
Citation: Parhoudeh, S.; Eguía López,

P.; Kavousi Fard, A. Stochastic

Coordinated Management of

Electrical–Gas–Thermal Networks in

Flexible Energy Hubs Considering

Day-Ahead Energy and Ancillary

Markets. Sustainability 2023, 15,

10744. https://doi.org/10.3390/

su151310744

Academic Editor: Fausto Cavallaro

Received: 26 May 2023

Revised: 28 June 2023

Accepted: 29 June 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Stochastic Coordinated Management of Electrical–Gas–Thermal
Networks in Flexible Energy Hubs Considering Day-Ahead
Energy and Ancillary Markets
Sina Parhoudeh 1,* , Pablo Eguía López 1 and Abdollah Kavousi Fard 2

1 Department of Electrical Engineering, Faculty of Engineering of Bilbao, University of the Basque
Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain; pablo.eguia@ehu.eus

2 Department of Electrical and Electronics Engineering, Shiraz University of Technology,
Shiraz 7155713876, Iran; kavousi@sutech.ac.ir

* Correspondence: sina.parhoudeh@ehu.eus

Abstract: This paper presents an optimal operation framework for electrical, gas, and thermal
networks in the presence of energy hubs (EHs), so that EHs can benefit from day-ahead ancillary
and energy markets. Therefore, to consider the goals of network operators (optimal operation of
networks) and EHs (optimal operation in markets), the proposed model is developed in the form of a
bi-level optimization. Its upper-level formulation minimizes the expected energy loss in the proposed
networks based on the optimal power flow constraints and technical limits. At the lower-level
problem, maximizing the expected profit of EHs in day-ahead energy and ancillary markets (including
reactive and reserve regulation) is formulated based on the operational model of resources, storage
devices, and responsive load in the EH framework, and the flexible constraints of EHs. This scheme
includes the uncertainties of load, market price, renewable energy resources, and mobile storage
energy demand, which uses the point estimation method to model them. Karush–Kuhn–Tucker is
then used to extract the single-level model. Finally, by implementing the proposed scheme on a
standard system, the obtained numerical results confirm the capability of the proposed model in
improving the network’s operation and economic status of EHs. As a result, the proposed scheme
is able to decrease operation indices such as energy losses, voltage drop, and temperature drop by
approximately 28.5%, 39%, and 27.8%, respectively, compared to load flow analysis. This scheme can
improve the flexibility of EHs, including non-controllable sources such as renewable resources, by
nearly 100% and it obtains considerable profits for hubs.

Keywords: bi-level optimization; energy and ancillary services markets; energy losses; energy
networks; flexible energy hub; point estimation method

1. Introduction
1.1. Motivation

Organizations and governments encourage consumers of different energies to use
clean energy and technologies with low environmental pollution and high efficiency to
reduce the environmental effects of conventional energy sources and decarbonize the
energy system [1]. One solution is to use combined heat and power (CHP) systems in the
place of consumption [2]. Using CHP as a local source provides electric and thermal energy
using gas energy as the source. In addition to increasing the efficiency of energy production,
this solution will reduce the losses in the transmission system. Furthermore, these sources
have much lower pollution than conventional fuel power plants [2]. In addition to CHP,
renewable energy sources (RESs) and electric vehicles (EVs) are other technologies that
can help reduce environmental pollution [3]. Moreover, the energy storage system (ESS)
and demand response program (DRP) can also be used in the direction of the proposed
goal [3]. Furthermore, they can improve network status by peak shaving [3]. This goal
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will be achieved if the appropriate energy management of these elements is implemented.
With this aim, it is better to consider these elements within an integrated network in the
form of an energy hub (EH) [4]. For example, an industrial unit can operate as an energy
hub to manage the energy of its resources and loads. Therefore, the following benefits and
goals can be extracted [5]:

• Coordination between sources and active loads (ESS, EV, and DRP) in the form of
energy hubs can provide technical and economic benefits for each element. For ex-
ample, the presence of ESSs in an EH including renewable resources can increase the
flexibility of the EH in energy networks.

• Appropriate energy management for EHs can provide the proper capabilities for the
presence of hubs in energy networks such as electricity, gas, and thermal networks in
terms of technical indexes (operation, reliability, flexibility, security, and economic).

In general, an energy hub is an integrated unit where sources, storage devices, and
responsive loads exist alongside passive loads. Moreover, the hub is responsible for
establishing coordination between the mentioned elements so that it has a central con-
troller, and each source, storage, and load has local controllers. The local controllers are
in bidirectional communication with the central controller, where each local controller
sends its data, including the capacity, to the central controller. This controller then
manages the energy of the mentioned elements based on its economic and technical
goals and the network connected to it. Finally, it sends the command signal to the local
controllers. Moreover, in the hub, several different types of energy, such as electric,
thermal, and gas, can be managed. This results in increasing energy efficiency.

1.2. Literature Review

Different researchers have worked in the field of EH management in the different
energy networks. The coordinated energy management of EHs in various networks
based upon the hubs’ cooperation in day-ahead (DA) markets has been presented
in [6]. Within this method, a linear objective function towards hubs’ income maxi-
mization in the DA market has been included in the problem of coordinated energy
management. In this problem, the linear networks and hubs constraints have been
considered. Furthermore, the uncertainties of various loads, the energy price of the
DA market, the output power of RES, and the parameters of EVs have been considered
in this model. Therefore, the proposed scheme has been defined as scenario-based
stochastic programming (SBSP). Monte Carlo Simulation (MCS) has been considered
in this programming to generate scenarios and the fast forward/backward approach
was adopted to reduce the number of scenarios. The EHs’ energy management has been
presented in [7]. In [7], the hub is connected to the electricity, gas, and thermal networks.
Moreover, EH is considered as a coordination structure between ESSs and distributed gen-
eration (DGs). The proposed problem deterministic model minimizes the energy networks’
total operating expenses in the EHs’ presence constrained to the equations of optimal
power flow of various networks and hubs equations including storages and resources.
The problem is related to the uncertainty of renewable resources, load, mobile storage,
consumption energy, and energy price. Moreover, the model is a non-convex mixed-integer
non-linear programming (MINLP) structure, inherently. Modeling these uncertainties
has been performed by adaptive robust optimization (ARO), which is, according to an
algorithm of hybrid metaheuristic, owing to the nature of the non-convexity and non-
linearity of the proposed structure. A structure of multi-objective decision-making has
been introduced to settle the EHs’ optimum scheduling [8]. The whole EH expenses, EH
average reserve, emissions, and the losses of energy have been considered by the expressed
scheme simultaneously. According to the preference of EH that can be unique for each
EH, these goals are prioritized. In this approach, the EH price has been introduced as the
principal goal, and its cost is the highest priority. The secondary goals are included in the
reserve and losses of the system and emission concurrently. A lexicography optimization
has been conducted based on objective prioritization, wherein the first step includes the
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minimization of the expense and the second step of the optimization is secondary goals’
evaluation. The multi-energy system (MES) has been expressed in [9]. The hub manager
controls the hub output electrical energy generated by combined heat and power (CHP),
storage and RESs. These sources are not considered as input electrical energy and do not
take part in the market. The bilateral contract and PoolCo provide input electrical energy.
Furthermore, the only interfacing component of various energies is CHP. Thus, the model
of this issue has been presented in the first step, including the aim of the hub energy cost
minimization. The problem limitations are the limitation of indices in thermal, electrical,
and gas networks and the constraints of power flow, renewable energy sources, PoolCo,
storages, the models of the bilateral contract market, and CHP relations. Furthermore, the
expressed information-gap decision theory (IGDT)-based robust problem model [9] has
been presented in [10]. The uncertainty parameters of the proposed problem are the price
of energy in the PoolCo market, loads, and the output power of RESs. Therefore, the
uncertainty parameters’ considered method for the expressed problem [10] is IGDT-based
robust optimization. An optimization structure of flexible-reliable operation (FRO) con-
cerning the EHs’ networks of gas, electricity, and district thermal has been defined in [11].
In cooperation with CHP and RESs’ structure, the incentive-based DRP (IDRP) and ESS
have been considered to attain a flexible EH. The entire expected expenses of the reliability,
flexibility, and operation of the power networks consisting of EHs have been minimized by
the expressed scheme. The optimization program is confined to the EH structure, network
reliability necessities, and the equations of the optimal power flow in the presence of IDRP
and ESS (active loads, ESS). To model uncertainties of load, RESs’ power production, and
the accessibility of system equipment, scenario-based stochastic programming (SBSP) has
been defined. The EH planning issue assessment, including ESSs, CHPs, auxiliary boilers,
and wind turbines through hybrid IGDT/stochastic methods, has been presented in [12].
Furthermore, by the presented model of hybrid, the EH operator can pursue two differ-
ent strategies when faced with price uncertainty, i.e., risk-seeker strategy and risk-averse
strategy. This planning subject of EH has been optimized by this method in an uncertain
situation by MINLP. This formulation is proposed to minimize the expected operation cost
of EH where different energy demands of EH would be efficiently met. In [13], a structure of
the coordinated operation of an EH according to the coupling relation linearization has been
proposed, with the aim of operating energy, minimizing the operating cost, and maximizing
the use of RES jointly. To consider a precise integrated EHs scheme, a combined method
has been presented, which the algorithm combination including grasshopper optimization
and linear weighted sum have been considered, resolving the energy management issue;
therefore, the regionally coordinated optimization has been realized and the productivity of
energy has improved. The EH optimum operation issue, including different energy sources,
has been presented in [14] to consider the stochastic loads (thermal and electricity) inside
the attendance of the expense’s uncertainty and functional equations, i.e., the minimum
requirements of downtime and uptime. The stochastic approach has been considered to
model uncertainties of demand and cost. According to the scenario-based/data/interval
gap decision technique, an optimizing structure has been presented in [15] to analyze the
smart optimum EH performance subject to financial priorities, technical limitations of
the distribution network, and uncertainties. The EHs with intelligent equipment and the
program of demand-side management (consisting of the responsive service of load and cost)
have been considered to encourage electrical buyers to choose an optimal consumption
pattern. This is performed to satisfy EHs’ financial priorities. Eventually, an outline of the
literature has been presented in Table 1.
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Table 1. Taxonomy of recent research works.

