
HAP/LAP Master
Master’s thesis

Unsupervised information retrieval using large
language models

Author

Carlos Domínguez Becerril

2022

HAP/LAP Master
Master’s thesis

Unsupervised information retrieval using large
language models

Author

Carlos Domínguez Becerril

Supervisors
Eneko Agirre Bengoa and Gorka Azkune Galparsoro

With the help of
Jon Ander Campos and Aitor Soroa

Abstract

Nowadays, to tackle the open domain Question Answering (QA) problem, a neural archi-
tecture with two main components is usually used: the information retriever, whose task
is to search for the most relevant documents with respect to the question, and the reader,
which given the question and the extracted documents that serve as context, generates the
appropriate answer.

In this project, we propose to investigate open domain QA, with a special focus on the
first component of the architecture, that is, the information retrieval component. We want
to train several dense neural retrievers in an unsupervised manner by generating questions
from the documents using Large Language Models (LLM). Currently, most LLMs pro-
vide several checkpoints with different amounts of parameters, and we want to use those
checkpoints to generate questions, train a dense neural retriever system for each LLM
checkpoint, and finally, compare if the generated questions have any influence in the per-
formance of the systems. The developed system must be able to search for the necessary
information in external sources, usually organized in text documents. For that purpose,
the BEIR benchmark [Thakur et al., 2021] will be used in a zero-shot manner to test the
performance.

As the result of this exploration, we found that using LLMs to generate questions can be
helpful in order to train information retrieval systems as it achieves similar performance
to supervised systems. More concretely, we found that: (i) the more parameters the LLM
has the more performance we obtain, (ii) using sampling to generate questions can further
increase the performance, and (iii) generating more questions using a smaller language
model is not worth it as a checkpoint with more parameters can do a better job. Moreover,
we found that using different prompts and/or domain adaptation on a specific dataset can
improve the performance slightly.

Keywords: Artificial Intelligence, Deep Learning, Natural Language Processing, Dense
Passage Retrieval, Question Generation, Unsupervised training.

i

Contents

Abstract i

Contents iii

List of figures vii

List of tables ix

1 Introduction 1

2 Related work 5

2.1 Deep learning architectures . 5

2.1.1 Multilayer perceptron . 5

2.1.2 Recurrent neural Networks . 6

2.1.3 Transformers . 8

2.1.4 Two tower architecture . 9

2.2 Open domain information retrieval architectures 9

2.2.1 Supervised systems . 10

2.2.2 Unsupervised systems . 11

2.2.3 Evaluation datasets . 13

iii

CONTENTS

3 Generating synthetic datasets for information retrieval 19

3.1 Dataset generation using Contriever . 19

3.2 Large language models for question generation 19

3.3 Open Pre-trained Transformer (OPT) . 24

3.4 Dataset generation using OPT . 24

4 Experiments and Results 29

4.1 Training . 29

4.2 Experiments . 30

4.3 Evaluation . 32

4.4 Metrics . 33

4.5 Using hard negatives for training . 34

4.6 Domain adaptation . 35

4.7 Results . 35

4.7.1 Is sampling useful to generate questions? 36

4.7.2 Does increasing the number of parameters of the model for gene-
rating questions improve the performance of the systems? 36

4.7.3 Does increasing the number of examples improve the performance? 39

4.7.4 Is the crop generation method better than Large Language Models? 40

4.7.5 Does domain adaption improve the performance of the systems? . 41

4.7.6 Does prompting improve the generation of questions? 42

4.7.7 Does using hard negatives allow to improve the performance of
the system? . 43

4.7.8 How does our system compare to other state-of-the-art systems? . 44

4.7.9 Summary . 46

5 Conclusions and future work 47

5.1 Conclusions . 47

5.2 Future work . 48

iv

Appendix

A Appendix 53

A.1 Experiment results for Recall@100 . 53

A.1.1 Is sampling useful to generate questions? 54

A.1.2 Does increasing the number of parameters of the model for gene-
rating questions improve the performance of the systems? 55

A.1.3 Does increasing the number of examples improve the performance? 56

A.1.4 Is the crop generation method better than Large Language Models? 57

A.1.5 Does domain adaption improve the performance of the systems? . 58

A.1.6 Does prompting improve the generation of questions? 58

A.1.7 Does using hard negatives allow to improve the performance of
the system? . 59

A.1.8 How does our system compare to other state-of-the-art systems? . 60

A.2 Project objectives report . 61

A.2.1 Project description and goals . 61

A.2.2 Project planning . 62

A.2.3 Methodology . 66

A.2.4 Risks . 66

Bibliography 69

v

List of figures

2.1 MLP architecture diagram with an input layer, k hidden layers, and an
output layer. Source: Stanford university. 6

2.2 RNN architecture diagram, where a is the hidden-state. Source: Stanford
university. 7

2.3 The encoder-decoder structure of the Transformer architecture. Taken from
"Attention Is All You Need"[Vaswani et al., 2017]. 8

2.4 Two tower architecture for question-answering systems (retrieval part). . . 9

3.1 Prompt used to generate the questions. For the fourth example, we replace
{document text} with a document from the MS MARCO dataset. The
same prompt was used by [Bonifacio et al., 2022a]. 22

3.2 Graph showing the time required for generating the dataset using different
OPT checkpoints. 26

A.1 Work Breakdown Structure of the project. 63

A.2 Gantt chart of the project. 65

vii

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

List of tables

2.1 The MS MARCO dataset format. 14

2.2 The MS MARCO dataset splits. 14

2.3 An example of the MS MARCO dataset. 15

2.4 The Scifact dataset splits. 15

2.5 An example of the Scifact dataset. 16

2.6 The NFCorpus dataset splits. 16

2.7 An example of the NFCorpus dataset. 16

3.1 Examples of how crop method generates (Contriever generation method)
query-document pairs. 20

3.2 Comparison of automatically generated questions using different models
in a zero-shot setting. 23

3.3 Available OPT models and their number of parameters. #L refers to the
number of layers, #H refers to the number of attention heads, and dmodel

refers to the embedding size. 24

3.4 Top 10 starting words for each OPT checkpoint. † indicates that the data-
set has been generated using 8-bit optimization techniques. x5 means that
5 questions per document have been generated. 25

3.5 Time required to generate the dataset using the different available OPT
checkpoints. To generate the dataset, we are making use of Nvidia A100
GPUs with 80GB of VRAM memory. † indicates that the dataset has been
generated using 8-bit optimization techniques. x5 means that 5 questions
per document have been generated. 26

ix

LIST OF TABLES

3.6 The number of questions lost during inference from 8,069,749 documents.
† indicates that the dataset has been generated using 8-bit optimization
techniques. x5 means that 5 questions per document have been generated. 27

4.1 Time required to train DPR and Contriever systems. 30

4.2 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether sampling is helpful to improve the performance of
the systems. All scores denote NDCG@10. The best score on a given da-
taset is marked in bold, and the second best is underlined. The average
corresponds to the average of all the datasets except MS MARCO. * in-
dicates that the dataset has been generated using sampling and a top p of
0.9. 37

4.3 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether increasing the number of parameters is helpful to
improve the performance of the systems. All scores denote NDCG@10.
The best score on a given dataset is marked in bold, and the second best
is underlined. The average corresponds to the average of all the datasets
except MS MARCO. * indicates that the dataset has been generated using
sampling and a top p of 0.9. † indicates that 8-bit optimization techniques
have been used to generate the dataset. 38

4.4 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether generating more questions faster using a smaller
checkpoint is better than generating slower high-quality questions. All
scores denote NDCG@10. The best score on a given dataset is marked
in bold, and the second best is underlined. The average corresponds to
the average of all the datasets except MS MARCO. * indicates that the
dataset has been generated using sampling and a top p of 0.9. x5 means
that five questions have been generated per document. 39

x

4.5 In-domain and zero-shot performances on BEIR benchmark. In this table,
we show the performance of using the crop method to generate queries-
document pairs. All scores denote NDCG@10. The best score on a given
dataset is marked in bold, and the second best is underlined. The avera-
ge corresponds to the average of all the datasets except MS MARCO. *
indicates that the dataset has been generated using sampling and a top p
of 0.9. † indicates that 8-bit optimization techniques have been used to
generate the dataset. 40

4.6 In-domain and zero-shot performances on BEIR benchmark. In this table,
we show whether domain adaption is beneficial to improve the perfor-
mance of datasets from another domain. All scores denote NDCG@10.
* indicates that the dataset has been generated using sampling and a top
p of 0.9. † indicates that 8-bit optimization techniques have been used to
generate the dataset. + indicates that the system has been finetuned on top
of marco-supervised. 41

4.7 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether changing the prompt to generate questions allows
to improve the performance. All scores denote NDCG@10. * indicates
that the dataset has been generated using sampling and a top p of 0.9.
† indicates that 8-bit optimization techniques have been used to genera-
te the dataset. + indicates that the system has been finetuned on top of
marco-supervised. 43

4.8 In-domain and zero-shot performances on BEIR benchmark. In this table,
we check whether hard negatives allow to improve the performance of
the systems trained. All scores denote NDCG@10. + indicates that the
system has been finetuned on top of marco-supervised. 43

4.9 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare our system to other state-of-the-art systems. All scores deno-
te NDCG@10. The best scores for supervised and unsupervised settings
on a given dataset are marked in bold, in the case of the unsupervised
setting the second best is underlined. The average corresponds to the ave-
rage of all the datasets except MS MARCO. * indicates that the dataset
has been generated using sampling and a top p of 0.9. † indicates that
8-bit optimization techniques have been used to generate the dataset. . . . 45

xi

LIST OF TABLES

A.1 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether sampling is helpful to improve the performance of
the systems. All scores denote Recall@100. The best score on a given
dataset is marked in bold, and the second best is underlined. The average
corresponds to the average of all the datasets except MS MARCO. * in-
dicates that the dataset has been generated using sampling and a top p of
0.9. 54

A.2 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether increasing the number of parameters is helpful to
improve the performance of the systems. All scores denote Recall@100.
The best score on a given dataset is marked in bold, and the second best
is underlined. The average corresponds to the average of all the datasets
except MS MARCO. * indicates that the dataset has been generated using
sampling and a top p of 0.9. † indicates that 8-bit optimization techniques
have been used to generate the dataset. 55

A.3 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether generating more questions faster using a smaller
checkpoint is better than generating slower high-quality questions. All
scores denote Recall@100. The best score on a given dataset is marked
in bold, and the second best is underlined. The average corresponds to
the average of all the datasets except MS MARCO. * indicates that the
dataset has been generated using sampling and a top p of 0.9. x5 means
that five questions have been generated per document. 56

A.4 In-domain and zero-shot performances on BEIR benchmark. In this table,
we show the performance of using the crop method to generate queries-
document pairs. All scores denote Recall@100. The best score on a given
dataset is marked in bold, and the second best is underlined. The avera-
ge corresponds to the average of all the datasets except MS MARCO. *
indicates that the dataset has been generated using sampling and a top p
of 0.9. † indicates that 8-bit optimization techniques have been used to
generate the dataset. 57

xii

LIST OF TABLES xiii

A.5 In-domain and zero-shot performances on BEIR benchmark.In this table,
we show whether domain adaption is beneficial to improve the perfor-
mance of datasets from another domain. All scores denote Recall@100.
* indicates that the dataset has been generated using sampling and a top
p of 0.9. † indicates that 8-bit optimization techniques have been used to
generate the dataset. + indicates that the system has been finetuned on top
of marco-supervised. 58

A.6 In-domain and zero-shot performances on BEIR benchmark. In this table,
we compare whether changing the prompt to generate questions allows
to improve the performance. All scores denote Recall@100. * indicates
that the dataset has been generated using sampling and a top p of 0.9.
† indicates that 8-bit optimization techniques have been used to genera-
te the dataset. + indicates that the system has been finetuned on top of
marco-supervised. 58

A.7 In-domain and zero-shot performances on BEIR benchmark. In this table,
we check whether hard negatives allow to improve the performance of the
systems trained. All scores denote Recall@100. The best score on a given
dataset is marked in bold, and the second best is underlined. The avera-
ge corresponds to the average of all the datasets except MS MARCO. +
indicates that the system has been finetuned on top of marco-supervised. . 59

A.8 In-domain and zero-shot performances on BEIR benchmark. In this ta-
ble, we compare our system to other state-of-the-art systems. All scores
denote Recall@100. The best score on a given dataset is marked in bold,
and the second best is underlined. The average corresponds to the average
of all the datasets except MS MARCO. * indicates that the dataset has
been generated using sampling and a top p of 0.9. † indicates that 8-bit
optimization techniques have been used to generate the dataset. 60

A.9 Time estimates for each work unit. 65

A.10 Deliverables and their deadlines. 66

CHAPTER 1

Introduction

One of the most important uses we give to our devices, both computers and smartphones,
is to search for information on a specific topic. To do this, we usually resort to search
engines integrated into our web browsers, or increasingly, we use virtual assistants such
as Alexa, Siri, or Google Assistant. One of the key technologies behind these assistants
are Question Answering (QA) engines, which, given a question in text format, generate
the appropriate answer, also in text.

Since the breakthrough of deep learning a decade ago, the world of natural language pro-
cessing has advanced significantly, and the field of QA has been no exception. Today, we
have deep neural networks that show satisfactory performance in various QA tasks. When
talking about QA, there are actually several variants of the task that result in different
systems or approaches.

Open domain question answering is a type of artificial intelligence (AI) that involves
building a system that can answer a wide range of questions on any topic. In contrast
to closed domain QA systems, which are designed to answer questions within a specific
domain or on a specific topic, open domain QA systems are designed to be able to answer
any question on any topic.

Nowadays, to tackle the open domain QA problem, a neural architecture with two main
components is usually used:

• The information retriever: its task is to search for the most relevant documents
with respect to the question.

1

2 Introduction

• The reader: given the question and the extracted documents that serve as context,
its goal is to generate the appropriate answer.

The most successful system following this paradigm is the so-called Fusion in Decoder
(FiD) [Izacard and Grave, 2020]. This system is based on the well-known neural informa-
tion retriever Dense Passage Retrieval (DPR) [Karpukhin et al., 2020]. In it, two neural
text encoders are used to encode both the question and each of the accessible documents,
which are trained contrastively. In this way, a document index is constructed according
to the representation generated by the corresponding text encoder. Given a new query,
and making use of the similarity between representations, DPR generates a ranking of
the most relevant documents. The idea of FiD is to process these documents in a seq2seq
(sequence-to-sequence) system based on a language model. This architecture has the ad-
vantage that it can use several documents at the same time to generate a single answer
since the evidences can be distributed.

