
Department of Computer Sciences and Artificial Intelligence

Optimization for Deep Learning Systems
Applied to Computer Vision

by:

David Montero Martín

1. Supervisor Ph.D. Naiara Aginako Bengoa
Department of Computer Sciences and Artificial Intelli-
gence
University of the Basque Country (UPV/EHU)

2. Supervisor Ph.D. Marcos Nieto Doncel
Connected & Cooperative Automated Systems
Vicomtech

(cc)2023 DAVID MONTERO MARTIN (cc by 4.0)

David Montero Martín

Optimization for Deep Learning Systems Applied to Computer Vision

Supervisors: Ph.D. Naiara Aginako Bengoa and Ph.D. Marcos Nieto Doncel

University of the Basque Country

Department of Computer Sciences and Artificial Intelligence

Vicomtech

Connected & Cooperative Automated Systems

Donostia - San Sebastián

Abstract

Computer Vision (CV) is present everywhere around us; we live with this technology
on a daily basis. It can be found in our mobile phones, computers, cars, alarm
systems, etc. It has contributed to many advances in our society. For instance, CV is
one of the foundational technologies of industrial automation. It has helped improve
product quality, speed production, and streamline manufacturing and logistics for
decades. CV has also been an essential part of advances in autonomous driving,
providing algorithms that help solve complex problems such as path planning,
driving scene perception, and behavior arbitration.

Since the Deep Learning (DL) revolution and especially over the last years (2010-
2022), Deep Neural Networks (DNNs) have become an essential part of the CV field,
and they are present in all its sub-fields (video-surveillance, industrial manufacturing,
autonomous driving, ...) and in almost every new state-of-the-art application. How-
ever, DNNs are very complex and the architecture needs to be carefully selected and
adapted in order to maximize its efficiency and effectiveness. On many occasions,
once the desired architecture has been selected, it is slightly tuned and integrated
into the system to start its operation. However, often this is not enough to achieve
maximum performance. It is not sufficient to just select the appropriate architecture:
it is necessary to adapt it to the specific use case and to the rest of the system com-
ponents since it has not been specifically developed for it. And not only the network
must be adapted to the system, but also the rest of the components that interact
with the network, such as the preprocessing or postprocessing algorithms. Such
proper optimizations, systems based on DNNs can achieve an important boost in
performance. And this performance improvement does not refer only to an increase
in precision, but can also mean a reduction in the memory necessary to execute the
process and/or its processing speed.

This thesis aims at providing knowledge and tools for the optimization of systems
based on Deep Learning applied to different real use cases within the field of
Computer Vision, in order to maximize their effectiveness and efficiency. The thesis
is supported by six main publications that contribute to a series of objectives grouped
into two research lines: the optimization of the DNNs and the optimization of the
CV systems.

iii

Acknowledgement

Thanks to all the people who have helped me grow both personally and professionally
over the years.

Thanks to everyone who has encouraged me to do my thesis and to those who have
supported me in difficult times.

Thanks to all my co-authors for contributing with their talent and effort to the
writing and publication of the articles that support this thesis.

Without all of you, this would not have been possible.

Thank you from the bottom of my heart.

v

Contents

1 Introduction 1

1.1 Context of this research work . 3

1.2 Motivation . 4

1.3 Hypothesis . 6

1.4 Objectives . 8

1.4.1 Optimization of Deep Neural Networks 8

1.4.2 Optimization of Computer Vision Systems 9

1.5 Main publications . 10

1.6 Thesis Structure . 13

2 Research results 15

2.1 Efficient Large-Scale Face Clustering Using an Online Mixture of
Gaussians . 15

2.1.1 Motivation and objectives . 15

2.1.2 Results and contributions . 16

2.2 Learning to Automatically Catch Potholes in Worldwide Road Scene
Images . 20

2.2.1 Motivation and objectives . 20

2.2.2 Results and contributions . 22

2.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring
of Social Distancing . 27

2.3.1 Motivation and objectives . 27

2.3.2 Results and contributions . 28

2.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering
for Cost-effective Video Surveillance 33

2.4.1 Motivation and objectives . 33

2.4.2 Results and contributions . 34

2.5 Boosting Masked Face Recognition with Multi-Task ArcFace 39

2.5.1 Motivation and objectives . 40

2.5.2 Results and contributions . 40

2.6 BEV Object Tracking for LIDAR-based Ground Truth Generation . . . 44

2.6.1 Motivation and objectives . 44

2.6.2 Results and contributions . 45

vii

3 Conclusions 49
3.1 Discussion . 49
3.2 Future work . 52

4 Publications 53
4.1 Efficient Large-Scale Face Clustering Using an Online Mixture of

Gaussians . 53
4.2 Learning to Automatically Catch Potholes in Worldwide Road Scene

Images . 71
4.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring

of Social Distancing . 85
4.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering

for Cost-effective Video Surveillance 107
4.5 Boosting Masked Face Recognition with Multi-Task ArcFace 117
4.6 BEV Object Tracking for LIDAR-based Ground Truth Generation . . . 125
4.7 Other Publications . 133

4.7.1 MFR 2021: Masked Face Recognition Competition 133
4.7.2 Accurate 3D Object Detection from Point Cloud Data using

Bird’s Eye View Representations 134

Bibliography 135

viii

1Introduction

Computer Vision (CV) is a field of Artificial Intelligence (AI) that enables computers
and systems to derive meaningful information from digital images, videos and other
visual inputs, and take actions or make recommendations based on that information.
If AI enables computers to think, CV enables them to see, observe and understand.

CV is present everywhere around us, we live with this technology on a daily basis.
It can be found in our mobile phones, computers, cars, alarm systems, etc. It has
also contributed to many advances in our society. For instance, CV is one of the
foundational technologies of industrial automation. It has helped improve product
quality, speed production, and streamline manufacturing and logistics for decades.
CV has also been an essential part of advances in autonomous driving, providing
algorithms that help solve complex problems such as path planning, driving scene
perception, and behavior arbitration.

All these advances have been driven by the appearance and application of different
technologies. One of the most important, and which has been gaining ground in
recent years, is Deep Learning (DL). DL is a subclass of Machine Learning (ML)
in AI based on artificial neural networks (ANNs) with representation learning.
Learning can be supervised, semi-supervised or unsupervised. ANNs were inspired by
information processing and distributed communication nodes in biological systems.
However, ANNs have various differences from biological brains. Specifically, artificial
neural networks tend to be static and symbolic, while the biological brain of most
living organisms is dynamic (plastic) and analogue [MWK16; Ben+15]. Then, when
we stack multiple layers between the input and output layers, the ANN is called deep
neural network (DNN) [Ben07; Sch15].

The first general working learning algorithm for supervised, deep, feedforward,
multilayer neural networks was published by Alexey Ivakhnenko and Lapa in 1967
[ILM67]. Nevertheless, the term Deep Learning was not introduced to the ML
community until by Rina Dechter in 1986 [Dec86], and the ANN until 2000 by
Igor Aizenberg and colleagues, in the context of Boolean threshold neurons[AAV12;
GS05]. Since then, significant advances were achieved, such as the introduction of
the Convolutional Neural Networks (CNNs)[Zha+88; Zha+90], or the recurrent
layers (for instance the Long Short-Term Memory (LSTM) layer[HS97]).

1

Fig. 1.1: Publications per year related to Neural Networks in Sciencedirect

The impact of DL in the industry started in the early 2000s, when it was estimated
that the CNNs already processed between 10% and 20% of all the checks written
in the United States. However, due to the high computational cost and the lack
of specialized hardware, DL did not become truly popular within the field of CV
until the decade of 2010. In 2009, Nvidia was involved in what was called the
"big bang" of DL, as deep neural networks were trained and deployed using Nvidia
graphics processing units (GPUs). That year, Andrew Ng, a renowned ML researcher,
announced that GPUs could increase the speed of DL systems by about 100 times.
In particular, GPUs are well-suited for the matrix/vector computations involved in
machine learning[OJ04; MV19; CPS06]. GPUs speed up training algorithms by
orders of magnitude, reducing running times from weeks to days[Cir+10; RMN09].
In addition, specialized hardware and algorithm optimizations could be used for
efficient processing of DL models[Sze+17]. These important advances led to new
fast implementations of Convolutional Neural Networks (CNNs) on GPUs [CMS12;
KSH12; Cir+13] and increased the interest of the scientific community in DNNs,
which was reflected in the number of publications (see Figure 1.1).

Since the DL revolution and especially over the last years (2010-2022), DNNs have
become an essential part of the CV field, and they are present in all its sub-fields
(video-surveillance, industrial manufacturing, autonomous driving, ...) and in almost
every new state-of-the-art application that is developed. However, DNNs are very
complex and the architecture needs to be carefully selected and adapted in order
to maximize its efficiency. In many cases, networks are not specifically designed
for the considered use case, they are simply recycled from other applications and
slightly adapted, without taking into account the particularities of the use case or

2 Chapter 1 Introduction

the interaction with the rest of the system components, which usually results in a
performance drop.

This research work aims at providing knowledge and tools for the optimization of
systems based on Deep Learning applied to different real use cases within the field
of Computer Vision, in order to maximize their effectiveness and efficiency.

1.1 Context of this research work

This Ph.D. dissertation is supported by a compendium of articles resulting from the
cooperation between researchers from Vicomtech research center and the University
of the Basque Country during the last four years.

Vicomtech is a technological research center specialized in AI, CV, and Interaction.
Although it also leads and collaborates in pure research projects, Vicomtech’s main
objective is to build a bridge between basic research and industry, developing real
solutions for companies. For this reason, many of the innovations presented in this
thesis are highly focused on concrete and practical applications. However, much of
this knowledge can also be extrapolated to other applications within the field of CV
and even, at a more general level, within the field of DL.

Regarding its internal structure, Vicomtech is divided into several departments
according to its specialization into the different branches of the industry. Among all
of them, the contributions of this thesis have been obtained mainly by collaborating
on projects within three departments:

• Connected and Cooperative Automated Systems: focuses on projects related to
the automotive industry, such as autonomous driving, collision avoidance, or
pedestrian detection.

• Intelligent Security Video Analytics: conducts projects related to video surveil-
lance and scene analysis and monitoring, using advanced techniques such as
human detection and re-identification or face recognition.

• Intelligent Systems for Mobility and Logistics: tackles projects that require
managing large surfaces and/or important amounts of data in an efficient and
scalable manner.

On the other hand, collaborations with the University of the Basque Country have
taken place within the department of Computer Science and Artificial Intelligence.

1.1 Context of this research work 3

Although they are within the field of CV, the three departments work on projects
that are very varied. However, most of these projects have in common the need
to use systems based on DL to achieve competitive solutions that offer state-of-the-
art results. For example, many automotive-related projects require DL models to
detect vehicles, pedestrians, or other obstacles on the road. Or in the case of video
surveillance, the most advanced models for the detection and re-identification of
people and faces are also based on this technology. This need is the link between all
these projects and has led to all the articles that make up this thesis.

1.2 Motivation

Since the DL revolution and especially over the last years, DNNs have become an
essential part within the CV field, and they are present in all its sub-fields (video-
surveillance, industrial manufacturing, autonomous driving, ...) and in almost every
new state-of-the-art application. For example, in object detection, one of the best-
known tasks in artificial vision, models based on DNNs have highly outperformed
traditional models [Zha+19b; WSH20; Xia+20], and day by day they continue to
improve and to achieve better results.

However, in most cases, these detection models are evaluated on reference datasets,
with specific classes and good quality images and annotations [Lin+14; Den+09;
Eve+10]. These datasets try to cover as many different types of objects as possi-
ble and to generalize to any type of data. However, usually the results are worse
when applied to other use cases, with a different quality of the data and objects
with different characteristics (range of sizes, shape, color, ...). The same prob-
lem can be extrapolated for other CV tasks, such as object classification or image
segmentation.

Consequently, it may happen that an architecture that performs worse than another
in one or more reference datasets, is better adapted to the data of a particular project
and obtains better results. Therefore, to choose the right architecture, many factors
must be taken into account. First, an in-depth analysis of the use case and the
available data must be carried out to extract a list of necessary requirements or
qualities that the network must meet (wide range of object sizes, noise resistance,
precision...). With this list, a more specific search among the available architectures
can be performed in order to select the one that best suits the specific use case. For
example, if the objects have a small range of sizes, the number of architectures that
could adapt well to the data will be greater and the search could focus more on
obtaining the best precision [WBL22; TPL20; Liu+21]. However, if the range of
sizes is very wide, it would be necessary to search architectures that were specifically

4 Chapter 1 Introduction

designed for that problem, such as those based on Feature Pyramid Networks
[Lin+17a] or Cascade Networks [XZ17].

Apart from precision, when selecting the architecture, the processing speed of the
network must also be taken into account. Usually, the improvement in the precision
of the new models is accompanied by an increase in the number of parameters and
in the computation time, as it happens with the different architectures within each
YOLO version [BWL20b; Joc+21; Li+22] or with the different Efficientnet backbones
[TL19]. Processing speed is very important in many applications, especially in those
that are focused on operating in real-time. In these cases, the best trade-off between
precision and speed is always sought, although this usually means not reaching one
of the two initially proposed requirements (or neither of them).

The DNN training is another very important part of the process and is highly de-
pendent on the type of data and the use case [Zha+19a]. The choice of suitable
preprocessing steps can have a great impact on the results (cropping, resizing,
normalization, batching,...). For example, in facial recognition, the use of face
alignment based on facial landmarks makes the model converge faster and brings
an improvement in accuracy [KKG07]. Furthermore, depending on the quality and
the diversity of the data, and on the task difficulty, data augmentation techniques
can boost the results and avoid overfitting [SK19]. These techniques range from
the simplest based on random cropping or rotation on the existing data to the most
advanced, such as the generation of synthetic data [EPS17]. Another important
design choice for the training process is the loss function. It highly depends on the
type of task, but also on the type of data. For instance, in the object detection task,
the Weighted Cross-Entropy loss [PY20] can help fight class imbalance, and the Focal
Loss [Lin+17b] can improve the results for dense sampling strategies.

On many occasions, once the desired architecture has been selected and trained, it
is slightly tuned and integrated into the system with the rest of the components to
start its operation. However, in most cases, this is not enough to achieve maximum
network performance. It is not sufficient just to select the appropriate architecture,
it is necessary to adapt it to the specific use case and to the rest of the system
components since it has not been specifically developed for it. And not only the
network must be adapted to the system, but also the rest of the components that
interact with the network, such as the preprocessing or postprocessing algorithms.
With proper optimizations, systems based on DNNs can achieve an important boost in
performance. And this performance improvement does not refer only to an increase
in precision, but can also mean a reduction in the memory necessary to execute the
process and/or its processing speed.

1.2 Motivation 5

For instance, in [SWC20], the authors apply a series of optimization to a well-
known keypoints-detection network, OpenPose [Cao+21], in order to improve
its performance on dedicated hardware. With these optimizations, they report a
speedup of 11.5x in the end-to-end performance. Another example of the impact
of the network optimization is given in [Xie+20], where the authors perform
channel pruning to reduce the number of parameters of the convolution layers of
an object detection network. More specifically, they propose a localization-aware
auxiliary network to find out the channels with key information for classification and
regression so that they can conduct channel pruning directly for object detection,
which saves lots of time and computing resources. They evaluate their approach on
MS COCO dataset, where they are able to prune 70% parameters of the model with
just a small drop in accuracy.

On the other hand, there can also be found examples about the benefits of optimizing
other system components. As an example, in [Ces+20], the authors evaluate several
common Python libraries which are used for image preprocessing and analyze the
impact of different approaches with respect to central processing unit (CPU) usage.
They report big differences between the different approaches in the processing
time, reflecting the importance of the preprocessing optimization. In [Son+19],
the authors focus their efforts on optimizing the Non-Maximum Suppression (NMS)
postprocessing algorithm. They combine a harmony search algorithm with NMS to
improve its capability to perceive nearby objects in cluttered scenes. They evaluate
the performance of their algorithm with two different detection networks, showing an
improvement in the average precision of these two detection networks. Moreover, the
location performance and average recall of these two detectors are also improved.

All these examples show the importance of optimizing neural networks and the
different components within systems based on Deep Learning, and their impact on
all areas of system performance. Often, without optimizations, the solution cannot
be effectively used, and thus we can consider optimization as a mandatory step in
modern DL-based CV systems for real-life applications. This motivates the objective
of this thesis: to provide knowledge and tools for the optimization of systems based
on Deep Learning applied to different real use cases within the field of Computer
Vision, in order to maximize their effectiveness and efficiency.

1.3 Hypothesis

Considering the discussion and the references provided in the previous section, the
following hypotheses are formulated, and they will serve as the basis for the research
carried out in this thesis:

6 Chapter 1 Introduction

1. The selection of the neural network architecture is a crucial step in the creation
of a DL-based CV system.

a) This choice cannot be based uniquely on a comparison of the results
obtained in public benchmarks, since the performance of the architecture
can greatly vary depending on the quality and type of data.

b) Different factors must be taken into account, and the importance of each
one varies depending on the use case (accuracy, memory consumption,
processing time,...)

2. The definition of the training process for the DNN has a great impact on the
quality of the results. It must be designed very carefully attending to the type
of data and the use case.

a) The appropriate preprocessing techniques must be chosen for the type of
data (cropping, resizing, normalization, batching,...) [KKG07].

b) Depending on the quantity and quality of the data, data augmentation
techniques (random cropping, brightness, rotation,...) should be con-
sidered [SK19], and even the generation of additional synthetic data
[EPS17].

c) Selecting the appropriate loss function is also very important and depen-
dent on the data (weighted Cross-Entropy [PY20], Focal Loss [Lin+17b],
...).

3. Optimizing the neural network architecture for a particular use case can greatly
increase system performance [SWC20; Xie+20]. There are different ways to
optimize a neural network:

a) Reduction of the number of parameters through techniques such as weight
pruning [Rum+20] or knowledge distillation [Gou+21]. These improve-
ments impact memory consumption, processing time, and even accuracy.

b) Hardware-based optimizations, such as the framework selection (Ten-
sorRT [Jeo+22], OpenVINO [Dem+21],...) or the weights quantization
[LBL19]. These improvements also impact memory consumption and
processing time.

c) Other optimizations focused on improving the accuracy, like the use of
multi-tasking to enhance the performance on the main task [Lu+20].

1.3 Hypothesis 7

4. At the same time, adapting and optimizing the rest of the system components to
work in harmony with the neural network can bring important improvements
to the whole system [Ces+20; Son+19; Nie+14].

a) Preprocessing and postprocessing algorithms are often more time-consuming
than the DNN itself and can be highly optimized.

b) Improving the postprocessing algorithm and adapting it to the use case
can have a high impact on the accuracy.

1.4 Objectives

Attending to the hypotheses formulated above, two research lines are defined, with
several objectives associated with each one.

1.4.1 Optimization of Deep Neural Networks

This research line is focused on maximizing the performance of the DNNs applied
to specific use cases. This optimization process includes the selection of the most
suitable architecture, the design of the training pipeline, and the modifications and
optimizations applied before and after it. More specifically, the objectives pursued
within this research line are the following:

Obj 1.1 Study the latest DNN architectures and find the optimal ones for different use
cases. To accomplish this task, public and private benchmarks will be used and
different performance factors will be measured, where the importance of each
one will depend on the considered use case.

Obj 1.2 Design training pipelines customized for the different projects. These pipelines
must adapt to the available data and try to overcome its limitations (shortage
of data, homogeneous data, noisy annotations, class imbalance,...). Above all,
the study will focus on the following parts of the process:

• Selecting the appropriate dataset (or datasets).

• Conducting an exploratory data analysis (EDA) in order to understand
the data and its weaknesses, and to help define the rest of the stages of
the pipeline.

8 Chapter 1 Introduction

• Data curation: cleaning and preparing the data (for instance, to remove
duplicated data, wrong annotations, ...).

• Applying data augmentation techniques if necessary.

• Preparing the most suitable preprocessing techniques for the data.

• Selecting the optimal optimizer, loss function, and hyperparameters for
the training process.

• Choosing the right metrics to monitor and validate the experiments, as
well as selecting the best weights.

Obj 1.3 Optimize DNN architectures, both before and after training, to increase their
speed and accuracy and reduce the number of parameters and resource con-
sumption. To address this objective, state-of-the-art techniques present in the
literature will be used and new ones will be proposed. These techniques can
be divided into two groups:

• Optimization techniques prior to the training process. This group includes
procedures such as reducing the number or size of the layers, or the use
of multi-task architectures to join two main tasks or add a secondary one
that supports the main one.

• Post-training optimization techniques. Within this category, well-known
techniques can be found, such as weight pruning or weight quantiza-
tion, as well as the procedure of porting the architecture to frameworks
dedicated to inference, such as TensorRT or OpenVINO.

1.4.2 Optimization of Computer Vision Systems

This research line seeks to maximize the performance of the CV system, attending
to the design at a global level, but also to the rest of the components that interact
with the neural network. More specifically, the optimization will be focused on the
following system components:

Obj 2.1 Data management: searching for an efficient handling of the images and the
rest of the input data.

1.4 Objectives 9

Obj 2.2 Data preprocessing: selecting the optimal data preprocessing functions (resize,
normalization, cropping, etc.), taking into account the previous training step
of the neural network, as well as parallelizing and combining them to reduce
latency and resource consumption as much as possible.

Obj 2.3 Transition components between neural networks (in systems that require the
use of more than one network): designed to seek optimal use of resources and
reduce bottlenecks in system processing time.

Obj 2.4 Postprocessing algorithms: selecting, adapting, and optimizing the appropriate
postprocessing algorithms depending on the use case (tracking, clustering,
etc).

1.5 Main publications

This thesis is supported by 6 main publications that contribute to the different
research lines and objectives defined in the previous section (see Table 1.1). In 5 of
them, the author of this thesis is presented as the main author and in the remaining
one as the second author. Furthermore, 3 publications have been published in
journals in the first or second quartile and the other 3 have been presented in
international conferences.

Tab. 1.1: List of the main publications that support the thesis along with the type of
publication, the author position, and the tackled objectives.

Publication Type Author pos Objectives
[Mon+22a] Journal Q1 First Obj2.4

[YMA21] Journal Q1 Second Obj1.1, Obj1.2, Obj1.3
[Mon+on] Journal Q2 First Obj1.2, Obj1.3, Obj2.4
[Mon+21] Conf GGS rating B First Obj1.3, Obj2.1, Obj2.3, Obj2.4
[Mon+22b] Conference First Obj1.2, Obj1.3
[Mon+19] Conference First Obj2.4

[Mon+22a] Montero, D., Aginako, N., Sierra, B., & Nieto, M. (2022). Efficient
Large-Scale Face Clustering Using an Online Mixture of Gaussians. Eng. Appl. Artif.
Intell., 114, 105079. (see Section 4.1)

Abstract: In recent years, the number of applications demanding real-time face
clustering algorithms has increased, especially for security and surveillance purposes.
However, state-of-the-art face clustering methods are offline, they need to repeat
the whole clustering process every time new data arrives, and thus, they are not

10 Chapter 1 Introduction

suitable for real-time applications. On the other hand, online clustering methods
are highly dependent on the order and the size of the data, and they are less ac-
curate than offline methods. To overcome these limitations, we present an online
gaussian mixture-based clustering method (OGMC). The key idea of this method is
the proposal that an identity can be represented by more than just one distribution
or cluster. Using feature vectors extracted from the incoming faces, OGMC generates
clusters that may be connected to others depending on their proximity and their
robustness, and updates their connections every time their parameters are updated.
With this approach, we reduce the dependency of the clustering process on the order
and the size of the data and we are able to deal with complex data distributions. Ex-
perimental results show that OGMC outperforms state-of-the-art clustering methods
on large-scale face clustering benchmarks not only in accuracy, but also in efficiency
and scalability.

[YMA21] Yebes, J.J., Montero, D., & Arriola, I. (2021). Learning to Automatically
Catch Potholes in Worldwide Road Scene Images. IEEE Intelligent Transportation
Systems Magazine, 13, 192-205. (see Section 4.2)

Abstract: Among several road hazards that are present in any paved way in the
world, potholes are one of the most annoying and involving higher maintenance
costs. There is an increasing interest on the automated detection of these hazards
enabled by technological and research progress. Our work tackled the challenge of
pothole detection from images of real world road scenes. The main novelty resides
on the application of latest progress in Artificial Intelligence to learn the visual
appearance of potholes. We built a large dataset of images with pothole annotations.
They contained road scenes from different cities in the world, taken with different
cameras, vehicles and viewpoints under varied environmental conditions. Then, we
fine-tuned four different object detection models based on Deep Neural Networks.
We achieved mean average precision above 75% and we used the pothole detector
on the Nvidia DrivePX2 platform running at 5-6 frames per second. Moreover,
it was deployed on a real vehicle driving at speeds below 60 km/h to notify the
detected potholes to a given Internet of Things platform as part of AUTOPILOT
H2020 project.

[Mon+on] Montero, D., Aranjuelo, N., Leskovsky, P., Loyo, E., Nieto, M. & Aginako,
N. (2023). Multi-Camera BEV Video-Surveillance System for Efficient Monitoring of
Social Distancing. Multimedia Tools and Applications, pending publication. (see
Section 4.3)

Abstract: The current sanitary emergency situation caused by COVID-19 has in-
creased the interest in controlling the flow of people in indoor infrastructures, to
ensure compliance with the established security measures. Top view camera-based

1.5 Main publications 11

solutions have proven to be an effective and non-invasive approach to accomplish
this task. Nevertheless, current solutions suffer from scalability problems: they
cover limited range areas to avoid dealing with occlusions and only work with single
camera scenarios. To overcome these problems, we present an efficient and scalable
people flow monitoring system that relies on three main pillars: an optimized top
view human detection neural network based on YOLO-V4, capable of working with
data from cameras at different heights; a multi-camera 3D detection projection and
fusion procedure, which uses the camera calibration parameters for an accurate
real-world positioning; and a tracking algorithm which jointly processes the 3D
detections coming from all the cameras, allowing the traceability of individuals
across the entire infrastructure. The conducted experiments show that the proposed
system generates robust performance indicators and that it is suitable for real-time
applications to control sanitary measures in large infrastructures. Furthermore,
the proposed projection approach achieves an average positioning error below 0.2
meters, with an improvement of more than 4 times compared to other methods.

[Mon+21] Montero, D., Unzueta, L., Goenetxea, J., Aranjuelo, N., Loyo, E., Otaegui,
O., & Nieto, M. (2021). Multi-Stage Dynamic Batching and On-Demand I-Vector
Clustering for Cost-effective Video Surveillance. 16th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISIGRAPP). (see Section 4.4)

Abstract: In this paper, we present a cost-effective Video-Surveillance System (VSS)
for face recognition and online clustering of unknown individuals at large scale.
We aim to obtain Performance Indicators (PIs) for people flow monitoring in large
infrastructures, without storing any biometric information. For this purpose, we focus
on how to take advantage of a central GPU-enabled computing server, connected to a
set of videosurveillance cameras, to automatically register new identities and update
their descriptive data as they are reidentified. The proposed method comprises two
main procedures executed in parallel. A Multi-Stage Dynamic Batching (MSDB)
procedure efficiently extracts facial identity vectors (i-vectors) from captured images.
At the same time, an On-Demand I-Vector Clustering (ODIVC) procedure clusters the
i-vectors into identities. This clustering algorithm is designed to progressively adapt
to the increasing data scale, with a lower decrease in its effectiveness compared to
other alternatives. Experimental results show that ODIVC achieves state-ofthe-art
results in well-known large scale datasets and that our VSS can detect, recognize and
cluster in real time faces coming from up to 40 cameras with a central off-the-shelf
GPU-enabled computing server.

[Mon+22b] Montero, D., Nieto, M., Leskovský, P., & Aginako, N. (2022). Boosting
Masked Face Recognition with Multi-Task ArcFace. 16th International Conference on
Signal Image Technology & Internet based Systems (SITIS). (see Section 4.5)

12 Chapter 1 Introduction

Abstract: In this article, we tackle the recognition of faces wearing surgical masks.
Surgical masks have become a necessary piece of daily apparel because of the COVID-
19-related worldwide health problem. Modern face recognition models are in trouble
because they were not made to function with masked faces. Furthermore, in order
to stop the infection from spreading, apps capable of detecting if the individuals are
wearing masks are also required. To address these issues, we present an end-to-end
approach for training face recognition models based on the ArcFace architecture,
including various changes to the backbone and loss computation. We also use data
augmentation to generate a masked version of the original dataset and mix them
on the fly while training. Without incurring any additional computational costs,
we modify the chosen network to output also the likelihood of wearing a mask.
Thus, the face recognition loss and the mask-usage loss are merged to create a new
function known as Multi-Task ArcFace (MTArcFace). The conducted experiments
demonstrate that our method outperforms the baseline model results when faces
with masks are considered, while achieving similar metrics on the original dataset.
In addition, it obtains a 99.78% of mean accuracy in mask-usage classification.

[Mon+19] Montero, D., Aranjuelo, N., Senderos, O., & Nieto, M. (2019). BEV Object
Tracking for LIDAR-based Ground Truth Generation. 2019 27th European Signal
Processing Conference (EUSIPCO), 1-5. (see Section 4.6)

Abstract: Building ADAS (Advanced Driver Assistance Systems) or AD (Autonomous
Driving) vehicles implies the acquisition of large volumes of data and a costly
annotation process to create labeled metadata. Labels are then used for either
ground truth composition (for test and validation of algorithms) or to set-up training
datasets for machine learning processes. In this paper we present a 3D object
tracking mechanism that operates on detections from point cloud sequences. It
works in two steps: first an online phase which runs a Branch and Bound algorithm
(BBA) to solve the association between detections and tracks, and a second filtering
step which adds the required temporal smoothness. Results on KITTI dataset show
the produced tracks are accurate and robust against noisy and missing detections, as
produced by state-of-the-art Deep Learning detectors.

1.6 Thesis Structure

This thesis is divided into four chapters, which are described below:

• Introduction: provides some context about the conducted research work, and
exposes the motivation, the hypothesis and the objectives of the thesis. In
addition, the main publications are also listed.

1.6 Thesis Structure 13

• Research results: presents an analysis of the results and the contributions of
each main publication to the different research lines and objectives defined in
the introduction.

• Conclusions: in this chapter the conclusions obtained in the thesis are collected
and new ideas are proposed that can be used to continue with the proposed
research lines in the future.

• Publications: gathers all the main publications on which the thesis is based,
as well as other secondary ones that are also relevant in its field.

Finally, the bibliography and the list of figures and tables are included at the end of
the document.

14 Chapter 1 Introduction

2Research results

In this chapter, the results obtained in the main research works that support the
thesis are analyzed, as well as the contributions made related to the objectives
of the different research lines defined in the previous chapter. For each one, an
introduction is provided first about the motivation and the objectives in order to
give some context. Then, a summary is presented about the development, the
experiments, and the results, focusing on the parts that are more relevant to this
thesis. Finally, the contributions of the work are highlighted and matched with
their corresponding research lines. For full details about the methodology and the
experiments, please refer to Section 4.

2.1 Efficient Large-Scale Face Clustering Using an
Online Mixture of Gaussians

2.1.1 Motivation and objectives

In this work, we address the problem of large-scale online face clustering: given
a continuous stream of unknown faces, create a database grouping the incom-
ing faces by their identity. Furthermore, the application must meet the following
requirements:

• The database must be updated every time a new face arrives.

• The solution must be efficient, accurate, and scalable.

• Data privacy must be granted: personal information that could be used to
identify the subjects should not be stored [NSM05; Bow04; Erk+09].

To overcome the data privacy limitation, we rely on a face recognition model, a
DNN that can infer feature vectors (f-vectors) from the targeted face images, which
correspond to abstract representations of the people’s appearances used for training
[Den+19a; SKP15]. This way, the later clustering algorithm will work over these

15

vectors and we do not need to store sensitive information about the subjects. An
overview of the desired online clustering system is illustrated in Figure 2.1.

FACE
RECOGNITION

MODEL

F-VECTORS
QUEUE

NEW
SAMPLE

CONNECTION

CLUSTERING PROCESS UPDATED DATABASE
EXTRACTED FACES

Fig. 2.1: Example of an online clustering system. A continuous stream of face images,
extracted from a set of video-surveillance cameras, are processed by a face recogni-
tion model and the extracted f-vectors are enqueued. The online clustering process
updates the database with every new sample without repeating the whole process.

Thus, we have two key components in the system, the face recognition model and
the online clustering algorithm. In this work, we focus on the clustering algorithm,
since we believe that it is the component that has the greatest room for improvement,
given the peculiarities of the use case and the state-of-the-art in the literature. As an
example of these peculiarities, these real-time applications may work in large-scale
unconstrained environments, where no information about the distribution of face
representations or the number of identities is available. Furthermore, the faces may
come from multiple cameras placed in different locations and positions, so they may
have different orientations, lighting conditions, partial occlusions, etc. This will
lead to complex data distributions. Most traditional and state-of-the-art clustering
methods are offline ([Wan+19; OWJ18; Llo82; JD88]). These offline approaches
are not suitable for real-time large-scale scenarios, as they need to repeat the whole
clustering process every time a new sample arrives. In addition, most of them have
difficulties dealing with complex data distributions.

2.1.2 Results and contributions

To overcome the challenges previously mentioned, we present an online gaussian
mixture-based clustering method (OGMC). Our proposal’s key idea is that an identity
may be represented by several distributions or clusters. Using feature vectors (f-
vectors) extracted from the incoming faces, OGMC generates clusters that may be
connected to others depending on their proximity and their robustness. Every time a
cluster is updated with a new sample, its connections are also updated. With this
approach, we reduce the dependency of the clustering process on the order and the
size of the incoming data and we are able to deal with complex data distributions.
The high-level idea of the method is exposed in Figure 2.2.

16 Chapter 2 Research results

D1

NEW
SAMPLE

THRF

CLUSTER 1 CLUSTER 2
D2 THRF

CLUSTER 1

STAGE 1: SAMPLE CLUSTERING

THRF

D3

CLUSTER 3

ROBUST
CLUSTER 1

UPDATED
CLUSTER 2

CLUSTER 1

UPDATED
CLUSTER 2

CLUSTER 3

CLUSTER 3
CLUSTER 2

THRF

STAGE 2: CLUSTER RECLUSTERING

THRF
THRWC

CONNECTION

Fig. 2.2: Example of the operation of the proposed online clustering algorithm when a new
sample arrives.

To demonstrate the potential of the proposed clustering algorithm, we conduct a
series of experiments divided into two groups. The first group aims to measure the
performance of OGMC in accuracy and processing time, comparing it with other
traditional and state-of-the-art offline clustering methods. For that purpose, we
test the model in three well-known face recognition datasets: IJB-B [Whi+17],
IJB-C [Maz+18], and MS-Celeb-1M [Guo+16]. In each experiment, we use vectors
extracted using a different face recognition model and of different sizes in order to
demonstrate that the algorithm does not depend on them. Among all of them, the
most challenging experiment is the one conducted using the MS-Celeb-1M dataset,
where we use a face recognition model which extracts vectors with less features and
a database with a much higher number of identities. The database contains 5.8M
images from 86K identities. It is randomly split it into 10 parts with an almost equal
number of identities. Then, 1 part is selected as labeled data for training and the
other 9 parts as unlabeled data. With the unlabeled data, 5 tests are created with an

2.1 Efficient Large-Scale Face Clustering Using an Online Mixture of Gaussians 17

increasing number of vectors and identities. The last test has 5.2M vectors and 77K
identities. The results of this experiment are gathered in Table 2.1.

Tab. 2.1: Comparison with baseline methods in terms of BCubed F-Measure using subsets
of different sizes from MS-Celeb-1M dataset. All methods use the same 256-
dimensional vectors provided by [Yan+20b].

Method

Test
Number of samples

584K 1.74M 2.89M 4.05M 5.21M
Number of identities

8.5K 25.7K 42.8K 60.0K 77.1K
BCubed F-Measure

K-means [Llo82; Scu10] 0.812 0.752 0.723 0.706 0.694
HAC [Sib73] 0.705 0.695 0.686 0.677 0.670

DBSCAN [Est+96] 0.672 0.665 0.663 0.449 0.447
ARO [OWJ18] 0.170 0.124 0.110 0.105 0.100
CDP [Zha+18] 0.787 0.758 0.746 0.736 0.729
GCN [Wan+19] 0.844 0.816 0.801 0.793 0.786
LTC [Yan+19] 0.855 0.830 0.811 0.798 0.789

GCN-V [Yan+20b] 0.858 0.826 0.811 0.799 0.791
GCN-(V+E) [Yan+20b] 0.861 0.828 0.812 0.801 0.793

OGMC (ours) 0.906 0.881 0.864 0.851 0.839

The second group of experiments focuses on testing its scalability, measuring the drop
in accuracy and the increase in processing time as the number of data samples grows.
In this case, the most challenging experiment conducted consists of testing the model
using IJB-C vectors with 3M of distractors and measuring how the processing time
per sample evolves with the number of processed samples and with the number of
clusters in the database (note that the number of clusters is not equal to the number
of identities, as we are not taking connections into account). Figure 2.3 shows that,
after processing 3 million samples and with a database of 80 thousand clusters, the
processing time per sample is still 5 milliseconds, which still allows OGMC to process
200 samples per second in real time.

Furthermore, an ablation study is presented in order to validate the design decisions,
analyze the contributions of the different parts of the algorithm and measure the
degree of dependency of the model parameters on the face recognition network and
the train and test datasets.

Finally, to demonstrate the effectiveness of OGMC beyond face recognition, an
additional experiment is conducted with DeepFashion [Liu+16], a dataset used for
clothes retrieval. The results of the experiment are presented in Table 2.2. Among all

18 Chapter 2 Research results

0

1

2

3

4

5

Sa
m
pl
e
tim

e
(m

s)

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
Number of clustered samples (millions)

0

20K

40K

60K

80K

Cl
us
te
rs
 n
um

be
r

Fig. 2.3: Evolution of the clustering time per sample with the number of samples clusterized
compared to the evolution of the number of clusters in the database.

the tested methods, OGMC achieves the best F-Measure, demonstrating its suitability
for tasks beyond face recognition.

Tab. 2.2: Comparison with baseline methods in terms of BCubed F-Measure with DeepFash-
ion dataset. All methods use the same vectors from [Yan+20b].

Method F-Measure
K-Means [Llo82; Scu10] 0.538

HAC [Sib73] 0.488
DBSCAN [Est+96] 0.532

MeanShift [Yiz95; CM99] 0.567
Spectral [Ho+03; NJW01] 0.464

ARO [OWJ18] 0.530
CDP [Zha+18] 0.578
GCN [Wan+19] 0.589
LTC [Yan+19] 0.591

GCN-V [Yan+20b] 0.573
GCN-(V+E) [Yan+20b] 0.601

OGMC (ours) 0.620

From all these experiments, the following conclusions can be extracted:

2.1 Efficient Large-Scale Face Clustering Using an Online Mixture of Gaussians 19

• OGMC algorithm is independent of the recognition model: in all the cases the
clustering algorithm improves the results achieved by its competitors.

• Despite being an online method, OGMC outperforms other online and offline
methods in terms of F-Measure and processing time. For instance, in the IJB-B
experiment, compared to the second best method (GCN-A [Wan+19]), OGMC
achieves a better F-Measure while reducing the processing time by more than
6 times using the same hardware.

• The method is robust against outliers: in the results, we observe that the
identity outliers are contained in non-robust clusters connected to the robust
ones. This way, the quality of the robust cluster centroids is not compromised
by these outliers and the number of matching errors is reduced.

• The 5 hyper-parameters of OGMC do not need to be readjusted if the scale of
the dataset increases, so the user just needs to tune the parameters if the face
recognition model is changed.

• The proposed method is suitable for real-time applications and highly scalable,
even when dealing with extremely large amounts of data.

• OGMC is suitable for other tasks beyond face recognition.

Finally, this work contributes to the second research line defined in the thesis. It
demonstrates the importance of the postprocessing algorithms (Obj2.4), which can
highly improve the performance of the system in terms of accuracy and processing
time. In this sense, it also contributes to the state of the art with a new online
clustering method that outperforms the rest of the evaluated approaches.

2.2 Learning to Automatically Catch Potholes in
Worldwide Road Scene Images

2.2.1 Motivation and objectives

This work tackles the challenge of pothole detection from images of real-world road
scenes. It was developed in the context of the AUTOPILOT H2020 project [24], which
aims to deploy, test and demonstrate automated services based on Internet of Things
(IoT) in five driving modes. In the Highway Pilot use case, a cloud service merges
the sensor’s measurements from different IoT devices to locate and characterize road

20 Chapter 2 Research results

hazards. The goal is to provide the following vehicles with meaningful warnings and
driving recommendations to manage the hazards in a safer or more pleasant way.

For a better understanding of the scenario, we assume the following: Firstly, a vehicle
equipped with different systems has the role of IoT device, which is comparable
to smartphones and other wearables that can send/receive messages to/from IoT
platforms. Secondly, in-vehicle systems include AI modules that process data and
produce low-bandwidth messages that are wirelessly sent to IoT platforms. Figure
2.4 shows an illustration about the AUTOPILOT usecase.

Fig. 2.4: AUTOPILOT H2020 project illustration [24]

Within this background, our main research motivation is the automated visual
detection of road potholes from a frontal colour camera on board a vehicle. Once
potholes are detected, their locations are reported to a given IoT platform. The
current state of the art is predominantly based either on sensing potholes with
accelerometers [Bha+17] or cameras [NBK15]. Accelerometer-based detection
requires that the vehicle drives over the potholes, which is usually not the case as the
driver will try to avoid them. On the other hand, vision-based detection is naturally
seen as the same process in which drivers perceive the environment and anticipate
to possible road hazards. For the latter one, classical image processing and machine
learning approaches have been evaluated on images of certain world regions. Our
strategy is to automatically learn the visual appearance of worldwide potholes using
the latest advances in Deep Neural Networks.

2.2 Learning to Automatically Catch Potholes in Worldwide Road Scene Images 21

2.2.2 Results and contributions

The first step for developing the model is collecting and preparing the training data.
After searching through the literature, we found only one pothole dataset available
[NBK15]. It consists of 4,030 images of size 3680×2760 pixels and their labels.
The images were captured as regular snapshots from a GoPro camera attached to
the inner side of a vehicle windscreen. In order to increase the size of the dataset,
we sample 1,644 images from AUTOPILOT videos of VALEO in the surroundings
of Paris and manually labelled the potholes. These images have a resolution of
1280×800 pixels. Finally, to add more diversity to the dataset, we capture 100
images from different locations using the Google Earth Pro street-view tool at a
resolution of 1236×804 pixels. They have been also manually labelled. Thus, the
database consists of 5,874 images from which 5,774 have been used for fine-tunning
and 100 have been randomly picked for validation. In the training set there is a
total amount of 9,716 potholes while in the validation set the number of potholes is
171.

After gathering all the data, we perform an exploratory data analysis (EDA). We
have collected images with several types of potholes under different illumination
and weather conditions as depicted in Fig. 2.5.

The most common potholes show a pronounced edge describing an elliptical shape.
However, there are some that describe a more square-like shape and some others
that do not have a pronounced edge. They might appear darker or brighter on
the background pavement. The deepest ones look darker because of the shadow
of the edge, while in the flat ones it is possible to see the ground or gravel inside
the pothole. Besides, some potholes appear filled with water and might also reflect
surrounding scene in the surface. We also extract information about the size of
the images and the distributions of the size, aspect ratio and area of the annotated
potholes, which is useful for the later design of the DNN. We provide box plots in
Figure 2.6.

Regarding the DNN, based on the investigation in [Hua+17] and the entries reported
in the TensorFlow model Zoo [14], we select 4 models that have shown high detec-
tion ratios at reasonable processing costs. Besides, we also evaluate the Single Shot
multibox Detector (SSD) because it is targeted for mobile applications. Attending
to detection performance we choose 3 different configurations of the architecture
Faster R-CNN:

1. Faster R-CNN Inception v2. The feature extractor in this approach provides
batch normalization for accelerating the model training and it has yielded high

22 Chapter 2 Research results

Fig. 2.5: Samples of annotated potholes. They come from several sources and represent
varied places, environmental conditions and camera viewpoints.

0

2

4

6

8

10

12

14

16

18

20

10

100

1000

10000

100000

1 × 106

A
sp

ec
t

R
at

io

Pi
xe

lA
re

a

Fig. 2.6: Distribution of the aspect ratio and area in pixels of the annotated potholes for
the train dataset. The boxplot on the left has a linear representation of the aspect
ratios. The quartiles are Q1 = 2.053, median = 3.062, Q3 = 4.0. The boxplot on
the right shows the area in pixels and has a logarithmic axis for the purpose of
visualization. The quartiles are Q1 = 1276, median = 3081, Q3 = 7744 pixels

accuracy [How+17]. Compared to v1, it is more efficient by factorizing the
convolution operations. Also, it is a wider network to avoid losing visual details
that may happen in v1 which is deeper as road potholes typically represent
small portions of the images.

2.2 Learning to Automatically Catch Potholes in Worldwide Road Scene Images 23

2. Faster R-CNN Resnet101. This model training uses Resnet101 that stands for
Residual Network with 101 layers [How+17] and has achieved high success
on many competitions. This type of networks try to learn residuals which are
short-cut connections between layers. The approach allows to train deeper
models without degradation.

3. Faster R-CNN Inception-Resnet v2 (atrous). This third model uses a hybrid
feature extractor that combines Inception and Resnet, second version (v2),
yielding improved recognition performance as reported in [Sze+16]. Moreover,
the "atrous" (with holes in) option employs dilated convolutions, which provide
a wider field of view at the same computational cost towards achieving better
accuracy.

Attending to the performed EDA, we fix the size of the input layer to 1024×800 pixels.
We found that the median area of potholes corresponded to a 0.37% of the original
image size. Given a reduced resolution of 600×600 as reported in [14], 1350 ≃ 362

pixels is the average area of the potholes in the images. Besides, the 1:1 aspect ratio
involves warping, cropping and resizing the original images. Consequently, road
areas on the left and right sides in front of the car are cropped out and the visual
appearance of the scene and the potholes are deformed and reduced in granularity.
Therefore, we decide to use a larger window size with an aspect ratio similar to the
original resolution of the images, achieving a median area of 3081 pixels among the
annotated potholes.

In addition, we apply a set of adjustments in the architecture and the training
hyper-parameters for the 3 Faster R-CNN models.

• Add the aspect ratios of 1:3 and 1:4 after analysing the dataset (see Fig. 2.6).

• Reduce the maximum number of region proposals for Faster R-CNN models
from 300 to 100, with the aim of decreasing detection time without losing
performance [Hua+17].

• Due to the limited size of our pothole database, we increase the number
of training samples by data augmentation. Among several options for fine-
tunning Faster R-CNN models, we select random_adjust_brightness and ran-
dom_horizontal_flip because of their effectiveness in previous research experi-
ence for object detection.

