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Abstract

Humans can learn to understand and process the distribution of space, and one of the initial tasks of

Artificial Intelligence has been to show machines the relationships between space and the objects that

appear in it. Humans naturally combine vision and textual information to acquire compositional and

spatial relationships among objects, and when reading a text, we are able to mentally depict the spatial

relationships that may appear in it. Thus, the visual differences between images depicting "a person sits

and a dog stands" and "a person stands and a dog sits" are obvious for humans, but still not clear for

automatic systems.

In this project, we propose to evaluate grounded Neural Language models that can perform com-

positional and spatial reasoning. Neural Language models (LM) have shown impressive capabilities

on many NLP tasks but, despite their success, they have been criticized for their lack of meaning.

Vision-and-Language models (VLM), trained jointly on text and image data, have been offered as a

response to such criticisms, but recent work has shown that these models struggle to ground spatial

concepts properly. In the project, we evaluate state-of-the-art pre-trained and fine-tuned VLMs to

understand their grounding level on compositional and spatial reasoning. We also propose a variety of

methods to create synthetic datasets specially focused on compositional reasoning.

We managed to accomplish all the objectives of this work. First, we improved the state-of-the-art

in compositional reasoning. Next, we performed some zero-shot experiments on spatial reasoning.

Finally, we explored three alternatives for synthetic dataset creation: text-to-image generation, image

captioning and image retrieval. Code is released at https://github.com/juletx/spatial-reasoning
and models are released at https://huggingface.co/juletxara.

Keywords: Artificial Intelligence, Deep Learning, Natural Language Processing, Computer Vision,

Grounding, Visual Reasoning, Compositional Reasoning, Spatial Reasoning
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1 Introduction

Neural Language Models (LM) have shown impressive capabilities on many Natural Language

Processing (NLP) tasks [1, 2, 3]. LMs are pretrained on large corpora in order for them to learn universal

language representations, which are beneficial for downstream NLP tasks and can avoid training a new

model from scratch. The pretrained models are fine-tuned in specific downstream tasks, using
annotated data that is orders of magnitude smaller than the text used in the pretraining phase. Following

this transfer learning methodology, researchers have extended the state of the art on a wide array of

tasks as measured by leaderboards on specific benchmarks for English [4, 1].

Despite the impressive results of LMs for different language-related tasks, many authors criticize

them for their lack ofmeaning [5, 6]. In their opinion, language models trained exclusively on language

are unable to learn meaning. Those authors suggest that grounding is one of the key elements to
bring human-like language understanding. However, language grounding is a very broad area that

covers a great diversity of techniques, modalities and concepts.

In this project, we will focus on grounding LMs for compositional and spatial reasoning. We

choose compositional and spatial reasoning because they are crucial to how humans organize the

mental space and make sense of the physical world, and therefore fundamental for a grounded theory

of semantics [7]. However, spatial reasoning has been found to be particularly challenging for
current models [8]. Another work has found that these models are not as skilled at visio-linguistic

compositional reasoning as we might have hoped [9]. That is, compositional and spatial reasoning

are much more challenging than capturing properties of individual entities.

Vision Language Models (VLMs), which are trained jointly on text and image, have been proposed

as a general solution to the lack of grounding in language models [10, 11, 12, 13]. Vision-language

pre-training aims to improve performance of downstream vision and language tasks by pretraining
the model on many image-text pairs. These pre-trained models can then be fine-tuned on each

downstream task. VLMs have been fine-tuned in tasks that require grounding spatial concepts, such as

VQA [14] or NLVR2 [15].

With the objective of evaluating spatial relations, a recent work provides new unified datasets

[16]. As the objective of such work is to evaluate whether VLMs learn more spatial commonsense than

LMs, the datasets are purely textual, so they do not provide any means to ground spatial concepts.

Interestingly, authors find that VLMs, and more concretely text-to-image systems, perform much better

than text-only LMs. Still, they show that VLMs struggle to ground spatial concepts properly.

Large generative text-to-image diffusion models, like DALLE-2 [12], IMAGEN [13] and Stable

Diffusion [17], are able to generate stunning images. They are known to possess some visual-reasoning

skills [18]. However, a recent work [19] has shown that they struggle to understand the composition
of some concepts, such as confusing the attributes and relations of different objects. They propose a

new method, where an image is generated by composing a set of diffusion models, with each of them

modelling a certain component of the image. Another work [20] proposes manipulating cross-attention

representations to address three challenging phenomena in Stable Diffusion [17]: attribute leakage,

interchanged attributes and missing objects.

There are several works that try to ground language models to spatial relations. For example,

[21, 22] focus on the acquired commonsense knowledge of models about object scales (e.g. is a person

bigger than an ant?). However, they ask about generic object scale relations, without providing any

context. Some other authors [23, 24] work on implicit and explicit spatial relations of objects, given some

descriptive texts. The proposed benchmark datasets are designed for object bounding box generation.

1



1. Introduction

1.1 Objectives

Despite the impressive performance of pretrained vision and language models (VLMs) on a wide variety

of multimodal tasks, they remain poorly understood. One important question is to what extent such

models are able to conduct unimodal and multimodal compositional reasoning and spatial reasoning.
For example, the visual differences between images depicting "a person sits and a dog stands" and "a

person stands and a dog sits" are really obvious for humans, but still not clear for current state-of-the-art

VLMs. To perform well on tasks where compositional and spatial reasoning is required, the models do

not only need a proper encoding of text and images but also to be able to ground meaning across the
two modalities.

Thus the main objective of the project is to evaluate grounded language models for composi-
tional and spatial reasoning. The goal is to investigate ways to acquire grounded representation for

compositional and spatial reasoning. In that sense, we will evaluate state-of-the-art pre-trained and

fine-tuned VLMs to understand their grounding level. Towards this goal, this project will focus on using

the latest advances in deep-learning techniques, and pre-trained LMs for effective zero-shot transfer

learning. We have defined these objectives for this project:

Improve the state of the art in compositional reasoning. Winoground [9] is a dataset for evalu-

ating the ability of VLMs to conduct visio-linguistic compositional reasoning. The original Winoground

paper included zero-shot experiments with many pre-trained SOTA systems, and they concluded that

none of them does much better than chance. In this work, we will extend the previous experiments with

new pre-trained models and models that are fine-tuned for specific tasks such as image-text retrieval

and visual reasoning. Our objective is to improve results and to find out which models and tasks help

most for compositional reasoning.

Perform zero-shot experiments in spatial reasoning. Visual Spatial Reasoning [25] is a dataset

for investigating VLMs capabilities in recognising 65 types of spatial relationships in natural text-image

pairs. VSR authors [25] train and test three popular VLMs: VisualBERT [26], LXMERT [11], and ViLT

[27]. They conclude that there is still a large gap between model and human performance. We will

extend these experiments with zero-shot experiments with ViLT [27] and BLIP [28] models fine-tuned

on NLVR2 dataset. Our aim is to measure how this affects performance on VSR.

Investigate the use of synthetic datasets to overcome the lack of annotated datasets. As to
avoid the scarcity of multimodal datasets that explicitly describe compositional and spatial relations, we

propose to automatically construct synthetic datasets. These datasets could be used in the future to train

existing language models in a self-supervised way, with the final aim of obtaining spatially grounded

language models. In particular, we will explore the viability of three alternatives with evaluations:

text-to-image generation, image captioning and image retrieval. These techniques could be combined to

produce synthetic datasets in the future.

Large generative text-to-image VLMs are known to generate great images from text descriptions,

and they possess some visual reasoning skills. We will use Stable Diffusion [17] to obtain realistic images

with entities that are arranged following certain spatial relations. We will do a manual evaluation of the

generated images to measure their quality and decide if they can be used to create synthetic datasets.

Image captioning models could provide extra information about the images to the models, that

is not included in the original captions. Most large datasets contain captions directly obtained from

the image descriptions on the internet. Those descriptions are often not very good. Image captioning

models can be used to get decent captions much faster than with human annotation. We will do a

qualitative evaluation of a small sample of captions to know how good they are.

Image retrieval systems could be used to retrieve images of interest from large image datasets.

Images can be retrieved using similarity scores between caption and image embeddings. This can be

combined with captioning to improve original captions. We will evaluate a small sample of the retrieved

images to decide their viability for synthetic dataset generation.
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1.2. Structure

1.2 Structure

This section provides an overview of the next chapters in this work: 2 Background, 3 Winoground

Zero-shot Experiments, 4 VSR Zero-shot Experiments, 5 Synthetic Dataset Creation, 6 Conclusions and

7 Future Work.

First, Chapter 2 contains the background knowledge used in this project’s development. This chapter

includes two main sections: Multimodal Models and Visual Reasoning Datasets. Section 2.1 explains the

types of models that are related to this work. Section 2.2 includes synthetic and natural visual reasoning

datasets and the datasets that we chose for this work.

Second, Chapter 3 explains how we achieve the first objective, improving SOTA in compositional

reasoning. First, it describes the Winoground [9] dataset (Section 3.1) and explains the metrics used for

evaluation. We also describe a series of previous and new experiments performed over the Winoground

dataset using state-of-the-art vision and language models (Section 3.3). The Winoground dataset does

not contain a training split, and therefore the experiments are conducted in a zero-shot fashion, where

the models are trained on different datasets, and tested on Winoground.

Next, Chapter 4 is related to the second objective, performing zero-shot experiments on spatial

reasoning. We focus on Visual Spatial Reasoning [25], a dataset for spatial reasoning (Section 4.1). Unlike

Winoground, VSR contains training and validation splits and can be used to train models (Section 4.2).

However, we mainly focus on zero-shot experiments with models that are trained on other datasets. We

explain previous and new experiments we performed and the results we obtained in VSR (Section 4.3).

Then, Chapter 5 describes the third objective, synthetic dataset creation. We investigate three

different options for synthetic dataset generation: Text-to-Image Generation (5.1), Image Captioning

(5.2) and Image Retrieval (5.3). These experiments also allow us to gain more insight into the dataset

and the tested models.

Finally, Chapters 6 and 7 provide an overview of the main contributions, conclusions and future

work areas for further research. This chapter provides an overview of future work areas for further

research. We propose four ideas for synthetic dataset generation (Section 7.1): explicit verbalization

(7.1.1), text-to-image (7.1.2), image-to-image (7.1.3) and image captioning and retrieval (7.1.4). We also

include some ideas for extending current datasets to be multilingual (Section 7.2).
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2 Background

This chapter introduces the background knowledge used in this project’s development. This chapter

includes two main sections: Multimodal Models and Visual Reasoning Datasets. Section 2.1 explains the

types of models that are related to this work. Section 2.2 includes synthetic and natural visual reasoning

datasets and the datasets that we chose for this work.

2.1 Multimodal Models

Multimodal models are trained jointly on text and image pairs. This is different from language models,

which are only trained with text and vision models which only use images. The aim of VLMs is to

ground LMs with visual concepts.

This section explains the types of models that are related to this work, Multimodal Transformers,

Multimodal RNNs and DiffusionModels. Section 2.1.1 includes descriptions of the followingmultimodal
transformers: OFA [29], BLIP [28], CLIP [30], OpenCLIP [31], FLAVA [32], LXMERT [11], UniT [33],

UNITER [34], VILLA [35], VinVL [36], ViLT [27], VisualBERT [26] and ViLBERT [10]. Section 2.1.1

explains two types of multimodal RNN models: VSE++ [37] and VSRN [38]. Section 2.1.3 introduces

diffusion models and explains Stable Diffusion [17], the diffusion model that we use in this work.

Overview. Table 2.1 provides a high-level overview of the Transformer and RNN models that are

described in the next sections. This overview includes pretraining datasets, architecture, and attention

mechanisms between the modalities. We omit datasets that were only used to train backbones. We

exclude the language embedding from this table as every model uses a pretrained BERT tokenizer,

except CLIP, VSE++, and VSRN. The pretraining datasets include COCO [39], Visual Genome (VG) [40],

Conceptual Captions (CC) [41], SBU Captions [42], Flickr30k [43], VQA 2.0 [44], VCR [45], NLVR2 [46],

SNLI-VE [47], QNLI [48], MLNI-mm [49], QQP [50], Localized Narratives (LN) [51], Wikipedia Image

Text (WIT) [52], Conceptual Captions 12M (CC 12M) [53], Red Caps (RC) [54], YFCC100M [55], SST-2

[56], LAION-400M [57] and LAION-2B [58]. CLIP uses their own dataset for pretraining.

Model Datasets # Images, Captions Architecture Attention

VinVL [36] VQA, GQA, VG-QA, COCO, Flickr30k, CC, SBU 1.89, 4.87 single-stream merged

UNITER [34] COCO, VG, CC, SBU 4.20, 9.58 single-stream merged

ViLLA [35] COCO, VG, CC, SBU 4.20, 9.58 single-stream merged

VisualBERT [26] COCO, NVLR2 0.30, 0.52 single-stream merged

ViLT [27] COCO, VG, SBU, CC 4.10, 9.85 single-stream merged

LXMERT [11] COCO, VG 0.18, 9.18 dual-stream modality-specific, co-attn, merged

ViLBERT [10] CC 3.30, 3.30 dual-stream modality-specific, co-attn, merged

UniT [33] COCO, VG, VQAv2, SNLI-VE QNLI, MNLI-mm, QQP, SST-2 0.69, 1.91 dual-stream modality-specific, merged

FLAVA ITM [32] COCO, SBU, LN, CC, VG, WIT, CC 12M, RC, YFCC100M 70.00, 70.00 dual-stream modality-specific, merged

FLAVA ITC [32] COCO, SBU, LN, CC, VG, WIT, CC 12M, RC, YFCC100M 70.00, 70.00 dual-stream modality-specific

CLIP [30] − 400.00, 400.00 dual-stream modality-specific

OpenCLIP [31] LAION-2B 2320.00, 2320.00 dual-stream modality-specific

OFA [29] CC 12M, CC 3M, SBU, COCO, VG-Cap 20.00, 20.00 single-stream modality-specific, merged

BLIPITM 14M [28] COCO, VG, SBU, CC, CC 12M 14.00, 15.00 dual-stream modality-specific, merged

BLIPITC 14M [28] COCO, VG, SBU, CC, CC 12M 14.00, 15.00 dual-stream modality-specific

BLIPITM 129M [28] COCO, VG, SBU, CC, CC 12M, LAION-400M 129.00, 130.00 dual-stream modality-specific, merged

BLIPITC 129M [28] COCO, VG, SBU, CC, CC 12M, LAION-400M 129.00, 130.00 dual-stream modality-specific

VSE++ COCO [37] COCO 0.11, 0.57 dual-stream −
VSE++ Flickr30k [37] Flickr30k 0.03, 0.16 dual-stream −
VSRN COCO [38] COCO 0.11, 0.57 dual-stream −
VSRN Flickr30k [38] Flickr30k 0.03, 0.16 dual-stream −

Table 2.1: A high-level overview of the differences between the models by the pretraining datasets, architecture,

and attention mechanisms between the modalities.

5



2. Background

2.1.1 Multimodal Transformers

Multimodal transformers are state-of-the-art in many vision-language tasks, and that includes spatial

reasoning. Most of the models tested in Winoground [9] and VSR [25] are multimodal transformers.

Those transformers differ in embedding, architecture, pretraining objectives and cross-modal attention.

First, we provide some examples of different types of transformers. Then, we describe every model that

was used in previous and current experiments.

Embedding. Most models use a pretrained BERT tokenizer for text encoding. For image embedding,

there are more different options. Some models use Faster R-CNN [59] to extract region features from

images: VisualBERT, ViLBERT, LXMERT, UNITER, ViLLA [26, 10, 11, 34, 35]. Another common approach

is to use Vision Transformer (ViT) [60], which is used by CLIP, FLAVA, and ViLT [30, 32, 27].

Architecture. Depending on their architecture, they can mainly be classified into two types: single-

stream and dual-stream transformers. On the one hand, in single-stream transformers the image and

text embeddings are concatenated and then jointly encoded. For instance, the following transformers

are single-stream: UNITER, VILLA, VinVL, ViLT and VisualBERT. [34, 35, 36, 27, 26]. On the other hand,

dual-stream transformers have two separate modality-specific encoders with optional cross-modality

fusion. Some examples include: CLIP, FLAVA, UniT, LXMERT and ViLBERT [30, 32, 33, 11, 10].

Cross-Modal Attention. There are different types of multimodal attention as presented in [61]. In

modality-specific attention, the language and visual input attend to their modality. Every dual-stream

transformer that we mentioned uses this type of attention. In merged attention, the language and
visual input attend to both themselves and the other modality. All single-stream models use merged

attention, and some dual-stream transformers use it too. In co-attention, the language and visual input

only attend to the other modality input. For example, dual-stream models LXMERT and ViLBERT use

co-attention.

