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Laburpena
Gaur egun, domeinu medikoa gero eta arreta handiagoa jasotzen ari da Adimen

Artifiziala duten aplikazioetan. Klinikariek egituratu gabeko testu-datu kopuru handi
bati aurre egin behar diote pazientearen osasunari buruzko ondorio bat ateratzeko

eguneroko bizitzan. Argumentu-meatzaritzak datu horiei egitura bat ematen laguntzen
du, testuan argumentu-osagaiak detektatuz eta haien arteko erlazioak sailkatuz. Hala ere,

Hizkuntza Naturalaren Prozesamenduan orokorrean eta testu medikoen tratamenduan
bereziki lan askotan gertatzen den bezala, argumentazio konputazionalari buruzko

lanaren gehiengoa ingeleserako bakarrik egin da. Hain zuzen ere, hori ere gertatzen da
mediku domeinuan argudiatzeko eskuragarri dagoen datu-multzo bakarrarekin, esaterako,

MEDLINE datu-baseko Randomized Controlled Trials (RCT) corpusa. Beste
hizkuntzatarako etiketatutako datuen falta arintzeko, hainbat estrategia enpirikoki

ikertzen ditugu testu medikoetan argudio-meatzaritza eta sailkapena egiteko. Tesi honek
erakusten du ingelesetik xede-hizkuntza batera (gazteleraz) anotazioak automatikoki

itzultzea eta proiektatzea modu eraginkorra dela etiketatutako datuak sortzeko eskuzko
lanik egin gabe. Gainera, gure esperimentuek erakusten dute itzulpenaren eta

proiekzioaren hurbilpenak gainditzen duela zero-shot hizkuntza zeharkako ikuspegiak
hizkuntza-eredu eleaniztun handi bat erabiliz. Azkenik, gaztelaniaz automatikoki

sortutako datuak ingelesezko jatorrizko ebaluazio ezarpenean emaitzak hobetzeko ere
nola erabil daitezkeen erakusten dugu.

Abstract
Nowadays the medical domain is receiving more and more attention in the applications

involving Artificial Intelligence. Clinicians have to deal with an enormous amount of
unstructured textual data to make a conclusion about patient’s health in their everyday

life. Argument mining helps to provide a structure to such data by detecting
argumentative components in the text and classifying the relations between them.

However, as it is the case for many tasks in Natural Language Processing in general and
in medical text processing in particular, the large majority of the work on computational
argumentation has been done only for English. This is also the case with the only dataset
available for argumentation in the medical domain, namely, the annotated medical data
of abstracts of Randomized Controlled Trials (RCT) from the MEDLINE database. In

order to mitigate the lack of annotated data for other languages, we empirically
investigate several strategies to perform argument mining and classification in medical
texts for a language for which no annotated data is available. This thesis shows that
automatically translating and project annotations from English to a target language

(Spanish) is an effective way to generate annotated data without manual intervention.
Furthermore, our experiments demonstrate that the translation and projection approach

outperforms zero-shot cross-lingual approaches using a large masked multilingual
language model. Finally, we show how the automatically generated data in Spanish can

also be used to improve results in the original English evaluation setting.
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1 Introduction

Appropriate clinical decision-making is an essential part of the medical environment when
the practitioner has to identify and diagnose a disease and prescribe treatment based on
the patient’s health condition and clinical tests. However, it can involve multiple challenges
and stress, and there are many reasons for that. First, is the diversity of the symptoms, one
or more of them could be a sign of multiple diseases. Second, an overwhelming amount of
data from previous patients with similar symptoms. Lastly, the final decision, along with
what is listed above, should take into account the latest results in the research reports.
With the growth of the number of such reports and data in general, the urge of structuring
information takes place, which argument mining tries to solve. So far, argument mining
has been applied in several different domains such as law (Mochales and Ieven, 2009),
biomedicine (Accuosto et al., 2021), reviews (Li et al., 2017), persuasive essays (Stab and
Gurevych, 2014), with the aim of identifying argumentative structure in the data. However,
the majority of those works are focused on solving the problem and creating solutions for
English only. Therefore, the lack of data annotated with argumentation components is a
major obstacle to work with other languages such as Spanish. In order to mitigate the lack
of annotated data for other languages, this master thesis empirically investigates several
cross-lingual strategies to perform argument mining and classification in medical texts for
a language for which no annotated data is available.

1.1 Argument mining

Argument mining (AM) is a field of natural language processing (NLP) that focuses on
extracting argumentative structures from unstructured data. By doing so, it helps to
determine the notion of the view, opinion, or conclusion, and identify the proofs that
either defend or oppose them depending on the context.

The main objective of argument mining is to automatically detect and define the type
of argumentative components, their boundaries, and the relations holding between them.

1.1.1 Argument components

Argument components can be classified as either Major Claim, Claim, or Premise, and they
can hold supporting or attacking links between them that create a hierarchical structure
(Stab and Gurevych, 2017).

Example 1.1 below, extracted from the AbstRCT corpus Mayer et al. (2020), illustrate
this. Thus, claims are marked in bold with subscript Cn, premises are in italic with
subscript Pn, and major claims are in bold and italic marked as MCn.

Claims are specific statements about the conducted experiments that hold factual in-
formation inside 1.1. It can be the conclusion from the study or the effect of the treatment.
It is possible to have several claims in a single paragraph and they should be divided and
treated separately.
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Major Claims are a more general statements compared to a claim, and they are usually
followed by a claim 1.1. In many cases, major claims are the introduction or conclusion
to the claim in the corpus. However, in some tasks major claims are non-existent, and if
there is one they are labeled as a claim.

Premises are the ground truth of argumentation as they report observations of studies
and hold evidence for or against the claim 1.1. Therefore, a premise includes measurements
and comparisons of the study. It is a continuation or description of the claim and one study
can have multiple premises that either support or attack the claim.

Example 1.1 “Following pretesting in 313 patients, patients who needed district nursing
and who did not need district nursing at home were randomly assigned to a control or
intervention group. Intervention group patients received the Pain Education Program in
the hospital, and 3 and 7 days postdischarge by telephone; this was done by nurses who
were specially trained as pain counselors. Follow-up assessments were at 2, 4 and 8 weeks
postdischarge. Results of the pretest showed that many patients lacked knowledge about
pain and pain management. The majority of pain topics had to be discussed. [The
Pain Education Program proved to be feasible]C1 : [75.0% of the patients had read
the entire pain brochure, 55.7% had listened to the audio cassette, and 85.6% of pain
scores were completed in the pain diary]P1 . [Results showed a significant increase
in pain knowledge in patients who received the Pain Education Program and
a significant decrease in pain intensity]C2 . [However, pain relief was mainly found
in the intervention group patients without district nursing]P2 . [It can be concluded
that the tailored Pain Education Program is effective for cancer patients in
chronic pain]C3 . [The use of the Pain Education Program by nurses should be
seriously considered on oncology units]MC1 .”

1.1.2 Argument relations

In order to build a full argumentation structure, we need to introduce relations between the
argument components. Relations connect argument components to form the argumentation
graphs representing the structure of an argument, where we have source and target nodes,
and the edges are relation types from the source node to the target node. The links can be
either attack, partial-attack, or support. There are certain restrictions on the occurrence
of relations: premises can be connected to both claim or another premise, whereas claims
can be connected only with another claim.

Example 1.2 [The different schedules of vinorelbine in the two arms led to a greater
survival in the NP arm without impairing the tolerance profile,]P1 [although this is not
statistically significant]P3 . This confirms that the two-drug combination NP is a reference
treatment for metastatic NSCLC. The role of three-drug combinations remains questionable
in this subset of patients.

Attacking relations occur when the source component contradicts the target or when
it states that some observation had no statistical significance. A attacking relation between
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two arguments is represented in Example 1.2.
Partial-attacking relation is formed when a source component weakens the target

but does not oppose against it. In the Example 1.1, Premise2 (P2) partially attacks Claim2

(C2), namely, it only specifies the conditions of the study without strong objection.
Supporting relations are built when the source justifies the target. In the example

1.1, there are several support links between arguments, for instance, Premise1 (P1) supports
Claim1 (C1) with numerical evidences to verify the statement.

One of the major problems in many similar domain-specific tasks is that annotated
data is only available for English. In order to address this issue, we will investigate several
cross-lingual approaches to perform argument mining and classification in a language such
as Spanish for which no labeled data exists. In order to do so, we will leverage existing
labeled data in English Mayer et al. (2021) to automatically generate a Spanish version of
it by using different machine translation and label projection approaches. The test data
will be manually corrected to be able to experiment with a large multilingual language
model in various evaluation settings: (i) a zero-shot cross-lingual approach in which we
will train the model in English and evaluate it in Spanish; (ii) a translation and projection
setting where we leverage the automatically generated training data for Spanish and, (iii) a
multilingual evaluation in which we perform data augmentation to improve results both in
the original English data and for Spanish. The generated Spanish corpus (both automatic
and manually revised versions) is publicly available to encourage crosslingual research in
argument mining and to facilitate reproducibility of results 1.