• We enable the drop-out feature in the second stage of the Faster R-CNN training
to prevent over-fitting. Basically, this option randomly drop units and their

24 Chapter 2 Research results

connections from the network, which prevents the units from co-adapting too
much.

• The number of steps employed for fine-tuning the 3 models is 2M. We pick this
number observing the performance of the trained models on the validation
subset. The loss function was stable without showing too much improvement,
thus we decide to stop at 2M steps, which corresponds to 173 epochs.

Similarly, we apply the same adjustments for fine-tuning the SSD Mobilenet v2 model
but using a a squared size of 800 × 800 pixels.

For the models evaluation, we select the mean Average Precision (mAP) as detection
performance metric and the higher the mAP, the better.

We start by evaluating SSD Mobilenet v2. The AP was 33.62% and 45.57% @ IoU
0.5 and 0.4, respectively and took approximately 455ms per image when executed
in Nvidia DrivePX2. These values show a very low detection performance despite
the fine-tunning of some parameters. We investigated the main reasons and reached
the conclusion that in SSD Mobilenet the discretization in bounding boxes and their
separate analysis does not account for neighbouring pixels, which provide useful
context information. Despite the initial expectations of this research to implement
a mobile embedded Deep Neural Network, the SSD Mobilenet is not well suited to
detect objects that strongly depend on the appearance of surrounding scene, i.e.
potholes vs road appearance.

Regarding the Faster R-CNN models, Figure 2.7 presents the precision-recall curves
at two different values of IoU and running times are shown in Table 2.3.

Tab. 2.3: Average inference time for the 3 pothole detectors and different gpu devices.

Inference time (ms)

Models Tesla P100M 16GB DrivePX2 TegraA

inception_v2 53.2 177.1

resnet101 94.2 432.7

inception_resnet_v2_atrous 172.1 732.9

As it can be observed from the resulting values, Faster R-CNN Resnet101 yields the
highest detection performance. It is not the slowest DNN but it requires on average
432.7ms per frame on the Nvidia DrivePX2. For the goals of detecting potholes and
reporting them to an IoT platform (AUTOPILOT project), it is a valid time. There
are not real-time requirements because detected potholes will be monitored from
control centres and broadcasted to warn other road users when sufficient confidence

2.2 Learning to Automatically Catch Potholes in Worldwide Road Scene Images 25

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Faster-RCNN

IoU=0.4
inception resnet

inceptionv2
resnet101

IoU=0.5
inception resnet

inceptionv2
resnet101

Fig. 2.7: Precision-recall curves for the test set. Three Faster R-CNN models with a different
feature extractor network and two values of IoU are compared. Due to the nature
of road potholes, there is a larger error in the localization accuracy of the ground-
truth bounding boxes. Thus, we opted to report IoU = 0.4 in addition to the
commonly used 0.5 value. The aim is reducing false negatives and false positives
in road scenes with deteriorated surfaces where manual pothole labelling is also
challenging.

is reached after several repeated detections on a given map location. For vehicle
reactive manoeuvres upon detection, further research is needed to optimize the
neural networks without losing too much performance in order to obtain processing
gains.

To sum up, the contributions of this paper are the following:

• We have built a dataset with manual annotations from several places around
the world that include images from Europe, America, Asia and Africa. It is
composed of challenging scenes captured from different cameras, viewpoints
and under varied environmental conditions. We have also performed and EDA
to extract important information about the data.

• We have fine-tuned and evaluated 4 different Deep Neural Networks (DNNs)
for the detection of road potholes on images. We have applied several modifi-
cations to the architectures and the training hyperparameters, as well as other
techniques such as data augmentation or dropout. Consequently, we have
achieved high detection ratios (mAP > 75%) considering the high intraclass
variance.

• The pothole detector has been tested on the Nvidia DrivePX2 platform for
embedding ADAS in driverless vehicles.

26 Chapter 2 Research results

• As part of AUTOPILOT project, the pothole detector has been integrated on a
real vehicle. The set-up included an automotive grade camera, General-Purpose
computing on Graphics Processing Units (GPGPU) and IoT communication
modules on board the vehicle.

Finally, this works contributes to all the objectives from the first research line: the
optimization of the DNN. It tackles the DNN selection (Obj1.1), the design of the
whole training pipeline (Obj1.2), including data selection and preparation, and the
optimization of the architecture (Obj1.3) with several modifications, like reducing
the number of region proposals or modifying the aspect ratios.

2.3 Multi-Camera BEV Video-Surveillance System
for Efficient Monitoring of Social Distancing

2.3.1 Motivation and objectives

In this work, we consider the problem of efficient monitoring of a set of established
security measures in large infrastructures using non-invasive technology. More
specifically, we aim to create a video-surveillance system capable of monitoring
compliance with social distance and capacity limitation measures, as well as tracking
the offenders or the possibly infected subjects. Therefore, the system must be capable
of merging the information coming from multiple cameras to track subjects all over
the monitored region. We use overlapped camera views to track people across
views.

For this task, the system will extract the necessary information from a set of cameras
placed on the ceiling of the monitored infrastructure. The number of cameras
depends on the area to be covered and on the height of the ceiling. The setup
needs to guarantee that all the areas of interest are visible by the cameras with a
minimum resolution (limited by the capabilities of the human detection network).
The omnidirectional cameras with fish-eye lenses have a wide field of view, which
makes them appropriate for monitoring large areas with a minimum number of
sensors. Intrinsic and extrinsic parameters of all the cameras need to be available
for an accurate distance measuring. An image illustrating the considered use case
is presented in Fig. 2.8. The system must be able to report reliable and real-time
information about the state of measures compliance using minimum processing
requirements, preferably a single-GPU server.

2.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring of Social
Distancing 27

Fig. 2.8: Illustration of the considered scenario. Multiple omnidirectional cameras with a
small overlap cover the monitored area. The cameras are connected to a central
GPU-enabled server.

2.3.2 Results and contributions

Considering the requirements mentioned above, we carefully design the whole
monitoring system. An overview diagram is illustrated in Figure 2.9 and a flowchart
in Figure 2.10.

The system requires an initial camera calibration process in order to compute the
intrinsic and extrinsic parameters. The estimated camera parameters are used in
later stages for mapping the image coordinates to the 3D world coordinates and
for locating each camera with respect to the others. First, the images are grabbed
from each configured camera. Then, they are preprocessed in parallel using the
CUDA library and fed into the pruned version of YOLO-V4 detector, implemented
in TensorRT framework. Therefore, from the original (distorted) images, a set of
detections is obtained for each camera at each frame. Each detection is modeled as
a 4-point rectangle in image coordinates.

We alter the typical order of the tracking and projection stages for two reasons: it
is easier to estimate the trajectory using world coordinates than image coordinates
from an omnidirectional camera (where the bounding box varies rapidly); and
this way we only need a single tracker instance to process all detections in world
coordinates. Thus, from the detections, a fitting process yields the desired 3D
cylinder shapes, where each cylinder is encoded using the center point in the XY
plane, the height, and the radius. Then, a fusion mechanism determines which
cylinders correspond to the same object for cameras with overlapped fields of view.
Next, the tracking stage takes these cylinders, applying a constant-velocity predicting

28 Chapter 2 Research results

Data analysis

2D detection 3D cylinder
estimation Detection fusion

3D tracking

Fig. 2.9: Overview graphical diagram of the proposed workflow. Note that the rectified
images (in the lower row) are generated only for visualization purposes and are
not necessary for fusing the detections, tracking, or data analysis.

Multi-camera
calibration

Intrinsic and extrinsic
parameters

2D detection

Distorted images

3D cylinder
estimation

2D bounding
boxes

3D cylinder multi-
camera fusion

3D cylinders

3D tracking Data analysis

Updated tracks3D cylinders
filtered

CALIBRATION STAGE

OPERATION STAGE

Fig. 2.10: Overview flowchart of the proposed workflow. Note that until the cylinders fusion
step, the detections of each camera are processed separately.

model, plus managing the appearance and disappearance of objects, miss-detections,
etc. Finally, the output time-consistent tracks are analysed to extract the necessary
information for the monitoring of the established security measures.

About the object detector, Similar to [Ara+21], we train YOLO-V4 [BWL20a] to
detect people directly in overhead images from fish-eye cameras. We use this single-

2.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring of Social
Distancing 29

stage detector because it provides a good balance between accuracy and inference
time. Compared to previous versions, YOLO-V4 includes detections at three scales,
which improves the small object detection accuracy.

To further increase the performance of the model we apply two optimization pro-
cesses. First, we apply the weight pruning procedure described in [ZZL19]. Finally,
the pruned models are ported to TensorRT framework to apply hardware-level op-
timizations. With these optimizations we are able to reduce the inference time by
almost a 90% for each model, from 22 fps to 110 fps.

Regarding the training data, as there is no public dataset with top-view fish-eye
images of large spaces focused on human detection and multi-camera systems, we
use several recordings to build our training dataset. We set up two omnidirectional
cameras installed at 3.3 meters and another camera at 8 meters. We capture 10,000
images for the lower height range and 10,000 images for the upper one. In addition,
to augment both ranges’ data variety we add 5,600 synthetic images from the
Advanced Synthetic Dataset presented in [Ara+21] to each of the datasets.

We also apply data augmentation techniques to enrich the data. As shown in
[Zop+20], rotation and histogram equalization are some of the most efficient image
augmentations for training accurate object detection CNNs. Consequently, we apply
rotations, flipping and histogram equalization augmentations (CLAHE) to our images.
We randomly combine these augmentations and generate 4 new samples for each
image.

We conduct a series of experiments to analyze the suitability of the proposed system.
to evaluate the performance of the proposed system, we focus on measuring the
quality of the tracks and the accuracy of the positioning. To measure the quality
of the generated tracks, we use the metrics described in [Den+20], developed to
precisely compare different multi-object tracking methods in crowded scenes. We
generate 7 sequences with different scenarios, number of cameras, heights, number
of identities, and levels of occlusion. The details of each sequence are presented in
Table 2.4.

Furthermore, we also present an experiment comparing the proposed 3D cylinder
estimation procedure with other alternative 3D projection methods:

• Projecting the center of the detection bounding box. This is the approach
followed in other related works [Ahm+20; AAJ21; RA20; PSA20; Yan+20a].

• Projecting the point of the bounding box closest to the center of the image. For
cameras with fish-eye lenses, the furthest point from the camera of a vertical

30 Chapter 2 Research results

Tab. 2.4: Details of the different sequences considered for the system evaluation. For
each sequence we specify the scenario, number of cameras, camera heights in
meters, radius of the monitored area for each camera in meters, number of frames,
number of identities, and occlusion level (from 1 to 5).

Seq Sc NC Heights Rad Frame IDs Occ
1 1 2 3.3, 3.3 3.5 1610 3 1
2 1 2 3.3, 3.3 3.5 654 5 2
3 1 2 3.3, 3.3 3.5 750 5 3
4 1 2 3.3, 3.3 3.5 1083 4 4
5 1 2 3.3, 3.3 3.5 837 5 5
6 2 1 5.5 8 334 6 2
7 3 1 8.1 10 578 13 4

object (i.e. the feet position of a person) corresponds to the object point closest
to the center of the generated image.

• Estimating the 3D cylinder. This is the proposed approach.

The results of the experiments are presented in Table 2.5. In this table, we compare
the metrics for measuring the positioning accuracy: F1 score (F1) and average
positioning error (APE). Note that the proposed approach achieves the best result
by far, reducing the average positioning error by more than 4 times in most cases.

Finally, the contributions of this work are the following:

• A modification in the traditional tracking-systems pipeline that allows our
system to operate efficiently in multi-camera environments. Unlike the rest of
the proposed methods, we move the projection step to real-world coordinates
just after the detection step for each camera (instead of applying it after the
tracking step). Then, thanks to an initial multi-camera calibration procedure,
we are able to track the subjects uninterruptedly all over the monitored area
using just a single tracker instance for processing all the detections. Further-
more, this approach allows using cameras installed at different heights, since
it does not take into account the detection bounding box for the multi-camera
fusion but the real position in meters.

• A 3D projection and multi-camera fusion procedure. Using the intrinsic and
extrinsic parameters of the involved cameras, it estimates the best-fitting
3D cylinder for each detected bounding box and fuses the cylinders of the
overlapping regions of the camera views that belong to the same person. This

2.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring of Social
Distancing 31

Tab. 2.5: Comparison of the performance of the proposed method using different 3D pro-
jection approaches: projecting the center of the bounding box; projecting the
point closest to the center of the image; and estimating the 3D cylinder (proposed
approach). S stands for the sequence number and C for the camera IDs involved
in the test.

S C
BBox Center Closest Point 3D Cylinder
F1 APE F1 APE F1 APE

1 1,2 0.776 0.600 0.835 0.216 1.000 0.094
1 1 0.738 0.612 1.000 0.215 1.000 0.089
1 2 0.791 0.453 1.000 0.273 1.000 0.069
2 1,2 0.776 0.572 0.898 0.388 0.997 0.151
2 1 0.540 0.618 1.000 0.251 1.000 0.071
2 2 0.589 0.526 1.000 0.355 0.997 0.063
3 1,2 0.734 0.481 0.900 0.301 0.987 0.136
3 1 0.617 0.524 0.985 0.287 0.991 0.084
3 2 0.736 0.481 0.985 0.326 0.986 0.077
4 1,2 0.754 0.471 0.882 0.297 0.986 0.155
4 1 0.734 0.493 0.994 0.268 0.999 0.085
4 2 0.643 0.455 0.982 0.304 0.993 0.095
5 1,2 0.807 0.504 0.912 0.395 0.991 0.186
5 1 0.647 0.569 0.971 0.258 0.978 0.097
5 2 0.606 0.521 0.993 0.330 0.996 0.085
6 1 0.867 0.331 0.976 0.332 0.991 0.089
7 1 0.907 0.474 0.967 0.272 0.971 0.112

corrects possible occlusion problems and allows us to expand the useful range
of the cameras.

• A full pipeline for training and optimizing an object detection DNN model
for this use case. We have covered all the stages since the data selection and
preparation, which includes generating additional synthetic data and applying
data augmentation. We have selected a suitable architecture, trained it, and
optimized it, achieving an increase of performance from 22 fps to 110 fps.

This work contributes to both research lines, as we have designed a whole pipeline
for training (Obj1.2) and optimizing (Obj1.3) the DNN and we are improving the
performance of the DNN-based system through the modifications in the pipeline and
the proposed 3D projection and multi-camera fusion procedure (Obj2.4).

32 Chapter 2 Research results

2.4 Multi-Stage Dynamic Batching and
On-Demand I-Vector Clustering for
Cost-effective Video Surveillance

2.4.1 Motivation and objectives

This work aims to design and build a cost-effective Video-Surveillance System (VSS)
for face recognition and online clustering of unknown individuals at large scale.
The main task of this system is to obtain reliable Performance Indicators (PIs)
for people flow monitoring in large infrastructures, without storing any biometric
information.

More specifically, our goal is to build a face recognition-based solution from which
all the PIs can be derived for the whole infrastructure, trying to simplify as much
as possible the required hardware setup, and with a better handling of data so that
privacy issues can be avoided. This requires building an accurate and efficient face
recognition system that can manage large-scale data, without storing the biometric
information of the individuals.

For this purpose, we focus on how to take advantage of a central GPU-enabled
computing server, connected to a set of video-surveillance cameras, to automatically
register new identities and update their descriptive data as they are re-identified.

Thus, the objectives of this work are the following:

• Designing the whole video-surveillance system. It must be fast, efficient, and
scalable, capable of working in real-time and of extracting reliable PIs.

• Selecting, training, and optimizing the different DNNs required for detecting
and recognizing faces.

• Developing an online and extremely light clustering algorithm to re-identify
the subjects in real-time.

2.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video
Surveillance 33

2.4.2 Results and contributions

Figure 2.11 illustrates the overall processing architecture and data flow diagram of
the proposed VSS. It is divided into three computing threads (the first for image
capturing, the second for image processing, and the third for identity clustering)
that are executed asynchronously, using CPU and/or GPU capabilities depending on
the case, and sharing data sequentially.

CAPTURING THREAD

CLUSTERING THREAD

IMAGES

I-VECTORS

DATABASE

GPU COMPUTING SERVERN IP CAMERAS

1

2
...

CPU HDDRAM GPU

IMAGE PROCESSING THREAD

CPU

Fig. 2.11: Overall processing architecture and data flow diagram of the proposed VSS.

The capturing thread is in charge of three tasks: camera connection handling, stream
decoding, and image acquisition. The computational cost of the capturing thread is
low compared with the rest and it only uses a small amount of the CPU for frame
decoding, mask applying, and connection checking.

The image processing thread applies the DNN-based face analysis algorithms to
the captured images, in order to get the required identity vectors (i-vectors) for
the re-identification. It consumes most of the computation time of the entire VSS
(90-95%). Thus, to improve the global performance, the system exploits the GPU
resources for the DNN inferences, using the CPU for minor tasks like processing flow
control, image cropping, and managing patch lists (Figure 2.12).

The first stage detects all the faces present in the input image list and their facial
landmarks, which are used for the face patch normalization following the method
described in [Wan+18]. For an efficient detection of the facial regions and landmarks
in the N images from the capture process we propose a multi-batch version of MTCNN
(MB-MTCNN), with a batch size equal to the number of images (i.e. N). This stage
generates a list of M face regions with a set of five facial landmarks.

In the proposed MB-MTCNN, the key factor to accelerate this process is the inclusion
of parallel while loops, built upon flexible and expressive control-flow primitive
operators [Ten17], executed in execution frames of the GPU that can be nested,
allowing further optimizations. Thus, in the first parallel while loop of MB-MTCNN,
the images are scaled and processed in batch using P-Net to obtain the region
candidates. With a nested parallel while loop, the candidates of each scale and

34 Chapter 2 Research results

CPU GPURAM
IMAGE PROCESSING THREAD

MSDB Stage #3: I-Vector Extraction

Face Filtering

MSDB Stage #2: Face Attributes Based Filtering

Face Patch
Normalization

MSDB Stage #1: Normalized Face Patch Extraction

Face and Landmark
Detection

Face Attributes Extraction

N images

M

Q
Q i-vectors

Fig. 2.12: MSDB procedure in the image processing thread.

image are postprocessed following the original implementation; scaled to their real
size, refined and filtered with a non-maximum suppression (NMS). Finally, the
candidates from all the scales are grouped by image in batch and NMS is applied
again to merge candidates of different scales using a parallel while loop. In the
subsequent stages, the candidates are filtered and refined using R-Net and O-Net
networks. In these stages, the batches of candidates from each image are processed
in parallel. This is more efficient than processing all the candidates in one batch, as
it avoids reallocating the candidates for preprocessing and postprocessing.

The second stage checks if the facial patch is suitable for re-identification using a set
of automatically detected attributes and previously defined filtering considerations.
In our context, we use head orientation and a set of angle thresholds for the
filtering process, but other descriptive attributes could also be considered (e.g. age,
gender, ethnic group, etc.). These attributes are estimated with Multi-Task Cascaded
Convolutional Networks (TCDCN) [Zha+16b]. All the patches that do not match
the established rules are removed.

Finally, the last stage extracts the i-vectors from the list of filtered face patches
given by the filtering stage. For our experiments we use a DNN model based
on ResNet100 architecture [He+16a] with ArcFace loss [Den+19a]. We use this
architecture, despite its complexity, because we need to generate the i-vectors as
robust as possible in order to get highly-reliable PIs. The DNN inferences applied
to the dynamic lists of cropped facial images are made following efficient dynamic
batching procedures.

2.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video
Surveillance 35

More specifically, our dynamic batching approach for stages 2 and 3 of MSDB is to
load and infer multiple instances of the network, optimized for different batch sizes.
Thus, for each inference, we divide the input batch size in the minimum number of
mini-batches that fit the different network sizes.

Parallel to the processing thread, the clustering thread analyzes the incoming i-
vectors to automatically register new people and update their descriptive data with
new samples as they are re-identified, in an unsupervised way. In a summarized way,
each new i-vector is compared with the centroids of the registered identities using
the cosine similarity distance and a threshold. This threshold varies depending on
the number of members of a cluster (how robust it is). If there are suitable cluster
candidates, the i-vector is merged with the most suitable one and the centroid is
updated. Otherwise, it generates a new cluster.

We conduct experiments to evaluate the performance of the different system compo-
nents and the overall system performance. First, we test the clustering algorithm
using two well-known datasets: IJB-B, using the i-vectors extracted in [Wan+19].
and IJB-C, using our face recognition model to extract the i-vectors. The results
presented in Tables 2.6 and 2.7 show that the proposed method highly outperforms
the others in the processing time and that this difference increases with the size of
the database, which demonstrates that it is also more scalable. In terms of accuracy,
the model achieves the first position in the IJB-C test, but the third position with
the IJB-B dataset, where the quality of the i-vectors is worse. This shows that this
method is more sensitive than others to the quality of the i-vectors.

Tab. 2.6: Comparison with baseline methods in terms of BCubed F-Measure and processing
time using IJB-B-1845. Superscript* denotes results reported from original papers,
otherwise, it uses the i-vectors from [Wan+19]. Times are in hh:mm:ss format.

Method F-Meas Time
ARO [OWJ18] 0.755 00:01:13

PAHC* [Lin+18] 0.610 00:03:56
ConPaC* [SOJ18] 0.634 02:53:58

DDC [Lin+18] 0.800 00:05:32
GCN [Wan+19] 0.814 00:06:03
ODIVC (ours) 0.778 00:00:28

Then, we evaluate the performance of MB-MTCNN compared to the original imple-
mentation. Figure 2.13 shows the average time of the detection stage per image
for different resolutions and batch sizes using our approach (MTCNN corresponds
to batch=1). The results show a great reduction in the processing time per image
(more than 5 times for 720p). This reduction increases with the batch size but
reaches a saturation point due to hardware limitations.

36 Chapter 2 Research results

Tab. 2.7: Comparison with baseline methods in terms of BCubed F-Measure and processing
time using IJB-C dataset. All methods use the same i-vectors extracted from our
VSS and the same hardware. Times are in hh:mm:ss format.

Method F-Meas Time
ARO [OWJ18] 0.768 00:09:39

GCN [Wan+19] 0.890 00:10:32
ODIVC (ours) 0.931 00:00:52

1 5 10 20 30 40 50 60 70 80 90 100
Detection Batch (Number of Cameras)

5

10

15

20

25

30

De
te
ct
io
n
tim

e
pe

r I
m
ag

e
(m

s) 720p
1080p
1440p
4K

Fig. 2.13: Detection time per image for different resolutions and batch sizes in MB-MTCNN
(in stage 1 of MSDB), compared to MTCNN (batch=1).

We also test the performance of the proposed dynamic batching procedure compared
to other alternatives in the literature. We measure the recognition time per face when
the VSS is processing a sequence of images containing variable numbers of faces. To
better visualize time variations, we augment the number of faces by a factor of 10, so
they may vary from 10 to approximately 1000. The results are shown in Figure 2.14,
where TF stands for TensorFlow and TRT for TensorRT. The mini-batch size selected
for the Parallel-Loop-TF approach is 20 and those used for Multi-Instance-TRT are
400, 200, 100, and 20. It can be observed that the Multi-Instance-TRT outperforms
the other approaches, not only in the average but also in the maximum peak times.

Finally, to test the potential scalability of our VSS, we run it to process images
captured from a scaling number of videos, at different resolutions and with a
detection batch size set with the same value as the number of videos. Then, we
measure the average times per image batch in the image processing thread, the main
bottleneck of the system. The results are shown in Figure 2.15.

2.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video
Surveillance 37

0.0

2.5

5.0

7.5

10.0

12.5
Ti

m
e

pe
r F

ac
e

(m
s)

Naive-TF
Parallel-TF

Naive-TRT
Multi-Model-TRT

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Frame Number

0

200

400

600

800

1000

Nu
m

be
r o

f f
ac

es

Fig. 2.14: Average time per face of the dynamic batching procedure for stages 2 and 3 of
MSDB, compared to alternative state-of-the-art approaches.

1 10 20 30 40 50 60
Image batch (Number of Cameras)

0

200

400

600

800

1000

Pr
oc
es
sin

g
tim

e
pe
r b

at
ch
 (m

s) 720p
1080p
1440p
4K

Fig. 2.15: Average times per batch (for the image processing thread) with the considered
setup for different resolutions.

In our context, it is enough to deliver the PIs with near real-time performance. Hence,
if we consider it acceptable that the processing thread responds every 200 ms, this
setup could theoretically be scaled up to 40 720p cameras. The results reveal that
the proposed VSS is suitable for designing cost-effective GPU-server-based solutions
for our purpose.

38 Chapter 2 Research results

To sum up, the contributions of this work are the following:

• A cost-effective VSS for face recognition and online clustering of unknown
individuals at large scale, without storing their biometric information, to obtain
PIs for people flow monitoring.

• A Multi-Stage Dynamic Batching (MSDB) procedure to efficiently extract face
attributes and i-vectors from captured images. This includes MB-MTCNN, a
multi-batch version of a Multi-Task Cascaded Convolutional Network (MTCNN)
[Zha+16a], and an efficient dynamic batching strategy for the processing of
dynamic lists of facial images.

• An On-Demand I-Vector Clustering (ODIVC) algorithm, designed to progres-
sively adapt to the data scale, with a lower decrease in its effectiveness com-
pared to state-of-the-art alternatives.

Attending to the objectives of this thesis, this work contributes to both research
lines:

• DNN optimization. We have optimized the face detection model MTCNN to
highly boost its performance (Obj1.3). With all the applied parallelizations,
we have achieved a great reduction in the processing time per image (more
than 5 times for 720p resolution).

• CV System optimization. We have carefully designed all the components of
the system to maximize its performance:

– Efficient capturing and preparation of the images in a separate thread to
reduce the latency (Obj2.1).

– A Multi-Stage Dynamic Batching (MSDB) procedure to efficiently extract
face attributes and i-vectors from captured images for an optimal use of
the hardware resources (Obj2.3).

– An online clustering algorithm, extremely light, fast, and scalable, while
achieving competitive results compared to the offline alternatives (Obj2.4).

2.5 Boosting Masked Face Recognition with
Multi-Task ArcFace

2.5 Boosting Masked Face Recognition with Multi-Task ArcFace 39

2.5.1 Motivation and objectives

In this work, we address the problem of face recognition with masks. Given the
global health crisis caused by COVID-19, mouth and nose-covering masks have
become an essential everyday-clothing-accessory. This sanitary measure has put
the state-of-the-art face recognition models on the ropes since they have not been
designed to work with masked faces. In addition, the need has arisen for applications
capable of detecting whether the subjects are wearing masks to control the spread
of the virus.

Thus, we consider the problem of facial recognition of subjects who may or may not
wear masks. As we do not know if the subject is wearing a mask, the network must
perform well in both cases.

To solve this problem, we aim at increasing the accuracy of the face recognition
network when dealing with masked faces, while preserving as much as possible the
original accuracy with non-masked faces. In order to achieve this, the network must
learn if the subject is wearing a mask to decide which facial features can be trusted
in each case.

2.5.2 Results and contributions

We propose an approach based on the ArcFace work presented by Deng et al.
[Den+19b] with several modifications for the backbone and the loss function. From
the original face-recognition dataset, we generate a masked version using data
augmentation, and we combine both datasets during the training process. We
modify the selected network, based on ResNet-50 [He+16b; He+16a], to also
output the probability that a face is wearing a mask without adding any additional
computational cost. Furthermore, we combine the ArcFace loss with the mask-
usage classification loss, resulting in a new function named Multi-Task ArcFace
(MTArcFace).

An illustration of the proposed training pipeline is shown in Figure 2.16.

For the generation of the masked version of the dataset, we use the tool MaskTheFace
[AR20]. The types of masks considered are surgical, surgical green, surgical blue,
N95, cloth and KN95. The type mask is selected randomly and there is a probability
of 50% of applying a random color and a probability of 50% of applying a random
texture. Some examples of the generated faces are shown in Figure 2.17.

40 Chapter 2 Research results

ArcFace Layer

Mask Probability
Layer

Image selector

Original dataset

Masked dataset
Mask probability

logits

Feature vector

ArcFace loss

Mask probability
loss

Loss Fussion

Multi-task ArcFace
loss

Fig. 2.16: Illustration of the proposed training pipeline. The image selector decides whether
the next input image should be masked or not. The trained network is modified
to output also the probability that the face is wearing a mask.

Fig. 2.17: Some examples of the training faces and their corresponding masked version
generated with the MaskTheFace tool

.

Both datasets are shuffled separately using the same seed and, for every new face
image selected for the input batch, we decide whether the image is taken from the
original or the masked dataset with a probability of 50%.

We select LResNet-50 as the backbone among all the network architectures tested in
the ArcFace repository as it is the one with the best trade-off between the accuracy
and the number of parameters. More specifically, we use our own implementation of
the network in TensorFlow DL framework, publicly available in a GitHub repository
[Mon19].

Starting from this network, we add another dense layer parallel to the one used to
generate the feature vector, just after the dropout layer, as shown in Figure 2.16.
The new dense layer generates an output with two floats, which correspond to the
scores related to the probability that the face is masked or not, respectively. This
way, we force the network to learn when a face is wearing a mask, information that
will also be used by the layer that generates the feature vector.

To extract the combined error from both logits, we start by generating the ArcFace
loss (lossArcF ace) in the same way as in the original paper. Next, we calculate the

2.5 Boosting Masked Face Recognition with Multi-Task ArcFace 41

loss associated with the probability of wearing a mask (lossMask) by applying the
softmax activation function on the logits and cross-entropy with the labels:

lossMask = crossEnt(Softmax(logitsMask), labelsID) (2.1)

The Multi-Task ArcFace loss (lossMT ArcF ace) is obtained by adding these two losses.
However, to reduce the impact of lossMask and give more importance to the ArcFace
loss, we use the logarithm of lossMask instead of the original value:

lossMT ArcF ace = lossArcF ace + log(lossMask + 1.0) (2.2)

Finally, we add the regularization loss (as in the original implementation) to compute
the total loss that will be used for the optimization:

losstotal = lossMT ArcF ace + lossregularization (2.3)

We present the results of a series of experiments aimed at demonstrating the capabil-
ities of the proposed method. We divide the experiments into two groups: identity
verification and mask-usage verification.

For the verification task, we generate masked versions of 3 well-known face recogni-
tion datasets, also used in [Den+19b] for evaluating the original models. In addition,
we also consider for the experiment the masked face dataset MFR2 described in
[AR20], with 269 real-world face images from 53 celebrities, where the 64% of the
faces wear a mask.

The results of the experiment are presented in Table 2.8. It can be observed that the
proposed method largely outperforms the original model in the face verification task
when dealing with masked faces. This increase in performance is more evident with
profile images, where the amount of information of the face available is reduced, as
is the case with CFP_FP, where the proposed model is almost a 12% more accurate
than the original.

We also test the accuracy of the new model when recognizing non-masked faces,
to check whether it has been a significant drop of performance. Thus, we repeat
the previous experiment with the original non-masked datasets and compare the
results with those achieved by the original model. The results, exposed in Table 2.9,

42 Chapter 2 Research results

Tab. 2.8: Comparison of the verification performance (%) with the masked datasets between
the proposed method and the original ArcFace model.

Dataset Proposed Method Original model
Masked LFW 98.92 94.75

Masked CFP_FF 98.33 92.73
Masked CFP_FP 88.43 76.81

Masked AGEDB_30 93.17 90.53
MFR2 99.41 97.17

show that there is indeed a drop of performance for the new model, but that it is not
significant (less than a 2% in the worst case). Furthermore, this drop in performance
is much less than the gain obtained with masked faces. For example, in the case of
CFP_FP, the model accuracy with masked faces increases almost a 12%, while its
accuracy with non-masked faces decreases less than a 2%.

Tab. 2.9: Comparison of the verification performance (%) with the original datasets between
the proposed method and the original ArcFace model.

Dataset Proposed Method Original model
LFW 99.45 99.62

CFP_FF 99.40 99.70
CFP_FP 92.27 93.81

AGEDB_30 95.02 96.90

Finally, we want to analyze the performance of the mask-usage probability output
added to the proposed method. For this task, we run the model with all the faces
contained in every masked and non-masked dataset used in the previous experiments.
For each face we check whether the mask-usage probability estimated by the model is
correct or not with a threshold of 0.5. Table 2.10 shows the results of the experiment.
For each dataset, the model achieves nearly 100% accuracy. Again, the worst result
is achieved for the CFP_FP dataset (98.82%) due to the profile faces. We believe that
this is due to the fact that the training dataset does not contain enough profile faces.
In any case, the model achieves an average accuracy of 99.78% across all datasets,
so its effectiveness for this task is demonstrated.

This work contributes to the first research line (DNN optimization). We have
presented a full-training pipeline for ArcFace-based face-recognition models to adapt
them for working with masked faces (Obj1.2). This pipeline includes the generation
of a synthetic masked dataset from the original training dataset. We have also
modified the original architecture to output also the probability that the face is
wearing a mask and we have designed a new loss function combining the outputs of

2.5 Boosting Masked Face Recognition with Multi-Task ArcFace 43

Tab. 2.10: Mask-Usage verification performance (%) of the proposed method.

Dataset Accuracy
LFW 99.99

CFP_FF 99.99
CFP_FP 98.82

AGEDB_30 99.97
Masked LFW 99.98

Masked CFP_FF 99.98
Masked CFP_FP 99.70

Masked AGEDB_30 99.99

both tasks (Obj1.3). The results of the experiments show that the proposed method
highly boosts the performance of the model when recognizing masked faces, while
suffering just a small drop in performance with non-masked faces. Furthermore,
they also demonstrate its effectiveness for the mask-usage verification task.

Finally, the proposed method and a modified version of it were selected to participate
in the Masked Face Recognition Competitions (MFR) held within the 2021 Interna-
tional Joint Conference on Biometrics (IJCB 2021). Both methods were finalists and
achieved second and fourth positions. All the details about the competition were
published in [Bou+21].

2.6 BEV Object Tracking for LIDAR-based Ground
Truth Generation

2.6.1 Motivation and objectives

In this work, we propose an offline 3D object tracking algorithm as a part of a
semi-automatic annotation tool for 3D point clouds coming from LIDAR sensors.

Figure 2.18 illustrates the pipeline of the annotation tool which includes the proposed
tracking component. The annotation process is divided into a series of steps, starting
with the generation of the recordings from the sensorized vehicles.

LIDAR streams (3D point cloud sequences) are then pre-processed to create bird’s-
eye view (BEV) images (also called top view images), which are then used as input
for the Convolutional Neural Network (CNN) detectors. The detector outputs are
cuboids in 3D space, including the 3D position, size and rotation, the detection

44 Chapter 2 Research results

Fig. 2.18: Diagram of the annotation process.

class, and the confidence score. This data is then converted into a standard format
using the VCD converter [NSO21] (a library developed by Vicomtech that offers
tools for conversion between different formats), and will serve as the input data
for the tracker. The tracker must be able to associate the input object detections
between the different time steps, generate predictions where detections are missing
and correct the input object properties by applying a post-process to the generated
tracks. As a result, the VCD payload describing the scene is updated with the tracking
information and sent to a web application for the final annotation refinement step
carried out by human operators.

Thus, this works aims to develop an online tracking algorithm, robust to the detection
errors and noise, in order to obtain the highest possible accuracy in the least possible
time in order to work effectively within the semi-automatic annotation process.

2.6.2 Results and contributions

As mentioned above, the tracker is in charge of associating the input objects be-
tween the different time steps, generating missing tracking states in intermediate
steps and correcting the input object properties by applying a post-process to the
generated tracks. A diagram describing the proposed tracking process is presented
in Figure 2.19.

The tracking process is divided into two main components. First, the online com-
ponent is executed as a loop where, at each iteration, a new time step (i.e. frame)
of the input data is processed. Tracks are then updated using predictions based on
their previous information and the new input detections. In the correction step,
an association matrix is generated and solved using a modified Branch and Bound
Algorithm (BBA) [LW66] in order to match existing tracks predictions with detected

2.6 BEV Object Tracking for LIDAR-based Ground Truth Generation 45

Fig. 2.19: Offline tracking dataflow where input data stands for the obtained CNN detec-
tions, and output data are the updated tracks.

objects and the tracks are updated. We also considered using the Greedy algorithm
[Ann13] for solving the association matrix, as it is faster. However, analyzing the test
results presented in Table 2.11 and the priority of the accuracy over the processing
time it was discarded.

Tab. 2.11: Association algorithms comparison

Scenario Steps Errors Max diff GA time BBA time
Street road 611 10 0.423 20 µs 35 µs
Parking 1 189 5 0.703 29 µs 45 µs
Parking 2 404 6 0.559 110 µs 132 µs

Finally, a post-process adds smoothness to produced tracks both in position and
rotation. The aim of this stage is to remove orphan tracks and to correct the detection
noisiest variables, the z-axis rotation angle, and the class. They are considered as
orphan tracks all the tracks that have less than n states, and they will be removed
since they have a high probability of being erroneous.

For the rotation correction, it is assumed that, in most cases, the detection value
is right, and that it will change drastically from one step to another, so it will be
calculated using the mode between s − n and s + n steps, being s the current step
number. Also, the track size will be corrected using the mode of all the track states,
as it should be constant in every step. Finally, for the track class variable, it is again
assumed that, in most cases, the detection value is right, so it will receive the value
of the mode between all track steps.

In order to validate the performance of the tracking algorithm we conduct a series
of experiments. More specifically, we validate the tracker using the first 10 of the
22 training sequences with the ground truth of the KITTI dataset with the tracking
metrics proposed in [Mil+16].

46 Chapter 2 Research results

In the ideal situation when detections are perfect, using the ground truth boxes
from the KITTI dataset, we have observed that the tracker produces perfect tracks,
without error.

We also perform an ablation study on the input data in order to measure the impact
of imperfect detections on the tracking results. We define three types of detection
problems: (i) spatial noise; (ii) temporal sparsity; and (iii) a combination of both.
The first test evaluates the effect of translation, rotation and size measurement noise
in the detections. For this purpose, we define a probability of 50% to apply randomly
a noise between −20% and 20% to each detection in each frame. The temporal
sparsity refers to the miss-detections of objects in specific frames. In this case, we
suppress 20% of each object detections randomly across the sequence. In all the
tests, the tracker is able to overcome the noisy in many cases and achieves great
results, including the case of the combined noise (see Table 2.12).

Tab. 2.12: Tracker results with combined noise

Seq MOTA F1 MT PT ML FRAG
0 0.8770 0.9409 12.0 0.0 0.0 29.6
1 0.8778 0.9417 91.0 1.0 0.0 146.5
2 0.8935 0.9472 15.9 0.1 0.0 55.3
3 0.8454 0.9251 9.0 0.0 0.0 28.0
4 0.8735 0.9380 29.9 2.0 0.1 47.3
5 0.8640 0.9340 33.4 0.6 0.0 73.6
6 0.8693 0.9360 13.0 0.0 0.0 35.3
7 0.8689 0.9360 56.9 0.1 0.0 144.8
8 0.8771 0.9392 24.2 0.8 0.0 73.3
9 0.8783 0.9419 87.5 0.5 0.0 166.7

We finally analyze the results of the tracking when the input estimations are gener-
ated by the trained point cloud-based object detector. The same evaluation metrics
are computed for this experiment. Results are shown in Table 2.13, where there
is an extra column (F1D) with the F-Score obtained with the detector output. In
Tab. 2.13: Tracker results with real detector

Seq MOTA F1 F1D MT PT ML FRAG
0 0.5476 0.7650 0.7468 5 6 1 14
1 0.5389 0.7631 0.7420 50 20 21 92
2 0.3094 0.6491 0.6340 6 5 0 20
3 0.6265 0.8095 0.7800 4 2 3 9
4 0.6814 0.8490 0.7965 20 9 1 25
5 0.6280 0.8150 0.7077 14 9 11 34
6 0.7438 0.8788 0.8382 8 3 2 15
7 0.7000 0.8542 0.8473 43 11 3 70
8 0.5069 0.7554 0.7290 12 8 4 26
9 0.3406 0.6487 0.6382 29 26 27 106

this experiment, the MOTA results with real detections are, as expected, worse than
with ground truth detections due to their inherent noise. However, there is always

2.6 BEV Object Tracking for LIDAR-based Ground Truth Generation 47

an improvement in F-Score, ranging between 2 − 5% thanks to the usage of the
tracker.

With this work we contribute to the second research line and we demonstrate
again the importance of the optimization of the system components that interact
with the DNN. We have designed the tracking algorithm taking into account the
limitations of the DNN and trying to solve them as best as possible (Obj2.4), achieving
improvements between 2 − 5% in the accuracy. Furthermore, it also allows for
reducing the processing framerate of the DNN, which is the main bottleneck of the
system, as the tracker can fill the missing frames with the predictions.

48 Chapter 2 Research results

3Conclusions

3.1 Discussion

The main objective of this thesis is to provide knowledge and tools for the optimiza-
tion of systems based on DL applied to different real use cases within the field of CV,
in order to maximize their effectiveness and efficiency. To this end, at the beginning
of the thesis, two research lines have been defined that seek to approach the problem
from two different perspectives (see Section 1.4). The first one focuses on opti-
mization of the Deep Neural Network (or networks) integrated within the system.
This optimization ranges from the selection of the architecture to its optimization
at the hardware level for deployment, including the selection and preparation of
the data and the design of the training process. The second research line pursues
the optimization of the system taking into account the rest of the components that
interact with the DNNs, as well as its global design. This includes the design and op-
timization of the preprocessing, postprocessing, and transition components between
networks (in those systems that have more than one).

During the years that the thesis has lasted, a series of research works dedicated
to contributing to these lines of research have been conducted. Some of these
works have given rise to the scientific publications on which this thesis is supported.
Specifically, six main publications have been presented, and each one contributes to
one or both research lines.

Regarding the first research line, the publications presented have evidenced the im-
portance of the process of selection, training and optimization of DNNs to maximize
their performance in each specific use case. Each detail of the process contributes
towards achieving the optimal model. For instance, the importance of the architec-
ture selection (Obj1.1) is evident in Section 2.2, where four different architectures
are analyzed, three of them based on Faster R-CNN and the other on a Single Shot
Detector (SSD). Contrary to what might be thought at first glance, it is shown that
the architecture with a greater number of parameters is not the one that achieves the
best results, and finally an intermediate model is selected, which achieves the best
precision with a lower computational cost. This topic is also covered in Section 2.5,
where several different architectures are studied and the one with the best trade-off
between accuracy and processing time is found.

49

Another important part of the process that is emphasized in several publications
is the selection and preparation of the training data (Obj1.2). In Section 2.2 the
design of this step is key to achieving an accurate model. An in-depth study of the
use case is carried out, as well as the object to be detected and, consequently, a rich
and varied dataset is built that allows the objectives of the project to be achieved. In
addition, an EDA is carried out, which allows extracting important information from
the data, which is later used to optimize the architecture of the model. This step
also plays a very important role in Section 2.3, where a specific dataset is manually
built for the use case, capturing overhead images at different heights. Additionally,
synthetic data is used to enrich the dataset. Finally, the selection of the data is also
crucial in Section 2.5. In this case, a tool is used to synthetically generate a facial
recognition dataset with masks. Combining this synthetic dataset with the original,
a significant improvement is achieved in the reidentification of subjects with masks,
maintaining the original accuracy of the model in uncovered faces.

Regarding the design of the training pipeline (Obj1.2), important parts of it are
highlighted and multiple contributions are made throughout this thesis. For example,
data augmentation techniques are applied to enrich the datasets in Sections 2.2 and
2.3. In addition, the selection of the optimizer, the loss function, and the optimal
hyperparameters are also discussed in Sections 2.2, 2.3, 2.4 and 2.5. Finally, in
all these sections, the appropriate metrics are selected and monitored in order to
maximize the results for each specific use case.

The last important point that is addressed within this line of research is the op-
timization of the network architecture (Obj1.3). In this aspect we find multiple
contributions in the publications. For example, in Section 2.2, small modifications
to the architecture prior to training are introduced, such as the modification of the
covered aspect ratios or the reduction of the number of region proposals for the
models based on Faster R-CNN. Furthermore, in Section 2.3, post-training optimiza-
tions are applied to improve network performance. More specifically, the weight
pruning technique is applied to reduce the number of network parameters and the
model is ported to a framework optimized for inference (TensorRT). Modifications
are also applied to improve network performance in Section 2.4, where the MTCNN
face detection and alignment model is modified by parallelizing various parts of the
network. As a result, an increase in fps of up to 5 times compared to the original
model is achieved. Finally, in Section 2.5, the architecture of the facial recognition
model is modified to allow it to perform a secondary task, classifying whether a
subject is wearing a mask or not. Both tasks are complementary and contribute to
the model learning faster and obtaining better results.

On the other hand, multiple contributions related to the second line of research
have also been made. Above all, the publications highlight the importance of

50 Chapter 3 Conclusions

preprocessing and postprocessing algorithms (Obj2.2,Obj2.4) that interact with
DNNs and the great impact that their design and optimization can have on system
performance, in terms of precision, processing time and Resource consumption. For
example, in Section 2.1 an online clustering algorithm designed to work as part of
an application for real-time people re-identification is proposed. The algorithm is
designed to work with feature vectors extracted from a facial recognition model
based on DNNs. The experiments conducted on different datasets reveal that the
proposed method is not only much faster than the rest, but also obtains a higher
precision using the same feature vectors. Furthermore, this work shows also the
importance of the data management components (Obj2.1) and of the transition
components between the different DNNs included in the system (Obj2.3).

Another example about the contribution of a postprocessing algorithm to the per-
formance of the system (Obj2.4) is presented in Section 2.4. Here, another online
face clustering algorithm is presented along with the design of the complete system.
Thanks to its minimalist design, it is capable of running in real time on a separate
thread, at the same time as the rest of the system, but without sacrificing compet-
itive accuracy. This work also shows the impact of the design of other important
components such as data preprocessing, or the transition components between the
different neural networks that the system includes.

A different example about the importance of the postprocessing algorithms (Obj2.4)
can be found in Sections 2.3 and 2.6. In these works, the task requires using
tracking algorithms to generate trajectories of people or vehicles detected using
DNNs. In both cases, the algorithms are designed taking into account the use case
and the peculiarities of the networks that precede them and allow to overcome
some of their weaknesses and maximize system performance. In addition, in Section
2.3, modifications are also made at the global level in the traditional pipeline
that is followed in the literature and a new projection algorithm from 2D to 3D
detections is designed. These modifications improve the accuracy of the system
and the proposed projection approach achieves better results compared to other
state-of-the-art approaches.

All the optimizations carried out and the algorithms proposed in the research papers
presented in this thesis demonstrate the need to invest time and resources in the
optimization of systems based on Deep Learning at all levels to maximize their
performance. Furthermore, all these procedures and algorithms can be adapted and
applied to other use cases, not only within the field of Computer Vision, but also in
the field of Deep Learning in general.

