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Abstract

Text-to-speech (TTS) generates speech from text. This tool helps improve people’s quality

of life. However, when extending these models to support languages like Spanish, we find

scarce databases, data processing tools, and model training resources.

In this thesis, I implemented and evaluated a Spanish TTS model on FastPitch with a 10

hour database. FastPitch is a neural network-based end-to-end TTS system that allows for

prosody transformations. I first researched state-of-art TTS and preprocessed the dataset,

then implemented and evaluated the model. As a result, several resources are provided:

tools for raw database processing, methods for linguistic module adaptation, a clean dataset

and a quality TTS system in Spanish.

This model’s quality is compared with two vocoders (WaveGlow/HiFiGan) and two other

state-of-art acoustic models (FastSpeech2/Tacotron2). The FastPitch model synthesized

with HiFiGan vocoder obtained the highest quality results. To conclude, prosody trans-

formation experiments at inference resulted successful with this FastPitch Spanish TTS.

Keywords: Text-To-Speech, Spanish, acoustic models, data preprocessing, Deep Neural

Networks
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Acronyms and Abbreviations
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Abbreviation
Description
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Acronym/

Abbreviation
Description

VOCODER VOice CODER

WER Word Error Rate

WFST Word Finite State Transducer

Table 1: Table of acronyms and abbreviations
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1 Introduction

Speech is the most natural communication tool that humans use to be easily understood.

The area of human computer interaction (HCI) aims to help computers communicate

and interact with humans, for instance, through speech. This is possible thanks to the

computer’s ability to process voice signals. Text-to-speech (TTS) is the technology used

to generate speech from a given input text in real time by a computer. In other words,

it helps a computer learn how to read text or symbols and pronounce them by producing

speech sound waves automatically. Nowadays, the purpose of building TTS is to produce

synthesized speech that can be easy to understand by people, as well as indistinguishable

from real human speech (Azizah et al., 2020).

With recent developments in technology, increasing computing power and development

of deep learning techniques, the delivery methods and speech quality have advanced to a

great extent over the last years, deriving into a rapid expansion of the text-to-speech tech-

nology (O’Malley, 1995). Nowadays, TTS is an essential component for many technological

applications such as navigation announcements on smartphones and in cars, or interactive

interfaces of smart assistant systems (Hayashi et al., 2019). They are also present in the

media and entertainment industry, providing audio narration for media subtitles or video

and mobile gaming. TTS systems also have multiple applications in the fields of health

care and education. They can serve as assistants for people without the physical ability

to speak and visually impaired people (Edward, 2018), convert sign language to speech in

real (Tiku et al., 2020), reduce mind wandering in students with dyslexia (Bonifacci et al.,

2022), facilitate processing of written materials for people with reading impairments (Wal-

lace et al., 2021), or as a tool for language education (Dutoit and Dutoit, 1997), among

many other applications.

1.1 TTS systems

Text to speech is the conversion of text into voice output. It is therefore key for a TTS

model to learn the relation between text and audio. In order to do so, the first step in

a TTS system is to process text and audio data as input, and extract information from

the two sources. As represented in Figure 1, the information features extracted from text

are called linguistic features. These features are typically phonemes. A phoneme is a

symbol representing the smallest unit of sound that distinguishes one word from another

(Britannica). To get these phonemes from text, the preprocessor tokenizes a sentence
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into words. Then, it breaks the words into phonemes based on their pronunciation. For

instance, “hello”, would be converted into “h3"l@U”.

Figure 1: Basic processes involved in TTS (Maheshwari, 2021)

The preprocessor step calculates the duration of the phonemes, but also procesess

prosodic features. Prosody refers to acoustic features of speech, such as rhythm, stress

and intonation. Inside prosody we can define different perceptual measurements of sound,

including pitch and energy. Pitch is a key feature to convey emotions using our voices,

and it greatly affects the speech prosody. Energy indicates frame-level magnitude of mel-

spectrograms and directly affects the volume and prosody of speech. In general terms,

the mel-spectrogram is a signal processing method for capturing and measuring acoustic

features, or more specifically, frequencies, of an audio signal.

The linguistic features (phonemes) are the input of the encoder, which outputs an

embedding known as latent feature. The complete encoding process has been represented in

Figure 3. A latent feature encapsulates the information extracted from the pre-processing

step. Latent features are also used for the prediction of energy, pitch, and duration, as

seen in 3a.

Figure 2: Encoding process of TTS (Maheshwari, 2021)

Energy, pitch, and the duration of the phonemes are actually used to train the energy

predictor, the pitch predictor, and the duration predictor respectively, which are used by

the model to get a more natural output (Maheshwari, 2021). The last operation in the

encoding process adds and concatenates both latent features and pitch, energy and duration
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(a) Extra network in the encoder (b) Operation of feature addition/concatenation

Figure 3: Process inside the encoder (Maheshwari, 2021)

predictions to output a new latent feature containing all this processed information. We

can see this process in 3b.

The processed latent features are the input of the decoder. As represented in Figure

4, the decoder converts the information embedded in the latent features into acoustic

features, that is, mel-spectrograms. These output acoustic features are sent to the vocoder

as input. The reason why there is an extra step of obtaining mel-spectrogram as output,

instead of directly producing the speech audio directly from the vocoder, is that audio

contains more variance information (e.g., phase) than mel-spectrograms. This means that

there is some information missing between the input and the output for text-to-audio,

leading to potential problems in the output, compared to text-to-spectrogram generation

(Maheshwari, 2021).

Figure 4: Decoding process of TTS (Maheshwari, 2021)

To conclude, in Figure 5 we can observe how the vocoder converts the acoustic features

(mel-spectrograms) into the final waveform (audio) (Maheshwari, 2021). A vocoder is an

audio processor that captures the characteristic elements of an an audio signal, in this

case, the output mel-spectrograms, and uses this characteristic signal to affect other audio

signals. This technology behind the vocoder is used to synthesize the speech waveform,
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the final output of a TTS system (TechTarget, 2005).

Figure 5: Vocoder for wave synthesizing process (Maheshwari, 2021)

1.2 Motivation and scope of the thesis

Text-to-speech is technological tool that can assist in improving people’s lives. As such,

intelligent speech applications have undergone unprecedented breakthroughs and growth,

and recent research on end-to-end TTS has gained success in terms of human-like and

high-quality generated speech. For instance, TTS systems have demonstrated a powerful

capability with regard to reproducing prosody style or speaker characteristics (Chen et al.,

2019).

Nevertheless, obtaining good quality TTS requires a great investment of effort and

resources, such as many hours of recorded speech data, annotations of the audio data in

text, careful lexicon and phoneme set development, or complex rules for text normalization,

among others (Gutkin et al., 2016). Thus, we find that most TTS resources are exclusively

available in English. It is difficult for a developer who wants to create a speech synthesizer

in a new language to find a model, a phoneme set in the target language, or even data.

The goal of this thesis is to train a TTS model in Spanish and, while doing so, provide

a clean dataset and tools for the cleaning, processing and adaptation of future datasets

in Spanish for the TTS domain. With this project, I contribute to the field of Spanish

text-to-speech with following resources and experiments:

1. Resources for TTS in Spanish: methods, means, databases.

2. Tools for the dictionary creation, phonetic transcription and linguistic module im-

plementation in Spanish.

3. Tools for audio and text data curation.

4. A cleaned Spanish dataset that is ready to be used by any other TTS model.
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5. End-to-end TTS model in Spanish.

6. Quality evaluation of FastPitch with two vocoders in Spanish: WaveGlow and HiFi-

Gan.

7. Quality evaluation of three TTS acoustic models in Spanish: FastPitch, FastSpeech2,

Tacotron2.

8. Prosodic transformations in Spanish at inference.

This work is accomplished by re-purposing and adapting the following main resources:

1. TC-STAR dataset, a Spanish TTS database consisting of the recordings and an-

notation of approximately 10 hours of read speech in Spanish.

2. Aholab Modulo1y2, a text processing module that transcribes text into phonemes,

which we use for the dictionary creation as well as transcription of text at inference.

3. FastPitch text-to-speech, a text-to-speech acoustic model that learns and mod-

els the duration and pitch features of input text and audio (from our corpus), to

subsequently predict mel-spectrogram values from a given text at inference.

4. WaveGlow/HiFiGan, vocoders that create the final speech waveform from the

predicted mel-spectrograms.

1.3 Research questions

1. With the available dataset and resources in Spanish, what are the procedures needed

to train and develop a TTS model in Spanish based on FastPitch?

2. How does quality of three state-of-art TTS acoustic models (FastPitch, Tacotron2,

FastSpeech2) compare when trained using the same Spanish dataset and conditions?

1.4 Master’s thesis outline

This document is organised as follows: in section 2, we introduce the state-of-the-art

techniques in text-to-speech. In section 3, we explain the methodology and processes

followed for the training and assessment of our TTS system in Spanish, including the

corpus and data processing methods, the acoustic model training procedure, as well as the

evaluation of results. Section 4 contains the results of the different experiments and the
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analysis and evaluations performed. To conclude, section 5 provides an overview of this

project and suggests further steps for continuing the study.
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2 Literature review

This cutting-edge piece of technology that transforms text into speech is the result of cen-

turies of interdisciplinary application and advances in linguistic theory, acoustic–phonetic

characterization of target language sound patterns, perceptual psychology, mathematical

modeling of speech production, structured programming, and computer hardware design

(Klatt, 1998). In the following subsections, we briefly introduce the history of the Text-

to-Speech technology, including the different trends and efforts that have contributed to

the advances in speech synthesis. Then, we explain the models and techniques of current

state-of-the-art TTS. Finally, we address Spanish TTS by reviewing the available work and

resources in this regard.

2.1 History of TTS systems

Human curiosity over generating synthetic speech began centuries ago, dating back to the

12th century (Tan et al., 2021). During the 18th century, mechanical talking machines

started to be built (Mache et al., 2015). In 1791, Wolfgang von Kempelen created one

of the first speaking machines that produced “speech” by building mechanical equivalents

of the parts of the human vocal system (Tarnóczy, 2005). Subsequent early attempts of

speech synthesis technology used parametric synthesis methods that construct a model of

the acoustic properties of the human vocal tract, and then analyze speech by determining

the values of the parameters of the model (Berkley). In 1939, Homer Dudley introduced

parametric techniques by creating the first device to synthesize speech sounds via electrical

means, inspired by VOCODER (Voice Coder), which represent the stepping stone of the

vocoders used nowadays for speech synthesis (Hoffmann and Mehnert, 2010). It wasn’t until

late 1960’s, though, that first full computer-based TTS systems started to be developed

(Mache et al., 2015).

