the easiest model to understand for the evaluators, followed my
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M1 and then by W1. Therefore, a low di�culty level of understanding relates to a

low WER, whereas a high di�culty level of understanding relates to a high WER.

Among the 85 people who took the test, 10 had experience in talking to people with

dysarthria. We were also interested in looking at their results and see whether they

found the recognition process easier and whether they obtained a lower WER. For

this group of evaluators the mean WER was 0,723 /pm 0,647 and the mean perceived

di�culty was 3,64 /pm 1,339. Even though the mean values for the WER and the

perceived di�culty are a bit lower than the mean values obtained for all 85 evaluators,

the standard deviation values are pretty high; we cannot conclude that these people

found it easier than the rest to understand the commands.

5.3 Most di�cult and easiest words

This section will review the easiest and most di�cult words to recognize in each of

the di↵erent models. This categorization was made based on the number of times a

command was correctly or incorrectly recognized in each model. Although the WER

is the most commonly used way of measuring the accuracy of speech recognition, we

believed that in this case it would be informative to count the number of correct

recognitions per word per model. A set of words might get a very high WER when

having several insertions, but this does not necessarily mean that this word has been

well recognized less times than another one with a lower WER. This is why we

considered the easiest word the one which had been recognized most frequently and

the most di�cult word that which had been recognized the fewest times. The following

table 5.23 summarizes the findings:
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MODEL EASIEST MOST DIFFICULT

C1 BASE MODEL pegar abrir documento, alinear, ampliar 
imagen, apagar, cerrar documento, 
copiar, cortar, cursiva, deshacer, 
encender, guardar, imprimir, 
justificar, negrita, reducir imagen, 
rehacer, seleccionar, subrayar, 
tachar 

C1 BASE MODEL WITH GRAMMAR encender, negrita, pegar tachar 

C1 CUSTOM MODEL reducir imagen alinear, deshacer, encender, 
justificar, rehacer, seleccionar, 
subrayar, tabular, tachar 

C1 CUSTOM MODEL WITH 
GRAMMAR

abrir documento, encender, guardar, 
negrita, pegar 

reducir, rehacer 

C1 HUMAN EVALUATION copiar tachar

M1 BASE MODEL abrir documento alinear, ampliar imagen, cerrar 
documento, cortar, cursiva, 
deshacer, encender, guardar, 
imprimir, justificar, pegar, reducir 
imagen, rehacer, seleccionar, 
subrayar, tabular,  tachar 

M1 BASE MODEL WITH GRAMMAR apagar, cursiva, encender, negrita, 
reducir imagen, seleccionar 

ampliar imagen 

M1 CUSTOM MODEL apagar, cerrar documento, imprimir seleccionar

M1 CUSTOM MODEL WITH 
GRAMMAR

abrir documento, alinear, copiar, 
cortar, cursiva, encender, guardar, 
imprimir, justificar, negrita, subrayar 

ampliar imagen 

M1 HUMAN EVALUATION encender rehacer

W1 BASE MODEL - -

W1 BASE MODEL WITH GRAMMAR encender abrir documento, ampliar imagen, 
apagar, copiar, cortar, cursiva, 
guardar, imprimir, justificar, 
pegar, seleccionar, tabular, tachar 

W1 CUSTOM MODEL encender abrir documento, apagar, cerrar, 
copiar, cortar, reducir, tabular 

W1 CUSTOM MODEL WITH 
GRAMMAR

justificar, negrita, reducir imagen, 
subrayar 

cortar 

W1 HUMAN EVALUATION encender abrir documento, alinear, cerrar 
documento, copiar, cortar, cursiva, 
imprimir, pegar, seleccionar, 
tabular, tachar

Figure 5.23: Easiest and most di�cult words
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In cases were more than one word was included, it means that those words were

recognized with the same frequency. Some of the words categorized as the most dif-

ficult ones in the case of C1 coincide with her di�culties of pronunciation. Words

like alinear, tachar or rehacer have /r/ sounds at the end, which is quite tricky to

pronounce for C1. It is interesting, however, that pegar or encender also have this

feature but were sometimes categorized as the easiest words. With regards to C1

HUMAN EVALUATION, the easiest and most di�cult words coincide with those

subjectively perceived as the easiest and the most di�cult one by the evaluators.