Pretraining Objectives. Vision-language transformers use a different pretraining objectives includ-

ingmasked language modeling (MLM), image-conditioned language modeling (LM), image-text
contrastive learning (ITC), image-text matching (ITM). For Winoground, we are mainly interested in

models that are trained with ITC or ITM objectives. For example, BLIP [28] is jointly pre-trained with

three vision-language objectives: ITC, ITM and LM.

LXMERT. LXMERT [11] consists of three transformer encoders: object relationship encoder, a lan-

guage encoder, and a cross-modality encoder (see Figure 2.1). The images are represented as a sequence

of objects, whereas each sentence is a sequence of words. It combines self-attention and cross-attention

layers to generate language, image, and cross-modality representations. The model is pre-trained with

five pre-training tasks: masked language modelling, masked object prediction, cross-modality matching,

and image question answering.
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Figure 2.1: The LXMERT model for learning vision-and-language cross-modality representations.
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2.1. Multimodal Models

VisualBERT. VisualBERT [26] aims to reuse transformer self-attention to align elements of the input

text and regions in the input image (see Figure 2.2). Visual embeddings are constructed by summing visual

feature representation, segment embedding and position embeddings. Visual feature representations

are obtained from a bounding region object detector. VisualBERT is trained using COCO using two

objectives: masked language modelling (MLM) and sentence-image prediction task.

Position
Segment
Token/Image

A person hits a ball with a tennis racket

Transformer

…

[CLS] a [MASK] [SEP]

Objective 2 Objective 1

e1

+
e2

+
eN-1

+
eN
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+
f2
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fK-1

+
fK

+

…f’1 f’2 f’K-1 f’K…e’1 e’2 e’N-1 e’N

Figure 2.2: The architecture of VisualBERT combines image regions and language with a transformer.

UniT. UniT [33] is a Unified Transformer model to simultaneously learn multiple tasks, such as object

detection, natural language understanding and multimodal reasoning (see Figure 2.3). UniT encodes each

modality with an encoder and makes predictions on each task with a shared decoder and task-specific

output heads. Model parameters are shared across all tasks instead of separately fine-tuning task-specific

models.

Figure 2.3: An overview UniT, which jointly handles a wide range of tasks in different domains with a unified

transformer encoder-decoder architecture.

UNITER. UNITER [34] is a large-scale pre-trained model for joint multimodal embedding (see Fig-

ure 2.4). An Image Embedder is used to extract the visual features of each region and a Text Embedder

to tokenize the input sentence. It is pre-trained using four image-text datasets: COCO, Visual Genome,

Conceptual Captions, and SBU Captions. Four pretraining objectives were designed for this model:
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2. Background

Masked Language Modeling (MLM), Masked Region Modeling (MRM), Image-Text Matching (ITM), and

Word-Region Alignment (WRA).

Figure 2.4: Overview of the UNITER model, consisting of an Image Embedder, a Text Embedder and a multi-layer

Transformer

VILLA. VILLA [35] is the first known effort on large-scale adversarial training for vision-and-language

representation learning (see Figure 2.5). VILLA consists of two training stages: task-agnostic adversarial

pre-training and task-specific adversarial finetuning. Instead of adding adversarial perturbations on

image pixels and textual tokens, it performs adversarial training in the embedding space of each modality.

VILLA achieves SOTA on a wide range of tasks, including VQA, VCR, Image-Text Retrieval, Referring

Expression Comprehension, Visual Entailment, and NLVR2.

Figure 2.5: Overview of the VILLA framework for vision-and-language representation learning.

VinVL. VinVL [36] feeds the visual features generated by a new object detection model into a

Transformer-based VL fusion model OSCAR [62] (see Figure 2.6). VinVL develops an improved object de-

tection model to provide object-centric representations of images. The new visual features significantly

improve the performance across all VL tasks, achieving state-of-the-art results.

ViLBERT. ViLBERT [10] is a BERT-based model for learning task-agnostic joint representations of

images and language (see Figure 2.7). ViLBERT extends the BERT architecture to a multi-modal model

of two streams, which interact through co-attention transformer layers. ViLBERT is trained on the

Conceptual Captions dataset under two training tasks: multi-modal learning and multi-modal alignment

prediction.
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2.1. Multimodal Models

Figure 2.6: OSCAR model architecture that represents the image-text pair as a triple of word tokens, object tags

and region features.

Figure 2.7: ViLBERT model consists of two parallel streams for visual (green) and linguistic (purple) processing

that interact through co-attentional transformer layers.

ViLT. ViLT [27] is a minimal vision-and-language pre-training transformer model where the process-

ing of visual inputs is simplified to the same way that text inputs are processed (see Figure 2.8). ViLT

requires much less computation than previous VLMs and still gets good performance on downstream

tasks. ViLT is pre-trained on the following objectives: image text matching (ITM), masked language

modelling (MLM), and word patch alignment (WPA). It is fine-tuned on four downstream tasks: visual

question answering (VQA2), visual reasoning (NLVR2) and image-text retrieval (COCO and Flickr30K).

Figure 2.8: ViLT model overview.

FLAVA. FLAVA [32] is a language vision alignment model that learns representations from multimodal

and unimodal data. The model consists of three transformers, an image encoder, a text encoder and
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2. Background

a multimodal encoder (see Figure 2.9). During pretraining, masked image modelling (MIM) and mask

language modelling (MLM), image-text contrastive (ITC), masked multimodal modelling (MMM), and

image-text matching (ITM) objectives are used. Classification heads are applied to the outputs from the

encoders for visual recognition, language understanding, and multimodal reasoning tasks.

Figure 2.9: FLAVA model overview.

CLIP. CLIP [30] models adopt two unimodal encoders to get image and text representations (see

Figure 2.10). CLIP maximizes the similarity between positive image-text pairs, rendering strong unimodal

representations. CLIP was trained by OpenAI on a closed dataset of 400M image-text pairs. CLIP variants

use different visual backbones, including ViT-B/16, ViT-B/32, ViT-L/14, and ViT-L/14-336.

Figure 2.10: CLIP model architecture.

OpenCLIP. OpenCLIP [31] models follow the same architecture (see Figure 2.10), but are trained on

LAION-2B, a subset of LAION-5B [58] with 2.32 billion English captions. There are different OpenCLIP

variants depending on visual backbones: ViT-B/32, ViT-L/14, ViT-H/14, and ViT-g/14. The H/14 model

achieves 78.0% zero-shot top-1 accuracy on ImageNet and 73.4% on zero-shot image retrieval at Recall@5

on MS COCO. This makes it the best open-source CLIP model.

BLIP. BLIP [28] achieves state-of-the-art performance on five vision-language tasks: image-text

retrieval, image captioning, visual question answering, visual reasoning, and visual dialogue. It employs

a Vision Transformer (ViT) [60] as the image encoder and a BERT as the text encoder. BLIP proposes a

mixture of encoder-decoder (MED), which can operate either as a unimodal image or text encoder, an

image-grounded text encoder, or an image-grounded text decoder (see Figure 2.11). This enables both
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2.1. Multimodal Models

multimodal understanding and generation. Moreover, BLIP proposes dataset bootstrapping to improve

the quality of the pretraining captions by removing noisy ones and generating new ones. BLIP is jointly

pretrained with three objectives: language modeling (LM), image-text contrastive learning (ITC) and

image-text matching (ITM). There are BLIP variants that use different vision transformers: ViT-B/16

and ViT-L/16. Fine-tuned checkpoints are also available for many downstream tasks.

Figure 2.11: BLIP pre-training model architecture: a multimodal mixture of encoder-decoder (MED).

OFA. OFA [29] is a sequence-to-sequence pretrained model that unifies modalities and tasks. It

performs a lot of cross-modal and uni-modal tasks, including image generation, visual grounding, image

captioning, image classification and language modelling (see Figure 2.12). In contrast with the recent

VLMs that require large cross-modal datasets, OFA is pretrained on only 20M publicly available image-

text pairs. Despite this, OFA achieves SOTA in various cross-modal tasks and competitive performance

on uni-modal tasks.

Figure 2.12: OFA pretraining tasks: visual grounding, grounded captioning, image-text matching, image caption-

ing, VQA, object detection, image infilling and text infilling.

2.1.2 Multimodal RNNs

Multimodal RNNswere the SOTA approach for vision-language tasks before transformers. Two sequence-

based models are included in Winoground [9] evaluation, VSE++ [37] and VSRN [38]. Both models

minimize the hardest negative score. which is the highest-scoring image-caption pair that is not correct.

Both models use a GRU citechung2014gru to get language embeddings.
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VSE++. VSE++ [37] uses a new technique for learning visual-semantic embeddings for cross-modal

retrieval, and is based on VSE (see Figure 2.13). VSE’s image encoder is a linear projection of the

embedding from a backbone (either ResNet152 [63] or VGG19 [64]). VSE++ is trained on COCO and

Flickr30K datasets, obtaining state-of-the-art results on image-text retrieval.

Figure 2.13: VSE model architecture. The encoder is composed of a CNN and an LSTM for learning a joint

image-sentence embedding. The decoder is an NLM that combines structure and content vectors for generating

words one by one.

VSRN. VSRN [38] is a simple and interpretable reasoning model to generate a visual representation

that captures key objects and semantic concepts of a scene (see Figure 2.14). A Faster R-CNN is used to

get a sequence of features which are fed into a GRU to obtain image embeddings. VSRN is trained on

COCO and Flickr30K datasets, outperforming previous models on image-text retrieval.

Figure 2.14: An overview of VSRN (Visual Semantic Reasoning Network).

2.1.3 Diffusion Models

Diffusion models are trained to denoise random gaussian noise step by step, to get a sample image.

Neural networks are trained to predict a way to slightly denoise the picture in each step. As we can see

in Figure 2.15, after a certain number of steps, a sample is obtained.

Diffusion models have obtained SOTA results on image generation. However, one downside of

diffusion models is that the reverse denoising process is slow. In addition, these models consume a lot of

memory because they work in pixel space. Therefore, it is challenging to train these models and also to

use them for inference.

Consequently, most of the recent diffusion models, e.g. DALLE-2 [12] and IMAGEN [13], are

unfortunately not accessible to the community. The most popular exception is Stable Diffusion [17],

which has been open sourced and can be used on a single GPU.
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2.1. Multimodal Models

Figure 2.15: In the diffusion process random images are denoised in multiple steps to get a sample image.

Stable Diffusion. Stable Diffusion is based on a type of diffusion model called Latent Diffusion [17].

Latent diffusion reduces the memory and compute complexity by applying the diffusion process over a

lower dimensional latent space. There are three main components in latent diffusion: an autoencoder

(VAE), a U-Net and a text-encoder (CLIP).

The autoencoder (VAE). The VAE [65] has two parts, an encoder and a decoder, as we can see

in Figure 2.16. During latent diffusion training, the encoder maps the images to a latent space for the

forward diffusion process, which applies more noise at each step. During inference, the decoder maps

the latents generated by the reverse diffusion process back to the images. The encoder and decoder are

trained jointly to minimize the reconstruction error.

Figure 2.16: Variational Autoencoder (VAE) training and generation processes.

The U-Net. The U-Net [66] also has an encoder part and a decoder part, as shown in Figure 2.17.

The encoder has several ResNet blocks which half the image size by 2. The decoder does the opposite

process to upsample the image to the initial size. The U-Net outputs the noise residual which can

be used to compute the denoised image representation. To prevent the U-Net from losing important

information while downsampling, shortcut connections are usually added from the downsample path to

the corresponding layers in the upsample path. Moreover, the output of the stable diffusion U-Net is

conditioned on text-embeddings via cross-attention layers.

The text-encoder (CLIP). The CLIP [30] text-encoder transforms the input prompt into an embed-

ding for the U-Net. Stable Diffusion does not train the text-encoder during training and uses an already

trained CLIP text encoder.

With the previous components we nearly have the full Stable Diffusion inference architecture

Figure 2.18. The stable diffusion model takes a latent seed and a text prompt as input. The latent seed is

used to generate initial random latents. The output of the U-Net is used to compute a denoised image

representation with a scheduler algorithm. This process is repeated many to get better representations

in each iteration. Finally, the latent image representation is decoded by the VAE decoder.
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Figure 2.17: The architecture of the U-Net model.

Figure 2.18: Stable Diffusion inference architecture.

2.2 Visual Reasoning Datasets

This section includes information about visual reasoning datasets. Sections 2.2.1 and 2.2.2 introduce

some of the existing Synthetic and Natural Visual Reasoning Datasets. Section 2.2.3 explains the two

datasets that we have chosen for Compositional and Spatial Reasoning.
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2.2.1 Synthetic Visual Reasoning Datasets

Multimodal training datasets with images and descriptions that include spatial relations tend to be small.

Synthetic visual reasoning datasets have been proposed to overcome this problem. These datasets enable

full control of dataset generation, easing spatial reasoning capability probing on VLMs. Some examples

of synthetic datasets include SHAPES [67], CLEVR [68], NLVR [69] and SPARTQA [70].

SHAPES is a dataset of synthetic images designed to benchmark understanding of spatial and

logical relations among multiple objects [67]. The dataset consists of complex yes or no questions about

arrangements of colored shapes. Each image is a 3×3 grid of objects. Each object is characterized by

shape (circle, square, triangle), colour (red, green, blue) and size (small, big). Figure 2.19 shows some

example images and questions.

(a) Q: is a red shape blue?

A: no
(b) Q: is there a blue shape be-
low a square? A: no

(c) Q: is there a red shape

above a circle? A: yes
(d) Q: is there a red shape be-

low a triangle? A: yes

Figure 2.19: Example images, questions and answers from SHAPES.

CLEVR was one of the pioneering works on testing compositional language and elementary
visual reasoning [68]. However, it presents two major drawbacks: i) questions not only cover spatial

grounding but some other concepts such as compositional language and attribute identification, and ii)

spatial relations are limited to four, i.e. left, right, behind and in front. A sample image and questions

are shown in Figure 2.20.

Q: Are there an equal number of large things and metal

spheres? A: no

Q: What size is the cylinder that is left of the brown

metal thing that is left of the big sphere? A: small

Q: There is a sphere with the same size as the metal

cube; is it made of the same material as the small red sphere?

A: no

Q: How many objects are either small cylinders or

metal things? A: 6

Figure 2.20: A sample image, questions and answers from CLEVR. Questions test aspects of visual reasoning

such as attribute identification, counting, comparison, spatial relations, and logical operations.

NLVR contains natural language sentences grounded in images [69]. The task is to determine

whether a sentence is true about a visual input. The data was collected through crowdsourcing, and

solving the task requires reasoning about sets of objects, comparisons, and spatial relations. Figure 2.21

shows two examples from NLVR.

SPARTQA provides a synthetic question-answering dataset that is specially focused on spatial

reasoning capabilities [70]. SPARTQA is built on NLVR’s images containing more objects with richer

spatial structures (Figure 2.22). Questions require deeper reasoning and have four types: find relation
(FR), find blocks (FB), choose object (CO), and yes/no (YN), which allows for more fine-grained analysis of
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(a) There is at least one tower with four blocks with a yellow

block at the base and a blue block below the top block.

(b) There is exactly one tower with a blue block at the base

and yellow block at the top.

Figure 2.21: Example sentences and images from NLVR. Each image includes three boxes with different object

types. The left sentence is true, while the right is false.

models’ capabilities. However, it contains only text and no images, and therefore it does not provide

any means to ground spatial concepts.

QUESTIONS:
FB:	Which	block(s)	has	a	medium	thing	that	is	below	a	black	square?	A,	B,	C
FB:	Which	block(s)	doesn't	have	any	blue	square	that	is	to	the	left	of	a	medium	square?	A,	B
FR:	What	is	the	relation	between	the	medium	black	square	which	is	in	block	C	and	the	medium	square	that	is	below	a
medium	black	square	that	is	touching	the	bottom	edge	of	a	block?	Left
CO:	Which	object	is	above	a	medium	black	square?	the	medium	black	square	which	is	in	block	C	or	medium	black
square	number	two?	medium	black	square	number	two
YN:	Is	there	a	square	that	is	below	medium	square	number	two	above	all	medium	black	squares	that	are	touching	the
bottom	edge	of	a	block?	Yes

STORY:			
We	have	three	blocks,	A,	B	and	C.	Block	B	is	to	the	right	of	block	C	and	it	is	below	block	A.	Block	A	has	two	black
medium	squares.	Medium	black	square	number	one	is	below	medium	black	square	number	two	and	a	medium	blue
square.	It	is	touching	the	bottom	edge	of	this	block.	The	medium	blue	square	is	below	medium	black	square	number
two.	Block	B	contains	one	medium	black	square.	Block	C	contains	one	medium	blue	square	and	one	medium	black
square.	The	medium	blue	square	is	below	the	medium	black	square.