Since the arrival of DPR and FiD, the community has been working to develop new in-
formation retrieval systems given the problems with the original DPR. The premise being
followed is that if the information retriever is improved, the reader component will be
able to find better the right answers. Following this philosophy, the following information
retrievers can be distinguished:

• Retrieval with identifiers: One approach to tackle the information retrieval with
autoregressive models makes use of identifiers, that is, string pointers to documents
that are easier to generate than the full document itself. In tasks where such data are
available, such as Wikipedia-based entity linking (a form of page-level retrieval),
titles have been shown to work well as identifiers [Cao et al., 2020].

• Term weighting: All modern approaches for sparse information retrieval based on
string matching make use of bag-of-words, document indexing with an inverted in-
dex, a data structure that maps terms to documents, or, more generally locations
in a corpus [Robertson and Zaragoza, 2009]. Retrieval performance in this environ-
ment depends heavily on term weighting schemes, and many recent papers pro-
pose sophisticated and contextualized weightings for both queries and documents
[Formal et al., 2021].

• Query/document expansion: A line of research that often involves autoregressive
language models is that of document and query expansion. For example, stored

3

documents can be augmented by generating possible queries that could be answered
by them [Nogueira et al., 2019].

• Query probability models: Another connected line of research is query probability
models, which, in their latest incarnations, use autoregressive models to rerank pas-
sages according to the probability P(q|p) of a given query q [Lesota et al., 2021].

• "Learning to Google": Recently, it has been shown that language models can di-
rectly generate search queries for modern web search engines [Lazaridou et al., 2022].

All these systems are supervised, that is, for each question, the documents in which the
answers appear have been annotated. Annotating databases of this type is very expensive,
so the generated systems cannot scale easily. Therefore, some unsupervised neural sys-
tems have also been proposed [Izacard et al., 2021], although little research has yet been
done in this area. In fact, the reference unsupervised information retriever is still BM25
[Robertson and Zaragoza, 2009], which is not neural.

In this project, we propose to investigate open domain QA, with a special focus on the
first component of the architecture, that is, the information retrieval component. We want
to train several DPR systems in an unsupervised manner by generating questions from the
documents using Large Language Models (LLM). Currently, most LLMs provide several
checkpoints with different amounts of parameters, and we want to use these checkpoints
to generate questions, train a DPR system for each LLM checkpoint, and finally, com-
pare if the generated questions have any influence in the performance of the systems.
The developed system must be able to search for the necessary information in external
sources, usually organized in text documents. For that purpose, the BEIR benchmark
[Thakur et al., 2021] will be used in a zero-shot manner to test the performance.

Overall, we want to answer the following questions:

1. Whether using LLMs with more parameters improves the quality of generated ques-
tions, and hence the information retrieval component.

2. Whether it is more relevant to generate a lot of low-quality questions faster using
smaller language models or less high-quality questions slower using bigger models.
Quantity vs. Quality vs. Time.

3. Whether the prompts used to generate the questions affect the performance of the
IR systems.

4 Introduction

4. Whether it is better to generate questions by selecting the most probable word or by
sampling it.

5. To empirically check which method is the best to generate query-document pairs
given a new domain for IR.

Some other contributions include:

1. The generation of three datasets in an unsupervised manner using different methods
as explained in Chapter 3.

2. A thorough evaluation of the datasets by training several systems and measuring
their performance.

For reproducibility, the code is available at https://github.com/CarlosDominguezBecerril
/InformationRetrieval

https://github.com/CarlosDominguezBecerril/InformationRetrieval
https://github.com/CarlosDominguezBecerril/InformationRetrieval

CHAPTER 2

Related work

To understand the following chapters well, some background knowledge is introduced
that will become essential in the coming explanations. Because it is not possible to go in-
depth into all the theoretical aspects that would be required to fully understand the content
in the next chapters, the reader is assumed to have an introductory level understanding of
basic Deep Learning (DL) techniques. The reader is referred to [Goodfellow et al., 2016]
for a much more complete coverage on DL techniques.

Finally, we will introduce the three datasets used to evaluate our system.

2.1 Deep learning architectures

2.1.1 Multilayer perceptron

The goal of a multilayer perceptron is to approximate some function f ∗. For example,
a classifier y = f ∗(x) maps an input x to a category y. A multilayer perceptron defines
a mapping y = f (x;θ) and learns the value of the parameters θ that result in the best
function approximation.

Multilayer perceptrons are called multilayer because they are typically represented by
composing together many different functions. The model is associated with a directed
acyclic graph describing how the functions are composed together. For example, given th-
ree functions f (1), f (2), and f (3) connected in a chain, to form f (x) = f (3)(f (2)(f (1)(x))).

5

6 Related work

These chained structures are the most commonly used structures of neural networks, whe-
re f (1) refers to the first layer, f (2) to the second layer, and f (3) to the third layer. The first
layer of a multilayer perceptron is called the input layer, the intermediate layers are ca-
lled hidden layers, and the final layer is called the output layer. The number of layers
determines the depth of the model. An example of this architecture can be seen in Figure
2.1.

Figure 2.1: MLP architecture diagram with an input layer, k hidden layers, and an output layer.
Source: Stanford university.

If a multilayer perceptron has a linear activation function in all neurons, that is, a linear
function that maps the weighted inputs to the output of each neuron, then linear algebra
shows that any number of layers can be reduced to a two-layer input-output model. In
MLPs some neurons use a nonlinear activation function that was developed to model the
frequency of action potentials, or firing, of biological neurons.

Two common non-linear activation functions are the sigmoid (σ) and the rectified linear
unit (ReLU) functions described by Equations 2.1 and 2.2:

σ(x) =
1

1+ e−x (2.1)

ReLU(x) = max(0,x) (2.2)

There are various ways to learn the suitable weights of a neural network but this pro-
ject will only focus on backpropagation [Rumelhart et al., 1986] combined with gradient-
based optimization techniques such as stochastic gradient descent [Robbins, 2007].

2.1.2 Recurrent neural Networks

Recurrent neural networks (RNNs) are a family of deep learning architectures that are
specialized in processing data of sequential nature. RNNs are well-suited for several NLP

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

2.1 Deep learning architectures 7

tasks due to the sequential essence of language and they are used extensively in the field.
Some examples of the use of RNNs in NLP and language-related topics are machine
translation [Wu et al., 2016], language modeling [Józefowicz et al., 2016], reading com-
prehension [Shen et al., 2017], question-answering [Andreas et al., 2016], and text sum-
marization [Mahmood and Len, 2017] to name a few.

There are many types of RNNs, however, they are all based on the same fundamental
ideas. A sequence of elements are processed one by one and to process any element, two
inputs are needed: a vector representation of the element and a state vector (also called
hidden-state) which encodes all the elements seen so far. Using these two inputs a RNN
cell will produce the next hidden-state as an output which also can be used to feed the
next RNN cell state.

A RNN at time-step t has hidden-state ht−1 and processes an element xt from a sequence
x. The RNN computes the next hidden-state ht as function f of the previous hidden-state
ht−1 and the element that is being processed xt as seen in Figure 2.2.

ht = f (xt ,ht−1) (2.3)

Figure 2.2: RNN architecture diagram, where a is the hidden-state. Source: Stanford university.

f needs to be suitable for DL techniques, therefore, it has to be a parametric function
f = fθ with parameters θ and differentiable with respect to θ , i.e, ∃ d f

dθ
to be able to use

gradient-based methods and optimize the parameters efficiently.

Finally, f should be a non-linear function so that the capacity of the model can scale
with the depth of the deep learning model. The choice of f is important, for that reason,
different types of RNN architectures have been proposed such as Long-Short Term Me-
mory cells (LSTM) [Hochreiter and Schmidhuber, 1997] or Gated Recurrent Units (GRU)
[Cho et al., 2014] to name a few.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

8 Related work

2.1.3 Transformers

Transformers are deep learning models that use the mechanism of self-attention, differen-
tially weighting the significance of each part of the input data. Like recurrent neural net-
works (RNNs), transformers are designed to process sequential input data, such as natural
language. Some examples of the use of transformers in NLP and language-related topic
are machine translation [Wu et al., 2016], language modeling [Józefowicz et al., 2016],
reading comprehension [Shen et al., 2017], question-answering [Andreas et al., 2016], and
text summarization [Mahmood and Len, 2017] to name a few.

The main difference between transformers and RNNs is that transformers process the
entire input all at once, whereas RNNs process the input in steps. This can be done because
the attention mechanism provides context for any position in the input sequence, which at
the same time, allows for more parallelization than RNNs. An example of this architecture
can be seen in Figure 2.3

Figure 2.3: The encoder-decoder structure of the Transformer architecture. Taken from "Attention
Is All You Need"[Vaswani et al., 2017].

2.2 Open domain information retrieval architectures 9

2.1.4 Two tower architecture

The two tower architecture is a system that makes use of two neural networks to obtain
embedding representations. The first neural network (query encoder) matches query fea-
tures xquery to query embeddings ψ(xquery) and the second one (context encoder) matches
context features xcontext to context embeddings φ(xcontext). The output of the model can be
defined as the dot product of <ψ(xquery),φ(xcontext)>, which can be seen as the similarity
between the query and the context.

Some examples of the use of the two tower architectures are recommendation systems
[Wang et al., 2021] and question-answering [Andreas et al., 2016] systems. An example
of this architecture can be seen in Figure 2.4

Figure 2.4: Two tower architecture for question-answering systems (retrieval part).

2.2 Open domain information retrieval architectures

Open domain Question-Answering (QA) is an important task in Natural Language Pro-
cessing (NLP), which aims to answer a question in the form of natural language based on
large-scale unstructured documents. Nowadays, to tackle the open domain QA problem,
a neural architecture with two main components is usually used: the information retrie-
ver, whose task is to search for the most relevant documents with respect to the question,
and the reader, which given the question and the extracted documents that serve as con-

10 Related work

text, generates the appropriate answer. In this section, we will provide some background
information about State-Of-The-Art (SOTA) systems, both supervised and unsupervised.

2.2.1 Supervised systems

Dense Passage Retrieval

Dense Passage Retrieval (DPR) [Karpukhin et al., 2020] is focused on the retrieval com-
ponent of open domain QA. Given a collection of M text passages, the goal is to index all
the passages in a low-dimensional and continuous space so that it can efficiently retrieve
the top k passages relevant to the input question.

DPR uses a two tower model architecture, that is, it uses two encoders: the first encoder
EP(·) maps any text passage to a d-dimensional real valued vectors and builds an index
for all the M passages that we will use for retrieval; the second encoder EQ(·) maps the
input question to a d-dimensional vector, and retrieves k passages of which vectors are
the closest to the question vector.

The similarity between the question and the passage is defined by using the dot product
of their vectors as seen in Equation 2.4.

sim(q, p) = EQ(q)T EP(p) (2.4)

Training the encoders so that the dot-product similarity becomes a good ranking function
for retrieval is essentially a metric learning problem. The goal is to create a vector space
such that relevant pairs of questions and passages will have smaller distance, that is, higher
similarity, than the irrelevant ones.

Let D = {< qi, p+i >}m
i=1, be the training data of m instances, where qi is one question

and p+i is the passage where the answer to the question appears.

We want to optimize the negative log-likelihood of the positive passages:

L(qi, p+i , p−i,1, ..., p−i,n) =−log
esim(qi,p+i)

esim(qi,p+i)+∑
n
j=1 esim(qi,p−i, j)

(2.5)

where p−i, j are negative passages. The negative passages that DPR uses are the In-batch
negatives, that is, for each question in the batch, we will consider the positive passages of

2.2 Open domain information retrieval architectures 11

the other questions as the negative passages. For a batch size of size B, we will have for
each question 1 positive passage and B−1 negative passages.

2.2.2 Unsupervised systems

BM25

Historically, in information retrieval, queries and documents are represented as sparse
vectors where each element of the vectors corresponds to a term of the vocabulary. BM25
[Robertson and Zaragoza, 2009] is a ranking function that ranks a set of documents based
on the query terms within a document, regardless of the inter-relationship between the
query terms within a document. The ranking function is not a single function, that is, is a
whole family of scoring functions, with different components and parameters.

Given a query Q, containing keywords q1, ..., qn, the BM25 score of a document D is:

score(D,Q) =
n

∑
i=1

IDF(qi) ·
f (qi,D) · (k1 +1)

f (qi,D)+ k1 ·
(

1−b+b · |D|
avgdl

) (2.6)

where f (qi,D) is the number of times that qi occurs in the document D, |D| is the length
of the document D in words, and avgdl is the average document length in the text co-
llection from which documents are drawn. k1 and b are free parameters, usually chosen,
in absence of an advanced optimization, as k1 ∈ [1.2,2.0] and b = 0.75. IDF(qi) is the
inverse document frequency (IDF) weight of the term qi. It is usually computed as:

IDF(qi) = ln
(

N−n(qi) · (k1 +1)
n(qi)+0.5

+1
)

(2.7)

where N is the total number of documents in the collection, and n(qi) is the number of
documents containing qi.

BM25 is widely used by search engines to estimate the relevance of documents to a gi-
ven search query. This relevance of documents can be extended to other domains such as
question-answering, where BM25 works as the information retrieval system. Neverthe-
less, a well-known limitation of this approach is that it relies on a near-exact match to
retrieve documents.

12 Related work

Contriever

Contriever [Izacard et al., 2021] explores the limits of contrastive pre-training to learn
dense text retrievers. First of all, compared to DPR, Contriever uses negative pairs ac-
ross batches, that is, it stores representations from previous batches in a queue and use
them as negative examples in the loss. This approach allows for a smaller batch size but
slightly changes the loss function (Equation 2.5) by making it asymmetric between the
current queries of the batch and the “keys” (the elements stored in the queue). Gradient
is only backpropragated through the current batch, as the representation of the “keys” is
considered fixed. This method leads to a drop of performance when the network rapidly
changes, but to overcome the problem [He et al., 2019] propose a system called Momen-
tum Contrastive (MoCo). MoCo proposes to generate the representation of the “keys”
from a second network updated more slowly, that is, we are going to have two networks
one for the “keys” parametrized by θk and one for the queries parametrized as θq. The pa-
rameters for the query encoder are updated with backpropragation and stochastic gradient
descent, similarly to when using in-batch negatives, while the parameters of the key enco-
der is updated from the parameters of the query network by using a exponential moving
average:

θk← mθk +(1−m)θq (2.8)

where m is the momentum parameter that takes its value in [0,1].