The same happens in the case of M1, as the words categorized as the most di�cult

ones have consonant clusters, such as /cc/ in seleccionar and the double r sound,

as in cerrar documento or reducir. He also had di�culties when the last sound of

a syllable and the first sound of the next syllable are consonants; such is the case of

imprimir, justificar and subrayar, all present in the list of most di�cult words for

M1 BASE MODEL. Once again, the words categorized as easiest and most di�cult in

M1 HUMAN EVALUATION coincide with what the evaluators subjectively thought

to be the easiest and most di�cult words.

In the case of W1 BASE MODEL, there were no correctly recognized commands,

and therefore we could not establish an easiest and most di�cult word. Among the

words categorized as the most di�cult ones, we can find cortar, cortar or cursiva;

all of the, have the strong /c/, a sound that she struggles with. In the case of W1

HUMAN EVALUATION, we see that the easiest word was encender, which coin-

cides with what the evaluators subjectively perceived as the easiest. The evaluators

perceived abrir documento, alinear and guardar as the most di�cult words; two of

those words are categorized as the most di�cult ones.

This results prove that there is a correlation between the pronunciation di�culties

of each speaker and the final output of the speech recognizer. The words categorized

as the most di�cult ones had features that are hard to pronounce for the speakers.

Apart from this, the easiest and most di�cult words coincide with those subjectively

perceived as easy and di�cult by the human evaluators.
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5.4 Implementation app

Unlike all the previously mentioned experiments, which were tested with pre-recorded

data, the implementation app was tested with live input from microphone. Since we

did not need any left-out audio sessions to conduct the testings, the models used

for this app were trained with all the data (210 audio commands with their human-

labeled transcripts and the related text). The finite state grammar was not included

in these tests. When using a grammar in a recognizer that takes input directly

from the microphone, this grammar is not finite. These tests enabled us to evaluate

whether results obtained directly from microphone were better, worse or equal to the

ones obtained my means of pre-recorded audios. Graphic 5.24 summarizes the results

obtained.

Figure 5.24: Implementation app recognition results

Figure 5.24 shows the number of wrongly recognized and well recognized com-

mands obtained by each speaker in the implementation app; in this case, there were

no ”not recognized words”. As it can be observed, M1 got the highest number of well

recognized commands, followed by C1 and lastly W1.

In order to calculate the WER of these tests, we took into account the total

commands that each speaker tried. Therefore, the WER values presented for these

experiments are not a mean value, but a total value. The WER obtained by each

speaker is shown in the table below:
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MODEL WER

C1 APP 1,06
M1 APP 0,75
W1 APP 0,61

Table 5.3: Implementation app results

C1 APP got the highest WER, followed by M1 APP and lastly W1 APP. In order

to understand these values, it is important to look at the type of errors committed

by the system for each of the speakers. This information is represented in figure 5.25.

Figure 5.25: Implementation app WER per speaker

As is can be observed, C1 APP got the highest amount of insertions, while W1

APP got a very low number of them. The amount of substitutions and insertions for

M1 was nearly the same. Very few deletions occur in the C1 APP model and there

are no deletion occurrences in the other two models. These results are similar to the

ones obtained for C1 CUSTOM MODEL, M1 CUSTOM MODEL and W1 CUSTOM

MODEL, which were presented in figure 5.6. In these models and the custom models

from figure 5.6 the distribution of the types or errors is very alike. However, the

number of deletions for speaker C1 is much lower in the implementation app results

than in the custom model. On the other hand, the total WER for M1 in the custom

model was lower than that of W1, while here it is higher.