(a) An example story and corresponding questions and answers.

A

C
B

Described image

choose some objects and
relations randomly and add
relationship between blocks

NLVR image

(b) An example NLVR image and the scene created in Figure 2.22a, where the blocks in the NLVR image are rearranged.

Figure 2.22: Example from SpartQA. We can see an automatically generated story and corresponding questions

and answers.

A very recent work proposes a method called Pseudo-Q to automatically create synthetic
datasets that can be used to train visually grounded models [71]. Their method consists of leveraging an

off-the-shelf object detector to identify visual objects from unlabeled images, and then creating language

queries for these objects that are obtained in an unsupervised fashion with a pseudo-query generation

module.

The major drawback of synthetic datasets is that they do not always accurately reflect the challenges

of reasoning in the real world. Some aspects that are very important in the real world are not taken into

account in synthetic images. For example, the orientations of objects, their context and the viewpoint

can affect their spatial relation.
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2.2. Visual Reasoning Datasets

2.2.2 Natural Visual Reasoning Datasets

Many vision-language datasets with natural images also contain spatial relations. For example, NLVR2

[15], MS COCO [39], and VQA [14].

NLVR2 is a dataset for joint reasoning about natural language and images, with a focus on semantic

diversity, compositionality, and visual reasoning challenges [15]. There are 9 prevalent linguistic

challenges in NLVR2 among which are spatial relations. The examples in Figure 2.23 require addressing

challenging semantic phenomena.

(a) The left image contains twice the number of dogs as the

right image, and at least two dogs in total are standing.

(b) One image shows exactly two brown acorns in back-to-

back caps on green foliage.

Figure 2.23: Two examples from NLVR2, where each caption is paired with two images. The first caption is True

and the second one is False.

VQA [14] is a popular vision and language task. Given an image and a question about the image,

the task is to provide an accurate answer. VQA is commonly used as a benchmark to evaluate VQA

systems. Questions are generally open-ended but multiple choices are provided for some questions.

Some examples are shown in Figure 2.24.

Who is wearing glasses? Where is the child sitting?

Is the umbrella upside down? How many children are in the bed?

womanman armsfridge

noyes 12

Figure 2.24: Example images, questions and answers from VQA.

The problem with these datasets is that many different challenges are mixed. Sentences have

complex lexical and syntactic information. This makes it hard to identify the exact challenges, preventing

categorised analysis.
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2. Background

2.2.3 Compositional and Spatial Reasoning Datasets

To address the problem of mixed challenges, some datasets focus on a single challenge. For instance,

Winoground [9] focuses on compositional reasoning and Visual Spatial Reasoning (VSR) [25] on
spatial reasoning. They also contain tags, which enable an in-depth analysis of each visual reasoning

challenge. We only provide a short description in this section, but we explain them in detail in the next

chapters.

On the one hand,Winoground dataset [9] is focused on evaluating visio-linguistic composi-
tional reasoning in VLMs. Each instance in the dataset is composed of two images and two captions.

Both captions contain a completely identical set of words in a different order. The task is then to match

them correctly, which requires the systems to properly deal with composition in natural language.

Previous works have shown that language transformers have difficulties in learning word order
[72, 73]. Winoground provides a means to test whether this is also true for multimodal models. We

show some examples in Chapter 3 (Figures 3.1 to 3.3).

On the other hand, Visual Spatial Reasoning (VSR) [25], whose objective is to test spatial

grounding capabilities by covering 65 different spatial relations over natural images collected from

COCO [39]. Given an image, VSR provides a caption which describes a spatial relation between two of

the objects that appear in the image. That relation can be real or fake, and that is what the model has to

infer. Another advantage of this dataset is that it is annotated by humans. Given its features, we believe

VSR is a good candidate to evaluate spatial grounding in LMs. We show some examples of VSR in

Chapter 4 (Figures 4.1 and 4.2).
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This chapter describes the Winoground [9] dataset (Section 3.1) and explains the metrics used for

evaluation. We also describe a series of previous and new experiments performed over the Winoground

dataset using state-of-the-art vision and language models (Section 3.3). The Winoground dataset does

not contain a training split, and therefore the experiments are conducted in a zero-shot fashion, where

the models are trained on different datasets, and tested on Winoground.

The original Winoground paper included zero-shot experiments with many pre-trained SOTA sys-

tems, and they concluded that, surprisingly, none of them does much better than chance [9]. From these

experiments, the authors conclude that SOTA models are not as skilled at visio-linguistic compositional

reasoning as we might have hoped.

In this work, we extended the previous experiments with new models that obtained better results

than those reported in the original paper. In previous experiments, only pre-trained models are tested.

We extend this by testing some models that are fine-tuned for specific tasks such as image-text retrieval

and visual reasoning. We compare pre-trained versions with fine-tuned versions of the same models

and find out that fine-tuning helps.

3.1 Winoground Dataset

The Winoground dataset [9] comprises 400 examples that probe different aspects of visio-linguistic

compositional reasoning. Each example contains two images and two captions, the goal is to match

them correctly. Both captions contain a completely identical set of words or morphemes in a different

order. Figures 3.1 to 3.3 show some examples. The dataset was created by expert annotators by designing

captions and finding images on Getty Images. All examples are labeled with linguistic tags and some

include visual tags. See Table 3.1 for linguistic and visual tag counts.

Category Tag Count

Object 141

Linguisticswap-dep. Relation 233

Both 26

Linguisticswap-indep. 1 Main Pred 292

2 Main Preds 108

Symbolic 41

Visual Series 31

Pragmatics 24

Table 3.1: Linguistic and visual tag counts in the Winoground dataset. Every example has a linguistic tag; only

examples that contain visual phenomena have visual tags.

On the one hand, there are 70 linguistic tags in total, which can be split into three groups: Object,

Relation and Both. Object swaps consist in swapping noun phrases that refer to objects. Relation
swaps reorder words that refer to objects such as verbs, adjectives, prepositions and adverbs. Both
swaps involve changing both relations and objects. The annotators also tagged examples for howmany
main predicates were in the captions, which is independent of the swap type. See Figures 3.1 and 3.2

for examples of linguistic tags.
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3. Winoground Zero-shot Experiments

(a) [some plants] surrounding [a light-

bulb]

(b) [a lightbulb] surrounding [some

plants]

Object

(c) a [brown] dog is on a [white] couch

(d) a [white] dog is on a [brown] couch

Relation

(e) [circular] food on [heart-shaped]

wood

(f) [heart-shaped] food on [circular]

wood

Relation

Figure 3.1: Examples from the Winoground dataset for the swap-dependent linguistic tags Object, Relation and

Relation from left to right. They are additionally tagged with 1 main predicate.

(a) there is [a mug] in [some grass]

(b) there is [some grass] in [a mug]

Object

(c) a person [sits] and a dog [stands]

(d) a person [stands] and a dog [sits]

Relation

(e) it’s a [fire] [truck]

(f) it’s a [truck] [fire]

Both

Figure 3.2: Examples from the Winoground dataset for the swap-dependent linguistic tags Object, Relation and

Both from left to right. They are additionally tagged with 1, 2 and 1 main predicates from left to right.

On the other hand, there are three non-mutually exclusive visual reasoning tags: Pragmatics,

Series and Symbolic. Pragmatics tag includes images that need to be interpreted non-literally. Series
tag contains examples where both images come from the same photo series. Symbolic tag represents
that the images include a symbolic representation. Figure 3.3 shows examples of visual tags.

Winoground is a probing dataset so it prioritizes expert annotations over size. Therefore, there is no

training split, all examples are used to evaluate models. The dataset has 400 examples, with 800 unique

captions and images. These contain 1600 image-text pairs in total, with 800 correct and 800 incorrect

pairings.
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(a) the kid [with the magnifying glass]

looks at them []

(b) the kid [] looks at them [with the

magnifying glass]

Pragmatics

(c) the person with the ponytail

[packs] stuff and other [buys] it

(d) the personwith the ponytail [buys]
stuff and other [packs] it

Series

(e) there are [three] people and [two]

windows

(f) there are [two] people and [three]

windows

Symbolic

Figure 3.3: Examples from the Winoground dataset for the visual tags Pragmatics, Series and Symbolic from left

to right. They are additionally tagged with the Relation tag, and 1, 2, and 1 main predicate from left to right.

3.2 Metrics

An example in Winoground is composed of two caption-image pairs: (C0, I0) and (C1, I1). Metrics

must measure models’ abilities to match pairs correctly. We compute two types of metrics, score and
accuracy.

Score. Performance on Winoground [9] is computed according to three different score metrics that

evaluate different aspects of the models’ visio-linguistic reasoning abilities.

The first metric is the text score, which measures whether a model can select the correct caption,

given an image:

ts(C0, I0, C1, I1) =


1 if s(C0, I0) > s(C1, I0)

and s(C1, I1) > s(C0, I1)

0 otherwise

(3.1)

The second metric is the image score, which measures whether a model can select the correct

image, given a caption:

is(C0, I0, C1, I1) =


1 if s(C0, I0) > s(C0, I1)

and s(C1, I1) > s(C1, I0)

0 otherwise

(3.2)

Our final metric group score combines the previous two, which measures if every combination for

a given example is correct:

gs(C0, I0, C1, I1) =


1 if ts(C0, I0, C1, I1)

and is(C0, I0, C1, I1)

0 otherwise

(3.3)
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3. Winoground Zero-shot Experiments

Accuracy. We also add three additional accuracy metrics for additional information. These are similar

to the previous ones, but the accuracy is 0.5 when one of the pairs is correct.

The text accuracy for an example is computed according to:

ta(C0, I0, C1, I1) =



1 if s(C0, I0) > s(C1, I0)

and s(C1, I1) > s(C0, I1)

0.5 if s(C0, I0) > s(C1, I0)

xor s(C1, I1) > s(C0, I1)

0 otherwise

(3.4)

The image accuracy for an example is calculated according to:

ia(C0, I0, C1, I1) =



1 if s(C0, I0) > s(C0, I1)

and s(C1, I1) > s(C1, I0)

0.5 if s(C0, I0) > s(C0, I1)

xor s(C1, I1) > s(C1, I0)

0 otherwise

(3.5)

The group accuracy in our framework is the mean of both accuracies:

ga(C0, I0, C1, I1) = (ta(C0, I0, C1, I1) + ia(C0, I0, C1, I1))/2 (3.6)

3.3 Experiments and Results

In this section, we describe a series of previous and new experiments performed over the Winoground

dataset using state-of-the-art vision and language models. We compare our results with the previous

experiments and with human performance (Section 3.3.1). We also perform analysis by linguistic and

visual tags and find that some tags are more challenging for models and others for humans (Sections 3.3.2

and 3.3.3).

3.3.1 Compared To Humans

Previous. We show baseline results from previous experiments [9] in Table 3.2, which includes the

following multimodal transformers: CLIP [30], FLAVA [32], LXMERT [11], UniT [33], UNITER [34],

VILLA [35], VinVL [36], ViLT [27], VisualBERT [26] and ViLBERT [10]. Several configurations of two

types of RNN-based models are also included: VSE++ [37] and VSRN [38].

Human performance was computed using crowd workers on the Amazon Mechanical Turk

platform. This establishes a more conservative human baseline than the expert annotator’s perfect score

[9]. Annotators are shown one image and one caption at a time and have to decide if they match. All

1600 combinations of images and captions are labelled by at least ten annotators. The image-caption

score is computed as the ratio of annotators who say that they match.

Table 3.2 shows that there is a large performance gap between humans and models. On the one

hand, human performance is high in all metrics, between 85% and 90% in scores and around 93% in

accuracy. On the other hand, most models perform below random chance in all scores and slightly

above random chance in accuracy.

First, only some models are above random chance in text score: UNITER, VILLA, VinVL, ViLT,
FLAVA, and CLIP. The larger versions of UNITER and VILLA, and VinVL are the models that perform

best, and there is still more than 50% difference with human performance.
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Score Accuracy

Model Text Image Group Text Image Group

MTurk Human 89.50 88.50 85.50 93.75 93.88 93.81
Random Chance 25.00 25.00 16.67 50.00 50.00 50.00

VinVL 37.75 17.75 14.50 62.75 57.75 60.25
UNITERlarge 38.00 14.00 10.50 63.25 55.75 59.50
UNITERbase 32.25 13.25 10.00 60.62 55.50 58.06
ViLLAlarge 37.00 13.25 11.00 62.62 55.25 58.94
ViLLAbase 30.00 12.00 8.00 59.62 55.00 57.31
VisualBERTbase 15.50 2.50 1.50 50.50 49.88 50.19
ViLT (ViT-B/32) 34.75 14.00 9.25 60.50 55.38 57.94
LXMERT 19.25 7.00 4.00 52.12 51.88 52.00
ViLBERTbase 23.75 7.25 4.75 57.25 52.50 54.87
UniTITMFinetuned 19.50 6.25 4.00 50.25 50.75 50.50
FLAVAITM 32.25 20.50 14.25 62.75 59.13 60.94
FLAVAITC 25.25 13.50 9.00 59.25 55.12 57.19
CLIP (ViT-B/32) 30.75 10.50 8.00 60.38 53.25 56.81
VSE++COCO (ResNet) 22.75 8.00 4.00 51.38 50.88 51.12
VSE++COCO (VGG) 18.75 5.50 3.50 50.38 49.75 50.06
VSE++Flickr30k (ResNet) 20.00 5.00 2.75 51.50 50.25 50.88
VSE++Flickr30k (VGG) 19.75 6.25 4.50 52.75 51.00 51.88
VSRNCOCO 17.50 7.00 3.75 50.38 51.12 50.75
VSRNFlickr30k 20.00 5.00 3.50 53.25 51.75 52.50

Table 3.2: Previous results on the Winoground dataset across the text, image and group score and accuracy

metrics. Results above random chance in bold.

Second, the performance on image score is even worse, where no model performs better than

random chance. In contrast, text and image scores in humans are nearly the same. Even the best

performing models (FLAVAITM and VinVL) have nearly 70% difference with the human score.

Last, group score is also below random chance for all models, while it is only a bit lower than other

scores for humans. Similar to the image score, there is a 70% difference between the human score and

the best models, which are again FLAVAITM and VinVL.

Ours. We show our results in Table 3.3, which includes various configurations of the following

multimodal transformers: OFA [29], BLIP [28], CLIP [30], FLAVA [32] and ViLT [27]. OFA and BLIP

were not included in the previous experiments. The other models were already included but we test

more configurations. For example, we test ViLT models that are finetuned on Flickr30k, COCO, NLVR2

and VSR. All the models except ViLTV SR are already fine-tuned and publicly available.

In the baseline models, only pre-trained models are tested. We extend this by testing some models

that are fine-tuned for specific tasks. Those tasks include image-text retrieval and visual reasoning. We

compare pre-trained versions with fine-tuned versions of the same models. Our aim is to measure if

scores improve by fine-tuning on related tasks.

Depending on the model and setting, the score for an image-text pair is calculated in a different

way. For contrastive models, we use cosine similarity between image and text embeddings (CLIP). Other

models use the softmaxed probability from the image-text-match classifier (ViLT). BLIP and FLAVA

include both options, image-text contrastive (ITC) and image-text matching (ITM) scores. OFA is a

generative model, so we have to use the probability of generating that the image and text match. For

models fine-tuned on visual reasoning tasks, we take the probability of the True label as a score. Due to

its generative nature, we decided to test OFA, hoping that it would have better spatial reasoning skills.

We test 6 different versions of ViLT. The first one is the pre-trained version, without finetuning.