Moreover, the Contriever paper proposes to use independent cropping when unsupervised
data is supplied as training data. Independent cropping is a common independent data
augmentation used for images where views are generated independently by cropping the
input. In natural language processing, it would be equivalent to sampling a span of tokens.
For the information retrieval task, we sample independently two spans from a document,
one is going to be used as the query and the other one as the document. This will lead
to an overlap between the two, hence encouraging the network to learn exact matches
between the query and document, in a way that is similar to lexical matching method like
BM25. Furthermore, in addition to random cropping, they also consider different data
augmentation methods such as word deletion, replacement, or masking.

Promptagator

Promptagator [Dai et al., 2022] proposes to make use of Large Language Models (LLM)
as a few-shot query generator, and the creation of task-specific retrievers based on the

2.2 Open domain information retrieval architectures 13

generated data.

The key idea of promptagator is to transform a few examples into many more examples. It
consists of three components: prompt-based query generation, consistency filtering, and
retriever training. During prompt-based query generation, a task-specific prompt will be
combined with a large language model to produce queries for the target task. The LLM
used is FLAN [Wei et al., 2021] with 137 billion parameters. The next step is a filtering
step that cleans the generated data based on round-trip consistency, that is, a query should
be answered by the document from which the query was generated. Finally, a retriever
and a cross-attention reranker will be trained based on the generated data for the task of
information retrieval.

Promptagator is the closest system to what we are doing in this master thesis. The main
difference is that whereas promptagator uses a unique LLM for query generation, we pro-
pose to make use of an LLM with different checkpoints (different amounts of parameters
in each checkpoint) and see whether this is an important factor when generating questions.
As mentioned in Section 1, a lower amount of parameters allows a faster generation of
low-quality queries, whereas a large amount of parameters generates higher-quality que-
ries but slower. Is the number of parameters important to generate good query-document
pairs? Is it better to generate a lot of questions per document using a smaller LLM in the
same time that it takes to generate one question per document using a large LLM?

2.2.3 Evaluation datasets

Three datasets (MS MARCO [Nguyen et al., 2016], NFCorpus [Boteva et al., 2016], Sci-
fact [Wadden et al., 2020]) are selected to train and evaluate over systems and one bench-
mark (BEIR benchmark [Thakur et al., 2021]) for evaluating the results in a zero-shot
manner.

From the three training datasets MS MARCO is the one that is going to be used for
training the system and NFcorpus and Scifact will be used to evaluate whether domain
adaption (as explained in Chapter 4.6) is helpful or not to improve the performance.

MS MARCO training dataset

MS MARCO [Nguyen et al., 2016] is a large scale MAchine Reading COmprehension
dataset. The dataset comprises 1,010,916 anonymized questions sampled from Bing’s

14 Related work

search query logs with 1,026,758 unique answers. In addition, the dataset contains 8,841,823
passages extracted from 3,563,535 web documents retrieved by Bing that provide the in-
formation necessary for curating the natural language answers.

A question in the MS MARCO dataset may have multiple answers or no answers at all, on
average each question contains a set of 10 passages which may contain or not the answer
to the question. All the contents and the format for each example can be found in Table
2.1.

Field Description

Query A question query issued to Bing.
Passages Top 10 passages from Web documents as retrieved by Bing.

The passages are presented in ranked order to human edi-
tors. The passage that the editor uses to compose the answer
is annotated as is_selected : 1.

Document URLs URLs of the top ranked documents for the question from
Bing. The passages are extracted from these documents.

Answer(s) Answers composed by human editors for the question, au-
tomatically extracted passages, and their corresponding do-
cuments.

Well Formed Answer(s) Well-formed answer rewritten by human editors, and the
original answer.

Segment QA classification. E.g., tallest mountain in south america
belongs to the ENTITY segment because the answer is an
entity (Aconcagua).

Table 2.1: The MS MARCO dataset format.

The MS MARCO dataset is divided into three splits: train, development and test. The
number of questions in each split can be found in Table 2.2. An example of how the
dataset looks is found in Table 2.3

Split Questions Total %

Train 808,731 80%
Developement 101,093 10%

Test 101,092 10%

Total 1,010,916 100%

Table 2.2: The MS MARCO dataset splits.

2.2 Open domain information retrieval architectures 15

Document Query

The average Walgreens salary ranges from approximately
$15,000 per year for Customer Service Associate / Cashier
to $179,900 per year for District Manager. Average Wal-
greens hourly pay ranges from approximately $7.35 per
hour [. . .]

walgreens
store salary
average

Table 2.3: An example of the MS MARCO dataset.

Scifact training dataset

The SciFact dataset [Wadden et al., 2020] is a unique and valuable resource for research
that aims to uncover novel insights into sentiment, fact-checking, and trustworthiness
of scientific claims. With 1.3K expert-written scientific claims paired with evidence-
containing abstracts and contents, as well as human-generated structured annotations con-
taining labels and rationales, this dataset provides ample opportunity for researchers to
explore the nuances of science communication.

The Scifact dataset is divided into two splits: train and test. In order to be able to select the
best model without checking the test dataset we will take 10% of the training dataset and
convert it to a development dataset. The number of questions in each split can be found in
Table 2.4. An example of how the dataset looks is found in Table 2.5.

Split Questions Total %

Train 828 66%
Developement 92 7%

Test 340 27%

Total 1,260 100%

Table 2.4: The Scifact dataset splits.

16 Related work

Document Query

OBJECTIVES To carry out a further survey of archived
appendix samples to understand better the differences bet-
ween existing estimates of the prevalence of subclinical in-
fection with prions after the bovine spongiform encephalo-
pathy epizootic and to see whether a broader birth cohort
was affected, and to understand better the implications for
the management of blood and blood products and for the
handling of surgical instruments. [...]

1/2000 in
UK have
abnormal
PrP positi-
vity.

Table 2.5: An example of the Scifact dataset.

NFCorpus training dataset

NFCorpus dataset [Boteva et al., 2016] is a full-text English retrieval dataset for Medical
Information Retrieval. It contains a total of 134,294 query-pair documents extracted from
the NutrionFacts.org site and PubMed.

The NFCorpus dataset is divided into three splits: train, development, and test. The num-
ber of questions in each split can be found in Table 2.6. An example of how the dataset
looks is found in Table 2.7.

Split Questions Total %

Train 110,575 10%
Developement 11,385 10%

Test 12,334 10%

Total 134,294 100%

Table 2.6: The NFCorpus dataset splits.

Document Query

Lipid rafts/caveolae are membrane platforms for signaling
molecules that regulate various cellular functions, including
cell survival. To better understand the role of rafts in tumor
progression and therapeutics, [...]

Do Choles-
terol Statin
Drugs Cau-
se Breast
Cancer?.

Table 2.7: An example of the NFCorpus dataset.

2.2 Open domain information retrieval architectures 17

BEIR benchmark

Benchmarking-IR (BEIR) is a robust and heterogeneous evaluation benchmark for infor-
mation retrieval, comprising 18 retrieval datasets for comparison and evaluation of model
generalization. BEIR is focused on diversity, that is, the benchmark includes nine different
retrieval tasks: fact checking, citation prediction, duplicate question retrieval, argument
retrieval, news retrieval, question answering, tweet retrieval, bio-medical IR, and entity
retrieval. Furthermore, datasets from diverse domains are included to cover broad topics
like Wikipedia, specialized topics like COVID-19, different text types like news topics
and tweets, and datasets with different sizes, query lengths, and document lengths. The
statistics of each of the datasets included can be found in Table 1 of [Thakur et al., 2021].

This benchmark will be used to measure the performance of our system and have compa-
rable results.

CHAPTER 3

Generating synthetic datasets for information retrieval

In this chapter, we introduce the different available methods for generating queries. We
will focus mainly on two: Contriever [Izacard et al., 2021] which is a non-neural based
method and Open Pre-trained Transformer (OPT) [Zhang et al., 2022] which is a Large
Language Model (LLM)

3.1 Dataset generation using Contriever

The easiest way of generating ‘queries’ in an unsupervised setting, is the process that the
Contriever system [Izacard et al., 2021] follows. Contriever generates queries by appl-
ying random cropping to the document itself and then deleting words with a probability
of 10%. The remaining words after the process are used as the query for the example. Mo-
reover, Contriever applies the same process to the document itself. A better explanation
of how the dataset is generated can be found in Section 2.2.2. Examples of this method
can be found in Table 3.1. Moving forward we will be calling to the Contriever generation
method ’crop’ to avoid confusion with the system itself.

3.2 Large language models for question generation

Large language models (LLM), which are often trained for hundreds of thousands of com-
puting days, have shown remarkable capabilities for zero- and few-shot learning. Given

19

20 Generating synthetic datasets for information retrieval

Document Query (random
cropping)

Final Query
(random crop-
ping + words
deletion)

Document (ran-
dom cropping)

Final Document
(random crop-
ping + words
deletion)

Color hex is a easy to use tool to get
the color codes information inclu-
ding color models (RGB,HSL,HSV
and CMYK), css and html color co-
des.

Color hex is a
easy to use tool

Color hex tool get the color
codes informa-
tion including
color models
(RGB,HSL,HSV
and CMYK)

color codes
information
color models
(RGB,HSL,HSV
and CMYK)

Why Visa Stock Is Dropping To-
day Visa stock is dropping today
due to a court ruling regarding a
$5.7 billion settlement deal that is
being rejected by New York appeals
court. Both MasterCard (MA) and
Visa (V) stocks are dropping today
on the news that new litigation is
problem the next step in their on-
going battle with retailers over alle-
gations that their credit-card fees
were improperly fixed.

$5.7 billion sett-
lement deal that
is being rejected
by New York
appeals court.
Both MasterCard
(MA) and Visa
(V) stocks are
dropping today
on the news that
new litigation

$5.7 billion
settlement deal
rejected by New
York. Both Mas-
terCard and Visa
dropping news
that new litiga-
tion

stocks are drop-
ping today on the
news that new li-
tigation is pro-
blem the next step
in their ongoing
battle with retai-
lers

stocks dropping
on the news
new litigation is
next battle with
retailers

Although the European powers did
make military interventions in Latin
America from time to time after the
Monroe Doctrine was announced,
the Americans did not look for war.
They did, however, use the doctrine
as justification for taking Texas in
1842 under President John Tyler.

military inter-
ventions in Latin
America from
time to time
after the Monroe
Doctrine was
announced

military interven-
tions in Latin af-
ter Monroe

the Americans
did not look for
war. They did,
however, use
the doctrine as
justification for
taking Texas

Americans look
for war. the doc-
trine justification
taking Texas

Table 3.1: Examples of how crop method generates (Contriever generation method) query-
document pairs.

3.2 Large language models for question generation 21

their computational cost, these models are difficult to replicate without significant capital.
For the few that are available through APIs, no access is granted to the full model weights,
making them difficult to study.

In this project, we check the suitability of 4 LLMs: OPT [Zhang et al., 2022], Bloom
[Scao et al., 2022], GPT-neo [Black et al., 2021], and GPT-neoX [Black et al., 2022].

First of all, in this project, we want to answer whether a model with more parameters
(which usually contribute to a higher quality text-generation) helps the Information Re-
trieval (IR) systems to improve more. In order to evaluate which model is the most ap-
propriate one, we need to see how many checkpoints of different parameters each system
offers.

• OPT: Checkpoints of 125 million, 350 million, 1.3 billion, 2.7 billion, 6.7 billion,
13 billion, 30 billion, 60 billion, and 175 billion parameters.

• Bloom: Checkpoints of 560 million, 1.1 billion , 1.77 billion, 3 billion, 7.1 billion,
and 176 billion parameters.

• GPT-neo(X): Checkpoints of 125 million, 1.3 billion, 2.7 billion, and 20 billion
parameters. We are going to consider GPT-neo and GPT-neoX to be of the same
family of models.

Looking at the checkpoints available for each transformer, we believe that OPT is the most
appropriate one for this task since it offers a wider amount of checkpoints of different
sizes.

Next, we measure how well each transformer is able to generate questions. In order to
generate questions in an unsupervised way (zero-shot question generation), we need to
make use of a prompt. Figure 3.1 shows the prompt used to generate the questions using
the different models. This prompt is the same one that [Bonifacio et al., 2022a] has used to
generate a dataset using GPT-3 [Brown et al., 2020]. To include diversity in the questions
generated, we apply sampling and a top p of 0.9 (only the smallest set of most probable
tokens with probabilities that add up to top p or higher are kept for generation.)

In Table 3.2, we compare the capability of different models of similar size in generating
questions in an unsupervised setting.

Overall, in a limited qualitative analysis, we can see that the quality of generation of OPT
is better than Bloom and GPT-neo(X). The reasons are the following: first, Bloom 7B

22 Generating synthetic datasets for information retrieval

Example 1:
Document: We don’t know a lot about the effects of caffeine during pregnancy on you
and your baby. So it’s best to limit the amount you get each day. If you are pregnant,
limit caffeine to 200 milligrams each day. This is about the amount in 1½ 8-ounce cups
of coffee or one 12-ounce cup of coffee.
Relevant Query: Is a little caffeine ok during pregnancy?

Example 2:
Document: Passiflora herbertiana. A rare passion fruit native to Australia. Fruits are green-
skinned, white fleshed, with an unknown edible rating. Some sources list the fruit as
edible, sweet and tasty, while others list the fruits as being bitter and inedible.
Relevant Query: What fruit is native to Australia?

Example 3:
Document: The Canadian Armed Forces. 1 The first large-scale Canadian peacekeeping
mission started in Egypt on November 24, 1956. 2 There are approximately 65,000 Re-
gular Force and 25,000 reservist members in the Canadian military. 3 In Canada, August
9 is designated as National Peacekeepers’ Day.
Relevant Query: How large is the Canadian military?

Example 4:
Document: {document text}
Relevant Query:

Figure 3.1: Prompt used to generate the questions. For the fourth example, we replace {do-
cument text} with a document from the MS MARCO dataset. The same prompt was used by
[Bonifacio et al., 2022a].

3.2 Large language models for question generation 23

Document OPT-1.3B OPT-30B Bloom 1.7B Bloom 7B GPT-neo 1.3B GPT-neoX
20B

Color hex is a easy to use tool to get
the color codes information inclu-
ding color models (RGB,HSL,HSV
and CMYK), css and html color co-
des.

How can
color hex
code help
me?

What co-
lor hex is?

What color
is in Hex
color model
number
0c00a00?