The main contributions of this master thesis are the following:

• We provide the first medical corpus in Spanish for argument mining by using machine
translation and label projection methods;

• We perform a qualitative evaluation of the quality of the translation and projection
methods for medical texts;

• We present the first experimentation on cross-lingual zero-shot and multilingual ex-
periments for argument mining;

• We establish which strategy works best when no annotated data is available for a
target language;

• We show that the automatically generated data can be used to perform data augmen-
tation to improve results also for argument mining in the original English dataset.

We begin by reviewing existing research and state-of-the-art argument mining, previous
approaches in the medical domain, and works on cross-lingual sequence labeling in Section
2.

In Section 3, we provide a comprehensive description of the source dataset that is used
for the creation of the Spanish corpus, the existing argument mining pipeline, and machine

1https://github.com/ragerri/antidote-projections
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translation and word alignment methods. The subsequent section Section 4 will describe
the process of the corpus generation from English to Spanish. The following Section 5
regards the set of experiments to perform for argument mining. The obtained results are
presented in Section 6. Discussion of analysis from the predictions and descriptions of
the most frequent errors are presented in Section 7. Lastly, we provide observation and
conclusion in Section 8.
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2 Related work

The development of automatic argumentation started from attempts towards identifying
argument structure and is closely related to theories of discourse representation described
by reasoning and logic. There are several existing methods based on which aspect of the
text they are focused on: Discourse Representation Theory (DRT) (Kamp et al., 2011)
and Segmented Discourse Representation Theory (SDRT) (Asher et al., 2003) are the
theories that analyze the text based on linguistic characteristics of discourse. However,
these theories are quite complex to be applied in practice (Bos, 2008). On the other
hand, theories such as Rhetorical Structure Theory (RST) are focused more on pragmatics
rather than semantic and syntactic features of the text and it has been more applied in
NLP systems. Therefore, it was considered by many that RST was more approachable to
represent and automatically study discourse structure and argumentation ((Peldszus and
Stede, 2013; Azar, 1999; Green, 2010), etc.).

Among other works on argumentation theory, Toulmin (1958) influenced the develop-
ment of argumentation by identifying different functional roles in arguments (evidence,
warrant, backing, qualifier, rebuttal, and claim) based on how the conclusion is made from
evidence in the text. Furthermore, Freeman (2011) investigated how to transfer them in di-
agramming techniques of the informal logic tradition. Dung (1995) tried to create a graph
representation of argumentation based on nonmonotonic reasoning in AI and logic pro-
gramming, and Peldszus and Stede (2013) introduced a diagram structure with models of
textual representation of arguments and globally optimized argumentative relations. They
propose that the most important relationship types in arguments are support and attack .
They also identified five different types of graphs based on the connections that existed
between them (e.g., one claim having relations with multiple premises, claim followed by
claim, etc.) shown in Figure 1.

Figure 1: Argument relations diagram of an essay by Peldszus and Stede (2013)

However, Stab and Gurevych (2017) assume that the graph structure above could be
somewhat ambiguous in practice when they introduced a machine learning approach for
argumentation on persuasive essays. They found that the structure of the argumentative
components and links in persuasive essays are somewhat hierarchical, where Major Claim
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is the root with connections to Claim followed by Premise in the argument. The proposed
structure is illustrated in Figure 2.

Figure 2: Argument structure of an essay by Stab and Gurevych (2017)

With theoretical knowledge of argumentation, current research interest lies on combin-
ing its theory with modern deep learning techniques. The objective here is to investigate
if machine learning algorithms are able to capture an argumentative structure from given
text. There are multiple works that tried to answer it using data from different domains
such as education (Stab and Gurevych, 2014), law (Mochales and Ieven, 2009), news (Reed
et al., 2008), science (Accuosto et al., 2021), medicine (Mayer et al., 2018), reviews (Li et al.,
2017), etc. The majority of the experiments are performed using data in English and very
few in other languages (Kirschner et al., 2015; Peldszus and Stede, 2015). Moens et al.
(2007) introduced automatic argument detection in legal texts using general statistical
features from data, a Multinomial naive Bayes classifier, and a Maximum entropy model.
They reached the prediction accuracy of ∼68%. Goudas et al. (2014) tried to classify
argumentative and non-argumentative sentences, and segment the arguments with Con-
ditional Random Fields (CRF). The accuracy for distinguishing argumentative sentences
was 77%. Kwon et al. (2007) focused only on identifying Claims and the relations they
represent. To achieve it, they used a boosting algorithm and reached a F1-score of 55% for
claim detection and 67% for relation classification. Stab and Gurevych (2017) created a
corpus of persuasive essays in German and introduced an architecture to identify argument
components and relations using SVM which is divided into 5 subtasks:

1. Identifying argument components - find arguments and set their boundaries.

2. Classification of argument components - label arguments with either major claim,
claim, or premise.
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3. Identification of argument relations - classify if two arguments are linked or not.

4. Generate tree - build a tree representation from the previous steps for each paragraph.

5. Stance recognition - determine any support or attack relations between arguments.

They indicated that in persuasive essays major claim is the root node of the argument
and represents the author’s standpoint. Furthermore, they consider that they are often
mentioned in the introduction and conclusion. The individual paragraphs of the essays
hold the actual arguments and they either support or attack author’s major claim.

2.1 Argument mining in medical domain

Argument mining can be very valuable in the clinical area, particularly for experts in
analyzing the impacts and results of the treatments from different sources of data. However,
there are very few approaches to argument mining in the medical domain and, moreover,
they all focus on solving the problem using data in English. As a consequence, there are no
previous attempts to perform argument mining for the medical domain in other languages.
This is partially due to the inherent difficulty if obtaining medical data to start with,
but also because of the cost and complexity of obtaining the required annotations. Thus,
many existing approaches solely focus on either determining argument components or only
classifying argument relations in order to present structured output from unstructured
medical data to assist users in decision-making.

For instance, Green et al. (2014) provided an analysis of arguments in biomedical data
and created argumentation schemes and inter-argument relationships. Alamri and Steven-
son (2016) created a corpus using research abstracts of studies considered in systematic
reviews related to cardiovascular diseases where the objective was solely to identify con-
tradictory claims, hence, no other information is provided in the data. Mayer et al. (2018)
annotated a dataset of 169 medical abstracts and created a system to identify claims and
premises in the text. Noor et al. (2017) analyzed arguments of medical drug effects fol-
lowing graph structure of Dung (1995). Their motivation was to identify and extract the
effects of drugs from reviews on the web following argument-based analysis. Similarly,
Shankar et al. (2006) described a tool for health care where part of the system deals with
extracting evidence for any treatment-related claims based on Toulmin (1958)’s argumen-
tative structure that was mentioned before. Craven et al. (2012) described the application
of assumption-based argumentation to a domain of medical knowledge derived from clinical
trials of drugs for breast cancer using variant-based parallel programming technique.

2.2 Cross-lingual sequence labeling

Advances in deep learning and NLP opened the gates to a world of multilinguality that
allows to leverage knowledge across different languages. The idea behind cross-lingual
sequence labeling is to transfer labels in-hand from annotated data in one language to

Language Analysis and Processing



Argument mining 8/40

data in another language. The approach of cross-lingual sequence labeling proves to be
effective when no annotated data is available in the desired language.

There are many approaches proposed for cross-lingual sequence tagging and many of
them are focused on dealing with part-of-speech (POS) tagging,named-entity-recognition
(NER) (Gaddy et al., 2016; Yang et al., 2017; Agerri et al., 2018; Chen et al., 2018; Liu
et al., 2020), opinion target extraction (OTE) (Agerri and Rigau, 2019) and more. The
majority of the approaches in transferring labels between languages require a huge amount
of parallel data to create more accurate projections (David et al., 2001).

Das and Petrov (2011) introduced a bilingual graph-based unsupervised approach for
the same task by building such a graph to create a connection between two languages, then
projecting syntactic information to the target, and this information is used as a feature
for unsupervised labels. Gaddy et al. (2016) used a coarse mapping approach to perform
multilingual POS tagging and they discovered that only ten word translation pairs are
enough in order to transfer POS tags effectively without the necessity in large parallel
corpora. Eger et al. (2018) applied methods for label projection for AM and compared the
performance of the results of the automatically translated and human translated corpus.
The results showed that the performance of projection on neural machine-translated data
provides results almost as good as human-translated data.