3.1 Discussion 51

3.2 Future work

As future work, there are still many optimization techniques that have not been
analyzed and applied in this thesis, some because they were not appropriate for
the use cases studied and others due to lack of time or because they have been
released after the research works were conducted. For instance, regarding the
training process of the DNNs, Knowledge Distillation [Gou+20] is the process of
transferring knowledge from a large model to a smaller one. It allows deploying
much smaller models without applying other optimization techniques. Also related
to the training process, Curriculum Learning [Ben+09] is a way of training a model
where more difficult aspects of a problem are gradually introduced in such a way
that the model is always optimally challenged.

Apart from optimization techniques, there are also new model architectures that
are gaining prominence recently and that have not been studied in this thesis,
such as Transformers [Vas+17]. Novel works have presented techniques that use
Transformers to overcome the limitations presented by inductive convolutional biases
in an efficient way. These works have already shown promising results in multiple
Computer Vision benchmarks in fields such as Object Detection [Car+20], Video
Classification [Wan+17], Image Classification [Par+18] and Image Generation
[Dos+20]. Some of these architectures are able to match or outperform SOTA results
even when getting rid of convolutional layers and relying solely on self-attention.

Finally, future research should not focus only on using existing techniques and archi-
tectures, but it should try also to contribute to the state-of-the-art researching new
optimization techniques, new algorithms, and even new network architectures.

52 Chapter 3 Conclusions

4Publications

4.1 Efficient Large-Scale Face Clustering Using an
Online Mixture of Gaussians

• Authors: David Montero and Naiara Aginako and Basilio Sierra and Marcos
Nieto

• Journal: Engineering Applications of Artificial Intelligence

• Volume: 114

• Pages: 105079

• Year: 2022

• Publisher: Elsevier

53

1

Engineering Applications of Artificial Intelligence
journal homepage: www.elsevier.com

Efficient Large-Scale Face Clustering Using an Online Mixture of Gaussians

David Monteroa,b,∗∗, Naiara Aginakob, Basilio Sierrab, Marcos Nietoa

aVicomtech, Mikeletegi 57, 20009 Donostia-San Sebastian, Spain
bUniversity of the Basque Country, Spain

ABSTRACT

In recent years, the number of applications demanding real-time face clustering algorithms has in-
creased, especially for security and surveillance purposes. However, state-of-the-art face clustering
methods are offline, they need to repeat the whole clustering process every time new data arrives, and
thus, they are not suitable for real-time applications. On the other hand, online clustering methods are
highly dependent on the order and the size of the data, and they are less accurate than offline meth-
ods. To overcome these limitations, we present an online gaussian mixture-based clustering method
(OGMC). The key idea of this method is the proposal that an identity can be represented by more
than just one distribution or cluster. Using feature vectors extracted from the incoming faces, OGMC
generates clusters that may be connected to others depending on their proximity and their robustness,
and updates their connections every time their parameters are updated. With this approach, we reduce
the dependency of the clustering process on the order and the size of the data and we are able to deal
with complex data distributions. Experimental results show that OGMC outperforms state-of-the-art
clustering methods on large-scale face clustering benchmarks not only in accuracy, but also in effi-
ciency and scalability.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Online algorithms are present in a wide variety of applica-
tions that affect us in our daily lives, and are essential for their
correct and efficient operation (Li and Yu, 2021; Li et al., 2021;
Abdalzaher et al., 2021). In recent years, their application has
also expanded to the field of facial recognition and clustering.
For instance, it is required in real-time video-surveillance appli-
cations, where there is a need to maintain an updated database
of subjects within the monitored area, either to control their lo-
cations (Mahdi et al., 2016) or to re-identify a subject if neces-
sary (Apoorva. et al., 2019; Yimyam et al., 2018). Another
usage of face clustering in a real-time application is people
flow monitoring in large infrastructures. This type of applica-
tion aims to generate Performance Indicators, such as ”wait-
ing times”, ”process throughput”, ”person show-up profile”,
”queue length overrun” and ”area occupancy” (Mayer et al.,
2015; Chien et al., 2019), which need to be computed for in-

∗∗Corresponding author: Tel.: +3-467-171-7475;
e-mail: dmontero@vicomtech.org (David Montero)

creasingly large number of cameras, and thus demanding a
higher level of computation scalability.

An important issue that arises about these types of applica-
tions is data privacy (Erkin et al., 2009). Personal information
that could be used to identify the subjects should not be stored
(i.e., images of their faces). Recent clustering algorithms rely
on Deep Neural Networks (DNN) that can infer feature vectors
(f-vectors) from the targeted face images, which correspond to
abstract representations of the appearances of the people used
for training. Although in the last few years some promising
methods for face rendering from f-vectors have been released
(Lombardi et al., 2018; Duong et al., 2020), they require know-
ing the feature extraction network in order to generate accept-
able results (Duong et al., 2020) or to train the decoding net-
work (Lombardi et al., 2018). Therefore, the individual iden-
tities can be protected by hiding and securing the embedding
network. Obviously, this approach has limitations, such as the
possibility of matching different people that look too similar
for the trained model. Therefore, the design and training of the
DNN should cover as well as possible the subtle facial appear-
ance dissimilarities. State-of-the-art face recognition models
(Deng et al., 2019; Schroff et al., 2015) aim at accomplishing

2

that goal.
Furthermore, these real-time applications may work in large-

scale unconstrained environments, where no information about
the distribution of face representations or the number of iden-
tities is available. The faces may come from multiple cameras
placed in different locations and positions, so they may have
different orientations, lighting conditions, partial occlusions,
etc. This will lead to complex data distributions. Most tradi-
tional and state-of-the-art clustering methods are offline (Wang
et al., 2019; Otto et al., 2018; Lloyd, 1982; Jain and Dubes,
1988). These offline approaches are not suitable for real-time
large-scale scenarios, as they need to repeat the whole clus-
tering process every time a new sample arrives. On the other
hand, the availaible online face clustering methods either rely
on spatio-temporal constraints (Kulshreshtha and Guha, 2018)
or assuming simple data distributions (Tapaswi et al., 2019),
which makes them highly dependent on the order of the data
and unable to deal with complex data distributions.

To address these limitations, we propose an online gaussian
mixture-based clustering method (OGMC), where we assume
that each identity may be represented by more than one distri-
bution or cluster. Thus, OGMC generates clusters that may be
connected to others depending on their proximity and robust-
ness. Each group of connected clusters represents an identity,
allowing us to deal with complex distributions. Furthermore,
every time a cluster is updated, its connections are also updated,
reducing the dependency of the process on the order of the data.
The high-level idea of the method is exposed in Figure 2. Ex-
perimental results show that our approach outperforms state-of-
the-art clustering methods on large-scale face clustering bench-
marks not only in accuracy, but also in efficiency and scalability,
and that it is suitable for large-scale real-time applications.

The rest of the paper is organized as follows. First, we
present a review of the related work in section 2. Section 3
describes the proposed clustering method and all the details
about its implementation. In section 4 we present the results
of a series of experiments conducted to show the capabilities of
OGMC and to compare it with the state-of-the-art alternatives.
Furthermore, this section also includes an ablation study to dis-
cuss some important design choices. Finally, the conclusions
and future work directions are given in section 5.

2. Related Work

2.1. Unconstrained Face Clustering

Face clustering in unconstrained environments has become a
well-studied topic over the last few years. The addressed sce-
narios are increasingly complex and encompass a greater num-
ber of identities. The huge number of faces and the intra-class
appearance changes that might happen due to environmental
variations (e.g., pose, illumination, expression, ornaments, oc-
clusions, resolution, image noise) lead to complex distributions
of face representations. Traditional clustering algorithms, such
as K-Means (Lloyd, 1982) or spectral clustering (Shi and Ma-
lik, 2000), suffer from this complexity and they are not able
to achieve acceptable performance in these scenarios, as they

make assumptions on data distribution. For instance, K-Means
tends to generate similar-sized clusters.

The new trends combine face recognition models based on
DNN to extract facial f-vectors with sophisticated clustering al-
gorithms that can group them in distinguishable identities, de-
spite the intra-class appearance variability. Shi et al. (2018)
proposed the Conditional Pairwise Clustering (ConPaC) algo-
rithm, which is based on the direct estimation of an adjacency
matrix using pairwise similarities between f-vectors. In Wang
et al. (2019) a linkage-based face clustering algorithm is pre-
sented, where a graph convolution network decides which pairs
of nodes should be linked. Lin et al. (2018) adopted an Ag-
glomerative Hierarchical Clustering approach, considering the
distance measure in the embedded space and the dissimilarity
between two groups of faces. In Otto et al. (2018) an approxi-
mate rank-order clustering is presented, which predicts whether
a node should be linked to its k Nearest Neighbors (kNN), and
transitively merges all linked pairs.

Nevertheless, all these state-of-the-art methodologies em-
ploy offline algorithms. They process entirely the gathered data
every time a new sample arrives, repeating the clustering pro-
cess with increasing computational cost, in order to get an op-
timal result. In addition, most of them suffer from scalabil-
ity problems in terms of accuracy and processing time. For
instance, the complexity of ConPaC can scale up to O(T N3),
where N is the number of f-vectors and T the number of iter-
ations. Wang et al. (2019) and Otto et al. (2018) reduce the
complexity of the proposed algorithms using kNN graphs to re-
duce the number of comparisons, but the computational cost is
still too high to consider them for online applications.

2.2. Online Clustering

In recent years, numerous online clustering algorithms have
emerged to tackle challenging situations. The main advantage
of this type of algorithms is that they are able to process a new
sample without repeating the whole clustering process. There-
fore, they are the best choice when dealing with large-scale real-
time scenarios, but with the added challenge of controlling and
defining the learning rate (i.e., how new data updates the learnt
models).

These types of algorithms have been applied in a wide variety
of contexts. For instance, they have gained an increasing im-
portance in text clustering. In Comito et al. (2016), the authors
proposed an online clustering method for grouping data streams
from social networks by their topic, using a similarity measure
computed taking into account both the cluster age and the em-
ployed terms. Yin and Wang (2016) presented an alternative
text clustering method, assuming an unknown number of clus-
ters, but below a maximum. Online clustering algorithms have
also been employed for unsupervised representation learning
(Zhan et al., 2020), where the cluster centroids evolve dynam-
ically, keeping the classifier stably updated. Another example
of online clustering application is MalFamAware (Pitolli et al.,
2020), an algorithm created to group new malwares into fam-
ilies to discern if they are novel or just a variant of a known
sample. Even traditional offline methods, such as K-Means,
have their own online implementation (Liberty et al., 2016).

3

FACE
RECOGNITION

MODEL

F-VECTORS
QUEUE

NEW
SAMPLE

CONNECTION

CLUSTERING PROCESS UPDATED DATABASE
EXTRACTED FACES

Fig. 1. Example of an online clustering system. A continuous stream of face images, extracted from a set of video-surveillance cameras, are processed by
a face recognition model and the extracted f-vectors are enqueued. The online clustering process updates the database with every new sample without
repeating the whole process.

Some novel clustering algorithms try to combine both on-
line and offline approaches. Wang and Imura (2019) pre-
sented a gaussian process-based incremental neural network,
where the new samples are treated as nodes, which may be
connected to others. When a new sample is clustered, only
the connections of its neighbours are re-evaluated. Mean-
while, in Hyde et al. (2016), samples are grouped in spheri-
cal static micro-clusters, connected together to create dynami-
cally shaped macro-clusters. These approaches aim to achieve
the same accuracy as offline methods but with an important de-
crease in the computation time.

In face clustering there are also some online approaches. In
Kulshreshtha and Guha (2018), the authors propose an online
algorithm for clustering faces in long videos. They process
the data sequentially in short segments of variable length and
create clusters using face representations and several spatio-
temporal constraints. Nevertheless, its reliance on these con-
straints makes their method unsuitable for unconstrained envi-
ronments and highly susceptible to the order of the incoming
data. Tapaswi et al. (2019) presented another online face clus-
tering method for long videos. The algorithm creates spheri-
cal clusters with a shared radius which may vary dynamically.
They assume that each identity is represented by an identical
distribution. Thus, this method is not able to deal with com-
plex data distributions and, therefore, is not a valid solution for
unconstrained environments.

Our proposed method aims to cover the need for an online
face clustering algorithm capable of working in large-scale un-
constrained environments in real time, achieving state-of-the-
art results.

3. Proposed Method

3.1. Problem Definition
We consider the problem of online clustering: given a contin-

uous stream of unknown faces, create a database grouping the
incoming faces by their identity. The database must be updated
every time a new face arrives, so that information on existing
identities is available in real time. An example of an online
clustering system is shown in Figure 1. For instance, a real-
time video-surveillance application based on face recognition

Table 1. Table of notations for the proposed method.

Notation Description
F Clustering process repeated for each sample.
Di Updated database for the i-th iteration.
S i i-th sample, considering a sample as a normal-

ized N-dimensional f-vector from a face.
Ci, j j-th cluster for the i-th iteration.
Ii, j Identity of the j-th cluster for the i-th iteration.
nsr Minimum number of samples to consider a clus-

ter as robust. Model parameter.
ncmax Maximum number of connections allowed for a

robust cluster. Model parameter.
µ Mean vector of a cluster’s distribution.
Σ Covariance matrix of a cluster’s distribution.
σ Standard deviation of a cluster’s distribution.

thr f Fusion threshold. Model parameter.
thrwc Weak connection threshold. Model parameter.
thrsc Strong connection threshold. Model parameter.
C∗i, j Centroid of the j-th cluster for the i-th iteration.
S Ci, j Sum of the feature vectors of all the samples of

the j-th cluster for the i-th iteration.
nsi, j Number of samples in the j-th cluster for the i-th

iteration.
sIdxi, j List of indices of the samples in the j-th cluster

for the i-th iteration.
cIdxi, j List of indices of the clusters connected to the

j-th cluster for the i-th iteration.
cIdxi, j List of distances to the connected clusters for the

j-th cluster for the i-th iteration.
dist(X,Y) Euclidean distance between X and Y .
distM(X,Y) Mahalanobis distance between X and Y .
cosS im Cosine similarity between X and Y .

that is operating in a very large infrastructure, such as an airport,
where thousands of people pass every day and millions of face
images are captured by the cameras. For time and scalability

4

considerations, it is not viable to regenerate the whole database
in every iteration, so the algorithm must cluster the new sample
using the information from the existing database and update it.
Therefore, the problem can be modeled as follows:

Di = F(S i,Di−1)
Di = Ci, Ii

(1)

where Di is the updated database for the i-th iteration, F is
the clustering process repeated in each iteration, S i is the i-th
sample, considering a sample as a normalized N-dimensional
f-vector extracted from an incoming face, and Di−1 is the result-
ing database from the previous iteration. The database D is rep-
resented by the group of computed clusters C and by the identi-
ties I to which they belong. We aim at modeling F maximizing
the accuracy and the scalability and minimizing the iteration
time. In order to facilitate the readability and the comprehen-
sion of the method, we provide a table with the abbreviations
and notations for all the parameters and variables, following the
design presented in Moustafa et al. (2021a) (see Table 1).

3.2. Expectation-Maximization Approach

The problem modeled by the equation 1 is similar to the
one tackled by the Expectation-Maximization (EM) algorithm
Moon (1996). The EM algorithm is a well-known iterative ap-
proach to perform maximum likelihood estimation in the pres-
ence of latent variables. It has been widely used in clustering
applications (Zhang and Baek, 2019; Aiadi et al., 2019; Uykan,
2021; Garriga et al., 2015). The problem formulation is the fol-
lowing: given a statistical model generated by a set of observed
data X, a set of missing values Z, and a vector of unknown pa-
rameters Θ, along with a likelihood function:

L(Θ; X,Z) = p(X,Z|Θ) (2)

the maximum likelihood estimate (MLE) of the unknown pa-
rameters is determined by maximizing the marginal likelihood
of the observed data:

L(Θ; X) = p(X|Θ) (3)

The EM algorithm aims to find the MLE of the marginal like-
lihood by iteratively applying two steps:

• Expectation Step: estimates the values of the missing data
Z, using the observed data X and the current estimation of
the parameters Θi.

Z = F(Θi, X) (4)

• Maximization Step: update the parameters Θi+1 using the
observed data X and the new estimated data Z.

Θi+1 = F(X,Z) (5)

In our context, we apply the EM algorithm assuming that, at
each iteration, the observed data is the group of processed sam-
ples S , the parameters are the features of the computed clusters
C, and the missing value we want to estimate is the identity of
the cluster to which the new sample belongs I.

D1

NEW
SAMPLE

THRF

CLUSTER 1 CLUSTER 2
D2 THRF

CLUSTER 1

STAGE 1: SAMPLE CLUSTERING

THRF

D3

CLUSTER 3

ROBUST
CLUSTER 1

UPDATED
CLUSTER 2

CLUSTER 1

UPDATED
CLUSTER 2

CLUSTER 3

CLUSTER 3
CLUSTER 2

THRF

STAGE 2: CLUSTER RECLUSTERING

THRF
THRWC

CONNECTION

Fig. 2. Example of the operation of the proposed online clustering algo-
rithm when a new sample arrives.

Thus, in the estimation step, using the parameters of the clus-
ters computed with the already processed samples, the algo-
rithm decides whether the new sample should be merged with
an existing cluster or a new one should be created. Then, in the
maximization step, the parameters of the involved cluster are
updated.

Nevertheless, our method follows a variant of this two-steps
approach. Every time a cluster is updated, a new EM algorithm
is launched, called cluster reclustering, where we check if the
updated cluster can be fused with others. This is an iterative
process, so a cluster may be fused multiple times. Thus, our
algorithm is divided into two stages:

• Sample clustering stage: the new sample is clustered, up-
dating an existing cluster or creating a new one.

• Cluster reclustering stage: iteratively tries to fuse the up-
dated cluster with the rest of the clusters in the database.

The two-stages process is illustrated in Figure 2, and de-
scribed in subsequent sections.

3.3. Cluster Connections
As we want our algorithm to work in unconstrained envi-

ronments, it must be able to deal with complex data distribu-
tions. Therefore, we must consider the possibility that an iden-
tity is represented by more than one cluster. For instance, fa-
cial attributes of a person may change for different reasons (i.e.,
glasses, beard, hair, perspective, lighting conditions, ...), and
trying to group all faces in just one cluster may lead to errors
due to overly permissive thresholds and poor quality centroids.

5

Fig. 3. Examples of complex identities extracted from the IJB-C dataset. Different variations in lighting conditions, occlusions, perspective and facial
attributes such as beard, glasses, hat or hair can be observed. Trying to group all faces in just one cluster may lead to errors due to overly permissive
thresholds and poor quality centroids.

CLUSTER 1

CLUSTER 2

CLUSTER 3
(OUTLIER)

CLUSTER 4
(OUTLIER)

CLUSTER 5

IDENTITY 1

IDENTITY 2

Fig. 4. Example of an erroneous connection caused by outliers. Clusters 1,
2 and 5 are robust while clusters 3 and 4 are non-robust. These problems
can be avoided by applying the defined connection rules.

Several examples of complex identities extracted from the IJB-
C dataset (Maze et al., 2018) are exposed in Figure 3.

For this reason, we introduce the concept of cluster connec-
tion. A connection between two clusters implies that they be-
long to the same identity, but they represent different distri-
butions in the feature-space. In other words, there is a high
similarity between both clusters, but this similarity is not high
enough to fuse them (see Figure 2). This way, the algorithm
creates trees of connected clusters to deal with complex data
distributions.

Furthermore, with these connections we highly reduce the
dependency of our algorithm to the order of the incoming sam-
ples, as the connections of a cluster are checked and updated
every time it is fused with a new sample or with another cluster.

Nevertheless, allowing multiple connections without control
may lead to erroneous connections between outliers and clus-
ters belonging to different identities (see Figure 4). To over-
come this problem, we create the concept of robust clusters and
several rules to control the connections. A cluster is considered
robust if it is composed of, at least, nsr samples, so that we can

ensure it is not a group of outliers. The connection rules are the
following:

• A non-robust cluster shall have at most one connection,
and it can only be connected to a robust cluster. With this
rule, we avoid erroneous connections caused by outliers
and redundant connections of non-robust members of an
identity, solving problems such as that exposed in Figure
4.

• Two robust clusters can not be fused together. We consider
a robust cluster as a valid distribution which represents a
subset of an identity samples. Therefore, joining two ro-
bust clusters would result in a poorer representation of the
identity and a loss of information.

• A robust cluster may have a maximum number of connec-
tions ncmax. This limitation is adopted to reduce the com-
putation time, especially when checking if the connections
of a cluster are still valid.

• Every time a cluster is fused or it is connected to new
clusters, a process to check connections is triggered. This
function checks if the connections of the updated cluster
are still valid and that the maximum number of connec-
tions is not exceeded. Otherwise, the weakest connections
are removed.

3.4. Cluster Representation
The next step in the creation of the clustering algorithm is

the selection of the group of parameters that represents each
cluster. These parameters must contain enough useful informa-
tion about the cluster they represent in order to obtain accurate
results. Furthermore, this information should be brief and con-
cise, as the algorithm needs to be fast and scalable.

Considering these factors, we decided to model the clusters
using multivariate normal distributions, as it only depends on
two parameters: the mean vector µ and the covariance matrix
Σ. This is a design choice also motivated because the EM al-
gorithm works well with these kind of distributions (Vila and

6

0
0.0

0.2

0.4

0.6

0.8

1.0
ROBUST - ROBUST

0
0.0

0.2

0.4

0.6

0.8

1.0
ROBUST - NON ROBUST

0
0.0

0.2

0.4

0.6

0.8

1.0
NON ROBUST - NON ROBUST

FUSION
CONNECTION
NO RELATION

Fig. 5. Normal distributions representing the probability that a cluster can
be fused to, connected to or independent of another. The gaussians are
centered in 0 (the minimum possible distance between the centroids). The
variance depends on whether the compared clusters are robust or not and
on the connection rules defined in Section 3.3.

Schniter, 2013; Tian et al., 2011; Guo et al., 2012). There-
fore, the density function that models the probability that the
N-dimensional sample S i belongs to cluster j is:

P(S i|Ci−1, j) ∝ exp
(
−

1
2

(
S i − µi−i, j

T
)
Σ−1

i−1, j

(
S i − µi−1, j

))
(6)

where the Mahalanobis distance (De Maesschalck et al., 2000)
between S i and µi−1, j can be directly used to evaluate which is
the closest centroid for a certain sample. Indeed, if we assume
all dimensions are independent and have the same variance, we
can operate on Mahalanobis distances to reduce the computa-
tional load of the algorithm, defined as follows:

distM(S i, µi−1, j, σi−1, j) =
1

σi−1, j
dist(S i, µi−1, j) (7)

where dist(S , µ) = ||S − µ||2.
The three possible cases when comparing two clusters (fu-

sion, connection or no relation) are then modeled as a mixture
of gaussians of these normal distributions, and effectively com-
puted using the Mahalanobis distance. These distributions have
all zero mean, which is equal to the minimum possible distance
between two centroids. Their deviations σ take fixed values de-
pending on whether the compared clusters are robust or not and
on the previously defined connection rules (see Figure 5).

Therefore, we define three euclidean distance thresholds to
cover all the possible cases generated by the different σ:

• Fusion threshold thr f : to decide whether two clusters
should be fused together.

• Weak connection threshold thrwc: to connect a robust clus-
ter with a non-robust one.

• Strong connection threshold thrsc: to connect two robust
clusters.

New sample

Compute distance between
sample and clusters

dist[minIdx]
<= thrf

Find minimum
distance (minIdx)

Create New Cluster

dist[minIdx]
<= thrwc and

nSamples[minIdx] >=
nsr?

No Yes

Yes

Connect new cluster
to cluster[minIdx]

End

End

No

Update cluster[minIdx]
with sample

Check connections

Cluster Reclustering

EXPECTATION STEP

MAXIMIZATION STEP

Fig. 6. Diagram describing the sample clustering stage of the proposed
clustering algorithm.

The mean of a cluster Ci, j is represented by its centroid C∗i, j,
computed by normalizing the sum of the features of all the sam-
ples contained in the cluster:

S Ci, j =
∑

S ∈ clusteri, j

C∗i, j =
S Ci, j

||S Ci, j||2

(8)

Thus, the following information is stored for each cluster:

• N-dimensional centroid (C∗)

• Sum of the belonging samples features (S C)

• Number of belonging samples (ns)

• Index of the belonging samples (sIdx)

• Index of the connected clusters (cIdx)

• Distance to the connected clusters (cDist)

3.5. Method Implementation

As described in section 3.2, our clustering method is divided
into two stages. The first one, the sample clustering stage, is
illustrated in Figure 6. In this stage, the new incoming sam-
ple is processed. The first step is to compute the distance be-
tween the normalized sample vector and the normalized cen-
troids of the existing clusters in the database. Different dis-
tances may be considered, but we selected the euclidean dis-
tance (dist). We made this decision because the employed face
recognition model was trained using the cosine similarity (Deng

7

Updated cluster (uIdx)

Compute distance between the
cluster[uIdx] and the rest

Find minimum distance (minIdx)

ns[uIdx] >= nsr?
No

Yes

Fuse cluster[uIdx]
and cluster[minIdx]

No

dist[minIdx]
<= thrwc and

ns[minIdx] >= nsr?

dist[minIdx]
<= thrf

No
Connect cluster[cIdx] to

cluster[minIdx]

Yes

End

Check connections

Yes

dist[minIdx]
<= thrf and

ns[minIdx] < nsr?
Fuse cluster[uIdx] and

cluster[minIdx]

Yes

End

Check connections

No

Yes

Connect cluster[uIdx]
to cluster[minIdx]

No

dist[minIdx]
<= thrwc and

ns[minIdx] < nsr?

Connect cluster[uIdx]
to cluster[minIdx]

Yes

No

End

Check
connections

dist[minIdx]
<= thrsc

EXPECTATION
STEP

MAXIMIZATION
STEP

Fig. 7. Diagram describing the cluster reclustering stage of the proposed
clustering algorithm.

et al., 2019) and, for normalized vectors, it is inversely propor-
tional to the euclidean distance:

dist(V1,V2) =
√

2(1 − cosS im(V1,V2)) (9)

The distances are computed in parallel taking advantage of
the capabilities of a GPU architecture. This way, we reduce the
impact of the number of clusters in the processing time. For
this reason, the normalized centroids are stored directly in the
GPU memory.

Once the distances have been computed, they are copied to
the RAM memory and the minimum distance is selected using
the CPU. If this distance is less than thr f , the sample is fused
with the selected cluster. Otherwise, it is used to create a new
cluster. If a new cluster is created, the algorithm checks if it can
be connected to the minimum distance cluster. This connec-
tion happens if the selected cluster is robust and if the distance
is not higher than thrwc. If there is a connection, the algorithm
checks if the number of connections of the robust cluster has ex-
ceeded the maximum permitted (ncr), and, if necessary, erases
the weakest connections.

If the new sample S i is used to update an existing cluster, the
cluster reclustering stage is launched (see Figure 7). This stage
is composed of an iterative EM algorithm, where an attempt is
made to fuse the updated cluster or connect it with the rest of
the clusters in the database, using the parameters thr f , thrwc,
thrsc and nsr, and the connection rules defined in section 3.3.

The selection of the minimum distance is computed in the
same way as in the previous stage. If the updated cluster is

fused with another one, the distances are computed again for
the new updated cluster and the process is repeated. If the up-
dated cluster is connected to another and the updated cluster is
robust, the algorithm searches for the next minimum distance
and repeats the maximization step.

Before the cluster reclustering stage ends, the algorithm
checks if the connections of the updated cluster are still valid,
as the centroid of the cluster may have changed due to a fusion.
Finally, it checks that the number of connection of the updated
cluster and of the connected clusters do not exceed the maxi-
mum number of connections allowed.

The results of the clustering process are extracted after each
iteration using a simple recursive function and the variables
sIdx and cIdx to merge the samples of all connected clusters.

4. Experiments

A series of experiments have been conducted to demonstrate
the potential of the proposed clustering algorithm OGMC. The
experiments are divided into two groups. The first group of
experiments aims to measure the performance of OGMC in ac-
curacy and processing time, comparing it with other traditional
and state-of-the-art offline clustering methods.

The second group focuses on testing its scalability, measur-
ing the drop in accuracy and the increase in processing time as
the number of data samples grows.

Furthermore, an ablation study is presented in order to vali-
date the design decisions, compare the contribution of the dif-
ferent parts of the algorithm and measure the degree of depen-
dency of the model parameters on the face recognition network
and the train and test datasets.

Finally, to demonstrate the effectiveness of OGMC beyond
face recognition, an additional experiment is conducted with
DeepFashion (Liu et al., 2016), a well-known dataset used for
clothes retrieval.

The server used to carry out the experiments was equipped
with an NVIDIA Tesla V100 GPU and an Intel Xeon Gold 6230
CPU. For all the experiments, and for all the tested methods,
the server status was idle, without any other process running in
parallel.

4.1. Parameter Tuning

As discussed in section 3, the OGMC depends only on 5 pa-
rameters: three distance thresholds (thr f , thrwc, thrsc), the min-
imum number of samples to classify a cluster as robust (nsr)
and the maximum number of connections allowed for a robust
cluster (ncr). This number of parameters is relatively low taking
into account that it is an online method which can operate with
a database regardless of its magnitude, and compared to other
state-of-the-art clustering methods, such as, for example, GCN
(Wang et al., 2019), which requires training a DNN in addi-
tion to three parameters. Furthermore, their values are bounded
within certain limits and they are easy to adjust, as is explained
below.

The distance thresholds are floating-point numbers bounded
between 0.0 and 2.0, as they represent the euclidean distance
between two normalized vectors. These are, by far, the most

8

sensitive parameters of the algorithm, as small modifications of
their values have significant impact on the output.

The minimum number of samples to classify a cluster as ro-
bust (nsr) is an integer equal to or greater than 1. On the one
hand, the lower its value, the higher the number of robust clus-
ters, which may be undesirable because of errors in connec-
tions between outliers of different identities and an increase in
the processing time due to circular connections. On the other
hand, if nsr is too high, the number of robust clusters may not
be enough to connect all the non-robust clusters together. We
have empirically found that a range between 3 and 6 puts the
algorithm into equilibrium, and thus suggests that the optimal
value is 4, so the user of the algorithm does not really need to
change it.

The maximum number of connections allowed for a robust
cluster (ncr) is also an integer equal to or greater than 1. It
needs to be adjusted along with nsr, because if nsr decreases, so
does the number of robust clusters, and thus the number of con-
nections required per robust cluster increases. If the distance
thresholds are set correctly, the accuracy should not be affected
by increasing the number of allowed connections. However,
this parameter may have a small impact on the processing time
by limiting the number of circular connections between clusters
of the same identity. We have empirically determined that the
appropriate range of values for this parameter is between 5 and
25 and that it can be tuned with a sensitivity of 5.

These parameters, and especially the distance thresholds, de-
pend mainly on the face recognition model, so they only need
to be readjusted if the model is replaced. Although they may
also have a small dependency on the employed dataset, it has
a limited impact on the results, as we report in the subsequent
ablation study.

The steps followed to fine tune the parameters are:

• Iterative grid-search for tuning the three distance thresh-
olds. The grid size starts with a size of 0.1 and is halved
on each iteration until it reaches a resolution of 0.0125 (4
iterations). The total number of tests is limited according
to the restrictions: thrwc must be smaller than thr f and that
thr f must be smaller than thrsc. In this step, nsr and ncr

take fixed values of 4 and 10 respectively.

• Single grid-search for tuning nsr and ncr. For nsr, use a
grid size of 1 between 3 and 6 and for ncr a grid size of
5 between 5 and 25 (20 cells in total). In this step, the
distance thresholds are fixed and take the values computed
in the previous step.

Exploring the parameter space with the suggested approach
and testing the response of the algorithm in accuracy and pro-
cessing time against a training dataset, the user can easily con-
figure the algorithm according to the requirements of the appli-
cation. Furthermore, we parallelize every grid search in order
to reduce the tuning time.

Finally, the dataset selected for tuning the parameters is re-
ported in the description of each experiment.

4.2. Face Clustering Performance
For the first experiment, we use the IJB-B dataset (Whitelam

et al., 2017), a well-known dataset of unconstrained in-the-wild

face images. This dataset includes a clustering protocol consist-
ing of seven subtasks that vary in the number of identities and
the number of faces. We select the last subtask, as it is the most
challenging one, with the highest number of identities (1,845)
and faces (68,195).

For a fair comparison with other methods, and to demonstrate
the OGMC algorithm is independent of the recognition model,
we use the same vectors as in Wang et al. (2019) for the exper-
iment. These vectors have 512 dimensions and have been gen-
erated using a face recognition model based on ArcFace (Deng
et al., 2019). The training dataset consists of a random subset
from the CASIA dataset (Yi et al., 2014), with 5,000 identities
and 200,000 samples. Thus, we tuned the model parameters us-
ing this training dataset: thr f = 1.01, thrwc = 1.12, thrsc = 0.99,
nsr = 5, ncr = 5.

The performance is measured following the recommenda-
tions in Amigó et al. (2009), selecting the following metrics:

• BCubed F-Measure F: represents the clustering system ef-
fectiveness, taking the bcubed precision P and recall R into
account, which are computed as described in Amigó et al.
(2009).

F = 2
P ∗ R
P + R

(10)

• Normalized Mutual Information (NMI): this measure rep-
resents the homogeneity of the clusters. Using the ground
truth clusters (G) and the predicted clusters (C) it can be
computed with the following equation:

NMI(G,C) =
I(G,C)

√
H(G)H(C)

(11)

where H represents the entropy and I is the mutual infor-
mation.

• Total processing time: since we are comparing our online
algorithm with other offline methods, we process all the
samples sequentially to simulate an offline behaviour and
we compute the time for the whole process.

The results of the experiment are presented in Table 2. It can
be observed that the proposed method outperforms the others in
terms of F-Measure and processing time, while achieving com-
petitive results in the cluster homogeneity measure. Compared
to the second best method (GCN-A), OGMC achieves a better
F-Measure while reducing the processing time by more than 6
times using the same hardware.

In the second experiment, we test the performance of our
method using a different face recognition model and a different
face dataset. The employed face recognition model is trained
using ArcFace loss (Deng et al., 2019), with ResNet100 (Han
et al., 2017; He et al., 2016) as the embedding network, an in-
put resolution of 112×112 and an output embedding dimension
of 512. We select MS1MV2 (Deng et al., 2019) as the train-
ing dataset, which is a refinement of MS-Celeb-1M (Guo et al.,
2016).

The dataset selected for this experiment is IJB-C (Maze et al.,
2018), another well-known dataset of unconstrained in-the-wild
face images, with a higher number of identities and faces. This

9

Fig. 8. Example clusters and connections generated by the proposed method in the IJB-C experiment. Each row represents an identity composed of several
clusters connected together.

Table 2. Comparison with baseline methods in terms of BCubed F-
Measure, Normalized Mutual Information (NMI) and processing time us-
ing the IJB-B 1845 subtask. Superscript* denotes results reported from
the original papers, otherwise all methods use the f-vectors from Wang
et al. (2019). SuperscriptT denotes times reported from Lin et al. (2018).
The methods considered for the comparison are K-Means (Lloyd, 1982),
Spectral (Shi and Malik, 2000), AHC (Jain and Dubes, 1988), AP (Frey
and Dueck, 2007), DBSCAN (Ester et al., 1996), ARO (Otto et al., 2018),
PAHC (Lin et al., 2018), ConPaC (Shi et al., 2018), DDC (Lin et al., 2018)
and GCN-A (Wang et al., 2019).

Method F-Measure NMI Run-Time
K-MeansT 0.600 0.868 00:01:00
SpectralT 0.516 0.785 -

AHCT 0.793 0.923 00:01:32
APT 0.477 0.869 08:42:50

DBSCANT 0.695 0.814 00:49:31
AROT 0.755 0.913 00:01:13

PAHC*T 0.610 0.890 00:03:56
ConPaC*T 0.634 - 02:53:58

DDCT 0.800 0.929 00:05:32
GCN-A 0.814 0.938 00:06:03

OGMC (ours) 0.822 0.921 00:00:55

dataset also includes a clustering protocol with 8 subtasks.
Again, we select the most challenging protocol (IJB-C-3531),
with 3,531 identities and 140,623 faces. We use RetinaFace
(Deng et al., 2020) for the face and facial landmarks detec-
tion. In order to obtain better quality feature vectors, we filter
faces with less than 45 pixels per side and we normalize the
face patches applying an affine transformation using reference
facial landmarks, as recommendend in Wang et al. (2018). Af-
ter filtering, 120,661 vectors belonging to 3,529 identities are
extracted.

We compare our algorithm with the two best state-of-the-art
methods: GCN (Wang et al., 2019), which achieved the high-
est accuracy in the first experiment (without considering ours),

Table 3. Comparison with baseline methods in terms of BCubed F-Measure
(F-Meas), Dunn’s index (Dunn), Caliński-Harabasz index (C-H), Silhou-
ette index (Silh), and processing time using IJB-C feature vectors. All
methods use the same vectors and hardware.

Method F-Meas Dunn C-H Silh Run-Time
ARO 0.768 0.036 17.707 0.075 00:09:39
GCN 0.906 0.040 16.334 0.161 00:10:32

OGMC 0.948 0.116 34.932 0.171 00:01:32

and ARO (Otto et al., 2018), which achieved the best trade-off

between accuracy and speed (without considering ours). We
adjust the parameters of both methods to achieve the best per-
formance. Furthermore, for GCN, we retrain the network using
a random subset of VGG2 dataset (Cao et al., 2018), containing
over 300k images and 8500 identities, during 4 epochs (follow-
ing the recommendations in Wang et al. (2019)). Finally, we
readjust the parameters of our algorithm, as we are using a dif-
ferent face recognition model, using the same subset of VGG2
employed for retraining GCN: thr f = 1.07, thrwc = 1.15, thrsc

= 1.05, nsr = 5, ncr = 10.
In order to perform a more exhaustive comparison between

the methods, for this experiment we also compute three ad-
ditional metrics that have been specifically developed for the
evaluation of clustering algorithms: Dunn’s index, Caliński-
Harabasz index, and Silhouette index, which are described in
Moustafa et al. (2021a). For the three indices, higher values
mean better results. The results of this experiment, presented in
Table 3, show that our method outperform the others in all the
metrics and, specially, in the processing time. OGMC runs 7
times faster than GCN and more than 6 times faster than ARO.
These ratios of processing time show that our method is also
more suitable to scale-up compared to the others.

We also present several example clusters generated by the
proposed method during the experiment. In Figure 8, each row

10

represents an identity composed of different clusters connected
to each other. These identities contain variations in lighting
conditions, partial occlusions, perspective and facial attributes,
so they are represented by complex data distributions. With
our proposed method, we are able to accurately approximate
these distributions using a variable number of connected clus-
ters. Each robust cluster generates a centroid (representative
f-vector) which represents the identity under certain condition
range. For instance, in the second row of Figure 8, the second
cluster centroid represents the identity under dim lighting con-
ditions. If we tried to group all faces of this identity in just one
cluster, it could lead to errors due to overly permissive thresh-
olds and worse quality centroids. Another benefit of OGMC
that can be observed in this figure is that the identity outliers are
contained in non-robust clusters connected to the robust ones.
This way, the quality of the robust cluster centroids is not com-
promised by these outliers and the number of matching errors
are reduced. A clear example of this behaviour is exposed in
the last row of Figure 8, where the second and the third clusters
are outliers generated by a combination of unsuitable conditions
(lighting, blurring, occlusion...).

In the last experiment of this section we test the accuracy
of OGMC under extreme conditions: using a face recognition
model which extracts vectors with fewer features and using a
database with a much higher number of identities. Again, as we
want a fair comparison with other methods, we decide to repli-
cate the experiment proposed in Yang et al. (2020). In this ex-
periment, they selected a subset of the database MS-Celeb-1M
(Guo et al., 2016) that contains 5.8M images from 86K iden-
tities and randomly split it into 10 parts with an almost equal
number of identities. Then, they randomly selected 1 part as
labeled data for training and the other 9 parts as unlabeled data.
With the unlabeled data, they created 5 tests with an increasing
number of vectors and identities. The last test has 5.2M vectors
and 77K identities. Furthermore the provided vectors have only
256 features, compared to the 512 previously used.

Thus, as they did with the rest of the methods, we tune the
parameters of OGMC using the provided training data: thr f =

0.85, thrwc = 1.02, thrsc = 0.72, nsr = 4, ncr = 25. Then, we
evaluate the algorithm using the 5 test subsets with an increas-
ing scale of vectors and identities. The results of the experiment
are presented in Table 4. It can be observed that OGMC outper-
forms the rest of the methods consistently in every test subset.

With this experiment, we also prove that the parameters of
OGMC do not need to be readjusted if the scale of the dataset
increases, so the user just needs to tune the parameters if the
face recognition model is changed, as discussed above. Of
course, as for any other method, we must ensure the training
data is large and varied enough to extract the necessary infor-
mation from the model to correctly tune the parameters.

4.3. Clustering Scalability

We also want to prove that our method is scalable and that
it is suitable for large-scale real-time applications. For this rea-
son, we conduct the following two experiments. In the first one,
we test the scalability of our method adding 1, 2 and 3 millions
of distractors to the IJB-C vectors used in the previous exper-

Table 4. Comparison with baseline methods in terms of BCubed F-Measure
using subsets of different sizes from the MS-Celeb-1M dataset. All methods
use the same 256-dimensional vectors provided by Yang et al. (2020). The
methods considered for the comparison are K-means (Lloyd, 1982; Sculley,
2010), HAC (Sibson, 1973), DBSCAN (Ester et al., 1996), ARO (Otto et al.,
2018), CDP (Zhan et al., 2018), GCN (Wang et al., 2019), LTC (Yang et al.,
2019), GCN-V (Yang et al., 2020) and GCN-(V+E) (Yang et al., 2020).

Method

Test
Number of samples

584K 1.74M 2.89M 4.05M 5.21M
Number of identities

8.5K 25.7K 42.8K 60.0K 77.1K
BCubed F-Measure

K-means 0.812 0.752 0.723 0.706 0.694
HAC 0.705 0.695 0.686 0.677 0.670

DBSCAN 0.672 0.665 0.663 0.449 0.447
ARO 0.170 0.124 0.110 0.105 0.100
CDP 0.787 0.758 0.746 0.736 0.729
GCN 0.844 0.816 0.801 0.793 0.786
LTC 0.855 0.830 0.811 0.798 0.789

GCN-V 0.858 0.826 0.811 0.799 0.791
GCN-(V+E) 0.861 0.828 0.812 0.801 0.793

OGMC 0.906 0.881 0.864 0.851 0.839

Table 5. Results of the proposed method on IJB-C experiment adding dis-
tractors from VGG2 dataset.

Samples Number F-Measure Run-Time
IJB-C 0.952 00:01:32

IJB-C + 1 million 0.951 00:24:55
IJB-C + 2 millions 0.948 01:00:40
IJB-C + 3 millions 0.947 02:13:02

iment. Thus, we can observe how the accuracy and the pro-
cessing time evolve with the size of the database. We generate
the distractors from the VGG2 face dataset (Cao et al., 2018),
which contains 3.3 millions faces belonging to more than 9000
identities, with large variations in pose, age, illumination, eth-
nicity and profession. The same face recognition model of the
previous IJB-C experiment is used, so we use the same param-
eter values: thr f = 1.04, thrwc = 1.13, thrsc = 1.03, nsr = 5, ncr

= 5.
Tests are executed 10 times, shuffling all the vectors a ran-

dom number of times and computing the average F-Measure
and processing time for all tests. For the computation of the F-
Measure, the distractors are ignored. The results shown in Table
5, demonstrate that OGMC has an extremelly high scalability,
with a drop in accuracy of 0.1% when adding 1 million dis-
tractors and 0.5% when adding 3 million. Furthermore, OGMC
is able to process more than 1.1 million faces in less than 25
minutes and more than 3.1 million faces in 2 hours and 13 min-
utes. Some examples of the clusters and connections generated
in this experiment are shown in Figure 11.

11

0

1

2

3

4

5

Sa
m
pl
e
tim

e
(m

s)

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
Number of clustered samples (millions)

0

20K

40K

60K

80K

Cl
us
te
rs
 n
um

be
r

Fig. 9. Evolution of the clustering time per sample with the number of
samples clusterized compared to the evolution of the number of clusters
in the database.

The last experiment aims to demonstrate that OGMC is suit-
able for real-time applications. It consists of repeating the pre-
vious test using IJB-C vectors with 3 million distractors and
measuring how the processing time per sample evolves with the
number of processed samples and with the number of clusters
in the database (note that the number of clusters is not equal to
the number of identities, as we are not taking connections into
account).

As in the previous experiment, the test is repeated 10 times,
shuffling all the vectors a random number of times and comput-
ing the results as the average value of all tests. Figure 9 shows
that, after processing 3 million samples and with a database of
80 thousand clusters, the processing time per sample is still 5
milliseconds, which still allows OGMC to process 200 samples
per second in real-time. These results demonstrate that the pro-
posed method is suitable for real-time applications, even when
dealing with extremely large amounts of data.

4.4. Ablation Study

We present an ablation study to discuss the impact of design
choices on the performance of OGMC. First, we demonstrate
the contribution of the reclustering stage of the algorithm. For
this purpose, we run the IJB-C with VGG2 distractors experi-
ment applying only the first stage of OGMC and compare the
results with the ones obtained applying the full method. Table
6 shows the results of the experiment. Comparing the process-
ing times, we can see that removing the reclustering stage sig-
nificantly reduces the complexity of the algorithm. However,
it also leads to an important drop in accuracy (≈4%). Further-
more, removing the second stage also significantly increases the
dependency of accuracy on the order of the input data. This is
because the connections are not re-evaluated when the clusters
are updated.

We also want to analyze the increase in speed added by the
GPU parallelization. We reimplement the distance computing
module with CPU and repeat the IJB-C experiment with both
versions of OGMC to measure how the processing time evolves

Table 6. Comparison of the first stage of OGMC against the full method.

Dataset Full method First Stage
F-Meas Run-Time F-Meas Run-Time

IJB-C 0.952 00:01:32 0.914 00:00:49
IJB-C + 1M 0.951 00:24:55 0.912 00:10:12
IJB-C + 2M 0.948 01:00:40 0.907 00:23:11
IJB-C + 3M 0.947 02:13:02 0.901 00:59:18

0

5

10

15

20

25

30

Sa
m
pl
e
tim

e
(m

s)

0.0K 20.0K 40.0K 60.0K 80.0K 100.0K 120.0K
Number of clustered samples (thousands)

0

2K

4K

6K

8K
Cl
us
te
rs
 n
um

be
r GPU OMGC

CPU OMGC

Fig. 10. Comparison of the evolution of the clustering time per sample with
the number of samples clusterized for GPU and CPU versions of OGMC.

with the number of clusterized samples in each case. The results
of the comparison in Figure 10 show that using the GPU for the
distance computing parallelization produces a huge decrease in
the computation time per sample and a huge increase in the
scalability. However, this simple task only consumes a small
percentage of the GPU utilization compared to other methods
based on neural networks, such as GCN (Wang et al., 2019) or
GCN-V (Yang et al., 2020). Furthermore, the GPU memory
needed for the cluster centroids is very limited (2.4GB for 1
million 512-dimensional vectors) and can be allocated dynam-
ically as the database grows, which makes OGMC suitable to
run together with other GPU-based algorithms (for example a
DNN-based face recognition model).