Until the arrival of the DNN techniques, computer-based speech synthesis methods can

be divided into two main techniques: parametric and concatenative. Concatenative sys-

tems, as the name suggests, aim to concatenate speech units selected from a pre-recorded

speech database together for synthesis (Ning et al., 2019). Parametric synthesis uses digital

signal processing to synthesize speech from text and describes the speech using parame-

ters, rather than stored exemplars (King, 2011). Early computer-based speech synthesis

methods include articulatory synthesis, formant synthesis and concatenative synthesis (e.g.

diphone concatenation or unit selection) (Tan et al., 2021). With the increase in power
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and resources of computer technology, more sophisticated engineered, robust and fast TTS

systems started to emerge, such as Statistical Parametric Synthesis (Hidden-Markov Model

or neural network-based) and Neural Speech Synthesis, which are the most popular TTS

techniques nowadays (Zen et al., 2009). The timeline of all the different TTS systems

and their types can be observed in Figure 6 below1. Following the technological progress,

creating natural sounding synthetic voices has shifted from a knowledge-based focus to a

data-based one (Zen et al., 2009).

Figure 6: Waveform generation techniques over history

Articulatory TTS synthesis is a parametric and rule based technique that aims to

model the human vocal organs as accurately as possible, including the areas of the glottis,

mouth, and vocal chords. Simulating computationally the neurophysiology and biometrics

of speech production should obtain quality speech results. However, there are inconsis-

tencies between the format of the collected and the synthesized data. In addition, the

modeling of the tongue movements is largely complex, which causes an output still far

from natural sound. Hence, articulatory synthesis methods did not achieve a high level in

success (Karjalainen, 1999; Tan et al., 2021).

Formant synthesis refers to a set of rules that control a simplified source filter model

to produce speech, a method for speech synthesis that became popular in the last decades

of the 20th century (Karjalainen, 1999). Formant TTS synthesis measures formant trajec-

1Figure extracted from Speech Technologies course in Language Analysis and Processing master’s degree
(2020) at EHU/UPV
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tories for different sounds and transitions, designs rules to describe them mathematically,

and, during synthesis, simulates formants through digital filters. This parametric method

uses an additive synthesis module, i.e. a module for adding waves together, and an acoustic

model with different parameters such as fundamental frequency, voicing or noise level to

synthesize speech. The output quality, however, is not ideal, and it has a long development

time and difficulties to accurately estimate the correct value for all the parameters (Tan

et al., 2021).

Concatenative synthesis, as mentioned, consists on selecting the most appropriate

speech unit from a pre-recorded and labeled speech corpus, and concatenating each unit into

the final synthesized speech (Ning et al., 2019). This selection depends on a unit selection

algorithm that finds the characteristics extracted from the source sounds or the high level

descriptions attributed to them and, at inference, searches speech units to match the given

input text, to then produce speech waveform by concatenating these units together. Di-

phone synthesis refers to the presence of a single segment per unit (e.g. diphone); whereas

unit selection synthesis is the presence of multiple segments per unit (Zen, 2015). The

concatenative synthesis method faces several drawbacks including segmentation (phoneme

boundaries not well detected), descriptors (accurate labels), efficiency (selection is com-

putationally expensive when the number of units in the inventory is very large), data

mining (requires huge recording database in order to cover all possible combinations of

speech units for spoken words), and lack of flexibility (only recorded data is available for

synthesis) (Schwarz, 2006; Tan et al., 2021).

Statistical Parametric Speech Synthesis (SPSS) is proposed to address the weaknesses

of concatenative synthesis. The model is parametric and statistical because it uses param-

eters to describe speech, and these parameters are described using statistics (e.g., means

and variances of probability density functions) for calculating the distribution of the pa-

rameter values in the training data (King, 2011). This way, instead of concatenating units

to generate the waveform, SPSS generates the acoustic parameters necessary to produce

speech, then recovers the speech waveform from these parameters using a vocoder. Early

Statistical Parametric Speech Synthesis models are formed by three main parts: a standard

text analysis module for linguistic feature extraction, an HMM-based acoustic model, and

the vocoder for analysis and speech waveform synthesis.

The overall architecture of a SPSS system is shown in Figure 7. As we can see in this fig-

ure, during training, the Hidden Markov Model (HMM)-based acoustic module performs

a mapping from l linguistic contexts extracted from text, i.e. text analysis module, to

Language Analysis and Processing



12/62

probability densities of speech parameters o such as the frequency spectrum (vocal tract),

fundamental frequency (voice source), and duration (prosody) of speech, i.e. vocoder anal-

ysis module (Zen et al., 2013; Karagiannakos, 2021) During synthesis, HMMs generate a

set of l linguistic parameters from the input text sequence, extracted from the text analy-

sis, and vocoders synthesize speech from the predicted acoustic features ô (Karagiannakos,

2021; Tan et al., 2021).

Figure 7: Statistical Parametric Speech Synthesis Zen (2015)

In near 2010s, with the rapid development of neural networks and deep learning, the

HMM-based acoustic model of SPSS starts to be replaced by early Deep Neural Networks

(DNNs), Recurrent Neural Networks (RNNs) or Generative Adversarial Networks (GANs)

that predict the acoustic features from linguistic features (Saito et al., 2017; Zen et al.,

2013; Tan et al., 2021). As the deep learning field continues to develop, the following

logical step for TTS systems is to adopt (deep) neural networks as the model backbone

for speech synthesis, giving birth to state-of-the-art Neural Speech Synthesis (Tan et al.,

2021). In the following subsection, we further deepen into neural TTS by reviewing the

different types of models and frameworks of the last decade.

2.2 State-of-the-art TTS systems

State-of-the-art text-to-speech models are most commonly formed by three main compo-

nents divided into two modules: the text analysis and processing part as the TTS frontend

module, and the acoustic model and the vocoder as the TTS backend module. We can

observe these two modules in Figure 8 below. As it is shown in the figure, the text pro-

cessing module takes a discrete symbol sequence (raw text) as input and transforms it

into a discrete linguistic feature sequence that is easier to interpret by the acoustic model,

such as phonetic, prosodic or linguistic labels. The acoustic model processes the linguistic

and acoustic features together, learns the relationship between them, and uses predictions
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to map linguistic features to acoustic features at inference (synthesis) time. The vocoder

takes this discrete symbol sequence containing the predicted acoustic features and turns it

into a waveform (Zen, 2015; Tan et al., 2021).

Figure 8: General scheme of a TTS system

In this section, we explore each part and the most relevant models and processes in

the pipeline of state-of-the-art neural-based TTS synthesis, following a brief overview of

the diachrony of these systems. By taking this information into consideration, we can

understand the characteristics of our system, as well as the motivations behind the selection

of our text processing method, acoustic model and vocoder.

2.2.1 Text analysis

The main objective of the text analysis part, also called frontend in the TTS domain, is to

turn text into linguistic features, including pronunciation and prosody features to be used

at inference for synthesis. Statistic parametric models extract several features from the

frontend step through different processes such as text normalization, word segmentation,

part-of-speech (POS) tagging, prosody prediction and grapheme-to-phoneme (G2P) con-
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version. The large modeling capacity of end-to-end neural models allows for these to take

phoneme sequences directly as input, therefore the preprocessing step can be simplified

(Tan et al., 2021). The two main processes required for neural models are reduced to text

normalization and clean up and G2P conversion.

Text normalization is the process of transforming raw text from character format into

spoken word format. There are different categories in text normalization. For instance,

numbers need to be converted from digit to word, e.g. the year “1970” is translated as

“nineteen seventy” and “5/16” as “May sixteenth”. Acronyms and abbreviations such as

“Dept.” and “UK” are normalized to “Department” and “United Kingdom”. To conclude,

text may contain punctuation and special characters such as: hyphen “-”, plus “+”, apos-

trophe “ ’ ”, slash “/”, counterslash “\”, parentheses “(” and “)”, ampersand “&” and at

“@ ”. These symbols contain no specific phonemic sound, therefore the acoustic model will

not be able to draft and learn a correlation between these graphemes and a sound feature,

and require normalizing or simply getting removed.

Grapheme-to-phoneme conversion refers to the conversion of characters (graphemes)

into pronunciation tokens (phonemes) with the aim of facilitating the speech synthesis.

Common examples of the phoneme tokens to which graphemes are converted include the

International Phonetic Alphabet (IPA), Speech Assessment Methods Phonetic Alphabet

(SAMPA) or ARPAbet from the Advanced Research Projects Agency (ARPA) . Thus, for

instance, the word “Thursday” will take the following phonetic transcription according

to each alphabet format: “/"T3:zdeı/” in IPA, “T3:zdeI” in SAMPA and “TH ER1 Z D

EY2” in ARPAbet. Each of the tokens has a correlation with specific sound values, which

the model will learn during training. The model can leverage a manually collected G2P

lexicon for the transcriptions, but this cannot cover the pronunciation of all the words in

the language (Tan et al., 2021). Hence, it is common for this to include a pre-trained

G2P backend that will generate the pronunciations of out-of-vocabulary (OOV) words,

such as Phonemizer and G2P-seq2seq (cf. Section 2.3.2 for more information on these G2P

softwares).

2.2.2 Acoustic models

Acoustic models generate acoustic features from linguistic features, which will then be

further converted into speech waveform by the vocoder. Different acoustic model types

have been developed over the history of TTS, from early HMM and DNN based models in

statistical parametric speech synthesis (SPSS), to sequence to sequence models based on
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encoder-attention-decoder framework (including LSTM, CNN and self-attention), and the

latest feed-forward networks (CNN or self-attention) for parallel generation (Tan et al.,

2021). In the following subsections we will further review the latest state-of-art acoustic

models, amongst which we can find well-known models in the field like Tacotron and

Tacotron2 (RNN-based), DeepVoice (CNN-based) or FastSpeech, FastSpeech2 and the

present study’s model, Fastpitch (transformer based).

Recurrent Neural Network-based models The main idea behind recurrent neural

networks is to use the output of previous states in the network as inputs of the following

ones, while having hidden states (Amidi and Amidi). At the same time, there are two types

of models for sequence generation; autoregressive and non-autoregressive. Autoregressive

models forecast a variable of interest depending on the past values of it, whereas non-

autoregresive ones can generate a sequence in parallel, without explicitly depending on the

previous element, which allows for creating faster inferences. The sequence to sequence

learning of these models is based on an encoder-decoder framework: The encoder takes

the source sequence as input and generates a set of representations, and the decoder takes

these representations and its preceding elements to estimate the conditional probability of

each target element (Ren et al., 2019).

Tacotron is one of the first end-to-end acoustic models based on a seq2seq model with

attention. Instead of generating samples in an autoregressive way, Tacotron generates

vocoder parameters. Tacotron’s building block consists of a bank of 1-D convolutional fil-

ters, followed by highway networks and a bidirectional gated recurrent unit (GRU) recur-

rent neural net (RNN). It takes characters as input of the encoder and the attention-based

encoder produces spectrogram frames that later on are converted into waveforms (Wang

et al., 2017).

Both Tacotron and Tacotron2 map character embeddings to mel-scale spectrograms

as the conditioning input to the vocoder instead of linguistic, duration, and F0 features.

Tacotron2 improves the previous model architecture by simplifying building blocks (Pa-

perswithcode, a). As we can see in Figure 9, Tacotron2 gets character embeddings as input

and uses bidirectional vanilla LSTM and several convolutional layers in the encoder and

decoder. Each decoder step corresponds to a single spectrogram frame (Shen et al., 2018).