Two others are finetuned for retrieval on COCO and Flickr30k. The next one is finetuned for visual

reasoning on NLVR2. The last two are finetuned on different splits of VSR. The best one is the one

trained on NLVR2, which shows that finetuning on that task helps perform better on Winoground. VSR
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Score Accuracy

Model Text Image Group Text Image Group

MTurk Human 89.50 88.50 85.50 93.75 93.88 93.81
Random Chance 25.00 25.00 16.67 50.00 50.00 50.00

ViLT (ViT-B/32) 27.50 8.75 6.00 56.88 53.12 55.00
ViLTCOCO (ViT-B/32) 32.75 13.50 11.25 61.88 56.00 58.94
ViLTFlickr30k (ViT-B/32) 35.00 11.50 9.75 61.62 54.50 58.06
ViLTNLV R2 (ViT-B/32) 38.00 15.25 12.00 58.75 55.62 57.19
ViLTV SR Random (ViT-B/32) 30.50 14.50 8.00 59.00 55.75 57.38
ViLTV SR Zero-shot (ViT-B/32) 29.50 14.00 9.25 58.38 54.75 56.56
FLAVAITM 32.25 20.50 14.25 62.75 59.13 60.94
FLAVAITC 25.25 13.50 9.00 59.25 55.12 57.19
CLIP (ViT-B/32) 30.75 10.25 8.25 60.38 53.12 56.75
CLIP (ViT-B/16) 25.00 10.25 7.00 57.88 53.75 55.81
CLIP (ViT-L/14) 28.50 11.00 8.00 60.38 54.62 57.50
CLIP (ViT-L/14-336) 27.50 12.00 8.00 59.38 55.12 57.25
OpenCLIP (ViT-B/32) 35.00 11.50 8.25 62.62 54.37 58.50
OpenCLIP (ViT-L/14) 30.25 11.75 9.00 59.88 54.12 57.00
OpenCLIP (ViT-H/14) 33.00 13.00 10.50 60.38 55.75 58.06
OpenCLIP (ViT-g/14) 31.00 10.25 7.75 60.88 54.50 57.69
OFAT iny 20.50 8.00 3.75 53.50 52.00 52.75
OFABase 26.50 10.50 7.00 58.88 54.00 56.44
OFAMedium 22.75 9.00 5.50 54.25 52.75 53.50
OFALarge 26.00 8.75 5.75 58.38 52.88 55.62
OFAHuge 36.25 15.50 13.50 64.38 56.62 60.50
BLIPITM14M (ViT-B/16) 39.25 19.00 15.00 65.88 58.25 62.06
BLIPITC14M (ViT-B/16) 32.25 13.75 10.50 62.25 56.50 59.38
BLIPITM (ViT-B/16) 40.50 20.50 16.50 66.25 59.00 62.62
BLIPITC (ViT-B/16) 29.75 14.50 9.50 59.88 56.12 58.00
BLIPITM (ViT-B/16) (CapFilt-L) 37.50 18.50 14.00 65.00 59.13 62.06
BLIPITC (ViT-B/16) (CapFilt-L) 31.50 10.50 8.50 61.38 53.62 57.50
BLIPITM (ViT-L/16) 42.50 18.25 15.50 66.88 57.25 62.06
BLIPITC (ViT-L/16) 33.25 12.00 9.00 61.75 55.00 58.38
BLIPITMCOCO (ViT-B/16) 48.00 24.50 20.00 69.88 61.25 65.56
BLIPITCCOCO (ViT-B/16) 37.75 15.75 12.75 65.00 56.88 60.94
BLIPITMFlickr30k (ViT-B/16) 46.25 24.25 21.25 69.25 60.62 64.94
BLIPITCF lickr30k (ViT-B/16) 38.25 15.00 12.25 65.38 56.12 60.75
BLIPITMCOCO (ViT-L/16) 46.75 24.00 20.50 68.88 61.00 64.94
BLIPITCCOCO (ViT-L/16) 37.75 13.75 10.50 64.88 55.75 60.31
BLIPITMFlickr30k (ViT-L/16) 45.00 24.75 20.50 68.62 60.50 64.56
BLIPITCF lickr30k (ViT-L/16) 36.00 16.25 13.50 63.38 56.75 60.06
BLIPNLV R2 (ViT-B/16) 40.25 25.00 18.50 64.62 61.62 63.12

Table 3.3: Our results on the Winoground dataset across the text, image and group score and accuracy metrics.

Results above random chance in bold.

fine-tuning also increases scores, but not as much as NLVR2. Finetuning for retrieval is also helpful

and improves the results of the pre-trained model. The score of the pre-trained model is lower than the

baseline one.

For FLAVA and CLIPwe manage to replicate baseline results. We also test 3 other OpenAI CLIP [30]

models with different configurations and find that they all perform similar to the baseline configuration.

Finally, we test some newOpenCLIP [31] models, that were trained on LAION-2B, a subset of LAION-5B

[58] with English captions. These models perform slightly better than OpenAI CLIP models.

We test the 5 model sizes of OFA. Considering that this model gets state-of-the-art performance

on many tasks, the performance is not very good. Even the biggest model is not better than the best

baseline model. OFA is trained to generate "yes" or "no" when given an image and the text "Does the

image describe <caption>?". This might explain why it does not perform that well on retrieval and

Winoground.

We test many configurations of BLIP, which include different training sizes, scoring, vision trans-

former sizes and finetuning datasets. ITM score is better than ITC score in all the cases. Even the

14M pretrained-only model is better than all the previously tested models. When compared with the

129M pretrained model, we find that there is only a small difference in performance. This suggests
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that pretraining on more data might not be enough to increase performance. Using a bigger vision
backbone (ViT-L/16) does not improve results either, getting similar or worse results when compared

to ViT-B/16. Finally, using caption filtering (CapFilt-L) also provides worse results. This suggests that

improving pretraining captions is not

Finetuning BLIP on different tasks increases results significantly. Finetuning for retrieval on
COCO and Flickr30k improves the results a lot, reaching nearly above random performance in text,

image and group scores. Finetuning on NLVR2 is also very helpful, but a bit less than retrieval. This

contrasts with ViLT, which gets the best results when finetuned on NLVR2. The best BLIP scores are

much better than previous models, 10% in text score, 4% in image score and 7% in group score.

However, even the best model is still far from human performance in text, image and group

scores. There is still a 40% gap in text scores, and 64% in image and group scores. If we look at accuracy

metrics, the gap is reduced, but the difference is still very big. Image score remains much lower than

text score for all the models.

3.3.2 Results By Linguistic Tag

Previous. Table 3.4 shows results from previous experiments [9] by linguistic tags. The highest

human performance for swap-dependent linguistic tags is on object, followed by relation and

then both. For the swap-independent linguistic tags, humans do better on examples with two main

predicates, which tend to be longer and more complicated. We include correlation analysis between

caption perplexity and model scores in Appendix A.1. Appendix A.2 includes correlation analysis

between pretraining dataset size and model scores.

Models perform much worse in all tags, but they show the opposite pattern. They perform better

on examples with simpler and shorter sentences which often have morpheme-level swaps. Examples

with the both tag have some of the shortest and least compositional captions. Many models get better

than random performance on this tag, and CLIP even reaches human performance on text score. Image

score remains lower than text score for all tags and models.

Object Relation Both 1 Main Pred 2 Main Preds

Model Text Image Group Text Image Group Text Image Group Text Image Group Text Image Group

MTurk Human 92.20 90.78 88.65 89.27 90.56 86.70 76.92 57.69 57.69 87.33 85.62 82.53 95.37 96.30 93.52
VinVL 36.88 17.73 14.18 37.77 17.60 14.16 42.31 19.23 19.23 39.38 21.23 17.47 33.33 8.33 6.48

UNITERlarge 39.01 12.77 9.93 36.05 14.16 9.87 50.00 19.23 19.23 40.07 16.44 13.36 32.41 7.41 2.78

UNITERbase 34.04 11.35 9.22 30.04 14.16 10.30 42.31 15.38 11.54 35.27 14.73 11.99 24.07 9.26 4.63

ViLLAlarge 36.88 14.89 11.35 37.34 12.88 11.16 34.62 7.69 7.69 39.73 17.12 14.38 29.63 2.78 1.85

ViLLAbase 33.33 15.60 9.93 27.04 9.01 6.01 38.46 19.23 15.38 33.22 14.04 10.27 21.30 6.48 1.85

VisualBERTbase 19.15 2.13 0.71 12.88 2.15 1.72 19.23 7.69 3.85 16.44 2.74 1.71 12.96 1.85 0.93

ViLT (ViT-B/32) 31.91 15.60 9.22 36.91 11.59 8.15 30.77 26.92 19.23 35.27 17.12 11.64 33.33 5.56 2.78

LXMERT 22.70 9.22 6.38 17.60 5.58 2.58 15.38 7.69 3.85 19.18 8.56 5.14 19.44 2.78 0.93

ViLBERTbase 29.08 10.64 7.09 19.31 3.00 1.72 34.62 26.92 19.23 23.97 8.90 5.82 23.15 2.78 1.85

UniTITMfinetuned 17.73 5.67 2.13 18.03 4.72 3.43 42.31 23.08 19.23 21.58 6.85 4.11 13.89 4.63 3.70

FLAVAITM 31.91 23.40 14.89 30.04 16.31 12.02 53.85 42.31 30.77 36.30 24.66 17.81 21.30 9.26 4.63

FLAVAITC 23.40 19.15 11.35 23.61 8.58 5.58 50.00 26.92 26.92 26.37 16.44 10.62 22.22 5.56 4.63

CLIP (ViT-B/32) 34.75 7.80 6.38 22.75 8.58 5.58 80.77 42.31 38.46 35.27 13.01 10.27 18.52 3.70 1.85

VSE++COCO (ResNet) 21.99 6.38 1.42 23.61 9.01 5.58 19.23 7.69 3.85 25.00 9.59 4.79 16.67 3.70 1.85

VSE++COCO (VGG) 17.73 2.13 2.13 18.45 7.30 3.86 26.92 7.69 7.69 18.49 4.79 2.74 19.44 7.41 5.56

VSE++Flickr30k (ResNet) 20.57 6.38 3.55 18.88 4.29 2.15 26.92 3.85 3.85 21.58 6.51 3.42 15.74 0.93 0.93

VSE++Flickr30k (VGG) 17.73 4.96 2.84 19.74 6.87 5.15 30.77 7.69 7.69 20.55 6.16 4.79 17.59 6.48 3.70

VSRNCOCO 15.60 4.96 2.13 18.88 7.73 4.72 15.38 11.54 3.85 17.12 7.19 3.77 18.52 6.48 3.70

VSRNFlickr30k 16.31 4.96 2.13 21.03 4.29 3.86 30.77 11.54 7.69 20.89 5.82 3.77 17.59 2.78 2.78

Table 3.4: Previous results by linguistic tag. Results above chance are in bold.

Ours. Table 3.5 shows results from our experiments by linguistic tags. We see a similar pattern when

compared with previous experiments. Models perform worse on more complicated sentences. BLIP is

the best model in nearly all tags, performing above chance in most of them. The only exception is CLIP,

which is better in both tag scores. Even the best BLIP model is far from random chance on image and

group scores of examples with 2 main preds, the tag where human performance is best. Finetuning
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3. Winoground Zero-shot Experiments

helps with most tags and ITM remains better than ITC is most tags, with a few exceptions in both tag

scores.

Object Relation Both 1 Main Pred 2 Main Preds

Model Text Image Group Text Image Group Text Image Group Text Image Group Text Image Group

MTurk Human 92.20 90.78 88.65 89.27 90.56 86.70 76.92 57.69 57.69 87.33 85.62 82.53 95.37 96.30 93.52
ViLT (ViT-B/32) 29.08 10.64 4.96 26.18 7.73 6.44 30.77 7.69 7.69 30.14 10.62 7.53 20.37 3.70 1.85

ViLTCOCO (ViT-B/32) 33.33 15.60 12.77 30.90 10.73 9.01 46.15 26.92 23.08 36.64 15.75 14.04 22.22 7.41 3.70

ViLTFlickr30k (ViT-B/32) 32.62 14.89 11.35 35.62 8.15 7.73 42.31 23.08 19.23 36.99 14.38 11.99 29.63 3.70 3.70

ViLTNLV R2 (ViT-B/32) 39.01 16.31 14.18 36.48 14.59 10.30 46.15 15.38 15.38 39.73 18.15 15.07 33.33 7.41 3.70

ViLTV SR Random (ViT-B/32) 34.75 17.73 9.93 27.47 11.16 6.01 34.62 26.92 15.38 32.53 16.44 9.59 25.00 9.26 3.70

ViLTV SR Zero-shot (ViT-B/32) 34.75 19.86 14.18 26.18 10.73 6.44 30.77 11.54 7.69 32.19 15.75 11.30 22.22 9.26 3.70

FLAVAITM 31.91 23.40 14.89 30.04 16.31 12.02 53.85 42.31 30.77 36.30 24.66 17.81 21.30 9.26 4.63

FLAVAITC 23.40 19.15 11.35 23.61 8.58 5.58 50.00 26.92 26.92 26.37 16.44 10.62 22.22 5.56 4.63

CLIP (ViT-B/32) 35.46 7.80 6.38 22.32 7.73 5.58 80.77 46.15 42.31 35.62 13.01 10.62 17.59 2.78 1.85

CLIP (ViT-B/16) 27.66 10.64 5.67 19.31 6.44 4.29 61.54 42.31 38.46 30.14 11.99 8.90 11.11 5.56 1.85

CLIP (ViT-L/14) 27.66 8.51 5.67 25.75 9.87 6.44 57.69 34.62 34.62 30.14 13.01 9.93 24.07 5.56 2.78

CLIP (ViT-L/14-336) 32.62 12.77 9.22 21.03 8.15 4.29 57.69 42.31 34.62 30.48 14.04 10.62 19.44 6.48 0.93

OpenCLIP (ViT-B/32) 39.01 11.35 9.93 30.90 9.44 5.15 50.00 30.77 26.92 37.33 13.36 10.27 28.70 6.48 2.78

OpenCLIP (ViT-L/14) 34.04 12.06 9.22 25.32 8.58 6.01 53.85 38.46 34.62 32.19 14.73 11.64 25.00 3.70 1.85

OpenCLIP (ViT-H/14) 39.01 12.77 10.64 26.61 9.44 6.87 57.69 46.15 42.31 36.30 17.12 14.38 24.07 1.85 0.00

OpenCLIP (ViT-g/14) 33.33 9.93 6.38 25.75 8.58 6.44 65.38 26.92 26.92 35.96 12.67 9.93 17.59 3.70 1.85

OFAT iny 22.70 6.38 2.13 17.17 6.87 3.43 38.46 26.92 15.38 23.97 8.22 4.45 11.11 7.41 1.85

OFABase 25.53 14.18 7.09 24.46 6.87 5.15 50.00 23.08 23.08 28.77 12.67 8.56 20.37 4.63 2.78

OFAMedium 19.86 7.80 4.26 22.32 7.73 4.72 42.31 26.92 19.23 24.32 10.96 6.85 18.52 3.70 1.85

OFALarge 26.24 10.64 5.67 24.03 5.15 3.86 42.31 30.77 23.08 29.45 10.96 7.53 16.67 2.78 0.93

OFAHuge 40.43 18.44 15.60 30.90 11.59 9.87 61.54 34.62 34.62 39.73 19.18 16.78 26.85 5.56 4.63

BLIPITM14M (ViT-B/16) 41.84 23.40 17.73 36.05 14.59 11.59 53.85 34.62 30.77 43.84 23.63 18.49 26.85 6.48 5.56

BLIPITC14M (ViT-B/16) 34.04 13.48 9.93 28.33 12.02 9.44 57.69 30.77 23.08 37.67 16.44 13.01 17.59 6.48 3.70

BLIPITM (ViT-B/16) 46.10 22.70 17.73 35.62 17.60 14.16 53.85 34.62 30.77 45.89 25.34 20.55 25.93 7.41 5.56

BLIPITC (ViT-B/16) 34.75 14.18 9.22 25.32 13.73 8.58 42.31 23.08 19.23 33.56 16.10 10.62 19.44 10.19 6.48

BLIPITM (ViT-B/16) (CapFilt-L) 39.01 19.86 12.77 34.76 15.88 12.45 53.85 34.62 34.62 41.10 22.60 17.12 27.78 7.41 5.56

BLIPITC (ViT-B/16) (CapFilt-L) 36.88 12.77 9.22 26.18 8.58 7.30 50.00 15.38 15.38 35.96 13.36 10.96 19.44 2.78 1.85

BLIPITM (ViT-L/16) 41.84 19.86 17.02 40.77 16.31 13.73 61.54 26.92 23.08 45.55 23.29 20.21 34.26 4.63 2.78

BLIPITC (ViT-L/16) 34.04 14.18 11.35 30.90 9.01 6.01 50.00 26.92 23.08 36.99 14.04 10.96 23.15 6.48 3.70

BLIPITMCOCO (ViT-B/16) 42.55 26.95 19.15 49.79 21.89 19.31 61.54 34.62 30.77 48.97 29.79 24.66 45.37 10.19 7.41

BLIPITCCOCO (ViT-B/16) 36.88 19.15 14.18 36.05 11.59 10.30 57.69 34.62 26.92 41.78 18.84 15.07 26.85 7.41 6.48

BLIPITMFlickr30k (ViT-B/16) 49.65 28.37 22.70 42.49 19.74 18.45 61.54 42.31 38.46 51.03 28.42 26.03 33.33 12.96 8.33

BLIPITCF lickr30k (ViT-B/16) 36.88 17.02 10.64 36.48 12.02 11.16 61.54 30.77 30.77 40.75 17.12 13.70 31.48 9.26 8.33

BLIPITMCOCO (ViT-L/16) 48.94 25.53 20.57 44.64 22.32 20.60 53.85 30.77 19.23 51.03 28.42 23.97 35.19 12.04 11.11

BLIPITCCOCO (ViT-L/16) 36.88 14.18 11.35 36.05 11.16 7.30 57.69 34.62 34.62 41.10 16.44 13.36 28.70 6.48 2.78

BLIPITMFlickr30k (ViT-L/16) 46.10 22.70 16.31 42.06 24.89 21.46 65.38 34.62 34.62 50.34 29.11 24.66 30.56 12.96 9.26

BLIPITCF lickr30k (ViT-L/16) 39.01 19.86 15.60 30.47 11.59 9.44 69.23 38.46 38.46 39.38 20.55 17.12 26.85 4.63 3.70

BLIPNLV R2 (ViT-B/16) 42.55 23.40 19.86 36.48 25.32 16.74 61.54 30.77 26.92 42.47 27.74 21.23 34.26 17.59 11.11

Table 3.5: Our results by linguistic tag. Results above chance are in bold.