Finally, we want to demonstrate that the parameters of
OGMC do not have a significant dependency on the training
dataset, as long as it is large and varied enough to extract the
necessary information from the face recognition model. In or-
der to prove this, we repeat the IJB-C experiment with the same
face recognition model but, instead of using the VGG2 sub-
set, we tune the parameters using the IJB-C vectors, so that we
obtain the best possible results in this test. Thus, we obtain
the following values for the parameters: thr f = 1.04, thrwc =

1.13, thrsc = 1.03, nsr = 5, ncr = 5. With these values OGMC
achieves a BCubed F-Measure of 0.952, only a 0.4% of im-
provement over the original test. Thus, this experiment suggests
our hypothesis is correct, the OGMC parameters depend almost

12

Table 7. Comparison with baseline methods in terms of BCubed F-Measure
with DeepFashion dataset. All methods use the same vectors from Yang
et al. (2020). The methods considered for the comparison are K-Means
(Lloyd, 1982; Sculley, 2010), HAC (Sibson, 1973), DBSCAN (Ester et al.,
1996), MeanShift Yizong Cheng (1995); Comaniciu and Meer (1999), Spec-
tral Ho et al. (2003); Ng et al. (2001), ARO (Otto et al., 2018), CDP (Zhan
et al., 2018), GCN (Wang et al., 2019), LTC (Yang et al., 2019), GCN-V
(Yang et al., 2020) and GCN-(V+E) (Yang et al., 2020).

Method F-Measure
K-Means 0.538

HAC 0.488
DBSCAN 0.532
MeanShift 0.567
Spectral 0.464

ARO 0.530
CDP 0.578
GCN 0.589
LTC 0.591

GCN-V 0.573
GCN-(V+E) 0.601

OGMC (ours) 0.620

entirely on the face recognition model and they only need to be
readjusted if this model is replaced.

4.5. Beyond Face Recogniton

To conclude the experimental section, we evaluate the ef-
fectiveness of OGMC for tasks beyond face recognition. For
this purpose, we reproduce the experiment presented in Yang
et al. (2020) with DeepFashion dataset (Liu et al., 2016), a well-
known dataset for clothes retrieval. In this experiment, they mix
the training and testing features in the original split, and ran-
domly sample 25,752 images from 3,997 categories for train-
ing and the other 26,960 images with 3,984 categories for test-
ing. For a fair comparison, we use the same 256-dimensional
vectors provided in their official repository. Thus, we tune the
parameters of OGMC using the training set: thr f = 0.51, thrwc

= 0.58, thrsc = 0.49, nsr = 4, ncr = 10. The results of the exper-
iment are presented in Table 7. Among all the tested methods,
OGMC achieves the best F-Measure, demonstrating its suitabil-
ity for tasks beyond face recognition.

5. Conclusions and Future Work

In this work, we address the problem of large-scale online
face clustering. We propose a method based on EM algorithm
and Mixture of Gaussians. We introduce the concept of cluster
connection, where an identity can be represented by multiple
clusters. With this approach, we reduce the dependency of the
clustering process on the order and the size of the incoming
data and we are able to deal with complex data distributions.
The conducted experiments and their derived results show that
our method outperforms the state-of-the-art clustering methods,
regardless of whether they are online or offline, in terms of ac-
curacy, processing time and scalability.

The proposed model was successfully deployed as part of a
real-time video-surveillance application based on face recogni-
tion. This solution was operating in an airport, where thousands
of people were passing every day and millions of face images
were captured by the cameras.

Future work will focus on further reducing the processing
time of the proposed method by also parallelizing the mini-
mum distance search using the computational capabilities of
the GPU. Furthermore, in this work we have proposed a sim-
ple method for tuning the parameters of the model, which can
be highly optimized or replaced by other more suitable and ef-
ficient approaches (Moustafa et al., 2021b,c; Feurer and Hutter,
2019). Although we believe that this task is out of the scope of
the current article, we will work on it as future enhancements.
Another interesting research line we are considering is to apply
additional outlier detection techniques, such as the ones em-
ployed in Aiadi et al. (2019), which would make the algorithm
more suitable for applications that are more focused on extract-
ing mean KPIs than on the identities themselves (for instance,
for counting the number of clients of a supermarket per month).
In addition, given the current situation with Covid-19, we will
study the impact of the use of surgical masks on the clustering
process. We believe that, for an identity, the proposed method
would group faces with and without masks in different clus-
ters, but connected to each other, since we have proved that the
algorithm works well with partial occlusions. Finally, as we
believe in the open source community, we will soon release the
full code of OGMC and all the supplementary material used for
the experiments, so anyone can replicate them and contribute to
improve the method.

References

Abdalzaher, M.S., Soliman, M.S., El-Hady, S.M., Benslimane, A., Elwekeil,
M., 2021. A deep learning model for earthquake parameters observation in
iot system-based earthquake early warning. IEEE Internet of Things Journal
, 1–1doi:10.1109/JIOT.2021.3114420.

Aiadi, O., Kherfi, M.L., Khaldi, B., 2019. Automatic date fruit recognition
using outlier detection techniques and gaussian mixture models. ELCVIA
Electronic Letters on Computer Vision and Image Analysis 18, 52. doi:10.
5565/rev/elcvia.1041.

Amigó, E., Gonzalo, J., Artiles, J., Verdejo, M., 2009. Amigó e, gonzalo j,
artiles j et ala comparison of extrinsic clustering evaluation metrics based
on formal constraints. inform retriev 12:461-486. Information Retrieval 12,
461–486. doi:10.1007/s10791-008-9066-8.

Apoorva., P., Impana., H.C., Siri., S.L., Varshitha., M.R., Ramesh., B., 2019.
Automated criminal identification by face recognition using open computer
vision classifiers, in: 2019 3rd International Conference on Computing
Methodologies and Communication (ICCMC), pp. 775–778.

Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A., 2018. Vggface2: A
dataset for recognising faces across pose and age, in: 2018 13th IEEE In-
ternational Conference on Automatic Face Gesture Recognition (FG 2018),
pp. 67–74.

Chien, K.M., Wu, T.C., Luor, T., 2019. Face recognition and smart people-
counting system: Cases of asian trade shows. Journal of Internet Technology
20, 435–446. URL: https://jit.ndhu.edu.tw/article/view/2017.

Comaniciu, D., Meer, P., 1999. Mean shift analysis and applications, in: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision,
pp. 1197–1203 vol.2. doi:10.1109/ICCV.1999.790416.

Comito, C., Pizzuti, C., Procopio, N., 2016. Online clustering for topic detec-
tion in social data streams, in: 2016 IEEE 28th International Conference on
Tools with Artificial Intelligence (ICTAI), pp. 362–369.

13

De Maesschalck, R., Jouan-Rimbaud, D., Massart, D., 2000. The maha-
lanobis distance. Chemometrics and Intelligent Laboratory Systems 50, 1–
18. doi:10.1016/S0169-7439(99)00047-7.

Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S., 2020. Retinaface:
Single-shot multi-level face localisation in the wild, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Deng, J., Guo, J., Xue, N., Zafeiriou, S., 2019. Arcface: Additive angular
margin loss for deep face recognition, in: 2019 IEEE/CVF Conf. on Com-
puter Vision and Pattern Recognition, pp. 4685–4694. doi:10.1109/CVPR.
2019.00482.

Duong, C.N., Truong, T.D., Quach, K.G., Bui, H., Roy, K., Luu, K., 2020.
Vec2face: Unveil human faces from their blackbox features in face recogni-
tion. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) , 6131–6140.

Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.,
2009. Privacy-preserving face recognition, in: Goldberg, I., Atallah, M.J.
(Eds.), Privacy Enhancing Technologies, Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 235–253.

Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm
for discovering clusters in large spatial databases with noise, in: Proceedings
of the Second International Conference on Knowledge Discovery and Data
Mining, AAAI Press. p. 226–231.

Feurer, M., Hutter, F., 2019. Hyperparameter Optimization. Springer Interna-
tional Publishing, Cham. pp. 3–33. URL: https://doi.org/10.1007/
978-3-030-05318-5_1, doi:10.1007/978-3-030-05318-5_1.

Frey, B., Dueck, D., 2007. Clustering by passing messages between data points.
Science (New York, N.Y.) 315, 972–6. doi:10.1126/science.1136800.

Garriga, J., Palmer, J., Oltra, A., Bartumeus, F., 2015. Expectation-
maximization binary clustering for behavioural annotation. Mov Ecol 11.
doi:10.1371/journal.pone.0151984.

Guo, C., Fu, H., Luk, W., 2012. A fully-pipelined expectation-maximization
engine for gaussian mixture models, in: 2012 International Conference on
Field-Programmable Technology, pp. 182–189.

Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J., 2016. Ms-celeb-1m: A dataset and
benchmark for large-scale face recognition, in: ECCV, pp. 87–102. doi:10.
1007/978-3-319-46487-9_6.

Han, D., Kim, J., Kim, J., 2017. Deep pyramidal residual networks, in: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6307–6315.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778. doi:10.1109/CVPR.2016.90.

Ho, J., Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, Kriegman, D.,
2003. Clustering appearances of objects under varying illumination con-
ditions, in: 2003 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2003. Proceedings., pp. I–I. doi:10.1109/CVPR.
2003.1211332.

Hyde, R., Angelov, P., Mackenzie, A., 2016. Fully online clustering of evolving
data streams into arbitrarily shaped clusters. Information Sciences 382, 1–
41. doi:10.1016/j.ins.2016.12.004.

Jain, A.K., Dubes, R.C., 1988. Algorithms for Clustering Data. Prentice-Hall,
Inc., USA.

Kulshreshtha, P., Guha, T., 2018. An online algorithm for constrained face
clustering in videos, in: 2018 25th IEEE International Conference on Image
Processing (ICIP), pp. 2670–2674.

Li, J., Yu, T., 2021. A new adaptive controller based on distributed deep rein-
forcement learning for pemfc air supply system. Energy Reports 7, 1267–
1279. doi:https://doi.org/10.1016/j.egyr.2021.02.043.

Li, J., Yu, T., Zhang, X., 2021. Emergency fault affected wide-area auto-
matic generation control via large-scale deep reinforcement learning. En-
gineering Applications of Artificial Intelligence 106, 104500. doi:https:
//doi.org/10.1016/j.engappai.2021.104500.

Liberty, E., Sriharsha, R., Sviridenko, M., 2016. An algorithm for online k-
means clustering, in: ALENEX.

Lin, W., Chen, J., Castillo, C.D., Chellappa, R., 2018. Deep density clustering
of unconstrained faces, in: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8128–8137.

Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X., 2016. Deepfashion: Power-
ing robust clothes recognition and retrieval with rich annotations, in: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1096–1104. doi:10.1109/CVPR.2016.124.

Lloyd, S.P., 1982. Least squares quantization in pcm. IEEE Trans. Inf. Theory
28, 129–136.

Lombardi, S., Saragih, J.M., Simon, T., Sheikh, Y., 2018. Deep appearance
models for face rendering. ACM Transactions on Graphics (TOG) 37, 1 –
13.

Mahdi, F., Habib, M., Moslehuddin, A., Vasant, P., Mckeever, S., Ahad,
M.A.R., 2016. Face recognition-based real-time system for surveillance.
Intelligent Decision Technologies 11, 1–14. doi:10.3233/IDT-160279.

Mayer, C.A., Felkel, R., Peterson, K., 2015. Best practice on automated pas-
senger flow measurement solutions, in: Journal of Airport Management, pp.
144–153.

Maze, B., Adams, J., Duncan, J.A., Kalka, N., Miller, T., Otto, C., Jain, A.K.,
Niggel, W.T., Anderson, J., Cheney, J., Grother, P., 2018. Iarpa janus bench-
mark - c: Face dataset and protocol, in: 2018 International Conference on
Biometrics (ICB), pp. 158–165. doi:10.1109/ICB2018.2018.00033.

Moon, T.K., 1996. The expectation-maximization algorithm. IEEE Signal
Processing Magazine 13, 47–60.

Moustafa, S.S.R., Abdalzaher, M.S., Khan, F., Metwaly, M., Elawadi, E.A.,
Al-Arifi, N.S., 2021a. A quantitative site-specific classification approach
based on affinity propagation clustering. IEEE Access 9, 155297–155313.
doi:10.1109/ACCESS.2021.3128284.

Moustafa, S.S.R., Abdalzaher, M.S., Yassien, M.H., Wang, T., Elwekeil, M.,
Hafiez, H.E.A., 2021b. Development of an optimized regression model
to predict blast-driven ground vibrations. IEEE Access 9, 31826–31841.
doi:10.1109/ACCESS.2021.3059018.

Moustafa, S.S.R., Abdalzaher, M.S., Yassien, M.H., Wang, T., Elwekeil, M.,
Hafiez, H.E.A., 2021c. Development of an optimized regression model
to predict blast-driven ground vibrations. IEEE Access 9, 31826–31841.
doi:10.1109/ACCESS.2021.3059018.

Ng, A.Y., Jordan, M.I., Weiss, Y., 2001. On spectral clustering: Analysis and an
algorithm, in: Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic, MIT Press, Cam-
bridge, MA, USA. p. 849–856.

Otto, C., Wang, D., Jain, A.K., 2018. Clustering millions of faces by identity.
IEEE Transactions on Pattern Analysis and Machine Intelligence 40, 289–
303. doi:10.1109/TPAMI.2017.2679100.

Pitolli, G., Laurenza, G., Aniello, L., Querzoni, L., Baldoni, R., 2020.
Malfamaware: automatic family identification and malware classification
through online clustering. International Journal of Information Security
doi:10.1007/s10207-020-00509-4.

Schroff, F., Kalenichenko, D., Philbin, J., 2015. Facenet: A unified embedding
for face recognition and clustering, in: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 815–823.

Sculley, D., 2010. Web-scale k-means clustering, in: Proceedings of the 19th
International Conference on World Wide Web, Association for Computing
Machinery, New York, NY, USA. p. 1177–1178. URL: https://doi.
org/10.1145/1772690.1772862, doi:10.1145/1772690.1772862.

Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 22, 888–905.

Shi, Y., Otto, C., Jain, A.K., 2018. Face clustering: Representation and pairwise
constraints. IEEE Transactions on Information Forensics and Security 13,
1626–1640. doi:10.1109/TIFS.2018.2796999.

Sibson, R., 1973. SLINK: An optimally efficient algorithm for the single-link
cluster method. The Computer Journal 16, 30–34. URL: https://doi.
org/10.1093/comjnl/16.1.30, doi:10.1093/comjnl/16.1.30.

Tapaswi, M., Law, M.T., Fidler, S., 2019. Video face clustering with unknown
number of clusters, in: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV).

Tian, G., Xia, Y., Zhang, Y., Feng, D., 2011. Hybrid genetic and vari-
ational expectation-maximization algorithm for gaussian-mixture-model-
based brain mr image segmentation. IEEE Transactions on Information
Technology in Biomedicine 15, 373–380.

Uykan, Z., 2021. Fusion of centroid-based clustering with graph clustering: An
expectation-maximization-based hybrid clustering. IEEE Transactions on
Neural Networks and Learning Systems , 1–15doi:10.1109/TNNLS.2021.
3121224.

Vila, J.P., Schniter, P., 2013. Expectation-maximization gaussian-mixture ap-
proximate message passing. IEEE Transactions on Signal Processing 61,
4658–4672.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.,
2018. Cosface: Large margin cosine loss for deep face recognition, in: 2018
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 5265–

14

5274. doi:10.1109/CVPR.2018.00552.
Wang, X., Imura, J., 2019. A gaussian process-based incremental neural net-

work for online clustering, in: 2019 IEEE International Conference on Smart
Cloud (SmartCloud), pp. 143–148.

Wang, Z., Zheng, L., Li, Y., Wang, S., 2019. Linkage based face clustering
via graph convolution network. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) , 1117–1125.

Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams, J., Miller, T.,
Kalka, N., Jain, A.K., Duncan, J.A., Allen, K., Cheney, J., Grother, P., 2017.
Iarpa janus benchmark-b face dataset, in: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 592–600.
doi:10.1109/CVPRW.2017.87.

Yang, L., Chen, D., Zhan, X., Zhao, R., Loy, C.C., Lin, D., 2020.
Learning to cluster faces via confidence and connectivity estimation, in:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 13366–13375. doi:10.1109/CVPR42600.2020.01338.

Yang, L., Zhan, X., Chen, D., Yan, J., Loy, C.C., Lin, D., 2019. Learning
to cluster faces on an affinity graph, in: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2293–2301. doi:10.
1109/CVPR.2019.00240.

Yi, D., Lei, Z., Liao, S., Li, S., 2014. Learning face representation from scratch.
ArXiv abs/1411.7923.

Yimyam, W., Pinthong, T., Chumuang, N., Ketcham, M., 2018. Face detection
criminals through cctv cameras, in: 2018 14th International Conference on
Signal-Image Technology Internet-Based Systems (SITIS), pp. 351–357.

Yin, J., Wang, J., 2016. A text clustering algorithm using an online cluster-
ing scheme for initialization, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, As-
sociation for Computing Machinery, New York, NY, USA. p. 1995–2004.
URL: https://doi.org/10.1145/2939672.2939841, doi:10.1145/
2939672.2939841.

Yizong Cheng, 1995. Mean shift, mode seeking, and clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence 17, 790–799.
doi:10.1109/34.400568.

Zhan, X., Liu, Z., Yan, J., Lin, D., Loy, C.C., 2018. Consensus-driven propa-
gation in massive unlabeled data for face recognition, in: Proceedings of the
European Conference on Computer Vision (ECCV).

Zhan, X., Xie, J., Liu, Z., Ong, Y.S., Loy, C.C., 2020. Online deep clustering
for unsupervised representation learning, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Zhang, L., Baek, J., 2019. Mixtures of gaussian copula factor analyzers for
clustering high dimensional data. Journal of the Korean Statistical Society
48. doi:10.1016/j.jkss.2018.12.001.

15

Fig. 11. Example clusters and connections generated by the proposed method in the IJB-C + 3 millions of distractors from VGG2 experiment. Each group
of contiguous faces represents a cluster and each line represents a connection.

4.2 Learning to Automatically Catch Potholes in
Worldwide Road Scene Images

• Authors: J. Javier Yebes, David Montero and Ignacio Arriola

• Journal: Intelligent Transportation Systems Magazine

• Volume: 13

• Pages: 192–205

• Year: 2021

• Publisher: IEEE

4.2 Learning to Automatically Catch Potholes in Worldwide Road Scene Images 71

ar
X

iv
:2

10
5.

07
98

6v
2

 [
cs

.C
V

]
 1

8
M

ay
 2

02
1

IEEE ITS MAGAZINE 1

Learning to automatically catch Potholes in
worldwide road scene images

J. Javier Yebes, David Montero and Ignacio Arriola

Abstract—Among several road hazards that are present in any
paved way in the world, potholes are one of the most annoying
and involving higher maintenance costs. There is an increasing
interest on the automated detection of these hazards enabled
by technological and research progress. Our work tackled the
challenge of pothole detection from images of real world road
scenes. The main novelty resides on the application of latest
progress in Artificial Intelligence to learn the visual appearance
of potholes. We built a large dataset of images with pothole
annotations. They contained road scenes from different cities in
the world, taken with different cameras, vehicles and viewpoints
under varied environmental conditions. Then, we fine-tuned
four different object detection models based on Deep Neural
Networks. We achieved mean average precision above 75% and
we used the pothole detector on the Nvidia DrivePX2 platform
running at 5-6 frames per second. Moreover, it was deployed
on a real vehicle driving at speeds below 60 km/h to notify the
detected potholes to a given Internet of Things platform as part
of AUTOPILOT H2020 project.

Index Terms—Road Potholes, Deep Learning, Autonomous
Vehicles, Internet of Things

I. INTRODUCTION

ROAD DEFECTS are inherent to any road in the world
due to several reasons such as weather, high traffic

load and heavy vehicles. In some cases, large investments in
infrastructure were done a long time ago and road surfaces
have become more prone to deterioration such that they require
frequent inspection and maintenance [1]. Other places around
the world present different limitations and environmental con-
ditions that influence the quality and state of the pavement [2]
[3]. As a matter of fact, the road network is a valuable asset in
any country because it serves the increasing demand of trans-
portation for goods and people [4]. Consequently, an important
budget is reserved for road reconstruction. For instance, Spain
assigns an averaged 60% of its road maintenance budget to
surface rehabilitation [5].

Commonly, road inspection has been carried out by qualified
maintenance staff who drives along the road network, also
stopping at several locations, to monitor and report encoun-
tered road hazards. However, automating these monitoring
tasks can improve the safety of the staff and the effective

J. Javier Yebes, David Montero and Ignacio Arriola are with the Depart-
ment of Intelligent Transport Systems and Engineering, Vicomtech, Paseo
Mikeletegi 57, 20009 Donostia/San Sebastián, Spain (e-mail: jyebes; dmon-
tero; iarriola@vicomtech.org).

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

detection of the hazards. In the recent years, technological
progress has seen the installation of sensors and specialized
equipment in maintenance vans, e.g. for the detection of road
cracks [6]. Additionally, the progress in ADAS systems and
the large investment in autonomous driving technologies have
enabled the integration of multiple sensors in cars and the
multi-modal perception of the environment [7]. In parallel, the
advances in Artificial Intelligence (AI) [8] [9] have procured
an effective use of the collected data from the sensors.

Among several types of road hazards (cracks, rutting, dete-
riorated markings, etc.) the target of our work is the automated
detection of road potholes. They are present in worldwide
roads causing discomfort to drivers, damages to vehicles and
non-negligible repairing costs to public and private roads.
For instance, the Department of Transport in UK stated in
2014 that more than £3 billion were spent nationally on
road repairs. Also, the Royal Automotive Club (RAC) in
UK estimated that vehicle repairing costs were around £100
million for all affected motorists and general surveys estimated
that American drivers pay an average annual cost of $300 each
to fix car damage due to potholes. Besides, specific funding
has been provided to research on durable pothole repairs [10].
In fact, recent harsh winters and springs, weather changes and
transportation demands are causing a rapid increase of road
potholes.

Our research has received funds from the AUTOPILOT
H2020 project [11], which will deploy, test and demonstrate
automated services based on Internet of Things (IoT) in
five driving modes. In the Highway Pilot use case, a cloud
service merges the sensors’ measurements from different IoT
devices to locate and characterize road hazards. The goal is
to provide the following vehicles with meaningful warnings
and driving recommendations to manage the hazards in a
safer or more pleasant way. For a better understanding of the
scenario, we assume the following: Firstly, a vehicle equipped
with different systems has the role of IoT device, which
is comparable to smartphones and other wearables that can
send/receive messages to/from IoT platforms. Secondly, in-
vehicle systems include AI modules that process data and
produce low-bandwidth messages that are wirelessly sent to
IoT platforms.

Within this background, our main research motivation is
the automated visual detection of road potholes from a frontal
colour camera on board a vehicle. Once potholes are de-
tected, their location is reported to a given IoT platform.
Current state of the art is predominantly based either on
sensing potholes with accelerometers [12] or cameras [3].
Accelerometer-based detection requires that the vehicle drives

IEEE ITS MAGAZINE 2

over the potholes, which is usually not the case as the driver
will try to avoid them. Vision-based detection is naturally seen
as the same process in which drivers perceive the environment
and anticipate to possible road hazards. For the latter one,
classical image processing and machine learning approaches
have been evaluated on images of certain world regions. Our
strategy is to automatically learn the visual appearance of
worldwide potholes using latest advances in AI, i.e. Deep
Neural Networks.

Therefore, the contributions of this paper are the following:
• We built a dataset with manual annotations from several

places around the world that include images from
Europe, America, Asia and Africa. It is composed of chal-
lenging scenes captured from different cameras, view-
points and under varied environmental conditions.

• We fine-tuned and evaluated 4 different Deep Neural
Networks (DNNs) for the detection of road potholes
on images. We achieved high detection ratios (mAP >
75%) considering the high intraclass variance.

• The pothole detector was tested on the Nvidia DrivePX2
platform for embedding ADAS in driverless vehicles.

• As part of AUTOPILOT project, the pothole detector was
integrated on a real vehicle. The set-up included an
automotive grade camera, General-Purpose computing on
Graphics Processing Units (GPGPU) and IoT communi-
cation modules on board the vehicle.

The remaining of the paper is organized as follows: In
Section II we review sensing modalities and literature related
to the detection of road potholes. Next, Section III presents
the AUTOPILOT European project and related research areas.
Section IV describes our approach to learn the visual appear-
ance of potholes with Deep Neural Networks and Section V
explains the created dataset, the experiments carried out and
the obtained results. Finally, Section VI concludes the paper.

II. RELATED WORK

The inspection of roads for surface damage is a worldwide
challenge. The literature reviewed in this section includes
systems from places all around the globe. Commonly, quali-
fied maintenance staff monitors and reports encountered road
hazards. In the recent years, technological progress has en-
abled the installation of specialized equipment in maintenance
vans [6]. Nowadays, smartphones are readily available and
they can be used to take images on the road from any
vehicle [1] [13].

The remaining of this section is dedicated to detection
approaches for our targeted hazards: the road potholes. Attend-
ing to sensor modality, there are four categories: ultrasonic,
accelerometer, image and combination of image and depth.

A. Ultrasonic-based pothole detectors

The system in [14] consisted on a prototype robot vehicle
with one ultrasonic sensor and a Zigbee communication mod-
ule. It was designed to detect potholes with a minimum depth
of 1 inch and to broadcast warning messages to vehicles in
its vicinity (100m). However, it was tested as a lab prototype
without real data. Another system was attached to a motorbike

and tested on Indian roads [2] in which the ultrasonic sensor
was used to determine the depth and height of potholes and
speed humps. However, motorbikes are easy to manoeuvre and
drivers will typically try to avoid driving over the hazards, thus
reducing its applicability.

B. Accelerometer-based pothole detectors

Recently, many studies have explored accelerometer signals
from smartphone sensors and on board vehicle sensors. Mobile
sensing was researched in [15] that addressed the differences
between sensors embedded in 4 distinct phones and compared
various z-axis thresholding algorithms for the detection of pot-
holes. Similarly, [16] presented a real-time pothole detector in
which the signals were normalized to account for smartphone
position and attitude. However, a single pothole case study of
size 51× 58× 6cm was used.

Given the limitation of simple heuristics and thresholding,
Machine Learning (ML) became into scene. Bhatt et. al. [12]
presented an intelligent system in a smartphone where the
pothole detections (at 5HZ) were marked in a map. They
concluded that Support Vector Machines yielded the best
accuracy in the classification of road conditions. Alterna-
tively, the PADS [17] system was based on K-Means, tuned
thresholds and a tri-axial accelerometer on board the vehicle
(no smartphone). PADS solution was based on IoT, sending
detections to a remote server and marking their approximate
location in Google Maps. A different approach was introduced
by Fox et. al. [18] for the aggregation and cloud processing of
crowd-sourced data from inertial sensors on board vehicles.

As discussed in [17], the accelerometer-based approaches
present several drawbacks. Vehicle cushioning mitigates the
vibrations produced by potholes, experiments become biased
and the system can be confused due to braking and other road
anomalies. Moreover, smartphone-based solutions depend on
model and type of mounted accelerometers and their location
and orientation in the vehicle. Achieving a self-calibration
and a correct alignment of axes is not straight-forward [19].
Furthermore, these systems assume that at least one of the
vehicle wheels passes over the pothole which may not happen
if the driver slightly swerves to avoid them or if the potholes
are in the center of the lane.

C. Image-based pothole detectors

A naturalistic approach is to perceive the road scene with
cameras and analyse the images in search of potholes, which
mimics the visual inspection of humans. One of the early
research works consisted on road condition assessment using
hyperspectral aerial imagery [20].

More recently, two works applied simple image processing
techniques for pothole segmentation. [21] collected grayscale
images from a camera on board a vehicle and [22] employed
colour images from Google search engine using the keyword
”pothole”. However, both conducted few tests and obtained
non-sufficient evidence of the accuracy.

A key reference was [3], which enabled an initial anal-
ysis of the vision-based pothole detection challenge. They
released a publicly available and annotated dataset of varied

IEEE ITS MAGAZINE 3

road potholes taken with a camera attached to the vehicle
windscreen, driving at normal speed (< 40Km/h) and under
various illumination conditions. Further details of the dataset
are provided in Section V. The image processing techniques
in [3] were limited compared to the state of the art in AI.
Although reported results were promising, they depended
upon several computer vision filters with parameter tuning.
It must be observed that the continuation work [23] evaluated
computer vision algorithms for pothole distance estimation but
this task is out of the scope of our paper.

In [24], a spatio-temporal saliency map was proposed to
detect potholes in road scenes with heavy traffic. Grayscale
images from a dashcam were used for the purpose and their
visual properties were studied. [25] applied ML methods
to classify images in two sets as pothole/non-pothole. They
employed HOG features and Naive Bayes classifier. Besides,
they combined the approach with normalized graph-cut seg-
mentation to locate pothole regions on the positively detected
images. For the evaluation, they relied on a private dataset of
limited size and reported an elapsed time of 0.7s per image
containing potholes.

Additionally, some newer proposals used images captured
by a smartphone. In [13], superpixels were computed from
grayscale images and the texture of the scene was analysed
with wavelets. Then, a set of subtractions were applied to
identify anomaly image patches that were marked as belonging
to pothole category. Although the reported accuracy was high,
there was a lack of thorough analysis over the dataset. In
contrast to our evaluation on vehicle hardware platforms, their
system was implemented on a high-end desktop computer.
A similar hardware was used in [26] with the addition of a
Nvidia GPU 770M to run different Deep Neural Networks
(DNN) that classified images in two categories: one or more
potholes in the image vs no potholes. All models reported high
accuracy above 96%. However, the models were trained in a
binary classification task without identifying the box around
the pothole. Our DNN system does provide the detected box.

With regards to Deep Learning approaches, Maeda et. al. [1]
has recently presented a road damage detection using DNNs.
It defined 5 classes of road cracks and 3 mixed categories
that gathered other types of hazards (rutting, bump, pothole,
blurred markings). An image dataset with 15,435 annotations
was built while driving in 7 cities of Japan. During our
evaluation, we extracted images and labels from their dataset
for comparison. However, their work was mainly focused on
road cracks. A further review is provided in Section V.

D. Depth- and vision-based pothole detectors

The addition of depth data to the 2D visual clues is also
present in the literature. [27] evaluated statically on the street
the use of the Microsoft Kinect camera. However, this sensor
is not well-suited for outdoors due to the InfraRed structured
lighting that is mostly overridden under the presence of
ambient IR from the sun.

Stereo vision for pothole detection was firstly introduced
in [28]. Three phases were proposed to construct the disparity
map, fit a surface and apply a fixed height threshold to

detect shallow road regions which potentially belonged to
potholes. Stereo cameras were also employed in [29], which
implemented a real-time pothole detector on a digital signal
processing unit based on a very similar algorithm. It must
be noted that these approaches are sensitive to disparity
estimation errors that would yield false pothole detections.
In fact, [29] required a stereo pair of cameras pointing
downwards to the road. This is contrary to the tendency of
placing cameras with XZ-plane nearly parallel to the ground
such that other tasks can be done with the same images, e.g
detection of objects/lanes ahead of the vehicle.

In [30] a 2D LiDAR and a camera were combined. Different
pothole detection algorithms for each sensor modality were
presented and the experiments were carried out in lab placing
a shallow box to simulate the pothole. Thus, the setup was
far from any real road scene. However, [31] used real data
and introduced the detection of speed bumps on LiDAR 3D
data at the same time potholes were detected with basic image
processing techniques.

To complete the literature review, there exist other private
approaches without further technical details available: a Jaguar
Land Rover warning system [32], a Google patent [33] and a
commercial black box camera for pothole detection [34]. In the
latter one, size, location and appearance of potholes were sent
to a centralized server for off-line assessment and maintenance
actions. The system was only tested on sunny weather.

Compared to above mentioned works, our proposal used an
automotive grade camera installed on the front bumper of a car
that can be deployed in new manufactured vehicles. Moreover,
we applied latest progress in Deep Neural Networks (DNN)
and tested the pothole detector in an embedded driverless
vehicle platform. We built an image dataset with road scenes
from different camera sources under varied environmental
conditions to train the DNN models. Moreover, as part of
the AUTOPILOT project [11], the detected potholes were re-
ported in IoT-fashion to cloud services. The following section
contextualizes our work within that project and 3 interrelated
research areas.

III. AUTOPILOT AND RELATED RESEARCH AREAS

In the last 30 years, there has been a huge progress in
the field of Autonomous Vehicles (AV) in such extent that
nowadays, there exist vehicles in the market that claim several
autonomous driving functions and many more yet to come.
From a computer vision perspective, [7] provides a wide
literature review.

Successful approaches in Artificial Intelligence (AI) have
contributed to the progress. They have been proposed either
as knowledge transfer from other research areas or as specific
solutions for driver assistance an driverless vehicles. Indeed,
AI is a broad concept referring to the cognitive ability of
machines as opposed to the natural intelligence of humans
or other beings. In recent history, three terms have become
very popular which represent different trends in the algorith-
mic implementation of AI. In chronological order: Pattern
Recognition (PR) [8], Machine Learning (ML) [35] and Deep
Learning (DL) [9]. PR can be considered outdated but it

IEEE ITS MAGAZINE 4

belongs to the age when the premier international conference
on Computer Vision and Pattern Recognition (CVPR) was
born. ML is still widely employed offering supervised and
unsupervised learning methods. However, it has been recently
outperformed by DL in many tasks and challenges at the cost
of higher computational requirements and dedicated hardware.

In parallel, Internet of Things (IoT) extends the principle of
internet services to include all possible types of devices, thus
bringing the advance in accessibility of information from the
virtual to the physical world. IoT can enable new capabilities
in AV for various layers. From the communication for a given
cooperation zone within vehicle range to the connection to
cloud platforms with the aim of sharing information in larger
zones, i.e. smart cities.

In 2016, the European Commission funded five Large-
Scale Pilots (LSPs) on the IoT. The AUTOPILOT H2020
project [11] was selected as Pilot 5: autonomous vehicle in a
connected environment. AUTOPILOT concerns the use of IoT
for enabling automated driving as it is illustrated in Fig. 1.

Fig. 1. AUTOPILOT H2020 project illustration [11]

AUTOPILOT will deploy, test and demonstrate IoT-based
automated services in five driving modes. The research work
presented in this paper was applied to the Highway Pilot use
case to locate and characterize road hazards like road surface
anomalies, bumps, fallen objects, etc. The fusion of advances
in AI, AV and IoT are studied to provide feasible solutions as
the one proposed in this paper.

In AUTOPILOT, a cloud service merges the sensors’ mea-
surements from different IoT devices on board vehicles (cam-
era, LiDAR, inertial and vibration sensors) and on the road side
(mainly cameras). The goal is to provide incoming vehicles
with meaningful warnings and driving recommendations to
manage the hazards in a safer or more pleasant way. Moreover,
the automated detection of the hazards enables the reporting
to corresponding traffic or infrastructure authorities for main-
tenance or other monitoring and controlling actions.

Considering this background, our current research work
has a direct impact on the operational performance of the
new generation of ITS. One the one hand, recent progress in
AI, more specifically Deep Learning, enables the integration

of high-performing scene perception modules into vehicles
equipped with multiple sensors. On the other hand, IoT enables
the data collection from multiple sources to also implement
AI solutions on the cloud. The following section describes the
details of our pothole detector model based on latest AI.

IV. LEARNING POTHOLE APPEARANCE WITH DNNS

Definition of potholes: Bowl-shaped holes of various sizes
in the pavement surface that are greater than 175cm2 in area
(∼ 15cm diameter) (illustrative examples in Fig. 2).

A set of factors generate road distress that leads to the
formation of potholes [23]. The most relevant causes are the
volume of traffic, the axle load of heavy vehicles (buses and
trucks) and the environmental conditions (day/night tempera-
ture contrast, snow, rain). Moreover, the type of road surface
material, the underlying terrain and construction techniques
influence the quality and resistance of the pavement.

Typically, the first phase is the formation of cracks that
allow water to seep through. Next, when vehicles drive over
them, the water is pushed in many directions around the initial
cracks. Eventually, cavities will appear in the asphalt growing
in size until they reach pothole dimensions. Besides, the wider
the cavity the quicker the process. Therefore, automated detec-
tion and notification of potholes helps preventing progressive
road deterioration. Our research work proposes to learn the
visual appearance of potholes with Deep Neural Networks.

A. Visual appearance of potholes

We have collected images with several types of potholes
under different illumination and weather conditions as depicted
in Fig. 2. The most common potholes show a pronounced
edge describing an elliptical shape. However, there are some
that describe a more square-like shape and some others that
do not have a pronounced edge. They might appear darker
or brighter on the background pavement. The deepest ones
look darker because of the shadow of the edge, while in the
flat ones it is possible to see the ground or gravel inside the
pothole. Besides, some potholes appear filled with water and
might also reflect surrounding scene in the surface.

Attending to this intra-class variance, pothole detection
based on classic computer vision has limitations. The literature
reviewed in Section II-C presented ad-hoc image processing
filters and heuristics, which were biased towards specific
datasets and conditions. We propose to take successful DNN
object detection models as a base, thus to automatically learn
more discriminative visual features of the potholes in varied
scenes.

B. Deep Learning for the detection of potholes

Object detection approaches based on engineered features
and Machine Learning classifiers have been very fruitful until
recent times [35]. However, when applied to different tasks
or adapted for additional challenges they required intensive
parameter tweaking and dimensionality reduction [36].

Recent trends on Deep Learning have achieved impressive
detection performance on various tasks [9] including object

IEEE ITS MAGAZINE 5

Fig. 2. Samples of annotated potholes. They come from several sources and
represent varied places, environmental conditions and camera viewpoints.

detection [37]. Moreover, several DNN based models are
publicly shared and can be used as initialization step for fur-
ther training and fine-tunning in different object classification
tasks [38]. We make use of this progress in AI for the detection
of potholes.

Based on the investigation in [37] and the entries reported
in the TensorFlow model Zoo [38], we selected 4 models that
have shown high detection ratios at reasonable processing
costs. Attending to detection performance we chose 3 different
configurations of the architecture Faster R-CNN. Besides, we
evaluated the Single Shot multibox Detector (SSD) because it
is targeted for mobile applications. They are explained in the
next paragraphs.

The Faster R-CNN architecture uses a system called Region-
based Convolutional Neural Network (R-CNN). As opposed
to a brute-force sliding window approach over image space,
regions of interest are proposed and warped to fixed size and
then, they are individually fed into a CNN for classification
and bounding box refinement. The Faster R-CNN network
architecture consists of three major blocks (see Fig.3):

1) A CNN to extract features. In brief, the weights of
several convolutional filters are learned in order to
calculate the feature maps.

2) A Region Proposal Network (RPN) that acts as attention
model. It proposes regions that may contain an object.
During training, it learns to determine whether a certain
region has an object or not and the appropriate shapes
and sizes. This is the multi-task loss:

L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗
i)+

+ λ
1

Nreg

∑

i

p∗iLreg(ti, t
∗
i) (1)

where i is the ith candidate region (called anchor in
[39]), pi is the predicted probability to be an object,
p∗i is 1 if the candidate truly contains an object and 0

otherwise. ti are the coordinates of the candidate region,
t∗i is the ground-truth box, Lcls is the log loss over
two classes (object/non object) and Lreg the regression
defined as the robust smooth L1 function [39].

3) The last block is the object classifier Fast R-CNN [40]
that receives the proposed regions, assigns a class to
them and it also refines the bounding boxes using a
regressor. The loss function in training is very similar
to the one in the RPN.

We have fine-tuned these blocks end-to-end using stochastic
gradient descent optimization with back propagation.

Fig. 3. Simplified diagram of Faster R-CNN for illustration purposes

The seminal method was very slow to train because of the
computation of features for every region. Then it eventually
evolved into Faster R-CNN [39]. Despite its ”Faster” prefix,
it is slower than SSD because it re-runs the cropped regions
through the feature extractor. In fact, we selected three Faster
R-CNN models that differ in the feature extractor because the
choice of feature extractor has a higher impact in Faster R-
CNN models than in SSD. The choices are introduced below:
Faster R-CNN Inception v2. The feature extractor in this ap-
proach provides batch normalization for accelerating the model
training and it has yielded high accuracy [41]. Compared to v1,
it is more efficient by factorizing the convolution operations.
Also, it is a wider network to avoid losing visual details that
may happen in v1 which is deeper as road potholes typically
represent small portions of the images.
Faster R-CNN Resnet101. This model training uses
Resnet101 that stands for Residual Network with 101 lay-
ers [41] and has achieved high success on many competitions.
This type of networks try to learn residuals which are short-
cut connections between layers. The approach allows to train
deeper models without degradation.
Faster R-CNN Inception-Resnet v2 (atrous). This third
model uses a hybrid feature extractor that combines Inception
and Resnet, second version (v2), yielding improved recogni-
tion performance as reported in [42]. Moreover, the ”a trous”
(with holes in) option employs dilated convolutions, which
provide a wider field of view at the same computational cost
towards achieving better accuracies.

Opposed to above ones, the Single Shot multibox Detector
(SSD) uses a single feed-forward convolutional network [43].

IEEE ITS MAGAZINE 6

It is a faster and simpler method because it discards the
proposal generation phase and feature re-sampling. It uses a
set of default boxes with different aspect ratios and scales
per each feature map location. These boxes are equivalent
to anchors in Faster R-CNN and represent priors manually
chosen as described in [43]. For the sake of clarity, the training
loss is reproduced below. It is a combination of two functions
that capture object confidence and location error:

L(x, c, l, g) =
1

N
(Lconf (x, c) + Lloc(x, l, g)), (2)

where N is the number of matched default boxes and x is 1
to mark detections correctly matched to ground-truth or zero
otherwise. Lconf is the softmax loss over classes confidences
(c) and the localization loss Lloc is a smooth L1 function
between predicted (l) and ground-truth box (g) parameters.
SSD Mobilenet v2. We selected Mobilenet version 2 as
feature extraction network [41], which has been specifically
designed for mobile vision applications with limited resources.
It uses depth-wise separable convolutions and the version2
incorporates a set of improvements. One of them are residual
connections as in ResNet but applying thinner bottleneck
layers [44] which makes it more efficient than v1.

C. Fine-tune DNN models for the detection of road potholes

The selected models were successfully evaluated on multi-
object detection challenges and we fine-tuned them for a single
class: road potholes. We downloaded the above mentioned pre-
trained DNN models [38], which are used as initialization.
The weights of the feature extractor layers are automatically
fine-tuned during the training. The weights of the remaining
layers that perform the classification and object localization
tasks, are randomly initialized and learned towards the visual
detection of potholes. This is a established practice when ap-
plying Deep Learning models. As opposed to hand-engineered
features such as SIFT, SURF, HOG which are well-known in
computer vision literature, these DNN models use automat-
ically learned features from the database Common Objects
in Context (COCO) [45]. This large-scale object detection
dataset contains more than 200K images distributed in 90
object categories depicting real world scenes. It is sufficiently
large to learn rich visual features of naturalistic scenes that are
encoded in the weights of the neural networks. These features
cannot be learned using a limited number of object labels, like
our pothole case. Hence, the pre-trained models transfer the
knowledge in order to train the pothole detector.

For the fine-tuning of the models, we modified several
parameters after conducting an analysis on the dataset. In the
following experimental section, we first described the dataset
and then, the details of the changed parameters in Section V-B.

V. EXPERIMENTAL SECTION

A. Dataset

The images used in our research have been obtained from
varied sources and belong to different places in the world.
Only a subset was already labelled and several images have

been manually annotated with boxes around potholes. Our
motivation to build this dataset has been twofold: I) gathering
enough data samples for fine tunning and evaluation and II)
increase variance in pothole appearance, camera viewpoints
and road scenes. We have divided the images in training,
validation and test sets.

1) Training and validation sets: The database consists of
5,874 images from which 5,774 have been used for fine-
tunning and 100 have been randomly picked for validation.
In the training set there is a total amount of 9,716 potholes
while in the validation set the number of potholes is 171.
All the images have been captured from a vehicle, with
different camera placements and viewpoints. We constructed
the training set from these sources:

• 4,030 images of size 3680×2760 pixels and their labels
were obtained from [3]. The images were captured as
regular snapshots from a GoPro camera attached to the
inner side of a vehicle windscreen.

• 1,644 images have been sampled from AUTOPILOT
videos of VALEO in the surroundings of Paris and
potholes have been manually labelled. These images
have a resolution of 1280×800 pixels. The sequences
were captured by an automotive-grade fish-eye camera
mounted on the front bumper of a Volkswagen Tiguan 2.
We removed the radial distortion as pre-processing step
using the calibration parameters of the camera. Then, the
undistorted images were added to the dataset.

• The remaining 100 images (up to 5,874) have been
captured from the Google Earth Pro street-view tool
at a resolution of 1236×804 pixels. They have been
also manually labelled. Most of these images containing
potholes belong to streets of Tirana in Albania and some
have been found in San Sebastian and Bilbao in Spain.

We used the tool Label Img [46] to annotate the boxes
enclosing road potholes. The images were slightly cropped
near the borders to remove some scene background and resized
to 1024×800 pixels (see Fig. 4). The motivation for this size
is explained in Section V-B.

We analysed the distributions of the aspect ratio and area of
the annotated potholes for fine-tunning the training parameters
of the DNNs. We provide box plots in Fig. 5. The size
and location of the blue box indicates those values from the
first (25%) to the third quartiles (75%) and the interquartile
distance (IQR = Q3 − Q1). The line inside the box repre-
sents the median value. The whiskers represent the highest
observation below the upper limit (Lupper = Q3+1.5 · IQR),
and the lowest observation above the lower limit (Llower =
Q1 − 1.5 · IQR). The points outside those two limits are
considered outliers.

2) Test set: The test images have been collected from
different sources as well. In first place, some additional
images have been fetched from the sequences recorded in
AUTOPILOT project with VALEO vehicle. The videos were
captured in different dates and environmental conditions com-
pared to the training set. The routes were also nearby Paris
sharing some streets with the training sequences. Indeed, we
manually selected 265 images with 128 potholes in challeng-
ing scenarios, which included dark lighting (tunnels), rough

IEEE ITS MAGAZINE 7

(a) South Africa [3] (b) Google - San Sebastián

(c) Valeo - Paris (d) Google - Tirana

Fig. 4. Sample images of the constructed training+validation image set.