These structure and components of Tacotron2 can be observed in Figure 9.

Convolutional Neural Network-based models Convolutional Neural Networks

(CNNs) refer to a type of algorithm popular to the field of computer vision that learns

to assign a relevance to different inputs and differentiate from one another. By perform-
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Figure 9: Tacotron2 system architecture (Shen et al., 2018)

ing this simple classification process, CNNs can learn filters and characteristics without

requiring extensive hand-engineering (Saha, 2018). In the TTS domain, the use of CNNs

has been proposed to solve the excessive training time of RNN models, which are less

suited for parallel computation using GPUs (Tachibana et al., 2017). For instance, Deep-

Voice implements a CNN to enhance a statistical parametric synthesis model, which, after

obtaining linguistic features, uses a WaveNet based vocoder to generate waveforms. Sub-

sequent CNN-based type of models improve DeepVoice by integrating multi-speaker mod-

eling, Tacotron + WaveNet model pipelines, or more compact seq2seq models for direct

mel-spectrogram predictions (Tan et al., 2021; Arik et al., 2017).

Transformer-Based models Transformer-based models aim to replace RNN struc-

tures due to their low efficiency at training and inference, as well as their difficulties in

modeling long dependencies (Li et al., 2018). These systems are formed by the same two

main components as RNNs, an encoder and a decoder, but both are now built by stacks

of several identity blocks. They do not use conventional encoder-attention-decoder frame-

work for sequence to sequence learning but a feed-forward network to generate a sequence

in parallel (Ren et al., 2019).

FastSpeech is a feed-forward network based on Transformer to generate mel-spectrograms

non-autoregressively, that is, in parallel, and adopts a 1D convolution. Its entire architec-

ture is shown in Figure 10. In this Figure, we can observe that the model consists of

multiple feed-forward Transformer (FFTr) blocks on the phoneme and mel-spectrogram

sides for the transformation of the former to the latter, and has a length regulation in
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between the two to bridge the length gap between the phoneme and mel-spectrogram se-

quence. This length regulator is built on a phone duration predictor and up-samples the

phoneme sequence according to the phoneme duration (i.e., the number of mel-spectrogram

frames that each phoneme corresponds to) to match the length of the mel-spectrogram se-

quence. These duration predictions are obtained by extracting attention alignments from

an encoder-decoder based teacher model (Ren et al., 2019).

Figure 10: FastSpeech system architecture (Wang et al., 2017)

However, there are a few shortcomings in the way FastSpeech processes information.

FastSpeech has a knowledge distillation system, which aims to transfer knowledge from a

large model to a smaller one in a more computationally efficient way in terms of knowl-

edge capacity (Paperswithcode, b). This system is complicated and time consuming. In

addition, it has a teacher model for duration prediction. The teacher model is expected

to learn the true probability distribution from natural speech data, which is sent to the

student model for more informative predictions. Nevertheless, the duration extracted from

the teacher model is not accurate enough, and the target mel-spectrograms distilled from

teacher model suffer from information loss due to data simplification, resulting in a limited

voice quality (Ren et al., 2020).

FastSpeech2 aims to tackle the constraints present in FastSpeech, although it main-

tains the core feed-forward Transformer block with a stack of self-attention layer and

1D-convolution. In order to improve the aforementioned knowledge processing steps, Fast-
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Speech2 trains directly using ground-truth as training targets instead of the simplified

output from the teacher. As Figure 11 demonstrates, FastSpeech2 introduces features

such as pitch, energy, or more accurate duration, as conditional inputs through a variance

adaptor. These features are extracted from the waveform and the predicted values are used

at inference (Ren et al., 2020).

Figure 11: FastSpeech2 system architecture (Ren et al., 2020)

2.2.3 FastPitch model

FastPitch, the acoustic model selected for the training of the Spanish TTS system in the

present study, is a feed-forward model with a fully-parallel Transformer architecture also

based on FastSpeech. Equally to FastSpeech2, it eliminates the knowledge distillation sys-

tem of mel-spectrogram targets present in FastSpeech. FastSpeech only predicted duration

as input, which derives in pitch contours that collapse different pronunciations of the same

unit. FastPitch prevents the absence of linguistic information by performing an explicit

modeling of pitch contours. Besides, the approach to the conditioning on F0 is differentto

FastSpeech2. The latter predicts contour with a resolution of one value for every mel-

spectrogram frame, whereas FastPitch has one value for every input symbol. FastPitch is

not conditioned on energy like FastSpeech2 ( Lańcucki, 2021).

The architecture of is formed of two main FFTr stacks, one at the encoding level and

another one at the decoding level, as we can observe in its architecture in Figure 12.
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The first FFTr stack is operating at the input token resolution. It produces a hidden

representation h = FFTr(x ) between x, the input lexical unit sequence, and y, the target

mel-scale spectrogram frame sequence. The hidden representation h predicts the duration

and average pitch of characters in Equation 1

d̂ = DurationPredictor(h), p̂ = PitchPredictor(h) (1)

where d̂ ∈ Nn and p̂ ∈ Nn, with an integrated 1D CNN. The duration of the input tokens

is predicted through the integration of Tacotron2. Using the extracted durations d, the

model averages F0 values over every input symbol for pitch prediction. Ground truth p and

d are used during training, and predicted p̂ and d̂ are used during inference. The result of

the predictions is passed to the second stack of FFTr, which operates at the output frame

resolution, and produces the output mel-spectrogram sequence ( Lańcucki, 2021).

Figure 12: FastPitch system architecture ( Lańcucki, 2021)

An distinctive feature of Fastpitch with respect to the other acoustic models is that

this model generates mel-spectrograms and predicts a pitch contour from raw input text.

During training, for every input character, the model predicts a pitch cue, i.e. an average

pitch over a phoneme in Hz. In Figure 13, we can observe an example on how FastPitch

is estimating the pitch for every mel-spectrogram frame in the phrase “in being compara-

tively” (in blue) averaged over characters (in green). Silent letters are assigned a duration
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0 and omitted ( Lańcucki, 2021). Subsequently, these pitch cues then can be transformed

at inference to adjust prosody.

Figure 13: FastPitch pitch predictions ( Lańcucki, 2021)

The prosodic cues that can be adjusted include2:

• Amplify pitch with respect to the mean pitch

• Invert pitch with respect to the mean pitch

• Raise/lower pitch

• Flatten the pitch to a constant value

• Change the rate of speech

2.2.4 Vocoders

Vocoders are models that transform speech features into raw waveform (You et al., 2021).

There are two types of vocoders: the ones used in statistical parametric speech synthesis

(SPSS) and the neural network-based vocoders. Introduced in Tacotron2, WaveNet is one

of the earliest neural-based vocoders. WaveNet is probabilistic and autoregressive and

purely relies on end-to-end learning with almost no prior knowledge on audio signals. It

predicts each audio sample conditioning on the previous ones, and the waveform samples

generated are conditioned on linguistic features using dilated convolution (van den Oord

et al., 2016). Despite WaveNet’s good output quality, its inference speed is too slow.

2Please refer to the original English version of the pitch transformation examples by Nvidia:
https://fastpitch.github.io/
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Subsequent efforts of improving WaveNet integrate, for instance, RNNs for uncondi-

tional waveform generation, conditioning on acoustic features, linear prediction coefficients

to calculate the next waveform samples, or conditioning on BFCC (bark-frequency cep-

stral coefficients) to ease conditioning on mel-spectrograms . Other type of systems leverage

neural-based source-filter model for waveform generations. More recently diffusion-based

models have been introduced but they need long inference times (Tan et al., 2021). How-

ever, most current state-of-the-art vocoders are flow-based or GAN-based.

Flow-based vocoders Flow-based vocoders are a type of parallelizable statistical gen-

erative models that normalize flow and transform a probability density with a sequence of

invertible operations Luong and Tran (2021); You et al. (2021). There are autoregressive

flow-based vocoders, such as Parallel WaveNet, which model dependency between data

distribution and standard probability distribution with teacher distillation; as well as bi-

partite flow-based vocoders, such as WaveGlow, which leverage the affine coupling layers

that ensure the output can be computed from the input and vice versa.

WaveGlow is a flow-based generative model that generates audio from mel-spectrograms

by sampling from a distribution. Samples are obtained from a zero mean spherical Gaus-

sian, matching the same number of dimensions as the target output. These samples

are then sent through n layers to transform the original sample distribution to the de-

sired one. The modelling of the distribution of the audio samples is conditioned on mel-

spectrograms(Prenger et al., 2018).

GAN-based vocoders Generative Adversarial Network-based vocoders aim to out-

perform autoregressive and flow-based vocoders in both qualitative and quantitative mea-

sures, including speed of synthesis (You et al., 2021). GANs are formed by a generator for

data generation and a discriminator for the evaluation of the authenticity of the generated

data. From the generator’s side, the receptive field for modeling long-dependency is typi-

cally increased by dilated convolution. The upsampling of the condition information (e.g.,

linguistic features or mel-spectrograms), is performed by transposed convolution. The dis-

criminator aims to capture the characteristics of the waveform, to then provide a better

guiding signal for the generators. GAN losses are also leveraged to improve the stability

and efficiency of the adversarial training as well as the perceptual audio quality (Tan et al.,

2021). Amongst the vocoders that use GANs to ensure quality audio generation, we can

find WaveGAN (Donahue et al., 2018), GAN-TTS (Li et al., 2018), MelGAN (Kumar et al.,

2019), Parallel WaveGAN (Yamamoto et al., 2019) or HiFi-GAN (Kong et al., 2020).

HiFi-GAN, one of the vocoders used in the present study, aims to generate high fidelity
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speech efficiently (Kong et al., 2020). Supposing that a speech audio consists of sinusoidal

signals with various periods, HiFi-Gan models periodic patterns of an audio for enhancing

sample quality. It’s composed by one generator and two discriminators: multi-scale and

multi-period discriminators. Each of the latter obtains only a specific periodic part of raw

waveforms in paralell. Discriminators accept equally spaced samples of an input audio

with a period, and then they are applied to the generator (Kong et al., 2020; Tan et al.,

2021). The generator of this model processes different patterns of various lengths in parallel

through a multi-receptive field fusion module, and also has the flexibility to trade off

between synthesis efficiency and sample quality (Tan et al., 2021).

2.3 TTS in Spanish

Contemporary end-to-end systems have achieved remarkable quality standards and can

produce almost human-like natural sounding speech in real time. Thanks to the afore-

mentioned research and advancements in the field, these systems nowadays do not require

excessively high demands on the quality, amount, and preprocessing of training data. This

allows researchers to investigate other techniques such as expressiveness, controllability,

voice conversion, or few-shot voice cloning. When extending these models to support

multiple languages or a language other than English, we may find several obstacles, in-

cluding mismatch in the input representations or pronunciations, and imbalanced amounts

of training data per language (Nekvinda and Dušek, 2020). In this section, I will provide

an overview of the available resources in Castilian Spanish in the field of text-to-speech.