Ref. Flexibility Model
Market Model

Uncertainty Modeling
Energy Reactive Power Reserve Regulation

[6] No Yes No No SBSP
[7] No No No No ARO
[8] No No No No SBSP
[9] No Yes No No Deterministic

[10] No Yes No No IGDT
[11] Yes No No No SBSP
[12] No No No No Hybrid SBSP/IGDT
[13] No No No No Deterministic
[14] No No No No SBSP
[15] No No No No Scenario-based/interval/IGDT

PM Yes Yes Yes Yes PEM

1.3. Research Gaps

According to the research background and Table 1, there are the following major
research gaps in the field of grid-connected EHs’ energy management:

• The energy hubs can participate in the ancillary services and energy markets to
make profits; however, this aspect has been less considered in most research, which
has focused on how to minimize the cost of EH operation within the networks.
Moreover, studies that deal with this issue have also focused on the participation of
EHs in the energy market. However, there are different sources, storages, and DRPs
that can control their active and reactive power. In addition, EH can store its excess
power production relative to the network energy consumption; therefore, it can play
a role in reserve regulation [8]. Therefore, EHs can also participate in the ancillary
services market and obtain the desired financial benefit. However, this issue has rarely
been discussed in other studies.

• The presence of RES in EH reduces its flexibility in the electrical sector. The depen-
dence of the CHP thermal power on active power also reduces the flexibility of EH in
the thermal sector. The low flexibility of EH leads to an unequal conclusion between
DA and real-time (RT) operation. It is possible that the balance between production
and supply in the energy network, including EHs, is not achieved in RT operation.
Therefore, in various studies [1,5], the use of flexible sources such as storage, DRP,
and renewable sources (CHP for RES, boiler for CHP) in EH has been suggested.
These sources can enhance EH flexibility by RES active and CHP thermal power fluc-
tuations’ compensation in RT operation relative to DA scheduling operation. This has
been stated in most studies, but fewer studies, such as [11], have concentrated on
system flexibility modeling. Obtaining the values of an index needs the application
of its mathematical model to the problem. By achieving the values of the index, an
accurate and reliable evaluation of its pros and cons can be provided.

• In the issue of grid-connected EHs management, there are different uncertainty pa-
rameters such as load, market price, reserve demand, mobile storage energy demand,
and renewable power. Therefore, it has a high number of uncertainties. In addition,
the precise calculation of some indicators, such as flexibility, is required to examine
different uncertainty scenarios; therefore, a reliable optimal solution can be achieved
using stochastic programming. This is also not achieved by robust modeling such
as ARO and IGDT, which have only the worst-case scenario. Energy management
of EH is an operation problem of the power system. In this type of problem, the
execution step is low and, in some cases, it reduces up to 15 min. Therefore, it is of
particular importance to achieve the optimal solution in the shortest computational
time. In proportion to these two cases, uncertainty modeling methods obtaining the
minimum number of scenarios are required. The choice of point estimation methods
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(PEM) is appropriate in this regard; however, its usage in the proposed problem has
been considered in less research.

1.4. Contributions

In order to eliminate the research gap, this paper proposes the operation of energy net-
works in the presence of EHs in accordance with EMS. In the proposed energy management
system (EMS) scheme, the local operators (resources, storages, and load operators) within
EH are in bidirectional coordination with the EH operator (EHO). Local operators send
their power generation and demand to EHO. Therefore, based on the energy price, reserve
data, and information received from the market, EHO determines the active and reactive
power optimal scheduling of the elements. EHOs are also in bidirectional coordination
with energy network operators (ENOs). Accordingly, EHOs report the active and reactive
power resulting from the optimal operation of EHs to the ENOs. According to the electric,
gas, and thermal networks’ reserve and energy demand, received information from EHs,
and network operation indexes status (such as the limitation of gas/fluid flows through
pipes, thermal rating of distribution lines, and voltage limitation), ENOs report the optimal
operation status of EHs to EHOs. In addition, in this plan, EH has been considered a flexible
system in the aforementioned networks and can benefit from DA ancillary (reactive power
and reservation regulation) and energy markets simultaneously. Therefore, the proposed
scheme is modeled as a two-level optimization in order to reach ENOs’ goals in achieving
the optimal operation status and reaching the objective of EHOs to attain desired economic
and flexibility status. The upper-level problem is responsible for minimizing the expected
energy losses in these networks. It also has constraints on the power dispatch equations and
operation index limitations in the aforementioned networks. In the lower-level problem,
maximization of expected profit of EHs in reactive power, DA ancillary, and energy markets
are considered as the objective function. Constraints include the operation model of CHP,
boiler, RES [16,17], DRP, mobile storage (EVs), electrical energy storage (EES) [18], thermal
energy storage (TES), and the EH reserve and flexibility model. The presence of RES in
EH leads to weak EH flexibility in the electrical section. However, appropriate energy
management of EES, DRP, and CHP can play the role of flexible sources (FS) for elements.
The CHP thermal power also depends on its active power; thus, it results in weak EH
flexibility in the thermal part. However, TES, DRP, and boiler are used in this paper as FS
to improve EH flexibility. Moreover, the proposed plan has uncertainties regarding the
load, market price, renewable power, and EVs’ energy demand. Due to the high number
of uncertainty parameters, the point estimation method (PEM) is utilized for uncertainty
modeling to achieve a reliable optimal solution in low computational time. PEM obtains
a minimal number of scenarios compared to the other methods in stochastic program-
ming. The Karush–Kuhn–Tucker (KKT) method is used to achieve a solvable integrated
single-level problem with a conventional solver.

Finally, the innovations of this paper can be summarized as follows:

• The evaluation of flexible EH ability on energy networks’ operation status.
• Simultaneous participation of flexible energy hubs in reactive power, DA reserve

regulation, and energy markets to obtain high financial benefit for resources,
storage devices, and aggregated responsive loads in EH format.

• Presenting a two-level problem for energy management modeling of different
networks in the presence of EHs in order to simultaneously model EHOs and
ENOs’ objectives.

• Using PEM for many uncertainties modeling in network-connected EHs’ energy man-
agement problems to achieve a reliable optimal solution in low computational time.

1.5. Paper Organization

The rest of this paper is organized as follows: Section 2 describes a two-level formula-
tion of the proposed model based on uncertainty modeling using PEM. Section 3 extracts
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a single-level integrated model based on the KKT method. Finally, numerical results and
contributions are reported in Sections 4 and 5, respectively.