Html Color
Code

I need to con-
vert the color
hex codes to
RGB and then I
need to do this
for all my web-
site color codes
for a custom
website I am
developing. Ar

What is
CSS and
HSL?

Why Visa Stock Is Dropping To-
day Visa stock is dropping today
due to a court ruling regarding a
$5.7 billion settlement deal that is
being rejected by New York appeals
court. Both MasterCard (MA) and
Visa (V) stocks are dropping today
on the news that new litigation is
problem the next step in their on-
going battle with retailers over alle-
gations that their credit-card fees
were improperly fixed.

Why is
Visa stock
dropping
today?

Why are
Mas-
terCard
and Visa
stocks
dropping
today?

Why Visa
Stock Is
Dropping
Today

What is cau-
sing the Vi-
sa stock to
drop today?

How has Visa
stock dropped
today?

What court
ruling is
being rejec-
ted?

Although the European powers did
make military interventions in Latin
America from time to time after the
Monroe Doctrine was announced,
the Americans did not look for war.
They did, however, use the doctrine
as justification for taking Texas in
1842 under President John Tyler.

What
is the
Monroe
Doctrine?

How
was the
Monroe
Doctrine
used in the
1840s?

When did
the US and
European
powers ma-
ke military
intervention
in Latin
America?

What
country
supported
a campaign
that gave
Texas into
Mexico’s
hands?

What is the
Monroe Doctri-
ne?

When did
the United
States make
military in-
terventions
in Latin
America?

Table 3.2: Comparison of automatically generated questions using different models in a zero-shot
setting.

24 Generating synthetic datasets for information retrieval

and GPT-neo 1.3B are not able to generate a question for the first document, second, the
question generated by Bloom 7B in the third document is not correct, and finally, OPT-
30B seems to be generating more diverse questions as it is using different starting words
compared to Bloom and GPT-neo(X) 1. Given this initial analysis, we decided to focus on
OPT as our question generation LLM.

3.3 Open Pre-trained Transformer (OPT)

Open Pre-trained Transformer (OPT) [Zhang et al., 2022] is a series of open-sourced large
causal language models which perform similarly in performance to GPT3. The different
sizes of OPT and the architecture details can be found in Table 3.3.

Parameters #L #H dmodel

125M 12 12 768
350M 24 16 1024
1.3B 24 32 2048
2.7B 32 32 2560
6.7B 32 32 4096
13B 40 40 5120
30B 48 56 7128
60B 64 72 9216

175B 96 95 12288

Table 3.3: Available OPT models and their number of parameters. #L refers to the number of
layers, #H refers to the number of attention heads, and dmodel refers to the embedding size.

3.4 Dataset generation using OPT

In this project, we want to check whether the quality of the generated queries is important
or not. For this purpose, let’s assume that the more parameters OPT has, the higher the
quality of queries is going to be, and hence the better performance of the information
retrieval system. Table 3.4, shows the top 10 starting words for each OPT checkpoint.

The table shows that the top 3 words are the same regardless of the number of parameters
and that they amount to about 60 to 70% of the whole dataset. The remaining words show

1This reasoning comes from a bigger sample of questions available at https://tinyurl.com/y2nvzkd3.

https://tinyurl.com/y2nvzkd3

3.4 Dataset generation using OPT 25

Top 10 words 125M 1.3B 30B† 125M - x5

Top 1 What (31.66%) What (37.74%) What (48.64%) What (31.68%)
Top 2 How (21.38%) How (25.65%) How (17.23%) How (21.40%)
Top 3 Is (10.37%) Is (6.87%) Is (5.92%) Is (10.40%)
Top 4 Why (5.02%) Can (4.79%) Which (2.42%) Why (5.02%)
Top 5 Can (5.00%) Why (4.35%) Where (2.18%) Can (5.00%)
Top 6 Do (4.74%) Which (2.94%) Can (1.86%) Do (4.74%)
Top 7 Does (4.68%) Does (2.64%) Why (1.51%) Does (4.68%)
Top 8 Are (3.92%) What’s (2.17%) Who (1.19%) Are (3.92%)
Top 9 Who (2.41%) Where (2.00%) Does (1.12%) Who (2.41%)

Top 10 Which (2.38%) Are (1.99%) When (1.08%) Which (2.37%)

Total 91.56% 91.14% 83.15% 91.62%

Table 3.4: Top 10 starting words for each OPT checkpoint. † indicates that the dataset has been
generated using 8-bit optimization techniques. x5 means that 5 questions per document have been
generated.

that a model with fewer parameters tends to use the same starting word more frequently
than the one with more parameters, this can be seen clearly when comparing the total of
the top 10 words. The 125 million parameters model shows that the top 10 words appear
a 91.56% of the total dataset. In contrast, the 30 billion one only 83.15%, meaning that
more parameters provide a wider variety of generated questions.

Moreover, we want also to check whether it is more relevant to generate a lot of low-
quality questions faster using smaller language models or less high-quality questions slo-
wer using bigger models, that is, Quantity vs. Quality vs. Time. Table 3.5 shows the time
required to do inference on OPT using different amounts of parameters.

As expected, the table shows that a higher amount of parameters require more time. All
the systems scale quite well in time when models with more parameters are used. The
only exception is the 30 billion one, in this case, due to the high amount of parameters the
memory of the GPU is filled almost completely, requiring to reduce considerably the batch
size, and making the system extremely slow. The use of 8-bit optimization techniques
for the 30 billion parameters reduces almost 4 times the time required to generate the
dataset. This technique becomes a feasible solution to generate datasets using models
with large amount of parameters as we do not lose any noticeable performance and the
time is reduced considerably (See [Dettmers et al., 2022] for more information about 8-bit
optimization techniques).

26 Generating synthetic datasets for information retrieval

Parameters Time (1 GPU) Time (8 GPUs)

125M 32 hours (1.3 days) 4 hours
350M 48 hours (2 days) 6 hours
1.3B 80 hours (3.3 days) 10 hours
2.7B 5.3 days 0.66 days
6.7B 8 days 1 day
13B 13 days 1.63 days
30B 213 days 26.63 days

125M - x5 6.5 days 20 hours
30B† 55 days 7 days

Table 3.5: Time required to generate the dataset using the different available OPT checkpoints.
To generate the dataset, we are making use of Nvidia A100 GPUs with 80GB of VRAM memory.
† indicates that the dataset has been generated using 8-bit optimization techniques. x5 means that
5 questions per document have been generated.

Figure 3.2: Graph showing the time required for generating the dataset using different OPT check-
points.

3.4 Dataset generation using OPT 27

After generating the questions using the train split of MS MARCO, Table 3.6 shows the
number of questions obtained for each OPT checkpoint. Note that inference is not perfect
and sometimes OPT is not able to generate a question, therefore, we will also be providing
the number of questions lost during generation.

Parameters Nº Questions Lost

125M 8,062,506 7,243 (0.09%)
1.3B 8,067,497 2,252 (0.028%)
30B† 8,067,107 2,642 (0.03%)

125M - x5 40,312,055 36,690 (0.09%)

Table 3.6: The number of questions lost during inference from 8,069,749 documents. † indicates
that the dataset has been generated using 8-bit optimization techniques. x5 means that 5 questions
per document have been generated.

Looking at the table, the amount of lost questions during inference is insignificant compa-
red to the whole dataset, hence we have decided to ignore these to avoid adding any kind
of supervision to the project. Moreover, we can see that the more parameters the model
has, the less prone it is to lose questions.

CHAPTER 4

Experiments and Results

In this chapter, we will discuss the experiments we perform, the metrics to measure the
performance of the IR systems and compare them, and finally, a deep analysis of the
results.

4.1 Training

In this project, we focus on two IR systems: DPR and Contriever. In the original paper
of DPR [Karpukhin et al., 2020], they train the system for 40 epochs, but mention that
after 25 epochs there is not an increase in performance. In our case, we have decided to
train our system for only 4 epochs because MS MARCO provides for each question 10
documents on average, and hence, we will generate 10 questions from these documents
that are related to the same topic. We consider that these 4 epochs are equivalent to the 40
epochs of the original DPR.

In the case of Contriever, we use their original script with the same parameters and train
the system for 500,000 steps with a batch size of 64. In total, the system will see a total of
32,000,000 examples, and considering that our dataset contains around 8,000,000 exam-
ples, it is more or less equivalent to 4 epochs. The time required to train each system can
be seen in Table 4.1.

29

30 Experiments and Results

System Epochs/Steps Time (1 GPU) Time (2 GPUs)

DPR 4 epochs 4 days 2 days
Contriever 500,000 steps 3.5 days 1.75 days

Table 4.1: Time required to train DPR and Contriever systems.

4.2 Experiments

For this project, we want to perform as many experiments as possible using different
configurations. We divide the configuration of the experiments as follows:

• Supervised IR systems

– marco-supervised: We train the IR system using the MS MARCO original
dataset, i.e., we use query-document pairs provided by the dataset itself, so
the IR system is completely supervised.

• Unsupervised IR systems using Large Language models:

– opt-125m: We train the system by generating questions for each document in
the MS MARCO dataset using the OPT checkpoint with 125 million parame-
ters. Thus this IR system is trained without human supervision.

– opt-350m: We train the system by generating questions for each document in
the MS MARCO dataset using the OPT checkpoint with 350 million parame-
ters.

– opt-1.3b: We train the system by generating questions for each document in
the MS MARCO dataset using the OPT checkpoint with 1.3 billion parame-
ters.

– opt-125m-sampling1: We train the system by generating questions for each
document in the MS MARCO dataset using the OPT checkpoint with 125
million parameters, applying sampling, and a top p 2 of 0.9.

– opt-125m-sampling-x5: The same as opt-125m-sampling but for each docu-
ment we generate 5 questions.

1sampling short for questions that are generated using sampling with a top p of 0.9
2top p: only the smallest set of most probable tokens with probabilities that add up to top_p or higher

are kept for generation

4.2 Experiments 31

– opt-1.3b-sampling: We train the system by generating questions for each do-
cument in the MS MARCO dataset using the OPT checkpoint with 1.3 billion
parameters, applying sampling, and a top p of 0.9.

– opt-30b-sampling-8bit: We train the system by generating questions for each
document in the MS MARCO dataset using the OPT checkpoint with 30 bi-
llion parameters, applying sampling, a top p of 0.9, and 8-bit quantization to
reduce the inference time.

• Crop3:

– crop-queries: We train a system by generating queries for each document in
the MS MARCO dataset using the crop generation method.

– crop-queries-documents: We train a system by generating queries-document
pairs for each document in the MS MARCO dataset using the crop generation
method.

• Domain adaptation:

– scifact-supervised-ft4: We train a system by finetuning on the scifact supervi-
sed dataset. The IR system is trained starting from the supervised MS MAR-
CO checkpoint (marco-supervised).

– scifact-opt-30b-sampling-8bit-ft: We train the system by generating ques-
tions for each document in the scifact dataset by using the OPT 30 billion pa-
rameter checkpoint, sampling, a top p of 0.9, and 8-bit quantization method.
The system is trained starting from the supervised MS MARCO checkpoint
(marco-supervised).

– scifact-crop-ft: We train the system by generating queries and documents
for each document in the scifact dataset by using the crop method. The sys-
tem is trained starting from the supervised MS MARCO checkpoint (marco-
supervised).

– nfcorpus-supervised-ft: We train a system by finetuning the nfcorpus super-
vised dataset. The system is trained starting from the supervised MS MARCO
checkpoint (marco-supervised).

3Crop: This method refers to the Contriever generation method.
4ft short for systems that are finetuned on top of the ms marco supervised system

32 Experiments and Results

– nfcorpus-opt-30b-sampling-8bit-ft: We train the system by generating ques-
tions for each document in the nfcorpus dataset using the OPT 30 billion pa-
rameter checkpoint, sampling, a top p of 0.9, and 8-bit quantization method.
The system is trained starting from the supervised MS MARCO checkpoint
(marco-supervised).

– nfcorpus-crop-ft: We train the system by generating queries and documents
for each document in the nfcorpus dataset by using the crop method. The sys-
tem is trained starting from the supervised MS MARCO checkpoint (marco-
supervised).

• Prompting:

– scifact-opt-30b-sampling-8bit-prompt=keywords-ft: The same as scifact-
opt-30b-sampling-8bit-ft, but in this case, before generating the question, we
first generate some keywords (using OPT) and then condition the generation
of the question to the document and keywords.

– scifact-opt-30b-sampling-8bit-prompt=title-ft: The same as scifact-opt-30b-
sampling-8bit-ft, but in this case, before generating the question, we first ge-
nerate a title (using OPT) and then condition the generation of the question to
the document and the title.

– scifact-instruct-gpt-ft: We train a system by generating questions using Ins-
tructGPT [Ouyang et al., 2022] for each document in the scifact dataset. The
system is trained starting from the supervised MS MARCO checkpoint (marco-
supervised).

• Hard negatives:

– scifact-supervised-with-negatives-ft: The same as scifact-supervised-ft but
in this case for each document we add hard negative documents extracted
using BM25. Check Chapter 4.5 for more information about hard negatives.

4.3 Evaluation

Existing neural information retrieval models have often been studied in homogeneous and
narrow settings, which has considerably limited insights in out-of-domain datasets. As

4.4 Metrics 33

mentioned in Chapter 2.2.3, [Thakur et al., 2021] developed a benchmark called Benchmarking-
IR (BEIR) to measure the capabilities of IR models outside of their domain. In this pro-
ject, we will make use of BEIR in order to measure and compare the performance of the
systems.

4.4 Metrics

Typical classification and regression metrics measure whether the predicted value is close
to the actual value. Unfortunately, these metrics do not take into consideration the order
of prediction, which is important in information retrieval, as it is not the same to find the
answer in the first document or in the last one. To evaluate an information retrieval system
we need to measure how relevant the results are and how good the ordering is.

The most used metric in information retrieval systems, and which BEIR uses, is the
nDCG@K metric, more specifically nDCG@10 with k=10. Contriever [Izacard et al., 2021]
states that nDCG@K is good at evaluating rankings returned to humans, for example in
a search engine, but that Recall@100 is relevant to evaluate retrievers that are used in
machine learning systems, such as question answering. In this project, we are going to
provide both metrics.

In order to understand the nDCG@K metric we are going to split it into the different parts
that is composed of:

• Gain: Gain is the relevance score for each document proposed.

• Cumulative Gain (CG): Cumulative gain at K is the sum of gains of the first K do-
cument proposed. Equation 4.2 shows the formula used to calculate the cumulative
gain.