2.3.1 Databases

In this section I present a list of available TTS datasets in Spanish. These are usually

formed by a number of minutes/hours of speech recordings in Spanish and their corre-

sponding orthographic transcription in text files. In some occasions, there are additional

annotations of the data, such as phonetic transcriptions, lexicons or part-of-speech tags.

The number of the available databases in Spanish is limited, especially open source free-

to-use ones, as we can see in Table 2.

Open source work is Creative Commons Zero (CC0) license, a public domain license

that is not adapted to the laws of any particular legal jurisdiction, therefore allowing the

free distribution of an otherwise copyrighted “work” (CreativeCommons). The rest of

the licenses are more restricted, from permitting only noncommercial uses of the work,
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to requiring credit attribution to authors, sharing adaptations under the same terms, or

no derivatives or adaptations of the work at all. Each database name has its source link

embedded in it for further information on their respective license permissions, including

the details for obtaining and using them.

Database Source License Duration (h) Speakers
CommonVoice ES Mozilla CC0 3,050 83,790 mixed

CSS10 LibriVox CC0 23.82 1 male

MAILABS (ES)
LibriVox &

Project Gutenberg
CC0 108.5

2 male
1 female

MLS (ES) LibriVox CC BY 4.0 1,438.41 120 mixed
Spanish TTS

Speech Corpus
Appen CC 1.45 1 male

TC-STAR UPC CC 20
2 male

1 female

Table 2: List of available Spanish databases

2.3.2 Tools

There are several tools that can be used for TTS training and quality improvement purposes

that are language dependent, particularly in the text processing TTS frontend module. The

objective of these TTS tools is to prepare the data in a way that the Spanish linguistic

feature extraction from the audio and text data is performed correctly. Among these tools,

we can find text cleaning tools for the normalization of numbers and character clean up,

grapheme to phoneme conversion tools for the phonetic transcription of orthographic text,

and other NLP tools for text parsing and linguistic feature extraction such as tokenization,

lemmatization or part-of-speech tagging.

Text preprocessing Preprocessing the text involves several steps, including transcrib-

ing numbers or abbreviations/acronyms into verbalized orthographic form, and removing

certain characters or symbols. This might be a challenging task, as it involves replacing

the raw target part of speech with a new text, while maintaining its original coherence

and adequate syntactical or grammatical forms. To perform this task, automatic text

normalization models are usually rule or neural based.

In addition, punctuation plays a key role in the way texts are interpreted by the TTS

system in Spanish (LumenVox). As it is shown in Table 3, intonation depends heavily on

punctuation. Depending on each type, we might have longer or shorter pauses between
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utterances, or rising or falling intonation at the end of a sentence. For instance, the spoken

difference between “Quieres venir” versus “¿Quieres venir?” is marked with intonation. If

we input this information for the model to learn it as well, we can have a more natural

intonation at inference. It is therefore desirable to maintain original punctuation in our

post-processed text. Another option to input these prosodic features to the model would

be to annotate intonation patterns and features manually together with input text for its

explicit learning, for example, using Tone and Break Indices (ToBI) tags (cf. (Hwang and

Yu, 2020; Zou et al., 2021) for information on prosodic modeling with ToBI and (Beckman

et al., 2002) for additional information on Spanish ToBI). This requires long and detailed

annotation work, however.

Punctuation marks Pause Intonation
, small slightly rising
; : medium falling
. ! long falling
¿ ? long rising or falling

Table 3: Intonational patterns in Spanish depending on punctuation (LumenVox)

While it is common in English, we can find very few tools that will perform these

two tasks (numeric/abbreviation/acronym translations and text cleanup) simultaneously in

Spanish. One of the libraries that performs a complete normalization task is the Nemo text

processing toolkit from Nvidia. This toolkit has recently added Spanish to their supported

languages, English being the most complete one with formatting and normalization of a

larger number of cases. The NeMo text normalizer in Spanish covers the verbalizing of

numeric cases such as regular or roman numbers, dates, time, and ordinals. It also takes

care of other characters and symbols including money, email domains, and abbreviations.

NeMo is based on Word Finite State Transducer (WFST) grammars. This allows to easily

modify and customize the underlaying grammars and normalization cases covered, as well

as to manually add new cases (versus having to retrain a new model as in the case of neural

normalizers). The diagram in Figure 14 shows an example on how the NeMo performs the

text normalization task in Spanish sentences with different cases of text normalization.

There are also a few options for treating each text processing steps separately. For

writing numbers into orthographic form, a widely used tool is num2words. This pack-

age deals with numbers exclusively, simply converting different types (cardinal, ordinal,

fractions, etc.) into verbalized form. For text cleanup, we can find other options such as

writing a replacing script for unwanted symbols or characters, or tokenizing and lemma-
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Figure 14: Example of text normalization in Spanish with NeMo

tizing our text and using other libraries such as Cucco. Cucco removes stop words, extra

white spaces or undesired punctuation. For tokenizing and lemmatizing text in Spanish,

we might use NLTK, Spacy, or Flair. However, this second option involves more manual

steps and packages.

Grapheme-to-phoneme conversion Phonetic transcriptions convert graphemes into

phonemes in the target language. These are needed for latest neural TTS models, since

the acoustic model gets phoneme representations as input. Obtaining the phoneme rep-

resentations are obtained either from a grapheme-to-phoneme software or from a lexicon

that can be created manually or with the help of a G2P software. Phonetic transcriptions

are created with spelling-to-phoneme translation rules. It is possible to create one’s own

phonetic rule set or dictionary in Spanish to be used by a TTS model by writing a script

that maps a list of words in Spanish to phonemes. In the case of Spanish this task is easier

than in other languages, as each sound correlates with the same sound representation most

times. However, there are always exceptions that need rules (e.g. the pronunciation of
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/r/ is different in the words “rojo” or “aroma”). As we can infer, creating these rules is a

laborious work, as it involves understanding the main phonetic and phonological aspects

of the language, being aware of its features, and having patience and attention to detail to

carefully craft them. The most efficient option is to use open source phonetic transcriptors

that have been already well developed and tested by experts in the field.

In the case of Spanish, the tools selected for transforming input text graphemes into

phonemes are the following: for transcriptions into IPA, we can find eSpeak-ng, a text-to-

speech software supporting a lot of languages and IPA phoneme output with information

such as pitch and length. Transcriptions into SAMPA can be performed by AhoLab’s Lib-

bertso Modulo1y2. This module performs a transcription that maintains the accent mark-

ing, as well as taking into account word and phoneme boundaries. The MBROLA back-

end of eSpeak-ng (eSpeak-ng-MBROLA) is another useful resource that provides SAMPA

spelling-to-phoneme translation and intonation, although it does not preserve word bound-

aries. These two backends are gathered into the Phonemizer library. Although phonem-

ization might be slow for phonemizing a large corpus in real time, Phonemizer allows a

simple phonemization of words and texts in Spanish with separators for phones and words

(latter not supported by the espeak-mbrola backend), as well as preserving punctuation

(excepted espeak-mbrola).

2.3.3 Acoustic models and frameworks

To conclude, in this subsection, I have included some suggestions and guidance to take

into consideration in order to train a model in Spanish or any other language. The most

important part to take into consideration are the previous two aforementioned in the

linguistic module, that is, input data processing and phonetic transcription. Because the

input data is language specific, the data processing step and the linguistic module need to

be carefully adapted before training. Once we have our text preprocessed, we can select the

desired acoustic model and adapt its linguistic module to integrate our G2P method. Once

the acoustic model learns the correlation between the phonemes of the target language and

sound, the next steps of the training are no longer language dependent. The available

acoustic models that can be fairly easily adapted for training end-to-end TTS in different

languages are listed in Table 4.
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Model Name Source Framework

ESPnet
(Watanabe et al., 2018)
(Hayashi et al., 2019)

FastSpeech2, Tacotron2

Coqui Coqui FastSpeech2, Tacotron2
FastPitch Nvidia FastPitch
IMS-Toucan University of Stuttgart FastSpeech2

Table 4: Available end-to-end TTS models

2.4 Chapter summary

In this chapter, I introduced key studies about text-to-speech. I provide a historical context,

starting from the early experiments and models. Thereafter, I review current state of art

TTS architectures, models, and vocoders. Finally, I provide an overview of the state of the

art in Spanish TTS, including available resources in this field. In the following section, I

will explain the methodology and procedures followed for the completion of this study.
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3 Methodology

In the previous section, I have reviewed and summarized the evolution of the development

of text-to-speech technology, as well as current state-of-the-art TTS systems and their

features. In addition, I provided an overview of the resources available for speech synthesis

in Spanish, including databases and tools. In this section, I explain the setup for this

project and introduce the data and tools used for its successful completion. This includes

methods used for the cleanup of the data, the setup and training of the acoustic model,

and the evaluation of the different systems.

3.1 Project setup

The setup of this project begins with the preparation, study and literature review of the

topic. The study, work and progress carried out has been documented weekly with detailed

examples and explanations on the progress for tutor-ships and follow-ups. I did extensive

reading about state-of-the-art acoustic models, as explained in the previous section, and

documented myself to select an acoustic model for this work. As a result, I concluded that

most competitive TTS acoustic models include FastPich and FastSpeech2.

Fastitch and FastSpeech2 models have been developed almost parallel in time and share

good quality results in the synthesized speech. They both take phoneme as inputs. Fast-

Speech2’s predicted F0 contour has a resolution of one value for every mel-spectrogram

frame, discretized to 256 frequency values; FastPitch’s predicted F0 contour has one value

for every symbol ( Lańcucki, 2021; Ren et al., 2020). However, while both models have dif-

ferent approaches to conditioning on F0 with good results, FastPitch has a unique feature,

which is that it explicitly models pitch contours. This feature allows for post-training pitch

modification control at inference. I consider this an innovative technique since, in most

cases, the most common way of manipulating or improving prosody is by vocoder training

and adjustments, and is the main reason why I decided to move forward using FastPitch

as acoustic model.

The handling of the data, the training of the acoustic model and the creation of the

evaluation system for the three acoustic model was entirely carried out in the AhoLab

server. In this server, I first create symlinks to the raw data and perform an initial testing

of FastPitch in English using the default setup provided by Nvidia, to make sure that

both model and server configuration work well. In order to set up FastPitch, I cloned

the source FastPitch repository, and built and ran the FastPitch PyTorch NGC docker
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container (which contains all the requirements and dependencies of the model). The Span-

ish FastPtich acoustic model was trained using one GPU provided by AhoLab, GeForce

GTX TITAN X. Specifics of the configuration for each experiment carried out are further

explained in Section 4.

3.2 Data

The database for the training of this acoustic model in Castillian Spanish consists of the

audio recordings and annotation text files of approximately 10h of speech from a female

baseline speaker. The source and information of this TC-STAR original database can be

found in Table 2. This makes a total of 3,675 initial audio and text files. The database is

fully documented and validated, the annotation text files of the database include a manual

orthographic transcription of what was really pronounced by the speakers. The speech text

files are aligned with the audio files: both file types have the same filename, and each text

file has the aligned audio ID and transcription of the speech data, as shown in Example

3.1. There is one label file named SAM assigned to each text file that includes relevant

information to our project such as the transcription and the time stamps in milliseconds

of the start and end of each transcribed utterance, in the format shown in Example 3.2.