0

2

4

6

8

10

12

14

16

18

20

10

100

1000

10000

100000

1× 106

A
sp

ec
t

R
at

io

Pi
xe

l
A

re
a

Fig. 5. Distribution of the aspect ratio and area in pixels of the annotated
potholes for the train dataset. The boxplot on the left has a linear repre-
sentation of the aspect ratios. The quartiles are Q1 = 2.053, median =
3.062, Q3 = 4.0. The boxplot on the right shows the area in pixels and
has a logarithmic axis for the purpose of visualization. The quartiles are
Q1 = 1276, median = 3081, Q3 = 7744 pixels

weather conditions, traffic jams and roads with bumps, stains
and manholes. The latter ones being potential cases of false
positive detections as potholes.

The second source is a youtube video1 recorded from a
dash-cam in a car driving through a road stretch in the area
of Willamette National Forest, Oregon, US. We extracted 482
frames and manually labelled 475 potholes.

Additionally, we re-annotated some of the images in [1].
The road damage inspection presented in that paper released a
public dataset with 9,892 pictures captured with smartphones.
Among the classes of hazards identified in [1], one was
categorized as Rutting, bump, pothole and separation. It is
a very broad class with loose large boxes around the hazards.
Hence, we reviewed them to generate new labels only for

1https://www.youtube.com/watch?v=BQo87tGRM74

potholes discarding the remaining annotations. As a result, 62
potholes have been selected within 54 images.

B. Experimental details of DNN models of road potholes

As introduced in Section IV-C, we fine-tuned 4 DNN
models for the detection of road potholes. In first place, we
studied the nature of the dataset and we fixed the size of the
input layer to 1024×800 pixels. We found that the median area
of potholes corresponded to a 0.37% of the original image size.
Given a reduced resolution of 600×600 as reported in [38],
1350 ≃ 362 pixels is the average area of the potholes in
the images. Besides, the 1:1 aspect ratio involves warping,
cropping and resizing the original images. Consequently, road
areas on the left and right sides in front of the car are cropped
out and the visual appearance of the scene and the potholes are
deformed and reduced in granularity. Therefore, we decided
to use a larger window size with an aspect ratio similar to the
original resolution of the images, achieving a median area of
3081 pixels among the annotated potholes.

In addition, we applied a set of adjustments for fine-tuning
the 3 Faster R-CNN models.

• Added the aspect ratios of 1:3 and 1:4 after analysing
the dataset (see Fig. 5). Thus, the aspect ratios during
learning were [.5, 1, 2, 3, 4].

• Reduced the maximum number of region proposals
for Faster R-CNN models from 300 to 100, with the
aim of decreasing detection time without losing perfor-
mance [37].

• Due to the limited size of our pothole database, we
increased the number of training samples by data aug-
mentation. Among several options for fine-tunning Faster
R-CNN models, we selected random adjust brightness
and random horizontal flip because of their effectiveness
in previous research experience for object detection.

• We enabled the drop-out feature in the second stage of the
Faster R-CNN training to prevent over-fitting. Basically,
this option randomly drop units and their connections
from the network, which prevents the units from co-
adapting too much.

• The number of steps employed for fine-tuning the 3
models was 2 millions. We picked this number observing
the performance of the trained models on the validation
subset. The loss function was stable without showing too
much improvement, thus we decided to stop at 2M steps,
which corresponds to 173 epochs.

Similarly, we applied the same adjustments for fine-tuning
the SSD Mobilenet v2 model but using a a squared size of 800
× 800 pixels.

C. Implementation details for training & evaluation

We include in this section the relevant hardware and soft-
ware details of the experiments. For the fine-tuning we have
used a barebone PC equipped with 2 × Xeon 20-Core @
2.2GHz, 16 × 32GB RAM modules and 8 × GPGPU Nvidia
Tesla P100M with 16GB of memory each one. It must be
noted that only one GPGPU was used during the learning of a

IEEE ITS MAGAZINE 8

given DNN model. The software environment included Ubuntu
OS, Tensorflow 1.7 with Tensorboard for the visualization and
validation of the learning process [47].

For the evaluation of the models, we used the same PC
and also the Nvidia DrivePX2 Autochauffeur2, which is
specifically designed for research and embedding AI solutions
in driverless vehicles. This platform has two Nvidia Tegra
X2 SoCs (known as TegraA and TegraB), where each SoC
contains 2 Denver cores, 4 ARM A57 cores and a Pascal
GPU. This replication is for redundancy purposes and not
for parallelization. The dGPU has 1152 CUDA cores and
4GB of memory while the iGPU has 256 cores and uses the
shared system memory 7GB. Besides, the device includes a
set of interfaces (GMSL, USB, Ethernet, CAN, FlexRay, etc.)
for different sensors like cameras, LiDAR, GPS, CAN bus
signals, etc. The OS is based on Ubuntu Linux distribution
and we carried out the tests with version Drive 5.0.5.0a, which
includes CUDA9. Additionally, Tensorflow 1.7 was installed to
load the learned DNN models and automatically find potholes
in road scene images.

D. Results

In our research, we considered the mean Average Precision
(mAP) as detection performance metric and the higher the
mAP, the better. We analysed two different approaches to
obtain it: COCO and PASCAL. Both of them count the number
of true/false positives and false negatives to calculate precision
and recall. Next, the Average Precision is obtained as

AP =
1

11

∑

r∈{0,0.1,...,1}
max
r̃:r̃≥r

p(r̃), (3)

where r and p are the recall and precision values respectively
and 11 equally spaced sampled recall points are used.

To determine object localization accuracy, the Intersection
over Union (IoU) measures the overlap between predicted
and ground-truth bounding boxes around objects. For the
estimation of mAP, COCO defines the mean Average Precision
over all object classes and multiple values of IoU: precision-
recall curves are evaluated at IoU = [.5 : .95] in steps
of 0.05. In PASCAL mAP, only one value of IoU=0.5 is
reported. Then, using COCO strategy, models showing higher
precision in object localization are rewarded. For our analysis,
we have also decided to report PASCAL mAP @ IoU=0.4.
Precisely annotating the location and boxes around potholes is
challenging, mostly on road scenes with deteriorated surfaces
or road defects that could be labelled as one or several
potholes. Observing the results, we realized that many pothole
detections on the road surface could be considered as good by
a human viewer but they were classified as false positives or
false negatives by the evaluation algorithm. Therefore, with
the aim of reducing the number of FN and FP we also report
the mAP @ IoU=0.4.

Before presenting our results, for reference, we reproduced
here the mAP and processing speed of the pre-trained models
as reported in COCO entries [38]. The timings were obtained

2https://www.nvidia.com/en-us/self-driving-cars/drive-platform/

for images of 600×600 pixels and running on a Nvidia
GeForce GTX TITAN X.

1) ssd mobilenet v2 coco (t = 31ms, mAP = 22)
2) faster rcnn inception v2 coco (t = 58ms, mAP = 28)
3) faster rcnn resnet101 coco (t = 106ms, mAP = 32)
4) faster rcnn inception resnet v2 atrous coco

(t = 620ms, mAP = 37)
Running time and detection performance are correlated: the

higher mAP, the higher processing delay. The reason is due to
neural network architecture complexity and number of layers,
provided that the size of the input layer is constant for all of
them. A thorough analysis can be found in [37].

Next, we report the results obtained after fine-tuning SSD
Mobilenet v2 for potholes and evaluating the model on the
test set. The AP was 33.62% and 45.57% @ IoU 0.5 and
0.4, respectively and took approximately 455ms per image
when executed in Nvidia DrivePX2. These values show a very
low detection performance despite the fine-tunning of some
parameters. We investigated the main reasons and reached the
conclusion that in SSD Mobilenet the discretization in bound-
ing boxes and their separate analysis does not account for
neighbouring pixels, which provide useful context information.
Despite the initial expectations of this research to implement a
mobile embedded Deep Neural Network, the SSD Mobilenet
is not well suited to detect objects that strongly depend on
the appearance of surrounding scene, i.e. potholes vs road
appearance. In addition, by design it does not cope well with
small bounding boxes compared to the image size. However,
our dataset contains small annotated boxes compared to the
size of the image.

The remaining of this section is dedicated to the results
of the selected Faster R-CNN models. Figure 6 presents the
precision-recall curves on the test set for the 3 Faster R-CNN
models at two different values of IoU and Table I shows
precision and recall based on PASCAL evaluation metrics.
Table II shows the mean Average Precision for each of them.
Moreover, running times are shown in Table III. The model
names have been shortened3.

TABLE I
PRECISION (P) AND RECALL (R) OF THE EVALUATED POTHOLE

DETECTORS BASED ON FASTER R-CNN MODELS.3

IoU Model p (%) r (%)

0.5

inception v2 70.10 65.85

resnet101 83.48 75.23

inception resnet v2 atrous 73.08 69.78

0.4

inception v2 74.7 70.26

resnet101 82.27 82.16

inception resnet v2 atrous 76.5 73.07

As it can be observed from the resulting values, Faster
R-CNN Resnet101 yields the highest detection performance
both in PASCAL and COCO evaluation metrics. It is not the
slowest DNN but it requires on average 432.7ms per frame on
the Nvidia DrivePX2. For the goals of detecting potholes and

3For visualization purposes the prefix ”Faster R-CNN” has been omitted

IEEE ITS MAGAZINE 9

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Faster-RCNN

IoU=0.4
inception resnet

inceptionv2
resnet101

IoU=0.5
inception resnet

inceptionv2
resnet101

Fig. 6. Precision-recall curves for the test set. Three Faster R-CNN models
with a different feature extractor network and two values of IoU are compared.
Due to the nature of road potholes, there is a larger error in the localization
accuracy of the ground-truth bounding boxes. Thus, we opted to report IoU
= 0.4 in addition to the commonly used 0.5 value. The aim is reducing false
negatives and false positives in road scenes with deteriorated surfaces where
manual pothole labelling is also challenging.

TABLE II
MEAN AVERAGE PRECISION OF THE 3 POTHOLE DETECTORS.3

mAP(ˆ1)

IoU Model PASCAL COCO

0.5

inception v2 67.05 27.51

resnet101 77.49 31.12

inception resnet v2 atrous 68.71 26.67

0.4

inception v2 75.45 —

resnet101 82.02 —

inception resnet v2 atrous 69.72 —

reporting them to an IoT platform (AUTOPILOT project), it
is a valid time. There are not real-time requirements because
detected potholes will be monitored from control centres
and broadcasted to warn other road users when sufficient
confidence is reached after several repeated detections on a
given map location. For vehicle reactive manoeuvres upon
detection, further research is needed to optimize the neural
networks without losing too much performance in order to
obtain processing gains. A significant reduction of size on the
input layer could importantly increase the number of false
detections due to the small size of potholes compared to the
rest of the image. Thus, other DNN optimization strategies
should be explored, like enlarging the dataset, retraining on
mobile or pruned networks from scratch and transforming
DNNs with software optimization tools for its execution on
specific hardware.

Also, from the results, it is surprising that Faster R-CNN
Inception Resnet v2 (a trous) obtains lower AP, which is
contrary to expected performance. Indeed, comparing the AP
@ IoU 0.5 and 0.4 it can be seen that a slight gain of
1% is achieved, meaning that this DNN obtains more false
negatives and more false positives that do not overlap correctly

TABLE III
AVERAGE INFERENCE TIME FOR THE 3 POTHOLE DETECTORS 3 AND

DIFFERENT GPGPU DEVICES.

Inference time (ms)

Models Tesla P100M 16GB DrivePX2 TegraA

inception v2 53.2 177.1

resnet101 94.2 432.7

inception resnet v2 atrous 172.1 732.9

to ground-truth potholes. Besides, the validation p-r curve
during fine-tuning shows a lower performance than the other
models. On the one hand, the complexity of this network
and the limited number of training samples can cause weak
propagation of relevant signals for the class potholes. On the
other hand, the ”a trous” option might be negatively affecting
the selection of features in the surroundings on the potholes.
Also, we suspect that some over-fitting is also happening due
to a larger gap between validation and testing performance
compared to the other Faster R-CNN approaches.

Finally, Faster R-CNN Inception v2 yields modest values
of AP at lower processing cost, which is also a valid pot-
hole detector for the aim of Highway Pilot use case within
AUTOPILOT. Rates up to 6fps when running on NVidia
DrivePX2 could be achieved.

Figures 7 to 9 depict some samples of the pothole detections
with the best performing model, which is Faster R-CNN
Resnet101. The potholes were correctly found in the scenes
without any road surface filtering or manual pre-selection of
image region of interest. The captions on the images describe
the details of every case. We provide a supplementary video
to demonstrate the achieved detection performance on a real
world scene.

VI. CONCLUSION

This paper has presented how to automatically catch road
potholes in worldwide real scenes. We built an image dataset
with high intraclass variance from several sources with the
aim of learning robust and general pothole appearance models
that can aid the detection of this type of road hazards. We
fine-tuned Deep Neural Networks for object detection with
demonstrated good performance in the state of the art. We
validated the suitability of some of these models for the
particular goal of road pothole detection. We concluded that
precise localization of potholes is challenging due to ground-
truth errors during annotation because of the nature of road
potholes. Thus, we relaxed the Jaccard index to IoU = 0.4
for the evaluation. Consequently, Faster R-CNN Resnet101
achieved averaged precision values of 82%, while Faster R-
CNN Inception v2 yielded 75% at a lower processing cost. The
latter one, when tested on Nvidia DrivePX2 Autochauffeur
platform, it could run at 5-6fps. Furthermore, the pothole
detector was deployed in a real vehicle as part of AUTOPILOT
project.

One of the limitations of the detector is the runtime in
case of real-time requirements on the target system. For
AUTOPILOT, the current frame rate is valid because potholes

IEEE ITS MAGAZINE 10

Fig. 7. Correct pothole detections in the test set using the model Faster R-CNN Resnet101. The ground-truth boxes are in green colour and the detections
with overlaid score are in blue. The first row shows multiple detections, the second row are single potholes that are zoomed in and displayed in the third row.

(a) Patch/pothole not annotated (b) Oil smear similar to pothole (c) Water puddle at far distance (d) Stain on road surface

(e) Correct detection but bigger than
ground truth due to wet surface

(f) Small manhole within shal-
low road patch

(g) Manhole with shallow border (h) Manhole within shallow patch

Fig. 8. Examples of false positive detections in the test images using the model Faster R-CNN Resnet101.

(a) FN in green, but correctly detected
in adjacent frames of the sequence

(b) FN in green and TN manhole both
not detected as potholes

(c) Surface stains inside tunnel and not
detected as expected

(d) Correct behaviour not detecting
manhole

Fig. 9. Examples of true and false negatives in the test images using the model Faster R-CNN Resnet101.

IEEE ITS MAGAZINE 11

will be notified to IoT platforms upon detection and they will
later serve road hazard warnings, hence, immediate reactive
vehicle manoeuvres are not targeted. In addition, we have
observed that most of the false positives are due to manholes.
Sometimes, they are in a shallow road patch which could be
considered as correct detection. Other false detections outside
road boundaries could be easily filtered by using lane/road
detectors. Moreover, in highly damaged road surfaces the de-
tector found unlabelled potholes and some road cracks, which
could be considered as correct due to the bad condition of the
pavement. Also, a limitation of the algorithm is high speed
driving (>60Km/h). Images show blur that filters edges and
fine-grained details making very difficult the detection task.
This limitation comes from the acquisition system, camera
settings, illumination conditions and other related factors.

For the future we plan DNN optimizations to accelerate
inference. One possibility is to split specific parts of the
neural network in to CPU or GPU processing. Also, the
evaluation of other lightweight networks that can be trained
from scratch on the pothole dataset or the reduction of layers
in state-of-the-art networks. For instance, YOLOv3 [48] has
recently reported state-of-the-art accuracy at faster inference
time. For fine-tunning during learning, enlarging the dataset
can help improve the detection ratios. Additionally, other road
hazards of interest will be studied in the future as part of the
AUTOPILOT project.

ACKNOWLEDGEMENT

This work has received funding from the European Re-
search Council (ERC) under the European Union’s H2020
research and innovation programme (grant agreement no.
731993, project AUTOPILOT). The authors would like to
thank Valeo Comfort and Driving Assistance (VCDA) SAS for
the provision of a equipped vehicle and video recordings as
part of AUTOPILOT. Also, the authors would like to thank Dr.
M. Nieto and Dr. S. Sanchez that helped with the proofreading.

REFERENCES

[1] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road
Damage Detection Using Deep Neural Networks with Images Captured
Through a Smartphone,” ArXiv e-prints, Jan 2018. [Online]. Available:
http://arxiv.org/abs/1801.09454

[2] R. Madli, S. Hebbar, P. Pattar, and V. Golla, “Automatic detection
and notification of potholes and humps on roads to aid drivers,” IEEE
Sensors Journal, vol. 15, no. 8, pp. 4313–4318, Aug 2015.

[3] S. Nienaber, M. Booysen, and R. Kroon, “Detecting Potholes Using
Simple Image Processing Techniques and Real-World Footage,” in 34th
Annual Southern African Transport Conf. (SATC), 2015, pp. 153–164.

[4] “Global Transport Scenarios 2050,” Last
viewed: 2018-06-14. [Online]. Available:
https://www.worldenergy.org/wp-content/uploads/2012/09/wec transport scenarios 2050.pdf

[5] “Ministerio de fomento,” Last viewed: 2018-05-24. [Online]. Available:
http://www.fomento.gob.es

[6] M. Gavilán, D. Balcones, O. Marcos, D. F. Llorca, M. A. Sotelo, I. Parra,
M. Ocaña, P. Aliseda, P. Yarza, and A. Amı́rola, “Adaptive road crack
detection system by pavement classification,” Sensors, vol. 11, no. 10,
pp. 9628–9657, Oct 2011.

[7] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer Vision for
Autonomous Vehicles: Problems, Datasets and State-of-the-Art,” ArXiv
e-prints, apr 2017. [Online]. Available: http://arxiv.org/abs/1704.05519

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley,
2010.

[9] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[10] “Durable Pothole Repairs,” Last viewed: 2018-06-15. [Online].
Available: https://trimis.ec.europa.eu/project/durable-pothole-repairs

[11] “AUTOPILOT H2020 project,” Last viewed: 2018-05-24. [Online].
Available: http://autopilot-project.eu/

[12] U. Bhatt, S. Mani, E. Xi, and J. Z. Kolter, “Intelligent Pothole
Detection and Road Condition Assessment,” ArXiv e-prints, Oct 2017.
[Online]. Available: http://arxiv.org/abs/1710.02595

[13] S. Lee, S. Kim, K. E. An, S.-K. Ryu, and D. Seo, “Image Processing-
based Pothole Detecting System for Driving Environment,” in IEEE Intl.
Conf. on Consumer Electronics (ICCE), Jan 2018, pp. 0–1.

[14] S. Hegde, H. Mekali, and G. Varaprasad, “Pothole detection and inter
vehicular communication,” in IEEE Intl. Conf. on Vehicular Electronics
and Safety (ICVES), Dec 2014, pp. 84–87.

[15] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo, “Real
time pothole detection using Android smartphones with accelerometers,”
in IEEE Intl Conf. on Distributed Computing in Sensor Systems and
Workshops, (DCOSS), Jun 2011, pp. 1–6.

[16] H.-W. Wang, C.-H. Chen, D.-Y. Cheng, C.-H. Lin, and C.-C. Lo, “A
Real-Time Pothole Detection Approach for Intelligent Transportation
System,” Mathematical Problems in Engineering, vol. 2015, pp. 1–7,
Aug 2015.

[17] J. Ren and D. Liu, “PADS: A reliable pothole detection system using
machine learning,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Springer, Dec 2017, pp. 327–338.

[18] A. Fox, B. V. Kumar, J. Chen, and F. Bai, “Multi-Lane Pothole
Detection from Crowdsourced Undersampled Vehicle Sensor Data,”
IEEE Transactions on Mobile Computing, vol. 16, no. 12, pp. 3417–
3430, Dec 2017.

[19] J. Almazán, L. M. Bergasa, J. J. Yebes, R. Barea, and R. Arroyo, “Full
auto-calibration of a smartphone on board a vehicle using IMU and
GPS embedded sensors,” in IEEE Intelligent Vehicles Symposium (IV),
Jun 2013, pp. 1374–1380.

[20] C. M. Jengo, S. C. Engineer, A. Way, and I. Curtis, “Pothole Detec-
tion and Road Condition Assessment Using Hyperspectral Imagery,”
Proceedings of the American Society for Photogrammetry & Remote
Sensing (ASPRS), pp. 7–11, 2005.

[21] T. Kim and S.-k. Ryu, “System and Method for Detecting Potholes
based on Video Data 1 1,” Journal of Emerging Trends in Computing
and Information Sciences, vol. 5, no. 9, pp. 703–709, 2014.

[22] A. Akagic, E. Buza, and S. Omanovic, “Pothole Detection: An Efficient
Vision Based Method Using RGB Color Space Image Segmentation,”
in Intl. Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), May 2017, pp. 1104–1109.

[23] S. Nienaber, R. S. Kroon, and M. J. Booysen, “A comparison of low-cost
monocular vision techniques for pothole distance estimation,” in IEEE
Symposium Series on Computational Intelligence, (SSCI), Dec 2015, pp.
419–426.

[24] D.-W. Jang and R.-H. Park, “Pothole detection using spatio-temporal
saliency,” IET Intelligent Transport Systems, vol. 10, no. 9, pp. 605–
612, Nov 2016.

[25] K. Azhar, F. Murtaza, M. H. Yousaf, and H. A. Habib, “Computer vision
based detection and localization of potholes in asphalt pavement im-
ages,” in IEEE Canadian Conf. on Electrical and Computer Engineering
(CCECE), May 2016, pp. 1–5.

[26] K. E. An, S. W. Lee, S.-K. Ryu, and D. Seo, “Detecting a pothole
using deep convolutional neural network models for an adaptive shock
observing in a vehicle driving,” in IEEE Intl. Conf. on Consumer
Electronics (ICCE), jan 2018, pp. 1–2.

[27] I. Moazzam, K. Kamal, S. Mathavan, S. Usman, and M. Rahman,
“Metrology and visualization of potholes using the microsoft kinect
sensor,” in IEEE Intelligent Transportations Systems Conf. (ITSC), Oct
2013, pp. 1284–1291.

[28] Z. Zhang, X. Ai, C. K. Chan, and N. Dahnoun, “An efficient algorithm
for pothole detection using stereo vision,” in IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 564–
568.

[29] A. Mikhailiuk and N. Dahnoun, “Real-time pothole detection on
TMS320C6678 DSP,” in IEEE Intl. Conf. on Imaging Systems and
Techniques (IST), Oct 2016, pp. 123–128.

[30] B. H. Kang and S. I. Choi, “Pothole detection system using 2D LiDAR
and camera,” in IEEE Intl. Conf. on Ubiquitous and Future Networks
(ICUFN), Jul 2017, pp. 744–746.

IEEE ITS MAGAZINE 12

[31] N. J. Sucgang, M. R. Jr, and N. A. Arriola, “Road Surface Obstacle
Detection using Vision and LIDAR for Autonomous Vehicle,” in Intl.
MultiConf. of Engineers and Computer Scientists (IMECS), vol. I, March
2017, pp. 3–7.

[32] “Pothole Detection and Warning System - Jaguar Land
Rover,” Last viewed: 2018-05-14. [Online]. Available:
https://www.landrover.com/experiences/news/pothole-detection.html

[33] Google patent, “System That Detects Pot-
holes,” Last Viewed: 2018-05-14. [Online]. Available:
https://www.digitaltrends.com/android/google-pothole-detection/

[34] Y. Jo and S. Ryu, “Pothole detection system using a black-box camera,”
Sensors, vol. 15, no. 11, pp. 29 316–29 331, 2015.

[35] P. F. Felzenszwalb, R. B. Girshick, D. Mcallester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part Based Models,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 32, no. 9, pp. 1–20, Sep
2009.

[36] J. J. Yebes, L. M. Bergasa, and M. GarcÃa-Garrido, “Visual object
recognition with 3d-aware features in kitti urban scenes,” Sensors,
vol. 15, no. 4, pp. 9228–9250, 2015.

[37] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy
trade-offs for modern convolutional object detectors,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Jul 2017, pp. 3296–
3297.

[38] “Tensorflow detection model zoo,” Last
viewed: 2018-05-14. [Online]. Available:
https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/detection model zoo.md

[39] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 39, no. 6, pp. 1137–1149, Jun 2017.

[40] R. Girshick, “Fast R-CNN,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Dec 2015, pp. 1440–1448.

[41] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” ArXiv e-prints, Apr.
2017. [Online]. Available: https://arxiv.org/abs/1704.04861

[42] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning,”
feb 2016. [Online]. Available: http://arxiv.org/abs/1602.07261

[43] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in Eur. Conf. on Computer
Vision (ECCV). Springer International Publishing, 2016, pp. 21–37.

[44] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “Inverted residuals and linear bottlenecks: Mobile
networks for classification, detection and segmentation,” Computing
Research Repository, vol. abs/1801.04381, 2018. [Online]. Available:
http://arxiv.org/abs/1801.04381

[45] “Common Objects in COntext - COCO,” Last viewed: 2018-12-01.
[Online]. Available: http://cocodataset.org

[46] Tzutalin, “{LabelImg} is a graphical image annotation tool that
labels object bounding boxes in images,” 2015. [Online]. Available:
https://github.com/tzutalin/labelImg

[47] M. Abadi, A. Agarwal, P. Barham, and e. a. Brevdo,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems,” ArXiv e-prints, 2016. [Online]. Available:
http://arxiv.org/abs/1603.04467

[48] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
Computing Research Repository, vol. abs/1804.02767, 2018. [Online].
Available: http://arxiv.org/abs/1804.02767

J. Javier Yebes received the Ph.D. degree (Cum
Laude) in the field of Computer Vision and Robotics
from the University of Alcalá (UAH), Spain, in
2014. He is a Researcher in computer vision and
machine learning at Vicomtech, in the Department
of ITS and Engineering, where he has a technical
leading role for European H2020 projects. Also, he
was the technical leader of an R&D project for
railways industry at Gobotix Ltd. (UK) in 2015-
2017. He was pre- and post-Doctoral assistant at
RobeSafe research group, UAH, from 2009 to 2015.

His research interests include computer vision, deep learning, autonomous
vehicles, ADAS, IoT and cloud.

David Montero received the M.Sc. in Industrial
Engineering in 2017 and the B.Sc. in 2014 from the
University of Seville, Spain. He is a Researcher at
Vicomtech, in the Department of ITS and Engineer-
ing where he is working in several private and public
funded projects. During his studies, he worked on
SLAM, 3D reconstruction and obstacle avoidance
for UAVs. His research interests include computer
vision and deep learning applied to autonomous
vehicles and drones.

Ignacio Arriola received the M.Sc. in Computa-
tional Engineering and Intelligent Systems in 2018
and the B.Sc. in Electrical Engineering in 2017
from the University of Pais Vasco (UPV/EHU),
Spain. During his degree thesis, he investigated the
identification of road type based on driving patterns.
He is currently an Assistant Researcher on computer
vision and deep learning at Vicomtech. His research
interests are in those fields applied to autonomous
vehicles and ITS.

4.3 Multi-Camera BEV Video-Surveillance System
for Efficient Monitoring of Social Distancing

• Authors: David Montero and Nerea Aranjuelo and Peter Leskovsky and Marcos
Nieto and Naiara Aginako

• Journal: Multimedia Tools and Applications

• Volume: -

• Pages: -

• Year: 2023 (pending publication)

• Publisher: Springer

4.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring of Social
Distancing 85

Multi-Camera BEV Video-Surveillance System for Efficient

Monitoring of Social Distancing

David Montero1*, Nerea Aranjuelo2,1, Peter Leskovsky2, Est́ıbaliz Loyo2, Marcos
Nieto2 and Naiara Aginako1

1*Computer Vision and Artificial Inteligence, University of the Basque Country, Donostia,
20018, Guipuzcoa, Spain.

2ITS and Engineering, Vicomtech, Donostia, 20009, Guipuzcoa, Spain.

*Corresponding author(s). E-mail(s): davidsfc10@gmail.com;
Contributing authors: naranjuelo@vicomtech.org; pleskovsky@vicomtech.org;

eloyo@vicomtech.org; mnieto@vicomtech.org; naiara.aginako@ehu.eus;

Abstract

The current sanitary emergency situation caused by COVID-19 has increased the interest in con-
trolling the flow of people in indoor infrastructures, to ensure compliance with the established
security measures. Top view camera-based solutions have proven to be an effective and non-invasive
approach to accomplish this task. Nevertheless, current solutions suffer from scalability problems:
they cover limited range areas to avoid dealing with occlusions and only work with single camera
scenarios. To overcome these problems, we present an efficient and scalable people flow monitoring
system that relies on three main pillars: an optimized top view human detection neural network
based on YOLO-V4, capable of working with data from cameras at different heights; a multi-
camera 3D detection projection and fusion procedure, which uses the camera calibration parameters
for an accurate real-world positioning; and a tracking algorithm which jointly processes the 3D
detections coming from all the cameras, allowing the traceability of individuals across the entire
infrastructure. The conducted experiments show that the proposed system generates robust perfor-
mance indicators and that it is suitable for real-time applications to control sanitary measures in
large infrastructures. Furthermore, the proposed projection approach achieves an average positioning
error below 0.2 meters, with an improvement of more than 4 times compared to other methods.

Keywords: Crowd monitoring, Multi-Camera tracking, 2D-3D projection, COVID-19

1 Introduction

Since the rise of COVID-19 in December 2019,
numerous studies have emerged to help stop the
disease spreading, tackling the problem from dif-
ferent perspectives [1, 2]. Most of these studies
focus on preventing the spread of the virus by

proposing health and social measures, and meth-
ods to ensure its compliance. Among these pre-
vention measures, like improving the ventilation
in indoor areas [3] and using medical masks [4, 5],
one key measure that has been adopted by all the
governments is social distancing. Recent research
has confirmed the evidence that maintaining a

1

2 Multi-Camera BEV Social Distance Monitoring

Fig. 1 Visual example of the proposed system operation.
For each 2D detection, the best fitting 3D cylinder is esti-
mated in real-world coordinates. After a 3D tracking step,
the desired metrics are computed.

Fig. 2 Gaussian distribution of infection transmission rate
for a given population, with and without social distancing
obligation. This figure was originally presented in [8]

social distance of 1.6 to 2 meters highly reduces
the disease spreading [6, 7], as shown in Fig. 2.

Thus, an important need has arisen to create
applications that are capable of monitoring people
in indoor and outdoor infrastructures to guarantee
a safe interpersonal distance, respect the indoor
capacity limitation, know the most crowded time
intervals or track subjects who violate the estab-
lished measures.

A full variety of solutions have been proposed,
addressing the problem from different perspec-
tives, such as using wi-fi signals [9], wearable
devices [10], drones [11], mobile robots [12], etc.

Among all these methodologies, camera-based
solutions have proven to be an effective, non-
invasive and affordable alternative to accomplish
this task. Furthermore, these methods can take
advantage of the camera infrastructure already
available in smart cities, facilitating their scala-
bility and sustainability. Within the camera-based
solutions, we find different approaches, such as
face recognition [13–15] or crowd density estima-
tion [16–18]. However, for the considered use case,
the approach that works best is the one that com-
bines human detection and tracking [8, 19–23],
since it allows covering wider areas than with
face recognition, and makes it possible to collect
spatio-temporal information about the individuals
who are violating the measures (unlike solutions
based on density estimation). Nevertheless, most
of the systems based on this methodology only
work with side or frontal view perspectives. In
this setup, cameras still produce an important
amount of occlusions, especially when dealing with
very large and crowded surfaces (e.g. airports or
shopping centers). These occlusions reduce the
accuracy of the tracking algorithms and of the 3D
detection projection, which are crucial for com-
puting COVID-19-related performance indicators
(PIs), such as the interpersonal distance or the
indoor capacity limitation.

These problems can be mitigated by using
algorithms that detect people on the Bird’s-Eye-
View (BEV) domain and omnidirectional cameras.
Thus, the number of occlusions are minimized
and the covered area is maximized, as the cam-
eras are placed in the ceiling. Therefore, the
top-view perspective makes this approach suitable
for applications related with the compliment of
the COVID-19 sanitary measures. Although there
is some recent research [24, 25], this topic still
remains underexplored, as the proposed solutions
only work with single-camera scenarios and for
very limited monitoring areas.

For this reason, we present a multi-camera
BEV people flow monitoring system, capable of
extracting reliable real-time PIs in extremely large
infrastructures, such as airports or shopping cen-
ters. The proposed system relies on three main pil-
lars: an optimized top view human detection neu-
ral network based on YOLO-V4, capable of work-
ing with data from cameras at different heights; a
multi-camera 3D detection projection and fusion
procedure, which uses the camera calibration

Multi-Camera BEV Social Distance Monitoring 3

parameters for an accurate real-world positioning;
and a tracking algorithm which jointly processes
the 3D detections coming from all the cameras.

We highlight two novel contributions in this
work:

• A modification in the traditional pipeline that
allows our system to operate efficiently in multi-
camera environments. Unlike the rest of the
proposed methods, we move the projection step
to real world coordinates just after the detection
step for each camera (instead of applying it after
the tracking step). Then, thanks to an initial
multi-camera calibration procedure, we are able
to track the subjects uninterruptedly all over
the monitored area using just a single tracker
instance for processing all the detections. Fur-
thermore, this approach allows using cameras
installed at different heights, since it does not
take into account the detection bounding box
for the multi-camera fusion but the real position
in meters.

• A 3D projection and multi-camera fusion pro-
cedure. Using the intrinsic and extrinsic param-
eters of the involved cameras, it estimates
the best fitting 3D cylinder for each detected
bounding box and fuses the cylinders of the
overlapping regions of the camera views that
belong to the same person. This corrects possi-
ble occlusion problems and allows us to expand
the useful range of the cameras.

We conduct different experiments to demon-
strate that the proposed system generates robust
PIs and that it is suitable for real-time applica-
tions to control sanitary measures, such as guaran-
teeing a safe interpersonal distance, respecting the
indoor capacity limitations, identifying the most
crowded time intervals or tracking subjects who
violate the established measures. Furthermore, the
proposed projection approach achieves an aver-
age positioning error below 0.2 meters, with an
improvement of more than 4 times compared
to other methods. An example of the proposed
system operation is shown in Fig. 1.

The rest of the paper is organized as follows.
First, we present a review of the related work
in Section 2. Section 3 describes the proposed
method. In Section 4 we provide experimental
results. A discussion about the method and the
results is presented in Section 5 Finally, conclu-
sions are given in Section 6.

2 Related Work

2.1 Social Distance Monitoring

In recent months, several methods aiming to mon-
itor compliance with sanitary measures have been
proposed, specially for social distance monitor-
ing [26, 27], addressing the problem from different
perspectives. For example, in [12] the authors
developed a mobile robot for social distance mon-
itoring in crowded scenarios. It was equipped
with an RGB-D camera and a 2D lidar to make
collision-free navigation in mass gatherings. They
used YOLO-V3 Deep Neural Network (DNN)
[28] along with Deep SORT algorithm [29] for
detection and tracking of individuals, respectively.
However, the limited field of view of the robot
and the cost of acquiring and maintaining sev-
eral robots make this solution unsuitable for large
infrastructures. In [11], the authors use a drone to
deploy a social distance monitoring system. The
drone detect human heads in realtime and then
calculate the social distancing between pedestri-
ans on UAV images using a DNN that follows
the PeleeNet as backbone and further incorpo-
rates the multi-scale features and spatial attention
to enhance the features of small objects. In [30],
another drone-based method for social distance
monitoring was proposed. Relying on the drone’s
camera and YOLO-V3 algorithm, the system was
able to detect people from side or frontal-view
images and to monitor if the social distance was
respected and if subjects were wearing masks.
Nevertheless, these drone-based solutions are only
valid for outdoor environments and they have a
high associated cost due to the drone acquisi-
tion and maintenance. On the other hand, in [10]
the authors used a wearable, oscillating magnetic
field-based proximity device for social distance
monitoring. Despite this solution achieves excel-
lent results in indoor and outdoor environments,
it is unfeasible as it requires all subjects to wear
the device.

Among all these innovative solutions, systems
using vision-based human detection have proven
to be the best value for money, as they only need a
monocular camera and a GPU-enabled server for
real-time people monitoring and they can cover
wide areas. Furthermore, they are also less intru-
sive than other methods mentioned before. Rezaei

4 Multi-Camera BEV Social Distance Monitoring

and Azarmi [8] proposed a pedestrian-detection-
based social distance monitoring system. Using
the YOLO-V4 [31] model pretrained with COCO
dataset and SORT tracking algorithm [32] they
were able to operate accurately in real-time. In
[21] and [22], the authors also proposed a social
distance monitoring system based on YOLO-V3
DNN with Deep SORT tracking algorithm and
YOLO-V4 respectively. Su et al. [19] follow the
same pipeline and combine the euclidean distance
with spatio-temporal information about the tra-
jectory of the pedestrians to better understand
the scene. Shorfuzzaman et al. [20] propose to add
a perspective transformation to bird-eye-view to
determine the ROI in which social distancing will
be monitored, but they do not add a tracking step.
However, all these systems suffer from the same
problem. Pedestrian occlusions are very common
when dealing with large or crowded scenarios and
using frontal or side-view images.

This problem can be mitigated by using a BEV
perspective with omnidirectional cameras. Thus,
the occlusions are minimized in the central area
of the camera and the covered area is maximized.
This approach was adopted in [24] and [25]. Nev-
ertheless, their proposed systems works only with
the central area of a single camera, where the
occlusions need not to be considered. Therefore,
for covering wide areas, an important number of
cameras would be needed. This increases the hard-
ware requirements and the cost of the system,
and makes it unsuitable for large infrastructures.
Furthermore, the question of joining tracks across
camera views would have to be addressed too.

To overcome these problems, our proposed
multi-camera BEV people flow monitoring system
uses a multi-camera detection fusion procedure.
The 2D detections received from the detection
DNN are projected to real-world coordinates and
the best-fitting 3D cylinder is estimated for every
given detection. Then, the detections of the over-
lapped cameras are fused, correcting possible
occlusion problems and allowing us to expand the
useful range of the cameras. Finally, the 3D tra-
jectories are effectively computed by our online
3D version of the tracking algorithm proposed
in [33]. This way, we only need to use a single
tracker for all the cameras to track the subjects
over the entire monitored area, no matter in which
camera’s view is detected.

2.2 Overhead Human
Detection-Based Tracking

In recent years, several tracking algorithms have
been proposed to deal with overhead people detec-
tions. Ahmed and Adnan [34], proposed rHOG,
an overhead tracking algorithm which uses the
variable size bounding boxes with different orien-
tations, with respect to the radial distance of the
center of the image. In [35], the authors proposed
a people tracking algorithm for industrial envi-
ronments that works with motion blobs gathered
by an overhead camera. This algorithm, based on
rHOG, uses the history of already imaged popula-
tion with the anticipated blob position of the per-
son observed. Other works base their algorithms
on Kalman [36] or particle filters [37].

Although these algorithms work well with a
single camera, they are not suitable for multi-
camera scenarios, as they are not able to merge
data coming from multiple overlapped cameras.
We could add a fusion stage after the tracking
process, but that would require having multi-
ple tracking instances calibrated for each camera,
which is inefficient and complicates the system
installation process.

For this reason, we propose to alter the order
of the stages: first, to project all the detections
in the real world and combine the ones in the
overlapping areas and, then, to apply a single 3D
tracking process. Thus, we adapt the 3D offline
algorithm presented in [33] for the considered use
case, resulting in an online version optimized to
work with human detections described in Section
3.7.

3 Proposed Method

3.1 Problem Definition

We consider the problem of efficient monitor-
ing of a set of established security measures
in large infrastructures using non-invasive tech-
nology. More specifically, we aim to create a
video-surveillance system capable of monitoring
compliance with social distance and capacity lim-
itation measures, as well as tracking the offenders
or the possibly infected subjects. Therefore, the
system must be capable of merging the infor-
mation coming from multiple cameras to track
subjects all over the monitored region. We use

Multi-Camera BEV Social Distance Monitoring 5

Fig. 3 Illustration of the considered scenario. Multiple
omnidirectional cameras with a small overlap cover the
monitored area. The cameras are connected to a central
GPU-enable server.

overlapped camera views to track people across
views.

For this task, the system will extract the nec-
essary information from a set of cameras placed
on the ceiling of the monitored infrastructure. The
number of cameras depends on the area to be cov-
ered and on the height of the ceiling. The set up
needs to guarantee that all the areas of interest
are visible by the cameras with a minimum res-
olution (limited by the capabilities of the human
detection network). The omnidirectional cameras
with fish-eye lenses have a wide field of view, which
makes them appropriate for monitoring large areas
with a minimum number of sensors. Intrinsic and
extrinsic parameters of all the cameras need to be
available for an accurate distance measuring. An
image illustrating the considered use case is pre-
sented in Fig. 3. The system must be able to report
reliable and real-time information about the state
of measures compliance using minimum processing
requirements, preferably a single-GPU server.

3.2 System Overview

An overview graphical diagram of the proposed
workflow is shown in Fig. 4 and a flowchart in Fig.
5.

The system requires an initial camera cali-
bration process (Section 3.3). First, the images
are grabbed from each configured camera. Then,
they are preprocessed in parallel using CUDA
library and fed into the pruned version of YOLO-
V4 detector, implemented in TensorRT frame-
work (Section 3.4). Therefore, from the origi-
nal (distorted) images, a set of detections is
obtained for each camera c at each frame t,
Dc = {Dc,t,i}. Each detection is modeled as

a 4-point rectangle in image coordinates D =
(x0, y0, x1, y1, x2, y2, x3, y3).

As discussed in Section 2.2, we alter the typical
order of the tracking and projection stages for two
reasons: it is easier to estimate the trajectory using
world coordinates than image coordinates from
an omnidirectional camera (where the bounding
box varies rapidly); and we only need a sin-
gle tracker instance to process all detections in
world coordinates. Thus, from detections Dc a fit-
ting process yields the desired 3D cylinder shapes
Cc = {Cc,t,i}, where each cylinder is encoded
as C = (X,Y,H, r), where (X,Y) is the cen-
ter point in the XY plane and (H, r) represent
its height and radius, respectively. Fitting pro-
cess is explained in Section 3.5. Then, a fusion
mechanism determines which cylinders correspond
to the same object for cameras with overlapped
fields of view. Let’s denote fused cylinders as C,
where we have removed the c sub-index, as now all
cylinders are expressed in global 3D coordinates
and not related anymore to any specific camera.
Fusion procedure is presented in section 3.6. Next,
the tracking stage takes these cylinders, applying
a constant-velocity predicting model, plus man-
aging appearance and disappearance of objects,
miss-detections, etc. The tracking mechanism is
explained in section 3.7. Note that tracks are
expressed as follows: T = {Tk}, where T =
(X,Y,H, r, Ẋ, Ẏ , Ẍ, Ÿ) to account for the deriva-
tive dimensions for prediction phase. Finally, the
output time-consistent tracks are analysed to
extract the necessary information for the monitor-
ing of the established security measures (Section
3.8).

3.3 System Calibration

When the system is set up, and prior to the first
operation, a calibration step is needed in order
to compute the intrinsic and extrinsic parameters.
The estimated camera parameters are used for
mapping the image coordinates to the 3D world
coordinates and for locating each camera with
respect to the others. Consequently, we are able
not only to get the real position of each person
detected in the scene but also to detect when they
move from one camera to another and to merge
the detections from overlapped cameras.

The well-known fish-eye camera model is used
in this project, where the projection process is

6 Multi-Camera BEV Social Distance Monitoring

Data analysis

2D detection 3D cylinder
estimation Detection fusion

3D tracking

Fig. 4 Overview graphical diagram of the proposed workflow. Note that the rectified images (in the lower row) are generated
only for visualization purposes and are not necessary for fusing the detections, tracking or data analysis.

Multi-camera
calibration

Intrinsic and extrinsic
parameters

2D detection

Distorted images

3D cylinder
estimation

2D bounding
boxes

3D cylinder multi-
camera fusion

3D cylinders

3D tracking Data analysis

Updated tracks3D cylinders
filtered

CALIBRATION STAGE

OPERATION STAGE

Fig. 5 Overview flowchart of the proposed workflow. Note that until the cylinders fusion step, the detections of each
camera are processed separately.

Multi-Camera BEV Social Distance Monitoring 7

governed by a fish-eye distortion vector k =
(k1, k2, k3, k4) and a linear projection matrix K
which holds the focal length and principal point
parameters. As a result of the calibration, for
each camera, the intrinsic (K, and k) and extrin-
sic (rotation matrix R and translation t) are
obtained. The pose of each camera is expressed
with respect a common 3D point used as world
reference.

Any 3D point in the world X = (X,Y, Z, 1)⊤

expressed in homogeneous coordinates can then
be projected into any of the images. First by
representing the point with respect to the cam-
era coordinate system, Xc = PcX, where Pc =
(R|t; 0|1) is the 4× 4 corresponding pose matrix.
The fish-eye distortion model is then applied on
the 3D rays joining Xc and the camera optical
center, by defining a = Xc/Zc and b = Yc/Zc, and
r2 = a2 + b2. The longitude angle θ = arctan(r).
The distortion vector k is then applied to obtain
the angle of incidence θd = θ(1 + k1θ

2 + k3θ
4 +

k3θ
6+ k4θ

8). The point in the normalized domain
is then obtained as (x′, y′) = (aθd/r, bθd/r), and
its projection into the image domain as (u, v, w) =
K(x′, y′, 1)⊤ (pixel values are obtained as x = u/w
and y = v/w).

The calibration can be used as well to re-
project any point in the image plane (x, y) into a
3D ray starting from the optical center of the cam-
era, applying r = (u′, v′, w′) = K−1(x, y, 1)⊤ and
normalizing so r = 1. Then, if a 3D world plane
is selected (e.g. Z = 0), the intersection of the 3D
ray with the plane determines a 3D point in the
world. This is useful to re-project 2D image points
of objects in the ground plane to obtain their posi-
tion in the XY plane in world coordinates (note
this assumption holds true only if the 2D image
point correspond to an object or part of object
which is touching or at the ground level).

Retrieving the 3D ray r from pixels (x, y)
implies inverting the fish-eye distortion vector,
which can be accomplished using iterative mini-
mization processes (we are using OpenCV’s imple-
mentation). In addition, to speed up the re-
projection process, it is recommended to create
remap functions by pre-computing the mapping
relation between points in the images and the
3D space, giving as a result the ability to create
rectified and Bird’s-eye View (BEV) of multiple
cameras in a single step.

3.4 People Detection using
Overhead Cameras

Similar to [38], we train YOLO-V4 object detec-
tion Convolutional Neural Network (CNN) to
detect people directly in overhead images from
fish-eye cameras. We use this single-stage detec-
tor because it provides a good balance between
accuracy and inference time. In a multi-camera
system it is important to guarantee a fast inference
for a real-time analysis. Compared to previous
versions, YOLO-V4 includes detections at three
scales, which improves the small object detection
accuracy.