2. Proposed Scheme Formulation

In this section, the operation of electric, thermal, and gas energy networks in the
presence of flexible EHs is presented so that EHs participate in day-ahead energy, reactive
power, and reserve regulation markets. This scheme is based on a two-layer EMS. In the
first layer, the operation of energy networks is optimized considering the existence of
bilateral coordination between ENOs and EHO. The second layer refers to the EH energy
management considering bilateral coordination between local operators (resources, stor-
ages, and load operators) and EHO. Therefore, the proposed model is formulated as a
bi-level optimization so that its upper and lower levels are proportional to the first and
second layers of EMS, respectively. The upper-level problem minimizes the expected
energy losses of the energy networks by considering the operating constraints [19–21]
of these networks. The lower-level problem is responsible for EHs’ profit maximization
in the mentioned markets, which includes resources operation, storage, and responsive
load model, EHs’ reserve formulation, and flexibility limit. Thus, the proposed problem is
formulated as follows:

min EEL = ∑
e,t,w

πw

(
PES

e,t,w − PED
e,t,w + ∑

i
IE
e,iP

EH
i,t,w

)
+ ∑

h,t,w
πw

(
HHS

h,t,w − HHD
h,t,w + ∑

i
IH
h,i H

EH
i,t,w

)
+ ∑

g,t,w
πw

(
GGS

g,t,w − GGD
g,t,w + ∑

i
IG
g,iG

EH
i,t,w

)
.

(1)

Subject to:

PES
e,t,w + ∑

i
IE
e,iP

EH
i,t,w −∑

m
JE
e,mPEL

e,m,t,w = PED
e,t,w ∀e, t, w (2)
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e,t,w + ∑

i
IE
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EH
i,t,w −∑

m
JE
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h,t,w + ∑

i
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h,i H
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i,t,w −∑

m
JH
h,m HHL

h,m,t,w = HHD
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i
IG
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i,t,w −∑

m
JG
g,mGGL
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}
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(
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√(
PES

e,t,w
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+
(
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e,t,w
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−GGL
g,m

(
or HGL

h,m

)
≤ GGL

g,m,t,w

(
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h,m,t,w
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≤ GGL
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(A) Upper-level problem

This problem is presented in Equations (1)–(14). The objective function (1) is equal
to minimizing the expected energy losses (EEL) in the electrical (first layer), thermal (sec-
ond layer), and gas (third layer) networks. In this equation, the energy loss is equal
to the difference between produced and consumed energy in the network and EHS.
Equations (2)–(9) indicate the power distribution equations of the mentioned networks,
with Equations (2)–(5) indicating active and reactive power balance in the electrical bus, the
thermal power balance in the thermal node, and gas power balance in the gas node, respec-
tively [6,7]. Active and reactive power flows in the electrical distribution lines are calculated
based on Equations (6) and (7), respectively, and gas flow through the thermal (gas) pipes
is determined through Equations (8) and (9) [10,11]. The aforementioned energy networks’
operation limits are then modeled through Equations (10) to (14). In Equation (10), the lim-
itation of electric buses’ voltage magnitude, gas pressure, and node temperature [22,23] in
each node have been stated [9]. In this regard, generally, the lower and upper limits (χ,χ) of
these variables are equal to 0.9 and 1.1, respectively [9,11]. Equations (11) and (12) express
capacity limits (rated apparent power) of distribution lines and electrical distribution substa-
tions, respectively [6,7]. The limitations of the maximum gas (thermal) power flow through
the pipe and gas (thermal) substation have been modeled in Equations (13) and (14), re-
spectively [6,7]. Finally, it should be noted that the distribution substation is connected to
the upstream network through slack (node) bus (o). Therefore, the values of the variables
of PES, QES, HHS, and GGS are non-zero just for the bus (node) o.

(B) Lower-level problem

This problem has been modeled through Equations (15) to (33), which are used for
calculating PEH, QEH, HEH,and GEH. The objective function (15) refers to the EHs’ maxi-
mization in DA reserve regulation, reactive power, and energy markets. In the first line
of this equation, the EHs’ financial benefit from the energy market (first, third, and fourth
item) [6] and DA reactive power (second item) have been formulated. The second level of
Equation (15) calculates the EHs’ financial benefit obtained from the electrical (first item),
thermal (second item), and gas (third item) DA reserve regulation market. In this equation,
the profit in each section and hour (t) is equal to the market price and power of its section.
This equation then calculates the profit (expense) of that section if the power has a positive
(negative) value. According to [24], the reactive power price (KQ) has been considered as a
factor of electrical energy price (λE) in this equation.

The lower-level problem equations have been presented in Equations (16) to (33);
thus, Equations (16)–(19) express active, reactive, thermal, and gas power balances in EH,
respectively. It must be noted that, according to Equations (16), (18), and (19), the excess
EH generated power (active, thermal, gas) relative to EH consumption power is delivered
to the energy market or sent to the reserve regulation market. The CHP operation model
has been presented in Equations (20)–(22) [2]. Equations (20) and (21) calculate the CHP
thermal and gas power according to active power, respectively, and CHP output capacity is
formulated using active, reactive, and thermal power in Equation (22). The CHP active and
reactive power limit is known as the CHP generator capability curve. The boiler operation
model has been expressed in Equations (23) and (24) [6], in which boiler input power
value is calculated according to output thermal power based on (23), and its generation
thermal power limit has been considered in (24). In the case of the RES models, they
generally inject their maximum active power in EH proportional to weather conditions
(PR) [1]. This is because they have negligible operating costs. In this article, RES cost has
been considered as zero. In addition, they are generally connected to the grid using an
electronic power converter. Therefore, RESs’ active and reactive power can be controlled
simultaneously using the mentioned converter [25]. Therefore, in the RESs’ model, it is
necessary to model their reactive power limit, as achieved by Equation (25). The energy
storage [26,27] operation model has been considered in Equations (26)–(29) [9,11], in
which (26)–(28) are the same for EES and TES, and (29) can be used only for EES.
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Equations (26) and (27) express storage devices’ charge and discharge rate limits, respec-
tively. Equations (28) and (29) model the limitation of storable energy in storage devices
and controllable reactive power by EES charger, respectively. In this paper, it is assumed
that the EES charger has an active front-end rectifier [25]. Thus, it is able to control EES
active and reactive power simultaneously.

Alternatively, Equations (26)–(29) can be used to model electric vehicles (EVs) aggre-
gation, except that the indexes t and w have been added to the parameters CREES, DREES,
and so on [3,6]. Because it is possible that different EVs can be connected to the EH at
any time and scenario, CREES at hour t is equal to the total EVs’ charge rate connected
to the network at this hour. The same equation holds for DREES, E, E, QE, and QE, but
EI at hour t is equal to the total new EVs’ primary energy connected to the grid at this
hour [3,6]. Equations (30) and (31) express the DRP operation model for electrical, ther-
mal, and gas consumers in EH [3,11]. In this problem, DRP is based on encouragement.
The consumers participating in DRP shift their energy consumption from hours with a
high price (corresponding to peak hours) to hours with a low price (corresponding to
off-peak hours). Therefore, in accordance with this explanation, Equation (30) refers to
the power control range in the DRP scheme. Equation (31) also ensures that the total
reduced energy consumption of consumers for peak hours is provided by EH in off-peak
hours. The value of the reserve variable must always be positive based on Equation (32).
Finally, EHs’ flexibility limitation in the electrical and thermal section has been expressed
by Equation (33). Low flexibility leads to the unequal result of DA operation and real-time.
As a result, it is possible to have an imbalance between production and consumption in
real-time operation. To compensate for this, flexible resources such as storage, DRP, and
renewable resources have to compensate or eliminate the fluctuations of RESs’ active power
and CHPs’ thermal power in each scenario compared to the corresponding scenario with
the deterministic model (first scenario with the predicted value of uncertainty parameter).
Under these conditions, it is expected that the difference between EHs’ active (thermal)
power in each scenario compared to the first scenario is low and within the flexibility
tolerance (∆F). The 100% flexibility is obtained if ∆F is equal to 0 per unit. It is noteworthy
that uncertain power generation of renewable resources makes the day-ahead and real-time
operation results different. Therefore, generation and consumption in real-time operation
might be unbalanced. This condition is known as a low flexibility case. To compensate for
this, there is a need for elements capable of power control, such as storage devices, so that
they can deal with the power fluctuations of renewable resources in real-time operation
compared to day-ahead operation. In this situation, flexibility is enhanced. In the thermal
sector, CHP reduces flexibility as its thermal part does not have independent control from
the electrical sector.

(C) Uncertainty modeling

This problem includes uncertainty parameters such as load, PED, QED, HHD, GGD,
market price, λE, λH, λG, λER, λHR, λGR, renewable power, PR, EVs’ aggregation parameters,
CREES, DREES, EI, E, QE, and QE. In this article, stochastic programming is used to model
the uncertainties. However, due to a large number of uncertainty parameters, the point
estimation method (PEM) is used to model these parameters [2]. This method extracts
the least possible number of scenarios compared to the other stochastic programming
methods. Hence, the confident optimal solution in low computational time is obtained. It is
noteworthy that the proposed plan is a type of operation problem. Since the executive step
is generally less than 1 h in operation problem, it is necessary to have a low problem-solving
computational time. This article uses the PEM method based on the model of 2n + 1, in
which n and 2n + 1 are equal to the number of uncertainty parameters and the number of
extracted scenarios, respectively. The details of this method are as follows [2]:

• Step 1: definition of n.
• Step 2: define E(Sa) = 0 (a = 1, 2), a as output torque index, S as an optimiza-

tion problem.