Example 3.1

T6B72110035—El presidente Santer inspira confianza. Se trata de una cualidad muy im-

portante. Pero es también una cualidad que, hasta el momento, no ha utilizado suficiente-

mente.

Example 3.2

LBO: 0.826000,2.034,3.242000,el presidente Santer inspira confianza .

LBO: 3.794000,4.906,6.018000,se trata de una cualidad muy importante .

LBO: 6.350000,8.602,10.854000,pero es también una cualidad que , hasta el momento , no

ha utilizado suficientemente .

The initial audio format of the original dataset has the specifics show in Example

3.3. As shown, all signals have a sampling rate of 96 kHz, 24 bits precision with the

least significant byte first (“lohi” or Intel format) as (signed) integers. The recording tool

used is NannyRecords. Recordings were done in a silence room and the system records

simultaneously a close talk microphone, a mid distance microphone and a laryngograph

signal. Channel 1 contains the recordings from the Far microphone, Channel 2 contains
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the recordings from the Laryngograph, and Channel 3 contains the recordings from the

Close talk microphone.

Example 3.3

Input File : ’T6B72110035.wav’

Channels : 1

Sample Rate : 96000

Precision : 24-bit

Duration : 00:00:04.99 = 479232 samples 374.4 CDDA sectors

File Size : 1.44M

Bit Rate : 2.30M

Sample Encoding: 24-bit Signed Integer PCM

3.2.1 Data pre-processing

Data preparation procedures are of great relevance for the output quality of a TTS system.

In the case of the present study, the original corpus needs several modifications in order

to be used as input to our acoustic model. For instance, the text files contain punctuation

marks and special characters that provide no specific phonemic sound (unless normalized

to the orthographic pronunciation of the symbol), and hence, the acoustic model will not

be able to draft and learn a correlation between this grapheme and a mel-spectrograms

sound value. I therefore remove these during this data processing step.

In addition, there are multiple utterances separated with full stops inside the same

audio and transcription files, as it can be observed in Example 3.1. These need to be

separated into separate single audio and text files. I use the SAM documentation files

for this task, since they contain the time information on the beginning and end of the

utterances in seconds as seen in Example 3.2. In the first of the three utterances of this

example, we can observe three comma separated numeric values. The first and third value

indicate the beginning and the end of the utterance expressed in seconds, so we can know

that “el presidente Santer inspira confianza” is spoken within the first 0.826 and 3.242

seconds. This was confirmed by listening and testing a few audio files. Therefore, using

these time stamps, we can split the audios at the beginning and end of each utterance and

save them as new individual audios.

The Wave library allows for audio splitting in seconds with decimals (Wave). I adapted

the code from the source Wave library documentation and provided these duration stamps

to divide the utterances. Then, I follow the same procedure with the text files, dividing
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them following the SAM annotations and saving the file with the same ID as the audio file

to maintain a correct audio/text alignment.

During this process, I performed several modifications to the audio file format. For

example, I converted the audio data to a 16-bit pulse code modulation (PCM) sample

encoding format, because the 24-bit Floating Point PCM sample encoding is not accepted

by the Wave library. The term pulse code modulation (PCM) refers to the use of a specific

set of rules to digitally represent sampled analog signals, transforming a waveform into a

stream of digits and vice versa (Eugene and sneps sneppe, 2019). In addition, because the

input audio format of the FastPitch acoustic model is 22050, I resampled the audios as

well. I used SoX for the bit-depth and sample rate format modification task of all the audio

files. SoX is a cross-platform command line utility that, among other signal handling and

processing tasks, can convert various formats of computer audio files into other formats

(Sox). The end result of the audio pre-processing is shown in Example 3.4

Example 3.4

Input File : ’T6B72110035.wav’

Channels : 1

Sample Rate : 22050

Precision : 16-bit

Duration : 00:00:02.42 = 53273 samples 181.201 CDDA sectors

File Size : 107k

Bit Rate : 353k

Sample Encoding: 16-bit Signed Integer PCM

Subsequent to the audio format changes, the sentences are split. The resulting number

of files was 5,334. Some of the audios had to be removed because they contained several

long utterances separated by commas and semicolons, which caused the files to be too long

(time wise). This means that they are not only difficult for the model to process in terms

of Random Access Memory (RAM) space, requiring a smaller batch size, but also contain

speech of sentences with unnatural intonation. After discarding those files, the final corpus

contains a total number of 4,268 audio files and same number of text files (one sentence

per audio file). The original corpus does not include validation and test sets, but it was

divided for this experiment into train, test and validation subsets. The final amount of

audio/text files of each subset after dataset division is:

• Train set: 4,141
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• Validation set: 127

• Test set: 40

3.3 End-to-end text-to-speech

It has been established in Section 2 that there are three main components in a TTS system:

the text processing part, where I obtain the linguistic representation of the input data, the

acoustic model, which learns the relationship between the linguistic representation and the

acoustic data, and the vocoder, which generates the synthetic speech from the linguistic

representation. As such, FastPitch, the acoustic model selected for this work, follows the

same flow. However, this model is originally designed to train in English data, and its

linguistic module needs some adaptation in order for it to learn Spanish linguistic features

as well. In addition, FastPitch needs an implementation with our dataset for TTS, as well

as a tailored evaluation system from which we obtain results. In this subsection, I explain

the methodology and the tools used for the end-to-end implementation and evaluation of

our Spanish TTS based on FastPitch.

3.3.1 Linguistic feature configuration

FastPitch is designed to predict mel-spectrograms from input symbols. The input symbols

for this model can be selected as graphemes or phonemes. In the case of graphemes,

FastPitch takes the raw text and turns it into pure graphemes, that is, written symbols

that represent a sound. If the selected input is phoneme, the format by default in FastPitch

is ARPAbet (Advanced Research Projects Agency phonetic transcription). The model has

a local dictionary file: the Carnegie Mellon University (CMU) Pronouncing Dictionary

(Carnegie-Mellon-University). The CMU is a dictionary that contains a large set of words

and their corresponding phonetic transcription based in ARPAbet symbols. The text

processing module of FastPitch processes the input raw text word by word, looks up each

word in the CMU dictionary, and returns its ARPAbet representation. Then, this output

gets encoded, and the model will align the encodings to output mel-spectrogram frames

automatically.

As it has been established in the review of literature, phonemes result easier and more

accurate for the model to learn a relationship with acoustic features. This is because there

is a clearer mapping from spelling to phonemes than to pure orthographic characters or

even graphemes. For instance, the phoneme /k/ in English can be represented by the
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orthograpic/grapheme forms k (kite), c (case), ck (lock) or ch (choir). Thus, I selected

the method of using phonemes as input.

However, instead of using ARPAbet as the phonetic annotation format, the text files

of the original corpus are phonetically transcribed to Speech Assessment Methods Pho-

netic Alphabet (SAMPA) format. I chose to transcribe the data into SAMPA format and

replace ARPAbet with it for two main reasons: first, because this ARPAbet backend is

only supporting North American English, and our Spanish corpus needs Spanish phoneme

representation for words; second, because I was provided a linguistic module developed

by the AhoLab center for this task, which transcribes directly and efficiently orthographic

text into Spanish SAMPA.

AhoLab’s SAMPA phonetic transcription module3, Modulo1y2 within the Speech func-

tionality, is part of AhoLab’s in-house text processing fronted package named Libbertso,

and transcribes text to Spanish and Basque SAMPA using a personalized Spanish dic-

tionary as backend. The tool allows for choosing these two fundamental parameters as

arguments, Lang for the language, which can be set as es for Spanish or eu for Basque,

and HDicDB for selecting the desired dictionary file. In addition, this module cleans and

normalizes the text, i.e. expands numerals from digit to orthographic form (e.g. 8 as

eight) and removes special characters, and allows for phonemizing sentence-by-sentence

or word-by-word, with or without stress markers. Therefore, prior to the training of the

model, I used the Modulo1y2 transcriber to create my own pronunciation dictionary in

Spanish SAMPA offline, which contained each unique word in the corpus, alphabetically

sorted and followed by its phonetic notation.

3.3.2 Model implementation

After the original corpus has been pre-processed and the dictionary with the words in

Spanish SAMPA has been created, the data is ready for modeling. In this subsection, I

explain the process of implementing our data and modules. Next, I overview the steps for

the training of the FastPitch acoustic model, as well as for the inference process. All three

experiments conducted throughout this work, which are further developed in Section 4,

follow the same implementation methodology.

The first step is to organize and place the training data in the right place within the

model. With the datasets in place, I then proceed to the implementation of the custom

3The AhoLab linguistic processing module can be found in this source:
https://sourceforge.net/projects/ahotts/
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dictionary in SAMPA extracted from the database. Within the FastPitch model, there are

three main modules that interact with the linguistic features: the symbol module, which

defines the set of symbols used in text input to the model; the CMU dict module, which

looks up for the target word in the dictionary file and returns its phonetic transcription;

and the text processing module, which handles the input words, calls the previous two

modules for their processing, and encodes the output to return it to the next learning steps.

To conclude, I set up the model parameters for training of the model, as well as for the

creation of the synthesized inferences. These steps are further developed in the following

subsections.

Training and validation sets I hereby divide the audio and text data into train

and validation sets, and place the two files in the corresponding folder of the FastPitch

model named filelists. The filelists contain transcripts and paths to .wav files in the

format ‘<audio file path>|<transcript>‘ and define training/validation split of the

data. Furthermore, because this model uses ground truth pitch values and performs explicit

modeling of such pitch contours, the folder also needs to have file lists with paths to pre-

calculated pitch files. The pitch gets calculated by simply running a pre-processing script

provided in the FastPitch model.

Symbols module The symbol module of FastPitch is tailored to English set of symbols

only. The default is a set of ASCII characters that works well for English or text that

has been run through Unidecode. This includes punctuation marks, math and special

characters, accented letters and common letters. I therefore replicate the same symbol set

but replacing and adding the default characters by Spanish ones, such as inverted question

¿ and exclamation ¡ marks, accented vowels or the letter ~n.

Dictionary module I first add the Spanish dictionary file to the same directory where

the CMU dictionary file is. As mentioned, the default dictionary module will parse the

input words, access that file, and look for the word to return its phonetic transcription.

If there are heteronym words (i.e. words with the same spelling but different pronunci-

ations and meanings), it looks for the correct pronunciation for the target heteronym. I

deactivated this latter function because we did not add information on heteronyms in my

dictionary file due to time constraints. I modified the set of valid symbols and, instead

of having the ARPAbet symbol set, I added the SAMPA set by obtaining the all unique

characters in my phonetically transcribed data.

Text processing module The text processing module handles the symbols and dictio-

nary modules. It first parses and cleans input text with the symbols and cleaner modules.
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Before the word gets transcribed into phonemes, the text processing module also calls other

modules that further normalize the text by expanding abbreviations, acronyms, numbers

and letters such as measurements, magnitudes or other currency symbols, into written

forms. However, these have been all designed for English and creating a Spanish version

of it would need a extensive detailed engineering of each form and context.