As it was noted earlier, there is no available corpus for medical argumentation in lan-
guages other than English. However, previous works that tried to solve this issue, provide
us with the methods required to deal with this deficiency. Thus, in this project we will
investigate the best strategy to perform argumentation in the medical domain when no
data is available for a specific language using available resources, such as translation and
projection and multilingual large language models such as mBERT (Devlin et al., 2019).

Language Analysis and Processing
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3 Methodology

In order to create the corpus in the target language, and apply argument mining, we first
want to translate and transfer the labels of the source corpus to the target. In this section
we present the medical dataset for annotated with argument mining, the machine transla-
tion and projection system used to automatically generate annotated data in Spanish and
the mBERT, the language model used to perform the cross-lingual experimentation.

3.1 Data

The corpus of Randomized Clinical Trials (RCT) of medical abstracts were used to perform
experiments of argument mining in this project Mayer et al. (2021). The abstracts were
obtained from Evidence Based Medicine, which are clinical reports from observations of
patients based on evidence for decision making. The corpus contains paragraphs of five
types of diseases: neoplasm, glaucoma, diabetes, hepatitis B, and hypertension. Neoplasm
was selected as a training set since it covers dysfunctionalities in the whole human body
which allows for better generalization. Overall there are 500 neoplasm, 100 glaucoma, and
100 mixed (20 of each disease mentioned above) abstracts. The corpus was annotated sep-
arately for argument components and relations. The distribution of argument components
in data is shown in Table 1 and the distribution of relations in Table 2.

Argument components by definition are either Claim, Major Claim or Premise (or
Evidence) (Mayer et al., 2018). The number of Premises in the data is almost twice as
much as Claims, while the presence of Major Claims is very reduced. This is because Claims
and Major Claims are general statements or conclusions in the abstract and Premises are
justifications of them which can span to several sentences in the paragraph. Claims in
the corpus can be identified by the information it carries and by specific phrases, such
as “According to the results”, “These results support”, or “This suggests”; whereas the
premise mostly describes numbers and pieces of evidence from the study. Major Claims
usually carry factual information about study or treatment. An example of the paragraph
with all three argument components is illustrated in Figure 3 where the general statement
of the paragraph is in the beginning (Major Claim 1 and 2) and the conclusion appears at
the end of the text as Claim. There are two Premises before the last sentence that hold a
supporting relation with Claim.
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Figure 3: Example paragraph of argument relations and components. Colors denote indi-
vidual argument components while the arrows refer to the relation between components.

It has been mentioned before that Major Claims are the stance of the paragraph and
an introduction to Claims. Moreover, they are structurally similar to each other. As
we can see on Table 1 Major Claims appears only in ∼3% of the data, and hence during
experimental part they were merged with Claim. It is motivated by the fact that in random
clinical trials there are no restrictions in the number of links that can form a tree, and one
clinical trial can consist of several trees depending on the number of Claims and Major
Claims.

Data # of Premise # of Claim # of MajorClaim
Train 1537 666 64
Dev 438 228 20

Neoplasm 218 99 9
Glaucoma 404 183 7

Mixed 388 182 30
Total 2985 1358 130

Table 1: Distribution of argument components

In general, the majority of sequences in argument components are full sentences. How-
ever, sometimes depending on the context it might be longer or shorter as shown in Example
3.1. On average, sequences of Premises are longer than those of Claims or Major Claims,
23, 17, and 16 words respectively. Overall, the test set of mixed diseases has the longest
amount of words per line (22) compared to the rest of the data (between 20-21).
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Data # of Support # of Attack # of No Relation
Train 1194 200 12892
Dev 185 30 1815

Neoplasm 359 60 3961
Glaucoma 317 29 2986

Mixed 296 24 3012

Table 2: Distribution of argument relations

Example 3.1 “...Although [anthracyclines are effective chemotherapeutic agents
for treating B-cell lymphoma , C ] adverse effects , such as bone marrow suppression
and cardiotoxicity , limit their clinical application...”

Argument relations were annotated for the task of sequence classification where given
two sets of argumentative sequence combinations the objective is to predict the links be-
tween them. Therefore, apart from Support, Attack and Partial-attack, there is an addi-
tional relation type No Relation that denotes that the given examples have no links. All
the Partial-attacking relations were replaced and labeled as Attacking relation. Each argu-
mentative sequence was paired with other candidate sequences and only a few of them can
form a link, therefore, there is a huge imbalance between No relation and other classes.
As shown in Example 3.2, among all the possible links there is only one Support relation
and others have none relation between each other, which means that, in term of relations,
the dataset is quite imbalanced.

Example 3.2 Argument relation sample
label noRel [Eight (73%) of 11 patients crossing over from 6.5 mg/m(2) per day

to higher doses subsequently responded.] [The median duration of response from start of
therapy could not be estimated for the 15 patients at 300 mg/m(2) per day owing to low
relapse rates in 2 patients (13%); at higher doses it was 516 days.]

label noRel [Eight (73%) of 11 patients crossing over from 6.5 mg/m(2) per day
to higher doses subsequently responded.] [The following drug-related adverse effects were
reversible and treatable: hypertriglyceridemia (46 patients [79%]), hypercholesterolemia
(28 patients [48%]), headache (27 patients [47%]), central hypothyroidism (23 patients
[40%]), asthenia (21 patients [36%]), and leukopenia (16 patients [28%]).]

label noRel [Eight (73%) of 11 patients crossing over from 6.5 mg/m(2) per day to
higher doses subsequently responded.] [No cases of drug-related neutropenic fever, sepsis,
or death occurred.]

label noRel [Eight (73%) of 11 patients crossing over from 6.5 mg/m(2) per day to
higher doses subsequently responded.] [Pancreatitis occurred in 3 patients with triglyceride
levels higher than 14.69 mmol/L (1300 mg/dL), all of whom were taking 300 mg/m(2) or
more of oral bexarotene per day.]

label Support [Eight (73%) of 11 patients crossing over from 6.5 mg/m(2) per
day to higher doses subsequently responded.] [Bexarotene (Targretin capsules) (the first
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retinoid X receptor-selective rexinoid) was well tolerated and effective as an oral treat-
ment for 15 (54%) of 28 patients with refractory or persistent early-stage cutaneous T-cell
lymphoma at doses of 300 mg/m(2) per day.]

label noRel [Eight (73%) of 11 patients crossing over from 6.5 mg/m(2) per day to
higher doses subsequently responded.] [Hypertriglyceridemia and hypothyroidism require
monitoring but are reversible and manageable with concomitant medication.]

3.2 Transformers

The transformer is the language model that has a stacked encoder-decoder structure where
the encoder turns the input sequence into a hidden representation, and the decoder turns it
into the target sequence (Vaswani et al., 2017). The encoder consists N layers of two sub-
layers: a multi-head self-attention layer and a fully connected feed-forward neural network.
It allows passing only relevant contextual information of the sequence from one encoder to
another. The decoder, on the other hand, takes the output from the encoder and generates
the output sequences. The structure of the decoder is similar to the encoder with an extra
layer of multi-head attention to retrieve information from the output of the encoder.

Figure 4: Transformer architecture from Vaswani et al. (2017)

Bidirectional encoder representation from Transformers (BERT) is a pre-trained transformer-
based model (Devlin et al., 2018). It was trained on a huge amount of data to learn contex-
tual word representations on two transformer tasks: 1). language modeling, where some
portion of the text is masked and the model has to predict the masked token; and 2). next
sentence prediction. The pre-trained model can be fine-tuned for a specific task on smaller
data. BioBERT is a language model fine-tuned and pre-trained on the biomedical cor-
pus from PubMed and outperforms BERT in the tasks related to biomedicine (Lee et al.,
2019). SciBERT was pre-trained on the set of scientific papers (Beltagy et al., 2019). It
also contains biomedical data, but in a smaller amount compared to BioBERT.
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3.3 Argument Mining Pipeline

The argument mining pipeline consists of the following steps: 1). find the boundaries of
the arguments in the text, and 2). identify the type of components, i.e. claim or premise
and, 3). define the relations between components as illustrated in Figure 5.

Figure 5: The full argument mining pipeline by Mayer et al. (2020).