Our aim is to design a system capable of work-
ing with a camera installed 3 to 10 meters high,
so that it is suitable for different large space sce-
narios. Consequently, our detector should work on
this height range. Even if the YOLO-V4 model
provides detections at different scales, the objects’
scale varies considerably for such a big range.
In order to ensure the robustness of the model
no matter the height of the camera, we add an
image scaling step previous to the detection, which
resizes the image to guarantee that the people size
in the center of the image is stable no matter the
installation height (approximately 20×20 pixels).
In addition, we train two models, one targeted for
the lowest heights (3-6 m) and another for the
highest installations (6-10 m).

As there is no public dataset with top-view
fish-eye images of large spaces focused on human
detection and multi-camera systems, we use sev-
eral recordings to build our training dataset. We
set up two omnidirectional cameras installed at 3.3
meters and another camera at 8 meters. We cap-
ture 10,000 images for the lower height range and
10,000 images for the upper one. In addition, to
augment both ranges’ data variety we add 5,600
synthetic images from the Advanced Synthetic
Dataset presented in [38] to each of the datasets.
We manually annotate the captured data. As
shown in [39], rotation and histogram equalization
are some of the most efficient image augmenta-
tions for training accurate object detection CNNs.
Consequently, we apply rotations, flipping and
histogram equalization augmentations (CLAHE)
to our images. We randomly combine these aug-
mentations and generate 4 new samples for each
image. The images are resized to 512×512 for the
models training.

8 Multi-Camera BEV Social Distance Monitoring

We train both models on a NVIDIA Tesla P100
using Darknet framework [31]. We initialize the
models with pre-trained weights on the MS COCO
dataset [40] and train them for 40, 000 iterations
with a learning rate of 0, 001 and a weight decay
of 0, 0005. We use the stochastic gradient descent
optimizer with a batch size of 64 images.

To further increase the performance of the
model we apply two optimization processes. First,
we apply the weight pruning procedure described
in [41]. It is an iterative process with three stages
in each iteration:

• Network training penalizing the scaling weights
of the batch normalization layers in the cost
function.

• Network pruning percentage of convolutional
filters corresponding to the lowest batch nor-
malization scaling weights.

• Pruned network fine-tuning without penaliza-
tion.

This procedure is repeated until the desired bal-
ance between precision and speed is reached. In
our case, we pruned each network 3 times elimi-
nating 50%, 50% and 70% of the remaining filters,
keeping at least 10% of filters in each layer.

Finally, the pruned models are ported to Ten-
sorRT framework to apply hardware-level opti-
mizations. With these optimizations we are able
to reduce the inference time almost a 90% for each
model, from 22 fps to 110 fps.

3.5 3D Cylinder Estimation

The next stage consists of transferring detections
Dc from the 2D domain of all camera images to
the 3D real world domain using the intrinsic and
extrinsic camera parameters. More specifically, for
each 2D detection Dc,t,i we estimate the 3D cylin-
der Cc,t,i whose projection on the image best
fits the original bounding box. For this task, we
adopted a Greedy Algorithm approach [42].

For each detection Dc,t,i, a regular grid of 3D
points G = {Gx,y} corresponding to possible cylin-
der center-points at the XY plane is generated,
Gx,y = (x, y, 0). The grid center is the 3D re-
projection of the point of the bounding box closest
to the center of the image. We choose this point
because, for cameras with fish-eye lenses, the fur-
thest point from the camera of a vertical object
(i.e. the feet position of a person) corresponds to

Grid center selection Grid generation

Cuboid comparison with detection Best cylinder and 2D bounding box

A) Grid center selection B) Grid generation

C) IOU computation D) 3D cylinder estimation

Fig. 6 Different steps for the 3D cylinder estimation. The
initial red bounding box corresponds to the 2D detection
and the green point in the first image corresponds to the
selected grid center.

the object point closest to the center of the gen-
erated image (see Fig. 6-A). The grid is defined
with two parameters: the maximum distance to
the center and a distance step between points. We
estimate that the maximum distance to the cen-
ter of the grid cannot be greater than 0.5 meters
and that a distance of 0.1 meters between points
is sufficient to cover the space accurately (see Fig.
6-B).

Once G is defined, a set of cylinders {Ck} is
generated using each grid point as the center of
the cylinder at the XY plane. For each grid point,
several cylinders are created, varying their diam-
eter (min 0.5, max 1.0, step 0.15 m), and height
(min 1.5, max 1.9, step 0.2 m), creating a reg-
ular sampling of the space of the cylinder Cc,t,i.
The selected values have been chosen as a trade-
off between the sampling density and the feet
positioning error. In addition, the cylinder model
is refined to better represent human shapes by
reducing the upper circle radius by a constant fac-
tor (we have used 0.6 in our experiments) with
respect to the lower circle. As a consequence, the
cylinder becomes a truncated cone or frustrum.
Since the factor is constant, it is not included into
the state vector representations.

Multi-Camera BEV Social Distance Monitoring 9

The fitting stage consists of a maximum likeli-
hood estimator (MLE) process. A cost function is
created to measure the likelihood of a given cylin-
der Cj = (X,Y,H, r) to fit into detection Dc,t,i.
The ideal cost function would be to project the
cylinder outline points into the image and com-
pute an IoU (Intersection over Union) value. For
the sake of computational efficiency, the cylin-
der is simplified to its outer 3D cuboid, which is
defined as 8 points Cj,k, k = 1..8, that can be
projected into image points as cj,k = PcCj,k using
homogeneous coordinates (see Fig. 6-C).

Using this cost function, the MLE estimator is
obtained as the weighted sum of the grid cylinders:

C∗
c,t,i =

1

N

N∑

j=1

IoU(b{cj,k}, Dc,t,i)Cj (1)

where N is the total number of cylinders in the
grid, spanning the three considered parameters
(center, diameter and height), b is the bound-
ing rectangle for the projected 2D points of the
cuboid, and IoU is the Intersection Over Union
function, obtaining the MLE estimator (see Fig.
6-D).

Although the number of occlusions is greatly
reduced in BEV images from fisheye cameras, par-
tial occlusions of the lower half of the body may
appear (see Fig. 7-A). When this type of occlu-
sions occur, the estimated cylinder C∗

c,t,i is wrong
and its upper part protrudes noticeably from the
bounding box by the part furthest from the cen-
ter of the image (see Fig. 7-B). This protrusion
is measurable and thus an occlusion can then
be detected if the salient part exceeds a certain
threshold. We define the threshold value as the
10% of the distance between the points of the
bounding box furthest and closest to the center
of the image, which is inversely proportional to
the occlusion level. Therefore, assuming that the
upper point of the head, corresponding to the
point of the bounding box furthest from the center
of the image, is not occluded, we rebuild the cylin-
der from the upper center using an average human
height value of 1.7 meters (see Fig. 7-D). Although
the real height is likely to differ from this aver-
age height, the error produced by the occlusion is
substantially reduced.

A) Partial occlusion B) Wrong cylinder estimation

C) Occlusion verification D) New cylinder estimation

Fig. 7 Cylinder correction from a partially-occluded
detection. Note that in Figure C the distance between the
points of the bounding box being furthest and closest to
the image center is depicted in blue and the salient part
of the cylinder is represented by the red line. The ratio
between these two distances relates to the occlusion level
of the detection.

As a consequence, we can then assume that
the lower center point of the person corresponds
to the lower center of the estimated cylinder. In
Section 4.2, we compare the proposed projection
method with other approaches, such as the one
used in the related works [8, 21, 22, 24, 25], con-
sisting of projecting the center of the detection
bounding box. The results show that the proposed
method achieves more accurate estimations and,
consequently, better results in the evaluation.

3.6 Multi-Camera Detection Fusion

Once all detections Dc,t,i have been mapped to 3D
world coordinates as cylinders Cc,t,i, we search for
duplicate detections in the overlap areas between
two or more cameras and fuse them. The proce-
dure consists of selecting detections that fall inside
the overlapping region, and comparing them with
the detections of the other camera. Two detec-
tions from different cameras are then merged if the
3D distance in the XY plane between their cen-
ter points is below a certain threshold (see Fig.
8). The threshold is defined taking into account
the accuracy of the calibration parameters and
the average positioning error of the detections. For
our experiments we selected a threshold of 0.45
meters.

From this step onwards, cylinders are no longer
attached to any particular camera, and thus

10 Multi-Camera BEV Social Distance Monitoring

A) Detection fusion B) No detection fusion

Fig. 8 Detection fusion procedure examples. In the left
image, the positions of a subject captured by two over-
lapped cameras are fused, as the distance between the feet
points is less than the defined threshold. In the right image,
the cylinders belong to different subjects occluding each
other to their opposite camera. In this case, the detections
are not merged, as their distance is greater than the thresh-
old.

treated as 3D objects Ct,i in the world coordinate
system.

3.7 3D People Tracking

The proposed 3D tracking algorithm is based on
a data-association multi-object tracking approach
[33]. The original algorithm was created to track
cuboids belonging to different types of objects
(vehicles and pedestrians). It is composed of two
components: an online tracker and an offline post-
process to smooth the trajectories and the shape
of the cuboids. We modify the original algorithm
taking into account the following three require-
ments: we only want to estimate the trajectory of
people; the shape of the person is not important, it
only matters that the position of their feet is pre-
cise; and the algorithm must be online. According
to the latest requirement, we remove the offline
cuboid smoothing component.

The remaining online tracker component con-
sists of three stages: prediction, association and
estimation. In the prediction stage, the value of
the variables of each track Tk is updated based
on its history using a constant-acceleration model.
Such model would be useful for vehicles or even for
people in scenarios where the trajectories are more
steady (such as parking lots or roads). However,

in scenarios such as shopping centers or airports,
trajectories are more chaotic and the acceleration
in one time step can vary enormously. Therefore,
we decided to adopt a constant-velocity model.

During the next stage, an association matrix
is created with the association likelihood between
predicated tracks {T−

k } and detections {Ct,i}.
The likelihood function compares the cylinders
the same way as described for the multi-camera
detection fusion approach (based on the distance
between the feet points of the cylinders). Finally,
the estimation stage updates the state of each
track fusing the positioning information of the pre-
diction and the associated cylinder following the
procedure described in the original work. In order
to avoid generating erroneous tracks due to false
positives in the detection stage, we do not consider
a track as active until it accumulates 3 or more
associated detections. In the same way, to avoid
removing active tracks due to false negatives in
the detection stage, we keep a track as active until
it has no associated detections for 5 consecutive
frames.

3.8 Data Analytics

The tracks generated in the previous stage con-
tain all the necessary information for monitoring
the compliance with the main sanitary measures
against COVID-19. Moreover, this information
can also be used to carry out other types of tasks,
such as crowd behavior understanding [43], moni-
toring the entry and exit of zones, the size of the
waiting queues, register the most visited stands
etc. In this work we focus on three tasks:

• Social distance monitoring: for this task, the
Euclidean distance between the current posi-
tion of each tracked subject and that of the
rest is calculated and compared with the limit
established by the authorities.

• Indoor capacity limitation: the number of active
tracks is checked in every time step to ensure
the capacity limits are not exceeded.

• Tracking of individuals who violate the sanitary
measures.

An example of the results of the data analytics is
presented in Fig. 9.

Multi-Camera BEV Social Distance Monitoring 11

Fig. 9 Example of the results of the data analytics pro-
cedure. The interpersonal distance is measured for every
pair of tracks. The red lines means that the defined safe
distance is being violated. The colored dot lines represents
the trajectory of every track.

4 Experiments

In this section, we conduct a series of experiments
to analyze the suitability of the proposed system.
Note that the goal of the experiments is not to
demonstrate that we outperform the rest of the
methods in terms of accuracy, as improving the
quality of the person detector is not one of our
main contributions. As stated in the introduc-
tion, the contributions of this work are focused on
overcoming the limitations of the existing alter-
natives regarding the multi-camera scenarios, the
monitoring range, and the scalability. Further-
more, we also present an experiment comparing
the proposed 3D cylinder estimation procedure
with other alternative 3D projection methods.

The server used to carry out the experiments
is equipped with an NVIDIA Tesla V100 GPU
and an Intel Xeon Gold 6230 CPU. Regarding
the programming language, the whole system is
implemented using C++.

4.1 System Performance

The accuracy of the tasks mentioned in Section
3.8 is related to the correct detection and track-
ing of all the individuals in the scene, and their

position being accurately estimated. For this rea-
son, to evaluate the performance of the proposed
system, we focus on measuring the quality of the
tracks and the accuracy of the positioning.

To measure the quality of the generated tracks,
we use the metrics described in [44], developed to
precisely compare different multi-object tracking
methods in crowded scenes:

• Multi-object tracking accuracy (MOTA): eval-
uates the tracker performance combining the
information of three sources of errors (false
negatives, false positives and ID swaps).

• Mostly tracked (MT), partially tracked (PT)
and mostly lost (ML) tracks: A target is mostly
tracked if it is successfully tracked for at least
80% of its life span; and it is considered as
mostly lost if it has been tracked for less than
20% of its total length.

• Number of fragmentations (FM): counts how
many times every ground truth trajectory is
interrupted (untracked).

• Fragmentation ratio (FR): relative number of
fragmentations (FM/Recall).

Furthermore, to measure the accuracy of the
positioning we adopt the following metrics:

• Precision (P): measures the reliability of the
detections taking into account the true positives
over the total positives.

• Recall (R): percentage of detected targets over
the total number of targets.

• F1 Score (F1): harmonic mean of the precision
and recall:

F1 = 2
P ·R
P +R

(2)

• Average Positioning Error (APE): average dif-
ference in meters between the ground truth and
the estimated 3D feet positions of the people in
the scene.

To evaluate the system, we consider using dif-
ferent public datasets [45, 46]. Nevertheless, none
of them provides the intrinsic and extrinsic param-
eters of the involved cameras, which are necessary
for the 3D projection step. Furthermore, the avail-
able datasets only cover single-camera scenarios
with very limited monitoring areas. Therefore,
we generate 7 sequences with different scenarios,
number of cameras, heights, number of identi-
ties and levels of occlusion. The details of each

12 Multi-Camera BEV Social Distance Monitoring

Table 1 Details of the different sequences considered for
the system evaluation. For each sequence we specify the
scenario, number of cameras, camera heights in meters,
radius of the monitored area for each camera in meters,
number of frames, number of identities, and occlusion
level (from 1 to 5).

Seq Sc NC Heights Rad Frame IDs Occ

1 1 2 3.3, 3.3 3.5 1610 3 1
2 1 2 3.3, 3.3 3.5 654 5 2
3 1 2 3.3, 3.3 3.5 750 5 3
4 1 2 3.3, 3.3 3.5 1083 4 4
5 1 2 3.3, 3.3 3.5 837 5 5
6 2 1 5.5 8 334 6 2
7 3 1 8.1 10 578 13 4

A) Sequence 4 - cam 1 B) Sequence 4 - cam 2

C) Sequence 6 - cam 1 D) Sequence 7 - cam 1

Fig. 10 Several examples of the proposed evaluation
sequences.

sequence are presented in the Table 1. In addi-
tion, some examples of the different sequences are
shown in Fig. 10.

For each sequence we manually annotate the
identity and 3D center point on the ground plane
(feet point) of all individuals. With this ground
truth we extract the selected metrics. For each
sequence, a monitoring region is defined. If a sub-
ject abandons this region and enters again it is
considered as a new track. Therefore, the number
of tracks may be greater than the number of iden-
tities. For multi-camera sequences we also evaluate
the system for each camera separately to be able

to analyze the impact of the multi-camera fusion
procedure. The results are shown in Table 2.

From Table 2 it can be observed that, even in
sequences with a high level of occlusions, the qual-
ity of the tracks (measured by the MOTA metric)
always remains above 90%. In the sequences with
more than one camera, the achieved MOTA val-
ues are very close to those obtained by processing
the cameras separately. This highlights the high
3D precision obtained by 3D cylinders estimation
and fusion, which allows merging detections from
different views using only the lower center point
of the cylinder. Furthermore, in some cases (e.g.
in sequence 5), the MOTA values obtained in
the multi-camera sequences outperform the ones
from the separate cameras. This is thanks to the
multi-camera fusion procedure, where the detec-
tion errors of one camera can be corrected with
the information of other overlapped cameras.

Apart from the MOTA metric, the robustness
of the tracks is evident by the reduced number of
fragmentations. Even for sequence 5, with more
than 800 frames and a high level of occlusions
(see Fig. 11), only 3 fragmentations occur when
the two cameras are processed together. People
occluded in the furthest areas from the camera
are detected by the complementary camera and
vice versa. Thus, the number of fragmentations is
reduced and the functional area of each camera is
increased.

On the other hand, attending to the metrics
considered to evaluate the precision of the posi-
tioning, it can be observed that in all the scenarios
an F1 Score higher than 97% is obtained, which
means that there are hardly any false positives
and negatives even in the sequences with a high
level of occlusions. Thus, the system is able to suc-
cessfully estimate the occupancy of the monitored
area. As for the APE, for sequences with a single
camera it remains below 10 centimeters, while for
multi-camera sequences it increases to 15-19 cen-
timeters. This is because the calibration between
cameras is not perfect and the positions estimated
for the same detection from different cameras do
not exactly match.

4.2 3D Projection Performance

In this section we present an experiment compar-
ing the performance of the proposed method using
three different 3D projection approaches:

Multi-Camera BEV Social Distance Monitoring 13

Table 2 Results of the proposed method in the defined evaluation sequences. The considered metrics, described in
Section 4.1, measure the quality of the generated tracks and the accuracy of the positioning. For multi-camera sequences,
we also run the system for each camera separately.

Seq Cam ID MOTA MT PT ML FRAG FRAG ratio P R F1 APE

1 1,2 1.000 8 0 0 0 0.000 1.000 1.000 1.000 0.094
1 1 1.000 7 0 0 0 0.000 1.000 1.000 1.000 0.089
1 2 1.000 8 0 0 0 0.000 1.000 1.000 1.000 0.069

2 1,2 0.994 12 0 0 0 0.000 0.994 1.000 0.997 0.151
2 1 1.000 9 0 0 0 0.000 1.000 1.000 1.000 0.071
2 2 0.993 11 0 0 0 0.000 0.993 1.000 0.997 0.063

3 1,2 0.965 5 0 0 6 0.061 0.998 0.977 0.987 0.136
3 1 0.973 9 0 0 8 0.081 0.999 0.984 0.991 0.084
3 2 0.966 10 1 0 2 0.021 0.999 0.975 0.986 0.077

4 1,2 0.966 5 0 0 6 0.061 0.983 0.989 0.986 0.155
4 1 0.997 25 0 0 1 0.010 1.000 0.999 0.999 0.085
4 2 0.983 22 1 0 6 0.061 1.000 0.986 0.993 0.095

5 1,2 0.975 10 0 1 3 0.031 0.999 0.984 0.991 0.186
5 1 0.952 7 1 0 11 0.115 0.999 0.957 0.978 0.097
5 2 0.991 12 1 0 1 0.010 1.000 0.993 0.996 0.085

6 1 0.982 6 0 0 3 0.031 0.999 0.983 0.991 0.089

7 1 0.935 13 1 0 15 0.157 0.986 0.957 0.971 0.112

Fig. 11 Examples of occlusions in sequence 5. People
occluded in the areas furthest from the camera are detected
by the complementary camera. Thus, the number of frag-
mentations is reduced and the functional area of each
camera is increased.

• Projecting the center of the detection bounding
box. This is the approach followed in the related
works mentioned in Section 2.1 [8, 21, 22, 24,
25].

• Projecting the point of the bounding box clos-
est to the center of the image. As mentioned
in Section 3.5, for cameras with fish-eye lenses,
the furthest point from the camera of a vertical
object (i.e. the feet position of a person) corre-
sponds to the object point closest to the center
of the generated image (see Fig. 6).

• Estimating the 3D cylinder. This is the pro-
posed approach presented in Section 3.5.

We repeat the previous experiments for each
projection method. The results of the experiments
are presented in Table 3. In this table, we com-
pare the metrics for measuring the positioning
accuracy: precision (P), recall (R), F1 score (F1)
and average positioning error (APE). It can be
observed that the central point approach notably
achieves the worst results. In addition, compared
to the other approaches, with this method the

14 Multi-Camera BEV Social Distance Monitoring

Table 3 Comparison of the performance of the proposed method using different 3D projection approaches: projecting the
center of the bounding box; projecting the point closest to the center of the image; and estimating the 3D cylinder
(proposed approach). S stands for the sequence number and C for the camera IDs involved in the test.

S C
Bounding Box Center Closest Point to Image Center 3D Cylinder Lowest Center
P R F1 APE P R F1 APE P R F1 APE

1 1,2 0.801 0.753 0.776 0.600 0.717 1.000 0.835 0.216 1.000 1.000 1.000 0.094
1 1 0.849 0.653 0.738 0.612 1.000 1.000 1.000 0.215 1.000 1.000 1.000 0.089
1 2 0.893 0.710 0.791 0.453 1.000 1.000 1.000 0.273 1.000 1.000 1.000 0.069

2 1,2 0.827 0.732 0.776 0.572 0.818 0.995 0.898 0.388 0.994 1.000 0.997 0.151
2 1 0.687 0.445 0.540 0.618 1.000 1.000 1.000 0.251 1.000 1.000 1.000 0.071
2 2 0.809 0.463 0.589 0.526 1.000 1.000 1.000 0.355 0.993 1.000 0.997 0.063

3 1,2 0.765 0.705 0.734 0.481 0.840 0.970 0.900 0.301 0.998 0.977 0.987 0.136
3 1 0.880 0.476 0.617 0.524 0.987 0.982 0.985 0.287 0.999 0.984 0.991 0.084
3 2 0.892 0.627 0.736 0.481 0.998 0.972 0.985 0.326 0.999 0.975 0.986 0.077

4 1,2 0.767 0.741 0.754 0.471 0.798 0.986 0.882 0.297 0.983 0.989 0.986 0.155
4 1 0.895 0.622 0.734 0.493 0.990 0.998 0.994 0.268 1.000 0.999 0.999 0.085
4 2 0.763 0.556 0.643 0.455 0.978 0.985 0.982 0.304 1.000 0.986 0.993 0.095

5 1,2 0.873 0.751 0.807 0.504 0.860 0.970 0.912 0.395 0.999 0.984 0.991 0.186
5 1 0.903 0.505 0.647 0.569 0.997 0.945 0.971 0.258 0.999 0.957 0.978 0.097
5 2 0.811 0.484 0.606 0.521 0.992 0.994 0.993 0.330 1.000 0.993 0.996 0.085

6 1 0.907 0.830 0.867 0.331 0.978 0.974 0.976 0.332 0.999 0.983 0.991 0.089

7 1 0.927 0.888 0.907 0.474 0.982 0.953 0.967 0.272 0.986 0.957 0.971 0.112

number of false positives and negatives increases,
reflected in the decrease in precision and recall.
Finally, if we compare the other two methods, the
proposed approach achieves the best result by far,
reducing the average positioning error by more
than 4 times in most cases. It can be observed
that, when using the closest point to the image
center, the precision for multi-camera sequences
worsens. These false positives are caused because
the positioning using this method is not accurate
enough to fuse the detections of the overlapped
cameras. Several examples of the positions esti-
mated by the evaluated approaches are shown in
Fig. 12.

5 Discussion

In this section we want to analyze the results
obtained in the experiments presented on the
previous section and highlight the strengths and
weaknesses of the proposed method, compar-
ing it with other approaches mentioned in the

related work. In [24] and [25], the authors declare
that they use overhead datasets for training and
testing. However, we were unable to find these
datasets available online for comparison. The rest
of the related works use images with side or frontal
perspectives, so it is not possible to make a fair
comparison with them. Furthermore, none of the
test datasets they use include the necessary cal-
ibration parameters to be able to carry out the
projection. Finally, none of the mentioned meth-
ods is publicly available, so we cannot make a
comparison using our test sequences either. For
this reason, we focus on comparing the proposed
projection method with the projection method
used in all other related works. All the mentioned
methods that perform projection [8, 21, 22, 24, 25]
use the central point of the bounding box to esti-
mate the position of the subject. As commented in
the previous section, from the results of Table 3,
it can be observed that our method outperforms
the the method based on central point projection,

Multi-Camera BEV Social Distance Monitoring 15

Fig. 12 Several examples of the positions estimated by the
3D projection approaches compared in Section 4.2. The red
point corresponds to the center of the detection bounding
box, the blue point to the point closest to the center of the
image, and the green point to the proposed method.

decreasing the average positioning error by more
than 4 times in most of the cases.

Main drawback is that estimating the 3D cylin-
der requires additional computing time. More
specifically, for the hardware used in the eval-
uation (Intel Xeon Gold 6230), the estimation
time for each cylinder is 0.6 ms. It is a despi-
cable amount of time but it grows in proportion
to the number of detections. Nevertheless, this
procedure would be easily parallelizable using
multi-threading on CPU or GPU, since the esti-
mation of each cylinder is independent of the
rest.

Regarding the size of the monitored area, in
[24] and [25] the authors do not give any details
about this topic. Analyzing the data and images
provided in the articles, we estimate that they
cover an area with an approximate radius of 5
meters for a fisheye camera placed 6 meters high.
If we compare this setup with the one of our eval-
uation sequence 6 (see Table 1), it can be observed
that, even though the camera is positioned at a
lower height, the radius of the area covered (8
meters) by our method is much higher.

Another strong point of the proposed method
is its ease of adaptation to new environments. As

we discussed in previous sections, the system is
capable of working with cameras positioned at dif-
ferent heights, thanks to the fact that the fusion
of multi-camera detections and tracking is car-
ried out taking into account the position in real
coordinates and not the 2D bounding box of the
detection. This makes the method adaptable to
any indoor environment with the only require-
ments that there is a ceiling where to place the
cameras, that the cameras are placed perpendicu-
lar to the ground plane and that there is a small
overlap region between two consecutive cameras.

Finally, the proposed system is also easily scal-
able, allowing new cameras to be added at any
time. The newly added cameras only need to be
calibrated to obtain the intrinsic and extrinsic
parameters referenced to the coordinate origin of
the global system.

6 Conclusions

The aim of this work was to create a system
capable of monitoring people in large infrastruc-
tures, especially to guarantee compliance with
the health measures imposed by COVID-19. In
order to algorithmically assess compliance with
some of these measures, such as maintaining social
distance, a precise position estimation of the sub-
jects is necessary and complete occlusions must
be avoided. Therefore, we decided to tackle the
problem using people detection from an overhead
perspective. This is yet an unexplored topic and
the few solutions proposed only work in single
camera scenarios and cover a very limited area.

To overcome these limitations, we present a
multi-camera BEV people flow monitoring sys-
tem, capable of extracting reliable real-time per-
formance indicators in extremely large infras-
tructures, such as airports or shopping centers.
The proposed system breaks with the tradi-
tional pipeline, applying the projection step just
after the detection stage. This modification allows
tracking the subjects uninterruptedly all over the
monitored area using just a single tracker instance
and using multiple cameras installed at differ-
ent heights. Furthermore, we present a novel 3D
projection and multi-camera fusion procedure. It
estimates the best fitting 3D cylinder for each
detected bounding box and fuses the cylinders of
the overlapping regions of the camera views that
belong to the same person. This corrects possible

16 Multi-Camera BEV Social Distance Monitoring

occlusion problems and allows us to expand the
useful range of the cameras.

Conducted experiments, presented in Section
4, demonstrate that the proposed system is suit-
able for real-time sanitary-measures-control appli-
cations, such as guaranteeing a safe interpersonal
distance, respecting the indoor capacity limita-
tions, identifying the most crowded time intervals
or tracking subjects who violate the established
measures. Furthermore, the proposed projection
approach achieves an average positioning error
below 0.2 meters, with an improvement of more
than 4 times compared to other methods.

Future work will focus on extending the appli-
cation of the system to other tasks such as subject
re-identification. For this task, the system should
be able to fuse the information of overhead and
frontal cameras in order to identify the subject
using facial recognition and track it through-
out infrastructure. The strengths of the proposed
method lie in its ability to monitor large areas in
an efficient and scalable manner. It could be used
in other applications that require this capacity,
such as for monitoring traffic in cities or dangerous
vehicles that have committed an infraction. We
also think that it suitable for monitoring certain
sports in which the playing field is very wide, such
as football or rugby, both for tracking the players
and the ball. Furthermore, we will also work on
improving the accuracy of the detection network
to reduce the number of false positives and neg-
atives and improve the performance of the entire
system. Finally, we will also focus on improving
the data analytics logic to incorporate also tempo-
ral information for the distance monitoring, using
the computed subject trajectories.

Declarations

Conflicts of interest The authors declare that
they have no conflicts of interest.

References

[1] Chen, S.-C.: Multimedia research for
response and management of covid-19
and future pandemics. IEEE Mul-
tiMedia 28(1), 5–6 (2021). https:
//doi.org/10.1109/MMUL.2021.3063011

[2] Rahmani, A.M., Mirmahaleh, S.Y.H.: Coro-
navirus disease (covid-19) prevention and
treatment methods and effective parameters:
A systematic literature review. Sustainable
Cities and Society 64, 102568 (2021). https:
//doi.org/10.1016/j.scs.2020.102568

[3] Agarwal, N., Meena, C.S., Raj, B.P., Saini,
L., Kumar, A., Gopalakrishnan, N., Kumar,
A., Balam, N.B., Alam, T., Kapoor, N.R.,
Aggarwal, V.: Indoor air quality improvement
in covid-19 pandemic: Review. Sustainable
Cities and Society 70, 102942 (2021). https:
//doi.org/10.1016/j.scs.2021.102942

[4] Su, X., Gao, M., Ren, J., Li, Y., Dong, M.,
Liu, X.: Face mask detection and classifica-
tion via deep transfer learning. Multimedia
Tools and Applications (2021). https://doi.
org/10.1007/s11042-021-11772-5

[5] Singh, S., Ahuja, U., Kumar, M., Kumar,
K., Sachdeva, M.: Face mask detection using
yolov3 and faster r-cnn models: Covid-19
environment. Multimedia Tools and Applica-
tions, 19753–19768 (2021). https://doi.org/
10.1007/s11042-021-10711-8

[6] Sun, C., Zhai, Z.: The efficacy of social dis-
tance and ventilation effectiveness in prevent-
ing covid-19 transmission. Sustainable Cities
and Society 62, 102390 (2020). https://doi.
org/10.1016/j.scs.2020.102390

[7] Thu, T.P.B., Ngoc, P.N.H., Hai, N.M., et al.:
Effect of the social distancing measures on
the spread of covid-19 in 10 highly infected
countries. Science of the Total Environment
742, 140430 (2020)

[8] Rezaei, M., Azarmi, M.: Deepsocial: Social
distancing monitoring and infection risk
assessment in covid-19 pandemic. Applied
Sciences 10(21) (2020). https://doi.org/10.
3390/app10217514

[9] Uras, M., Cossu, R., Ferrara, E., Liotta, A.,
Atzori, L.: Pma: A real-world system for peo-
ple mobility monitoring and analysis based
on wi-fi probes. Journal of Cleaner Produc-
tion 270, 122084 (2020). https://doi.org/10.
1016/j.jclepro.2020.122084

Multi-Camera BEV Social Distance Monitoring 17

[10] Bian, S., Zhou, B., Bello, H., Lukowicz, P.: A
wearable magnetic field based proximity sens-
ing system for monitoring covid-19 social dis-
tancing. In: Proceedings of the 2020 Interna-
tional Symposium on Wearable Computers.
ISWC 20, pp. 22–26. Association for Comput-
ing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3410531.3414313

[11] Shao, Z., Cheng, G., Ma, J., Wang, Z., Wang,
J., Li, D.: Real-time and accurate uav pedes-
trian detection for social distancing monitor-
ing in covid-19 pandemic. IEEE Transactions
on Multimedia, 1–1 (2021). https://doi.org/
10.1109/TMM.2021.3075566

[12] Sathyamoorthy, A.J., Patel, U., Savle, Y.A.,
Paul, M., Manocha, D.: COVID-Robot: Mon-
itoring Social Distancing Constraints in
Crowded Scenarios (2020). http://arxiv.org/
abs/2008.06585

[13] Montero, D., Unzueta, L., Goenetxea, J.,
Aranjuelo, N., Loyo, E., Otaegui, O., Nieto,
M.: Multi-stage dynamic batching and on-
demand i-vector clustering for cost-effective
video surveillance. In: VISAPP. VISIGRAPP
2021. SciTePress, ??? (2021)

[14] Ali, W., Tian, W., Swati, S., Iradukunda,
D., Khan, A.: Classical and modern
face recognition approaches: a com-
plete review. Multimedia Tools and
Applications 80, 1–56 (2021). https:
//doi.org/10.1007/s11042-020-09850-1

[15] Chu, S.-L., Chen, C.-F., Zheng, Y.-C.: Cfsm:
a novel frame analyzing mechanism for real-
time face recognition system on the embed-
ded system. Multimedia Tools and Applica-
tions (2021)

[16] Wang, Y., Hu, S., Wang, G., Chen, C.,
Pan, Z.: Multi-scale dilated convolution
of convolutional neural network for crowd
counting. Multimedia Tools and Applica-
tions 79 (2020). https://doi.org/10.1007/
s11042-019-08208-6

[17] Zou, Z., Li, C., Zheng, Y., Xu, S.: Two stages
double attention convolutional neural net-
work for crowd counting. Multimedia Tools

and Applications 79 (2020). https://doi.org/
10.1007/s11042-020-09541-x

[18] Chen, L., Wang, G., Hou, G.: Multi-scale
and multi-column convolutional neural net-
work for crowd density estimation. Multime-
dia Tools and Applications 80, 6661–6674
(2021)

[19] Su, J., He, X., Qing, L., Niu, T., Cheng, Y.,
Peng, Y.: A novel social distancing analysis
in urban public space: A new online spatio-
temporal trajectory approach. Sustainable
Cities and Society 68, 102765 (2021). https:
//doi.org/10.1016/j.scs.2021.102765

[20] Shorfuzzaman, M., Hossain, M.S., Alhamid,
M.F.: Towards the sustainable development
of smart cities through mass video surveil-
lance: A response to the covid-19 pan-
demic. Sustainable Cities and Society 64,
102582 (2021). https://doi.org/10.1016/j.scs.
2020.102582

[21] Punn, N.S., Sonbhadra, S.K., Agarwal, S.:
Monitoring COVID-19 social distancing with
person detection and tracking via fine-tuned
YOLO v3 and Deepsort techniques (2020).
http://arxiv.org/abs/2005.01385

[22] Yang, D., Yurtsever, E., Renganathan, V.,
Redmill, K.A., Ümit Özgüner: A Vision-
based Social Distancing and Critical Density
Detection System for COVID-19 (2020). http:
//arxiv.org/abs/2007.03578

[23] Nodehi, H., Shahbahrami, A.: Multi-metric
re-identification for online multi-person
tracking. IEEE Transactions on Circuits
and Systems for Video Technology, 1–1
(2021). https://doi.org/10.1109/TCSVT.
2021.3059250

[24] Ahmed, I., Ahmad, M., Rodrigues, J., Jeon,
G., Din, S.: A deep learning-based social
distance monitoring framework for covid-
19. Sustainable Cities and Society 65,
102571 (2020). https://doi.org/10.1016/j.scs.
2020.102571

[25] Ahmed, I., Ahmad, M., Jeon, G.: Social
distance monitoring framework using deep

18 Multi-Camera BEV Social Distance Monitoring

learning architecture to control infection
transmission of covid-19 pandemic. Sustain-
able Cities and Society 69, 102777 (2021).
https://doi.org/10.1016/j.scs.2021.102777

[26] Nguyen, C.T., Saputra, Y.M., Huynh,
N.V., Nguyen, N.-T., Khoa, T.V., Tuan,
B.M., Nguyen, D.N., Hoang, D.T., Vu,
T.X., Dutkiewicz, E., Chatzinotas, S.,
Ottersten, B.: A comprehensive survey
of enabling and emerging technologies
for social distancing—part i: Fundamen-
tals and enabling technologies. IEEE
Access 8, 153479–153507 (2020). https:
//doi.org/10.1109/ACCESS.2020.3018140

[27] Nguyen, C.T., Saputra, Y.M., Van Huynh,
N., Nguyen, N.-T., Khoa, T.V., Tuan,
B.M., Nguyen, D.N., Hoang, D.T., Vu,
T.X., Dutkiewicz, E., Chatzinotas, S.,
Ottersten, B.: A comprehensive survey
of enabling and emerging technologies
for social distancing—part ii: Emerg-
ing technologies and open issues. IEEE
Access 8, 154209–154236 (2020). https:
//doi.org/10.1109/ACCESS.2020.3018124

[28] Redmon, J., Farhadi, A.: Yolov3:
An incremental improvement. CoRR
abs/1804.02767 (2018)

[29] Wojke, N., Bewley, A., Paulus, D.: Simple
online and realtime tracking with a deep asso-
ciation metric. In: 2017 IEEE International
Conference on Image Processing (ICIP), pp.
3645–3649 (2017). https://doi.org/10.1109/
ICIP.2017.8296962

[30] Ramadass, L., Arunachalam, S., Sagayas-
ree, Z.: Applying deep learning algorithm
to maintain social distance in public place
through drone technology. Int. J. Pervasive
Comput. Commun. 16, 223–234 (2020)

[31] Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.:
YOLOv4: Optimal Speed and Accuracy of
Object Detection (2020). http://arxiv.org/
abs/2004.10934

[32] Bewley, A., Ge, Z., Ott, L., Ramos, F.,
Upcroft, B.: Simple online and realtime track-
ing. 2016 IEEE International Conference on

Image Processing (ICIP) (2016). https://doi.
org/10.1109/icip.2016.7533003

[33] Montero, D., Aranjuelo, N., Senderos, O.,
Nieto, M.: Bev object tracking for lidar-
based ground truth generation. In: 2019
27th European Signal Processing Conference
(EUSIPCO) (2019)

[34] Ahmed, I., Adnan, A.: A robust algorithm for
detecting people in overhead views. Cluster
Computing 21, 1–22 (2018). https://doi.org/
10.1007/s10586-017-0968-3

[35] Ahmed, I., Ahmad, A., Piccialli, F., Sanga-
iah, A.K., Jeon, G.: A robust features-based
person tracker for overhead views in indus-
trial environment. IEEE Internet of Things
Journal 5(3), 1598–1605 (2018). https://doi.
org/10.1109/JIOT.2017.2787779

[36] Ahmad, J., Larijani, H., Emmanuel, R., Man-
nion, M., Javed, A.: An intelligent real-time
occupancy monitoring system using single
overhead camera. In: Proceedings of the
2018 Intelligent Systems Conference, vol. 2,
pp. 957–969 (2019). https://doi.org/10.1007/
978303001057771

[37] Fernandez-Rincon, A., Fuentes-Jimenez, D.,
Losada-Gutierrez, C., Marron-Romera, M.,
Luna, C.A., Macias-Guarasa, J., Mazo, M.:
Robust People Detection and Tracking from
an Overhead Time-of-Flight Camera. In:
12th International Conference on Computer
Vision Theory and Applications., Porto, Por-
tugal, pp. 556–564 (2017). https://doi.org/
10.5220/0006169905560564

[38] Aranjuelo, N., Garćıa, S., Loyo, E., Unzueta,
L., Otaegui, O.: Key strategies for synthetic
data generation for training intelligent sys-
tems based on people detection from omni-
directional cameras (in press). Computers &
Electrical Engineering (2021)

[39] Zoph, B., Cubuk, E.D., Ghiasi, G., Lin, T.-
Y., Shlens, J., Le, Q.V.: Learning data aug-
mentation strategies for object detection. In:
European Conference on Computer Vision,
pp. 566–583 (2020). Springer

Multi-Camera BEV Social Distance Monitoring 19

[40] Lin, T.-Y., Maire, M., Belongie, S., Bour-
dev, L., Girshick, R., Hays, J., Perona,
P., Ramanan, D., Zitnick, C.L., Dollár, P.:
Microsoft COCO: Common Objects in Con-
text (2015). http://arxiv.org/abs/1405.0312

[41] Zhang, P., Zhong, Y., Li, X.: Slimyolov3:
Narrower, faster and better for real-time
UAV applications. CoRR abs/1907.11093
(2019)

[42] Annu Malik, M.V.S. Anju Sharma: Greedy
Algorithm. In: International Journal of Scien-
tific and Research Publications, vol. 3 (2013)

[43] Li, Y.: A deep spatiotemporal perspective for
understanding crowd behavior. IEEE Trans-
actions on Multimedia 20(12), 3289–3297
(2018). https://doi.org/10.1109/TMM.2018.
2834873

[44] Dendorfer, P., Rezatofighi, H., Milan, A., Shi,
J., Cremers, D., Reid, I., Roth, S., Schindler,
K., Leal-Taixé, L.: MOT20: A benchmark
for multi object tracking in crowded scenes
(2020). http://arxiv.org/abs/2003.09003

[45] Scheck, T., Seidel, R., Hirtz, G.: Learning
from theodore: A synthetic omnidirectional
top-view indoor dataset for deep transfer
learning. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Com-
puter Vision, pp. 943–952 (2020)

[46] Li, S., Tezcan, M.O., Ishwar, P., Konrad, J.:
Supervised people counting using an over-
head fisheye camera. In: 2019 16th IEEE
International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pp.
1–8 (2019). https://doi.org/10.1109/AVSS.
2019.8909877

4.4 Multi-Stage Dynamic Batching and
On-Demand I-Vector Clustering for
Cost-effective Video Surveillance

• Authors: David Montero and Luis Unzueta and Jon Goenetxea and Nerea
Aranjuelo and Estíbaliz Loyo and Oihana Otaegui and Marcos Nieto

• Booktitle: Proceedings of the 16th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications (VISI-
GRAPP)

• Year: 2021

• Publisher: SciTePress

4.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video
Surveillance 107

Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for
Cost-Effective Video Surveillance

David Montero, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo, Estibaliz Loyo, Oihana Otaegui,
Marcos Nieto

Vicomtech, Mikeletegi 57, 20009 Donostia-SanSebastian, Spain
{dmontero, lunzueta, jgoenetxea, naranjuelo, eloyo, ootaegui, mnieto}@vicomtech.org

Keywords: Face Recognition, Face Clustering, Video-Surveillance

Abstract: In this paper, we present a cost-effective Video-Surveillance System (VSS) for face recognition and online
clustering of unknown individuals at large scale. We aim to obtain Performance Indicators (PIs) for people
flow monitoring in large infrastructures, without storing any biometric information. For this purpose, we
focus on how to take advantage of a central GPU-enabled computing server, connected to a set of video-
surveillance cameras, to automatically register new identities and update their descriptive data as they are re-
identified. The proposed method comprises two main procedures executed in parallel. A Multi-Stage Dynamic
Batching (MSDB) procedure efficiently extracts facial identity vectors (i-vectors) from captured images. At
the same time, an On-Demand I-Vector Clustering (ODIVC) procedure clusters the i-vectors into identities.
This clustering algorithm is designed to progressively adapt to the increasing data scale, with a lower decrease
in its effectiveness compared to other alternatives. Experimental results show that ODIVC achieves state-of-
the-art results in well-known large scale datasets and that our VSS can detect, recognize and cluster in real
time faces coming from up to 40 cameras with a central off-the-shelf GPU-enabled computing server.

1 INTRODUCTION

In recent years, there has been a growing interest in
obtaining a detailed operational experience of peo-
ple flow monitoring in large infrastructures, by means
of Performance Indicators (PIs), such as ”waiting
times”, ”process throughput”, ”queue length overrun”
and ”area occupancy” (Mayer et al., 2015). Current
non-cooperative solutions are typically integrated in
the terminal infrastructure or use data from existing
processes, such as entrance pass scans or mobile de-
vices and Wi-Fi signals, from which PIs can be de-
rived. As stated in (Mayer et al., 2015), for this kind
of applications, computer-vision-based facial recog-
nition technology has been used mainly as a source to
infer ”waiting times”, by comparing biometric infor-
mation from entry and exit points.

Our motivation is to enhance and extend the ap-
plicability of computer-vision-based facial recogni-
tion technology to more cases than the estimation of
”waiting times” in a specific area of a large infras-
tructure. More specifically, our goal is to build a face
recognition-based solution from which all the PIs can
be derived for the whole infrastructure, trying to sim-
plify as much as possible the required hardware setup,

and with a better handling of data so that privacy is-
sues can be avoided. This requires building an ac-
curate and efficient face recognition system that can
manage large-scale data, without storing the biomet-
ric information of the individuals. Deep Neural Net-
work (DNN)-based large-scale clustering approaches
are promising methodologies for this purpose (Wang
et al., 2019; Shi et al., 2018; Otto et al., 2018).

Deploying computer vision algorithms to build
a cost-effective Video-Surveillance System (VSS) is
challenging. The latest trends rely on distributed com-
puting infrastructures, based on cloud (Lim et al.,
2018), fog (Nasir et al., 2018) and/or edge comput-
ing paradigms (Chen et al., 2019). These solutions
are capable of processing multiple sensor data streams
more efficiently at a bigger scale, compared to the
traditional centralized infrastructures (Tsakanikas and
Dagiuklas, 2017). The main open questions in the
design of a VSS (distributed or centralized) are what
equipment should be used and how to take advantage
of the available computing capabilities. This work fo-
cuses on the second question when an off-the-shelf
GPU computing server is considered. This solution
directly addresses the centralized infrastructure case,
but is likely extendable to distributed infrastructures.

These are the main contributions of our work:

• A cost-effective VSS for face recognition and on-
line clustering of unknown individuals at large
scale, without storing their biometric information,
to obtain PIs for people flow monitoring.

• A Multi-Stage Dynamic Batching (MSDB) pro-
cedure to efficiently extract face attributes and
i-vectors from captured images. This in-
cludes MB-MTCNN, a multi-batch version of
a Multi-Task Cascaded Convolutional Network
(MTCNN) (Zhang et al., 2016a), and an efficient
dynamic batching strategy for the processing of
dynamic lists of facial images.

• An On-Demand I-Vector Clustering (ODIVC) al-
gorithm, designed to progressively adapt to the
data scale, with a lower decrease on its effective-
ness compared to state-of-the-art alternatives.

The paper is organized as follows. Section 2
presents the related work. Section 3 describes the
proposed VSS, followed by the computation improve-
ments and optimizations in section 4. Section 5 pro-
vides experimental results that show the potential of
our approach. Finally, section 6 concludes the paper.

2 RELATED WORK

The main challenges in our context are two: (A) how
to cluster faces by identity, using an online and unsu-
pervised approach, with the necessary accuracy and
scalability; and (B) how to build a cost-effective VSS
to deploy this technology.