In addition, the text has been previously cleaned and normalized in our data pre-

processing step, so I eliminated the cleaning modules from my processing. For the same

reason, I also deactivated the cleaner module by creating a None type of cleaner that

applies no post-processing to our text. Next, the text processing module calls the dictionary

module and obtains the returned trascribed ARPAbet form of the word. Finally, it encodes

the phonemized word output by mapping it into a sequence of IDs.

Model training The parameter setup of FastPitch used in the following experiments

does not differ much with the default configuration by Nvidia. Please refer to FastPitch

model’s source code for detail specifications on the model configuration. However, due

to our GPU and setup conditions, as specified in 3.1, as well as our previous changes

and implementations in the linguistic module, a few parameters needed to be adjusted. I

modified some arguments that the training script takes, including the paths for the dataset

and training files (adjusted to our audio path and training and validation filenames), the

number of speakers (set to one), and the symbol set and dictionary paths (adjusted to my

new Spanish symbol class and dictionary file). The training file configuration also needed

adjustments for input audio data. Additionally, I changed the values for the batch size for

a single forward-backward step and the gradient accumulation (i.e. the number of steps

over which gradients are accumulated), taking into account the computational power of

the current setup. Details on parameters are further described in 3.3.3.

Model selection The model was trained up to 1,000 epochs and the latest checkpoint

of 1,000 epochs was selected.

Inference For the inference process, I adapted an inference example file provided by

Nvidia, and adjusted the paths to those of the trained acoustic model, vocoder and files

with the phrases to synthesize. The model is trained using a dictionary with the phonetic

transcription of all the unique words contained in the input dataset. This means that new

out-of-vocabulary (OOV) words will not have a phonetic transcription. I tested how these

words were synthesized, and as expected the output of the words resulted unintelligible.

I then implemented a real time phonetic transcription solution to this problem by

adding AhoLab’s Modulo1y2 backend as support for OOV words in the linguistic module
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of FastPitch. This way, when the model looks up for a word in the vocabulary and does

not find any transcription, AhoLab’s G2P Modulo1y2 will be called and return a phonetic

transcription for any word. This is also useful for retraining the model directly with a

different dataset without having to create a custom dictionary for it.

3.3.3 FastPitch configuration

Audio configuration depends on the input dataset and on the input configuration of the

vocoder. FastPitch has two pre-set configurations for 44100 and 22050 Hz sample rate

input audio. These two configurations include adjusted filter length, hop length, window

length or maximum and minimum mel frequency values. These values are carefully selected

for audio data at those two specifics sample rates. I used the 22050 preset configuration

for our data, taking into account that the vocoders to use for synthesis have been trained

at 22050 Hz as well.

Audio files are transformed into mel-spectrogram frame feature vectors. These audio

sequences are encoded following the configuration of the audio, i.e. sample rate, filter

length, hop length, window length, and mel frequency minimun and maximum values.

The encoded vectors are smaller, which make them more manageable to be process by

the model, but contain the important information on the audio signals. Text files get

processed, each word is looked up in the dictionary, and encoded into feature vectors as

well.

I then selected the environment variable configuration for the batch size. Batch size

refers to the amount of data sent at each time to the model for learning. A training

step is one gradient update, and in one step batch size examples are processed. Gradient

accumulation refers to the training steps to accumulate gradients for. An epoch consists

of one full cycle through the training data. This is usually many steps. As an example, if

you have 2,000 audios and use a batch size of 10 an epoch consists of 200 steps:

2, 000 (audios)

10 audios / step
= 200 steps (2)

In our case, the GPU available was one, so I set the batch size to 8, and the gra-

dient accumulation to 32. This decision was based on two factors. First, FastPitch

is required to maintain a global batch size, which means: NUM GPUS x BATCH SIZE x

GRAD ACCUMULATION = 256. Second, I tried to optimize the RAM memory and train at

lesser time by sending the largest possible batch size as input. By following the first re-
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quirement, I adjusted the batch size to the bigger amount allowed by our RAM memory,

which is 8, resulting in a gradient accumulation value of 32, therefore meeting required

global batch size (1 x 8 x 32 = 256).

In this case, the total amount of training data is 4,141. Since the gradient accumulation

is set to 32, per each GPU (in our case just one), I am accumulating gradients 32 times

in one training step. In each step batch size examples get processed, and I set batch size

to 8 as per the maximum processing data allowed at once. This means that at at each

gradient update, as shown in Example 3, I am accumulating 32 steps of 8 batches of input

data, resulting in a total batch size of 256. For our input data of 4,141, one iteration of

the entire data is completed in 16 steps (MarvMind).

32 gradients accumulated × 1 step (8 batch-size) = 256 (3)

4, 141 (input vectors)

256 (batch size)
= 16 steps (4)

The model learns the relationship between the audio and text feature encodings once

after it gets as input 16 iterations through the entire data. As mentioned, this is one epoch.

I trained the model up to 1,000 epochs, which results in 16,000 iterations of the data. In

the model parameters, I set saving the checkpoint every 20 epochs so I can then select the

best one for evaluation.

No further network configuration was adjusted. A summary of the the selected environ-

ment variables and the parameters of the network selected (besides the default configuration

of FastPitch) are shown in Table 5.

In the training process, the mel-spectrogram generation neural network is fed with

lexical unit label vectors as input, x = (x1, ..., xn), and their corresponding sequence of

target mel-scale spectrogram frames as outputs, y = (y1, ..., yn). Data is first fed to the

first *N* feed-forward Transformer (FFTr) stack which operates in the resolution of input

tokens. These FFTr blocks will encode input and produce the hidden representation h

= FFTr(x). This hidden representation h is used to predict duration and average pitch

of every phoneme with a 1-D CNN, having a predictor for each feature type as shown in

Example 5, where d̂ ∈ Nn and p̂ ∈ Rn.

d̂ = DurationPredictor(h), p̂ = PitchPredictor(h) (5)

Pitch is then projected to match the dimensionality of the hidden representation and
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Parameter type Parameter configuration

Text
- Phone = true
- Text cleaners = none

Audio

- Sampling rate = 22050
- Filter length = 1024
- Hop-length = 256
- Win-length = 1024
- Minimum mel-frequency = 0.0
- Maximum mel-frequency = 8000.0

Data processing

- Number of GPUs = 1
- Batch size = 8
- Gradient accumulation = 32
- Epochs = 1000
- Epochs per checkpoint = 20

Table 5: Parameter configuration of FastPitch model network

added to h, resulting in g. Subsequently, g is discretely upsampled and goes through

another set of output *N* FFTr blocks, with the goal of smoothing out the upsampled sig-

nal, and constructing a mel-spectrogram sequence as output (Paperswithcode, c;  Lańcucki,

2021). For training, only ground truth p and d are used.

g = h + PitchEmbedding(p) (6)

ŷ = FFTr

(
[g1, ..., g1︸ ︷︷ ︸

d1

, ..., gn, ..., gn︸ ︷︷ ︸
dn

]

)
(7)

During inference, FastPitch uses the predictions on pitch (p̂) and duration (d̂) calcu-

lated in the model training step. The mean-squared error (MSE) between the predicted

and ground-truth modalities will then be optimized by the model. Predicted values are

then provided to a waveform synthesizer such as WaveGlow or HiFiGan at inference, which

will construct the output synthesized speech waveform.

3.3.4 Evaluation tool

Non-Intrusive Speech Quality Assessment (NISQA) is used for the evaluation of the results

(Mittag et al., 2021). NISQA is a deep learning model/framework for speech quality

prediction trained on a large dataset containing mean opinion scores (MOS) and the audios
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for which they provide the evaluation. MOS is a numerical measurement of a human

evaluation widely used to rank voice and video quality. The scale used for the quality

evaluation typically ranks from, where 0 means poor and 5 means excellent; then the

average number is calculated (Karim and Saleh, 2022). Trained on this type of MOS

evaluations, the NISQA-TTS model weights can be used to estimate the Naturalness of

synthetic speech generated by a text-to-speech system like the one presented in this work.

3.4 Chapter summary

In this chapter, I described the methodology followed for the setup of this project, as

well as the processing of the data, the configuration of the linguistic modules and their

implementation in the model. In addition, I explained the broad configuration of the

training and inference scripts of FastPitch. In the following section, I further develop on

the experiments and the specifics of their configurations and the evaluation and results of

the experiments.
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4 Findings

This chapter details the findings of this project. There are several findings which corre-

spond to three distinct experiments detailed in the following subsections. Each of these

experiments implements different strategies for neural-based text-to-speech synthesis in

Spanish, following the process described in Section 3. The first experiment, described

in Section 4.1, outlines the initial experiments where I implement the Spanish dictionary

and train FastPitch for the first time with the preprocessed dataset. The output of this

training is then synthesized using WaveGlow and HiFiGan vocoders, and resulting audios

are compared. The second experiment, described in Section 4.2, aims to compare the

performance of three different acoustic models (FastPitch, Tacotron2 and FastSpeech2).

The three are trained under the same conditions for quality comparison of the different

frameworks using the same Spanish dataset. In addition, this experiment implements the

same architecture but uses a different vocoder, HiFiGan, for the inference step. The third

experiment, described in Section 4.3, explores the possibilities and flexibility of the pitch

alteration application offered by the FastPitch model at inference in our trained Spanish

model. Each of these sections is followed by an analysis of the evaluation and results ob-

tained from each experiment, as well as information on sources where sample audios can

be listened to.

4.1 Experiment 1: WaveGlow and HiFiGan

The first experiment aims to first test the performance of FastPitch on our Spanish dataset.

Besides the initial testing of FastPitch, the objective of this experiment is to compare

its performance between the default WaveGlow vocoder provided by the model and a

HiFiGan vocoder fine tuned with the same dataset. For this task, the model is trained

for the first time and output speech waveform is synthesized with WaveGlow. Later, the

mel-spectrograms are synthesized using HifiGan.

4.1.1 Experimental setup

After the initial processing of the data and implementing the custom dictionary and lin-

guistic module, I prepared the test and validation sets. During the training process, I

debugged a few last issues in the dataset, and checked the logs to make sure the learning

is progressing as expected and iterations were successfully completed. I then trained Fast-

Pitch, selected the latest checkpoint, and synthesized the speech waveform of the 40 test
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sentences, first with WaveGlow, second with HiFiGan. This vocoder has been fine tuned

using the same dataset with which the FastPitch acoustic model was trained 4.

4.1.2 Evaluation and results

In the initial steps of the training, we can observe the learning rate, mean gradient, loss and

mel losses to assess the evolution of the learning during the first epochs. The learning rate

controls how much to change the model in response to the estimated error each time the

model weights are updated (Brownlee, 2019). The mean gradient represents the changes

in all weights with regard to the change in error (Donges, 2021). Loss is the penalty

for a bad prediction. In other words, it represents a value that indicates how bad the

model’s prediction was on a single example (Google). Therefore, we are looking for our

model to minimize loss during training. The overall loss is computed on training and

validation by summing the errors made for each example of the two sets. The mel loss

refers to the mel-spectrogram reconstruction loss between the predicted and the ground

truth mel-spectrogram.