It could be said that, overall, results obtained from input received from live micro-

phone data are worse than those obtained from pre-recorded data. Test conducted
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be means of this implementation app helped users understand our findings better.

Apart form this, it also helped us see how the created custom models behave when

being used lived. This is a key point since, in the future, adapted speech technologies

will have to deal with live microphone input from their users.

5.5 Questionnaire for participants

Participants of the experiments were asked to fill a questionnaire about the recording

process and general questions about technologies adapted to dysarthric speech. Our

aim was to get their perception of how easy or di�cult the recording process was and

how they felt during it, how they liked the implementation app and which technolo-

gies would they like to be adapted to dysarthric speech.

C1 found the recording process quite easy and very comfortable. She claimed that

she did not feel tired in any of the recording sessions. She was accompanied during

the recording sessions, and was provided some assistance; however, she felt that she

probably could have done it by herself. Overall, her recording sessions lasted between

10 and 15 minutes. Besides, most of the commands were correctly recorded in the

first attempt; this implies that the recording software did not find any interference

and saved the file correctly. When asked about the implementation app, she said that

although many of her commands were well recognized, it still needs to be improved.

She claimed that the app recognized similar words on many occasions, but not the

exact word; besides, sounds like breathing or coughing were sometimes transcribed

as words.

M1 thought the recording process was quite easy and comfortable, although he

said he felt tired in some of the recording sessions. He gave two reasons for this tired-

ness: the extra e↵ort made in order to pronounce the commands correctly and the

need to make repetitive movements with the mouse to proceed with the commands

that needed to be recorded. He performed all recording sessions alone; however, he

claimed that he felt the need of some help sometimes, for example to prepare the

recording hardware or to control the recording software. Overall, his recording pro-

cesses lasted between 20 and 25 minutes, and most recordings were successful in the
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first attempt. He said he was positively surprised with the output of the implementa-

tion app, as he found that many of his commands were well recognized or nearly well

recognized. He mentioned that it is very important to have a feedback with the users

about any implementation apps in order to o↵er them the best experience as possible.

W1 felt that the recording process was very easy and comfortable. She did not feel

tired during the recording sessions. On the other hand, she performed all recordings

by herself and did not feel the need of anyone’s help. Her recording sessions were

between 10 and 15 minutes long. In her case, the recordings were never successful in

the first attempt. As mentioned in 4.1.3, she recorded the 21 commands in a single

audio file which was then split.

All the participants of this study agree on the fact that there are currently not

enough adapted speech technologies for them. They all believe that there is a great

need of investigation on this matter. They were asked about the fields in which these

adapted speech technologies should be implemented. A list of possible implemen-

tations was provided to them, which included the following: environmental control

systems (such as turning on and of the lights), control of computer programs, having

conversations with virtual assistants (for example to ask them about basic informa-

tion), and the dictate mode of text creation and editing programs such as Word. This

last option enables the user to speak aloud while the program transcribes everything

he/she says, and it is already available for typical speech. Participants could also

suggest other fields in which they felt these technologies should be implemented. The

most recurrent answers were the control of computer programs and the dictate mode

of text creation and edition programs, followed by environmental control systems and

having conversations with virtual assistants. Suggestions made by the participants

included the urge to implement adapted speech technologies in the social ambit, in

Alternative and Augmentative Communication (ACC) systems in face to face dia-

logues, controlling the television by means of voice commands, and implementing

these technologies in mobile phone apps such as WhatsApp in order to transcribe

voice messages. M1 also highlighted that it is very important to o↵er e�cient alter-

native technologies to people with communication di�culties; in order to do so, it is

vital that future user’s opinions are taken into account in all the design phases.
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5.6 Summary

It is undeniable that the recognition has considerably improved by means of training

with speech from the dysarthric speakers and the use of finite state grammars. The

enhancing achieved in dysarthric speech models is considerably better than the one

obtained for the R1 model. This is because the R1 base model only failed in 3

commands out of 210, and therefore its improvement margin was much lower than

the rest. However, the results obtained by the dysarthric speech models are far

away from being as good as those obtained with the R1 model. The best results for

dysarthric speech models were obtained by custom models with a finite state grammar

in the case of the 3 speakers. Therefore, although an acoustic training of the system

is necessary, a finite state grammar that limits the recognition possibilities to the

words included in it boosts the improvement.