Sustainability 2023, 15, 10744 10 of 26

• Step 3: selection of uncertainty parameter (Z1).
• Step 4: calculation of skewness (λzl ,3) and kurtosis (λzl ,4) of uncertainty parameter

(Z1) using Equations (34) and (35), respectively:

λzl ,3 =
E[(zl − µzl )

3]

(σzl )
3 (34)

λzl ,4 =
E[(zl − µzl )

4]

(σzl )
4 (35)

where µzl and σzl express the mean and standard deviation of variable Z1, respectively. E(f )
also expresses the mean value (expected value) of f, which is calculated for the expression
inside Equations (34) and (35) as follows:

E[(zl − µzl )
3] =

N

∑
j=1

(zl,j − µzl )
3 × Prob(zl,j ) (36)

E[(zl − µzl )
4] =

N

∑
j=1

(zl,j − µzl )
4 × Prob(zl,j ) (37)

In the above equations, N and Prob(z l,j

)
express the number of samples taken from

probability distribution function Z1 and the probability of each sample, respectively.

• Step 5: calculation of two standard locations (ξ) based on Equation (38):

ξl,k =
λzl ,3

2
+ (−1)3−k

√
λzl ,4 −

3
4
(
λzl ,3

)2 , k = 1, 2 (38)

• Step 6: calculation of two standard locations (ξ) based on Equation (38):

zl,k = µzl + ξzl ,k.σzl , k = 1, 2 (39)

• Step 7: solving the confident problem in the presence of estimated locations as follows:

Sl,k = f (µz1 , µz2 , . . . , zl,k, . . . , µzn) k= 1, 2 (40)

• Step 8: calculating the impact factor of (ω) using Equation (41):

ωl,k = (−1)3−k/ξl,k(ξl,1 − ξl,2) , k = 1, 2 (41)

• Step 9: updating first and second output torque using Equation (42):

E(Sa) = E(Sa) +
2

∑
k=1

ωl,k.(S(l, k))a, a = 1, 2 (42)

• Step 10: repeat steps 3 to 9, until all stochastic variables are entered in the calculations.
• Step 11: calculating the impact coefficient of the mean point using Equation (43):

ωµ = 1−
m

∑
l=1

1/
(

λl,4 − (λl,3)
2
)

(43)

• Step 12: updating the first and second output torques using Equation (44):

E(Sa) = E(Sa) + ωµ.(Sµ)
a, a = 1, 2 (44)
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• Step 13: calculation of mean and standard deviation of the stochastic variable using
Equations (45) and (46):

µS = E(S1) (45)

σS =

√
E(S2)− (E(S1))

2 (46)

The proposed scheme includes the optimization model. Optimization formulation contains
an objective function [28–37]. There are different constraints in this problem [38–46]. To apply
the optimization problem on the network, the grid should be equipped with intelligent
devices [47–57].

3. Single-Level Modeling of the Proposed Problem

The previous presented problem, Equations (1)–(33), is a bi-level problem similar to
the formulation, relations (47)–(50). Its lower-level model also has a linear programming
(LP) model such as relations (48)–(50). In these relations, y expresses the variables of the
lower-level problems, including EH power and reserve, and the variables of EH elements’
power and energy. Relation (48) is equivalent to objective function (15), relation (49) is
proportional to equal relations (16)–(21), (23), (31), and inequality relations (22), (24)–(30),
and (32)–(33) appear in relation (50).

Upper-level model, (1)–(14) (47)

y ∈ arg
{

max Profit = ATy (48)

Subject to:
B.y = b : ρ (49)

C.y ≤ c : µ} (50)

In this section, the KKT method is used to extract a single-level integrated model
solvable by conventional algorithms [58]. The basic requirement of this method is the
convexity of the lower-level problem. However, since this issue has an LP model, then the
mentioned condition has also been met. To start the KKT process, the Lagrange function
(L) for the lower-level problem is first computed as Equation (51). The Lagrange function
is equal to the total of the main objective, relation (48), and the penalty functions method
for the problem constraints. The penalty function for the constraints a = b, a ≤ b is equal to
(b − a) and µ.max(0, a− b) respectively, where ρ ∈ (−∞, +∞) and µ ≥ 0 express Lagrangian
multipliers [11].

L = ATy + ρ.(b− B.y) + µ.max(0, C.y− c) (51)

The single-level problem then includes the upper-level problem model Equations (1)–(14)
and constraints of the KKT [58].

The constraints of the KKT are obtained from the equality of the Lagrangian function
derivative to the lower-level problem variables (y) and Lagrangian coefficients (ρ, µ) with
zero. Thus, the problem can be written as follows:

min EEL = ∑
e,t,w

πw

(
PES

e,t,w − PED
e,t,w + ∑

i
IE
e,iP

EH
i,t,w

)
+ ∑

h,t,w
πw

(
HHS

h,t,w − HHD
h,t,w + ∑

i
IH
h,i H

EH
i,t,w

)
+ ∑

g,t,w
πw

(
GGS

g,t,w − GGD
g,t,w + ∑

i
IG
g,iG

EH
i,t,w

)
.

(52)
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Subject to:

Constraints (2)–(14)· (53)

B.ρ + C.µ = A :
∂L
∂y

= 0· (54)

Constraint (49) (or Constraints (16)–(21), (23), and (31)) :
∂L
∂ρ

= 0 (55)

Constraint (50) (or Constraints (22), (24)–(30), and (32)–(34)) :
∂L
∂µ

= 0, first condition of KKT (56)

(C.y− c).µ = 0 :
∂L
∂µ

= 0, second condition of KKT (57)

ρ ∈ (−∞,+∞), µ ≥ 0 (58)

The upper-level problem model has been expressed in Constraints (52) and (53),
where its objective function has been considered as a single-level problem objective
in (52). Its constraints (2)–(14) are also considered in Constraint (53) for the single-
level problem. Relations (54)–(58) express the KKT model for the lower-level problem
(15)–(33). Constraint (54) is obtained from the equality of the Lagrangian function
derivative to the lower-level formulation variables with ( ∂L

∂y = 0) [58]. Constraint (55)

is also obtained from ∂L
∂ρ = 0, which includes equal relations (16)–(21), (23), and (31) in

lower-level problems. It is worth mentioning that ∂L
∂µ = 0 has two conditions which are

known as the first and second conditions of KKT [58]. In the first condition of KKT, the
unequal conditions (22), (24)–(30), (32), and (33) are derived similarly to Constraint (56),
from ∂L

∂µ = 0. In the second condition of KKT, the equality of the multiplication of the
Lagrangian coefficient µ and inequality constraint boundary equation, C.y − c, to zero is
derived from ∂L

∂µ = 0, which has been presented in Constraint (57) [58]. Finally, the range of
Lagrange coefficients changes has been considered in Constraint (58).

