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ABSTRACT: A C−N bond-forming cross-dehydrogenative cou-
pling of a collection of Tyr-containing peptides and estrogens with
heteroarenes is described. This oxidative coupling is distinguished
by its scalability, operational simplicity, and air tolerance and
enables the appendance of phenothiazines and phenoxazines in
phenol-like compounds. When incorporated into a Tb(III)
metallopeptide, the Tyr-phenothiazine moiety acts as a sensitizer
for the Tb(III) ion, providing a new tool for the design of
luminescent probes.

Owing to their chemical versatility, amino acids are
privileged motifs in a number of disciplines such as

organic synthesis, medicinal chemistry, and chemical biology.
The strategical incorporation of noncanonical amino acids
into a given peptide template represents a unique platform to
create molecular diversity within the peptide drug discovery
space.1 In fact, peptides housing nonproteinogenic amino
acids often exhibit improved permeability and higher stability
to those of their parent native analogues. As a result, the past
decade has witnessed an exponential growth of the peptide
therapeutics market,2 and the development of general
methods to modify peptides in a late-stage fashion poses a
challenging task of paramount importance.

Metal-catalyzed C−H functionalization reactions have
recently evolved into powerful yet innovative technologies
toward the site-selective modification of amino acids and
peptides.3 In this respect, a wide range of bioconjugation
methods are available today to tag highly reactive residues
such as Cys, Lys, or Trp. Conversely, despite its prevalence in
a myriad of medicinally relevant compounds, the modification
of tyrosine (Tyr) has been comparatively overlooked.4 The
introduction of directing groups (DGs) into the oxygen atom
of the phenol ring has enabled olefination,5 hydroxylation,6

acylation,7 acetoxylation,8 and acyloxylation9 reactions at the
ortho-C(sp2)−H bond. Although chelation assistance con-
stitutes a common practice within the field and results in the
assembly of unprecedented peptides, the cleavage of the
required DG is often a low-yielding step, which deeply
jeopardizes the practicality of the latter methods. Accordingly,
the performance of bioconjugation reactions in native Tyr-
containing peptides stands out as a streamlined and preferred
avenue. In this respect, a number of elegant C-modification
methods have been reported for the appendance of different

functional groups including Mannich-type reactions,10 nitra-
tions,11 and trifluoromethylations,12 among others. Based on
the attractive features of phenothiazines,13 of particular
importance are the methods developed by Lei14 and
MacMillan15 to label Tyr derivatives upon electrochemistry
and photocatalysis, respectively (Scheme 1).

The click-like phenol−phenothiazine coupling reaction16

can occur in a plethora of reaction conditions;17 however, its
application at more complex biomolecules has been less
explored. Whereas the reported amination protocols are
effective to append phenothiazine14 and phenoxazines15 in
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Scheme 1. Amination of Tyr-Containing Peptides
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Tyr-containing proteins, the requirement of sophisticated
reaction devices may reduce their use in a mainstream
context. Inspired by these elegant methods, we wondered
whether we could perform those couplings in an operationally
simple fashion without special reaction equipment. In this
Letter, we unlock the prowess of silver carbonate to assist a
reliable and scalable oxidative C−H amination process. This
method enables the practical appendance of benzoxazines and
benzothiazines into phenol-containing biomolecules, such as
Tyr-containing peptides and estrogens.

We started our studies by selecting the cross-dehydrogen-
ative coupling (CDC) of simple Boc-Tyr-OMe (1a) with
phenothiazine as the model reaction. After some exper-
imentation,18 we found that Ag2CO3 (30 mol %) in o-xylene
under air at 90 °C provided 2aa quantitatively (Table 1,

entry 1). Control experiments underpinned the crucial role of
silver carbonate19 and air within the reaction outcome
(entries 2−3). The use of other Ag(I) salts or a lower
amount of silver carbonate resulted in lower yields of 2aa
(entries 5−7). Importantly, the reaction could be performed
in neat water,18 albeit a stoichiometric amount of Ag2CO3
and an argon atmosphere were required (entry 10). The
latter evidenced the potential utility of the method in more
complex Tyr-containing biomolecules, which usually require
an aqueous system. Moreover, the synthesis of 2aa could be
performed with 3.0 g (15.06 mmol) of phenothiazine with an
excellent 89% isolated yield (entry 9).18 These preliminary
studies revealed that the challenging phenothiazination of a
Tyr residue could be performed in a reliable practical fashion
without a sophisticated setup. Notably, the parent benzox-
azine as well as substituted benzothiazines could be also used
as the coupling partners (Scheme 2). It is important to
highlight the tolerance to alkynes and chlorides, which
represent versatile reaction sites for creating molecular
diversity. In accordance with previous studies in simple
phenol systems,17 other heteroarenes such as carbazole or

indoles were found unreactive under the standard conditions,
thus highlighting the unique capacity of phenothiazine to
form N-centered radicals.