The types of WER error vary depending on the speaker and also on the model of

each speaker.

When it comes to recognition confidence levels, we can see that in the case of the

custom models with grammar, all values were very high, both for the well recognized

and the wrongly recognized commands. This is possibly due to the fact that the

grammar gives a finite list of options from which to recognize the audios. In the rest

of the models, all confidence levels were more scattered.

The perceptual test conducted with 85 subjects showed that there is a correlation

between the perceived di�culty of understanding and the WER. W1 got the highest

WER and the evaluators found her the most di�cult to understand. On the contrary,

C1 got the lowest WER and was the easiest person to understand for the evaluators.

There is a correlation between what the speech recognizer is able to recognize well

or wrong and the pronunciation di�culties of each speaker. The words categorized

as most di�cult ones had features that are tricky to pronounce for the speakers. On

the other hand, the easiest and most di�cult words coincided with those subjectively

perceived as easiest and most di�cult ones by the human evaluators.

Results obtained in the implementation app show how the trained system behaves

when receiving live input from microphone. Overall, the results are not as good as

those obtained in the tests conducted with pre-recorded data. However, the distribu-

tion of the type of errors is very similar in the custom models that were tested with

audios and the implementation app models.
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In general, the participants of this project felt that the recording process was easy

and comfortable to conduct. All of them agreed on the need of creating adapted

speech technologies for people with communication impairments. They also men-

tioned the areas in which they would like to find these technologies implemented.

63



Chapter 6

Discussion and conclusions

This work aimed to evaluate the possibilities of adapting the commercial Microsoft

Azure ASR system for people with dysarthria. We have designed and recorded a pilot

database with Spanish dysarthric speech, as there was none previously available. We

have trained and tested a base model with data from 3 heterogeneous speakers with

dysarthria. We have conducted experiments with and without finite state grammars

and also with di↵erent input data: speech data from pre-recorded audios and live

speech input from microphone. Nearly all existing dysarthric speech databases are in

English, and have not been designed with the aim of using them to train ASR systems.

The pilot database we designed contained 21 commands for the use of text creation

and edition programs in Spanish. Apart form this, it was recorded in the users’ homes;

this is important because it is the environment in which the adapted ASR system is

later tested. Besides, we have conducted a perceptual test with 85 human evaluators

who transcribed audios of the 3 speakers and indicated their perceived di�culty when

understanding them.

This commercial ASR system was not able to fully adapt to dysarthric speech.

However, when customizing the base model, recognition accuracy results improved

considerably for the 3 speakers. The results were not homogeneous, as they varied

depending on the models used and the speaker. Among the experiments conducted,

we discovered that the best results for all 3 speakers were obtained in the customized

model with a finite state grammar. This means that the base model of Microsoft Azure

can be customized with related-text, recorded audios and human-labeled transcripts

and then add a finite state grammar in order to reduce the list of possible answers.

When doing so, preliminary results were vastly improved. Although the outcomes

were not as good as the outcome of the reference, the results obtained with some
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models were good enough to consider the implementation of them. On the other

hand, the WER and error types were di↵erent in all models. However, the WER

types for each speaker were similar in the pre-recorded data tests and the input from

microphone tests.

The confidence levels provided by Microsoft Azure were overall very high for well

recognized and wrongly recognized words. This means that the system is very sure

of every word it recognizes. Ideally, we should get a low level of confidence for the

wrongly recognized words. Human evaluation results obtained from the perceptual

test were worse than results obtained in the customized models with grammars. This

implies that an ASR system with a proper training is able to outperform a human eval-

uation. If these models were implemented in SGD for example, people with dysarthria

could transcribe what they say into a machine and later generate a synthetic voice

for example, which could improve some of their social relations.