4. Numerical Result and Discussion
4.1. Problem Data

The proposed scheme in this section is presented based on the multi-energy system
in Figure 1, which has an IEEE 33-bus electrical distribution network [59], Madumvej
15-node thermal network [60], and a 4-node gas network [6]. The base power for electrical,
thermal, and gas networks is 1 MVA, 1 MW, and 1 MW, respectively. The base voltage,
temperature, and pressure are 12.66 kV, 373.15 K, and 10 bar, respectively. Slack bus in
electrical, heating, and gas networks is 1, 0, and 1, respectively. The lower and upper
limits of these parameters are 0.9 and 1.1 per unit. The data of the mentioned networks,
including lines, substations, and load values, are reported in [6,59,60]. The active and
reactive peak load of the electrical network are 3.715 MW and 2.3 MVAr, respectively, and
the peak thermal load for the thermal network is equal to 3 MW [59,60]. The gas network
is assumed to provide the required gas energy only for boilers and CHPs in EHs; therefore,
the passive gas load value is considered as zero. Hourly load data in each network are
obtained by multiplying the peak load with a load coefficient curve [61–70], where this
curve has been presented in [6]. The energy price for different networks has been taken
from [11], where the electricity price for the periods 1:00–7:00, 8:00–16:00 and 23:00–24:00,
and 17:00–22:00 is equal to 17.6 $/MWh, 26.4 $/MWh, and 33 $/MWh, respectively. It has
a value of 15 $/MWh for hours 5:00–15:00 and 22 $/MWh for other hours in the thermal
network. It also has a value of 18 $/MWh for hours 5:00–22:00 and 12 $/MWh for other
hours in the gas networks. The reserve price in each network is equal to the energy price
in that network. Based on [24], KQ is equal to 0.08. The system in Figure 1 has eight EHs.
EH location in the different networks, peak load, and the elements in each EH are reported
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in Table 2. According to this table, RES in EHs 1–6 are photovoltaic plants (PV) and wind
turbines (WT). The RES peak active power is equal to 0.2 MW and 0.25MW, respectively.
The active power generation daily profile of these sources is obtained by multiplying the
active peak power by a daily curve of their generated power rate taken from [3]. Each of
these sources is also able to control their reactive power between −0.1 MVAr and 0.1 MVAr.
Regarding DRP, it is assumed that the consumers in EH participate in the DRP scheme at a
rate of 40%. EHs 1–6 have two types of EES, static and mobile. The static EES is a battery (B),
and the mobile type is related to the aggregation of EVs. In each of these aforementioned
EHs, it is assumed that there are 80 electric vehicles. The number of connected EVs to
the EH per hour is equal to the multiplication of the total number of EVs in the EH and
a daily curve of their penetration rate [3]. The curve has been taken from [3], and EVs
characteristics such as charge/discharge rate, charge capacity, consumption energy, and
other items are reported in [3,16]. A battery with a capacity of 1.5 MWh with 90% charging
and discharging efficiency has been used in the mentioned EHs. Its charge and discharge
rate is equal to 0.8 MW, and the initial and minimum stored energy is 0.2 MW and 0.2 MW,
respectively [6]. The battery charger can control reactive power between −0.2 MVAr and
0.2 MVAr. There are similar specifications for TES, except that its charge and discharge
efficiency is 80%. In EHs 5–8, a boiler with a capacity (maximum thermal power) of 0.2 MW
with an efficiency of 80% has been used. In each of these EHs, the CHP has a maximum
(minimum) active, reactive, and thermal power equal to 0.5 MW, 0.2 MVAr, and 0.3 MW
(0 MW, 0.2 MVAr, and 0 MW), respectively. Electricity, loss, and thermal efficiency in
CHP are 40%, 8%, and 40%, respectively [2]. Finally, the standard deviation of uncertainty
parameters is assumed to be equal to 10%, and the flexibility tolerance (∆F) for achieving
flexible EHs is equal to 0.05 per unit.
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Figure 1. Case test system: (a) IEEE 33-bus electrical distribution network [59], (b) 15-node Madumvej
district heating grid [60], and (c) 4-node gas system [6].

Table 2. EHs’ data.

EH Location (e, h, g) Source ESS DRP PED (MW) QED (MVAr) HHD (MW) GGD (MW)

1 6, -, - PV, WT B, EVs Electrical 0.6 0.3 0 0
2 13, -, - PV, WT B, EVs Electrical 0.4 0.2 0 0
3 23, -, - PV, WT B, EVs Electrical 0.6 0.3 0 0
4 26, -, - PV, WT B, EVs Electrical 0.4 0.2 0 0

5 17, 5, 2 CHP, boiler,
PV, WT TES, B, EVs Electrical and

thermal 0.8 0.4 0.4 0

6 31, 11, 4 CHP, boiler,
PV, WT TES, B, EVs Electrical and

thermal 0.8 0.4 0.4 0

7 21, 2, 3 CHP, boiler TES Thermal 0.4 0.2 0.3 0
8 10, 8, 3 CHP, boiler TES Thermal 0.4 0.2 0.3 0

4.2. Results

The proposed model was simulated in accordance with the data reported in the
previous section in the GAMS optimization software environment [71]. The numerical
results obtained from different cases are reported below.

(A) The convergence evaluation of the proposed problem-solving

In this section, the convergence result of the proposed problem using Evolutionary
Algorithms (EA) such as Genetic Algorithm (GA) [72], Teaching–Learning Based Optimiza-
tion (TLBO) [73], Grey Wolf Optimization (GWO) [74], Crew Search Algorithm (CSA) [75],
and classical algorithms [71] such as CONOPT, IPOPT, LGO, MINOS, and OQNLP is
reported. It is noteworthy that, to solve the Evolutionary Algorithm problem, the proposed
model has been simulated in the MATLAB software environment. However, it is coded in
accordance with the mathematical solver in GAMS software. In solving the problem with
EA, problem decision variables such as PC, QC, HB, QR, PCH, PDCH, HCH, HDCH, PD, HD, GD,
and QE are defined by EA according to (22), (24)–(27), (29), and (30). Therefore, the value of
dependent variables, including PEH, QEH, HEH, GEH, EREH, HREH, GREH, HC, GC,, and GB

are calculated using (16)–(21) and (23), and the value of dependent variables PES, QES, HHS,
GGS, PEL, QEL, HHL, GGL, V, T, σ,and ξ, are calculated using (2)–(9). The backward–forward
load flow method for radial-network and Newton–Raphson method for ring-network is
used to solve the constraints (2)–(9). The dependent variables ρ and µ are then calculated
using (54) and (57). In the following, the fitness function value is evaluated. The fitness
function is equal to the sum of the main objective function, (1), and the sum of the penalty
function of constraints (10)–(14), HC limitation in (22), (28), and (31)–(33). In other words,
the penalty function methods [13] have been used to estimate the mentioned constraints.
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The penalty function for the limitation of a ≤ b and constraint of a = b are expressed as
δ·max(0, a − b) and α·(b − a), respectively, where δ ≥ 0 and α ∈ (−∞, +∞) represent the
Lagrangian multipliers [11], the values of which are determined by the EA as a decision
variable. The solution process continues to the point of convergence. In EA, it is generally
assumed that the convergence point is reached after the maximum number of iterations,
Imax. The population size and Imax have been considered to be equal to 80 and 4000, respec-
tively. Other regulation parameters of these algorithms have been selected based on [22].
Finally, to evaluate statistical indexes in problem-solving, the problem is solved 30 times by
each EA and classical mathematical algorithm. Therefore, the standard deviation of the
final response is calculated.

The proposed problem convergence results with EAs and classical mathematic
algorithms are reported in Table 3. Based on this table, it is clear that among the classical
mathematical algorithms, LGO and OQNLP were not able to obtain the optimal and
feasible solution for the proposed method. Among the other classical mathematical algo-
rithms, the lowest EEL and the highest profit of EHs have been obtained by IPOPT. Thus,
this algorithm has the lowest convergence iteration and computational time compared to
CONOPT and MINOS; in other words, its convergence speed is high. Among EAs, CSA
has been able to obtain the lowest EELs and the highest EHs profit with high convergence
rates. By comparing EAs and classical mathematical algorithms, it can be seen that the
final response standard deviation of the problem is non-zero by EAs, while it is zero for
mathematical algorithms. It means that for each problem-solving iteration, a single optimal
solution is obtained for a classical mathematical algorithm; however, this is not the case in
EAs. In terms of this issue, it can be expressed that the CSA has the more desired condition
compared to other EAs, thanks to the lower standard deviation of its response. Finally, it
should be noted that the proposed problem, (52)–(58), is non-convex non-linear (due to
power flow equations). Thus, the solvers obtain an optimal local solution, being the best
solver for the algorithm that obtains the most optimal solution. Therefore, among EAs and
classical mathematical algorithms, only IPOPT has such conditions. In addition to these
conditions, it also has the highest convergence speed and zero response standard deviation.
It is noted that the operation problem generally has a time step of less than an hour; thus,
the low computational time is of particular importance. This is also the case with IPOPT
due to its high convergence speed.

Table 3. Convergence results obtained by different solvers.