2.1 Face Clustering

In recent years, face clustering in large-scale uncon-
strained scenarios has become a major challenge. The
huge number of faces and the intra-class changes due
to environmental variations (e.g., pose, illumination,
occlusions, resolution, noise) lead to complex distri-
butions of face representations. This makes it unsuit-
able to apply classic algorithms like K-Means (Lloyd,
1982), which tend to generate similar sized clusters,
or spectral clustering (Shi and Malik, 2000).

State-of-the-art methodologies combine DNN-
based face recognition models to extract i-vectors
with clustering algorithms that can group them in dis-
tinguishable identities, despite the intra-class variabil-
ity. In (Shi et al., 2018) the ConPaC algorithm is pro-
posed, which is based on the estimation of an adja-
cency matrix using pairwise similarities between i-
vectors. In (Wang et al., 2019) GCN is presented,
where a DNN decides which pairs of nodes should be

linked. In (Lin et al., 2018) an Agglomerative Hier-
archical Clustering approach is adopted, considering
the distance in the embedded space and the dissimilar-
ity between groups of faces. In (Otto et al., 2018) an
approximate rank-order clustering is presented, which
predicts whether a node should be linked to its k Near-
est Neighbors (kNN), and merges all linked pairs.

Nevertheless, these methodologies use offline al-
gorithms. They process entirely the gathered data ev-
ery time a new i-vector arrives with increasing com-
putational cost. In addition, most of them suffer from
scalability problems. For instance, the complexity of
ConPaC can scale up to O(T N3), where N is the num-
ber of i-vectors and T the number of iterations. (Wang
et al., 2019) and (Otto et al., 2018) reduce the com-
plexity using kNN graphs to reduce the number of
comparisons, but the cost is still too high for consid-
ering them for online applications.

To overcome these problems, we present On-
Demand I-Vector Clustering algorithm (ODIVC). It is
suitable for large-scale real-time applications, as it is
devised to dynamically adapt to the inclusion of data
samples without repeating the whole process.

2.2 Computing Infrastructures for
Automated Video-surveillance

New automated surveillance systems incorporate
modern video sensors capable of capturing high def-
inition footage and DNN-based processing pipelines
in real-time. These systems frequently require large
computational resources and large storage size. Both
requirements could be resolved by integrating the
VSS in a distributed computing infrastructure, rely-
ing on cloud, fog and/or edge computing paradigms.
However, this introduces new challenges to be ad-
dressed (Tsakanikas and Dagiuklas, 2017).

A VSS relying on cloud computing (Lim et al.,
2018) needs to take into account the latency and extra
communication cost introduced between the sensors
and the cloud infrastructure. Furthermore, it needs
to deal with the latency introduced in IP networks,
which is not only large but also fluctuating. Fog com-
puting is a complementary technology to cloud com-
puting, as it extends cloud capabilities to the edge
of the network, comprising devices that have enough
power to perform non-trivial computational tasks. A
representative example of fog-based VSS is presented
in (Nasir et al., 2018). Finally, edge computing refers
to transferring computational and storage capacities
from data centers to the video sensors, minimizing the
network latency. Its application in a VSS requires the
usage of special hardware and software close to the
video sensors (Chen et al., 2019).

CAPTURING THREAD

CLUSTERING THREAD

IMAGES

I-VECTORS

DATABASE

GPU COMPUTING SERVERN IP CAMERAS

1

2
...

CPU HDDRAM GPU

IMAGE PROCESSING THREAD

CPU

Figure 1: Overall processing architecture and data flow diagram of the proposed VSS.

As stated in (Tsakanikas and Dagiuklas, 2017), a
promising approach for a VSS could be a distributed
architecture, where certain characteristics of each ap-
proach are utilized to maximize its efficiency. In any
case, effectively deploying DNN-based technology in
such kind of equipment to build a cost-effective VSS,
is a challenge to be addressed.

3 PROPOSED GPU COMPUTING
SERVER-BASED VSS

3.1 Capturing Thread

The capturing thread is in charge of three tasks:
camera connection handling, stream decoding and
image acquisition. The effective camera manage-
ment involves not only creating the connections when
the system startups, but also periodically checking
whether they are still working and reconnecting in
case of a lost connection. Image streaming uses a
compression method to reduce the network overload
(e.g., H.264, H.265, etc) (Jankar and Shah, 2017), so
a decoding phase is needed before feeding the images
into the processing thread. This can cause a delay in
the results. To reduce this effect, the capturing thread
decodes each image stream separately. Thus, the cur-
rent image is ready when the image processing thread
needs to get the next frame. The computational cost
of the capturing thread is low compared with the rest
and it only uses a small amount of the CPU for frame
decoding, mask applying, and connection checking.

3.2 Image Processing Thread

The image processing thread applies the DNN-based
face analysis algorithms to the captured images,

CPU GPURAM
IMAGE PROCESSING THREAD

MSDB Stage #3: I-Vector Extraction

Face Filtering

MSDB Stage #2: Face Attributes Based Filtering

Face Patch
Normalization

MSDB Stage #1: Normalized Face Patch Extraction

Face and Landmark
Detection

Face Attributes Extraction

N images

M

Q
Q i-vectors

Figure 2: MSDB procedure in the image processing thread.

in order to get the required i-vectors for the re-
identification. It consumes most of the computation
time of the entire VSS (90-95%). Thus, to improve
the global performance, the system exploits the GPU
resources for the DNN inferences, using the CPU for
minor tasks like processing flow control, image crop-
ping and managing patch lists (Figure 2).

This procedure has three sequential stages: 1) nor-
malized face patch extraction, 2) facial attribute-based
filtering, and 3) i-vector extraction.

The first stage detects all the faces present in the
input image list and their facial landmarks, which are
used for the face patch normalization following the
method described in (Wang et al., 2018). For an effi-
cient detection of the facial regions and landmarks in
the N images from the capture process we propose a
multi-batch version of MTCNN (MB-MTCNN), de-
scribed in section 4.1, with a batch size equal to the
number of images (i.e. N). This stage generates a list
of M face regions with a set of five facial landmarks.

The VSS captures images from uncontrolled en-
vironments, so the detected faces may have different
orientations, lighting conditions, partial occlusions,

etc., which can negatively influence in the i-vector ex-
traction, reducing the accuracy of the re-identification
process (Tan and Triggs, 2010). It is well known that
the impact of these factors can be reduced by prepro-
cessing the face patches before extracting the i-vector,
as stated in (Chaudhari and Kale, 2010).

Thus, the second stage checks if the facial patch
is suitable for re-identification using a set of automat-
ically detected attributes and previously defined fil-
tering considerations. In our context, we use head
orientation and a set of angle thresholds for the fil-
tering process, but other descriptive attributes could
also be considered (e.g. age, gender, ethnic group,
etc.). These attributes are estimated with Multi-Task
Cascaded Convolutional Networks (TCDCN) (Zhang
et al., 2016b). All the patches that do not match the
established rules are removed.

Finally, the last stage extracts the i-vectors from
the list of filtered face patches given by the filtering
stage. For our experiments we use a DNN model
based on ResNet100 architecture (He et al., 2016)
with ArcFace loss (Deng et al., 2019). We use this
architecture, despite its complexity, because we need
to generate the i-vectors as robust as possible in or-
der to get highly-reliable PIs. The DNN inferences
applied to the dynamic lists of cropped facial images
are made following efficient dynamic batching proce-
dures, as explained in section 4.2.

3.3 Clustering Thread

This thread analyzes the incoming i-vectors to auto-
matically register new people and update their de-
scriptive data with new samples as they are re-
identified, in an unsupervised way. Algorithm 1
shows our proposed ODIVC procedure for this task.

The identities database is represented with four
lists: C, containing the representative i-vector (cen-
troid) of each registered identity; SC, containing the
sum of the candidates i-vectors of each registered
identity; uid, with the unique identification num-
bers for those identities; and nm, with the number
of detections matched with each identity. Thus, the
database is expressed as <C, SC, uid, nm>. The new
identity candidates do not get a unique identification
number until they have reached a certain number of
matched detections. This is done to filter erroneous
new identity candidates, created with unsuitable faces
passed through the filters of the detection stage.

When the VSS is launched, the identities database
is empty. Therefore, the first incoming i-vector will be
used as the representative i-vector of the first identity
candidate in the database. From then on, every new
incoming i-vector is compared with the centroid of

Algorithm 1: On-Demand I-Vector Cluster-
ing

Input: new i-vector u, database of identities
<C, SC, uid, nm> (initially empty),
low similarity threshold threshlow
[-1,1], high similarity threshold
threshhigh [-1,1], minimum cluster
members for low threshold nmmin

Output: Updated DB <C, SC, uid, nm>

unorm = ||u||2
sim = unorm ·C
match = -1, simbest = -1
if sizeo f (R)> 0 then

idxbest = maxIdx(sim)
simbest = sim[idxbest]

end
while simbest > threshlow do

if nm[idxbest]> nmmin or
simbest > threshhigh then

match = idxbest
break

end
sim[idxbest] = -1
idxbest = maxIdx(sim)
simbest = sim[ibest]

end
if match >−1 then

nm[match] = nm[match] + 1
SC[match] = SC[match] + unorm
C[match] = ||SC[match]||2

else
uidnew = generateNewUID()
Append unorm to C & SC, uidnew to uid
and 1 to nm

end
return <C, SC, uid, nm>

every registered identity. The comparison is done by
computing the cosine similarity, as the employed face
recognition model was trained to work with this met-
ric (Deng et al., 2019), but other similarity measures
may be considered. To speed up the computation
of the cosine similarity, every incoming i-vector and
centroids are normalized, so that only the dot prod-
uct between them needs to be computed. Besides, the
calculation of the dot product is parallelized. Once the
cosine similarity is extracted, the algorithm searches
for the best candidate above a predefined minimum
threshold (threshlow). If the selected identity has more
than nmmin members, then the centroid is considered
robust enough for using threshlow and the i-vector is
matched to that identity. Otherwise, the similarity
measure must be higher than threshhigh. This search-

ing process is repeated until there is a match or until
the best similarity measure is lower than threshlow. If
there is a match between the incoming i-vector and a
registered identity, the new i-vector is used to update
the sum and the normalized centroid of the identity,
as shown in the algorithm. Otherwise, it becomes
directly the representative centroid of a new iden-
tity. The time complexity of the algorithm is O(MC),
where M is the i-vector dimensionality and C is the
number of active identities.

Alternative registration and updating strategies
might be considered, for example, a set of i-vectors
per identity represented by their median for the com-
parisons (which theoretically is more robust to out-
liers than the running average). However, we regis-
ter each individual with only a single i-vector and up-
date it with the running average strategy. This ensures
the minimal amount of information is stored, which is
critical to handle large scales. In addition, according
to our experiments, it is less susceptible to noise, i.e.
erroneous faces that have reached the clustering stage.

The RAM memory is the fastest option to store
these data but it is not safe to system failures (e.g.
power supply failures). To avoid data loss, the sys-
tem also stores the registration information in a per-
sistent database, to use it as an information cache if
the system fails or needs to be restarted. Additional
spatiotemporal constraints related to characteristics of
the infrastructure (e.g. one-way zone-to-zone doors,
or one-way exit doors that assure that an individual
has left the infrastructure at least for a certain time,
etc.), allow reducing the number of comparisons and,
in consequence, potential erroneous matches.

4 MSDB OPTIMIZATIONS

4.1 Multi-Batch MTCNN

To improve the computation performance of the face
and landmark detections from full-images in the first
stage of MSDB, we adopt and modify the MTCNN
method (Zhang et al., 2016a), resulting in the pro-
posed MB-MTCNN approach, which includes multi-
batch processing and a series of parallelization strate-
gies on each stage of MTCNN.

We chose MTCNN as the detection network be-
cause of some remarkable characteristics. First, it per-
forms a multi-scale search, generating candidate face
regions at several image scales. This allows us to par-
allelize the generation of candidates by image scale,
and also allows configuring the scales to optimize the
inference time. Furthermore, it provides face regions

and landmarks in a single forward pass, sharing fea-
tures between both kinds of detections and saving in-
ference time. Finally, it needs a small size in memory,
allowing us to use more limited hardware resources.

MTCNN has three stages. The first one pro-
cesses the input image at different scales, and gen-
erates facial region candidates using a convolutional
neural network (CNN) called Proposal Network (P-
Net). The second stage refines the candidate regions
using a CNN called Refinement Network (R-Net). The
third stage refines the facial regions generated by R-
Net, and detects five landmarks inside each of them
using a CNN called Output-Network (O-Net).

In MB-MTCNN, the key factor to accelerate this
process is the inclusion of parallel while loops, built
upon flexible and expressive control-flow primitive
operators (TensorFlow, 2017), executed in execution
frames of the GPU that can be nested, allowing further
optimizations. Thus, in the first parallel while loop
of MB-MTCNN, the images are scaled and processed
in batch using P-Net to obtain the region candidates.
With a nested parallel while loop, the candidates of
each scale and image are postprocessed following the
original implementation; scaled to their real size, re-
fined and filtered with a non-maximum suppression
(NMS). Finally, the candidates from all the scales are
grouped by image in batch and NMS is applied again
to merge candidates of different scales using a parallel
while loop. In the subsequent stages, the candidates
are filtered and refined using R-Net and O-Net net-
works. In these stages, the batches of candidates from
each image are processed in parallel. This is more ef-
ficient than processing all the candidates in one batch,
as it avoids reallocating the candidates for preprocess-
ing and postprocessing.

4.2 Efficient Dynamic Batching for
Facial Images Processing

The number of cropped facial images that reach stages
2 and 3 of MSDB is unknown and can vary in every
iteration. Different dynamic batching methods can be
considered, which depend on the used GPU architec-
ture and DNN deployment tool. We focus on NVIDIA
GPUs and Google’s TensorFlow and NVIDIA’s Ten-
sorRT frameworks, due to their suitability for the in-
ference of DNNs (Yadwadkar et al., 2019).

The naive dynamic batching approach consists in
putting the whole batch of candidates directly into the
network, varying the network’s input size in every it-
eration. In TensorFlow constantly varying the batch
size produces important time overheads, as the net-
work needs to be re-adapted for the new size. Ten-
sorRT, optimizes the network for a given batch size,

allowing handling smaller sizes with a drop in per-
formance. Nevertheless, in both cases there are time
overheads proportional to the network complexity.

Those time overheads due to network re-
adaptation can be avoided using parallel loops, built
upon flexible and expressive control-flow primitive
operators (Agarwal, 2019; Radul et al., 2019). For
instance, one can set the input size of the network
to a certain value, so the original input batch is di-
vided into mini-batches of that size, and process these
mini-batches with TensorFlow’s parallel while loop
(TensorFlow, 2017). The mini-batch size must be set
manually taking into account the expected minimum,
maximum, and average batch sizes. Nevertheless, if
there are big variations in the number of candidates,
the number of mini-batches may be too high for a sin-
gle parallelization, causing a drop in performance.

For this reason, our proposal for stages 2 and 3 of
MSDB is to load and infer multiple instances of the
network, optimized for different batch sizes. Thus,
for each inference, we divide the input batch size in
the minimum number of mini-batches that fit the dif-
ferent network sizes. In order to require less GPU
memory to load and infer each network, we recom-
mend applying optimizations to the trained network
such as layer fusion, kernel auto-tuning, dynamic ten-
sor memory and multi-stream execution.

5 EXPERIMENTAL RESULTS

In this section, we present the results of two groups of
experiments conducted to evaluate the proposed clus-
tering algorithm (ODIVC) and VSS. The first group
aims to measure the performance of ODIVC in terms
of accuracy and processing time, comparing it with
other state-of-the-art offline clustering methods. The
second group focuses on testing the performance and
scalability of the proposed VSS and the impact of the
optimizations presented in Section 4.

The server used for the experiments has the fol-
lowing specifications: 1 processor Intel XeonTM E5-
1650v4, 1 GPU NVIDIA Quadro P6000 and 2 RAM
modules, each one of 6GB DDR4 2400MHz.

5.1 Face Clustering Performance

For the first experiment, we select the IJB-B dataset
(Whitelam et al., 2017), a well-known dataset of un-
constrained in-the-wild face images. This dataset in-
cludes a clustering protocol consisting of seven sub-
tasks that vary in the number of identities and the
number of faces. We select the last subtask, as it is
the most challenging one, with the highest number

Table 1: Comparison with baseline methods in terms of
BCubed F-Measure and processing time using IJB-B-1845.
Superscript* denotes results reported from original papers,
otherwise it uses the i-vectors from (Wang et al., 2019).

Method F-Meas Time
ARO (Otto et al., 2018) 0.755 00:01:13

PAHC* (Lin et al., 2018) 0.61 00:03:56
ConPaC* (Shi et al., 2018) 0.634 02:53:58

DDC (Lin et al., 2018) 0.800 00:05:32
GCN (Wang et al., 2019) 0.814 00:06:03

ODIVC (ours) 0.778 00:00:28

Table 2: Comparison with baseline methods in terms
of BCubed F-Measure and processing time using IJB-C
dataset. All methods use the same i-vectors extracted from
our VSS and the same hardware.

Method F-Meas Time
ARO (Otto et al., 2018) 0.768 00:09:39

GCN (Wang et al., 2019) 0.890 00:10:32
ODIVC (ours) 0.931 00:00:52

of identities (1,845) and faces (68,195). The perfor-
mance is measured using BCubed F-Measure metric,
following the recomendations in (Amigó et al., 2009).

Since we want to demonstrate that ODIVC is inde-
pendent of the recognition model used and a fair com-
parison with other methods, the same vectors used in
(Wang et al., 2019) are selected for this experiment.
These vectors have 512 dimensions. We adjust the
parameters of ODIVC empirically: threshlow = 0.38,
threshhigh = 0.4 and nmmin = 4.

The results of the experiment are presented in Ta-
ble 1. It can be observed that our method achieves
the third position in terms of F-Measure, but outper-
forms the rest of the methods considering the process-
ing time. For instance, it runs 12 times faster than
GCN-A under the same hardware conditions.

In the second experiment we test the performance
of ODIVC using a different face recognition model
and a different dataset. We select the face recognition
model used by our VSS, described in Section 3.2. We
use IJB-C (Maze et al., 2018), another well-known
dataset of unconstrained face images, with 3531 iden-
tities and 140623 faces. We use MB-MTCNN for the
face and landmarks detection. In order to obtain better
quality feature vectors, we filter faces with less than
45 pixels per side and we normalize the patches as de-
scribed in Section 3.2. After filtering, 120661 vectors
belonging to 3529 identities are extracted.

We compare our algorithm with the two best state-
of-the-art methods: GCN (Wang et al., 2019), which
achieved the highest accuracy in the first experiment,

1 5 10 20 30 40 50 60 70 80 90 100
Detection Batch (Number of Cameras)

5

10

15

20

25

30

De
te
ct
io
n
tim

e
pe

r I
m
ag

e
(m

s) 720p
1080p
1440p
4K

Figure 3: Detection time per image for different resolutions
and batch sizes in MB-MTCNN (in stage 1 of MSDB), com-
pared to MTCNN (batch=1).

and ARO (Otto et al., 2018), which achieved the best
trade off between accuracy and speed (without con-
sidering ours). For both methods, we adjust the pa-
rameters in order to achieve the best performance.
Furthermore, for GCN, we retrain the network follow-
ing recommendations in (Wang et al., 2019). Finally,
we tune the parameters of ODIVC: threshlow = 0.37,
threshhigh = 0.4 and nmmin = 4.

The results of this experiment, presented in Ta-
ble 2, show that our method outperform the others in
terms of F-Measure and processing time. Under the
same hardware conditions ODIVC runs more than 12
times faster than GCN and more than 11 times faster
than ARO. These time ratios show that our method
is more scalable than the others. In this experiment
ODIVC achieves a better F-Measure than GCN. We
believe this is because we have reduced the number
of outliers by filtering the smallest faces and using by
a better face recognition network. Therefore, ODIVC
is more sensible to outliers, but it is more accurate
when using robust face representations.

5.2 Video Surveillance System
Performance

We start evaluating the performance of MB-MTCNN
compared to the original implementation. Figure 3
shows the average time of the detection stage per im-
age for different resolutions and batch sizes using our
approach (MTCNN corresponds to batch=1). The re-
sults show a great reduction in the processing time per
image (more than 5 times for 720p). This reduction
increases with the batch size but reaches a saturation
point due to hardware limitations.

We also test the performance of the proposed dy-
namic batching procedure compared to the alterna-
tives mentioned in Section 4.2. We measure the
recognition time per face when the VSS is process-
ing a sequence of images containing variable numbers

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e
pe

r F
ac

e
(m

s)

Naive-TF
Parallel-TF

Naive-TRT
Multi-Model-TRT

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Frame Number

0

200

400

600

800

1000

Nu
m

be
r o

f f
ac

es

Figure 4: Average time per face of the dynamic batching
procedure for stages 2 and 3 of MSDB, compared to alter-
native state-of-the-art approaches.

1 10 20 30 40 50 60
Image batch (Number of Cameras)

0

200

400

600

800

1000

Pr
oc
es
sin

g
tim

e
pe
r b

at
ch
 (m

s) 720p
1080p
1440p
4K

Figure 5: Average times per batch (for the image processing
thread) with the considered setup for different resolutions.

of faces. To better visualize time variations, we aug-
ment the number of faces by a factor of 10, so they
may vary from 10 to approximately 1000. The re-
sults are shown in Figure 4, where TF stands for Ten-
sorFlow and TRT for TensorRT. The mini-batch size
selected for the Parallel-Loop-TF approach is 20 and
those used for Multi-Instance-TRT are 400, 200, 100,
and 20. It can be observed that the Multi-Instance-
TRT outperforms the other approaches, not only in
the average but also in the maximum peak times.

Finally, to test the potential scalability of our VSS,
we run it to process images captured from a scaling
number of videos, at different resolutions and with a
detection batch size set with the same value as the
number of videos. Then, we measure the average
times per image batch in the image processing thread,
the main bottleneck of the system. The results are
shown in Figure 5. In our context, it is enough to de-
liver the PIs with near-real time performance. Hence,
if we consider acceptable that the processing thread
responds every 200 ms, this setup could theoretically
be scaled up to 40 720p cameras. The results reveal
that the proposed VSS allows designing cost-effective
GPU-server-based solutions for our purpose.

6 CONCLUSIONS

In this work, we have presented a cost-effective VSS
for face recognition and online clustering of unknown
individuals at large scale, without storing their bio-
metric information, in order to obtain PIs for peo-
ple flow monitoring in large infrastructures. The
VSS is composed of three main computing threads
executed asynchronously, using CPU and/or GPU
capabilities and sharing data sequentially. Experi-
mental results with challenging scenarios reveal the
high effectiveness and scalability of the proposed
approach. Furthermore, we have presented an on-
line and unsupervised clustering approach (ODIVC),
which achieves state-of-the-art results in well-known
large-scale datasets, with a reduced computational
cost compared to the alternatives.

Future work will focus on extending our VSS to
distributed computing infrastructures, with heteroge-
neous hardware as nodes of the VSS, including GPU
computing servers that process and share data for
video-surveillance purposes.

REFERENCES

Agarwal, A. (2019). Static automatic batching in Ten-
sorFlow. In 36th ICML, volume 97, pages 92–101.
PMLR.

Amigó, E., Gonzalo, J., Artiles, J., and Verdejo, M. (2009).
Amigó e, gonzalo j, artiles j et ala comparison of ex-
trinsic clustering evaluation metrics based on formal
constraints. inform retriev 12:461-486. Information
Retrieval, 12:461–486.

Chaudhari, S. T. and Kale, A. (2010). Face normalization:
Enhancing face recognition. In 2010 3rd ICETET,
pages 520–525.

Chen, J., Li, K., Deng, Q., Li, K., and Yu, P. S. (2019).
Distributed deep learning model for intelligent video
surveillance systems with edge computing. IEEE
Trans. on Industrial Informatics, pages 1–1.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Ar-
cface: Additive angular margin loss for deep face
recognition. In 2019 IEEE CVPR, pages 4685–4694.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In 2016 IEEE
CVPR, pages 770–778.

Jankar, J. R. and Shah, S. K. (2017). Computational analy-
sis of hybrid high efficiency video encoders. In ICISS,
pages 250–255.

Lim, K.-S., Lee, S.-H., Han, J. W., and Kim, G. W. (2018).
Design considerations for an intelligent video surveil-
lance system using cloud computing. In PDCAT,
pages 84–89.

Lin, W., Chen, J., Castillo, C. D., and Chellappa, R. (2018).
Deep density clustering of unconstrained faces. In
2018 IEEE/CVF CVPR, pages 8128–8137.

Lloyd, S. P. (1982). Least squares quantization in pcm.
IEEE Trans. Inf. Theory, 28:129–136.

Mayer, C. A., Felkel, R., and Peterson, K. (2015). Best
practice on automated passenger flow measurement
solutions. In Journal of Airport Management, vol-
ume 9, pages 144–153.

Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T.,
Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Ch-
eney, J., and Grother, P. (2018). Iarpa janus bench-
mark - c: Face dataset and protocol. In 2018 ICB,
pages 158–165.

Nasir, M., Muhammad, K., Lloret, J., Kumar, A., and Saj-
jad, M. (2018). Fog computing enabled cost-effective
distributed summarization of surveillance videos for
smart cities. Journal of Parallel and Distributed Com-
puting, 126.

Otto, C., Wang, D., and Jain, A. K. (2018). Clustering mil-
lions of faces by identity. IEEE TPAMI, 40(2):289–
303.

Radul, A., Patton, B., Maclaurin, D., Hoffman, M. D.,
and Saurous, R. A. (2019). Automatically batching
control-intensive programs for modern accelerators.
ArXiv, abs/1910.11141.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE TPAMI, 22:888–905.

Shi, Y., Otto, C., and Jain, A. K. (2018). Face cluster-
ing: Representation and pairwise constraints. IEEE
Transactions on Information Forensics and Security,
13(7):1626–1640.

Tan, X. and Triggs, B. (2010). Enhanced local texture fea-
ture sets for face recognition under difficult lighting
conditions. IEEE Transactions on Image Processing,
19(6):1635–1650.

TensorFlow, A. (2017). Implementation of control flow in
tensorflow. TensorFlow Whitepaper.

Tsakanikas, V. and Dagiuklas, T. (2017). Video surveillance
systems-current status and future trends. Computers &
Electrical Engineering, 70.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J.,
Li, Z., and Liu, W. (2018). Cosface: Large margin co-
sine loss for deep face recognition. In 2018 IEEE/CVF
CVPR, pages 5265–5274.

Wang, Z., Zheng, L., Li, Y., and Wang, S. (2019). Linkage
based face clustering via graph convolution network.
2019 IEEE/CVF CVPR, pages 1117–1125.

Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams,
J., Miller, T., Kalka, N., Jain, A. K., Duncan, J. A.,
Allen, K., Cheney, J., and Grother, P. (2017). Iarpa
janus benchmark-b face dataset. In 2017 IEEE
CVPRW, pages 592–600.

Yadwadkar, N. J., Romero, F., Li, Q., and Kozyrakis, C.
(2019). A case for managed and model-less inference
serving. In HotOS ’19, pages 184–191.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016a). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.

Zhang, Z., Luo, P., Loy, C., and Tang, X. (2016b). Learning
deep representation for face alignment with auxiliary
attributes. IEEE TPAMI, 38(5):918–930.

4.5 Boosting Masked Face Recognition with
Multi-Task ArcFace

• Authors: David Montero and Marcos Nieto and Peter Leskovský and Naiara
Aginako

• Booktitle: Proceedings of the 16th International Conference on Signal Image
Technology & Internet based Systems (SITIS)

• Year: 2010

• Publisher: IEEE

4.5 Boosting Masked Face Recognition with Multi-Task ArcFace 117

Boosting Masked Face Recognition with Multi-Task ArcFace

David Montero, Marcos Nieto, Peter Leskovsky and Naiara Aginako

Abstract— In this article, we tackle the recognition of faces
wearing surgical masks. Surgical masks have become a neces-
sary piece of daily apparel because of the COVID-19-related
worldwide health problem. Modern face recognition models
are in trouble because they were not made to function with
masked faces. Furthermore, in order to stop the infection from
spreading, apps capable of detecting if the individuals are
wearing masks are also required. To address these issues, we
present an end-to-end approach for training face recognition
models based on the ArcFace architecture, including various
changes to the backbone and loss computation. We also use
data augmentation to generate a masked version of the original
dataset and mix them on the fly while training. Without
incurring any additional computational costs, we modify the
chosen network to output also the likelihood of wearing a mask.
Thus, the face recognition loss and the mask-usage loss are
merged to create a new function known as Multi-Task ArcFace
(MTArcFace). The conducted experiments demonstrate that our
method outperforms the baseline model results when faces with
masks are considered, while achieving similar metrics on the
original dataset. In addition, it obtains a 99.78% of mean
accuracy in mask-usage classification.

I. INTRODUCTION

In recent years, advances in the field of face recognition
have made it one of the most reliable biometric techniques
among other existing techniques such as fingerprint recog-
nition, hand geometry or iris scanning [1], [2]. Furthermore,
compared to its alternatives, facial recognition has the fol-
lowing advantages:

• It is a more affordable solution than other alternatives
such as fingerprint or iris scanners, as it only needs a
mono camera as a sensor. In addition, several cameras
may be connected to a single processing unit to even
more reduce hardware costs.

• The verification can be done remotely; there is no need
for the user to interact with the sensor.

• The sensor can be hidden, which can be very useful for
security or aesthetic reasons.

All these features make face recognition the best choice
for most of the applications based on human re-identification.

However, face recognition also has weaknesses. Cutting
edge methods rely on Deep Neural Networks (DNN) that
extract biometric feature vectors from the detected face
images. These detected faces may have different orientations,
lighting conditions, partial occlusions, low resolution, noise,
etc., which can affect the robustness of the feature vectors
[3].

David Montero, Marcos Nieto and Peter Leskovsky are with
Vicomtech. Email: dmontero@vicomtech.org, mnieto@vicomtech.org,
pleskovsky@vicomtech.org

David Montero and Naiara Aginako are with the Basque Country Uni-
versity. Email: naiara.aginako@ehu.eus

Most of these negative conditions can often be eliminated
by selecting the correct hardware location and requirements
and by preprocessing face images [4], but others such as
partial occlusions caused by clothing accessories cannot be
avoided. This specific problem has lately emerged as a
significant barrier in the facial recognition field, especially
since the global health crisis originated by COVID-19 has
caused medical face masks to become an everyday-clothing-
accessory.

The use of a mouth and nose-covering mask makes the
face recognition models to lose about half of the useful
biometric information. Since they have been designed to
work with the whole face information, the quality of the
feature vectors extracted from masked faces is compromised
and the accuracy of the re-identification process decreases
considerably, as stated in [5]. In fact, NIST agency recently
released a study [6] where they analyzed the top commercial
face recognition systems. For all the systems, they reported
rates of mistakes from 5% to 50% in the re-identification of
a subject wearing a mask.

While masked face detection has been widely studied and
several robust solutions have been presented [7], [8], [9],
masked face recognition remains an under-researched topic.
In the last months, several masked face datasets [10], [11]
and tools [12], [13] for generating synthetic data have been
released. In addition, some methods trying to tackle this issue
using different approaches have been presented [14], [13],
[15]. Nevertheless, there is still much research to be done
about this topic.

To contribute to this task, we propose an approach based
on the ArcFace work presented by Deng et al. [16] with
several modifications for the backbone and the loss function.
From the original face-recognition dataset, we generate a
masked version using data augmentation, and we combine
both datasets during the training process. We modify the
selected network, based on ResNet-50 [17], [18], to also
output the probability that a face is wearing a mask without
adding any additional computational cost. Furthermore, we
combine the ArcFace loss with the mask-usage classification
loss, resulting in a new function named Multi-Task ArcFace
(MTArcFace).

Experimental results with non-masked and masked face-
recognition validation datasets show that the proposed ap-
proach highly boosts the model accuracy when dealing
with masked face recognition, while preserving almost the
same accuracy on the non-masked datasets. Furthermore,
the model achieves an accuracy of 99.78% in mask-usage
classification.

II. RELATED WORK

A. Face Recognition

Cutting edge methods for facial recognition rely on DNNs.
They learn to identify the most relevant parts of the human
faces an to represent them using feature vectors, maximiz-
ing the inter-class distance and minimizing the intra-class
distance.

Most of these methods follow two training techniques. The
first approach is based on a classification model where each
class represents an identity, with a Softmax-based function
for computing the loss [16], [19]. The other consists of
learning the embeddings directly by minimizing the distance
between the samples that belong to the same identity and
maximizing the distance of the samples that belongs to
different identities [20].

The accuracy for the two approaches is affected when deal-
ing with facial masks [5], [6]. Nevertheless, as commented
in [16], the models based on the second approach need an
exhaustive analysis of the dataset before the training process
to generate the groups of samples that will be compared.
Considering this, we decided to follow the first approach to
tackle the problem. In particular, we use ArcFace [16] work
as our starting point, as it achieves the best accuracy among
the state-of-the-art methods.

B. Masked Face Recognition

Numerous works have been released in an effort to resolve
the masked face recognition challenge since the emergence
of COVID-19. The suggested solutions attack the issue using
various strategies that may be divided into three groups. The
first one utilizes generative adversarial networks (GAN) to
remove masks from the faces before passing them to the
recognition model, avoiding the need of retraining it [21],
[13]. Nevertheless, the reliability of the rebuilt faces, depends
on the quality of the training process, the network, and
the data. Furthermore, the time required for computation is
considerably increased by this preprocessing step.

In the second group the models are trained using only the
upper part of the face [15]. These models are faster, since
they process a smaller region. However, they loose relevant
information when working also with uncovered faces.

On the other hand, the third group address the challenge by
combining faces with and without masks during the training
process [12], [14]. For instance, the authors in [12] enrich the
dataset VGG2 [22] with covered faces generated using data
augmentation before training their model using the procedure
presented in FaceNet [20]. A different approach is followed
in [14], where the authors generate two embeddings per
identity, corresponding to the masked and unmasked face
images.

The method proposed in this work belongs to the third
group, but using ArcFace [16] as the baseline model. First,
we create a synthetic version with masks of a face recog-
nition dataset using data augmentation. Then, during the
training process, both datasets are shuffled separately using
the same seed and, for every new face image selected for

the input batch, we decide whether the image is taken from
the original or the masked dataset with a probability of
50%. Furthermore, we take advantage of knowing to which
dataset the face belongs to and modify the original network to
output the probability that a face is wearing a mask without
additional computational cost.

C. Masked Face Datasets

All these approaches require datasets of masked faces.
To fulfill this need, several works have been presented. In
[14], the authors release a dataset with identities containing
masked and unmasked images with different orientations.
Nevertheless the size of the dataset is reduced, with less
than 12 thousand images and just one thousand identities,
unsufficient for training a modern architecture like a ResNet-
50 [17], [18]. Another dataset is released in [10], with 137
thousand masked faces. However, it is focused on detecting
if a mask is correctly put on or not, and it does not provide
ground truth for face recognition. In [11], the authors present
two datasets, one real-world dataset with 95 thousand faces
and 525 identities, and a synthetic dataset with 500 thousand
faces 10 thousand identities. Nevertheless they are still not
big enough for training a state-of-the-art face recognition
model, compared for instance with the dataset used in
ArcFace, MS1MV2, with almost 6M images and 85 thousand
identities.

As an alternative, the authors in [12] propose a software
for generating synthetic masks over real face images. It relies
on a detector of facial landmarks to localize the region where
the mask should be put. It provides several types of masks
with different colors available. We take advantage of this
software to create a masked version of our training dataset.

III. PROPOSED METHOD

A. Problem Definition

We consider the problem of facial recognition of subjects
who may or may not wear masks. As we do not know if the
subject is wearing a mask, the network must perform well
in both cases. To solve this problem, we aim at increasing
the accuracy of the face recognition network when dealing
with masked faces, while preserving as much as possible the
original accuracy with non-masked faces. In order to achieve
this, the network must learn if the subject is wearing a mask
to decide which facial features can be trusted in each case.
We take advantage of this fact and modify the network so
it also outputs the probability that the subject is wearing a
mask.

B. Training Pipeline

Using the original dataset, we create a masked version of
it and mix both on the fly while training. On every epoch,
we shuffle each dataset with an identical seed and, with
a probability of 50%, we randomly select if the incoming
faces are taken from the masked or the original dataset.
As mentioned in Section II-A, we use ArcFace [16] as the
baseline work for two reasons: it uses a softmax-loss-based

ArcFace Layer

Mask Probability
Layer

Image selector

Original dataset

Masked dataset
Mask probability

logits

Feature vector

ArcFace loss

Mask probability
loss

Loss Fussion

Multi-task ArcFace
loss

Fig. 1. Illustration of the proposed training pipeline. The image selector decides whether the next input image should be masked or not. The trained
network is modified to output also the probability that the face is wearing a mask.

methodology, which does not require an exhaustive training-
data-preparation stage; and it has been proven to be the
approach that reports the best results for the original face
recognition task. Thus, we select the dataset recommended
in their work MS1MV2, a refinement of MS-Celeb-1M [23],
composed of almost 6M images and 85 thousand identities.
An illustration of the proposed training pipeline is shown in
Figure 1.

We use the tool MaskTheFace [12] for creating the syn-
thetic masked dataset. The types of masks considered are
surgical, surgical green, surgical blue, N95, cloth and KN95.
The type mask is selected randomly and there is a probability
of 50% of applying a random color and a probability of
50% of applying a random texture. Some examples of the
generated faces are shown in Figure 2.

We test several network architectures and, considering the
balance between the parameter number and the accuracy,
we choose LResNet-50. More specifically, we use our own
implementation of the network in TensorFlow deep learning
framework, publicly available in a GitHub repository [24].

Starting from this network, just after the dropout layer,
we add a second linear layer, as shown in Figure 1. This
layer outputs two logits representing the probabilities that
the face is wearing a mask or not. By doing this, we compel
the network to learn if a face is covered, knowledge that is
also used by the face recognition head.

Thus, from the modified network we obtain two out-
puts, the logits (unnormalized predictions) of the ArcFace
layer (logitsArcFace) and the logits of the new dense layer
(logitsMask). To extract the combined error from both logits,
we start by generating the ArcFace loss (lossArcFace) in the
same way as in [24]:

lossArcFace = crossEnt(Softmax(logitsArcFace, labelsID)
(1)

Next, we calculate the loss associated with the probability
of wearing a mask (lossMask) by applying the softmax
activation function on the logits and cross-entropy with the
labels:

lossMask = crossEnt(Softmax(logitsMask), labelsID)
(2)

The Multi-Task ArcFace loss (lossMTArcFace) is obtained
by adding these two losses. However, to reduce the impact of
lossMask and give more importance to the ArcFace loss, we
use the logarithm of lossMask instead of the original value:

lossMTArcFace = lossArcFace + log(lossMask + 1.0) (3)

Finally, we add the regularization loss (as in the original
implementation) to compute the total loss that will be used
for the optimization:

losstotal = lossMTArcFace + lossregularization (4)

For training the model we use 2 GPUs Tesla V100, which
allows us using 512 as the batch size. We train the model for
300k steps. We use the SGD optimizer with a momentum of
0.9 and an initial learning rate of 0.0015. The learning rate
is reduced by a factor of 0.3 in steps 120k, 200k and 280k.
The rest of the parameters of the network remain the same
as in the original implementation. In Figure 3, we show the
training loss curve and the face-recognition and mask-usage
accuracy curves, compared to those of the original model.

IV. EXPERIMENTS

In this section, we present the results of a series of exper-
iments aimed at demonstrating the capabilities of the pro-
posed method. We divide the experiments into two groups:
identity verification and mask-usage verification.

A. Identity Verification

These experiments aim at measuring the improvement
of the proposed method in the face verification task when
dealing with masked faces. For measuring this increase, we
use the original model as the baseline to compare the results.

For the verification task, we generate masked versions of
3 well-known face recognition datasets, also used in [16] for
evaluating the original models:

Fig. 2. Some examples of the training faces and their corresponding masked version generated with the MaskTheFace tool [12]
.

Face recognition accuracy Mask usage accuracy

Train loss

Proposed model

Original model

Fig. 3. Training curves for the proposed model and the original ArcFace
model. The X axis represents the training steps.

• Labeled Faces in the Wild (LFW) [25]: public bench-
mark for face verification containing 13,233 images
from 5,749 people. The associated face verification task
includes 6,000 comparisons.

• Celebrities in Frontal-Profile in the Wild (CFP) [26]:
contains faces from 500 celebrities in frontal and profile
views. Two verification protocols are presented for this
dataset: one comparing only frontal faces (CFP FF), and
the other comparing frontal and profile faces (CFP FP).
Each of the protocols are composed of 7,000 compar-
isons. We consider both protocols for our experiments.

• Agedb [27]: the first manually collected, in-the-wild age
database. Contains 16,488 images from 568 celebrities
at different ages. Contains four verification protocols
where the compared faces have an age difference of
5, 10, 20 and 30 years respectively. We select the last
protocol for the experiments (AgeDB 30, as it is the
most challenging one. It contains 6,000 comparisons.

TABLE I
COMPARISON OF THE VERIFICATION PERFORMANCE (%) WITH THE

MASKED DATASETS BETWEEN THE PROPOSED METHOD AND THE

ORIGINAL ARCFACE MODEL.

Dataset Proposed Method Original model
Masked LFW 98.92 94.75

Masked CFP FF 98.33 92.73
Masked CFP FP 88.43 76.81

Masked AGEDB 30 93.17 90.53
MFR2 99.41 97.17

In addition, we also consider for the experiment the
masked face dataset MFR2 described in [12], with 269 real-
world face images from 53 celebrities, where the 64% of
the faces wear a mask. The associated verification process is
composed of 848 comparisons. Some examples of the images
of the different datasets considered for the experiment are
shown in Figure 4.

We present the results of this experiment in Table I.
They show that our method largely outperforms the original
model in the face verification task when dealing with masked
faces. This increase in performance is more evident with
profile images, where the amount of information of the face
available is reduced, as is the case with CFP FP, where the
proposed model is almost a 12% more accurate than the
original.

We also want to test the accuracy of the new model
when recognizing non-masked faces, to check whether it has
been a significant drop of performance. Thus, we repeat the
previous experiment with the original non-masked datasets
and compare the results with those achieved by the original
model. The results, exposed in Table II, show that there
is indeed a drop of performance for the new model, but
that it is not significant (less than a 2% in the worst case).
Furthermore, this drop in performance is much less than the
gain obtained with masked faces. For example, in the case

Fig. 4. Some examples of the faces of the evaluation datasets and their masked versions. The first row belongs to LFW [25], the second row to CFP
[26], the third row to AGEDB [27] and the last row to MFR2 [12] .

TABLE II
COMPARISON OF THE VERIFICATION PERFORMANCE (%) WITH THE

ORIGINAL DATASETS BETWEEN THE PROPOSED METHOD AND THE

ORIGINAL ARCFACE MODEL.

Dataset Proposed Method Original model
LFW 99.45 99.62

CFP FF 99.40 99.70
CFP FP 92.27 93.81

AGEDB 30 95.02 96.90

of CFP FP, the model accuracy with masked faces increases
almost a 12%, while its accuracy with non-masked faces
decreases less than a 2%.

B. Mask-Usage Verification

Finally, we want to analyze the performance of the mask-
usage probability output added to the proposed method. For
this task, we run the model with all the faces contained in
every masked and non-masked dataset used in the previous
experiments. For each face we check whether the mask-usage
probability estimated by the model is correct or not with a
threshold of 0.5. Table I shows the results of the experiment.
For each dataset, the model achieves nearly 100% accuracy.
Again, the worst result is achieved for the CFP FP dataset
(98.82%) due to the profile faces. We believe that this is due
to the fact that the training dataset does not contain enough
profile faces. In any case, the model achieves an average
accuracy of 99.78% across all datasets, so its effectiveness
for this task is demonstrated.

TABLE III
MASK-USAGE VERIFICATION PERFORMANCE (%) OF THE PROPOSED

METHOD.

Dataset Accuracy
LFW 99.99

CFP FF 99.99
CFP FP 98.82

AGEDB 30 99.97
Masked LFW 99.98

Masked CFP FF 99.98
Masked CFP FP 99.70

Masked AGEDB 30 99.99

V. CONCLUSIONS

In this work, we have presented a full-training pipeline
for ArcFace-based face-recognition models to adapt them
for working with masked faces. This pipeline includes the
generation of a synthetic masked dataset from the original
training dataset. Furthermore, we have taken advantage of
knowing to which dataset the face belongs to and modified
the original network to output the probability that a face is
wearing a mask without additional computational cost. As
a result, we have created a new loss function to teach the
network to extract vectors of good quality and reliable mask-
usage probabilities called Multi-Task ArcFace. Experimental
results with multiple masked and non-masked datasets have
demonstrated that the proposed method highly boosts the
performance of the model when recognizing masked faces,
while suffering just a small drop in performance with non-
masked faces. Furthermore, it has also been demonstrated
its effectiveness for the mask-usage verification task with

an average performance of 99.78% of accuracy across all
datasets.

Future work will focus on extending the applicability of
this method to other types of occlusions, such as eyes-masked
faces. In addition, we will also study the possibility of adding
a new output to the model to classify if the subject is wearing
a mask correctly or if it is wearing it under its nose or its
mouth.

VI. ACKNOWLEDGEMENTS

This paper is supported by European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 883341, project GRACE (Global Response Against
Child Exploitation).

REFERENCES

[1] D. Mou, Fundamentals and Advances in Biometrics and Face Recog-
nition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, ch. 2,
pp. 13–70.

[2] N. Anot and K. Singh, “A review on biometrics and face recognition
techniques.” International Journal of Advanced Research, vol. 4, pp.
783–786, 05 2016.

[3] X. Tan and B. Triggs, “Enhanced local texture feature sets for face
recognition under difficult lighting conditions,” IEEE Transactions on
Image Processing, vol. 19, no. 6, pp. 1635–1650, June 2010.

[4] S. T. Chaudhari and A. Kale, “Face normalization: Enhancing face
recognition,” in 2010 3rd International Conference on Emerging
Trends in Engineering and Technology, Nov 2010, pp. 520–525.

[5] N. Damer, J. H. Grebe, C. Chen, F. Boutros, F. Kirchbuchner, and
A. Kuijper, “The effect of wearing a mask on face recognition
performance: an exploratory study,” in 2020 International Conference
of the Biometrics Special Interest Group (BIOSIG), 2020, pp. 1–6.

[6] “Nist finds flaws in facial checks on people with covid masks,”
Biometric Technology Today, vol. 2020, no. 8, p. 2, 2020.

[7] M. Jiang, X. Fan, and H. Yan, “Retinamask: A face mask detector,”
2020.

[8] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “A
hybrid deep transfer learning model with machine learning methods
for face mask detection in the era of the covid-19 pandemic,” Mea-
surement, vol. 167, p. 108288, 2021.

[9] S. Lin, L. Cai, X. Lin, and R. Ji, “Masked face detection via a modified
lenet,” Neurocomputing, vol. 218, pp. 197 – 202, 2016.