The integration of the customized models in computer programs is very di�cult.

Mainly because these programs do not allow the implementation of any external

software in them or because they already have their own speech recognizer. In any

case, we were able to create a webpage were we implemented the customized models

and measured the accuracy obtained with live input from microphone. Results of

this experiments were not as good as those obtained with the custom models with

grammar and pre-recorded data. Nonetheless, the results we got outperformed the

base model we tested with pre-recorded data. Besides, these findings are a proof of

how this system would work in real life use.

The participants of our experiments answered a questionnaire about their experi-

ence in the recording process and general questions on adapted speech technologies.

They claimed that the recording process was easy and comfortable to carry out. They

all claimed that there are very few options for them and that there is a need of adapt-

ing more speech technologies that meet their needs. They also suggested di↵erent

fields in which they would like to be able to implement the adapted ASR systems,

such as in the use of computer programs, environmental control systems or in the

social ambit.

It has been proved that a speaker-independent ASR system such as Microsoft

Azure can be adapted to recognize dysarthric speech. Although the optimal solution

in terms of accuracy would be to build a speaker-dependent model per user, this

option has some drawbacks that need to be taken into account. A speaker-dependent
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recognizer would need large amounts of data of the future speaker; the recording

process until reaching decent accuracy results can be challenging for some people with

dysarthria. Besides, these systems would be built especially for people with speech

articulation di�culties, but probably not for the general public. Training an already

existing speaker-adaptive recognizer can be a good solution to these problems. As it

has been stated, the results of some of the models are good enough to be implemented.

There might be a relationship between the type and severity of the dysarthria

and the accuracy results. However, the database acquired in this work included only

three speakers and this number is not big enough to reach such conclusion. It is worth

highlighting that the three participants of these experiments varied in age, gender and

had di↵erent levels and types of dysarthria; they all had di↵erent pronunciation dif-

ficulties, and the results reflected that. Depending on the mispronunciations of the

speaker, the system will need more or less training data. As we have seen, the three

participants of these experiments had di↵erent pronunciation di�culties, and the re-

sults reflected that. Besides, the exact reasons behind the obtained results are not

clear. We theorized that one possible feature a↵ecting the outcome was the speech

rate, since it was di↵erent for each speaker. The speaker with the closest speech

rate to the reference obtained the best results. It would be convenient to execute

more experiments in order to find common patterns. The closer the di↵erent voices

are among themselves, the better the results would be. It might be possible that an

homogeneous group of people shared some of the most recurrent pronunciation char-

acteristics, and therefore, be able to create an homogeneous database with di↵erent

speakers.

More investigation must be carried out on in the creation and adaptation of speech

technologies for people with speech articulation di�culties. There is a clear need and

demand of them and their implementation in di↵erent fields. Persons with dysartrhia

constitute one of the groups of people that could really benefit from adapted ASR

systems. Their condition usually comes with a functional diversity; having access to

these technologies would greatly improve their quality of life. If technology is to be

used to improve our lives, we should think of who can benefit from its advantages the

most.
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Azure Custom Speech to Text Manual

AZURE CUSTOM SPEECH TO TEXT MANUAL 

Microsoft Azure Speech to Text is a Microsoft’s service feature that transcribes spoken audio into 
text. Azure’s base model uses the Universal language model, which was trained using Microsoft-
owned data. The base model is not always optimal for certain needs, for example when what we 
want to recognize is industry-specific vocabulary, or when the speakers have difficulties to speak.  A 
custom model can boost the recognition accuracy of a base model. Azure enables its users to create 
and train custom acoustic, language, and pronunciation models. The aim of this manual is to guide 
people on how to create a customized speech recognition model in Azure Speech to Text. 

It will begin with instructions on how to create an Azure account and everything needed to start 
using Azure’s Speech Studio, their customization portal for speech. We will then introduce the 
Speech Studio portal and explain how to create a new project. This will be followed by explanations 
on how to train a base model and how to test it later. The last section will be devoted to explain the 
use of the implementation of the customized models.    