CG@K =
K

∑
i=1

Gi (4.1)

• Discounted Cumulative Gain (DCG): Discounted cumulative gain weighs each
relevance score based on its position. The proposed documents at the top get a
higher weight while the relevance of those at the bottom get a lower weight. Equa-
tion 4.2 shows the formula used to calculate the discounted cumulative gain.

DCG@K =
K

∑
i=1

Gi

log2(i+1)
(4.2)

34 Experiments and Results

• Normalized Discounted Cumulative Gain (NDCG): The normalized discounted
cumulative gain is the DCG with a normalization factor in the denominator. The
denominator is the ideal DCG score when we proposed the most relevant documents
first. Equation 4.3 shows the normalized discount cumulation gain, whereas 4.4
shows the ideal discounted cumulative gain.

nDCG@K =
DCG@K
iDCG@k

(4.3)

iDCG@K =
Kideal

∑
i=1

Gideal
i

log2(i+1)
(4.4)

Recall@K is one of the most interpretable and popular offline evaluation metrics. It mea-
sures how many relevant documents were returned (true positives) against how many
relevant documents exist in the entire dataset (true positives + false negatives).

Recall@K =
TruePositives

TruePositives+FalseNegatives
(4.5)

The K in this and all other offline metrics refers to the number of items returned by the IR
system. In our case, this is going to be always K = 100 in order to compare our system to
Contriever.

4.5 Using hard negatives for training

In dense passage retrieval, hard negatives refer to passages or documents that are similar
to the query but are not actually relevant or useful. These passages can be difficult to
distinguish from truly relevant passages and can make it more challenging to train a model
that can effectively retrieve relevant information. Hard negatives can be generated by
using techniques such as active learning, where the model is used to identify passages
that it is unsure about, or by using heuristics such as those based on the cosine similarity
of the passage and the query. In our case, we use BM25 to extract the hard negatives, that
is, for each question we calculate a score for every document and the document with the
lowest score is selected as hard negative.

4.6 Domain adaptation 35

4.6 Domain adaptation

Domain adaptation is the process of adapting a model that has been trained on one domain
(or dataset) to work effectively on a different but related domain. This is often necessary
when there is a mismatch between the distribution of data on which a model was trained
and the distribution of data on which it will be used in practice.

In our case, we apply domain adaption to two datasets, Scifact and NFCorpus, as they
have documents of a completely different domain.

4.7 Results

In this section, we will compare the results of the systems mentioned previously in order
to be able to answer the research questions proposed in Chapter 1. Concretely we will
answer the following questions:

• Is sampling useful to generate questions?

• Does increasing the number of parameters of the model for generating questions
improve the performance of the IR systems?

• Does increasing the number of examples improve the performance?

• Is the crop generation method better than using Large Language Models?

• Does domain adaption improve the performance of the systems?

• Does prompting improve the generation of questions?

• Does using hard negatives allow to improve the performance of the systems?

• How does our work compare to other state-of-the-art systems?

In order to measure and be able to compare all the systems equally, we are going to make
use of the BEIR benchmark. We will provide the NDCG@10 and Recall@100 metrics,
as they are the most useful metrics for information retrieval. We will also explain the
results obtained on the NDCG@10 metric because as mentioned, this metric is good at

36 Experiments and Results

evaluating rankings returned to humans. As the trends for both metrics are similar, the
results for Recall@100 can be found in the Appendix A.1

After carefully reviewing the results obtained using the Contriever training system using
MoCo, we realized that they were not making sense and therefore, we have decided not
to include these results to avoid confusion.

All the following results are obtained using the dense passage retrieval (DPR) system
from Haystack end-to-end framework 5 and trained using MS MARCO dataset (unless
otherwise stated). The ’crop’ method refers to the Contriever generation method.

4.7.1 Is sampling useful to generate questions?

The first step we need to check is whether sampling helps generate more diverse questions
and hence improve the system’s performance in contrast to greedy generation. Table 4.2
show the results obtained by generating the dataset using the OPT checkpoint with 125
million and 1.3 billion parameters.

Table 4.2 shows that using sampling allows to improve the performance of the systems,
and even more when the LLM has more parameters. This can be seen clearly when we
compare opt-125m and opt-125m* NDCG@10 metric, if we look at every dataset we see
that opt-125m* is better in 11 out of 15 datasets. On the other hand, if we increase the
number of parameters we see that opt-1.3b* is better than opt-1.3b in all the datasets.
Moreover, we can see that opt-125m* gets closer to opt-1.3b on average, which allows to
reduce the time for generating questions while obtaining similar performance.

In this section, we conclude that sampling makes a huge difference in terms of perfor-
mance. This is especially important for LLMs with a higher amount of parameters as it
can boost the performance of the system considerably.

4.7.2 Does increasing the number of parameters of the model for genera-

ting questions improve the performance of the systems?

In the next set of experiments, we aim to investigate the impact on the system’s perfor-
mance based on the number of parameters that the question generation LLM has. Based

5The Haystack end-to-end framework is available at https://github.com/deepset-ai/haystack

https://github.com/deepset-ai/haystack

4.7 Results 37

Greedy Sampling
Dataset \ model name opt-125m opt-1.3b opt-125m* opt-1.3b*

Average 27.64 29.54 29.10 32.86

MS-MARCO 18.23 19.46 18.74 21.61

TREC-covid 41.34 37.08 39.27 39.77
NFCorpus 24.29 23.39 24.62 26.20

NaturalQuestions 17.75 21.92 19.25 25.49
HotpotQA 23.45 32.41 32.35 38.18

FiQA 14.84 17.80 16.90 20.76
ArguAna 45.21 42.28 45.01 47.74

Tóuche-2020 11.18 11.97 10.47 13.44
CQAdupstack 19.85 21.52 20.66 23.70

Quora 74.64 74.51 72.23 78.15
DBpedia 19.41 22.18 22.39 24.36
Scidocs 9.73 9.35 10.72 10.83
Fever 25.58 39.90 31.46 45.74

Climate-fever 10.04 11.97 12.34 13.14
Scifact 49.58 47.25 49.80 52.52

Table 4.2: In-domain and zero-shot performances on BEIR benchmark. In this table, we com-
pare whether sampling is helpful to improve the performance of the systems. All scores denote
NDCG@10. The best score on a given dataset is marked in bold, and the second best is underli-
ned. The average corresponds to the average of all the datasets except MS MARCO. * indicates
that the dataset has been generated using sampling and a top p of 0.9.

38 Experiments and Results

on what we have learned in the previous section, we will use sampling in each system. Ta-
ble 4.3 shows the results obtained for OPT using checkpoints of 125 million, 1.3 billion,
and 30 billion parameters.

Dataset \ model name opt-125m* opt-1.3b* opt-30b*†

Average 29.10 32.86 33.31

MS-MARCO 18.74 21.61 22.88
TREC-covid 39.27 39.77 37.50
NFCorpus 24.62 26.20 29.25

NaturalQuestions 19.25 25.49 24.63
HotpotQA 32.35 38.18 38.52

FiQA 16.90 20.76 22.21
ArguAna 45.01 47.74 47.32

Tóuche-2020 10.47 13.44 14.39
CQAdupstack 20.66 23.70 24.64

Quora 72.23 78.15 75.27
DBpedia 22.39 24.36 25.57
Scidocs 10.72 10.83 11.21
Fever 31.46 45.74 50.46

Climate-fever 12.34 13.14 13.01
Scifact 49.80 52.52 52.35

Table 4.3: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
whether increasing the number of parameters is helpful to improve the performance of the systems.
All scores denote NDCG@10. The best score on a given dataset is marked in bold, and the second
best is underlined. The average corresponds to the average of all the datasets except MS MARCO.
* indicates that the dataset has been generated using sampling and a top p of 0.9. † indicates that
8-bit optimization techniques have been used to generate the dataset.

Table 4.3 shows that the performance of the models generally increases as the number of
parameters increases. However, this is not always the case as we can see in the NDCG@10
results of the TREC-covid, Natural Questions, ArguAna, Quora, Climate-fever, and Sci-
fact datasets. In these datasets, opt-1.3b* is slightly better than opt-30b*†. Moreover,
TREC-covid dataset seems to perform slightly better in opt-125m* than opt-30b*†.

This outcome could be explained because opt-30b*† is using the 8-bit optimization tech-
nique, which improves inference speed, but also decreases the performance slightly, es-
pecially in outliers. Notice that "covid"could be considered an outlier due to the lack of
datasets about the topic.

Overall, we can see that increasing the number of parameters allows for an increase in

4.7 Results 39

the performance of the system. We believe that this is not a big issue since questions are
generated once and, once generated, they can be reused multiple times for free.

4.7.3 Does increasing the number of examples improve the performance?

In this section, we want to answer if quantity is more important than quality. Table 4.4
shows the results obtained after generating five questions for the OPT checkpoint with
125 million parameters.

Dataset \ model name opt-125m* opt-125m-x5* opt-1.3b*

Average 29.10 30.02 32.86

MS-MARCO 18.74 20.19 21.61
TREC-covid 39.27 41.69 39.77
NFCorpus 24.62 27.23 26.20

NaturalQuestions 19.25 19.98 25.49
HotpotQA 32.35 33.88 38.18

FiQA 16.90 18.11 20.76
ArguAna 45.01 35.42 47.74

Tóuche-2020 10.47 11.27 13.44
CQAdupstack 20.66 22.84 23.70

Quora 72.23 74.08 78.15
DBpedia 22.39 23.59 24.36
Scidocs 10.72 11.85 10.83
Fever 31.46 32.83 45.74

Climate-fever 12.34 12.56 13.14
Scifact 49.80 54.99 52.52

Table 4.4: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
whether generating more questions faster using a smaller checkpoint is better than generating
slower high-quality questions. All scores denote NDCG@10. The best score on a given dataset is
marked in bold, and the second best is underlined. The average corresponds to the average of all
the datasets except MS MARCO. * indicates that the dataset has been generated using sampling
and a top p of 0.9. x5 means that five questions have been generated per document.

Table 4.4 shows that generating more questions improves the overall performance of the
system when we compare it to the same system but only using one question. If we compare
opt-1.3b* with opt-125m-x5*, we can see that opt-1.3b* is in general better for most of
the datasets.

From these experiments, we conclude that it is not worth generating more questions using
a smaller checkpoint even if there is a significant improvement over generating one ques-

40 Experiments and Results

tion using the same checkpoint. The main reason is that training the DPR system takes
10 days instead of the usual 2. We think that the extra 8 days it takes could be used to
generate higher quality questions instead.

4.7.4 Is the crop generation method better than Large Language Models?

In Chapter 3, we mentioned the crop generation method makes use of random cropping
and random deletion of words of documents to create question-document pairs. Table 4.5
shows the results obtained when generating queries using the crop method.

Dataset \ model name marco-supervised opt-30b*†
Crop

queries
Crop

queries-documents

Average 37.07 33.31 13.08 19.32

MS-MARCO 27.75 22.88 5.59 10.97
TREC-covid 58.90 37.50 16.32 21.01
NFCorpus 26.98 29.25 3.50 10.30

NaturalQuestions 31.93 24.63 8.43 8.80
HotpotQA 40.45 38.52 14.01 15.53

FiQA 22.61 22.21 4.49 5.50
ArguAna 45.25 47.32 8.42 47.13

Tóuche-2020 19.17 14.39 4.37 3.48
CQAdupstack 27.46 24.64 14.51 12.95

Quora 77.59 75.27 71.20 78.98
DBpedia 29.77 25.57 8.03 14.29
Scidocs 12.87 11.21 2.67 3.04
Fever 56.25 50.46 5.12 11.52

Climate-fever 16.89 13.01 2.04 3.94
Scifact 52.92 52.35 20.06 34.00

Table 4.5: In-domain and zero-shot performances on BEIR benchmark. In this table, we show
the performance of using the crop method to generate queries-document pairs. All scores denote
NDCG@10. The best score on a given dataset is marked in bold, and the second best is underlined.
The average corresponds to the average of all the datasets except MS MARCO. * indicates that the
dataset has been generated using sampling and a top p of 0.9. † indicates that 8-bit optimization
techniques have been used to generate the dataset.

Table 4.5 shows that generating queries using the crop method provides bad results in all
the datasets, not even getting close to the opt-125m* checkpoint with 29 points for the
NDCG@10 metric. We notice that for the crop method, it is completely mandatory to
apply their approach to both the query and the document (we are technically interested in

4.7 Results 41

generating only queries) because if we apply the approach to only get the query we lose
5 points in the performance of the IR system.

Nevertheless, we need to say that the crop generation method is extremely cheap, ta-
king less than 5 minutes to generate 8 million query-document pairs. In comparison, opt-
30b*† takes 7 days using 8xA100 80GB GPUs.

4.7.5 Does domain adaption improve the performance of the systems?

With the most important questions already answered, the next thing that we want to know
is whether domain adaption works in order to improve the results of a specific dataset. Ta-
ble 4.6 shows the results of finetuning the Scifact and NFCorpus using different methods
on top of marco-supervised.

Model name \ dataset NFCorpus Scifact

marco-supervised 26.98 52.92

scifact-supervised+ - 68.55
scifact-opt-30b+*† - 54.55

scifact-crop+ - 57.35
nfcorpus-supervised+ 28.30 -
nfcorpus-opt-30b+*† 33.20 -

nfcorpus-crop+ 16.47 -

Table 4.6: In-domain and zero-shot performances on BEIR benchmark. In this table, we show
whether domain adaption is beneficial to improve the performance of datasets from another do-
main. All scores denote NDCG@10. * indicates that the dataset has been generated using sampling
and a top p of 0.9. † indicates that 8-bit optimization techniques have been used to generate the
dataset. + indicates that the system has been finetuned on top of marco-supervised.

Before looking at the results, it is important to make it clear that we are not interested in
the supervised setting of these new datasets, what we want to know is if a completely new
unseen dataset without annotated questions can be finetuned on top of another system in
order to improve its performance.

Table 4.6 shows that for the NFCorpus dataset either using the NFCorpus supervised
dataset or the NFCorpus dataset generated using the OPT 30 billion parameter checkpoint
increases the performance 1.32 and 6.22 points respectively. In the case of using the crop
method we lose almost 10 points in performance. We think that the length of documents
of NFCorpus can contribute to this bad performance using this last method.

42 Experiments and Results

On the other hand, we can see that Scifact dataset improves regardless of the method.
In this case, the supervised method is the best providing an extra 15.63 points, followed
by the crop method with an extra 4.43, and finally the OPT checkpoint with 30 billion
parameters that improves only 1.63 points. We think that the difference between the results
of Scifact and NFCorpus could be due to the size of the dataset, as Scifact barely contains
900 examples and NFCorpus 110,000.