In order to retrieve argument components from the text and identify its starting and
ending boundaries, the inputs are labeled following IOB2-scheme. Mayer et al. (2020)
approached this by adding the Conditional Random Fields (CRF) layer and Recurrent
Neural Network (RNN), in addition to the Transformer, to the pipeline. Since the length
of arguments in the dataset are considerably long (usually the whole sentence), the CRF
layer helps to capture these to decide if the sequence is a part of the document by taking
into account contextual information. For example, when predicting a token label only
with RNNs the prediction is not dependent on the predictions of its neighbor and CRF
computes transition probability that accounts for the likelihood of observing each transition
between labels in the sequence. According to the authors, adding a bi-directional RNN
layer, on top of the Transformer and CRF, slightly increased the prediction accuracy.
They also experimented both with GRU and LSTM architectures and conclude that the
former is better in identifying boundaries and differentiating between claims and premises.
However, by altering parameters during training with LSTM, produced results are as good
as GRU for argument component classification. Regarding the language models based on
Transformers, the model performs best with SciBERT and BioBERT which are trained
using the scientific and biomedical data respectively. Results obtained using the pipeline
are presented in Table 3.

Relation classification, then, predicts if there is a connection between the components
in the paragraph. This task is treated as a sequence classification problem where the goal is
to predict relations by classifying all possible argumentative component combinations. The
model is provided with two argument pairs and the objective is to predict links between
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Model Neoplasm Glaucoma Mixed
F1 F1-C F1-P F1 F1-C F1-P F1 F1-C F1-P

SciBERT+GRU+CRF 82.41 75.84 91.11 83.97 82.89 91.68 82.40 78.21 91.35
BioBERT+GRU+CRF 80.85 73.99 90.59 83.95 83.52 91.72 82.41 78.26 92.02

BERT+GRU+CRF 82.68 76.23 89.9 82.22 79.07 89.07 82.68 77.98 89.61
SciBert+LSTM+CRF 81.99 75.58 91.23 83.06 81.87 91.76 81.93 77.23 91.52

Table 3: Results of argument component detection using different pre-trained models.

them. The links can be either Support, Attack or No relation. The results are provided in
Table 4.

Model Neoplasm Glaucoma Mixed
BERT 66.97 57.04 69.32

SciBERT 70.31 65.75 71.31
BioBERT 55.84 59.23 56.17

Table 4: F-1 score of the different pre-trained models for relation classification.

3.4 Machine Translation

The main problem in Argument Mining (AM), as well as in many natural language process-
ing tasks, is the absence of high-quality data in languages other than English. Therefore, a
possible solution is to create a corpus in the language of choice by translating the original
data either by human or automatically using machine translation. The former method is
considered to be more reliable. However, it requires a lot of time-consuming resources, and
the latter provides fast automatic translation results which might not be accurate. Thus, in
this project, we first translated a small amount of sentences using different machine trans-
lation systems which then were evaluated by two native speakers in order to identify the
best system that would be able to handle the translation of the clinical data. Furthermore,
four systems for automatic translation were chosen to build the desired corpus.

The corpus was translated by several freely available machine translation systems,
namely, m2m-100 (Fan et al., 2021), mBART (Tang et al., 2020), OPUS-MT (Tiede-
mann et al., 2020) and DeepL 2. Throughout the evaluation of the performance of each of
them, the latter two systems were decided to handle the task more adequately than the
others. The main issues in the domain-specific translation are specific tokens that contain
numerous technical terminologies and abbreviations and are challenging for an automatic
tool. The main criteria in the selection of the most accurate machine translation system,
besides coherence and cohesion, was dealing with the aforementioned issues.

2https://www.deepl.com/
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3.5 Word alignment

Word alignment is a method that is well-known for machine translation and nowadays
is widely used for annotation projection. It is used as a step to transfer labels of gold
annotated data to its translation. There are several existing methods for word alignments.
Before the emergence of complex neural network algorithms, existing alignment methods
were based on statistical approaches such as GIZA++ (Och and Ney, 2003) and Fast
align (Dyer et al., 2013). These methods, or their modifications, are still considered to be
reliable for different tasks requiring word alignment. With the evolution of deep learning
approaches, new methods for word alignment have been developed and were used for the
tag projection part of this master thesis. Those are well-known aligners for cross-lingual
sequence tagging are SimAlign (Sabet et al., 2020) and Awesome align (Dou and Neubig,
2021).

Nowadays, an effective way of learning representations of text is by learning contextual
word embeddings trained from multilingual language models. The Awesome aligner applies
this solution by using pre-trained language models and fine-tuning them using parallel
corpora to increase quality of the alignments. Since it learns word embeddings from parallel
corpora, providing domain specific corpus might increase the performance of the alignments
as well. On the other hand, having huge parallel corpora may not be a case for many
languages and hence, the solution is to transfer word alignments based on their similarities
with respect to target languages.

In our project we use the word alignment software for cross-lingual annotation projec-
tion 3 of the Abstrct English dataset to Spanish. The process and results are discussed in
Section 4.

3https://github.com/ikergarcia1996/Cross-lingual-Annotation-Projection
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4 Translation and Projection of Arguments

This section will describe the process of creating a Spanish corpus from the English data
that was mentioned in Section 3 by translating and projecting the original English dataset.
The steps of corpus creation is shown in Figure 6. First, the corpus is translated using
selected machine translation systems, and then we project the BIO tags from the original
to translated data. After each action, the quality of the automated output was manually
inspected and corrected.

Figure 6: The process of creating Spanish data from English.

4.1 Translation

Among all the available translation systems we chose 4 widely used different neural machine
translation (NMT) systems: m2m-100 (Fan et al., 2021), mBART (Tang et al., 2020),
OPUS-MT (Tiedemann et al., 2020) and DeepL 4, and translated a small proportion (∼
100 sentences) from the corpus to determine the system that generates the most accurate
translations from English to Spanish and then to translate the whole corpus on the chosen
NMT system. The process of selecting the best system was rather straightforward: all
100 translations in the spreadsheet where each column corresponds to one of the systems
without the name were given to two native speakers to evaluate the output and choose
the most appropriate ones. The inter-annotator agreement was around ∼70%. DeepL
was chosen as the best performing system and OPUS-MT as the second-best performing.
mBART was agreed to be the worst. Besides the quality of translations, mBART was
generating random incoherent sequences in places where it was not supposed to be, hence

4https://www.deepl.com/
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it was ruled out immediately. With respect to m2m-100, its main problem was that some
expressions were not translated all, so we also discarded it.

The number of sentences translated with DeepL and OPUS-MT was the following: in
the neoplasm set, 4405 for training, 679 for development and 1251 for testing. With respect
to the glaucoma and mixed datasets, 1247 and 1148 sentences were respectively translated.

Example 4.1 Translation sample from the neoplasm train set:
[EN: ] PIDs were 0·9 and 0·3 in the oxycodone/paracetamol and placebo groups re-

spectively , on day 1 ( P < 0.001 ) , and 1.5 and 0.3 respectively on day 3 ( P < 0.001
).

[ESDeepL : ] Las EPIs fueron de 0-9 y 0-3 en los grupos de oxicodona/paracetamol y
placebo respectivamente , en el d́ıa 1 ( P < 0-001 ) , y de 1-5 y 0-3 respectivamente en el
d́ıa 3 ( P < 0-001 ) .

[ESOPUS-MT : ] Los PID fueron 0·9 y 0·3 en los grupos de oxicodona/paracetamol y
placebo respectivamente, el d́ıa 1 ( P < 0·001 ) y 1·5 y 0·3, respectivamente, el d́ıa 3 ( P
< 0·001 ).

Overall, the quality of translations from DeepL was better than from OPUS-MT. One of
the most widespread and repetitive errors in the translations was assigning wrong articles
in Spanish, translation or non-translation of abbreviation, and domain-specific words. In
Example 4.1, there is an acronym “PID” in the original sentence, which was translated
by DeepL as “EPI” and “PID” with OPUS-MT. However, it is difficult even for humans
to translate such terms without knowing the context or the full phrase of the shortened
words. Here, “PID” means Pain Intensity Difference. However, it also could be Pelvic
Inflammatory Disease which might correspond to the translation of the given phrase in
DeepL to “EPI”. However, if that was the case, then the correct translation should had
been “EIP”. Therefore, both systems translated it wrongly. Other issues with acronyms
is illustrated by Example 4.2, where it can be seen that the abbreviated phrase is given
alongside the acronym itself. However, while both systems translated the phrase equally,
they provide different acronyms which do not correspond in any case with the phrase they
allegedly abbreviate.

Example 4.2 Translation sample from the neoplasm train set:
[EN ]: The primary endpoint was the Pain Intensity Difference ( PID ) .
[ESDeepL ]: El criterio de valoración principal fue la diferencia de intensidad del dolor

(DIP).
[ESOPUS-MT ]: La variable principal de valoración fue la Diferencia de Intensidad del

Dolor (IDP ).