3.3.3 Results By Visual Tag

Previous. Table 3.6 shows results from previous experiments [9] by visual tags. First, humans and

models are especially good at the symbolic examples. Some models even get above random chance in

image and group scores but are still very far from humans. Next, human performance is very low on the

pragmatics tag. Ten human crowdworkers probably didn’t capture slight pragmatics preferences that

the expert linguist annotators agreed on. Models are also quite bad on this tag, text scores are quite

good but many of them get 0% scores on image and group scores. There are a few exceptions that get

good scores, even getting close to humans. Finally, humans are very good on series tag while models

do worst on this tag. Similar to pragmatics, many get a 0% group score. This means that models are

always choosing the same image regardless of the caption. This is understandable because images from

the same series tend to be very similar between them.

Ours. Table 3.7 shows results from our experiments by visual tags. We see a similar pattern when

compared with previous experiments. BLIP is again the best model in all tags, performing above chance

in most of them. However, even the best BLIP model is far from random chance on image and group

scores of examples with series tag. It also struggles a lot in pragmatics, where there are only a few

exceptions that surpass random chance in group score. Finetuning helps with most tags and ITM remains

better than ITC, with big differences in most cases.
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3.3. Experiments and Results

Symbolic Pragmatics Series

Model Text Image Group Text Image Group Text Image Group

MTurk Human 96.43 92.86 92.86 58.82 41.18 41.18 95.65 91.30 91.30
VinVL 25.00 17.86 14.29 29.41 5.88 5.88 34.78 17.39 13.04

UNITERlarge 39.29 28.57 17.86 35.29 0.00 0.00 4.35 8.70 0.00

UNITERbase 46.43 14.29 14.29 29.41 17.65 11.76 8.70 8.70 0.00

ViLLAlarge 39.29 14.29 10.71 17.65 0.00 0.00 17.39 4.35 0.00

ViLLAbase 42.86 17.86 14.29 29.41 5.88 5.88 13.04 8.70 4.35

VisualBERTbase 28.57 0.00 0.00 5.88 0.00 0.00 13.04 0.00 0.00

ViLT (ViT-B/32) 28.57 17.86 10.71 35.29 0.00 0.00 26.09 0.00 0.00

LXMERT 28.57 3.57 3.57 17.65 5.88 0.00 8.70 4.35 0.00

ViLBERTbase 28.57 10.71 7.14 29.41 5.88 5.88 13.04 0.00 0.00

UniTITMfinetuned 14.29 10.71 7.14 17.65 5.88 5.88 21.74 4.35 4.35

FLAVAITM 25.00 28.57 17.86 17.65 29.41 11.76 17.39 8.70 0.00

FLAVAITC 17.86 10.71 10.71 11.76 23.53 5.88 17.39 4.35 4.35

CLIP (ViT-B/32) 39.29 3.57 3.57 35.29 5.88 5.88 8.70 0.00 0.00

VSE++COCO (ResNet) 32.14 10.71 10.71 23.53 11.76 0.00 13.04 4.35 4.35

VSE++COCO (VGG) 17.86 14.29 7.14 17.65 0.00 0.00 13.04 4.35 4.35

VSE++Flickr30k (ResNet) 21.43 3.57 0.00 23.53 0.00 0.00 17.39 4.35 0.00

VSE++Flickr30k (VGG) 28.57 10.71 10.71 11.76 0.00 0.00 13.04 4.35 0.00

VSRNCOCO 7.14 3.57 0.00 11.76 0.00 0.00 13.04 0.00 0.00

VSRNFlickr30k 21.43 3.57 3.57 35.29 11.76 5.88 8.70 4.35 4.35

Table 3.6: Previous results by visual tag. Results above chance are in bold.

Symbolic Pragmatics Series

Model Text Image Group Text Image Group Text Image Group

MTurk Human 96.43 92.86 92.86 58.82 41.18 41.18 95.65 91.30 91.30
ViLT (ViT-B/32) 21.43 7.14 3.57 17.65 5.88 5.88 17.39 8.70 4.35

ViLTCOCO (ViT-B/32) 21.43 10.71 10.71 29.41 17.65 5.88 21.74 8.70 4.35

ViLTFlickr30k (ViT-B/32) 28.57 7.14 7.14 23.53 0.00 0.00 26.09 4.35 4.35

ViLTNLV R2 (ViT-B/32) 42.86 10.71 10.71 41.18 0.00 0.00 17.39 13.04 4.35

ViLTV SR Random (ViT-B/32) 28.57 14.29 7.14 29.41 11.76 5.88 30.43 21.74 8.70

ViLTV SR Zero-shot (ViT-B/32) 25.00 10.71 7.14 35.29 23.53 11.76 30.43 8.70 0.00

FLAVAITM 25.00 28.57 17.86 17.65 29.41 11.76 17.39 8.70 0.00

FLAVAITC 17.86 10.71 10.71 11.76 23.53 5.88 17.39 4.35 4.35

CLIP (ViT-B/32) 35.71 3.57 3.57 35.29 5.88 5.88 13.04 0.00 0.00

CLIP (ViT-B/16) 21.43 3.57 3.57 29.41 11.76 11.76 4.35 4.35 0.00

CLIP (ViT-L/14) 28.57 10.71 3.57 23.53 17.65 11.76 13.04 8.70 4.35

CLIP (ViT-L/14-336) 28.57 14.29 7.14 17.65 17.65 5.88 13.04 4.35 0.00

OpenCLIP (ViT-B/32) 35.71 10.71 10.71 23.53 5.88 5.88 17.39 4.35 0.00

OpenCLIP (ViT-L/14) 32.14 3.57 3.57 35.29 11.76 5.88 8.70 4.35 0.00

OpenCLIP (ViT-H/14) 35.71 10.71 10.71 35.29 29.41 17.65 17.39 0.00 0.00

OpenCLIP (ViT-g/14) 39.29 10.71 7.14 41.18 17.65 11.76 21.74 0.00 0.00

OFAT iny 21.43 7.14 7.14 11.76 17.65 0.00 21.74 8.70 0.00

OFABase 28.57 10.71 10.71 23.53 5.88 5.88 21.74 13.04 4.35

OFAMedium 28.57 10.71 7.14 17.65 5.88 5.88 13.04 8.70 4.35

OFALarge 28.57 14.29 10.71 29.41 0.00 0.00 13.04 0.00 0.00

OFAHuge 39.29 14.29 14.29 11.76 11.76 5.88 17.39 4.35 4.35

BLIPITM14M (ViT-B/16) 46.43 17.86 17.86 35.29 11.76 11.76 17.39 4.35 0.00

BLIPITC14M (ViT-B/16) 32.14 14.29 10.71 29.41 0.00 0.00 13.04 0.00 0.00

BLIPITM (ViT-B/16) 50.00 17.86 17.86 29.41 5.88 5.88 13.04 4.35 0.00

BLIPITC (ViT-B/16) 39.29 10.71 7.14 5.88 11.76 0.00 4.35 8.70 0.00

BLIPITM (ViT-B/16) (CapFilt-L) 42.86 17.86 14.29 23.53 17.65 17.65 17.39 4.35 0.00

BLIPITC (ViT-B/16) (CapFilt-L) 42.86 0.00 0.00 17.65 0.00 0.00 4.35 0.00 0.00

BLIPITM (ViT-L/16) 53.57 25.00 25.00 29.41 5.88 0.00 26.09 4.35 0.00

BLIPITC (ViT-L/16) 39.29 17.86 14.29 41.18 11.76 11.76 8.70 4.35 4.35

BLIPITMCOCO (ViT-B/16) 53.57 17.86 17.86 58.82 17.65 17.65 39.13 8.70 0.00

BLIPITCCOCO (ViT-B/16) 25.00 10.71 7.14 35.29 5.88 5.88 17.39 8.70 4.35

BLIPITMFlickr30k (ViT-B/16) 53.57 21.43 21.43 35.29 11.76 11.76 26.09 4.35 4.35

BLIPITCF lickr30k (ViT-B/16) 35.71 10.71 10.71 23.53 17.65 11.76 17.39 4.35 0.00

BLIPITMCOCO (ViT-L/16) 39.29 35.71 25.00 58.82 23.53 17.65 26.09 4.35 0.00

BLIPITCCOCO (ViT-L/16) 46.43 14.29 14.29 17.65 5.88 5.88 13.04 0.00 0.00

BLIPITMFlickr30k (ViT-L/16) 39.29 28.57 25.00 47.06 11.76 5.88 30.43 8.70 4.35

BLIPITCF lickr30k (ViT-L/16) 39.29 14.29 14.29 47.06 5.88 5.88 21.74 13.04 13.04

BLIPNLV R2 (ViT-B/16) 57.14 21.43 10.71 41.18 5.88 5.88 21.74 17.39 4.35

Table 3.7: Our results by visual tag. Results above chance are in bold.
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4 VSR Zero-shot Experiments

In the previous chapter, we have explained zero-shot experiments on Winoground, a dataset for visio-

linguistic compositional reasoning. We managed to improve previous results, but there is still a large

performance gap between humans and models. In this chapter, we will focus on Visual Spatial Reasoning

[25], a dataset for spatial reasoning (Section 4.1). Unlike Winoground, VSR contains training and

validation splits and can be used to train models (Section 4.2). However, we mainly focus on zero-shot

experiments with models that are trained on other datasets. We explain previous and new experiments

we performed and the results we obtained in VSR (Section 4.3).

4.1 VSR Dataset

The objective of VSR is to test spatial grounding capabilities by covering 65 spatial relations over
natural images from COCO. Given an image and a caption which describes a spatial relation between

two objects, the model has to infer if the relation is true or false.

A contrastive caption generation approach was used in VSR to avoid choosing too many trivial

relations. First, a pair of images that contain the same two concepts are selected from COCO. Second,

an annotator had to choose a spatial relation that made the caption template correct for one image but

incorrect for the other. Finally, every item is reviewed by at least two additional human annotators. If

the agreement between annotators is not high enough, the data point is excluded.

To get a more high-level understanding of the relations, they are grouped in meta categories [74]:
Adjacency, Directional, Orientation, Projective, Proximity, Topological and Unallocated (see Table 4.1).

We show some examples to understand the differences between relation categories in Figure 4.1.

Category Spatial Relations

Adjacency

Adjacent to, alongside, at the side of, at the right side of, at the left side of, attached to, at the back of,

ahead of, against, at the edge of

Directional

Off, past, toward, down, deep down
∗
, up

∗
, away from, along, around, from

∗
, into, to

∗
, across, across from,

through
∗
, down from

Orientation Facing, facing away from, parallel to, perpendicular to

Projective On top of, beneath, beside, behind, left of, right of, under, in front of, below, above, over, in the middle of

Proximity By, close to, near, far from, far away from

Topological

Connected to, detached from, has as a part, part of, contains, within, at, on, in, with, surrounding, among,

consists of, out of, between, inside, outside, touching

Unallocated Beyond, next to, opposite to, after
∗
, among, enclosed by

Table 4.1: The available 71 spatial relations. 65 of them appear in the final dataset. Relations with ∗ are not used.

In Figure 4.1 we show examples of Adjacency, Projective and Topological meta categories. Adjacency
examples involve identifying what is ahead of the cow and which is the edge of the table. The Projective
images are paired with the same caption, but have different labels. Topological examples require

understanding what being inside and touching are.

In Figure 4.2 Adjacency, Projective and Orientation meta categories. The first Adjacency example

is tricky, it requires knowing which is the right side of the bench. The second one is even more difficult

because the cow both the cow appears in the car’s side mirror. Projective examples involve knowing

where is the front of the person and below the cat. Orientation examples require understanding the

orientations of the hair drier and the fire hydrant.
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4. VSR Zero-shot Experiments

(a) Caption: The person is ahead of the
cow. Label: True.

(b) Caption: The pizza is at the edge of
the dining table. Label: True.

Adjacency

(c) Caption: The cat is behind the lap-
top. Label: True.

(d) Caption: The cat is behind the lap-
top. Label: False.

Projective

(e) Caption: The cat is inside the toilet.
Label: False.

(f) Caption: The person is touching the
hair drier. Label: True.

Topological

Figure 4.1: Examples from the VSR dataset for the relation meta categories Adjacency, Projective and Topological
from left to right.

(a) Caption: The potted plant is at the
right side of the bench. Label: True.

(b) Caption: The cow is at the back of
the car. Label: True.

Adjacency

(c) Caption: The bench is in front of the
person. Label: True.

(d) Caption: The keyboard is below the
cat. Label: True.

Projective

(e) Caption: The hair drier is facing
away from the person. Label: False.

(f) Caption: The fire hydrant is facing
away from the person. Label: True.

Orientation

Figure 4.2: Examples from the VSR dataset for the relation meta categories Adjacency, Projective and Orientation
from left to right.

4.2 Dataset Splits

The VSR dataset has two types of splits [25], random and zero-shot. The statistics of the two splits are

shown in Table 4.2.

Random split. The dataset is split randomly into train/dev/test with a ratio of 70%/10%/20%. All the

validated data points are used in this split.
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split train dev test total

random 7,083 1,012 2,024 10,119

zero-shot 5,440 259 731 6,430

Table 4.2: Data statistics of the random and zero-shot splits.

Zero-shot split. It is a concept zero-shot split where train/dev/test have no overlapping concepts.

That is, each concept can only appear in one of the sets. This is done by randomly grouping concepts

into three sets with a ratio of 50%/20%/30%. This is a more challenging setup because the model has to

learn concepts and relations in a compositional way instead of remembering the co-occurrence of the

two. Moreover, having less training data is a disadvantage for the models, since not all the data can be

used in this setting.

4.3 Experiments and Results

In this section, we describe a series of previous and new experiments performed over VSR dataset using

state-of-the-art vision and language models. We compare our results with the previous experiments

and with human performance (Section 4.3.1). We also perform analysis by relation and relation meta

category (Sections 4.3.2 and 4.3.3).

4.3.1 Compared To Humans

Previous. VSR authors [25] test three popular VLMs: VisualBERT [26], LXMERT [11], and ViLT [27].

All three models are stacked Transformers [75] that take image and text pairs as input. The difference

mainly lies in how or whether they encode position information of objects. Checkpoints are saved every

100 iterations and the best checkpoint on the dev set is used for testing. All models are run three times

using three random seeds. The only metric used for evaluation is accuracy.

We show previous results in Table 4.3, which includes development and test performance of random

and zero-shot splits [25]. On random split, LXMERT and ViLT are the best models , reaching 70%

of accuracy in dev and test. VisualBERT is below 60% , just slightly better than random chance. On

zero-shot split, performance declines significantly and the best model LXMERT only obtains 63.2%

accuracy in test. This means that concept zero-shot learning is fundamentally a hard task for current

models. When compared to human performance, there is a gap of more than 20% with the best models.

Two annotators labelled 500 examples from the test set to calculate human performance.

random split zero-shot split

model↓ dev test dev test

human 95.4

VisualBERT 59.2±0.9 57.4±0.9 57.4±2.2 54.0±1.3

LXMERT 73.8±1.2 72.5±1.4 69.2±1.0 63.2±1.7

ViLT 71.9±1.3 71.0±0.7 66.7±1.7 62.4±1.5

Table 4.3: Previous model performance on VSR. Results of both random and zero-shot splits, both validation and

tests are listed.

Sensitiveness to random seeds. In general, models have larger standard deviations on the zero-

shot split, probably because the zero-shot dev/test sets are smaller. The gap between dev and test sets

becomes much greater on zero-shot split likely because of the same reason. Due to the fluctuations,
authors recommend always reporting the average performance of three runs to make sure the conclusion

is reliable [25].
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4. VSR Zero-shot Experiments

(a) random split

(b) zero-shot split

Figure 4.3: Previous model performance by relation on the random (upper) and zero-shot (lower) split test sets.