In this section, we conclude that domain adaption helps to improve the performance of a
given dataset. Unfortunately, there is not a method that we can say it is better than other,
therefore, we think that the best option is to try the three of them and select the best one.

4.7.6 Does prompting improve the generation of questions?

The next question that we had is which method of prompting is the best for question gene-
ration. In Chapter 3.2, we mentioned that we were using the prompt used by [Bonifacio et al., 2022a].
Nevertheless, in this section we want to check whether changing the prompt has any in-
fluence in the performance. More specifically we will check the following prompts:

• Keywords: In this prompt, we generate first keywords related to the document and
then we generate the question taking into consideration both, the document and the
generated keywords.

• Title: The idea is the same as the keywords one, but instead of generating keywords,
we generate first a title for the document and then we generate the question taking
into consideration both.

• Instruct-GPT: A different way of approaching this is by asking a model to do so-
mething according to an instruction. In our case, we check whether the instruction
"Create a question for this document: {}"can generate high-quality questions. We
wanted to try OPT-IML but this model is still not publicly available, therefore, we
will make use of Instruct-GPT [Ouyang et al., 2022].

Table 4.7 shows the results obtained when changing the prompt to generate the questions
using the Scifact dataset.

Table 4.7 shows that using the keywords or title prompt allows to have a slight improve-
ment of 0.72 and 1.24 points on the NDCG@10 metric, meaning that prompting has some
importance. Instruct-GPT is the one that benefits the most by improving the performance

4.7 Results 43

Model Name \ Dataset scifact

scifact-opt-30b+*† 54.55

scifact-instruct-gpt 57.13
scifact-keywords-opt-30b+*† 55.27

scifact-title-opt-30b+*† 55.79

Table 4.7: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
whether changing the prompt to generate questions allows to improve the performance. All scores
denote NDCG@10. * indicates that the dataset has been generated using sampling and a top p
of 0.9. † indicates that 8-bit optimization techniques have been used to generate the dataset. +
indicates that the system has been finetuned on top of marco-supervised.

by 2.58 points on the NDCG@10 metric. Nevertheless, we need to say that this might be
due to Instruct-GPT being a completely different generative architecture and trained on a
different dataset.

In this section, we conclude that changing the prompt is in general beneficial to improve
the performance of the systems. Nevertheless, this two step prompting of generating first
the title or the keywords and then the question comes with a drawback, which is that is
going to take twice the time to generate a single question. This approach using small OPT
checkpoints or small datasets should not be a big issue, but for OPT 30 billion with the
MS MARCO dataset it is, as it would take 14 days to generate all the questions instead of
7 days.

4.7.7 Does using hard negatives allow to improve the performance of the

system?

Before comparing our results with other state-of-the-art systems, the last thing that we
want to check is whether hard negatives have an influence when training the system.

Table 4.8 shows the results after using hard negatives obtained using BM25.

Model Name \ Dataset scifact

scifact-supervised+ 68.55
scifact-hard-negatives-supervised+ 67.67

Table 4.8: In-domain and zero-shot performances on BEIR benchmark. In this table, we check
whether hard negatives allow to improve the performance of the systems trained. All scores denote
NDCG@10. + indicates that the system has been finetuned on top of marco-supervised.

44 Experiments and Results

Table 4.8 shows that the performance difference between using hard negatives or not is
minimal. We can see that the NDCG@10 metric decreases by a point meaning that in
theory it is not recommended to use them.

In this section, we conclude that using hard negatives can be harmful to the performance of
the system. Nevertheless, these hard negatives are obtained using BM25 which probably
is not the best method to do it but is the cheapest and simplest one. We think that more
thorough research should be made about hard negatives.

4.7.8 How does our system compare to other state-of-the-art systems?

In this last section, we will compare our system to other state-of-the-art systems. Unfor-
tunately, there are not many unsupervised systems, and the ones available are trained on
a different dataset. Moreover, most of the experiments can not be replicated due to not
having the necessary resources available.

Table 4.9 shows the comparison table of our systems against other supervised and unsu-
pervised models.

In table 4.9 we can differentiate two methodologies: supervised and unsupervised. The
supervised ones are GenQ and marco supervised. In the case of marco supervised, it is a
DPR system trained on MS MARCO dataset, while GenQ trains a T5 (base) model using
MS MARCO to generate questions, then for each of the datasets creates five questions
using the recently trained model and finally it trains a TAS-B bi-encoder model for each
dataset (domain adaptation). Comparing these two, we can see that GenQ is better than
marco supervised in all the datasets except Tóuche-2020. Unfortunately, these results are
not 100% comparable due to GenQ creating a specific model for each dataset (domain
adaptation). Moreover, BM25, an unsupervised method, is still better in some of the data-
sets.

For the unsupervised setting, we have BM25, LaPraDoR, Contriever, and our opt-30b*† sys-
tem. BM25 is a lexical system, hence is not trained in any datasets. LaPraDor [Bonifacio et al., 2022b]
(without Lexicon Enhanced Dense Retrieval) is trained on MS MARCO dataset. Contrie-
ver is trained on a combination of CCNET and Wikipedia. Finally, opt-30b*† is trained
only on MS MARCO using questions generated by the LLM. Comparing these four sys-
tems we can see that still BM25 is the best method in most of the datasets with an average
of 43.01 points, followed by Contriever with an average of 37.06, the opt-30b*† with
33.31, and finally LaPraDor with 30.21 points. Unfortunately, due to Contriever being

4.7 Results 45

Supervised Unsupervised

Dataset \ Model Name
marco

supervised GenQ BM25 LaPraDoR Contriever opt-30b*†

Average 37.07 42.49 43.01 30.21 37.06 33.31

MS-MARCO 27.75 40.80 22.80 - 20.60 22.88
TREC-covid 58.90 61.90 65.60 22.70 27.40 37.50
NFCorpus 26.98 31.90 32.50 31.10 31.70 29.25

NaturalQuestions 31.93 35.80 32.90 18.10 25.40 24.63
HotpotQA 40.45 53.40 60.30 30.30 48.10 38.52

FiQA 22.61 30.80 23.60 20.30 24.50 22.21
ArguAna 45.25 49.30 31.50 45.90 37.90 47.32

Tóuche-2020 19.17 18.20 36.70 9.40 19.30 14.39
CQAdupstack 27.46 34.70 29.90 22.00 28.40 24.64

Quora 77.59 83.00 78.90 78.70 83.50 75.27
DBpedia 29.77 32.80 31.30 25.00 29.20 25.57
Scidocs 12.87 14.30 15.80 13.30 14.90 11.21
Fever 56.25 66.90 75.30 36.80 68.20 50.46

Climate-fever 16.89 17.50 21.30 13.80 15.50 13.01
Scifact 52.92 64.40 66.50 55.50 64.90 52.35

Table 4.9: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
our system to other state-of-the-art systems. All scores denote NDCG@10. The best scores for
supervised and unsupervised settings on a given dataset are marked in bold, in the case of the
unsupervised setting the second best is underlined. The average corresponds to the average of all
the datasets except MS MARCO. * indicates that the dataset has been generated using sampling
and a top p of 0.9. † indicates that 8-bit optimization techniques have been used to generate the
dataset.

46 Experiments and Results

trained on a different dataset the results are not 100% comparable. Despite the fact that
our system is worse, the difference in performance is not that big as Contriever is trained
in a total of 1,024,000,000 examples, whereas our system is trained on only 32,000,000
examples.

When we compare the marco supervised and opt-30b*† systems, that is, the same model
but trained in a supervised and unsupervised way respectively, we find that the supervised
setting is better in all the datasets except NFCorpus and ArguAna. In these two datasets,
we find that the unsupervised setting is slightly better by 2.27 and 2.07 points respectively.
We think that the lengths of the documents of these two datasets might have an impact
during human annotations, as it might be difficult to create a good representing query for a
document with too many words. In general, in all the datasets, we find that the difference
is not extremely big and we believe that in the future neural unsupervised methodologies
can surpass the supervised setting.

4.7.9 Summary

Overall, we can conclude that unsupervised question generation for information retrieval
can lead to results that are close to the state-of-the-art BM25 system. Current LLM are
able to generate high quality question that are relevant to the documents, and hence we
believe that neural networks could understand better the hidden underlying patterns found
between documents and questions.

In this project, we need to highlight the importance of the number of parameters of the
model and the use of sampling, as it allows to generate higher quality questions, hence
improve the performance of the system. We can also see, that while increasing the number
of generated questions improves the performance, usually spending this time in a model
with more parameters but generating only one question tends to work better. Generating
query-document pairs using crop generation method is extremely cheap, but also does not
perform as well as using Large Language Models. Moreover, using hard negatives can
be harmful to the performance of the system, though more thorough research should be
done on this. Finally, if we want to obtain an extra performance we can either modify the
prompt used to generate the questions or apply domain adaption on a specific dataset.

CHAPTER 5

Conclusions and future work

In this chapter, the conclusions of the project are provided and directions for future work
are proposed.

5.1 Conclusions

In this project, we propose to investigate open domain QA, with a special focus on the first
component of the architecture, that is, the information retrieval component. We trained se-
veral DPRs in an unsupervised manner by generating questions from the documents using
Large Language Models (LLM). Currently, most LLMs provide several checkpoints with
different amounts of parameters, and we used these checkpoints to generate questions,
train a DPR system for each LLM checkpoint, and finally, compare if the generated ques-
tions have any influence in the performance of the systems. The developed system must
be able to search for the necessary information in external sources, usually organized in
text documents. For that purpose, the BEIR benchmark was used in a zero-shot manner
to test the performance.

This work makes use of OPT as LLM with sampling in order to generate questions in
a zero-shot manner. The checkpoints utilized in this work are the ones with 125 million
parameters, 1.3 billion parameters, and 30 billion parameters. A different method to gene-
rate query-document pairs that can be used to generate is the crop method which applies
random cropping and word deletion in order to create the pairs. In this project, all the

47

48 Conclusions and future work

MS MARCO dataset documents are used to generate the questions necessary to train the
systems.

In this work, we also consider domain adaption, that is, after training on MS MARCO
dataset we finetune on another dataset on top of it in order to see if the performance
can be improved for this specific dataset, prompting, which means that we use different
prompts in order to generate questions, and the use of hard negatives to train the dense
passage retrieval system.

Overall, we can conclude that unsupervised question generation for information retrieval
can lead to results that are close to the state-of-the-art BM25 system. We need to highlight
the importance of the number of parameters of the model and the use of sampling, as it
allows to generate higher quality questions, hence improve the performance of the sys-
tem. We can also see, that while increasing the number of generated questions improves
the performance, usually spending this time in a model with more parameters but genera-
ting only one question tends to work better. Generating query-document pairs using crop
generation method is extremely cheap, but also does not perform as well as using Large
Language Models. Moreover, using hard negatives can be harmful to the performance of
the system, though more thorough research should be done on this. Finally, if we want
to obtain an extra performance we can either modify the prompt used to generate the
questions or apply domain adaption on a specific dataset.

5.2 Future work

This project covers the basic scope of how useful can be generating questions for infor-
mation retrieval systems. The findings of this project can be continued in the following
research lines:

• OPT-IML: OPT-IML is an instruction based transformer similar to Instruct-GPT. In
this project, we focus on the latter due to OPT-IML not being publicly available.
We think that OPT-IML could provide more comparable results in order to decide
whether instructions as prompts are helpful or not.

• Generate questions without using LLM: Currently in order to use LLM we are
required to use expensive GPUs. Crop generation method allows to generate query-
document pairs extremely cheap using a CPU and it is almost instantly for large da-

5.2 Future work 49

tasets. We think that there might be some better solutions compared to their greedy
method that would allow to generate higher quality pairs.

• Hard negatives: Another important aspect that we should research is whether tech-
niques to mine hard negatives can improve the performance of the system. In this
thesis, we concluded that BM25 can be harmful when used with the Scifact da-
taset as it was reducing the performance by 1 point. We believe that building an
alternative to BM25 could be helpful in order to improve the performance.

• Integration of the information retriever into the overall open domain QA system:
Today, models such as FiD [Izacard and Grave, 2020] already use neural models to
retrieve relevant documents, but these models do not learn during training for QA.
That is, they are frozen and thus depend entirely on the task on which they have
been trained. We propose to take the information retriever of this project and keep
adjusting it during the QA phase. One of the major problems is that during this
training phase, we will only know if the overall system has been able to answer
the question well, but we will not know if the hit or miss is due to the documents
retrieved by the retriever. Therefore, we propose to introduce reinforcement lear-
ning techniques, with the hit or miss being the reinforcement signal that allows us
to better adjust the information retriever.

Appendix

51

CHAPTER A

Appendix

A.1 Experiment results for Recall@100

In this section, we provide the results of the experiments for the Recall@100 metric.

53

54 Appendix A

A.1.1 Is sampling useful to generate questions?

Dataset \ model name opt-125m opt-1.3b opt-125m* opt-1.3b*

Average 48.15 51.72 52.59 55.24

MS-MARCO 61.28 66.08 64.60 70.18
TREC-covid 7.38 5.40 7.44 5.81
NFCorpus 23.36 22.06 24.15 23.80

NaturalQuestions 60.64 70.51 66.70 76.43
HotpotQA 40.80 51.09 50.22 55.75

FiQA 46.16 47.24 51.17 53.42
ArguAna 94.88 95.24 96.23 97.37

Tóuche-2020 34.08 35.48 36.12 37.38
CQAdupstack 47.93 50.07 50.70 54.40

Quora 95.94 96.41 95.81 97.40
DBpedia 26.98 32.35 35.31 37.13
Scidocs 24.81 23.80 28.08 27.51
Fever 58.90 78.28 73.43 84.67

Climate-fever 30.38 34.30 35.69 37.61
Scifact 81.92 81.87 85.26 84.70

Table A.1: In-domain and zero-shot performances on BEIR benchmark. In this table, we com-
pare whether sampling is helpful to improve the performance of the systems. All scores denote
Recall@100. The best score on a given dataset is marked in bold, and the second best is underli-
ned. The average corresponds to the average of all the datasets except MS MARCO. * indicates
that the dataset has been generated using sampling and a top p of 0.9.

Appendix 55

A.1.2 Does increasing the number of parameters of the model for genera-

ting questions improve the performance of the systems?