By analyzing the general performance of the translations, it was noted that OPUS-MT
committed more mistakes in translation compared to DeepL. After deciding on DeepL
to translate the Argument component data, the next step is to project the argument
component labels from the original English annotated data to the automatically generated
Spanish data.
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Due to the available quota in DeepL, sentences for argument relation were translated
using OPUS-MT only. In total, 14285 sentence pairs from the train set, 4380 sentence
pairs from the test set and 2030 sentence pairs from the development set were translated.

4.2 Projection

To project the data we use two word alignment tools, namely, SimAlign (Sabet et al.,
2020) and Awesome align (Dou and Neubig, 2021). SimAlign allows projecting labels
without any parallel data by extracting alignments from similarity matrices of multilingual
embeddings. In contrast, Awesome align requires parallel data in order to learn word
embeddings, which in our case requires a parallel corpus of domain-specific data in Spanish
for better results. To learn the embeddings the English-Spanish parallel biomedical corpus
was provided to the model during training 5. As a result, the overall output of both
systems was considerably good, with some constant misalignment of articles in Spanish by
Awesome align and detecting wrong boundaries of the label sequence in the sentences by
SimAlign, and conjunctive words by both aligners. Later, these mistakes were corrected
both automatically and manually.

Before running the automatic projection systems some issues in the annotation of the
original corpus were identified. Namely, there were sequences with extra spaces after punc-
tuation that during all the prepossessing steps were treated as line-breakers, i.e. creating
new sentences in argument components. It caused a problem because even though it was
separated as a new line, the tags still remained the same. In other words, originally the
sequence was supposed to be a whole sentence labeled with BIO tags, and because of an
extra space it was treated as a line-breaker, the tags were preserved when following the
instructions, but the new sequence should start with ‘B-’ and instead it was ‘I’ which is not
allowed since the new sequence means a new component, and hence should have starting
identifier (B-).

Such sequences were identified in 12 in training, 7 in neoplasm, 4 in glaucoma, and
1 in the mixed test set lines. They were fixed manually by finding the location of the
problematic token and tag in the corpus. However, by manual inspection of the corpus,
more such sequences were seen in the sequences that are not part of the components (O)
and they were impossible to identify. After correcting encountered issues, the projection
was used over translated data. First, tags were projected automatically, then corrected
semi-automatically and manually. Figure 7 illustrates the steps taken after the automatic
projection of argument components.

5https://github.com/biomedical-translation-corpora/corpora
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Figure 7: Annotation projection steps

Each version of the data is referred as the following: initial projection without any
correction as automatic projection, the projection that was corrected programmatically as
semi-automatic or post-processing, and manually corrected projection as manual projec-
tion.

4.2.1 Automatic projection

The outputs from both systems were comparably good with some repeating errors in the
projection, such as missing projection of articles, conjunctive adverbs, or the wrong span
of the projection. Those issues occurred the most when dealing with the sentences that
are full components in the source and they were not projected accordingly in the output
result. An example of the projection is shown below. In Figure 8, the source sentence
with argument components is shown in green, the tokens without color are not part of the
argument and have the label ‘O’. The first token is labeled as “B-Premise” and the rest of
the green parts before ’O’ are “I-Premise”, then after the uncolored part, the new argument
component sequence and dot at the end, are not included in the argument component.

Figure 8: Source sentence with outlined argument component (Premise)

Projections produced by Awesome align repetitively did not align the articles as well
as, although less frequently, conjunctions of different lengths in each language. For ex-
ample, the misplacement of tags occurred between projections of the words “therefore”
and “por lo tanto”. Sometimes one-to-many and many-to-one alignments were difficult for
the algorithm to find edges in the document. As illustrated in Figure 9 the majority of
the argument components were transferred correctly, even conjunctive phrase was tagged
correctly. However, as was mentioned above there are two articles and both of them were
labeled as non-argumentative components. Moreover, the punctuation at the end of the
sentence became part of the component when it is not supposed to be so.
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Figure 9: Projection of the sentence (Figure 8) with Awesome align

Compared to Awesome align, SimAlign handled articles relatively better, however,
there is no definite pattern in alignment or misalignment of tokens. The output of the
same sentence by SimAlign is shown in the Example 10. The aligner correctly projected
the first article, but not the second one before “mientras que”, the closing bracket and
coma were also incorrectly projected. However, the dot at the end was correctly outside
of the component.

Figure 10: Projection of the sentence (Figure 8) with SimAlign

Although the results were not perfect they are still good enough and identifiable mis-
alignment patterns can be corrected given appropriate instructions. All the issues and
examples discussed above are from projection results without any modifications.

4.2.2 Post-processing and Manual projection

Since some errors from the projection of annotations follow some patterns, it is possible
to correct them in some way to improve the quality of the new corpus. Therefore, after
investigating the results and identifying frequent mistakes we corrected them automatically.
Moreover, those that were not so easy to capture were manually corrected.

The most common issue with articles in Spanish included the sentences that are full
components. Following this, we extended the projection in sentences that are full compo-
nents following the logic: “if a given sequence is a full component in the source sentence
then it is a full component in the translated sentence too, no matter the projection out-
put”. This allowed to decrease the number of sequences with incorrect annotation. The
amount of corrected sequences in data following post-processing mentioned above is shown
in Tables 5 and 6.

With respect to the training and development sets, there are overall 4405 sentences, of
which 2345 are not argument components, and 1752 are sentences that are full argument
components. 800 corrections in the training corpus were done in projections by Awesome
align, which means that it did not align an article and/or punctuation 800 times out of 1752
where it was supposed to be full component sentences. SimAlign committed significantly
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train awesome train simalign dev awesome dev simalign
overall 4405 4405 680 680

# of full O’s 2345 2345 377 377
# of full component 1752 703 257 257
# of auto-corrections 800 88 95 11

# of manual-corrections 140 194 20 25

Table 5: Number of post-processed sequences, full sentence components, none-components
and corrected sentences in the train and development from neoplasm translated with
DeepL.

neoplasm a neoplasm s glaucoma a glaucoma s mixed a mixed s
overall 1252 1252 1248 1248 1147 1147

# of full O’s 630 630 692 682 591 591
# of full component 518 518 498 506 476 480
# of auto-corrections 242 92 167 51 203 90

# of manual-corrections 51 26 26 14 47 26

Table 6: Number of post-processed sequences, full sentence components, none-components
and corrected sentences in the test data translated with DeepL. a corresponds to the
results from Awesome align and s from SimAlign.

fewer similar errors leading to the conclusion that SimAlign performed well in projecting
full component sentences. The same behaviour can be observed for the three test sets, as
illustrated in Table 6.

Having post-processed data still does not mean that the corpus in Spanish is correctly
projected and annotated. After expanding the labels and processing the full component
sequences, we looked into the rest of the projection results to correct any possible misalign-
ments. During the manual annotation, all of the punctuation in argumentative sequences
were counted as arguments, even if it was not a case in the original English corpus.

The amount of manually corrected sentences is illustrated in the last row of Tables 5
and 6. Here the overall number of corrections after post-processing is considerably lower
and the difference between Awesome align and SimAlign is less than of the post-processed
steps.
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5 Experimental Setup

The corpus creation in Spanish was done by using the translation and projection techniques
described in Section 4. First, the source corpus was translated into Spanish using OPUS-
MT and DeepL and then, for each translation tag the projection is performed with both
Awesome align and SimAlign. As a result, we have 4 versions of data in Spanish where
they differ by translation and projection systems. Therefore, all the experiments are done
for all these combinations of the systems used in Spanish, namely, OPUS-MT+Awesome,
OPUS-MT+SimAlign, DeepL+Awesome, DeepL+Simalign.

The set of experiments performed for argument mining, after all the steps from previous
sections and obtaining corpus in Spanish, include: zero-shot cross-lingual experiments,
meaning training in English and testing on Spanish data; mixing English and Spanish
corpus to train and testing individually on Spanish and English data, to see if the prediction
accuracy will increase or decrease by using the automatically generated Spanish data for
data augmentation; and training and testing the model using the Spanish corpus generated
by translation and projection. All of the mentioned experiments are applied for both
argument components detection and argument relations classification. The set of described
methods are illustrated in Table 7

Experiment type Train and development sets Test set
zero-shot English (mBERT) Spanish
multilingual English + Spanish (mBERT) Spanish
multilingual English + Spanish (mBERT) English
train+project Spanish (mBERT) Spanish
train+project Spanish (BETO) Spanish

Table 7: List of experiments. The rows represent the language, and inside the parentheses
the model that is used during fine-tuning.