Relation order sorted by frequency (high to low from left to right). Only relations with more than 15 and 5

occurrences on the random and zero-shot tests respectively are shown.

Explicit positional information matters. LXMERT and ViLT outperform VisualBERT by more

than 10% on both splits [25]. This is expected because LXMERT and ViLT encode explicit positional

information, and VisualBERT does not. LXMERT has position features as part of the input which encodes

the relative coordinates of objects. ViLT slices an image into patches and uses positional encoding to

signal the patches’ relative positions.

Ours. We first test the same previous models. We also evaluate ViLT [27] and BLIP [28] models that

have been fine-tuned on NLVR2. We show our results in Table 4.4, which includes development and test

performance of random and zero-shot splits. Results are very similar to previous ones for VisualBERT,

LXMERT and ViLT, the differences can be attributed to fluctuations. Regarding zero-shot NLVR2 results,

performance drops a lot. This is understandable because NLVR2 contains some spatial relations, but are

only a small part of the dataset. Moreover, NLVR2 examples contain two images, and VSR examples

have only one image. To evaluate on VSR, we need to pass the same image twice, or change the caption

to mention one of the images.

random split zero-shot split

model↓ dev test dev test

human 95.4

VisualBERT 60.1 55.1 56.8 50.8

LXMERT 73.3 73.9 70.3 65.5
ViLT 72.7 71.2 66.0 61.6

ViLT NLVR2 57.9 59.1 56.4 52.8

BLIP NLVR2 60.9 60.1 57.9 53.9

Table 4.4: Our model performance on VSR. Results of both random and zero-shot splits, both validation and tests

are listed.

We see that there is still a gap between random and zero-shot splits when testing models that are
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(a) random split

(b) zero-shot split

Figure 4.4: Our model performance by relation on the random (upper) and zero-shot (lower) split test sets.

Relation order sorted by frequency (high to low from left to right). Only relations with more than 15 and 5

occurrences on the random and zero-shot tests respectively are shown.

(a) random split (b) zero-shot split

Figure 4.5: Previous model performance by meta categories of relations, on the random (left) and zero-shot (right)

split test sets.

trained on NLVR2. This suggests that the dev and test sets of the zero-shot split are more difficult than

random ones. Therefore, the difference in accuracy can not be attributed only to the unseen concepts.

The gap between dev and test sets is also maintained in the zero-shot split, which might mean that the

test set is inherently more difficult.

4.3.2 Results By Relation

Previous. Figure 4.3 shows performance by relation of previous models on random and zero-shot splits

[25]. Only the most common relations are shown and they are sorted from left to right by frequency.

It seems that there is no correlation between performance and frequency. This suggests that some

relations are harder than others, regardless of the training examples.
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(a) random split (b) zero-shot split

Figure 4.6: Our model performance by meta categories of relations, on the random (left) and zero-shot (right)

split test sets.

Any relation that requires recognising orientations or facing directions of objects is very hard,

e.g., “facing”, “facing away from”, “parallel to” and “at the back of”. For example, LXMERT failed on the

examples in Figures 4.2c and 4.2e, which require understanding the front of a hair drier and a person

respectively.

Left and right relations such as “at the left/right side of” and “left/right of” are also difficult because

they can refer to either viewer’s or object’s reference frames. For instance, in Figure 4.2a, all three

models predicted False since the potted plant is at the left of the bench if the viewer is the reference

frame. However, if using the bench as the reference frame, the potted plant is at the right.

While generally speaking orientation has been hard, the tested VLMs do well on some seemingly

hard cases. As an example, all models correctly predicted Figure 4.2f, a case that requires compositional

zero-shot generalisation capability. Models need to generalise the concept of “face” to a fire hydrant by

identifying eyes.

Ours. We show performance by relation of our models on random and zero-shot splits in Figure 4.4.

Only the most common relations are shown and they are sorted from left to right by frequency. Results

for VisualBERT, LXMERT and ViLT are similar to the previous experiments. LXMERT and ViLT are

clearly better than VisualBERT in both random and zero-shot splits, with very few exceptions. ViLT

and BLIP models that are fine-tuned on NLVR2 are generally better than VisualBERT but worse than

the other models. There are some relations where they get similar and a few relations where they even

get better results. This could be because these relations might be more common in NLVR2. We show

VSR result tables of each split by relation in Appendix B.1.

4.3.3 Results By Meta Category

Previous. Previous results by relation meta category are shown in Figure 4.5. Relations are grouped

into categories to get a more high-level understanding of the relations’ performance. Table 4.1 shows

relations included in each meta category: “Adjacency”, “Directional”, “Orientation”, “Projective”, “Prox-

imity”, “Topological” and “Unallocated”. “Orientation” is the worst category on both splits, and on

average all performances are at chance level [25].
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Performance decreases when comparing random and zero-shot splits for almost all categories and

models. “Proximity” is the category that decreases the most, from close to 75% accuracy in random split

to chance level in the zero-shot split. “Proximity” contains relations like “close to”, “near” and “far from”.

Authors think it is due to proximity being relative and very dependent on the concept and its context

[25]. As zero-shot split concepts are different in each set, models have more difficulties.

Ours. Figure 4.6 shows our results by relation meta category. Results for VisualBERT, LXMERT and

ViLT are similar to the previous experiments. LXMERT and ViLT are superior to the other models for

both splits in most categories. NLVR2 models are generally better than VisualBERT in the random split.

In the zero-shot split there are bigger differences between the models. NLVR2 models are very bad in

the ”Directional” and ”Proximity” categories and better than other models in the ”Unallocated” category.

We show VSR result tables of each split by relation meta category in Appendix B.2.
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5 Synthetic Dataset Creation

As we have seen in Chapter 3 models perform badly in Winoground. The problem is that only zero-

shot can be done because Winoground has no training data. Annotating examples for Winoground

is very time-consuming and therefore creating a big dataset for training is very difficult. Therefore,

compositional reasoning has to be learned either in pretraining or when fine-tuning with other datasets.

However, there is no training dataset that focuses on compositional reasoning. A solution could be to

create a synthetic dataset for compositional reasoning and fine-tune the models with it.

We explore three different options for synthetic dataset generation: Text-to-Image Generation (5.1),

Image Captioning (5.2) and Image Retrieval (5.3). These experiments also allow us to gain more insight

into the dataset and the tested models.

5.1 Text-to-Image Generation

As noted, large generative text-to-image diffusion models, like like Stable Diffusion [17] are able to

generate stunning images. They are known to possess some visual-reasoning skills [18]. However, a

recent work [19] has shown that they struggle to understand the composition of some concepts,
such as confusing the attributes and relations of different objects. Here we want to know if they are

good enough for synthetic dataset generation for compositional reasoning. First, we generate some

images from Winoground captions automatically (Section 5.1.1). Then, we also do a manual qualitative

evaluation of the generated images (Section 5.1.2).

5.1.1 Automatic Generation

With the aim of evaluating the compositional ability of diffusion models, we used the state-of-the-art

Stable Diffusion model [17] to generate images from Winoground captions. We generate images 9

images for each Winoground caption, which results in a total of 800 ∗ 9 = 7200 images. Here we will

have a look at a few examples of generated images to compare them with the original images. We

select the same caption pairs that were used to present the Winoground dataset in the previous section.

Caption pairs with the same words are shown in columns. Only the first generated image is shown in

the examples, which is not necessarily the best one.

In Figure 5.1, there are two correct and four incorrect images. First, the top image in the left column

is correct, but the bottom one is wrong. Then, the colour of the dog is correct in the middle column

images, but the colour of the couch is mistaken in the top image. Finally, the two images in the right

column are wrong, food is missing in the first one and the shape is wrong in the second one.

In Figure 5.2, there are four correct and two incorrect images. First, both images of the left column

correspond to the first caption, so the bottom image is wrong. Next, both images in the middle column

correspond to the second caption, so the top one is wrong. Finally, the third pair is the only one that is

completely correct.

In Figure 5.3, all of the six images are wrong and do not correspond to any of the captions. First,

both examples in the left column are wrong, there is no magnifying glass in any of them. Next, in the

middle column only the person with the ponytail is shown and other things are missing. Finally, both

images in the right column only show three windows, there is no people in neither of them.
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5. Synthetic Dataset Creation

(a) [some plants] surrounding [a light-

bulb] ✓

(b) [a lightbulb] surrounding [some

plants] ✗

Object

(c) a [brown] dog is on a [white] couch
✗

(d) a [white] dog is on a [brown] couch
✓

Relation

(e) [circular] food on [heart-shaped]

wood ✗

(f) [heart-shaped] food on [circular]

wood ✗

Relation

Figure 5.1: Stable Diffusion examples for the swap-dependent linguistic tags Object, Relation and Relation from

left to right. They are additionally tagged with 1 main predicate. Correct examples are marked in green ✓ and

incorrect ones in red ✗.

5.1.2 Manual Evaluation

In this section we will explain the manual annotation that was performed to evaluate generated images.

We used Label Studio [76] to annotate images generated by Stable Diffusion. As annotating all the

images would take a very long time, we choose to annotate only one image per caption.

In each annotation there are two captions from Winoground and two images generated with Stable

Diffusion. Each image is created from one caption but the order of the images is random. Each image is

annotated separately, we included the two images together to speed up annotation. The annotators have

to choose which text corresponds to each image: the first caption, the second caption, both or none. An

screenshot of the annotation interface can be seen in Figure 5.4.

There were 6 annotators in total and each one annotated 50 examples, for a total of 300 annotated

examples. Each example includes two images, for a total of 600 annotated images. There are 400

examples in total, so we considered that 300 is a large enough subset to be able to draw significant

conclusions from.

The statistics of the annotation task are shown in Table 5.1. The general conclusion is that Stable

Diffusion is not good at this task. Most of the images do not match any of the captions, 351 out of 600.

There are only 25 images that match both captions. The remaining images match one caption or the

other (224), but there are many that match the incorrect caption (94). If we take into account image

pairs, there are only a few correct ones, 23 out of 300.

Therefore, using a diffusion model to create a synthetic dataset might not be robust enough. It would

require generating many images to get correct ones, and manual filtering to discard the wrong images.

In the future, we could test better diffusion models that make less mistakes. In Section 5.3, we will test

another approach to obtain similar images. Instead of generating new images, they are retrieved from a
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5.2. Image Captioning

(a) there is [a mug] in [some grass] ✓

(b) there is [some grass] in [a mug] ✗

Object

(c) a person [sits] and a dog [stands]✗

(d) a person [stands] and a dog [sits] ✓

Relation

(e) it’s a [fire] [truck] ✓

(f) it’s a [truck] [fire] ✓

Both

Figure 5.2: Stable Diffusion examples for the swap-dependent linguistic tags Object, Relation and Both from left

to right. They are additionally tagged with 1, 2 and 1 main predicates from left to right. Correct examples are

marked in green ✓ and incorrect ones in red ✗.

Caption 0 Caption 1 Both None All

Caption 0 65 48 12 175 300

Caption 1 46 65 13 176 300

All 111 113 25 351 600

Table 5.1: Statistics of the annotations. Rows shows the caption used for generation and columns show the

annotation choice.

huge dataset.

5.2 Image Captioning

In this section, we explain how we evaluate automatic image captioning for synthetic dataset creation.

Captioning could be applied for generating automatic descriptions of images much faster than humans.

This would reduce the work needed to create training datasets targeted for compositional or spatial

reasoning.

In this work, we used OFA [29] and BLIP [28] models of different sizes to generate captions for all

Winoground images. We chose these models because they are SOTA in image captioning and we also

use them in other evaluations.

To know how good generated captions are, we can compare them with the real captions using

automatic metrics. To evaluate the quality of the generated captions, we calculated the BLEU score [77]

between the generated caption and the caption Winoground, shown in Table 5.2. Scores are very low for

all models, considering that BLEU scores range from 0 to 100. This indicates that the captions generated

by these models are very different from the real captions. We find BLIP gets better scores than OFA and

bigger models are generally better.
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5. Synthetic Dataset Creation

(a) the kid [with the magnifying glass]

looks at them [] ✗

(b) the kid [] looks at them [with the

magnifying glass] ✗

Pragmatics

(c) the person with the ponytail

[packs] stuff and other [buys] it ✗

(d) the personwith the ponytail [buys]
stuff and other [packs] it ✗

Series

(e) there are [three] people and [two]

windows ✗

(f) there are [two] people and [three]

windows ✗

Symbolic

Figure 5.3: Stable Diffusion examples for the visual tags Pragmatics, Series and Symbolic from left to right. They

are additionally tagged with the Relation tag, and 1, 2, and 1 main predicate from left to right. Correct examples

are marked in green ✓ and incorrect ones in red ✗.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

OFAT iny 14.40 5.76 2.50 1.30

OFABase 16.68 7.12 3.26 1.58

OFAMedium 16.28 6.47 2.84 1.39

OFALarge 15.10 6.45 3.03 1.53

OFAHuge 15.73 6.94 3.06 1.35

BLIP (ViT-B/16) 17.80 8.10 3.96 2.01

BLIP (ViT-L/16) 17.96 8.31 4.36 2.50

Table 5.2: Image captioning BLEU scores of OFA and BLIP models.

One reason for this could be that the real Winoground captions are not typical captions. They are

hand-crafted so that they contain the same words in a different order. Another reason could be that

these models are not good at describing these types of images that require compositional reasoning. We

have previously seen that these models are bad at matching Winoground images with captions.

Analysing the captions manually would be necessary to know how good they really are. We show

some caption examples of the best performing model, BLIP large, so that we can compare them with the

original ones. The complete caption files for all the models can be found in the GitHub repository.

In Figure 5.5, all the captions are correct. They describe the images correctly. Some descriptions are

more detailed that in the original captions, but some attributes are also missing. For example, the color

of the couch and the shape of the cutting wood are not mentioned.

Every caption in Figure 5.6 is also correct. However, some important details that are present in

the original captions are missing. In the second pair of images, the first caption does not mention the
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5.2. Image Captioning

Figure 5.4: Label Studio annotation interface

(a) a light bulb sitting on top of a pile

of green leaves ✓

(b) a light bulb with a plant inside of

it ✓

Object

(c) a black dog sitting on a couch in

front of a christmas tree ✓

(d) a white dog sitting on top of a

brown couch ✓

Relation

(e) a woman sprinkling herbs on a

plate of food ✓

(f) a heart shaped pizza sitting on top

of a cutting board ✓

Relation

Figure 5.5: Image Captioning examples from the Winoground dataset for the swap-dependent linguistic tags

Object, Relation and Relation from left to right. They are additionally tagged with 1 main predicate. Correct

examples are marked in green ✓ and incorrect ones in red ✗.

person, and the second one does not specify that the dog is sitting.

The first pair of captions in Figure 5.7 is wrong. In the first image, the young boy is the one holding

the magnifying glass. The second one is completely wrong, they are not sitting at a table and the

magnifying glass is not mentioned. Other examples are correct, but more generic than the original

captions. The describe the images, without mentioning detains such as the number of people and

windows.

The general conclusion is that most captions are quite good. They are very different from the original
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(a) a cup of coffee sitting on top of a

lush green field ✓

(b) a cup with a plant in it sitting on a

table ✓

Object

(c) a brown and white dog running in

the sand ✓

(d) a man standing next to a dog in a

kitchen ✓

Relation

(e) a red fire truck driving down a

street ✓

(f) a car is on fire in a field ✓

Both

Figure 5.6: Image Captioning examples from the Winoground dataset for the swap-dependent linguistic tags

Object, Relation and Both from left to right. They are additionally tagged with 1, 2 and 1 main predicates from left

to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

ones, but they describe the images correctly. They provide extra information about the images to the

models, that is not included in the original captions. They could be used to improve the results of the

models by incorporating them into the evaluation process. For example, we could compare the original

and generated captions and pair them by similarity.

It seems that these models are not that bad at describing images. However, we have seen that they

have more difficulties when matching Winoground images with captions, especially when captions are

very similar. This suggests that text encoding might be their biggest limitation, and could be the main

reason for their low performance on Winoground.

5.3 Image Retrieval

In this section, we explain how we could use image retrieval for synthetic dataset generation. First, we

could retrieve images of interest from a large image dataset. For example, we could retrieve many similar

images from captions to increase the size of a dataset. We could also change the captions to retrieve

images with different objects. Then, captioning could be applied to generate automatic descriptions

of images. We would have a large dataset of images with real and generated captions. And this would

require a low effort compared to human annotation.

We used CLIP retrieval
1
to retrieve images from LAION-5B [58] dataset. We used Winoground

captions and images to get similar images. For each caption and image, we compute its embeddings using

CLIP ViT-L-14. Then the system uses a KNN algorithm to retrieve images that have similar embeddings.

We can also compute the mean of caption and image embeddings to retrieve images that match both the

image and the caption.