Dataset \ model name opt-125m* opt-1.3b* opt-30b*†

Average 52.59 55.24 56.52

MS-MARCO 64.60 70.18 72.66
TREC-covid 7.44 5.81 6.17
NFCorpus 24.15 23.80 25.95

NaturalQuestions 66.70 76.43 77.54
HotpotQA 50.22 55.75 56.33

FiQA 51.17 53.42 54.44
ArguAna 96.23 97.37 97.58

Tóuche-2020 36.12 37.38 39.57
CQAdupstack 50.70 54.40 56.00

Quora 95.81 97.40 96.90
DBpedia 35.31 37.13 38.81
Scidocs 28.08 27.51 28.54
Fever 73.43 84.67 88.15

Climate-fever 35.69 37.61 38.79
Scifact 85.26 84.70 86.53

Table A.2: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
whether increasing the number of parameters is helpful to improve the performance of the systems.
All scores denote Recall@100. The best score on a given dataset is marked in bold, and the second
best is underlined. The average corresponds to the average of all the datasets except MS MARCO.
* indicates that the dataset has been generated using sampling and a top p of 0.9. † indicates that
8-bit optimization techniques have been used to generate the dataset.

56 Appendix A

A.1.3 Does increasing the number of examples improve the performance?

Dataset \ model name opt-125m* opt-125m-x5* opt-1.3b*

Average 52.59 53.67 55.24

MS-MARCO 64.60 66.71 70.18
TREC-covid 7.44 8.10 5.81
NFCorpus 24.15 26.39 23.80

NaturalQuestions 66.70 70.00 76.43
HotpotQA 50.22 51.33 55.75

FiQA 51.17 52.07 53.42
ArguAna 96.23 92.32 97.37

Tóuche-2020 36.12 37.05 37.38
CQAdupstack 50.70 53.31 54.40

Quora 95.81 96.10 97.40
DBpedia 35.31 36.30 37.13
Scidocs 28.08 28.98 27.51
Fever 73.43 75.47 84.67

Climate-fever 35.69 36.08 37.61
Scifact 85.26 87.87 84.70

Table A.3: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
whether generating more questions faster using a smaller checkpoint is better than generating
slower high-quality questions. All scores denote Recall@100. The best score on a given dataset is
marked in bold, and the second best is underlined. The average corresponds to the average of all
the datasets except MS MARCO. * indicates that the dataset has been generated using sampling
and a top p of 0.9. x5 means that five questions have been generated per document.

Appendix 57

A.1.4 Is the crop generation method better than Large Language Models?

Dataset \ model name marco-supervised opt-30b*†
Crop

queries
Crop

queries-documents

Average 58.08 56.52 25.53 35.68

MS-MARCO 78.27 72.66 22.59 42.61
TREC-covid 8.89 6.17 2.05 2.15
NFCorpus 25.20 25.95 9.45 16.29

NaturalQuestions 80.76 77.54 31.16 35.15
HotpotQA 58.75 56.33 30.10 32.83

FiQA 53.54 54.44 17.06 17.67
ArguAna 97.23 97.58 28.24 95.88

Tóuche-2020 39.82 39.57 8.06 7.40
CQAdupstack 58.27 56.00 34.79 36.12

Quora 97.48 96.90 93.71 97.29
DBpedia 41.26 38.81 14.15 23.45
Scidocs 32.35 28.54 11.83 15.09
Fever 88.37 88.15 13.28 29.19

Climate-fever 44.56 38.79 8.82 17.24
Scifact 86.63 86.53 54.70 73.84

Table A.4: In-domain and zero-shot performances on BEIR benchmark. In this table, we show
the performance of using the crop method to generate queries-document pairs. All scores denote
Recall@100. The best score on a given dataset is marked in bold, and the second best is underlined.
The average corresponds to the average of all the datasets except MS MARCO. * indicates that the
dataset has been generated using sampling and a top p of 0.9. † indicates that 8-bit optimization
techniques have been used to generate the dataset.

58 Appendix A

A.1.5 Does domain adaption improve the performance of the systems?

Model name \ dataset NFCorpus Scifact

marco-supervised 25.20 86.63

scifact-supervised+ - 94.37
scifact-opt-30b+*† - 88.47

scifact-crop+ - 89.53
nfcorpus-supervised+ 33.57 -
nfcorpus-opt-30b+*† 29.05 -

nfcorpus-crop+ 18.51 -

Table A.5: In-domain and zero-shot performances on BEIR benchmark.In this table, we show
whether domain adaption is beneficial to improve the performance of datasets from another do-
main. All scores denote Recall@100. * indicates that the dataset has been generated using sam-
pling and a top p of 0.9. † indicates that 8-bit optimization techniques have been used to generate
the dataset. + indicates that the system has been finetuned on top of marco-supervised.

A.1.6 Does prompting improve the generation of questions?

Model Name \ Dataset scifact

scifact-opt-30b+*† 88.47

scifact-instruct-gpt 88.2
scifact-keywords-opt-30b+*† 88.467

scifact-title-opt-30b+*† 88.467

Table A.6: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
whether changing the prompt to generate questions allows to improve the performance. All scores
denote Recall@100. * indicates that the dataset has been generated using sampling and a top p
of 0.9. † indicates that 8-bit optimization techniques have been used to generate the dataset. +
indicates that the system has been finetuned on top of marco-supervised.

Appendix 59

A.1.7 Does using hard negatives allow to improve the performance of the

system?

Model Name \ Dataset scifact

scifact-supervised+ 94.37
scifact-hard-negatives-supervised+ 93.77

Table A.7: In-domain and zero-shot performances on BEIR benchmark. In this table, we check
whether hard negatives allow to improve the performance of the systems trained. All scores denote
Recall@100. The best score on a given dataset is marked in bold, and the second best is underlined.
The average corresponds to the average of all the datasets except MS MARCO. + indicates that
the system has been finetuned on top of marco-supervised.

60 Appendix A

A.1.8 How does our system compare to other state-of-the-art systems?

Dataset \ Model Name Contriever
marco

supervised opt-30b*†

Average 59.61 58.08 56.52

MS-MARCO 67.20 78.27 72.66
TREC-covid 17.20 8.89 6.17
NFCorpus 29.40 25.20 25.95

NaturalQuestions 77.10 80.76 77.54
HotpotQA 70.40 58.75 56.33

FiQA 56.20 53.54 54.44
ArguAna 90.10 97.23 97.58

Tóuche-2020 22.50 39.82 39.57
CQAdupstack 61.40 58.27 56.00

Quora 98.70 97.48 96.90
DBpedia 45.30 41.26 38.81
Scidocs 36.00 32.35 28.54
Fever 93.60 88.37 88.15

Climate-fever 44.10 44.56 38.79
Scifact 92.60 86.63 86.53

Table A.8: In-domain and zero-shot performances on BEIR benchmark. In this table, we compare
our system to other state-of-the-art systems. All scores denote Recall@100. The best score on a
given dataset is marked in bold, and the second best is underlined. The average corresponds to
the average of all the datasets except MS MARCO. * indicates that the dataset has been generated
using sampling and a top p of 0.9. † indicates that 8-bit optimization techniques have been used to
generate the dataset.

Appendix 61

A.2 Project objectives report

In this section, the objectives of the project are defined. The project definition covers
an overall description of the project, the concrete goals of the project, and the planning
and the methodology to achieve those goals. Finally, a list of identified risks that can
compromise the project is given.

A.2.1 Project description and goals

The main goal of the project is to improve current language models using external me-
mory. The solutions for such an ambitious goal will be tested first in a more specific
environment: improving current open domain QA systems, where the documents will act
as external memory. Therefore the main objective is decomposed into the following more
specific objectives:

• Self-supervised learning models for information retrieval: Given the scalability
problems of supervised models derived from the need for labeled datasets, we pro-
pose the development of new self-supervised learning methods. The main idea is
to automatically generate answerable and unanswerable questions from paragraphs
extracted from text documents using Large Language Models (LLMs). Thus, posi-
tive and negative examples can be generated for each document very cheaply. We
will investigate how to use contrastive learning models in these scenarios and their
complementarity with current methods.

• Development of language models with external memory: Some researchers are
working on increasing the scalability of systems such as FiD so that they can pro-
cess more than 100 documents when answering a question. In this project, we pro-
pose to go in another direction, arguing that so many documents are rarely needed
to answer user queries on a day-to-day basis. Therefore, we will analyze how to
make current architectures more flexible so that the relationship between the infor-
mation retriever and the reader is much more flexible, with the ultimate goal that the
retriever becomes the access point of a vast memory (all indexed documents) that
the reader can use in flexibly and efficiently. In our vision, the reader will be able to
make several requests to the retriever, depending on the query and the documents
that the retriever brings.

62 Appendix A

To accomplish the previous objectives the work can be divided into smaller tasks:

• Study the literature and understand the problem.

• Evaluate state-of-the-art implementations.

• Define and evaluate the dataset.

• Evaluate different ways to generate questions.

• Define the architecture.

• Define the metrics.

• Systems experiments and comparison.

The previous tasks will give a deep understating of how the research world works for
real-life problems.

A.2.2 Project planning

WBS diagram

A Work Breakdown Structure (WBS) is used to outline the work that needs to be done for
this project and is shown in Figure A.1. The project time estimates for each work unit can
be seen in Table A.9.

Work units

In this section, a summary of each work unit and the estimation of the time that will be
spent on each one are going to be given. Because of the difficulty of this project, some of
these tasks may require more time than expected.

Planning

The work related to organizing the project that includes: what the project is about, what
are the goals, what are the tasks and when they need to be delivered, what milestones have
to be achieved and the deadline for those milestones, and what are the risks of this project.
The deliverable of this task is this report.

Appendix 63

Figure A.1: Work Breakdown Structure of the project.

Control

Keeping the project focused, achieving the goals proposed according to the established
schedule, and solving any problem that could affect the project. This work is performed
in control meetings every week.

Memory and presentation

Writing the memory of the project with the work that has been made and the public
defense of it which will require to prepare materials for the presentation.

Datasets suitability

Search and study of datasets suitable for the project.

Open-domain question answering systems

Investigate open-domain question answering systems. This task requires to read papers
about State-Of-The-Art (SOTA) systems in order to understand what has been done.

Large Language Models (LLM) for text-generation

Investigate Large Language Models (LLM) for text-generation. This task requires to read

64 Appendix A

papers about text-generation, in order to choose the most appropriate system for this pro-
ject.

Generating questions using LLM

Using the LLM that we think is the most appropriate for generating questions, use it on
the dataset suitable for the project.

Metrics

Understand and select the most appropriate metrics for the information retrieval task. This
work unit includes the selection of the benchmark to use for testing the systems.

Understanding the code of the systems

Understanding the code of state-of-the-art systems. This will include understanding how
Dense Parse Retrievals (DPRs) and Contriever systems are implemented and the potential
improvements that can be applied to the systems in order to improve their performance.

System suitability analysis

Analyze if the systems are suitable for our project requirements and what changes need
to be done in order to fit our ideas.

Testing and debugging

Testing and debugging of DPR and Contriever systems in order to ensure that they work
properly.

Systems experiments and comparison

Perform experiments using the current SOTA systems and the dataset generated. Finally,
compare the results using the BEIR benchmark [Thakur et al., 2021].

Gantt chart

A Gantt chart is used to illustrate the project schedule. This chart lists the tasks to be
performed on the vertical axis and the time intervals on the horizontal axis. The Gantt
chart is shown in Figure A.2.

Milestones

Table A.10 shows the deadline dates for the deliverables.

Appendix 65

Work-unit Time estimate (hours)
Management 170
Planning 25
Control 45
Memory and presentation 100
Theoretical background acquisition 230
Dataset suitability 30
Open-Domain Question Answering systems 100
Large Language Models (LLM) for text-generation 100
Dataset and metrics 130
Generating questions using LLM 100
Metrics 30
System refactoring 1700
Understanding the code of the systems 80
System suitability analysis 40
Testing and debugging 50
Experiments and results 50
Systems experiments and comparison 50
Total 750

Table A.9: Time estimates for each work unit.

Figure A.2: Gantt chart of the project.

66 Appendix A

Deliverable Date

Implementation and experiments 31/12/2022
Memory 31/01/2023
Presentation 01/03/2023 - 03/03/2023

Table A.10: Deliverables and their deadlines.

A.2.3 Methodology

This master’s thesis is carried out as a project of the IXA natural language processing
research group. The student receives support from two IXA supervisors (Eneko Agirre
Bengoa and Gorka Azkune Galparsoro) along with two assistants (Jon Ander Campos
and Aitor Soroa). The student is allowed to use hardware resources from the IXA research
group in the form of server nodes with CPU and GPU capabilities.

Meetings

Regular meetings are arranged in a fixed slot every week with the two IXA instructors.
These meetings are held, either in the faculty or remotely using Google Hangouts. These
meetings’ objective is to control the progress of the project and talk about problems and
their possible solutions. Meetings outside the fixed time are scheduled to attend to specific
doubts.

Work place

The student will work from home in a relaxed environment and good internet connection.

A.2.4 Risks

Given the size and scope of the project, there may be some uncertainties that will put the
project at risk. The following list describes some of the risks identified:

• COVID-19 situation: The uncertainty of the current situation may incur some
unexpected situations, such as the impossibility of holding the meetings in the fa-
culty and the student or instructors getting infected and therefore, the impossibility
to work and hold meetings for a while.

Appendix 67

• Compute capabilities: Deep learning requires high amounts of computing and me-
mory resources. The student is given the possibility to use the IXA research group’s
shared resources in case the online free resources are not enough. These shared re-
sources may be in high demand for a given period, therefore, it is difficult to know
when they will be free.

Acknowledgments

We thank the IXA research members Jon Ander Campos and Aitor soroa for their helpful
discussions and insightful feedback.

Bibliography

[Andreas et al., 2016] Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016). Lear-
ning to compose neural networks for question answering. CoRR.

[Black et al., 2022] Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L., Golding,
L., He, H., Leahy, C., McDonell, K., Phang, J., Pieler, M., Prashanth, U. S., Purohit,
S., Reynolds, L., Tow, J., Wang, B., and Weinbach, S. (2022). Gpt-neox-20b: An open-
source autoregressive language model.

[Black et al., 2021] Black, S., Leo, G., Wang, P., Leahy, C., and Biderman, S. (2021).
GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. If
you use this software, please cite it using these metadata.

[Bonifacio et al., 2022a] Bonifacio, L., Abonizio, H., Fadaee, M., and Nogueira, R.
(2022a). Inpars: Data augmentation for information retrieval using large language
models.