Results obtained from in the original work using the English gold data were reported
in Section 3 (Table 8). As it was mentioned before, the architecture of the model used for
argument component classification is a combination of pre-trained BERT models (SciB-
ERT, BioBERT, multilingual BERT), RNNs (GRU and LSTM), and CRF layers. To use
this setting for all experiments mentioned above, Spanish multilingual BERT(mBERT)
and Spanish BERT (BETO (Cañete et al., 2020)) were used in order to work with the
embeddings adapted to the language. In the original work, the model was trained on 3
epochs with a learning rate of 2e-5 and batch size of 32, but during the process of hyper-
parameter tuning it was determined that the performance of the model is influenced the
most by learning rate hence, yielding better results when altering the learning rate to 5e-5.

Zero-shot cross-lingual argument mining assumes training the model with English cor-
pus and testing on Spanish corpus for which we fine-tune the mBERT multilingual masked
language model Devlin et al. (2019). This is also the case for the multilingual setting,
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where we combine data in both English and Spanish. For experimenting with the Span-
ish generated data only, (train+project settings), we also included a monolingual Spanish
model to evaluate its performance with respect to mBERT.

Regarding argument relations, it is a text classification task, and the classification is
based on identifying relations between two sequences. A similar set of experiments are to
be done for the classification of relations. However, it should be reminded that for relation
classification no projection of annotations is needed, which makes the task much more
straightforward.
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6 Results

In this section we present the experimental results for the evaluation setup described in
the previous section. After translation and projection as explained in Section 4, we have
4 versions of the corpus in Spanish from 2 translation systems and 2 projection methods
for automatically projected, post-processed and manually projected data. Each version
is referenced as a combination of each translation and projection used throughout this
section.

6.1 English baseline

We adapted the argument pipeline originally developed for the English Abstrct dataset
Mayer et al. (2021), and presented in Section 3, in order to be able to use a multilingual
language model such as mBERT. Having done so, we evaluated mBERT on the English
data to obtain a baseline of mBERT on this benchmark. Furthermore, we also fine-tuned
the best models on this dataset according to Mayer et al. (2021). We report the results in
Table 8. F1 score is an average of F1-Claim (F1-C) and F1-Premise (F1-P). The models
were fine-tuned with the following hyper-parameters: 32 batch size, 3 epochs and 5e-5
learning rate for argument component and argument relation classification parts.

Argument components classification. Despite using for the experiments their pipeline
and the BERT language model and their variations (BioBERT (Lee et al., 2019) and SciB-
ERT (Beltagy et al., 2019)), we did not manage to reproduce their published results (Mayer
et al., 2020, 2021). Therefore, Table 8 reports the results we obtained training those models
and mBERT. BioBERT is a language model trained on data extracted from biomedical
text while SciBERT was pre-trained on scientific text. The training and development cor-
pus consists of data from neoplasm while the three test sets include data from neoplasm,
glaucoma and mixed diseases.

Model Neoplasm Glaucoma Mixed
F1 F1-C F1-P F1 F1-C F1-P F1 F1-C F1-P

SciBERT+GRU+CRF 82.41 75.84 91.11 83.97 82.89 91.68 82.40 78.21 91.35
BioBERT+GRU+CRF 80.85 73.99 90.59 83.95 83.52 91.72 82.41 78.26 92.02

BERT+GRU+CRF 82.68 76.23 89.90 82.22 79.07 89.07 82.68 77.98 89.61
mBERT+GRU+CRF 82.36 74.89 89.07 80.52 75.22 84.86 81.69 75.06 88.57
SciBert+LSTM+C RF 81.99 75.58 91.23 83.06 81.87 91.76 81.93 77.23 91.52

Table 8: Results of argument component detection of the source English data. F1 is an
average of F1-Claim and F1-Premise, F1-C stands for F1-Claim and F1-P for F1-Premise

From Table 8 it is obvious that the models handle identification of Premises consid-
erably well compared to Claims. It might be because of the difference in the nature and
content of those components. Premises, normally, consist of numbers and evidence, when
Claims are mainly factual statements or general information.
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F1-scores for neoplasm show that mBERT obtains very good results compared to spe-
cialized monolingual models such as SciBERT and BioBERT. However, mBERT results
are slightly worse when evaluated out-of-domain in the glaucoma and mixed test data. In
any case, the baseline shows that mBERT is competitive in this benchmark so it is a good
candidate to perform cross-lingual and multilingual experiments in the following sections.

Argument relation classification. The results from the classification of argument com-
ponents are not as high as the results for component detection. However, among all of the
pre-trained models, the results obtained from BioBERT are the worst. On the other hand,
F1-scores produced by SciBERT are the highest. All the models, other than BioBERT,
perform worse on Glaucoma test set. Results by mBERT are worse by roughly 2 points
than the original BERT but still better than BioBERT. The results obtained for relation
classification are shown in Table 9.

Model Neoplasm Glaucoma Mixed
BERT 66.97 57.04 69.32

SciBERT 70.31 65.75 71.31
BioBERT 55.84 59.23 56.17
mBERT 65.71 59.92 67.88

Table 9: F-1 score of the different for argument relation classification.

6.2 Experiments on Spanish projected and translated corpus

Having a model trained on English corpus our next step was to see how the model will
perform when evaluated in Spanish. In this section we report the results obtained by the
multilingual mBERT model when fine-tuned in English and tested in Spanish (cross-lingual
zero-shot), trained and tested in Spanish (monolingual), and when trained using of both
languages and testing for each language individually.

We provide results for all the versions of the Spanish corpus and it is possible to note
that the performance increases with each version of the corpus from automatic to manual
annotation. The same set of experiments was performed for argument relations but there
is only one version of it since it only required the translation step.

6.2.1 Zero-shot results

F1-scores of zero-shot experiments for all three versions of the Spanish corpus are reported
in Tables 10-12. Overall, the predictions obtained by mBERT in this zero-shot setting are
surprisingly high and they get better with each improvement introduced to the corpus.
Although the issue with automatic projection was that the alignment boundaries were
different from the original corpus (many errors in the alignment were due to the articles in
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Spanish), the prediction scores as expected were lower, compared to others, when testing
on the corpus with no correction.

Model Neoplasm Glaucoma Mixed
F1 F1-C F1-P F1 F1-C F1-P F1 F1-C F1-P

DeepL + SimAlign 75.87 71.21 85.70 75.64 72.08 81.18 75.25 68.84 85.08
DeepL + Awesome 70.07 70.05 84.83 71.39 71.26 80.29 69.85 67.37 84.46

OPUS-MT + SimAlign 77.59 71.09 86.24 75.46 69.86 80.37 76.63 70.26 85.50
OPUS-MT + Awesome 71.36 69.74 84.97 71.22 69.70 79.59 77.98 68.94 84.70

Table 10: Zero-shot English to Spanish results of argument components with automatically
projected labels

Model Neoplasm Glaucoma Mixed
F1 F1-C F1-P F1 F1-C F1-P F1 F1-C F1-P

DeepL + SimAlign 79.99 71.69 86.67 77.30 72.29 81.51 79.25 69.36 85.85
DeepL + Awesome 79.12 71.33 86.48 76.77 72.08 81.32 78.21 68.95 85.65

OPUS-MT + SimAlign 80.68 71.54 86.69 76.81 70.08 80.59 79.89 70.84 85.91
OPUS-MT + Awesome 80.21 71.13 86.48 76.42 69.92 80.62 79.23 70.59 85.78

Table 11: Zero-shot English to Spanish results of argument components with automatically
projected labels and post-processing where labels were extended if the whole sentence is
argument component

Model Neoplasm Glaucoma Mixed
F1 F1-C F1-P F1 F1-C F1-P F1 F1-C F1-P

DeepL + SimAlign 80.50 71.56 86.73 77.60 72.33 81.60 79.62 68.99 85.96
DeepL + Awesome 80.34 71.54 86.77 77.51 72.30 81.59 79.57 69.36 85.92

OPUS-MT + SimAlign 81.21 71.57 86.62 77.15 70.07 80.87 80.43 70.82 86.05
OPUS-MT + Awesome 81.16 71.44 86.63 77.05 70.04 80.92 80.35 71.02 85.92

Table 12: Zero-shot English to Spanish results of argument components with manual
projections

The output after correcting the article issue in Spanish improved significantly by sev-
eral points (Table 11). The major part of the correction took place for projections by
Awesome align and, accordingly, the results of these versions of data increased consider-
ably from 70.07% to 79.12% for DeepL+Awesome and from 71.36% to 80.21% for OPUS-
MT+Awesome respectively.

Further improvements in results were reached after running the same experiments on
the manually corrected data (Table 12). This time the improvement is not as significant
as in the previous one although F1-score is still improved by some points. The results of
DeepL+Awesome of the mixed test set improved by almost 10% when from automatically

Language Analysis and Processing



Argument mining 27/40

to semi-automatically sets, and then, improved by 1% from semi-automatic to manual
projection prediction. An overview of these results is provided by Table 13 where each
column holds F1-macro scores obtained from zero-shot experiments for each combination
of translation and projection.