The initial 200 epochs are first analyzed. As mentioned in Section 3.3.3, the number of

steps per epoch of our model is 16. At 200 epochs, the total of training steps is 3,200 (i.e.

epochs times the batch step of 16). In the following figures we can observe the progress on

the gradient mean, the loss and the learning rate of the training. The 3,200 steps represent

X axis of the figures, projected in wall time (Y axis).

In Figure 15a, we observe that the learning rate increases linearly over the first 1,000

epochs. This means that, at every weight update, the acoustic model is moving faster

towards the optimal weights with respect to the loss gradient descent. After 1,000 epochs,

the learning is not so fast and starts slowing down progressively. The mean gradient

increases and decreases weights depending in error, as we can see in Figure 15b. Because

of the gradual adjustment, the changes in weights gets smaller at each epoch, especially

after 1,500, showing stability in the learning. To conclude, loss and mel-loss follow a similar

progress. as shown in Figures 15c and 15d. The losses decrease dramatically during the first

500 epochs. Subsequently, they continue decreasing slower and with a lower improvement,

especially in the case of mel-spectrogram reconstruction losses. This means that penalty

for the predictions made by the model is decreasing, showing a positive progress during its

training.

Training is done until epoch 1,000. The progress on the training of this model is

4HiFiGan’s fine tuning was performed by Victor Garćıa, a fellow student in AhoLab.
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(a) Learning rate (b) Mean gradient

(c) Loss (d) Mel-loss

Figure 15: Training progress at 200 epochs

equally monitored by looking at the learning rate, mean gradient, loss and mel-loss, which

continue to follow similar trends after the 3,200 steps. The learning rate continues to

decrease progressively in a nonlinear scale. The mean gradient becomes more stable and

epoch 2,000 onward the weight adjustments are minor. Similarly, the overall and mel-

spectrogram reconstruction losses continue to decrease but in a minimal way.

After selecting the latest checkpoint, I synthesized the 40 test audios with WaveGlow

and with HiFiGan. I ran the NISQA TTS evaluation on these two set of audios and

collected the mean and standard deviation values of each. The results are shown in Table

6. The evaluation scale, as indicated in 3.3.4, ranges from 0 to 5, where 0 stands for the
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lowest quality and 5 for the highest quality. As we can see, HiFiGan outperforms WaveGlow

by only 0.01. The mean result for FastPitch with both vocoders is rather similar.

Model Mean Standard deviation
WaveGlow 4.32 0.34
HiFiGan 4.33 0.33

Table 6: Statistical results of NISQA evaluation of WaveGlow and HiFiGan

4.2 Experiment 2: FastPitch, Tacotron2 and FastSpeech2

The objective of the second experiment is to compare and evaluate the quality of three

different Spanish TTS systems: FastPitch, FastSpeech2 and Tacotron2. These models are

trained under the same conditions (i.e. audio features, linguistic features, data training

and validation sets, vocoder) and evaluated using the same system (NISQA). The results

of this evaluations are statistically analyzed as well. Additionally, this experiment tests

the quality of synthesizing the same model with HiFiGan as a vocoder.

4.2.1 Experimental setup

This experiment required coordination with other members of AhoLab. First, we ensured

that we use the same utterances for the train, validation, and test sets. In order to do

this with FastPitch, I was provided with the list of utterances used by the other models,

and I wrote a script to create the same sets with the selected sentences. I followed the

same procedure to create the sets with the pitch audio files. All the models were then

trained using the sample sample frequency of 22050 Hz and SAMPA phonemes as linguistic

features. To conclude, the same 40 test audios were synthesized with the same HiFiGan

vocoder.

4.2.2 Evaluation and results

The evaluation of these three models was once again performed using NISQA. The 40 test

audios were synthesized with the three models and the NISQA TTS evaluation was ran on

each. In Table 7 we can observe the mean and standard deviation results. For the 40 audio

tested, the mean opinion scores of FastPitch are 4.33 out of a maximum of 5 score points,

which is the highest evaluation among all the acoustic models. Tacotron2 follows closely
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with a slightly lower evaluation of 4.28. FastSpeech2 is evaluated with the lowest quality

score, 3.67, which results in a 13.2% lower scored evaluation compared to FastPitch.

Model Mean Standard deviation
FastPitch 4.33 0.33
FastSpeech2 3.67 0.63
Tacotron2 4.28 0.38

Table 7: Statistical results of NISQA evaluation of the three acoustic models

The standard deviation scores reflect the distribution of the data, that is, how dispersed

is the data (evaluation scores, in this case), in relation to the mean. If the standard

deviation is low, it means that the evaluation scores of a model are clustered around

the mean score, which makes them to be more likely closer to the mean. If standard

deviation is high, it indicates that the evaluation scores are more spread out. In this

case, a lower standard deviation may indicate that the model is more stable, as evaluation

scores are more consistent. For instance, in the case of FastPitch, the data is likely to be

0.33 evaluation scores more or less away from the mean, 4.33. It means the MOS of the

evaluations are likely to be between 4 and 4.66. This is similar for Tacotron2, where the

data will deviate from the mean in 0.38, i.e. it is more likely that the scores will be found

between 3.9 and 4.66. FastSpeech2 shows a higher dispersion of the MOS evaluations with

a standard deviation of 0.63, meaning that the scores could range from 3.04 and 4.3.

The results of the NISQA evaluation of FastPitch, FastSpeech2 and Tacotron2 are

plotted in Figure 16. In these plots, we can analyze the probability distributions of the

model evaluations aforementioned, that is, the probabilities of a model being evaluated

with higher or lower scores. In the case of FastPitch (see Figure 16a, we can observe that

the mean quality MOS resides at 4.33. In addition, the probability of the evaluations

being higher than the mean is lower than the probability of lower evaluation scores. In the

case of this model, most of the data is fairly distributed around a 3.6 and 5.0 evaluation,

where 25% of evaluations are more likely to be between 4.33 and almost 4.6, and the other

25% between 4.33 and 4.1 approximately. With regard to FastSpeech2, as seen in Figure

16b, the evaluation results are more likely to be found between the scores of 2.3 and 4.8.

The highest part of the probability distribution of the evaluations relies under the value of

4. The highest interval shows a 25% of likelihood of the model being scored between the

mean 3.67 and 4.2, and the lowest 25% of the evaluation predictions are more likely to be

between 3.3 and 3.67. To conclude, Tacotron2 scores are likely to be found between 3.7
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(a) FastPitch (b) FastSpeech2

(c) Tacotron2

Figure 16: Results of NISQA MOS evaluation

and 4.9, despite a few outliers in the lower scoring side between 3 and 3.5. For this model,

50% of the evaluations are likely to be scored between 4.1 and 4.5, approximately.

4.3 Experiment 3: Pitch modifications

The last experiments aim to test the pitch transformation application of FastPitch. As

mentioned in Section 2.2, this model allows to exert additional control over the synthesized

utterances at inference by modifying the pitch contour, which enables us to control the

output prosody. For instance, we can increase or decrease the fundamental frequency in

a naturally sounding way, that preserves the perceived identity of the speaker, adjust the
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energy or alter the rate of speech (i.e slower or faster pace). In the following subsection,

the evaluations and results of the different alterations of our FastPitch model in Spanish

will be shown.

4.3.1 Experimental setup

It has been mentioned in Section 2.2.3 that, thanks to FastPitch’s explicit modeling of

pitch from input data, the model allows for prosody transformations applied at inference.

In this experimental section, I have synthesized three audios extracted from the test set

using each of these prosody transformations. All the speech files have been synthesized

with the FastPitch trained model’s latest checkpoint and WaveGlow as vocoder, changing

the transformation parameters exclusively. FastPitch allows the application of more than

one transformation at the same time, but for the purpose of this study, I have selected

only one transformation at each inference time. The three sentences analyzed are short,

medium and long, and have been carefully selected in order to test the efficiency of this

features in declarative sentences with different lengths in Spanish. The sentences and the

applied prosody transformations with their values are as follows:

Test sentences:

• No lo entiendo.

• Me imagino que usted habrá explicado

esto.

• También es cierto que durante mucho

tiempo nuestro grupo ha sido de los

primeros.

Transformations:

• pitch-transform-amplify: 2

• pitch-transform-invert

• pitch-transform-shift: +50Hz, -50Hz

• pitch-transform-flatten

• pace: 1.5 (times faster), 0.5 (times

slower)

4.3.2 Evaluation and results

The prosody alterations performed are most likely not suitable for NISQA MOS evaluation.

This is because NISQA has not been trained in this type of data with different prosodic

features and transformations like the ones allowed by FastPitch. Hence, the evaluation of

these audios has been performed as a self perceptual listening activity. This means the

evaluation described in this section is subjective and qualitative. Nonetheless, all samples
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have been made available for the public in a website for anyone to listen and evaluate 5.

After listening to the samples, the self qualitative evaluation of each transformation is the

following:

Pitch amplification The pitch amplification parameter raises expressiveness of pitch

by increasing the range of fundamental frequency (F0) of the speech signal at inference.

This means that the speech signal has a higher and lower range of Hz. The transformation

applied to the model trained in Spanish is intelligible and the synthesized examples sound

more expressive, but in a lower note voice. The expressiveness seems to increase the longer

the input utterance is. However, I believe the quality of the speech signal is affected neg-

atively. The output presents some artifacts and the speech appears to have a background

noise, making it sound less clear and natural.

Pitch inversion Pitch inversion consists in inverting the frequency around the mean

value for a single utterance ( Lańcucki, 2021). This means that if the sound of the target

token has only mid to high frequencies, its inversion will only have mid to low frequencies

after the transformation, and vice versa. The intonation of the synthesized speech is

not adequate for a neutral declarative sentence in Spanish, as the downstepping of the

pitch at the end of the utterance becomes a high pitch, making it sound as a question.

Nevertheless, the results of applying this transformation itself are positive. The intonation

is altered while maintaining the original quality.

Pitch shifting in Hz By shifting pitch in Hz, we increase or lower the pitch, resulting

in deeper or high-pitched voices. To shift the pitch up or down by some Hz, we can just

add or subtract as needed. The result of increasing the pitch in 50 Hz in our trained

TTS model is positive and we obtain a good quality higher pitched voice. However, when

lowering the pitch by 50 Hz, the output of the synthesized voice is not as good, particularly

in the short and long sentences. The output speech appears to be echoed and tinny.

Pitch flattening Pitch flattening removes the sentence intonation of the speech, with

no dynamic pitch variations. The output is a monotone voice. To flatten the pitch at

inference, therefore, the parameter needs to be set at 0. The synthesized voice has fair

quality, but does not sound natural because of the monotonous perceptual effect of flat-

tening pitch, resulting in a robot-like unnatural voice. The transformation applied works

as expected, and performs the intonation removal as other audio editing software such as

Audacity, without altering original standards or adding any sound artifacts.

5https://annemnvz-blog.vercel.app/blog/fastpitch-samples
Note: it is recommend to open this url in Google Chrome as other browsers might not be supported.