Solver EEL (MWh) Profit ($) Convergence Iteration Convergence Time (min) Standard Deviation of Final Solution (%) Model State

GA 5.95 3578.1 2046 10.5 4.76 Feasible
TLBO 5.64 3696.8 1469 7.0 2.22 Feasible
GWO 5.78 3649.2 1722 8.4 3.65 Feasible
CSA 5.54 3752.3 1274 5.5 2.01 Feasible

CONOPT 5.50 3767.5 423 5.1 0 Feasible
IPOPT 5.35 3839.6 137 4.3 0 Feasible
LGO - Infeasible

MINOS 5.71 3687.4 522 7.3 0 Feasible
OQNLP - Infeasible

(B) Evaluation of EH performance

In Figures 2 and 3, the expected daily curve of EHs’ active, reactive, thermal, and
gas power and its elements have been depicted for a flexibility tolerance of 0.05 per unit.
According to Figure 2a, the daily curve of RESs’ generation power rate in [3], and the
data in Sections 1–4, it is clear that RESs, such as PVs and WTs, inject their maximum
active power into EHs. For example, based on [3], the PV generation power rate at hour
12:00 is equal to 1. Its generation active power peak is also equal to 0.2 per unit per
EH. Because 6 hubs include PV, then PVs inject reactive power of 1.2 per unit into EHs at
12:00. CHPs also inject their maximum active power generation into EHs, which means
2 per unit (4 hubs including CHP × 0.5 per unit CHP active power capacity). According to
Sections 1–4, the thermal energy price is higher than the gas energy price in all operation
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hours, and the electricity price is higher than the gas price except for 5:00–7:00. Therefore, to
achieve more profit for EHs based on (15), the maximum active power is necessary to
be injected into the EHs by CHP. In addition, the batteries and electrical DRPs operate
in charge or consumption mode in off-peak hours (1:00–7:00) and mid-peak hours
(8:00–16:00 and 23:00–24:00). However, they operate in discharge mode and inject power
into the EH in peak hours (17:00–22:00) when the electricity price is the highest. This issue
increases the EHs’ profit in the electrical energy market. EVs receive high energy from EHs
in off-peak hours, which corresponds to low electric energy prices. In other words, EVs
receive their necessary energy from EHs for travel in the next few days. They also perform
charging operations from 12:00 to 16:00 until they inject their stored energy at this time into
the EHs at peak hours (17:00–22:00). This performance results in EHs’ profit improvement.
It is noteworthy that, according to Figure 2a, in all operation hours, RESs inject active
power. Therefore, it is necessary to observe the flexibility limitations in all operation hours.
Hence, the electrical flexibility sources (i.e., EESs, DRPs, and CHPs) must be turned on
at all simulation hours to control active power. Finally, the EHs’ injected active power
is calculated through relation (16), which has a time curve, as shown in Figure 2a.
According to this figure, due to the charging operation of EESs and DRPs, EHs operate
as electrical energy consumers in the period 1:00–7:00. However, in the other periods,
they operate as an electrical energy generator in DA energy markets. The expected daily
curve of EHs’ reactive power and its elements are presented in Figure 2b. According to this
figure, CHPs, RESs, and battery chargers inject constant reactive power to EHs during all
operation hours, which, according to the data in Sections 1–4, is equal to the maximum
reactive power of the mentioned elements. However, since the number of EVs at different
hours are different based on their penetration rate curve in [3], then the daily curve of
EVs’ reactive power injection into EHs is as shown in Figure 2b. Thus, EVs inject high
reactive power into EHs at 1:00–6:00 and 17:00–00:00, because a large number of EVs are
connected to the EHs during these hours. However, their reactive power injection is low in
other hours due to the low number of EVs in EHs. EHs’ reactive power can be calculated
through Equation (17), which has a curve as shown in Figure 2b. According to this figure,
EHs behave as generators of reactive power during all operating hours. Therefore, high
income can be achieved for them in the DA reactive power market. According to Figure 3a,
CHPs and boilers always inject constant thermal power into the EHs, which is equal to
the maximum thermal power, according to Sections 1–4. This performance is because the
thermal energy price is higher than the gas price at all simulation hours, which causes
the increase in EHs’ profit in the energy market. TESs and thermal DRPs operate in the
charger and energy consumption mode at periods of cheap thermal energy (1:00–4:00
and 16:00–24:00), while in the thermal peak-hour (5:00–15:00), they operate in the mode
of thermal energy generation or discharge, corresponding to an expensive thermal
energy price. This issue results in EHs’ profit improving in the energy market based on
(15). Finally, according to Figure 3a, EHs behave as thermal energy demand at 1:00–4:00
and 16:00–24:00, and they are energy producers at other times. Furthermore, boilers, TESs,
and electrical DRPs are required to be turned on at all hours to maintain the EHs’ flexibility
in the thermal section because CHPs inject thermal power into EHs at all hours. In addition,
the expected daily curve of EHs’ gas power is depicted in Figure 3b. CHPs and boilers are
gas energy consumers. According to Figures 2a and 3a, the daily curve of CHPs’ active
power and boiler thermal power are flat; therefore, the gas power daily curve of these
sources is flat based on Equations (21) and (23) and Figure 3b. Finally, the daily curve of
EHs’ gas power is flat, so they behave as gas energy consumers.

The expected daily curve of EHs’ reserve power in electrical and thermal networks
is depicted in Figure 4, for ∆F = 0.05 p.u. According to this figure, and in comparison
with Figures 2a and 3a, it is clear that EHs can participate with part of the active power
generated by sources, storage devices, and responsive loads into the reserve regulation
market at hours that EHs behave as generators. However, during hours 1:00–7:00, electrical
energy generators can only supply part of the load of EHs and EES. Therefore, EHs are
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energy consumers and are not able to participate in the reserve regulation. This occurs
in the thermal network for hours 1:00–4:00 and 16:00–24:00. It is noted that since no gas
power generation has been considered in Sections 1–4, therefore, EHs cannot participate
in the gas reserve regulation. Finally, the EHs’ profit curve in DA energy, reactive power,
and reserve regulation markets as a function of tolerance flexibility (∆F) has been depicted
in Figure 5. Based on this figure, it is clear that by increasing ∆F, the EHs’ profit increases
in the energy and reserve market; however, their profit in the reactive power market is
constant. By increasing ∆F, the importance of the flexibility limitation in the proposed
problem decreases. Therefore, ESSs and DRPs try to operate in discharge mode for fewer
hours. For example, EVs, batteries, and electrical DRPs try to be turned off in mid-peak
hours (8:00–16:00 and 23:00–00:00), which have a higher electrical energy price than off-
peak hours. In other words, they only operate in the charge mode during the hours of
low electricity prices. This increases the profits of EHs in the energy markets. ESSs and
DRPs’ energy consumption reduction in some hours also causes an increase in the reactive
power generation capacity of EHs. They can then inject more reserve power into the reserve
regulation market. Therefore, EHs’ profit in the reserve regulation market increases with
increasing ∆F. Finally, this type of resource performance of flexibility increases the EHs’
profit in all mentioned markets by increasing ∆F, as shown in Figure 5d. This effect is
sensible until a flexibility tolerance of 0.4 is reached. After this, there is a saturation effect
and EHs’ profit is constant.
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Figure 2. Expected daily curve of (a) active power and (b) reactive power of EHs and their elements
in ∆F = 0.05 p.u.
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(C) Assessing energy networks’ operation status

In this section, the following case studies have been analyzed to evaluate the feasibility
of the proposed model in the operation of energy networks.

Cases:

1. Power flow analysis;
2. Proposed scheme includes only EHs 1–6 that are contained only RESs;
3. Case 2 adding electrical DRP;
4. Case 3 adding EESs;
5. Case 4 adding CHP;
6. Case 5 adding thermal DRP;
7. Case 6 adding a boiler;
8. Case 7 adding TES;
9. Proposed scheme includes EHs 1–8 considering all sources, storages, and DRPs.
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The results of this analysis are reported in Tables 4 and 5 for different values of
flexibility tolerance (∆F). The expected energy losses in electrical, gas, and thermal energy
networks for case studies 1–9 are presented in Table 4. Due to the release problem from
the limitation of the flexibility (∆F = ∞), based on Table 4, it is clear that the total EEL in
mentioned networks in the load flow study (case 1) is equal to 7.48 MWh (4.42 + 3.06 + 0).
However, in the presence of RES (case 2), DRPs (case 3), and EESs (case 4), the total EEL
decreases. This is because in these case studies, EHs 1–6 inject active and reactive power
into the consumption areas of the energy network compared to the first case. This reduces
the power consumption demand of the mentioned networks from the upstream network
and, consequently, reduces energy losses in the electricity network and the total EEL
compared to the first case. In case 4, where RESs, electrical DRPs, and EESs have been
located in EHs 1–6, the total EEL decreased to 6.13 MWh (3.07 + 3.06 + 0) compared to case
1. In case 5, by adding CHP to EHs 1–6, the losses in the electricity and thermal networks
decrease, while the energy losses increase in the gas network, due to the addition of energy
consumer (CHP), compared to case 4. However, the total EEL in this case study (5.84) is
lower compared to case 4. With the addition of DRP in case 6, the energy losses in thermal
networks decrease, compared to case 5. With the addition of a boiler in case 7, compared to
case 6, the losses in thermal networks reduce, but they increase in the gas network because
the boiler is a thermal energy generator and gas energy consumer. In case 8, with the
addition of TES into case 7, only the energy losses in thermal networks reduce compared
to case 7. Finally, considering the optimal power management of EHs 1–8, the proposed
optimization scheme has been able to decrease the total EEL to 28.5%, compared to case 1.
Furthermore, considering the flexibility limitation, in (33), the first, second, and fifth cases
are not able to achieve a feasible solution because there is no source of flexibility in the first
and second cases, and, regarding the fifth case, there is no flexible thermal source besides
CHP. However, in other case studies, energy losses in electrical and thermal networks
increase with decreasing ∆F. According to Figures 2a and 3a, it is clear that in the case
of flexibility in EHs, ESSs and DRPs are required to operate in charge mode at hours of
medium energy price, which increases losses in the mentioned networks. However, in
situations where EHs’ flexibility is not considered, ESSs and DRPs operate only in charge
mode at hours of low energy price.