Model Neoplasm Glaucoma Mixed
Auto Semi-auto Manual Auto Semi-auto Manual Auto Semi-auto Manual

DeepL + SimAlign 75.87 79.99 80.50 75.64 77.30 77.60 75.25 79.25 79.62
DeepL + Awesome 70.07 79.12 80.34 71.39 76.77 77.51 69.85 78.21 79.57

OPUS-MT + SimAlign 77.59 80.68 81.21 75.46 76.81 77.15 76.63 79.89 80.43
OPUS-MT + Awesome 71.36 80.21 81.16 71.22 76.42 77.05 71.36 80.21 81.16

Table 13: F1 scores of each corpus version for each disease from zero-shot English to
Spanish experiment

6.2.2 Train and test on translated and projected data in Spanish

The same model was trained and tested using Spanish training and testing set to observe
and compare the results obtained from cross-lingual zero-shot experiments. The objective
was to see if a model trained in one language with automatically created data for that
language will improve the performance of the model compared to the zero-shot predictions.
The model was trained by using two BERT variations: multilingual BERT, which was pre-
trained on 104 different languages, and BETO, which is a type of BERT trained on a
large corpus in Spanish. The model was trained on data translated with OPUS-MT and
projected with Awesome align which then was manually corrected. The results of described
experiments are shown in Table 14.

Model Neoplasm Glaucoma Mixed
F1 F1-C F1-P F1 F1-C F1-P F1 F1-C F1-P

DeepL + SimAlign (mBERT) 83.57 75.95 90.01 80.83 75.44 86.11 82.62 74.62 88.81
DeepL + SimAlign (BETO) 83.19 74.66 89.31 84.16 80.98 89.99 83.54 74.77 90.87

DeepL + Awesome (mBERT) 83.40 77.11 89.18 81.11 76.16 87.35 81.88 73.71 88.50
DeepL + Awesome (BETO) 82.84 74.70 89.57 83.78 79.95 89.93 84.15 75.89 91.11

OPUS-MT + SimAlign (mBERT) 83.03 74.68 88.69 82.06 75.76 87.36 82.64 72.94 89.31
OPUS-MT + SimAlign (BETO) 82.19 73.73 89.58 83.23 80.15 89.41 82.65 75.01 90.19

OPUS-MT + Awesome (mBERT) 82.66 74.07 88.69 82.44 76.55 87.44 82.55 73.70 89.18
OPUS-MT + Awesome (BETO) 81.91 72.96 89.56 83.30 80.69 89.45 82.48 74.03 90.36

Table 14: Train and test in Spanish with mBERT and BETO

It is noticeable that mBERT predictions have increased compared to the model trained
on English and tested on Spanish corpus. Moreover, the F1-score is notably higher than
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the one from the English baseline (Table 8) even when a domain-specific model was uti-
lized. The results produced by the model with mBERT are higher compared to BETO
for neoplasm, and for other test sets, it is in general lower than BETO. The improvement
might be caused by a slight difference in annotations because, as it was mentioned before,
the original English corpus has some inconsistencies in annotating punctuation.

6.2.3 Train and test on merged English and Spanish data

Lastly, after zero-shot and Spanish-only experiments, we merged the training sets in two
languages to see if it will increase or decrease the prediction quality of monolingual test sets
in English and Spanish. It can be concluded from Table 15 that this data augmentation
approach increased the quality of the overall performance by 1-2% compared to training
on monolingual and zero-shot results, even when evaluated in the original English data. It
should also be note that the improvements are particularly large when mBERT is evaluated
out-of-domain, namely, on the glaucoma and mixed test sets.

Model Neoplasm Glaucoma Mixed
F1 F1-C F1-P F1 F1-C F1-P F1 F1-C F1-P

Test: EN 83.51 73.42 89.38 85.31 81.05 86.73 83.63 74.98 89.25
Test: DeepL + SimAlign (ES) 84.35 76.64 88.43 84.54 78.67 87.24 83.90 73.46 88.87
Test: DeepL + Awesome (ES) 84.58 76.77 88.61 84.62 78.71 87.23 84.03 73.99 88.92

Test: OPUS-MT + SimAlign (ES) 84.54 76.02 88.89 84.20 78.69 87.31 83.18 72.15 88.98
Test: OPUS-MT + Awesome (ES) 84.35 75.76 88.89 84.25 78.74 87.26 83.16 72.46 88.84

Table 15: Train and test with merged English and Spanish dataset using mBERT

Another interesting aspect worth mentioning is that across evaluations there are no
significant differences with respect to which combination of machine translation and pro-
jection model we are using. Instead, differences are given by the models and the amount
of data used for fine-tuning, as our results on multilingual training demonstrate.

Figure 11: Results for English (left) and Spanish (right) experiments
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Figure 11 provides an overview of the most important comparisons that can be done
with the results of our experimentation. First, we can conclude that the best predictions
are obtained from the model that was trained on the merged English and Spanish data,
surpassing also the model trained with gold standard English data. This result indicates
that our generated Spanish data can be used to apply data augmentation techniques.
Second, the translating and projecting obtain significant better results than predicting
in a zero-shot cross-lingual setting using a multilingual model such as mBERT. Third, for
Spanish the monolingual model BETO performed better than mBERT, although the latter
benefits from multilingual training.

6.3 Experiments with argument relation classification.

The aim of the argument relation classification is to resolve the relation types between
arguments. The relation types are Attack, Support and No Relation. Each line in the corpus
consists of two sentences, source and target, and the task for the classifier is to identify
which type of relation holds between them. The source node is given several candidates
as a target, and only one or two of them hold a supporting or attacking relation. All the
experiments that were done for argument components detection were also applied for the
classification of argument relations, with the exception that for this data no projections
are necessary. Results are shown in Table 16 and in Figure 12.

Model Neoplasm Glaucoma Mixed
mBERT (train: EN+ES → test: EN) 65.55 58.79 67.82
mBERT (train: EN+ES → test: ES) 62.55 58.60 65.74

mBERT (train: EN → test: ES) 62.45 55.92 65.02
mBERT (train and test: ES) 63.25 54.35 65.40
BETO (train and test: ES) 65.27 60.15 66.80

Table 16: F-1 scores of the different pre-trained models for relation classification

Here, similar to the results of previous experiments, the prediction scores are signifi-
cantly lower for Glaucoma and are higher for Mixed test sets. Furthermore, in this setting
the models fine-tuned with multilingual data (both Spanish and English) are not bet-
ter than their counterparts trained on the target languages. Furthermore, while mBERT
trained and tested on the translated and projected data is better than when applied in a
zero-shot scenario, differences are not as large as for Argument Component Detection. In
fact, zero-shot performs better for Glaucoma. Finally, the monolingual BETO model does
obtain better results than mBERT for most of the evaluations on relation classification.
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Figure 12: Relation classification results under different experimental setups

Another aspect to mention is that the relation classification corpus is extremely imbal-
anced (as shown in Section 3). We believe that this may be one of the reasons why the
classification quality is significantly low. Another reason is the lack of context in the task
itself, given that in many cases it is extremely difficult to distinguish relations given only
two sentences, without further context.

Thus, we believe that relation classification in the medical domain cannot be straight-
forwardly determined based only on local textual information. It may require more com-
plex structures and additional insights from the data to be able to identify argumentative
structures.
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7 Error Analysis

From the results obtained in previous sections, it has been clear that SciBERT with GRU
layer is the best performing model for the English data set. Furthermore, mBERT per-
formed better when trained on multilingual data. On top of that, prediction quality by
the multilingual model (mBERT) was in general quite competitive good, which opened
the door for other types of cross-lingual experiments. In this section we will provide a
qualitative analysis of the predictions produced by the models with the aim of identifying
the most important errors.

Before diving into a detailed analysis of outputs generated under each individual setting,
there are some errors in the predictions throughout all the experiments that can be more or
less generalized. For instance, the majority of the wrong classifications were in assigning
correct IOB-tags and their boundaries, along with incorrect argument types. Overall,
identification of Premise were more accurate compared to Claim. In fact, the majority of
the misclassifications happened in determining Claim arguments. Comparisons to analyze
predictions across models in this section were made on the mixed test set, because it has
texts of all 5 diseases in it. The number of erroneous outputs is shown in Table 17.

model # of misclassifications
SciBERT+GRU (EN → EN) 150
SciBERT+LSTM(EN → EN) 142

mBERT (EN → EN) 154
mBERT (EN → ES) 156
mBERT (ES → ES) 151

mBERT (EN+ES → ES) 158
mBERT (EN+ES → EN) 152

BETO (ES → ES) 148

Table 17: Number of erroneous predictions for mixed test set using different models. The
first column is in the following form: model (train set language → test set language). The
results for Spanish data are from manually refined projections.