Language Analysis and Processing



48/62

Pace changes The change in pace results in a faster or slower speed of the speech.

The pace at normal speed is 1, and this can be adjusted from 0.1 to 2. The values are

multiplied by 1 resulting in a slow down or speed up speech. For instance, setting the

pace at 1.5 increases the pace and make each token duration shorter, therefore the output

speech will be two times faster. If the pace is set at x0.5, the output is 0.5 times slower,

taking double time of the normal speed. The quality of the synthesized audios at these two

paces is as expected. The audios are slower and faster accordingly without any additional

noisiness, glitches or changes in frequency that might affect their quality.

4.4 Chapter summary

In this chapter, I have detailed three experiments, each targeting different areas of text-

to-speech in Spanish. The first experiment introduces the initial training of the FastPitch

acoustic model, and includes a comparison of the performance of the model with two dif-

ferent vocoders: WaveGlow and HiFiGan. The second experiment evaluates and compares

the results of three acoustic models: FastPitch, FastSpeech2 and Tacotron2. Lastly, the

third experiments of section explores prosody transformations of the trained model at infer-

ence, which are self-evaluated and made publicly available for evaluation. The next chapter

combines a more detailed discussion of these results with critical reflection on shortcomings

of the experiments, suggestions for further research, and the implications of the thesis for

TTS researchers, especially in the context of Spanish.
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5 Discussion, future work, and conclusion

In the previous chapter, I presented the results of the work accomplished for this master’s

thesis. In this section, we revise our work and how this could be continued in the future.

In order to do so, I first discuss the findings of these three experiments described in Section

4, identifying the strengths and shortcomings of the approach, as well as the implications

and contributions of this work in the field of text-to-speech in Spanish. In addition, a set

of suggestions and potential areas for further research in this topic is included. Lastly, a

brief summary and conclusion of this work follows.

5.1 Discussion

The results of the previous section have been divided per experiment for discussion in the

current section, following the same subsection structure. Therefore, in following subsec-

tions, I further discuss the results of the first experiment, analyzing the training of the

model and synthesis of test audios with WaveGlow and HiFiGan vocoders; as well as the

second experiment, explaining in detail the main differences among the FastPitch, Fast-

Speech2 and Tacotron2 acoustic models. To conclude, I briefly discuss the results obtained

from the third experiment, the prosody transformations at inference.

5.1.1 Experiment 1: WaveGlow and HifiGan

This first experiment represents the first steps to train FastPitch in Spanish. Once the

aforementioned problems during the training were resolved, the training of the model was

successful and the quality of the synthesized speech was adequate. As shown in Figure

15, the initial 200 epochs progress as expected: the learning rate increases during the first

1,000 steps, the mean gradient changes up to the point where changes start to be minimal,

and the losses decrease dramatically during the first 500 steps. After the initial 500-1,000

steps, all these measurements stabilize and the changes are steady, less drastic. This is

positive as it indicates that the model is settled and therefore more robust.

After the completion of the training of FastPitch in Spanish, the model was further used

to synthesize the test sentences with two different vocoders: WaveGlow and HiFiGan. The

evaluation of the output performed by NISQA has been laid out in Table 6. There we can

observe that the mean MOS evaluation of the synthesized speech is very similar: WaveG-

low’s mean evaluation is 4.32, with a probability of distribution of evaluations between 3.98
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and 4.66; HifiGan’s mean is 4.33, with a probability distribution of evaluations between 4

and 4.66. This means both have a good output quality.

5.1.2 Experiment 2: FastPitch, Tacotron2 and FastSpeech2

The comparison of the three acoustic models can be analyzed in detail in Table 16. This

table shows the mean and standard deviation. The mean of the evaluations of FastPitch

is 4.33, slightly better than Tacotron2’s evaluations, 4.28. FastSpeech2 is at the bottom

of the rank with 3.67. Besides, the standard deviation of FastPitch relies between 4 and

4.66, the one of FastSpeech2 is between 3.04 and 4.3, and Tacotron2’s is between 3.9 and

4.66. These result mean that the preliminary automatic prediction of NISQA for the best

evaluation MOS scores is FastPitch, while the lowest scored model would be FastSpeech2.

I analyzed the results of the NISQA evaluation for the 40 test audios, and detected

a few results with a evaluation of 1 and 2. After listening to these, I found that the

audios have important glitches and unnatural robotic alike sounds. Nonetheless, some

other audios have scores above 4 points and their quality is adequate. This randomized

quality performance issue in FastSpeech2 would require further investigation.

5.1.3 Experiment 3: Pitch modifications

In section 4.3.2, it has been explained in detail the results of each prosody transformation

applied at inference with FastPitch. A close perceptual study of the output suggests that

the transformations effectively transform pitch as intended. The synthesized speech after

applying pitch inversion, pitch flattening, pitch shifting in +50Hz and pace changes main-

tains the good quality of the model trained in Spanish. The results of pitch amplification

and shifting in -50 Hz, however, alter the original quality, as the speech is synthesized in a

less clear and natural manner.

5.2 Limitations of the work

After the implementation and evaluation of a Spanish TTS system based on FastPitch,

followed by three different experiments, we have identified three main limitations to note

after the conducted work. These include the training and checkpoint selection of the

models, the evaluation system, and time constraints. Regarding the first limitation, the

training of the acoustic models (FastPitch, FastSpeech2 and Tacotron2) was performed

independently for each system. This is principally related to time constraints for the
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coordination of the training of these models. As a result, the checkpoint selected among

the three trained output models was not the same. In other words, the acoustic models

used during inference are inconsistent in their trained time, epochs and losses. Besides,

training parameters and other thresholds such as steps, batch size, learning rate, loss scales,

or energy conditioning, were not compared and aligned among the models.

Regarding the second limitation, human subjective assessment is the most adequate

option for the evaluation of synthesized speech. The original evaluation for this project was

designed as a paired comparison MOS task. The aim was to compare the synthesized speech

of the three models and the original speech audios. These would have been randomized

and shown to evaluators in sets of two pairs, and the task of these evaluators would

be to choose the audio with the most natural speech. Ultimately, finding an open source

evaluation system that could present the pair of audios in a controlled randomized way was

finally a challenging task. Due to time limitations, we decided to conduct the evaluation

using NISQA.

The reliability of the NISQA model’s MOS evaluation model is not guaranteed, however.

NISQA is widely used for this type of evaluations in the speech community and, in the case

of this project, it has proven its efficiency in detecting problematic sentences. As previously

mentioned, the low rating of the speech synthesized with FastSpeech2 corresponded to

faulty and unclear audios. Even so, NISQA has been trained in English and German audio

data, and our data is in Spanish. This means that the model would not be able to tell if

a word or a part of the speech has not been pronounced correctly, or if the prosody of the

sentence is incorrect for a given context.

5.3 Future work

Based on the previous analysis and results obtained for the different experiments, there are

two primary types of steps that can be remarked in order to continue with this work. First,

it is recommended that, in future experiments that compare two or more acoustic models,

the training parameters are adjusted as close to each other as possible: e.g. steps, batch

size, learning rate, loss scales. Second, the selected checkpoint of the three acoustic models

for synthesis needs to be carefully chosen in order to ensure the fairness of their evaluation.

In order to do this, it is recommended to make sure the number of epochs and the progress

of each model is similar, including time, losses or other statistical measurements.

There are more options to select a good model. For instance, one possibility is to

consider testing time distortion measures such as the losses of the training, which helps
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estimate how well the model’s predictions are. In addition, we could also perform a word

error rate (WER) or character/phoneme error rate (CER/PER) test of the synthesized

output. This test is good to monitor intelligibility of the synthesized speech at the word

level. However, the output of this test could be good even with poor quality or robot-like

voice, so it does not completely correspond to naturalness. This makes choosing the best

model based on the validation values a difficult task, as it requires manual opinion based

evaluation. A last option would be to combine the WER or CER/PER tests with NISQA.

The second recommendation for completing this project is to evaluate audios with a

paired audio assessment test. The aim would be for this test to be performed as a subjective

human evaluation. Ideally, in this test, we would present two audios at each time in a

random way for their evaluation, but every audio from each model and the original speech

are presented the same amount of times. The minimum number of evaluations can vary,

but it is suggested that more than 10 native Spanish speakers perform the evaluation.

To conclude, the research and the experiments has been limited to a set of phonemes,

acoustic settings, training parameters and network configurations. The training of Fast-

Pitch with the same data, however, allows for a wide range of configurations. Future

research would also benefit from modifying hyper-parameters such as phoneme type, text

cleaners especialized in Spanish, energy conditioning, number of layers, or loss and learning

rate, to determine which model configurations result in a better overall performance.

5.4 Contributions of this thesis

This thesis aims to train and evaluate a TTS model in Spanish based on FastPitch. In

order to do this, we have provided a set of tools for the cleaning and processing of a raw

dataset in Spanish, which can be used in future raw dataset cleanup in Spanish. These

tools have been used to provide a preprocessed Spanish dataset that is now available for

use with any other TTS framework for speech synthesis in Spanish. As one of the main

tasks, this project also provides a well trained model in Spanish based on FastPitch, a

framework that allows for post-training adjustments of prosody such as pitch flattening,

pitch inversion, pitch amplification, pitch shift and pace changing. FastPitch does not

include Spanish as part their recipes or pre-trained models, nor there is feedback on this

topic online, which makes this an innovative research. Alongside, the comparison on the

evaluation among FastPitch, FastSpeech2 and Tacotron2 presented in this project helps to

shed light on the performance of latest state-of-art models in the field of Spanish TTS.

To conclude, this project has provided synthesized research on state-of-art models in
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this field. Particularly in the research of TTS in Spanish, as it is not ad abundant as

in English, and open source resources are scarce. In this work, we have included a set

of resources in Spanish, which include: Spanish transcribed audio databases, tools and

methods for data processing, phonetic transcriptions and dictionary creations, and models

or frameworks that can be used for the training of a TTS system in Spanish.

5.5 Summary and conclusion

In this thesis, I presented a text-to-speech model in Spanish trained in FastPitch. For

the completion of this work, the dataset used for the training, composed by audio and

text files in Spanish, has been first preprocessed and prepared. The linguistic module

of FastPitch required to be adjusted to the Spanish language and, in order to do so, a

dictionary and an online transcription module in Spanish were implemented. The training

was successfully conducted and this enabled three different experiments: a comparison

of the performance of creating inferences with the vocoders WaveGlow and HiFiGan; a

comparison of the performance of FastPitch, FastSpeech2 and Tacotron2 acoustic models;

a test of the prosody transformations the FastPitch framework allows, including pitch

flattening, pitch inversion, pitch amplification, pitch shift and pace changing.

The results of the experiments suggest that FastPitch performs best as acoustic model,

particularly when combined with the HiFiGan vocoder. The performance and quality of

this Spanish TTS system is high in general. This allows for a satisfactory for immediate

adoption in a downstream application in the future. Furthermore, this work has provided a

list of learnings, resources, methods and tools, carefully designed for the future development

of a TTS in spanish and for the replication of the current study.
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