We used the python CLIP Client with the default parameters, which retrieves a maximum of 40

images with each query. It also retrieves the original caption of the image and a similarity score. The

system also has an aesthetic score that can be used to retrieve better looking images. It also removes

1https://github.com/rom1504/clip-retrieval
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5.3. Image Retrieval

(a) a man holding a magnifying glass

next to a young boy ✗

(b) a man and a little girl sitting at a

table ✗

Pragmatics

(c) a man and a woman wearing face

masks in a store ✓

(d) a man and a woman in a grocery

store ✓

Series

(e) a child’s drawing of a house with
a rainbow ✓

(f) a child’s drawing of a house and a

girl ✓

Symbolic

Figure 5.7: Image Captioning examples from the Winoground dataset for the visual tags Pragmatics, Series and
Symbolic from left to right. They are additionally tagged with the Relation tag, and 1, 2, and 1 main predicate from

left to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

duplicate images and images that contain unsafe content and violence. Figure 5.8 shows an example

search with the alternative retrieval interface
2
.

Figure 5.8: CLIP Retrieval interface search example. Many of the images are wrong and correspond to the other

caption.

We have selected a few examples of retrieved images to compare them with the original images.

These images were retrieved using only the captions. Only the first generated image is shown in the

2https://rom1504.github.io/clip-retrieval
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5. Synthetic Dataset Creation

examples, which is not necessarily the best one. The complete retrieval file can be found in the GitHub

repository.

In Figure 5.9, the first pair of images is correct, both images match the captions. In the second pair,

the color of the dog is correct, but the couch has a wrong color. In the third example, the first image has

wrong shapes and the second image is wrong.

(a) [some plants] surrounding [a light-

bulb] ✓

(b) [a lightbulb] surrounding [some

plants] ✓

Object

(c) a [brown] dog is on a [white] couch
✗

(d) a [white] dog is on a [brown] couch
✗

Relation

(e) [circular] food on [heart-shaped]

wood ✗

(f) [heart-shaped] food on [circular]

wood ✓

Relation

Figure 5.9: CLIP Retrieval examples for the swap-dependent linguistic tags Object, Relation and Relation from

left to right. They are additionally tagged with 1 main predicate. Correct examples are marked in green ✓ and

incorrect ones in red ✗.

In Figure 5.10, the first pair is correct. The second pair is wrong, the same image is retrieved for

both captions. The first image in the third example is correct, but the second one is incorrect.

(a) there is [a mug] in [some grass] ✓

(b) there is [some grass] in [a mug] ✓

Object

(c) a person [sits] and a dog [stands] ✗

(d) a person [stands] and a dog [sits] ✗

Relation

(e) it’s a [fire] [truck] ✓

(f) it’s a [truck] [fire] ✗

Both

Figure 5.10: CLIP Retrieval examples for the swap-dependent linguistic tags Object, Relation and Both from left

to right. They are additionally tagged with 1, 2 and 1 main predicates from left to right. Correct examples are

marked in green ✓ and incorrect ones in red ✗.

44



5.3. Image Retrieval

In Figure 5.11, the first example is wrong, the objects are present but the composition is not correct.

In the second pair, some objects are missing in both images. The third pair is wrong, the same image is

retrieved, which only contains two windows and no people.

(a) the kid [with the magnifying glass]

looks at them [] ✗

(b) the kid [] looks at them [with the

magnifying glass] ✗

Pragmatics

(c) the person with the ponytail

[packs] stuff and other [buys] it ✗

(d) the personwith the ponytail [buys]
stuff and other [packs] it ✗

Series

(e) there are [three] people and [two]

windows ✗

(f) there are [two] people and [three]

windows ✗

Symbolic

Figure 5.11: CLIP Retrieval examples for the visual tags Pragmatics, Series and Symbolic from left to right. They

are additionally tagged with the Relation tag, and 1, 2, and 1 main predicate from left to right. Correct examples

are marked in green ✓ and incorrect ones in red ✗.

Similar to image generation, this would also require some filtering because there are many wrong

images. As the system retrieves many images, we could select the best ones. The number of retrieved

images and the similarity score could also be used as a measure of how common an image is. If there

are very few similar images in the dataset, that means that the caption or image is uncommon. This

information could be used in Winoground to pair the most common image with the most common

caption. However, the system might not be robust enough for this estimation.
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6 Conclusions

In this chapter, we provide an overview of the main contributions and conclusions of this work. We

managed to accomplish all the objectives of this work. First, we improved the state-of-the-art in

compositional reasoning. Next, we performed some zero-shot experiments on spatial reasoning. Finally,

we explored three alternatives for synthetic dataset creation: text-to-image generation, image captioning

and image retrieval.

Improve the state-of-the-art in compositional reasoning. The original Winoground paper

included zero-shot experiments with many pre-trained SOTA systems, and they concluded that, sur-

prisingly, none of them does much better than chance [9]. In this work, we extended the previous

experiments with new models that obtained better results than those reported in the original paper.

In previous experiments, only pre-trained models are tested. We extend this by testing some models

that are fine-tuned for specific tasks such as image-text retrieval and visual reasoning. We compare

pre-trained versions with fine-tuned versions of the same models and find out that fine-tuning helps a

lot. Our best scores are much better than previous models, 10% in text score, 4% in image score and 7%

in group score. However, even the best model is still far from human performance in text, image and

group scores. There is still a 40% gap in text scores, and 64% in image and group scores.

Perform zero-shot experiments in spatial reasoning. VSR authors [25] train and test three

popular VLMs: VisualBERT [26], LXMERT [11], and ViLT [27]. They conclude that there is still a large

gap between model and human performance. We extend these experiments and evaluate ViLT [27] and

BLIP [28] models fine-tuned on NLVR2. We show that performance drops a lot when evaluating ViLT

as zero-shot. This is understandable because spatial relations are only a small part of NLVR2. Moreover,

NLVR2 examples contain two images, and VSR examples have only one image. To evaluate on VSR, we

need to pass the same image twice, or change the caption to mention one of the images. If we want to

improve VSR results in the future, we will need to fine-tune better VLMs such as BLIP directly on VSR.

Investigate text-to-image generative models for synthetic dataset creation. With the aim of

evaluating the compositional ability of diffusion models, we used the state-of-the-art Stable Diffusion

model [17] to generate images for each Winoground caption. We did a manual evaluation of the

generated images to measure their quality and decide if they can be used to create synthetic datasets.

The general conclusion is that Stable Diffusion is not good at this task. Most of the generated images

do not match the captions. Therefore, using a diffusion model for data augmentation might not be

robust enough. It would require generating many images to get the correct ones, and manual filtering to

discard the wrong images.

Investigate image captioning for synthetic dataset creation. We used OFA [29] and BLIP [28]

models of different sizes to generate captions for all Winoground images. A manual evaluation on a

small sample showed that the quality of the generated captions were high. They are very different from

the original ones, but they describe the images correctly. They provide extra information about the

images to the models, that is not included in the original captions. Captioning could be applied for

generating automatic descriptions of images much faster than humans. This would reduce the work

needed to create training datasets targeted for compositional or spatial reasoning.

Investigate image retrieval for synthetic dataset creation. We used CLIP retrieval to retrieve

images from LAION-5B [58] dataset. We used Winoground captions and images to get similar images.

This system could be used to increase the size of our dataset. We could retrieve many similar images for

our captions. We could also change the captions to retrieve images with different objects. This would

also require some filtering because there are many wrong images.
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This chapter provides an overview of future work areas for further research. We propose four ideas

for synthetic dataset generation (Section 7.1): explicit verbalization (7.1.1), text-to-image (7.1.2), image-

to-image (7.1.3) and image captioning and retrieval (7.1.4). We also include some ideas for extending

current datasets to be multilingual (Section 7.2).

7.1 Synthetic Dataset Creation

As to avoid the scarcity of multimodal datasets that explicitly describe spatial relations, we analyze

further options to construct synthetic datasets. We could then use them to train existing language

models in a self-supervised way, with the final aim of obtaining spatially grounded language models.

We propose four options that could be combined to produce the synthetic datasets: explicit verbalization

(7.1.1), text-to-image (7.1.2), image-to-image (7.1.3) and image captioning and retrieval (7.1.4).

In the future, we might investigate the use of multi-tasking and multi-sourcing to improve

generalization properties. In a multi-task training paradigm, the model is forced to learn more than one

task simultaneously, therefore improving its generalization capabilities. We could investigate multi-task

settings to combine the verbalized dataset, the images and captions produced by the generative VLMs,

as well as traditional training data to obtain spatial-aware language models.

We could also improve zero-shot and few-shot generalization of VLM models to obtain effective

models in small data regimes of the spatial reasoning domain. Thus eliminating the necessity of explicitly

annotating big quantities of data.

7.1.1 Explicit Verbalization

Explicit verbalization could be used to perform synthetic data generation to learn spatial grounding.

Explicit verbalization can be extracted directly from the image. Given an image in an existing dataset

that contains spatial relations (MS COCO), we propose to use an object detector to identify the entities

in the images. Then, we could create hand-designed verbalization templates to automatically generate

textual descriptions of the spatial relations among them.

Finally, we could train existing LMs in a self-supervised way using the synthetic dataset. We could

test various methods for verbalization to know which is the right way to verbalize spatial information

for effective spatial grounding. Then, we can test if we can improve the state-of-the-art of vision and

language models in tasks that require spatial reasoning.

7.1.2 Text-to-Image Generation

Large generative text-to-image diffusion models, like DALLE-2 [12] and IMAGEN [13], are able to

generate stunning images. They are known to possess some visual-reasoning skills [18]. However, in

our work, we have seen that Stable Diffusion makes many mistakes when generating images, which

require compositional reasoning.

A recent work [19] has also shown that these models struggle to understand the composition
of some concepts, such as confusing the attributes and relations of different objects. They propose a

new method, where an image is generated by composing a set of diffusion models, with each of them

modelling a certain component of the image. Yet, this approach requires modifying the input prompts
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and is limited only to conjunction (and) and negation (not). Winoground examples are more complex,

and can not be simplified to a conjunction of objects.

Another work [20] proposes manipulating cross-attention representations to address three challeng-

ing phenomena in Stable Diffusion [17]: attribute leakage, interchanged attributes andmissing
objects (see Figure 7.1). They achieve better compositional skills in qualitative and quantitative results,

leading to a very significant 5-8% advantage in head-to-head user comparison studies. Many of the

problems when generating Winoground images are of this type. Therefore, this might improve results

when generating Winoground images.

Figure 7.1: Three challenging phenomena in the compositional generation. Attribute leakage: The attribute of one

object appears in another object. Interchanged attributes: the attributes of two or more objects are interchanged.

Missing objects: one or more objects are missing.

7.1.3 Image-to-Image Generation

Apart from text-to-image generation, diffusion models can also be used for image-to-image generation.

Stable Diffusion [17] could be used to generate new images as a data augmentation technique. For

example, multiple image variations can be generated from an input image, to get similar images that

still match the original caption. We could also change the caption if we are interested in getting similar

images with different objects.

The problem with variations is that even a small change in the text prompt can lead to a completely

different outcome. Usually, we only want to edit a small part of an image, without affecting the rest of

the image. State-of-the-art methods solve this with in-painting, by using a spatial mask to localize the

edit, leaving the rest of the image untouched. The drawback of this approach is that spatial masks have

to be specifically crafted for each edit.

A recent solution called CycleDiffusion [78] can be applied to text-to-image diffusion models such

as Stable Diffusion for zero-shot image editing (Figure 7.2). The input is composed of three elements: a

source image, a source text and a target text. Within each pair of source and target text, overlapping

text spans are marked in purple in the source text and abbreviated as [. . .] in the target text.

Another solution for this is to do image editing only using text prompts, that is, prompt-to-prompt
editing [79]. This technique allows many types of edits such as localized editing by replacing a word,
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Figure 7.2: With CycleDiffusion text-to-image diffusion models can be used as zero-shot image-to-image editors.

Source images are displayed with a purple margin and others are generated target images. CycleDiffusion achieves

minimal editing that includes replacing objects, adding objects, changing image styles, and modifying attributes.

and global editing by adding a specification and controlling the extent to which a word is reflected in

the image (Figure 7.3).

Imagic [80] only uses an input image and a target text to edit images (see Figure 7.4). Imagic can

apply complex semantic edits such as changing the posture and composition of one or multiple objects

inside an image while preserving its original characteristics. For example, it can make a standing dog sit

down or jump, cause a bird to spread its wings, etc. These are precisely the types of edits that we need

to create a synthetic dataset.

UniTune [81] is another new text-driven image editing method. UniTune gets as input an image and

a textual edit description, and carries out the edit while maintaining high semantic and visual fidelity

to the input image (see Figure 7.5). UniTune proves that large text-to-image diffusion models can be

fine-tuned on a single image, encouraging the model to maintain fidelity to the input image while still

allowing expressive manipulations.

7.1.4 Image Captioning and Retrieval

In this work, we have seen that generating synthetic captions can be a good approach to automatically

describe images at a large scale. We have also seen that image retrieval can be used to retrieve images

from a huge dataset given a caption or an image. In the future, captioning could be paired with image
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Figure 7.3: Prompt-to-Prompt editing operations: tuning the level of influence of an adjective word (left), making

a local modification in the image by replacing or adding a word (middle), or specifying a global modification

(right).

Figure 7.4: Imagic can perform various text-based semantic edits on a single real input image, including highly

complex non-rigid changes such as posture changes and editing multiple objects. Here, we show pairs of input

images and edited outputs with their respective target texts.

retrieval to create a synthetic dataset. This way, we can retrieve images that we are interested in, and

generate good captions for them.

LAION-COCO
1
is a new dataset that follows a similar approach. It is the world’s largest dataset

of this type, with 600M generated high-quality captions for public images from LAION2B-EN [58].

LAION5B already has natural captions, but these captions are generally not very good and could be

completed by synthetic ones. These captions could be used to train VLMs to investigate how they impact

the performance of models.

The model used to generate captions is the same one that we used (BLIP L/16), but they do some

extra steps to increase caption quality. First, they generate 40 captions at a time, which are later ranked

using CLIP L/14 to select the best 5 captions. Then, those captions are ranked using CLIP RN50x64 to

select the best one. Finally, a small fine-tuned T0 model is used to repair the grammar and punctuation

errors in the texts.

They evaluated these captions by asking human evaluators to guess whether it corresponds to a

1https://laion.ai/blog/laion-coco/
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Figure 7.5: Samples showing UniTune’s ability to maintain semantic details even across broad visual changes,

and to place edits in a logical manner.

human or an AI model. They also asked them to rate the quality on a scale from 0 (bad) to 5 (good). They

presented each evaluator with 200 samples, that contained 100 AI-generated and 100 human-written MS

COCO captions. They conclude that caption quality is on average pretty close to the human-written

captions of MS COCO. Filters could be further improved by rating more images by humans and removing

low-score images.

Image captioning could also be used to extend current datasets to other languages. Multilingual

VLMs could be used to caption the same image and get captions in many languages. A recent dataset

called Crossmodal-3600 aims to evaluate multilingual image captioning [82]. It contains a geographically-

diverse set of 3600 images annotated with human-generated reference captions in 36 languages. This

dataset could be used to evaluate multilingual models and decide if they are good enough to generate

synthetic datasets.

7.2 Multilingual Datasets

Another direction is extending Winoground and VSR to cover more languages and cultures and testing

multilingual VLMs. There are already somemultilingual visual reasoning datasets. MaRVL (Multicultural

Reasoning over Vision and Language) [83] consists of discriminating whether each grounded statement

about a pair of images is true or false. It focuses on a typologically diverse set of languages, Indonesian,

Mandarin Chinese, Swahili, Tamil, and Turkish. IGLUE (Image-Grounded Language Understanding

Evaluation) [84] brings together visual question answering, cross-modal retrieval, grounded reasoning,

and grounded entailment tasks across 20 diverse languages.

Winoground is English-only and translation to other languages may be difficult. The key aspect

of Winoground is that both captions contain the same words. Translating to other languages and

maintaining this characteristic might be very difficult, and probably impossible in some examples.

Moreover, expert translation is time-consuming and that limits the size of the translated datasets.

VSR seems to be easier to translate because it has no restrictions about the used words. However,

spatial relations can be very different across languages. Some relations that are common in English

might not exist in other languages and vice versa. In addition, word order is different from English in
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many languages, and that hinders template-based caption creation.

Apart from evaluation datasets, good pretraining multilingual datasets are needed to create multi-

lingual VLMs. For example, LAION-5B [58] dataset was automatically collected from the web. It has

two multilingual subsets, one with an unknown language (LAION1B-nolang) and the other one with a

known (LAION2B-multi). Recently, a new dataset called LAION-translated
2
was released based on the

previous ones. Every caption of the original datasets was translated to English with Facebook’s M2M100

1.2B model. These captions can be used to train a multilingual VLM using aligned pairs.