1. Creating an Azure account and subscribing to the Speech service   
In order to create a customized acoustic language model, it is necessary to have an Azure account. 
This can be done in https://azure.microsoft.com/es-es/ By having an account, we do not only have 
access to the custom speech service, but to all Azure services.  

 
If we already have an account, we need to log in into the Azure portal.  

If we still don’t have a Speech service, we need to create one. For this, we have to click in “Crear 
un recurso”. We look for “speech” and choose “Speech”. This unified subscription gives access to 
speech-to-text, text-to-speech, speech translation, and the Speech Studio. “Speech” is one uf the 
multiple subscription options that Azure facilitates to its users. We can create as many subscriptions 
as we like.   
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2. Speech Studio 
Speech Studio is Azure’s customization portal for the Speech subscription. This is the portal we 
need to deploy our speech-to-text custom models, text-to-speech custom models and assistants. We 
must first go to the Custom Speech portal (speech.microsoft.com/customspeech). We should be able 
to see the subscription we have just created in the Custom Speech portal. If we have more than one 
subscription, we should be able to see all of them. We can also create new subscriptions through the 
Custom Speech portal instead of going back to the Azure portal, through “Crear un nuevo recurso”.  
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We can change from one subscription to another  the 
subscription in the configuration part. 

Below out user name, we see 
the subscription that it is 
being used. 

“Usar recurso”. This button us grey when the chosen 
model is the one that it is currently in use. It turns blue 
when we choose a different model from the one we are 
using. 
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In order to start creating custom models, we should pick one of our subscriptions and then create a 
new model. For that, we choose the subscription and click in “Usar recurso”. We will see all the 
resources available; in our case, since we want to customize a base speech-to-text model, we will 
choose “Habla personalizada”.  If we already have created any project(s) previously, we will see 
them in this page, and we will be able to access them directly. 

 
 

 

 

Once we are in the subscription, we will click in “Crear un proyecto”. If we have already created a 
project, we will see them listed below. We can also access any of the models previously created. 
When creating the new model, the user must provide a name for the project, a description of the 
project (this is optional) and choose the language of the model. There is an unlimited number of 
projects that can be created with a single subscription.  
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Project(s) that we have 
been working on recently. 

“Crear un proyecto”. We must click 
here in order to create a new model. 

Already created models. The most 
recent models appear first. 
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3. Training the system 
Once we hace created our project or we have entered in a previously created one, we can start 
training a base model. This section will introduce the types of data that can be used in Azure and the 
way they must be uploaded. It will later explain how to proceed with the training.  

3.1. Training data 
First, we must upload the data we want to use. If we want to test a base model, we can simply 
upload the testing data and test it with a base model (this will be explained in the testing section of 
this manual). If we want to train a base model with our custom data, we should upload the data first, 
and train a base model before running any tests.  
The data for the custom model may include Audio data, Audio + Human-labeled transcripts and 
Related text. 
The Audio data is used to inspect the accuracy of speech recognition with regards to a model’s 
performance; it is used to test the accuracy of Microsoft’s baseline or a custom model.  
The Audio +  Human-labeled transcripts data can be used for both training and testing. The human-
labeled data is used to evaluate accuracy and train the model for future use cases.  
Related text data for training helps ensure correct recognition. Related text can be of two types: 
sentences, or pronunciations. Sentences may include domain-specific vocabulary or product names, 
among others. Pronunciations include acronyms or words with undefined pronunciations. All data 
types and how to upload them are explained below.  
 

 
 
 

Files should be grouped by type into a dataset and uploaded in a specific manner. Each dataset can 
only contain a single data type, must meet the requirements for the chosen data type and be 
correctly formatted before being uploaded. 