With the optimized conditions in hand, we next
investigated the preparative scope of the method to assemble
a new family of decorated Tyr-containing peptides in a
simple fashion (Scheme 3). A wide variety of dipeptides
underwent the corresponding C−N bond-forming coupling in
good to excellent yields. Remarkably, phenothiazine was
efficiently installed at dipeptides housing Leu (4a), Phe (4b),
Ala (4c−d), Ile (4e), Pro (4f), Ser (4g), Thr (4h), Met (4i),
Asp (4j), Glu (4k), Lys (4l), Arg (4m), and Trp (4n−o). Of
particular importance are compounds incorporating oxidizable
functional groups such as hydroxyl, thioether, and indole,
which remained intact along the process. It is noteworthy
that the performance of the process in water in the presence
of 1.0 equiv of Ag2CO3 ushered in higher yields for certain
highly polar dipeptides such as those incorporating Pro (4f),
Thr (4h), and Asp (4j), which may be due to solubility
issues. Interestingly, more challenging tri- and tetrapeptides
(4p−x) could be efficiently tagged with phenothiazine.
Importantly, tetrapeptides 4w and 4x bearing the amino
acid sequence of biologically relevant Endomorphin-1 and
Endomorphin-2, respectively, were also labeled in a late-stage
fashion. Other Tyr derived from naturally occurring
compounds or active pharmaceuticals including those derived
from palmitic acid (6a), oleic acid (6b), ibuprofen (6d), and
artificial sweetener neotame (6g) smoothly underwent the
corresponding amination reaction (Scheme 4). Likewise, non-
natural Tyr residues incorporating adamantane (6c), photo-
switchable diazobenzene (6e), and carboxamide (6f) site-
selectively underwent our amination manifold. In order to
demonstrate the synthetic utility of the method, we further
explored its use toward the late-stage modification of
estrogens, such as estrone and estradiol. The coupling of
estrone with phenothiazines preferentially occurred at the C2
position, although variable amounts of the parent isomer
substituted at the C4 were also formed (Scheme 4).

In order to gain some insight into the reaction mechanism,
some experiments were conducted. The presence of a free-
hydroxyl group within the Tyr was found key as Tyr housing

Table 1. C−H Phenothiazination of 1aa

entry Change from standard conditions 2aa (%)b

1 none 99
2 Without Ag2CO3 0
3 Under Ar 45
4 H2O instead of o-xylene 11
5 AgOAc instead of Ag2CO3 23
6 Ag2O instead of Ag2CO3 47
7 Ag2CO3 (25 mol %) 76
8 At 70 °C 82
9 Boc-Tyr-OMe (1.2 equiv) 99 (89)c

10 Ag2CO3 (1.0 equiv) in H2O under Ar 83
aReaction conditions: 1a (0.50 mmol), phenothiazine (0.25 mmol),
Ag2CO3 (30 mol %), o-xylene (1.0 mL) at 90 °C for 16 h under air.
bYield of isolated product after column chromatography. cReaction
performed with 15.06 mmol of phenothiazine.

Scheme 2. Scope of the Heteroarenea,b

aReaction conditions: 1a (0.30 mmol), heteroarene (0.25 mmol),
Ag2CO3 (30 mol %), o-xylene (1.0 mL) at 90 °C for 16 h under air.
bYield of isolated product after column chromatography, average of at
least two independent runs.
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OTs, OAc, or OMe groups remained intact (Table S4).18

The addition of BHT as a radical trap ushered in the entire
inhibition of the process. Conversely, the addition of
TEMPO resulted in slightly lower yields of 2aa (68% vs
99%), but the process was not entirely shut down (Table
S3).18 This reactivity pattern has been observed in similar
processes,16,17 and some authors have suggested that TEMPO
may prolong the lifetime of the transient N-centered radical
species upon the formation of covalent intermediates.17c,d,19

Accordingly,20 we assumed that the process would start with
the Ag-assisted formation of an electrophilic N-centered
radical I at the phenothiazine (Scheme S1).18 The latter
could likely be trapped by the phenol ring of the Tyr in a
polarity-matched fashion to yield radical intermediate II that
would eventually evolve into the target product through
further oxidation to III and aromatization (Scheme S1, path
a). However, a radical−radical coupling between the
phenothiazine radical I and the phenoxy radical IV derived
from the starting phenol has been often proposed and cannot
be ruled out at this stage (path b).20 The key role of air

could be attributed to the reoxidation of the in situ formed
Ag(0) species.

Considering the potential use of the Tyr(NPT) moiety as a
fluorophore14,15 and the attractive luminescent properties of
lanthanide ions, i.e., long lifetimes in the order of milli-
seconds and narrow emission bands in the visible and near-
infrared region,21 we wondered whether the Tyr(NPT) unit
could be used as an antenna for lanthanide ions, and
therefore synthesized peptide 7[Tb] (Figure 1A).18,22 As
expected, compared to parent Tyr analogue 8, peptide 7
exhibited red-shifted fluorescence with an emission band
centered at 446 nm (Figure 1B). Interestingly, the time-gated
emission spectrum of the metallopeptide 7[Tb] showed the
characteristic emission bands of the Tb(III) ion at 489, 544,
586, and 620 nm, for the corresponding transitions 5D4 →
7FJ, J = 6, 5, 4, 3, confirming that the Tyr(NPT)
chromophore is an adequate Tb(III) antenna.

In summary, we have developed a CDC of Tyr-containing
peptides with phenothiazines and phenoxazines. Salient
features of this method are the scalability, operational

Scheme 3. C−H Phenothiazination of Tyr-Containing Peptidesa,b

aReaction conditions: 3 (0.30 mmol), phenothiazine (0.25 mmol), Ag2CO3 (30 mol %), o-xylene (1.0 mL) at 90 °C for 16 h under air. bYield of
isolated product after column chromatography, average of at least two independent runs with no more than 5% variation in yield between runs. c3
(0.30 mmol), phenothiazine (0.25 mmol), Ag2CO3 (1.0 equiv), H2O (1.0 mL) at 90 °C for 16 h under Ar.
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simplicity, tolerance to air and water, and application for the
late-stage modification of estrogens. In addition, we have
shown that the Tyr(NPT) moiety can be used as an antenna
for Tb(III) ions, providing a new tool for the design of
luminescent probes for biologically relevant targets.
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