As we can see from the table the numbers are not too scattered, we may assume that
majority are the same sequences, at least among languages. The most common mistakes
across all models are described below.

The majority of the tags are correct except for random tokens in different parts of the
sequence with another class (Example 7.1). It is difficult to follow any pattern in this
situation, nevertheless, in some cases, it assigns ‘O’ only to punctuation and any argument
type to the other part of the text.

Example 7.1 . The sentence is Premise and bold tokens were classified as I-Claim
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Text: el control de los sintomas en ambos brazos fue similar para los sintomas
especificos de la enfermedad , como tos , dis ##nea , dolor o hem ##op ##tis ##is .

Another frequent mistake is when one sentence holds several arguments, but the model
could only recognize one and assign it to the whole set. Similar behavior when dealing
with lengthy sequences. (Example 7.2).

Example 7.2 . The first part of the sentence is Claim (in bold), ‘,’ and ‘y’ are outside of
argument and the rest are Premise, but model labeled everything as Premise (in italic).

Text : ambos proc ##edi ##mientos prod ##uje ##ron una reduccion
estadistica ##mente significativa de la pio , y los ojos some ##tidos a im ##ct
alcanzar ##on una pio menor que los ojos del grupo de pt ##c a los 12 meses de segui
##miento ( 9 , 5 \hxc2 \xb1 2 , 4 mmhg y 11 , 7 \xc2 \xb1 2 , 1 mm hg , respectivamente
, p < 0 , 001 ) .

The model sometimes fails to identify any arguments in the input. In some examples
Claim is classified as Premise and Premise as Claim. Apparently, some argumentative
sequences are not explicitly identifiable compared to others.

One of the major error types is including conjunctive words and punctuation in the
argument. However, it is difficult to say if those tokens should be counted as arguments
in the annotated data as well. This is probaly due to inconsistencies in annotating the
original English data. Lastly, in some examples, the beginning token is classified as one
component and the rest of the text as another component (Example 7.3).

Example 7.3 . Here, the first token is labeled as B-Premise and the rest as I-Claim,
whereas the whole sentence is supposed to be Claim

Text: en cuanto a la calidad de vida posto ##pera ##toria , los pacientes some
##tidos a qui ##mio ##tera ##pia intra ##arter ##ial parecia ##n estar en una
situacion lige ##ramente mas favorable .

It was mentioned previously that we could achieve comparable results with LSTM when
increasing the learning rate. Before that GRU model was outperforming it by almost 20%
and by looking at the quality of the predictions, before the changes LSTM model made
mistakes in 401 sentences in the mixed test set and it decreased to 142 after setting an
appropriate learning rate. In general, the majority of the errors were due to the model’s
failure in finding correct boundaries of arguments and, in cases when it did, failing to find
the beginning of the argument, i.e. ‘B-’ token(Example 7.4). This issue has been improved
afterwards. Moreover, it outperformed some tests on the GRU model.

Example 7.4 LSTM model correctly found the argument component but not in IOB

Text: both therapies were well tolerated .
True tags: B-Claim I-Claim I-Claim I-Claim I-Claim I-Claim
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Predicted tags: I-Claim I-Claim I-Claim I-Claim I-Claim I-Claim

In the case of outputs from manually projected Spanish data, using BETO and mBERT,
it can be concluded that the aforementioned general errors were seen here as well. Most
of the time the incorrect predictions were in the same sentences. However, there are some
differences that are worth mentioning. The most noticeable one is tokenization: mBERT
splits words to more atomic levels than BETO. For instance, for the word “complicaciones”,
mBERT tokenized it as “comp, ##lica, ##ciones” while with BETO the token remained
unchanged. Another point is that even though the predictions are incorrect by both models,
it is more likely that BETO recognizes argumentative sentences more frequently than
mBERT. In such examples, the former either identifies the wrong argumentative component
or incorrect IOB-tags while the latter tags everything as ‘O’.

Prediction errors from zero-shot experiments vary between each version of projected
Spanish data. Initially, most of the errors were because in the test set the articles were
omitted by the projection system. In other words, the model tags the token as part of the
argument component while the “true” label indicates that it is not, hence decreasing the
accuracy. This issue improved after fixing the article problem in the test set. However, this
time, the model would correctly predict the tags, except for some parts of the sequence for
many inputs on the manually corrected corpus (Example 7.5). This issue improved when
using manually projected Spanish corpus.

Example 7.5 In the following example the whole sentence is predicted as Claim and bold
part as Premise. The true values are Claim.

la administracion de gs - 962 ##0 durante 12 semanas no tuvo ningun efecto sig-
nificativo sobre los niveles seri ##cos de anti ##geno ##s de superficie de hepatitis b ,
pero pare ##cio aumentar las respuesta ##s de celulas t y celulas nk y b’reducir’ b’la’
capacidad de nk para sup ##rimi ##r las celulas t .

To sum up, the errors specific to zero-shot experiments, correctly predict the compo-
nent but add different one in the random parts of the sequence, was improved by wrong
IOB borders and incorrect classification in general. The former somewhat improved when
training on the merged Spanish and English corpus. At the end, the most common misclas-
sification occured when trying to identify the right argument component type, especially,
Claim.

Argument relations. Since the corpus for argument relations are imbalanced the
prediction results are considerably low. Nevertheless, for the clinical data, determining the
relations between arguments seems to require more information than solely relying on the
information from two sentences without providing the whole context. In Example 7.6, the
relation type is Support and No Relation in 7.7. It is not obvious, even for humans, how
this relation types are motivated without knowing the context. First, it is not obvious
what kind of patients is the NGT group. Second, we are not given information about what
is NGT.
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Example 7.6 label Support [Patients in the NGT group reported significantly (P<0.05)
better scores of QoL at both 6 months and 1 year.] [Patients who underwent gastric tube
reconstruction develop less postoperative digestive tract complications, and have a quicker
recovery and a better QoL during the follow-up period.]

Example 7.7 label noRel [Patients in the NGT group reported significantly (P<0.05)
better scores of QoL at both 6 months and 1 year.] [Regarding the QoL investigation, the
scores of QoL dropped for all patients at 3 weeks after surgery.]

To sum up, it is not straightforward to identify relation types from source sentences to
the target without any context provided which may explain the difficult for the models to
perform better in this particular task.
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8 Concluding Remarks

In this thesis we have investigated several strategies to perform argument mining and
classification on medical data for a language for which not available data is available.
We have taken a real case scenario in which the only dataset annotated with argument
structures for the medical domain is in English. Taking this as a starting point, we have
explored two avenues to be able to perform the task in Spanish. A first option is to leverage
large multilingual language models such as mBERT to perform transfer learning, namely,
learning on the available English data and predict in Spanish. A second method is proposed
by automatically generating data in Spanish via machine translation and label projection.

In order to create an annotated dataset in Spanish for argumentation in the medical
domain, we first machine translated the source English corpus using the OPUS-MT and
DeepL machine translation systems. Then the annotations were automatically projected
from English to the machine translated data using word alignment tools. Next, the data
in Spanish was corrected automatically and manually.

The obtained results indicate that the generated Spanish data helps to perform data
augmentation which is highly beneficial to improve results for both English and Spanish
benchmarks. Furthermore, experiments indicate that for this domain the translation and
projection approach performs better than the zero-shot cross-lingual transfer.

The results from zero-shot experiments on Spanish data were good enough but slightly
lower than when the model was trained on Spanish corpus. The main detected error from
the zero-shot predictions compared to other experiments in assigning the wrong tag in the
middle of the sequence

Another issue was the misclassification of punctuation and linking words. We hypothe-
size that this issue was well-handled when the model was trained on Spanish data because
during manual correction all types of punctuation were annotated as the preceding tokens.

For relation classification the highest scores were obtained by SciBERT, then BERT,
and mBERT for English data. Cross-lingual zero-shot results were lower to sim3%, but
monolingual Spanish and mixed English and Spanish data improved the prediction almost
to the level of original English results. Overall, the predictions were consistently worse for
Glaucoma.

Finally, apart from the scientific findings, we should stress that in this thesis have
created first dataset Spanish to perform argumentation mining and classification in the
medical domain. Based on this, our work constitutes the first to provide an in-depth
study and empirical experimentation on cross-lingual methods for argument mining and
classification.

Further work should include trying newer multilingual language models such as XLM-
RoBERTa and mDeBERTa, which may help to improve results even over domain-specific
English language models such as SciBERT or BioBERT. Furthermore, we would like to
further explore the method presented in this thesis to experiment with computational ap-
proaches to argumentation to other specific domains and languages for which no annotated
data is available.
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