2https://laion.ai/blog/laion-translated/
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A Winoground Discussion

This appendix shows extra Winoground discussion results of previous and our experiments. We include

correlation analysis between caption perplexity and model scores (Appendix A.1). Appendix A.2 includes

correlation analysis between pretraining dataset size and model scores.

A.1 Caption Complexity

Previous. Table A.1 shows on the left correlations between GPT-2 caption perplexity and model

scores. Winoground authors found that there is typically a weak correlation between models assigning

an image-caption pair a higher score and a caption having low perplexity [9].

Table A.1 shows on the right that caption length and lower model performance significantly

correlate for the best models, even though the correlation is reversed for humans. The examples with

the shortest captions are also the least compositional [9].

Perplexity Caption Length

Text-Image Text Image Group

Model Corr. p-value Corr. p-value Corr. p-value Corr. p-value

MTurk Human 0.05 0.07 0.11 0.03 0.20 0.00 0.20 0.00
VinVL -0.05 0.04 -0.11 0.03 -0.18 0.00 -0.20 0.00
UNITERlarge -0.01 0.57 -0.08 0.13 -0.06 0.20 -0.16 0.00
UNITERbase -0.03 0.22 -0.15 0.00 -0.11 0.03 -0.14 0.00
ViLLAlarge -0.02 0.39 -0.05 0.32 -0.13 0.01 -0.12 0.01
ViLLAbase -0.04 0.13 -0.14 0.01 -0.12 0.01 -0.11 0.03
VisualBERTbase -0.04 0.15 -0.09 0.07 -0.07 0.14 -0.06 0.22

ViLT (ViT-B/32) -0.04 0.16 -0.09 0.06 -0.20 0.00 -0.16 0.00
LXMERT -0.04 0.12 -0.00 0.97 -0.05 0.32 -0.11 0.02
ViLBERTbase -0.04 0.11 -0.09 0.09 -0.15 0.00 -0.14 0.00
UniTITMFinetuned -0.01 0.73 -0.03 0.53 -0.05 0.32 -0.02 0.73

FLAVAITM -0.03 0.22 -0.21 0.00 -0.22 0.00 -0.23 0.00
FLAVAITC -0.06 0.01 -0.15 0.00 -0.25 0.00 -0.19 0.00
CLIP (ViT-B/32) -0.04 0.09 -0.27 0.00 -0.19 0.00 -0.22 0.00
VSE++COCO (ResNet) -0.05 0.04 -0.03 0.60 -0.02 0.74 0.01 0.90

VSE++COCO (VGG) -0.04 0.08 -0.02 0.65 0.03 0.50 0.03 0.56

VSE++Flickr30k (ResNet) -0.02 0.43 -0.01 0.80 0.01 0.91 0.02 0.67

VSE++Flickr30k (VGG) 0.01 0.74 -0.09 0.07 -0.07 0.18 -0.10 0.04
VSRNCOCO -0.07 0.01 -0.03 0.60 -0.05 0.30 -0.05 0.36

VSRNFlickr30k -0.02 0.32 -0.03 0.60 -0.10 0.06 -0.05 0.29

Table A.1: (left) The correlation between model image-caption scores and the caption perplexity from GPT2.

(right) The correlation between the model text, image and group scores and the caption length.

Ours. We shows correlations between caption perplexity and our model scores in Table A.2. Similar

to previous results, for most models there is a weak correlation. Interestingly, most configurations of

the best performing model (BLIP) show some correlation between caption perplexity and image-caption

scores. Regarding caption length, there is a significant correlation for most models.

A.2 Pretraining Dataset Size

Previous. Winoground authors found highly significant correlations between the size of the multi-

modal pretraining dataset and the scores, if CLIP and FLAVA were removed as outliers. Table A.3 shows

these correlations, and Figure A.1 has graphs showing each model’s score versus the pretraining data

size.
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Perplexity Caption Length

Image-Caption Text Image Group

Model Corr. p-value Corr. p-value Corr. p-value Corr. p-value

MTurk Human 0.05 0.07 0.11 0.03 0.20 0.00 0.20 0.00
ViLT (ViT-B/32) -0.04 0.08 -0.12 0.02 -0.07 0.17 -0.05 0.35

ViLTCOCO (ViT-B/32) -0.05 0.06 -0.21 0.00 -0.16 0.00 -0.17 0.00
ViLTFlickr30k (ViT-B/32) -0.05 0.03 -0.11 0.03 -0.17 0.00 -0.14 0.01
ViLTNLV R2 (ViT-B/32) 0.00 0.95 -0.13 0.01 -0.11 0.03 -0.12 0.02
ViLTV SR Random (ViT-B/32) -0.07 0.01 -0.16 0.00 -0.19 0.00 -0.15 0.00
ViLTV SR Zero-shot (ViT-B/32) -0.08 0.00 -0.14 0.01 -0.15 0.00 -0.15 0.00
FLAVAITM -0.03 0.22 -0.21 0.00 -0.22 0.00 -0.23 0.00
FLAVAITC -0.06 0.01 -0.15 0.00 -0.25 0.00 -0.19 0.00
CLIP (ViT-B/32) -0.04 0.10 -0.28 0.00 -0.21 0.00 -0.23 0.00
CLIP (ViT-B/16) -0.04 0.11 -0.26 0.00 -0.22 0.00 -0.23 0.00
CLIP (ViT-L/14) -0.03 0.22 -0.22 0.00 -0.17 0.00 -0.18 0.00
CLIP (ViT-L/14-336) -0.04 0.11 -0.23 0.00 -0.22 0.00 -0.23 0.00
OpenCLIP (ViT-B/32) -0.04 0.16 -0.13 0.01 -0.16 0.00 -0.18 0.00
OpenCLIP (ViT-L/14) -0.04 0.14 -0.22 0.00 -0.23 0.00 -0.23 0.00
OpenCLIP (ViT-H/14) -0.04 0.13 -0.22 0.00 -0.26 0.00 -0.24 0.00
OpenCLIP (ViT-g/14) -0.04 0.07 -0.26 0.00 -0.21 0.00 -0.20 0.00
OFAT iny -0.01 0.66 -0.17 0.00 -0.06 0.24 -0.12 0.02
OFABase -0.02 0.43 -0.15 0.00 -0.12 0.02 -0.10 0.05
OFAMedium -0.01 0.77 -0.11 0.03 -0.14 0.00 -0.12 0.01
OFALarge -0.16 0.00 -0.18 0.00 -0.20 0.00 -0.17 0.00
OFAHuge 0.01 0.75 -0.15 0.00 -0.17 0.00 -0.16 0.00
BLIPITM14M (ViT-B/16) -0.00 0.85 -0.22 0.00 -0.23 0.00 -0.21 0.00
BLIPITC14M (ViT-B/16) -0.00 0.97 -0.24 0.00 -0.17 0.00 -0.17 0.00
BLIPITM (ViT-B/16) -0.05 0.04 -0.24 0.00 -0.23 0.00 -0.22 0.00
BLIPITC (ViT-B/16) -0.06 0.02 -0.19 0.00 -0.17 0.00 -0.13 0.01
BLIPITM (ViT-B/16) (CapFilt-L) -0.10 0.00 -0.20 0.00 -0.28 0.00 -0.23 0.00
BLIPITC (ViT-B/16) (CapFilt-L) -0.10 0.00 -0.25 0.00 -0.17 0.00 -0.15 0.00
BLIPITM (ViT-L/16) -0.07 0.01 -0.17 0.00 -0.21 0.00 -0.19 0.00
BLIPITC (ViT-L/16) -0.08 0.00 -0.22 0.00 -0.17 0.00 -0.17 0.00
BLIPITMCOCO (ViT-B/16) -0.04 0.11 -0.17 0.00 -0.26 0.00 -0.22 0.00
BLIPITCCOCO (ViT-B/16) -0.06 0.02 -0.18 0.00 -0.26 0.00 -0.22 0.00
BLIPITMFlickr30k (ViT-B/16) -0.04 0.11 -0.25 0.00 -0.28 0.00 -0.28 0.00
BLIPITCF lickr30k (ViT-B/16) -0.07 0.00 -0.20 0.00 -0.19 0.00 -0.18 0.00
BLIPITMCOCO (ViT-L/16) -0.06 0.02 -0.24 0.00 -0.23 0.00 -0.23 0.00
BLIPITCCOCO (ViT-L/16) -0.10 0.00 -0.21 0.00 -0.21 0.00 -0.21 0.00
BLIPITMFlickr30k (ViT-L/16) -0.05 0.04 -0.27 0.00 -0.25 0.00 -0.23 0.00
BLIPITCF lickr30k (ViT-L/16) -0.09 0.00 -0.24 0.00 -0.19 0.00 -0.16 0.00
BLIPNLV R2 (ViT-B/16) -0.00 0.85 -0.22 0.00 -0.08 0.09 -0.16 0.00

Table A.2: (left) The correlation between model image-caption scores and the caption perplexity from GPT2.

(right) The correlation between the model text, image and group scores and the caption length.

Pretraining Score Corr. p-value

Text 0.84 0.00
Image Image 0.76 0.00

Group 0.75 0.00

Text 0.77 0.00
Caption Image 0.75 0.00

Group 0.71 0.00

Table A.3: Correlations between the number of pretraining images and captions and the model text, image, and

group scores. CLIP and FLAVA are excluded as outliers.

Ours. We do the same analysis excluding ViLT as an outlier and find that there is no significant

correlation. The models we test are pre-trained on large datasets, and the best ones are not the ones that

are trained on most data. For example, BLIP is the best model and uses much less data than OpenCLIP

for pre-training. Table A.4 shows these correlations, and Figure A.2 has graphs showing each model’s

score versus the pretraining data size.
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Figure A.1: Graphs of the model performance on Winoground for each model by the number of pretraining

images (left) and pretraining captions (right).

Pretraining Score Corr. p-value

Text -0.11 0.54

Image Image -0.28 0.12

Group -0.24 0.18

Text -0.11 0.54

Caption Image -0.28 0.12

Group -0.24 0.18

Table A.4: Correlations between the number of pretraining images and captions and the model text, image, and

group scores. ViLT is excluded as outlier.

Figure A.2: Graphs of the model performance on Winoground for each model by the number of pretraining

images (left) and pretraining captions (right).
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B VSR Results

This appendix shows VSR result tables by relation (Appendix B.1) and relation meta category (Ap-

pendix B.2).

B.1 Results By Relation

We show performance by relation of our models on random and zero-shot splits in Tables B.1 and B.2.

Only the most common relations are shown and they are sorted from top to bottom by frequency.

relation number VisualBERT LXMERT ViLT ViLT NLVR2 BLIP NLVR2

all 2024 55.1 73.9 71.2 59.1 60.1

touching 236 55.9 76.7 73.7 64.0 62.3

behind 136 44.9 75.0 70.6 52.9 58.1

on 128 64.8 82.0 86.7 71.9 70.3

in front of 116 54.3 70.7 63.8 58.6 65.5

under 112 62.5 85.7 83.9 62.5 66.1

on top of 87 50.6 79.3 79.3 72.4 67.8

at the right side of 85 51.8 76.5 57.6 63.5 50.6

at the left side of 80 48.8 73.8 61.3 50.0 56.2

beneath 80 63.7 80.0 77.5 58.8 56.2

above 72 59.7 76.4 72.2 55.6 62.5

contains 57 56.1 80.7 86.0 56.1 50.9

in 51 68.6 82.4 84.3 60.8 58.8

facing 50 50.0 64.0 62.0 60.0 62.0

far away from 49 51.0 77.6 75.5 40.8 42.9

inside 49 59.2 77.6 79.6 57.1 55.1

below 42 59.5 66.7 66.7 47.6 52.4

next to 41 56.1 68.3 75.6 53.7 65.9

at the edge of 40 42.5 47.5 60.0 50.0 62.5

left of 39 56.4 76.9 59.0 59.0 56.4

beside 34 44.1 73.5 64.7 79.4 67.6

facing away from 32 56.2 53.1 46.9 56.2 50.0

away from 31 61.3 71.0 74.2 41.9 64.5

right of 24 50.0 87.5 58.3 58.3 54.2

far from 23 47.8 87.0 87.0 43.5 56.5

close to 21 57.1 71.4 71.4 71.4 57.1

part of 21 42.9 76.2 76.2 42.9 42.9

near 21 52.4 57.1 71.4 76.2 66.7

parallel to 19 31.6 36.8 57.9 52.6 47.4

at the back of 19 57.9 73.7 63.2 52.6 63.2

across from 18 66.7 72.2 66.7 44.4 44.4

over 16 50.0 75.0 93.8 81.2 56.2

in the middle of 15 46.7 60.0 33.3 33.3 53.3

off 15 33.3 40.0 40.0 26.7 46.7

Table B.1: Our model performance by relation on the random split test. Only relations with more than 15

occurrences are shown.

B.2 Results By Meta Category

We show performance by relation meta category of our models on random and zero-shot splits in

Tables B.3 and B.4. Categories are sorted alphabetically.
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relation number VisualBERT LXMERT ViLT ViLT NLVR2 BLIP NLVR2

all 731 50.8 65.5 61.6 52.8 53.9

in front of 76 46.1 64.5 53.9 50.0 52.6

behind 71 49.3 78.9 69.0 50.7 49.3

far away from 57 57.9 59.6 59.6 40.4 36.8

at the left side of 32 59.4 71.9 50.0 59.4 71.9

next to 32 40.6 62.5 62.5 81.2 65.6

contains 29 48.3 86.2 75.9 48.3 55.2

touching 27 55.6 48.1 77.8 55.6 74.1

at the right side of 25 44.0 48.0 68.0 52.0 72.0

on 23 52.2 87.0 78.3 73.9 82.6

above 22 54.5 59.1 59.1 54.5 45.5

left of 22 59.1 86.4 54.5 54.5 54.5

on top of 20 40.0 80.0 90.0 85.0 85.0

under 20 45.0 60.0 45.0 45.0 40.0

below 18 66.7 61.1 61.1 61.1 66.7

in 16 37.5 87.5 87.5 62.5 75.0

parallel to 14 35.7 42.9 50.0 64.3 42.9

far from 14 57.1 71.4 71.4 28.6 42.9

facing 14 50.0 42.9 78.6 71.4 57.1

at the back of 14 71.4 64.3 50.0 35.7 35.7

across from 14 42.9 57.1 57.1 28.6 28.6

ahead of 13 30.8 53.8 38.5 53.8 61.5

away from 12 50.0 41.7 50.0 33.3 41.7

beside 12 41.7 41.7 66.7 41.7 25.0

adjacent to 12 83.3 66.7 33.3 58.3 58.3

right of 12 58.3 75.0 58.3 50.0 33.3

beneath 11 54.5 63.6 54.5 54.5 45.5

facing away from 10 60.0 70.0 60.0 60.0 50.0

inside 8 50.0 62.5 75.0 37.5 75.0

close to 8 62.5 50.0 37.5 50.0 37.5

beyond 6 33.3 66.7 66.7 33.3 66.7

alongside 6 33.3 66.7 66.7 50.0 50.0

off 6 66.7 50.0 50.0 16.7 33.3

surrounding 5 40.0 100.0 60.0 40.0 80.0

Table B.2: Our model performance by relation on the zero-shot split test. Only relations with more than 5

occurrences are shown.

category number VisualBERT LXMERT ViLT ViLT NLVR2 BLIP NLVR2

All 2024 55.1 73.9 71.2 59.1 60.1

Adjacency 284 51.4 71.1 63.0 56.7 60.2

Directional 90 56.7 68.9 55.6 47.8 54.4

Orientation 112 50.9 55.4 54.5 55.4 56.2

Proximity 123 52.0 73.2 74.8 53.7 52.8

Projective 773 54.5 76.7 71.7 59.8 61.4

Topological 591 59.2 76.8 79.2 63.5 61.4

Unallocated 51 52.9 64.7 74.5 54.9 60.8

Table B.3: Our model performance by relation meta category on the random split test.

category number VisualBERT LXMERT ViLT ViLT NLVR2 BLIP NLVR2

All 731 50.8 65.5 61.6 52.8 53.9

Adjacency 114 55.3 62.3 52.6 55.3 61.4

Directional 40 50.0 52.5 52.5 25.0 40.0

Orientation 42 47.6 47.6 59.5 64.3 47.6

Proximity 83 59.0 59.0 57.8 41.0 37.3

Projective 286 50.0 69.6 61.2 53.5 51.0

Topological 124 48.4 74.2 76.6 55.6 67.7

Unallocated 42 38.1 64.3 61.9 71.4 64.3

Table B.4: Our model performance by relation meta category on the zero-shot split test.
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