[Bonifacio et al., 2022b] Bonifacio, L., Abonizio, H., Fadaee, M., and Nogueira, R.
(2022b). Inpars: Data augmentation for information retrieval using large language
models.

[Boteva et al., 2016] Boteva, V., Gholipour, D., Sokolov, A., and Riezler, S. (2016). A
full-text learning to rank dataset for medical information retrieval. In Ferro, N., Cres-
tani, F., Moens, M.-F., Mothe, J., Silvestri, F., DiÑunzio, G. M., Hauff, C., and Silvello,
G., editors, Advances in Information Retrieval, pages 716–722, Cham. Springer Inter-
national Publishing.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,

69

70 Appendix A

C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models
are few-shot learners. CoRR, abs/2005.14165.

[Cao et al., 2020] Cao, N. D., Izacard, G., Riedel, S., and Petroni, F. (2020). Autoregres-
sive entity retrieval. CoRR, abs/2010.00904.

[Cho et al., 2014] Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014).
On the properties of neural machine translation: Encoder-decoder approaches. CoRR.

[Dai et al., 2022] Dai, Z., Zhao, V. Y., Ma, J., Luan, Y., Ni, J., Lu, J., Bakalov, A., Guu,
K., Hall, K. B., and Chang, M.-W. (2022). Promptagator: Few-shot dense retrieval
from 8 examples.

[Dettmers et al., 2022] Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L. (2022).
Llm.int8(): 8-bit matrix multiplication for transformers at scale.

[Formal et al., 2021] Formal, T., Lassance, C., Piwowarski, B., and Clinchant, S. (2021).
SPLADE v2: Sparse lexical and expansion model for information retrieval. CoRR,
abs/2109.10086.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press.

[He et al., 2019] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. (2019). Momentum
contrast for unsupervised visual representation learning. CoRR, abs/1911.05722.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Computation.

[Izacard et al., 2021] Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski, P.,
Joulin, A., and Grave, E. (2021). Towards unsupervised dense information retrieval
with contrastive learning. CoRR, abs/2112.09118.

[Izacard and Grave, 2020] Izacard, G. and Grave, E. (2020). Leveraging passage retrieval
with generative models for open domain question answering. CoRR, abs/2007.01282.

[Józefowicz et al., 2016] Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu,
Y. (2016). Exploring the limits of language modeling. CoRR.

BIBLIOGRAPHY 71

[Karpukhin et al., 2020] Karpukhin, V., Oguz, B., Min, S., Wu, L., Edunov, S., Chen, D.,
and Yih, W. (2020). Dense passage retrieval for open-domain question answering.
CoRR, abs/2004.04906.

[Lazaridou et al., 2022] Lazaridou, A., Gribovskaya, E., Stokowiec, W., and Grigorev, N.
(2022). Internet-augmented language models through few-shot prompting for open-
domain question answering.

[Lesota et al., 2021] Lesota, O., Rekabsaz, N., Cohen, D., Grasserbauer, K. A., Eickhoff,
C., and Schedl, M. (2021). A modern perspective on query likelihood with deep gene-
rative retrieval models. CoRR, abs/2106.13618.

[Mahmood and Len, 2017] Mahmood, Y.-A. and Len, H. (2017). Text summarization
using unsupervised deep learning. Expert Systems with Applications.

[Nguyen et al., 2016] Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majum-
der, R., and Deng, L. (2016). MS MARCO: A human generated machine reading
comprehension dataset. CoRR, abs/1611.09268.

[Nogueira et al., 2019] Nogueira, R. F., Yang, W., Lin, J., and Cho, K. (2019). Document
expansion by query prediction. CoRR, abs/1904.08375.

[Ouyang et al., 2022] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J.,
Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J.,
and Lowe, R. (2022). Training language models to follow instructions with human
feedback.

[Robbins, 2007] Robbins, H. (2007). A stochastic approximation method. Annals of

Mathematical Statistics.

[Robertson and Zaragoza, 2009] Robertson, S. and Zaragoza, H. (2009). The probabilis-
tic relevance framework: Bm25 and beyond. Foundations and Trends in Information

Retrieval, 3:333–389.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors. Nature.

[Scao et al., 2022] Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Cas-
tagné, R., Luccioni, A. S., Yvon, F., Gallé, M., Tow, J., Rush, A. M., Biderman, S.,

72 Appendix A

Webson, A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral,
A. V., Ruwase, O., Bawden, R., Bekman, S., McMillan-Major, A., Beltagy, I., Nguyen,
H., Saulnier, L., Tan, S., Suarez, P. O., Sanh, V., Laurençon, H., Jernite, Y., Launay,
J., Mitchell, M., Raffel, C., Gokaslan, A., Simhi, A., Soroa, A., Aji, A. F., Alfassy, A.,
Rogers, A., Nitzav, A. K., Xu, C., Mou, C., Emezue, C., Klamm, C., Leong, C., van
Strien, D., Adelani, D. I., Radev, D., Ponferrada, E. G., Levkovizh, E., Kim, E., Natan,
E. B., De Toni, F., Dupont, G., Kruszewski, G., Pistilli, G., Elsahar, H., Benyamina, H.,
Tran, H., Yu, I., Abdulmumin, I., Johnson, I., Gonzalez-Dios, I., de la Rosa, J., Chim,
J., Dodge, J., Zhu, J., Chang, J., Frohberg, J., Tobing, J., Bhattacharjee, J., Almubarak,
K., Chen, K., Lo, K., Von Werra, L., Weber, L., Phan, L., allal, L. B., Tanguy, L., Dey,
M., Muñoz, M. R., Masoud, M., Grandury, M., Šaško, M., Huang, M., Coavoux, M.,
Singh, M., Jiang, M. T.-J., Vu, M. C., Jauhar, M. A., Ghaleb, M., Subramani, N., Kass-
ner, N., Khamis, N., Nguyen, O., Espejel, O., de Gibert, O., Villegas, P., Henderson,
P., Colombo, P., Amuok, P., Lhoest, Q., Harliman, R., Bommasani, R., López, R. L.,
Ribeiro, R., Osei, S., Pyysalo, S., Nagel, S., Bose, S., Muhammad, S. H., Sharma, S.,
Longpre, S., Nikpoor, S., Silberberg, S., Pai, S., Zink, S., Torrent, T. T., Schick, T.,
Thrush, T., Danchev, V., Nikoulina, V., Laippala, V., Lepercq, V., Prabhu, V., Alyafeai,
Z., Talat, Z., Raja, A., Heinzerling, B., Si, C., Salesky, E., Mielke, S. J., Lee, W. Y.,
Sharma, A., Santilli, A., Chaffin, A., Stiegler, A., Datta, D., Szczechla, E., Chhablani,
G., Wang, H., Pandey, H., Strobelt, H., Fries, J. A., Rozen, J., Gao, L., Sutawika, L.,
Bari, M. S., Al-shaibani, M. S., Manica, M., Nayak, N., Teehan, R., Albanie, S., Shen,
S., Ben-David, S., Bach, S. H., Kim, T., Bers, T., Fevry, T., Neeraj, T., Thakker, U.,
Raunak, V., Tang, X., Yong, Z.-X., Sun, Z., Brody, S., Uri, Y., Tojarieh, H., Roberts,
A., Chung, H. W., Tae, J., Phang, J., Press, O., Li, C., Narayanan, D., Bourfoune, H.,
Casper, J., Rasley, J., Ryabinin, M., Mishra, M., Zhang, M., Shoeybi, M., Peyrounet-
te, M., Patry, N., Tazi, N., Sanseviero, O., von Platen, P., Cornette, P., Lavallée, P. F.,
Lacroix, R., Rajbhandari, S., Gandhi, S., Smith, S., Requena, S., Patil, S., Dettmers, T.,
Baruwa, A., Singh, A., Cheveleva, A., Ligozat, A.-L., Subramonian, A., Névéol, A.,
Lovering, C., Garrette, D., Tunuguntla, D., Reiter, E., Taktasheva, E., Voloshina, E.,
Bogdanov, E., Winata, G. I., Schoelkopf, H., Kalo, J.-C., Novikova, J., Forde, J. Z., Cli-
ve, J., Kasai, J., Kawamura, K., Hazan, L., Carpuat, M., Clinciu, M., Kim, N., Cheng,
N., Serikov, O., Antverg, O., van der Wal, O., Zhang, R., Zhang, R., Gehrmann, S.,
Pais, S., Shavrina, T., Scialom, T., Yun, T., Limisiewicz, T., Rieser, V., Protasov, V.,
Mikhailov, V., Pruksachatkun, Y., Belinkov, Y., Bamberger, Z., Kasner, Z., Rueda, A.,
Pestana, A., Feizpour, A., Khan, A., Faranak, A., Santos, A., Hevia, A., Unldreaj, A.,
Aghagol, A., Abdollahi, A., Tammour, A., HajiHosseini, A., Behroozi, B., Ajibade, B.,

BIBLIOGRAPHY 73

Saxena, B., Ferrandis, C. M., Contractor, D., Lansky, D., David, D., Kiela, D., Nguyen,
D. A., Tan, E., Baylor, E., Ozoani, E., Mirza, F., Ononiwu, F., Rezanejad, H., Jones,
H., Bhattacharya, I., Solaiman, I., Sedenko, I., Nejadgholi, I., Passmore, J., Seltzer, J.,
Sanz, J. B., Fort, K., Dutra, L., Samagaio, M., Elbadri, M., Mieskes, M., Gerchick, M.,
Akinlolu, M., McKenna, M., Qiu, M., Ghauri, M., Burynok, M., Abrar, N., Rajani, N.,
Elkott, N., Fahmy, N., Samuel, O., An, R., Kromann, R., Hao, R., Alizadeh, S., Shub-
ber, S., Wang, S., Roy, S., Viguier, S., Le, T., Oyebade, T., Le, T., Yang, Y., Nguyen,
Z., Kashyap, A. R., Palasciano, A., Callahan, A., Shukla, A., Miranda-Escalada, A.,
Singh, A., Beilharz, B., Wang, B., Brito, C., Zhou, C., Jain, C., Xu, C., Fourrier, C.,
Periñán, D. L., Molano, D., Yu, D., Manjavacas, E., Barth, F., Fuhrimann, F., Altay, G.,
Bayrak, G., Burns, G., Vrabec, H. U., Bello, I., Dash, I., Kang, J., Giorgi, J., Golde, J.,
Posada, J. D., Sivaraman, K. R., Bulchandani, L., Liu, L., Shinzato, L., de Bykhovetz,
M. H., Takeuchi, M., Pàmies, M., Castillo, M. A., Nezhurina, M., Sänger, M., Sam-
wald, M., Cullan, M., Weinberg, M., De Wolf, M., Mihaljcic, M., Liu, M., Freidank,
M., Kang, M., Seelam, N., Dahlberg, N., Broad, N. M., Muellner, N., Fung, P., Haller,
P., Chandrasekhar, R., Eisenberg, R., Martin, R., Canalli, R., Su, R., Su, R., Cahyawi-
jaya, S., Garda, S., Deshmukh, S. S., Mishra, S., Kiblawi, S., Ott, S., Sang-aroonsiri,
S., Kumar, S., Schweter, S., Bharati, S., Laud, T., Gigant, T., Kainuma, T., Kusa, W.,
Labrak, Y., Bajaj, Y. S., Venkatraman, Y., Xu, Y., Xu, Y., Xu, Y., Tan, Z., Xie, Z., Ye,
Z., Bras, M., Belkada, Y., and Wolf, T. (2022). Bloom: A 176b-parameter open-access
multilingual language model.

[Shen et al., 2017] Shen, Y., Huang, P.-S., Gao, J., and Chen, W. (2017). ReasoNet: Lear-

ning to Stop Reading in Machine Comprehension. Association for Computing Machi-
nery.

[Thakur et al., 2021] Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., and Gurevych,
I. (2021). BEIR: A heterogenous benchmark for zero-shot evaluation of information
retrieval models. CoRR, abs/2104.08663.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Go-
mez, A.Ñ., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.

[Wadden et al., 2020] Wadden, D., Lo, K., Wang, L. L., Lin, S., van Zuylen, M., Cohan,
A., and Hajishirzi, H. (2020). Fact or fiction: Verifying scientific claims. CoRR,
abs/2004.14974.

74 Appendix A

[Wang et al., 2021] Wang, T., Brovman, Y. M., and Madhvanath, S. (2021). Personalized
embedding-based e-commerce recommendations at ebay. CoRR, abs/2102.06156.

[Wei et al., 2021] Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N.,
Dai, A. M., and Le, Q. V. (2021). Finetuned language models are zero-shot learners.
CoRR, abs/2109.01652.

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W.,
Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu,
X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G.,
Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado,
G., Hughes, M., and Dean, J. (2016). Google’s neural machine translation system:
Bridging the gap between human and machine translation. CoRR.

[Zhang et al., 2022] Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S.,
Dewan, C., Diab, M., Li, X., Lin, X. V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K.,
Simig, D., Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer, L. (2022). Opt: Open
pre-trained transformer language models.

	Abstract
	Contents
	List of figures
	List of tables
	Introduction
	Related work
	Deep learning architectures
	Multilayer perceptron
	Recurrent neural Networks
	Transformers
	Two tower architecture

	Open domain information retrieval architectures
	Supervised systems
	Unsupervised systems
	Evaluation datasets

	Generating synthetic datasets for information retrieval
	Dataset generation using Contriever
	Large language models for question generation
	Open Pre-trained Transformer (OPT)
	Dataset generation using OPT

	Experiments and Results
	Training
	Experiments
	Evaluation
	Metrics
	Using hard negatives for training
	Domain adaptation
	Results
	Is sampling useful to generate questions?
	Does increasing the number of parameters of the model for generating questions improve the performance of the systems?
	Does increasing the number of examples improve the performance?
	Is the crop generation method better than Large Language Models?
	Does domain adaption improve the performance of the systems?
	Does prompting improve the generation of questions?
	Does using hard negatives allow to improve the performance of the system?
	How does our system compare to other state-of-the-art systems?
	Summary

	Conclusions and future work
	Conclusions
	Future work

	Appendix
	Experiment results for Recall@100
	Is sampling useful to generate questions?
	Does increasing the number of parameters of the model for generating questions improve the performance of the systems?
	Does increasing the number of examples improve the performance?
	Is the crop generation method better than Large Language Models?
	Does domain adaption improve the performance of the systems?
	Does prompting improve the generation of questions?
	Does using hard negatives allow to improve the performance of the system?
	How does our system compare to other state-of-the-art systems?

	Project objectives report
	Project description and goals
	Project planning
	Methodology
	Risks

	Bibliography