- Audio + Human-labeled transcripts data can be used for both training and testing purposes. Azure 
recommends that each audio files includes at least half-second silence before and after speech in 
each sample. The audios must be in 16kHz or 8kHz, 16-bit and mono sound. Supported input 
formats are WAV, PCM, MP3, OPUS/OGG, PLAC, ALAW in wav container, MULAW in wav 
container, ANY (For the scenario where the media format is not known). Each training file cannot 
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exceed 60 seconds otherwise it will error out. The transcriptions for all WAV files should be 
contained in a single plain-text file. Each line of the transcription file should contain the name of 
one of the audio files, followed by the corresponding transcription. The file name and transcription 
should be separated by a tab (\t). Besides, transcription should be encoded as UTF-8 byte order 
mark (BOM).For example: 
 01Abrir.wav abrir documento 
 01Ampliar.wav  ampliar imagen 
 01Apagar.wav  apagar 

Once the audio files and their corresponding transcriptions are ready, they must be packaged as a 
single .zip file, which must be less than 2GB.  More information on how to create human-labeled 
transcriptions can be found at https://docs.microsoft.com/en-us/azure/cognitive-services/speech-
service/how-to-custom-speech-human-labeled-transcriptions 
*If we need to train a system with a lot of data and 2GB is not enough, we can divide the whole 
amount of data into different .zip files and then use of all them for the training. However, the testing 
can only be done with a single dataset.  

- Related text / Plain text data for training is used to improve accuracy when recognizing specific 
terms or domain-specific jargon. The sentences used must reflect the spoken input. Each term or 
sentence must be written in a single line. This data must be uploaded as a single .txt file which 
should not exceed 200MB. Also, the format must be BOM UTF-8.    

- Pronunciation data for training must be used when the audio files contain uncommon terms 
without standard pronunciation. However, it is not recommended to use custom pronunciation files 
to alter the pronunciation of common words. Pronunciation must be uploaded as a single .txt file 
and include the term we are interested in and its pronunciation. For example: 
 3CPO  three c p o  
Customized pronunciation is currently available in English (en-US) and German (de-DE). 
Pronunciation .txt files should 1MB maximum and be in BOM UTF-8 format.    

- Audio data for testing is used to inspect the accuracy of speech with regards to a specific model’s 
performance. If we want to check the accuracy of a model we must use audio-human-labeled 
transcription data. The audios must be in 16kHz or 8kHz, 16-bit and mono sound. Supported input 
formats are WAV, PCM, MP3, OPUS/OGG, PLAC, ALAW in wav container, MULAW in wav 
container, ANY (For the scenario where the media format is not known). 

More information on how to prepare data for custom models is available here: https://
docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-
train  

Before proceeding to the training, it is highly recommendable that we check that the data has been 
correctly uploaded. Even though our data shows as “Correcto”, this does not mean that all data has 
been correctly processed. In order to do this, we can click on the name of the data and we will see 
all the information related to it. We then click in “Ver informe”; an additional table will appear on 
screen, with the phrases “Número de operaciones correctas” and “Número de errores”. The former 
should display the total number of audio/transcriptions/lines we have uploaded, the latter should 
display “0”. In case of having an error, we must find it (Azure normally tells us what sort of error it 
is), delate the uploaded data, correct the error and upload the whole data again.  
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3.2. Training process 
The interface offers 4 different base model to train a customized model: 20200115, 20200619, 
20201015, and 20210113. We can use the same training data with different base models and later 
test the customized models to see which one works best. Each model has a different expiring date, 
as the base models used to create custom models are updated periodically. This might cause issues 
with compatibility, therefore, it is important to bear in mind that both base and custom models have 
an expiration timeline. For base models, the adaptation is available for 1 year (after import, it is 
available for 1 year to create custom models), and the decoding and endpoints are available for 2 
years after import. For custom models, the decoding and the endpoints are available for two years; 
after this time, the custom model is not lost, but it should be retrained on the renewed model. 