In Table 5, the maximum voltage drop (MVD), maximum temperature drop (MTD),
maximum pressure drop (MPD), maximum overvoltage (MOV), maximum overpressure
(MOP), and maximum overtemperature (MOT) have been reported for various case studies.
According to this table, RESs, DRPs, and EESs are only effective in reducing MVD; however,
CHP reduces MVD and MTD. As shown in Figure 2a,b and Figure 3a, CHP injects active,
reactive, and thermal power into the electrical and thermal networks. Thus, this issue has
caused overvoltage and overheating in the mentioned networks; nevertheless, according
to Table 5, their value is less than the allowable value, i.e., 0.1 (1.1 − 1) per unit. CHP is
also a gas consumer; therefore, in this situation, MPD increases compared to cases 1–4.
In addition, thermal DRP, boilers, and TES cause MTD reduction. Besides this issue, the
boiler causes an increase in MOT and MPD, but their values are lower than their maximum
allowable value, i.e., 0.1 per unit. Finally, the proposed scheme for case 9, compared to
the first case, was able to improve or decrease MVD and MTD by approximately 39% and
27.8%, respectively. However, these conditions are obtained by increasing MOV, MOT,
and MPD by 0.04, 0.06, and 0.047 per unit, respectively. However, these values are below
their maximum limits. It is noted that EHs’ flexibility improvement in cases 3–4 and
6–8 corresponds to increases in MVD and MTD and decreases in MOV and MOT because
in these conditions, the energy consumption hours of ESSs and DRPs increase compared to
the case ∆F = ∞, according to Figures 2a and 3a.
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Table 4. Expected value of energy loss (MWh) in different networks for various values of ∆F.

Case
Network (∆F = ∞) Network (∆F = 0.05 p.u.) Network (∆F = 0 p.u.)

Electrical Thermal Gas Electrical Thermal Gas Electrical Thermal Gas

1 4.42 3.06 0 Infeasible
2 3.42 3.06 0 Infeasible
3 3.28 3.06 0 3.32 3.06 0 3.37 3.06 0
4 3.07 3.06 0 3.10 3.06 0 3.14 3.06 0
5 2.52 2.54 0.78 Infeasible
6 2.52 2.41 0.78 2.56 2.43 0.78 2.60 2.46 0.78
7 2.52 1.97 1.04 2.56 2.01 1.04 2.60 2.04 1.04
8 2.52 1.84 1.04 2.56 1.87 1.04 2.60 1.90 1.04
9 2.43 1.69 1.23 2.47 1.72 1.23 2.51 1.75 1.23

Table 5. Maximum deviation of (maximum over-) voltage, temperature, and pressure (p.u.) for
various values of ∆F.

Case
(∆F = ∞) (∆F = 0.05 p.u.) (∆F = 0 p.u.)

MVD/MOV MTD/MOT MPD/MOP MVD/MOV MTD/MOT MPD/MOP MVD/MOV MTD/MOT MPD/MOP

1 0.087/0 0.072/0 0/0 Infeasible
2 0.068/0 0.072/0 0/0 Infeasible
3 0.065/0 0.072/0 0/0 0.065/0 0.072/0 0/0 0.066/0 0.072/0 0/0
4 0.061/0 0.072/0 0/0 0.061/0 0.072/0 0/0 0.061/0 0.072/0 0/0
5 0.054/0.04 0.064/0.05 0.032/0 Infeasible
6 0.054/0.04 0.061/0.05 0.032/0 0.054/0.04 0.061/0.05 0.032/0 0.055/0.03 0.062/0.04 0.032/0
7 0.054/0.04 0.055/0.06 0.045/0 0.054/0.04 0.055/0.06 0.045/0 0.055/0.03 0.056/0.05 0.045/0
8 0.054/0.04 0.053/0.06 0.045/0 0.054/0.04 0.053/0.06 0.045/0 0.055/0.03 0.054/0.05 0.045/0
9 0.053/0.04 0.052/0.06 0.047/0 0.053/0.04 0.052/0.06 0.047/0 0.054/0.03 0.053/0.05 0.047/0

5. Conclusions

In this paper, the operation of a flexible energy hub connected to electrical, gas, and
thermal networks has been optimized. In this scheme, the energy networks pursue the
minimization of energy losses, and flexible hubs seek high financial profits from energy,
reactive power, and DA reserve regulation markets. Therefore, the mentioned scheme
was presented in the form of a two-level optimization so that its upper level models
the expected energy losses’ minimization of the mentioned networks by observing the
constraints of optimal power flow of these networks. In the lower-level problem, the
objective function is equal to maximizing the expected profit of hubs in these markets. It is
also based on the operation model of production resources, storages, responsive loads,
hubs reserve formulations, and hubs’ flexibility limits. To improve the optimization time,
this paper proposes the use of the KKT method to extract a single-level model, and PEM
models the uncertainties of load, market prices, renewable power, reservation demand, and
mobile storage. Finally, by extracting numerical results from different case studies, it has
been observed that classical mathematical solution algorithms have a very low responsive
standard deviation compared to Evolutionary Algorithms. By high convergence speed, the
IPOPT mathematical solver was also able to achieve the lowest energy losses for different
networks and the highest profits for hubs. By optimal scheduling definition for active,
reactive, thermal, and gas power for sources, storages, and responsive load in the form of
an energy hub, the proposed scheme, compared to the load flow study, can decrease or
improve the energy losses, the maximum temperature, and voltage drop by approximately
28.5%, 39%, and 27.8%, respectively. These cases have been achieved along with the
increase of overvoltage and temperature and voltage drop compared to energy networks’
load flow; however, their value has been lower than their allowable value. In addition,
the hub flexibility improvement corresponds to an increase in energy losses, temperature,
and voltage drop. Economically, the liberalizing of the problem from flexibility limitation
caused an increase in the hub’s profit in the energy and reservation market.
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Nomenclature

1. Acronyms

ARO Adaptive robust optimization
CHP Combined heat and power
CSA Crew Search Algorithm
DA Day-ahead
DG Distributed generation
DRP Demand response program
EA Evolutionary Algorithm
EES Electrical energy storage
EH Energy hub
EHO Energy hub operator
EMS Energy management system
ENO Energy network operator
ESS Energy storage system
EV Electric vehicle
FRO Flexible-reliable operation
FS Flexible source
GA Genetic Algorithm
GWO Grey Wolf Optimization
IDRP Incentive-based demand response program
IGDT Information-gap decision theory
KKT Karush–Kuhn–Tucker
LP Linear programming
MCS Monte Carlo Simulation
MES Multi-energy system
MINLP Mixed-integer non-linear programming
MOP Maximum overpressure
MOT Maximum overtemperature
MOV Maximum overvoltage
MPD Maximum pressure drop
MTD Maximum temperature drop
MVD Maximum voltage drop
PEM Point estimation method
PV Photovoltaic
RES Renewable energy source
RT Real-time
SBSP Scenario-based stochastic programming
TES Thermal energy storage
TLBO Teaching–Learning Based Optimization
WT Wind turbine
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2. Variables

EEL Expected energy losses in MWh
EREH, HREH, GREH Electric, thermal, and gas reserve power (p.u.)
HB, GB Boiler thermal and gas power (p.u.)
HCH, HDCH Thermal power of thermal energy storage (TES) in charge and discharge

mode (p.u.)
PC, QC, HC, GC Active, reactive, thermal, and gas power of combined heat and power (CHP)

system (p.u.)
PCH, PDCH Active power of electrical energy storage (EES) in charge and discharge

mode (p.u.)
PD, HD, GD Active, thermal, and

gas power in demand response program (DRP)
PEH, QEH, HEH, GEH Active, reactive, thermal,

and gas power of energy hub (EH) (p.u.)
PEL, QEL, HHL, GGL Active and reactive power flow through electric distribution line; thermal

and gas power flow through distribution pipes (p.u.)
PES, QES, HHS, GGS Active, reactive, thermal, and gas power passing through distribution

substation (p.u.)
Profit Total EHs’ expected profits in reserve regulation, energy, and reactive

markets ($)
QR, QE Reactive power of renewable energy source (RES) and EES (p.u.)
T Temperature (p.u.)
V, σ Voltage magnitude (p.u.) and angle (radians)
ξ Gas pressure (p.u.)