To train a model with our data, we must first go to the training tab and then press “Entrenar nuevo 
modelo”. We will choose the “Escenario” (which usually only allows to use “General”), and the 
base model we want to use. We will then choose the data we want to use for the training, which 
might be Audio + Human-labeled transcripts, Related text or both. Finally, we will give our model 
a name and, if like, also a description. Once the model is trained with our data, we will se 
“Correcto” next to the model. The training phase can take from some minutes up to days, depending 
on the amount of training data we have.  
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4. Testing process 
The tests can be performed with base models or custom models. If we are not sure about whether 
training a model is necessary, we can run a test with different base models and see which one works 
best. If none of the results is good enough, we can pick any of the models (usually the one with the 
highest accuracy result) and train it.  

In order to see how accurate our models are, we must perform one or more tests. The testing can be 
performed with both the training data or the testing data. If the data provided for the tests is only 
Audio data, the platform will provide a transcription of the audio files. We will obtain different 
results of out testings depending on the data we use for it. If the data used in the tests is Audio +  
Human-labeled transcript, the platform also provides a WER (Word Error Rate). This is done by 
comparing the model's transcription with the reference transcription. The tests can be run with a 
maximum of two models simultaneously, which can be base models or customized models. After 
performing a test with  Audio +  Human-labeled transcript, we can also download a folder with all 
the information related to this test. To run a test, we must go to the testing tab and choose “Crear 
una prueba”. We will see two options “Inspeccionar calidad” (for audio data) and “Evaluar 
precisión” (for audio-human-labeled transcripts data). Once we choose the type of test, we will see 
the data available for the testing; here we can only choose one dataset. We will finally have to 
choose one or two models that we want to test and give a name to our test.   
In the picture below, we can see that a test was performed with two different models 
simultaneously; in this case, one was the base model 20201015 and the other was a customized 
model trained with 20201015 base model. Since the test was an evaluation, the system compared 
the recognized sentences by each model with the human-labeled transcripts and thus provided a 
WER.  
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If we click on the name of our test, we will be able to observe the total WER, the insertions, the 
substitutions and the deletions for each of the models. We can also observe what each of the models 
recognized for each audio file and what kind of errors the models committed when compared to the 
human-labeled transcriptions. All the information provided here can be downloaded as .txt files for 
the recognized utterances, and JSON files for detailed information about the recognized utterance.  

5. Implementation of the model 
The implementation of a model consists of creating a connection endpoint in order to use our model 
outside the Speech Studio. The implementation can be done with any of the models, base or custom 
models.   
The implementation is conducted for different objectives. On the one hand, it can be used as a final 
model, which can be used in our own recognizer or in other programs in which we are able to 
implement it, or to transcribe directly from microphone. On the other hand, we can use the 
connection endpoint to run different tests. The latter would be the case when willing to include a 
grammar in a testing. For this, we need to perform our tests in a Python/JAVA/C#/C++/Go/Node.js/
JavaScript/Objective-C Swift/REST/CLI. Grammars consist of a list that limits the recognition 
options to the words included in it. Therefore, the system is not able to recognize any words outside 
the grammar. This boosts the possibilities of a word to be recognized. Grammars cannot be included 
in the training data before customization. 

A script must also be used when transcribing directly from the microphone. The Azure Custom 
Speech Studio interface only allows conducting testings on previously recorded data, which must be 
uploaded to the system. This information is provided here: https://docs.microsoft.com/en-us/azure/
c o g n i t i v e - s e r v i c e s / s p e e c h - s e r v i c e / g e t - s t a r t e d - s p e e c h - t o - t e x t ?
tabs=windowsinstall&pivots=programming-language-python  

In order to use custom models in a script we first need to create a connection endpoint in our 
Custom Speech interface. We must go to the implementation tab and choose “Implementar 
modelo”, we will give it a name, a description if we like, and we will choose the model we want to 
implement (which might be a custom model or a base model). Once the implementation is finished, 
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we click on it and we will se the speech-key, the region and the connection endpoint ID, which is 
the information needed to implement our model.     
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