3. Constants

BEL, GEL Susceptance and conductivity of electrical distribution line (p.u.)
CREES, DREES Charge and discharge rate of EES (p.u.)
CRTES, DRTES Charge and discharge rate of TES (p.u.)
E, E Minimum and maximum storable energy in the energy storage system
(ESS) in p.u.
EI Initial energy of ESS (p.u.)

GGL, GGS Maximum gas power flow through pipeline and gas substation (p.u.)
HB, HB Minimum and maximum boiler thermal power (p.u.)
HC, HC Minimum and maximum thermal power of CHP (p.u.)
HHL, HHS Maximum thermal power flow through the pipeline and

thermal substation (p.u.)
KQ Rate of reactive power price to energy price
IE, IH, IG Incidence matrix of electric bus and EH, thermal node and EH, and gas

node and EH
JE, JH, JG Incidence matrix of electric bus and line, thermal node and pipeline, and gas

node and pipeline
PC, PC Minimum and maximum active power of CHP (p.u.)
PED, QED, HHD, GGD Active, reactive, thermal, and gas load (p.u.)
PR Generated active power of RES (p.u.)

QC, QC Minimum and maximum reactive power of CHP (p.u.)

QE, QE Minimum and maximum reactive power of EES (p.u.)

QR, QR Minimum and maximum reactive power of RES (p.u.)

SEL, SES Maximum apparent power flow through the electric distribution line
and substation (p.u.)

sign(a, b) Sign function, having a value of 1 for a ≥ b; otherwise, it is equal to −1
β Consumer participation rate in DRP
χ, χ Minimum and maximum limits of voltage magnitude, pressure, or

temperature (p.u.)
ηB Boiler efficiency
ηCH, ηDCH Charge and discharge efficiency of ESS
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ηT, ηL, ηH Efficiency of electricity, loss, and thermal in CHP
λE, λH, λG Energy price in electric, thermal, and gas market ($/MWh)
λER, λHR, λGR Reserve price in the electric, thermal, and gas reserve regulation

market ($/MWh)
π Scenario occurrence probability
ω Gas pipeline constant (p.u.)
∆F Flexibility tolerance (p.u.)
ϑ Thermal pipeline constant (p.u.)

4. Sub-indexes

e, h, g Electric bus, thermal node, and gas node
i Energy hub
m Corresponding sub-index to the bus (node)
t Operating hours
wo Scenario Slack (node) bus
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60. Gabrielaitienė, I.; Bøhm, B.; Sundén, B. Dynamic Temperature Simulation in District Heating Systems in Denmark Regarding
Pronounced Transient Behaviour. J. Civ. Eng. Manag. 2011, 17, 79–87. [CrossRef]

61. Pirouzi, S.; Zaghian, M.; Aghaei, J.; Chabok, H.; Abbasi, M.; Norouzi, M.; Shafie-khah, M.; Catalão, J.P.S. Hybrid Planning of
Distributed Generation and Distribution Automation to Improve Reliability and Operation Indices. Int. J. Electr. Power Energy
Syst. 2022, 135, 107540. [CrossRef]

62. Norouzi, M.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Fotuhi-Firuzabad, M.; Shafie-khah, M. Hybrid Stochastic/Robust Flexible and Reliable
Scheduling of Secure Networked Microgrids with Electric Springs and Electric Vehicles. Appl. Energy 2021, 300, 117395. [CrossRef]

63. Pirouzi, A.; Aghaei, J.; Pirouzi, S.; Vahidinasab, V.; Jordehi, A.R. Exploring Potential Storage-Based Flexibility Gains of Electric
Vehicles in Smart Distribution Grids. J. Energy Storage 2022, 52, 105056. [CrossRef]

64. Jokar, M.R.; Shahmoradi, S.; Mohammed, A.H.; Foong, L.K.; Le, B.N.; Pirouzi, S. Stationary and Mobile Storages-Based Renewable
off-Grid System Planning Considering Storage Degradation Cost Based on Information-Gap Decision Theory Optimization. J.
Energy Storage 2023, 58, 106389. [CrossRef]

65. Hamidpour, H.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Nikoobakht, A.; Lehtonen, M.; Shafie-khah, M.; Catalão, J.P.S. Coordinated Expansion
Planning Problem Considering Wind Farms, Energy Storage Systems and Demand Response. Energy 2022, 239, 122321. [CrossRef]

66. Piltan, G.; Pirouzi, S.; Azarhooshang, A.; Rezaee Jordehi, A.; Paeizi, A.; Ghadamyari, M. Storage-Integrated Virtual Power Plants
for Resiliency Enhancement of Smart Distribution Systems. J. Energy Storage 2022, 55, 105563. [CrossRef]

67. Shahbazi, A.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Vahidinasab, V.; Shafie-khah, M.; Catalão, J.P.S. Holistic Approach to Resilient
Electrical Energy Distribution Network Planning. Int. J. Electr. Power Energy Syst. 2021, 132, 107212. [CrossRef]

68. Parhoudeh, S.; Baziar, A.; Lopez, P.E.; Moazzen, F. Optimal Stochastic Energy Management of Smart City Incorporating
Transportation System and Power Grid. IEEE Trans. Ind. Appl. 2020, early access. [CrossRef]

69. Yan, Z.; Gao, Z.; Navesi, R.B.; Jadidoleslam, M.; Pirouzi, A. Smart Distribution Network Operation Based on Energy Management
System Considering Economic-Technical Goals of Network Operator. Energy Rep. 2023, 9, 4466–4477. [CrossRef]

70. Moayed, S.H.; Shahi, H.H.; Akbarizadeh, M.; Jadidoleslam, M.; Aghatehrani, A.; Pirouzi, A. Presenting a Stochastic Model of
Simultaneous Planning Problem of Distribution and Subtransmission Network Development Considering the Reliability and
Security Indicators. Int. Trans. Electr. Energy Syst. 2023, 2023, e8198865. [CrossRef]

71. GAMS—General Algebraic Modeling System. Available online: https://www.gams.com/ (accessed on 1 November 2022).
72. Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021,

80, 8091–8126. [CrossRef]
73. Singh Gill, H.; Singh Khehra, B.; Singh, A.; Kaur, L. Teaching-Learning-Based Optimization Algorithm to Minimize Cross Entropy

for Selecting Multilevel Threshold Values. Egypt. Inform. J. 2019, 20, 11–25. [CrossRef]
74. Mirjalili, S.; Mirjalili, S.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
75. Askarzadeh, A. A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search

Algorithm. Comput. Struct. 2016, 169, 1–12. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11277-015-2951-8
https://doi.org/10.1007/s11277-014-1791-2
https://doi.org/10.1007/s11036-018-1049-4
https://doi.org/10.1109/JIOT.2020.3033298
https://doi.org/10.32604/csse.2021.014530
https://doi.org/10.1016/j.jpdc.2020.11.003
https://doi.org/10.32604/cmc.2020.011567
https://doi.org/10.1155/2013/913497
https://doi.org/10.1186/1687-1499-2012-83
https://doi.org/10.1049/gtd2.12632
https://doi.org/10.3846/13923730.2011.553936
https://doi.org/10.1016/j.ijepes.2021.107540
https://doi.org/10.1016/j.apenergy.2021.117395
https://doi.org/10.1016/j.est.2022.105056
https://doi.org/10.1016/j.est.2022.106389
https://doi.org/10.1016/j.energy.2021.122321
https://doi.org/10.1016/j.est.2022.105563
https://doi.org/10.1016/j.ijepes.2021.107212
https://doi.org/10.1109/TIA.2020.3012938
https://doi.org/10.1016/j.egyr.2023.03.095
https://doi.org/10.1155/2023/8198865
https://www.gams.com/
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1016/j.eij.2018.03.006
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.compstruc.2016.03.001

	Introduction 
	Motivation 
	Literature Review 
	Research Gaps 
	Contributions 
	Paper Organization 

	Proposed Scheme Formulation 
	Single-Level Modeling of the Proposed Problem 
	Numerical Result and Discussion 
	Problem Data 
	Results 

	Conclusions 
	References