[10] A. Cabani, K. Hammoudi, H. Benhabiles, and M. Melkemi,
“Maskedface-net - a dataset of correctly/incorrectly masked face
images in the context of covid-19,” ArXiv, vol. abs/2008.08016, 2020.

[11] Z. Wang, G. Wang, B. Huang, Z. Xiong, Q. Hong, H. Wu, P. Yi,
K. Jiang, N. Wang, Y. Pei, H. Chen, Y. Miao, Z. Huang, and J. Liang,
“Masked face recognition dataset and application,” 2020.

[12] A. Anwar and A. Raychowdhury, “Masked face recognition for secure
authentication,” ArXiv, vol. abs/2008.11104, 2020.

[13] N. Ud Din, K. Javed, S. Bae, and J. Yi, “A novel gan-based network for
unmasking of masked face,” IEEE Access, vol. 8, pp. 44 276–44 287,
2020.

[14] M. Geng, P. Peng, Y. Huang, and Y. Tian, “Masked face recognition
with generative data augmentation and domain constrained ranking,” in
Proceedings of the 28th ACM International Conference on Multimedia,
ser. MM ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 2246–2254.

[15] W. Hariri, “Efficient masked face recognition method during the covid-
19 pandemic,” 2020.

[16] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[17] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in
2017 CVPR, 2017, pp. 6307–6315.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 CVPR, June 2016, pp. 770–778.

[19] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition,” in 2017 CVPR, 2017,
pp. 6738–6746.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of the
CVPR, June 2015.

[21] C. Li, S. Ge, D. Zhang, and J. Li, “Look through masks: Towards
masked face recognition with de-occlusion distillation,” in Proceedings
of the 28th ACM International Conference on Multimedia, ser. MM
’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 3016–3024.

[22] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
A dataset for recognising faces across pose and age,” 2018.

[23] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition,” in ECCV, vol. 9907,
10 2016, pp. 87–102.

[24] D. Montero, “face recognition tf2,” 2019. [Online]. Available:
https://github.com/dmonterom/face recognition TF2

[25] G. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database forstudying face recognition in unconstrained
environments,” Tech. rep., 10 2008.

[26] S. Sengupta, J. Cheng, C. Castillo, V. Patel, R. Chellappa, and
D. Jacobs, “Frontal to profile face verification in the wild,” in IEEE
Conference on Applications of Computer Vision, February 2016.

[27] S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and
S. Zafeiriou, “Agedb: the first manually collected, in-the-wild age
database,” in Proceedings of the CVPR Workshop, vol. 2, 2017, p. 5.

4.6 BEV Object Tracking for LIDAR-based Ground
Truth Generation

• Authors: David Montero and Nerea Aranjuelo and Orti Senderos and Marcos
Nieto

• Booktitle: Proceedings of the 2019 27th European Signal Processing Confer-
ence (EUSIPCO)

• Year: 2019

• Publisher: IEEE

4.6 BEV Object Tracking for LIDAR-based Ground Truth Generation 125

BEV Object Tracking for LIDAR-based Ground
Truth Generation

David Montero∗, Nerea Aranjuelo∗, Orti Senderos∗ and Marcos Nieto∗
∗Vicomtech, Mikeletegi 57, P. Tecnológico, 20009, San Sebastián, Spain

Email: see http://www.vicomtech.org

Abstract—Building ADAS (Advanced Driver Assistance Sys-
tems) or AD (Autonomous Driving) vehicles implies the acquisi-
tion of large volumes of data and a costly annotation process to
create labeled metadata. Labels are then used for either ground
truth composition (for test and validation of algorithms) or to
set-up training datasets for machine learning processes. In this
paper we present a 3D object tracking mechanism that operates
on detections from point cloud sequences. It works in two steps:
first an online phase which runs a Branch and Bound algorithm
(BBA) to solve the association between detections and tracks,
and a second filtering step which adds the required temporal
smoothness. Results on KITTI dataset show the produced tracks
are accurate and robust against noisy and missing detections, as
produced by state-of-the-art deep learning detectors.

I. INTRODUCTION

In recent years, huge improvements have been made in the
field of Advanced Driver Assistance Systems (ADAS). Current
ADAS are capable to perceive the surrounding environment of
the vehicle by using sensors and take real-time decisions for
safety (emergency braking, lane departure warning) or comfort
(lane keeping system, automatic cruise control).

Most of these achievements have been possible thanks to the
continuous and rapid advances in Deep Learning (DL) [1][2].
New DL models can process the data captured by different
sensors, such as cameras or LIDARs, to obtain a precise
estimation of the scene (e.g. other vehicles, pedestrians, traffic
signs). However, the accuracy of these models depends almost
entirely on the richness of the dataset used for training.

DL models require training with huge amounts of data
precisely annotated. The annotation process is costly and slow,
usually requiring large groups of human operators creating the
labels with specific tools. This process is the main bottleneck
for the improvement of DL and as a consequence, ADAS.

In order to reduce this cost and accelerate the process,
many annotation tools, automatic and semi-automatic, have
been developed using different approaches [3][4]. Though,
automatic annotation tools are not perfect and they introduce
errors or inaccuracies to the annotations, which need always to
be corrected or, in the best case, validated as ground truth. In
the case of object annotation, it is critical that the automated
step produce labels which are not only accurate in space (e.g.
a bounding box in 2D or cuboid in 3D), but also coherent
in time, thus assigning single identifiers to objects through
the sequence. In this paper we propose an offline 3D object
tracking algorithm as a part of a semi-automatic annotation
tool for LIDAR data.

Fig. 1. Diagram of the annotation process.

Multi-object tracking is usually focused on solving how to
associate incoming new detections to existing tracks [5], in
an online process whose main requirement is to operate real-
time. Offline processes, on the contrary, tend to find a graph
with all possible associations and solve it in a joint optimized
process, which result in very slow batch processes.

In our work we propose an approach which is as fast
as online processes, by means of defining an online frame-
level association problem, but solving it with a recursive
function which ensures optimal association, plus additional
post-processing steps which provide the necessary estimation
smoothness. Our approach aims to obtain the highest possible
accuracy in the least possible time in order to work effectively
in a semi-automatic annotation process.

II. SYSTEM OVERVIEW

Figure 1 illustrates the pipeline of the annotation tool which
includes the proposed tracking component. The annotation
process is divided in a series of steps, starting with the
generation of the recordings from the sensorized vehicles.

LIDAR streams (3D point cloud sequences) are then pre-
processed to create bird’s-eye view (BEV) images (also called
top view images, see section III-A), which are then used as
input for the Convolutional Neural Network (CNN) detectors
(see section III). The detector outputs are cuboids in 3D space,
defined as Zt,n = (x, y, z, rx, ry, rz, w, h, l, c, s), where t is
the time step, n is the detected object number in that time step,
x, y and z are the object center coordinates, rx, ry and rz
are the object rotation angles, w, h and l are it width, height,
and length, c is the class number, and s is the confidence
of the detection. This data will be converted into a standard
format using the VCD converter1, and will serve as the input

1https://vicomtech.box.com/v/vcd-library-linux-windows

data for the tracker. The tracker will associate the input
object detections between the different time steps, generate
predictions where detections are missing and finally correct
the input object properties by applying a post-process to the
generated tracks (see section IV). As a result, the VCD payload
describing the scene is updated with the tracking information
and sent to a web application for the final annotation step
carried out by human operators.

III. OBJECT DETECTION

Using latest advances in object detection with DL algo-
rithms [1], we have trained a CNN to generate oriented
bounding box detections based on LIDAR point clouds.

A. 3D Point Cloud Representation

A Velodyne HDL-64E laser scanner produces about one
million 3D points per second [6]. Applying detection algo-
rithms directly on these point clouds is normally avoided
because of their sparse nature and the large amount of data
to be processed [7][8]. Due to the high dimensionality and
sparsity of the data, we have adopted an approach based on
BEV map data representation. The point cloud is projected
to the ground plane and discretized into a 2D grid of cells
with resolution of 0.1 x 0.1m. Only the points inside a range
of [(-40, 40), (-40, 40), (-1.75, 1.25)] meters are considered,
taking the LIDAR position as the origin of coordinates. For
each cell, the minimum, average and maximum heights of all
the contained points are stored. These 3 features are stored as
a 3-channel matrix with size of 800×800 and fed into a CNN.

B. Deep neural network

The trained network takes the encoded feature maps as input
and produces oriented 3D boxes for the considered object
classes. The network is based on Faster R-CNN architecture
[9], which consists on two main stages. First, a Region
Proposal Network (RPN) generates bounding boxes with ob-
ject candidates. In the second stage, for each box proposal,
extracted features are used to classify it, as well as to regress
the final box coordinates as well as its rotation angle. Non-
maximum suppression (NMS) is used to reduce redundancy
of highly overlapped boxes. We use a IoU (Intersection-over-
Union) threshold of 0.7 for NMS. The backbone network we
use for feature extraction is ResNet-101 [10].

Fig. 2. Neural network architecture for oriented box detection.

The model is optimized for a multi-task loss function, which
combines classification and bounding box regression losses

[9]. Different from the original Faster R-CNN architecture,
which does not predict the orientation of the boxes, an extra
loss term is added [11] to minimize the error between the
estimated rotated box and the ground truth.

The network is trained in an end-to-end fashion. Weights
are initialized with pretrained weights on ImageNet data [12].
The training dataset is generated with the sequences published
so far from the public driving dataset nuScenes [13]. Augmen-
tation techniques are applied to augment samples containing
the least frequent classes. The total amount of training samples
is 20000, including 9 different object classes: car, pedestrian,
cyclist, train, truck, bus, motorist, construction vehicle and
trailer. Custom anchor boxes are designed for each class.

For each time step t, each object prediction is parameterized
by Zt,d as defined in previous section. The height of the
bounding box is estimated based on the object class.

IV. TRACKING

As mentioned in section II, the tracker is in charge of
associating the input objects between the different time steps,
generating missing tracking states in intermediate steps and
correcting the input object properties by applying a post-
process to the generated tracks. A diagram describing the
tracking process can be found in Figure 3.

Fig. 3. Offline tracking dataflow where input data stands for the obtained
CNN detections, and output data are the updated tracks.

The tracking process is divided into two main components.
First, the online component is executed as a loop where, at
each iteration, a new time step (i.e. frame) of the input data is
processed. Tracks are then updated using predictions based on
their previous information and the new input detections. In the
correction step an association matrix is generated and solved
in order to match existing tracks predictions with detected
objects and the tracks are updated. Finally, a post-process adds
smoothness to produced tracks both in position and rotation.

A. Linear prediction

It is assumed that detections are filtered by their score using
a suitable user-defined threshold before feeding the tracker, so
the variable of Zt,n is not used during the tracking process.

After analyzing the data and the use case, the following con-
clusions were reached. z position, rx and ry is approximately
constant in almost every case, therefore it does not provide
relevant information. Also, rz is a noisy variable and will be
corrected in the post-process. So we decided to discard these
variables from the prediction model. Similarly, the object size

and the class variables are assumed to be constants, so they
are not considered for the prediction.

After this filter, the prediction variables are x, y and rz .
For solving this problem, it was decided to use a con-
stant acceleration model. So, considering all the previous
information, a track state will be represented by St,m =
(x, y, ẋ, ẏ, ẍ, ÿ, z, rx, ry, rz, w, h, l, c), where t is the time step,
and m is the index of the track.

B. Association matrix

For the association between the tracks states and the de-
tections an association matrix is defined. Let this matrix be
Am×n where M is the number of existing tracks, and N is
the number of incoming detections.

Each entry of A encodes the association likelihood (between
0 and 1) of track m and detection n. Before computing the
likelihood, it is checked that the track and the detection class
belongs to the same group. Two groups are defined based on
the detector output classes: a vehicle class (cars, trucks and
buses) and a human class (pedestrians, cyclists and bikers).
This is applied because classes of the same group are more
likely to be confused by the detector.

Only the 2D position variables (x and y) are taken in
account for the likelihood computing, due to the noise in
the rz , sx and sy . The likelihood function can be selected
as any decaying function around the predicted state of the
track. Therefore, we need first to define the distance between
the centroids of the predicted track p = (px, py)> and the
detection q = (qx, qy)>, as d′ = (p− q).

The model must include the uncertainty of the prediction
itself and the noise of the detections. For convenience, we
use a bivariate normal distribution on a normalized distance d
between the centroids of the predicted track and the detection.
This distance will be rotated so the x axis aligned with the
velocity vector, using θ = atan(vy, vx):

d′ = d′
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(1)

Thus, the distance is normalized as:

d =

(
max(0, |d′x| − ε)

dmax
,
max(0, |d′y| − ε)

dmax

)>
(2)

where ε is the detection noise, and dmax is the maximum
association distance, which depends on the class group of the
track. This normalization ensures that the distance measure
includes the detection noise.

The likelihood function is then defined as:

L(d) =
1√

(2π)2|σ|
exp(−1

2
(d>σ−1d)) (3)

where σ is the covariance matrix which defines the shape
of the likelihood function. As we need a likelihood function
ranged between 0 and 1, we need to select σx = σy = 1√

2π
.

Then, the likelihood is redefined as:

L(d) = exp(−(||d||2π)) = exp(−d2xπ)exp(−d2yπ) (4)

As we want to include the uncertainty of the prediction
process, we truncate this function to a certain limit, defined
by an ellipse aligned with the velocity vector of the track and
which axis length will depend on the prediction certainty. The
axes of the ellipse can be defined as:

sx = dmax + (1 + ||v||(∆t+ 1))γx

sy = dmax + (1 + ||v||(∆t+ 1))γy
(5)

where ||v|| is the magnitude of the velocity vector of the
track, ∆t depends on the number of steps passed since the
last association of a detection with the track, and γx and γy
are factors which elongate the ellipse according to the expected
object dynamics (e.g. for cars, we have found that γx = 2.0
and γy = 0.3 encode well its inertia).

Then, the ellipse is defined as dS−1d = 1, where S is the
matrix that defines the axes of the ellipse: S = diag(s2x, s

2
y).

C. Association matrix resolution

Solving correctly the association matrix is crucial for the
tracking, as a wrong or sub-optimal match in a time step
propagates the error for the rest of the sequence. Two ways of
solving it are considered and tested: (i) the Greedy Algorithm
(GA)[14], used as baseline for comparison; and (ii) our
proposed modified Branch and Bound Algorithm (BBA) [15].

GA works selecting individually the global maximum out
of the matrix and setting to zero its corresponding row and
column, and iterating finding next maxima until the matrix is
emptied. BBA works, instead, in a recursive manner, finding
maxima and then exploring the tree of possible suboptimal
associations in order to find better joint likelihoods for the
entire matrix. BAA guarantees that the sum of the likelihood
of the produced associations is optimal, while GA does not.

GA is usually faster than BBA when there is a high number
of candidates, but results using BBA are better in most of
the cases. The two algorithms were implemented and tested
in different scenarios. The results of some of those tests are
presented in table I, where the errors are the number of steps
in which the sum of the likelihood is worse using the GA,
Max diff is the maximum difference of the BBA and GA
likelihood sum registered, GA time is the average time of
the GA implementation execution and the BBA time is the
algorithm implementation execution, both in microseconds and
per frame. Although this table shows relatively small errors of
the GA results at frame-level, the impact of these errors is
extremely significant as they are propagated to the rest of the
sequence causing erroneous tracks.

TABLE I
ASSOCIATION ALGORITHMS COMPARISON

Scenario Steps Errors Max diff GA time BBA time
Street road 611 10 0.423 20 µs 35 µs
Parking 1 189 5 0.703 29 µs 45 µs
Parking 2 404 6 0.559 110 µs 132 µs

Considering the tests results and the priority of the accuracy
over the processing time it was decided to use a modified

BBA as the matrix solver. In the proposed implementation,
the algorithm starts associating each track with the detection
with the best likelihood. Then it looks for collisions (where
a collision stands for the case where two tracks have been
associated with the same detection). If it finds any, then a
recursive function will be called until it finds the best collisions
free combination. The algorithm can be found in algorithm 1,
where candidates variable is the association vector.

Algorithm 1 B&B Recursive Function
procedure SOLVECOL(candidates, a, b)

candidatesA← candidates
candidatesA(a)← getNextCandidate(a)
candidatesA← checkCol(candidatesA)
scoreA←∑n tracks−1

i=0 Li,candidatesA(i)

candidatesB ← candidates
candidatesB(b)← getNextCandidate(b)
candidatesB ← checkCol(candidatesB)
scoreB ←∑n tracks−1

i=0 Li,candidatesB(i)

if scoreA ≥ scoreB then
return candidatesA

return candidatesB
procedure CHECKCOL(candidates)

for i← 0; i < n tracks− 1; i← i+ 1 do
for j ← i+ 1; j < n tracks; j ← j + 1 do

if candidates(i) = candidates(j) then
candidates← solveCol(candidates, i, j)

return candidates

D. Estimation and tracks updating

Once the association matrix is solved, the tracks new state
will be estimated. The position estimation will be calculated
correcting the detection position using the equation 6, where
p can be x or y, distp is the difference between prediction
and detection positions, prednp is the prediction noise, which
depends on the velocity, the number of steps without detections
(∆t) and a noise coefficient, and detn is the detection noise.

pest = pdet + (max(0, distp −max(prednp − detn), 0)))/2

prednp = (distp/||distp||)||vp||∆tγp
(6)

The velocity in x and y is calculated by the difference
between the new and the last estimated positions divided by the
difference of steps, and smoothed using a linear interpolation
with the last 3 velocity values registered. The same method is
used for the acceleration in x and y. For the rest of the state
variables, the value of the detection variables will be assign,
since they will be treated in post-processing.

After the new tracks states are computed, the missing tracks
states from previous steps will be generated using a linear
interpolation. Also, it will be checked if there are dead tracks
(without an associated detection in the last n steps) and
separate them from the active ones. Finally, new tracks will
be generated using the unassociated detections.

E. Tracks post-processing

Once the online stage has finished, the post-processing stage
will begin. The aim of this stage is to remove orphan tracks and
to correct the detection noisiest variables, the z axis rotation

angle and the class. They are considered as orphan tracks all
the tracks that has less than n states, and they will be removed,
since they have a high probability of being erroneous.

For the rz correction, it is assumed that, in most cases, the
detection value is right, and that it wont change drastically
from one step to another, so it will be calculated using the
mode between s− n and s + n steps, being s the current step
number. Also, the track size will be corrected using the mode
of every track states, as it should be constant in every step.
Finally, for the track class variable, it is again assumed that,
in most cases, the detection value is right, so it will receive
the value of the mode between all track steps.

V. TESTS & DISCUSSION

In this section we present an experimental analysis of our
method. We validate the tracker using the first 10 of the 22
training sequences with ground truth of the KITTI dataset with
the tracking metrics proposed in [16].

In the ideal situation when detections are perfect, using the
ground truth boxes from the KITTI dataset, we have observed
that the tracker produces perfect tracks, without error.

A. Ablation study

We perform an ablation study on the input data in order
to measure the impact of imperfect detections on the tracking
results. We define three types of detection problems: (i) spatial
noise; (ii) temporal sparsity; and (iii) a combination of both.
The first test evaluates the effect of translation, rotation and
size measurement noise in the detections. The temporal spar-
sity refers refers to the miss-detections of objects in specific
frames. For the first test define a probability of 50% to apply
randomly a noise between −20% and 20% to each detection in
each frame. The experiment is repeated 10 times; the average
results for each sequence are shown in Table II.

TABLE II
TRACKER RESULTS WITH SPATIAL NOISE

Seq MOTA F1 MT PT ML FRAG
0 0.8626 0.9319 12.0 0.0 0.0 33.0
1 0.8561 0.9292 90.4 1.6 0.0 177.1
2 0.8684 0.9346 15.6 0.4 0.0 68.4
3 0.8485 0.9253 9.0 0.0 0.0 25.8
4 0.8511 0.9270 29.3 1.6 0.1 59.7
5 0.8402 0.9212 33.5 0.5 0.0 91.6
6 0.8383 0.9203 12.8 0.2 0.0 48
7 0.8520 0.9268 56.7 0.3 0.0 163.2
8 0.8459 0.9237 24.2 0.8 0.0 92.8
9 0.8664 0.9338 87.0 1.0 0.0 185.9

Temporal sparsity is analyzed following the same process
and suppressing 20% of each object detections randomly
across the sequence (see Table III).

For the third test we combine the spatial noise and the
temporal sparsity to simulate a real detector (see Table IV).
We can observe the tracker is able to solve temporal sparsity
better than spatial noise, since, in the correction stage, the
tracker assumes the position of detections are highly reliable.

TABLE III
TRACKER RESULTS WITH TEMPORAL NOISE

Seq MOTA F1 MT PT ML FRAG
0 0.9897 0.9964 12.0 0.0 0.0 3.8
1 0.9940 0.9983 92.0 0.0 0.0 8.4
2 0.9984 0.9996 16.0 0.0 0.0 0.9
3 0.9907 0.9977 9.0 0.0 0.0 1.8
4 0.9987 0.9997 31.0 0.0 0.0 0.6
5 0.9985 0.9995 34.0 0.0 0.0 1.0
6 0.9991 0.9998 13.0 0.0 0.0 0.3
7 0.9981 0.9995 57.0 0.0 0.0 2.4
8 0.9997 0.9999 25.0 0.0 0.0 0.2
9 0.9913 0.9977 88.0 0.0 0.0 13.4

TABLE IV
TRACKER RESULTS WITH COMBINED NOISE

Seq MOTA F1 MT PT ML FRAG
0 0.8770 0.9409 12.0 0.0 0.0 29.6
1 0.8778 0.9417 91.0 1.0 0.0 146.5
2 0.8935 0.9472 15.9 0.1 0.0 55.3
3 0.8454 0.9251 9.0 0.0 0.0 28.0
4 0.8735 0.9380 29.9 2.0 0.1 47.3
5 0.8640 0.9340 33.4 0.6 0.0 73.6
6 0.8693 0.9360 13.0 0.0 0.0 35.3
7 0.8689 0.9360 56.9 0.1 0.0 144.8
8 0.8771 0.9392 24.2 0.8 0.0 73.3
9 0.8783 0.9419 87.5 0.5 0.0 166.7

B. Study on generated detections

We finally analyze the results of the tracking when the input
estimations are generated by the trained point cloud based
object detector (see section III). The same evaluation metrics
are computed for this experiment. Results are shown in Table
V, where there is an extra column (F1D) with the F-Score
obtained with the detector output. In this experiment the

TABLE V
TRACKER RESULTS WITH REAL DETECTOR

Seq MOTA F1 F1D MT PT ML FRAG
0 0.5476 0.7650 0.7468 5 6 1 14
1 0.5389 0.7631 0.7420 50 20 21 92
2 0.3094 0.6491 0.6340 6 5 0 20
3 0.6265 0.8095 0.7800 4 2 3 9
4 0.6814 0.8490 0.7965 20 9 1 25
5 0.6280 0.8150 0.7077 14 9 11 34
6 0.7438 0.8788 0.8382 8 3 2 15
7 0.7000 0.8542 0.8473 43 11 3 70
8 0.5069 0.7554 0.7290 12 8 4 26
9 0.3406 0.6487 0.6382 29 26 27 106

MOTA results with real detections are, as expected, worse
than with ground truth detections due to their inherent noise.
However, there is always an improvement of F-Score, ranging
between 2− 5% thanks to the usage of the tracker.

VI. CONCLUSIONS

In this work, we have shown our implementation of a 3D
object offline tracking technique, which is robust against noisy
and sparse detections produced by deep learning detection

frameworks. Our approach combines the benefits of online
tracking schemas, and thus operating near real-time, and the
reliability of batch processes, by means of applying a recursive
implementation of the Branch and Bound algorithm (BBA) to
optimally solve the association problem.

In our experiments we show the BBA algorithm is optimal
with respect the usual Greedy Algorithm (GA) approach, while
keeping its computation under real-time requirements. Addi-
tionally, we have explored the impact of the noise and sparsity
of detections benchmarking our proposed work against the
ground truth from the KITTI dataset.

Furthermore, the proposed tracker is integrated into a web-
based annotation platform which takes the produced tracks
and presents them to teams of human annotators which refine,
correct and finally validate the annotations. Future work will
include a refinement of the score function at track level, so
that the interaction between the algorithm and the annotators
can be extended to offer finer level of control to the users.

VII. ACKNOWLEDGMENTS

This work has received funding from the European Com-
mission (EC) Horizon 2020 programme (grant agreement no.
688099, project Cloud-LSVA).

REFERENCES

[1] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A survey,”
arXiv preprint arXiv:1809.02165, 2018.

[2] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. Garcia-Rodriguez, “A review on deep learning techniques applied to
semantic segmentation,” arXiv preprint arXiv:1704.06857, 2017.

[3] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme:
a database and web-based tool for image annotation,” International
journal of computer vision, vol. 77, no. 1-3, pp. 157–173, 2008.

[4] S. Bianco, G. Ciocca, P. Napoletano, and R. Schettini, “An interactive
tool for manual, semi-automatic and automatic video annotation,” Com-
puter Vision and Image Understanding, vol. 131, pp. 88–99, 2015.

[5] H. S. Parekh, D. G. Thakore, and U. K. Jaliya, “A survey on object
detection and tracking methods,” IJIRCCE, vol. 2, pp. 2970–2979, 2014.

[6] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3354–3361, IEEE, 2012.

[7] Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li, and N. Sun, “Rt3d: Real-
time 3-d vehicle detection in lidar point cloud for autonomous driving,”
IEEE Robotics and Automation Letters, vol. 3, pp. 3434–3440, 2018.

[8] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7652–7660, 2018.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91–99, 2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[11] Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu, and Z. Luo,
“R2cnn: rotational region cnn for orientation robust scene text detection,”
arXiv preprint arXiv:1706.09579, 2017.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] “Nuscenes.” https://www.nuscenes.org/. (Accessed on 25/02/2019).
[14] J. Edmonds, “Matroids and the greedy algorithm,” Mathematical pro-

gramming, vol. 1, no. 1, pp. 127–136, 1971.
[15] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”

Operations research, vol. 14, no. 4, pp. 699–719, 1966.
[16] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A

benchmark for multi-object tracking,” arXiv preprint:1603.00831, 2016.

4.7 Other Publications

4.7.1 MFR 2021: Masked Face Recognition Competition

• Authors: Fadi Boutros and Naser Damer and Jan Niklas Kolf and K. Bommanna
Raja and Florian Kirchbuchner and Raghavendra Ramachandra and Arjan
Kuijper and Pengcheng Fang and Chao Zhang and Fei Wang and David Montero
and Naiara Aginako and Basilio Sierra and Marcos Nieto and Mustafa Ekrem
Erakin and Uğur Demir and Hazim Kemal and Ekenel and Asaki Kataoka and
Kohei Ichikawa and Shizuma Kubo and J Zhang and Mingjie He and Dan Han
and S. Shan and Klemen Grm and Vitomir vStruc and Sachith Seneviratne and
Nuran Kasthuriarachchi and Sanka Rasnayaka and Pedro C. Neto and Ana F.
Sequeira and João Ribeiro Pinto and Mohsen Saffari and Jaime S. Cardoso

• Booktitle: Proceedings of the 2021 IEEE International Joint Conference on
Biometrics (IJCB)

• Year: 2021

• Publisher: IEEE

• Abstract: This paper presents a summary of the Masked Face Recognition
Competitions (MFR) held within the 2021 International Joint Conference on
Biometrics (IJCB 2021). The competition attracted a total of 10 participating
teams with valid submissions. The affiliations of these teams are diverse and
associated with academia and industry in nine different countries. These
teams successfully submitted 18 valid solutions. The competition is designed
to motivate solutions aiming at enhancing the face recognition accuracy of
masked faces. Moreover, the competition considered the deployability of the
proposed solutions by taking the compactness of the face recognition models
into account. A private dataset representing a collaborative, multi-session,
real masked, capture scenario is used to evaluate the submitted solutions. In
comparison to one of the top-performing academic face recognition solutions,
10 out of the 18 submitted solutions did score higher masked face verification
accuracy.

4.7 Other Publications 133

4.7.2 Accurate 3D Object Detection from Point Cloud Data
using Bird’s Eye View Representations

• Authors: Nerea Aranjuelo and Guus Engels and David Montero and Marcos
Nieto and Ignacio Arganda-Carreras and Luis Unzueta and Oihana Otaegui

• Booktitle: Proceedings of the 13th International Joint Conference on Compu-
tational Intelligence

• Year: 2021

• Publisher: SciTePress

• Abstract: In this paper, we show that accurate 3D object detection is possible
using deep neural networks and a Bird’s Eye View (BEV) representation of
the LiDAR point clouds. Many recent approaches propose complex neural
network architectures to process directly the point cloud data. The good
results obtained by these methods have left behind the research of BEV-based
approaches. However, BEV-based detectors can take advantage of the advances
in the 2D object detection field and need to handle much less data, which is
important in real-time automotive applications. We propose a two-stage object
detection deep neural network, which takes BEV representations as input
and validate it in the KITTI BEV benchmark, outperforming state-of-the-art
methods. In addition, we show how additional information can be added to
our model to improve the accuracy of the smallest and most challenging object
classes. This information can come from the same point cloud or an additional
sensor’s data, such as the camera.

134 Chapter 4 Publications

Bibliography

[14] Tensorflow detection model zoo. Last viewed: 2018-05-14 (cit. on pp. 22, 24).

[24] AUTOPILOT H2020 project. Last viewed: 2018-05-24 (cit. on pp. 20, 21).

[AAJ21] Imran Ahmed, Misbah Ahmad, and Gwanggil Jeon. „Social distance monitoring
framework using deep learning architecture to control infection transmission of
COVID-19 pandemic“. In: Sustainable Cities and Society 69 (2021), p. 102777
(cit. on p. 30).

[AAV12] Igor N. Aizenberg, Naum N. Aizenberg, and Joos Vandewalle. „Multi-Valued
and Universal Binary Neurons: Theory, Learning and Applications“. In: 2012
(cit. on p. 1).

[Ahm+20] Imran Ahmed, Misbah Ahmad, Joel Rodrigues, Gwanggil Jeon, and Sadia Din.
„A deep learning-based social distance monitoring framework for COVID-19“.
In: Sustainable Cities and Society 65 (Nov. 2020), p. 102571 (cit. on p. 30).

[Ann13] Mr. Vinod Saroha Annu Malik Anju Sharma. „Greedy Algorithm“. In: Interna-
tional Journal of Scientific and Research Publications. Vol. 3. Aug. 2013 (cit. on
p. 46).

[AR20] Aqeel Anwar and A. Raychowdhury. „Masked Face Recognition for Secure
Authentication“. In: ArXiv abs/2008.11104 (2020) (cit. on pp. 40, 42).

[Ara+21] Nerea Aranjuelo, Sara García, Estíbaliz Loyo, Luis Unzueta, and Oihana Otaegui.
„Key Strategies for Synthetic Data Generation for Training Intelligent Systems
based on People Detection from Omnidirectional Cameras (In press)“. In:
Computers & Electrical Engineering (2021) (cit. on pp. 29, 30).

[Ben+09] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. „Cur-
riculum learning“. In: International Conference on Machine Learning. 2009 (cit.
on p. 52).

[Ben+15] Yoshua Bengio, Dong-Hyun Lee, Jörg Bornschein, and Zhouhan Lin. „Towards
Biologically Plausible Deep Learning“. In: ArXiv abs/1502.04156 (2015) (cit.
on p. 1).

[Ben07] Yoshua Bengio. „Learning Deep Architectures for AI“. In: Found. Trends Mach.
Learn. 2 (2007), pp. 1–127 (cit. on p. 1).

[Bha+17] Umang Bhatt, Shouvik Mani, Edgar Xi, and J. Zico Kolter. „Intelligent Pothole
Detection and Road Condition Assessment“. In: ArXiv e-prints (Oct. 2017).
arXiv: 1710.02595 (cit. on p. 21).

135

https://arxiv.org/abs/1710.02595

[Bou+21] Fadi Boutros, Naser Damer, Jan Niklas Kolf, et al. „MFR 2021: Masked Face
Recognition Competition“. In: 2021 IEEE International Joint Conference on
Biometrics (IJCB) (2021), pp. 1–10 (cit. on p. 44).

[Bow04] K. W. Bowyer. „Face recognition technology: security versus privacy“. In: IEEE
Technology and Society Magazine 23.1 (2004), pp. 9–19 (cit. on p. 15).

[BWL20a] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020 (cit. on p. 29).

[BWL20b] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. „YOLOv4:
Optimal Speed and Accuracy of Object Detection“. In: ArXiv abs/2004.10934
(2020) (cit. on p. 5).

[Cao+21] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. „Open-
Pose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields“.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (2021),
pp. 172–186 (cit. on p. 6).

[Car+20] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, et al. „End-to-End Object
Detection with Transformers“. In: ArXiv abs/2005.12872 (2020) (cit. on p. 52).

[Ces+20] Ivan Cesar, Valentin Solina, Renata Kramberger, and Tin Kramberger. „En-
hancing the Performance of Image Preprocessing for Classification and Object
Detection“. In: 2020 (cit. on pp. 6, 8).

[Cir+10] Dan C. Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber.
„Deep, Big, Simple Neural Nets for Handwritten Digit Recognition“. In: Neural
Computation 22 (2010), pp. 3207–3220 (cit. on p. 2).

[Cir+13] Dan C. Ciresan, Alessandro Giusti, Luca Maria Gambardella, and Jürgen
Schmidhuber. „Mitosis Detection in Breast Cancer Histology Images with Deep
Neural Networks“. In: Medical image computing and computer-assisted inter-
vention : MICCAI ... International Conference on Medical Image Computing and
Computer-Assisted Intervention 16 Pt 2 (2013), pp. 411–8 (cit. on p. 2).

[CM99] D. Comaniciu and P. Meer. „Mean shift analysis and applications“. In: Proceed-
ings of the Seventh IEEE International Conference on Computer Vision. Vol. 2.
1999, 1197–1203 vol.2 (cit. on p. 19).

[CMS12] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. „Multi-column deep
neural networks for image classification“. In: 2012 IEEE Conference on Computer
Vision and Pattern Recognition (2012), pp. 3642–3649 (cit. on p. 2).

[CPS06] Kumar Chellapilla, Sidd Puri, and Patrice Y. Simard. „High Performance Convo-
lutional Neural Networks for Document Processing“. In: 2006 (cit. on p. 2).

[Dec86] Rina Dechter. „Learning While Searching in Constraint-Satisfaction-Problems“.
In: AAAI. 1986 (cit. on p. 1).

[Dem+21] Alexander Demidovskij, Artyom Tugaryov, Andrej Kashchikhin, et al. „Open-
VINO Deep Learning Workbench: Towards Analytical Platform for Neural
Networks Inference Optimization“. In: Journal of Physics: Conference Series
1828 (2021) (cit. on p. 7).

136 Bibliography

[Den+09] Jia Deng, Wei Dong, Richard Socher, et al. „Imagenet: A large-scale hierarchical
image database“. In: 2009 IEEE conference on computer vision and pattern
recognition. Ieee. 2009, pp. 248–255 (cit. on p. 4).

[Den+19a] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. „ArcFace: Additive Angular Margin
Loss for Deep Face Recognition“. In: 2019 IEEE/CVF Conf. on Computer Vision
and Pattern Recognition. June 2019, pp. 4685–4694 (cit. on pp. 15, 35).

[Den+19b] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. „ArcFace: Ad-
ditive Angular Margin Loss for Deep Face Recognition“. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2019 (cit. on pp. 40, 42).

[Den+20] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, et al. MOT20: A benchmark
for multi object tracking in crowded scenes. 2020 (cit. on p. 30).

[Dos+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. „An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale“. In: ArXiv
abs/2010.11929 (2020) (cit. on p. 52).

[EPS17] Hadi Keivan Ekbatani, Oriol Pujol, and Santi Segui. „Synthetic Data Generation
for Deep Learning in Counting Pedestrians.“ In: ICPRAM. 2017, pp. 318–323
(cit. on pp. 5, 7).

[Erk+09] Zekeriya Erkin, Martin Franz, Jorge Guajardo, et al. „Privacy-Preserving Face
Recognition“. In: Privacy Enhancing Technologies. Ed. by Ian Goldberg and
Mikhail J. Atallah. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 235–
253 (cit. on p. 15).

[Est+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. „A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise“. In: Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226–
231 (cit. on pp. 18, 19).

[Eve+10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. „The
Pascal Visual Object Classes (VOC) Challenge“. In: International Journal of
Computer Vision 88.2 (June 2010), pp. 303–338 (cit. on p. 4).

[Gou+20] Jianping Gou, B. Yu, Stephen J. Maybank, and Dacheng Tao. „Knowledge
Distillation: A Survey“. In: ArXiv abs/2006.05525 (2020) (cit. on p. 52).

[Gou+21] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. „Knowledge
distillation: A survey“. In: International Journal of Computer Vision 129.6
(2021), pp. 1789–1819 (cit. on p. 7).

[GS05] Faustino J. Gomez and Jürgen Schmidhuber. „Co-evolving recurrent neurons
learn deep memory POMDPs“. In: GECCO ’05. 2005 (cit. on p. 1).

[Guo+16] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. „MS-
Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition“. In:
ECCV. Vol. 9907. Oct. 2016, pp. 87–102 (cit. on p. 17).

[He+16a] K. He, X. Zhang, S. Ren, and J. Sun. „Deep Residual Learning for Image Recog-
nition“. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2016, pp. 770–778 (cit. on pp. 35, 40).

Bibliography 137

[He+16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. „Deep residual learn-
ing for image recognition“. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 40).

[Ho+03] J. Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, and D. Kriegman.
„Clustering appearances of objects under varying illumination conditions“.
In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings. Vol. 1. 2003, pp. I–I (cit. on p. 19).

[How+17] A. G. Howard, M. Zhu, B. Chen, et al. „MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications“. In: ArXiv e-prints (Apr. 2017).
arXiv: 1704.04861 [cs.CV] (cit. on pp. 23, 24).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. „Long Short-Term Memory“. In:
Neural Computation 9 (1997), pp. 1735–1780 (cit. on p. 1).

[Hua+17] J. Huang, V. Rathod, C. Sun, et al. „Speed/Accuracy Trade-Offs for Modern
Convolutional Object Detectors“. In: July 2017, pp. 3296–3297 (cit. on pp. 22,
24).

[ILM67] Aleksei Grigorevich Ivakhnenko, Valentin Grigorevich Lapa, and R. N. Mc-
donough. „Cybernetics and forecasting techniques“. In: 1967 (cit. on p. 1).

[JD88] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. USA: Prentice-Hall,
Inc., 1988 (cit. on p. 16).

[Jeo+22] Eunji Jeong, Jangryul Kim, Samnieng Tan, Jaeseong Lee, and Soonhoi Ha.
„Deep Learning Inference Parallelization on Heterogeneous Processors With
TensorRT“. In: IEEE Embedded Systems Letters 14 (2022), pp. 15–18 (cit. on
p. 7).

[Joc+21] Glenn R. Jocher, Alex Stoken, Jǐrí Borovec, et al. „ultralytics/yolov5: v5.0 -
YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations“. In:
2021 (cit. on p. 5).

[KKG07] Fatih Kahraman, Binnur Kurt, and Muhittin Gokmen. „Robust Face Alignment
for Illumination and Pose Invariant Face Recognition“. In: 2007 IEEE Conference
on Computer Vision and Pattern Recognition. 2007, pp. 1–7 (cit. on pp. 5, 7).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. „ImageNet classifica-
tion with deep convolutional neural networks“. In: Communications of the ACM
60 (2012), pp. 84–90 (cit. on p. 2).

[LBL19] Xin Long, Zongcheng Ben, and Yan Liu. „A Survey of Related Research on
Compression and Acceleration of Deep Neural Networks“. In: Journal of Physics:
Conference Series 1213 (2019) (cit. on p. 7).

[Li+22] Chuyin Li, Lu Li, Hongliang Jiang, et al. „YOLOv6: A Single-Stage Object
Detection Framework for Industrial Applications“. In: ArXiv abs/2209.02976
(2022) (cit. on p. 5).

[Lin+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, et al. „Microsoft coco: Common
objects in context“. In: European conference on computer vision. Springer. 2014,
pp. 740–755 (cit. on p. 4).

138 Bibliography

https://arxiv.org/abs/1704.04861

[Lin+17a] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, et al. „Feature pyramid networks for
object detection“. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 2117–2125 (cit. on p. 5).

[Lin+17b] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. „Fo-
cal loss for dense object detection“. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 2980–2988 (cit. on pp. 5, 7).

[Lin+18] W. Lin, J. Chen, C. D. Castillo, and R. Chellappa. „Deep Density Clustering of
Unconstrained Faces“. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2018, pp. 8128–8137 (cit. on p. 36).

[Liu+16] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. „DeepFashion: Powering Robust
Clothes Recognition and Retrieval with Rich Annotations“. In: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 1096–1104
(cit. on p. 18).

[Liu+21] Ze Liu, Yutong Lin, Yue Cao, et al. Swin Transformer: Hierarchical Vision Trans-
former using Shifted Windows. 2021 (cit. on p. 4).

[Llo82] S. P. Lloyd. „Least squares quantization in PCM“. In: IEEE Trans. Inf. Theory 28
(1982), pp. 129–136 (cit. on pp. 16, 18, 19).

[Lu+20] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee.
„12-in-1: Multi-Task Vision and Language Representation Learning“. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020),
pp. 10434–10443 (cit. on p. 7).

[LW66] Eugene L Lawler and David E Wood. „Branch-and-bound methods: A survey“.
In: Operations research 14.4 (1966), pp. 699–719 (cit. on p. 45).

[Maz+18] B. Maze, J. Adams, J. A. Duncan, et al. „IARPA Janus Benchmark - C: Face
Dataset and Protocol“. In: 2018 International Conference on Biometrics (ICB).
Feb. 2018, pp. 158–165 (cit. on p. 17).

[Mil+16] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler.
„MOT16: A benchmark for multi-object tracking“. In: arXiv preprint:1603.00831
(2016) (cit. on p. 46).

[Mon+19] David Montero, Nerea Aranjuelo, Orti Senderos, and Marcos Nieto. „BEV Object
Tracking for LIDAR-based Ground Truth Generation“. In: 2019 27th European
Signal Processing Conference (EUSIPCO) (2019), pp. 1–5 (cit. on pp. 10, 13).

[Mon+21] David Montero, Luis Unzueta, Jon Goenetxea, et al. „Multi-Stage Dynamic
Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveil-
lance“. In: 16th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP). 2021 (cit. on pp. 10,
12).

[Mon+22a] David Montero, Naiara Aginako, Basilio Sierra, and Marcos Nieto. „Efficient
Large-Scale Face Clustering Using an Online Mixture of Gaussians“. In: En-
gineering Applications of Artificial Intelligence 114 (2022), p. 105079 (cit. on
p. 10).

Bibliography 139

[Mon+22b] David Montero, Marcos Nieto, Peter Leskovský, and Naiara Aginako. „Boosting
Masked Face Recognition with Multi-Task ArcFace“. In: 16th International
Conference on Signal Image Technology and Internet based Systems (SITIS). 2022
(cit. on pp. 10, 12).

[Mon+on] David Montero, Nerea Aranjuelo, Peter Leskovsky, Marcos Nieto, and Naiara
Aginako. „Multi-Camera BEV Video-Surveillance System for Efficient Monitor-
ing of Social Distancing“. In: Multimedia Tools and Applications (2023 pending
publication) (cit. on pp. 10, 11).

[Mon19] David Montero. face_recognition_TF2. 2019 (cit. on p. 41).

[MV19] Sparsh Mittal and Shraiysh Vaishay. „A survey of techniques for optimizing
deep learning on GPUs“. In: J. Syst. Archit. 99 (2019) (cit. on p. 2).

[MWK16] Adam H. Marblestone, Greg Wayne, and Konrad Paul Kording. „Toward an
Integration of Deep Learning and Neuroscience“. In: Frontiers in Computational
Neuroscience 10 (2016) (cit. on p. 1).

[NBK15] S. Nienaber, M Booysen, and R Kroon. „Detecting Potholes Using Simple Image
Processing Techniques and Real-World Footage“. In: 34th Annual Southern
African Transport Conf. (SATC). 2015, pp. 153–164 (cit. on pp. 21, 22).

[Nie+14] Marcos Nieto, Juan Ortega, Oihana Otaegui, and Andoni Cortes. „Optimization
of Computer Vision Algorithms in Codesign Methodologies“. In: Sept. 2014
(cit. on p. 8).

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. „On Spectral Clustering:
Analysis and an Algorithm“. In: Proceedings of the 14th International Confer-
ence on Neural Information Processing Systems: Natural and Synthetic. NIPS’01.
Vancouver, British Columbia, Canada: MIT Press, 2001, pp. 849–856 (cit. on
p. 19).

[NSM05] E. M. Newton, L. Sweeney, and B. Malin. „Preserving privacy by de-identifying
face images“. In: IEEE Transactions on Knowledge and Data Engineering 17.2
(2005), pp. 232–243 (cit. on p. 15).

[NSO21] Marcos Nieto, Orti Senderos, and Oihana Otaegui. „Boosting AI applications:
Labeling format for complex datasets“. In: SoftwareX 13 (2021), p. 100653
(cit. on p. 45).

[OJ04] Kyoungsu Oh and Keechul Jung. „GPU implementation of neural networks“. In:
Pattern Recognit. 37 (2004), pp. 1311–1314 (cit. on p. 2).

[OWJ18] C. Otto, D. Wang, and A. K. Jain. „Clustering Millions of Faces by Identity“. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 40.2 (Feb. 2018),
pp. 289–303 (cit. on pp. 16, 18, 19, 36, 37).

[Par+18] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, et al. „Image Transformer“. In:
International Conference on Machine Learning. 2018 (cit. on p. 52).

[PSA20] Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal. Monitor-
ing COVID-19 social distancing with person detection and tracking via fine-tuned
YOLO v3 and Deepsort techniques. 2020 (cit. on p. 30).

140 Bibliography

[PY20] Trong Huy Phan and Kazuma Yamamoto. „Resolving class imbalance in object
detection with weighted cross entropy losses“. In: arXiv preprint arXiv:2006.01413
(2020) (cit. on pp. 5, 7).

[RA20] Mahdi Rezaei and Mohsen Azarmi. „DeepSOCIAL: Social Distancing Monitoring
and Infection Risk Assessment in COVID-19 Pandemic“. In: Applied Sciences
10.21 (2020) (cit. on p. 30).

[RMN09] Rajat Raina, Anand Madhavan, and A. Ng. „Large-scale deep unsupervised
learning using graphics processors“. In: ICML ’09. 2009 (cit. on p. 2).

[Rum+20] Masuma Akter Rumi, Xiaolong Ma, Yanzhi Wang, and Peng Jiang. „Accelerating
sparse CNN inference on GPUs with performance-aware weight pruning“. In:
Proceedings of the ACM International Conference on Parallel Architectures and
Compilation Techniques. 2020, pp. 267–278 (cit. on p. 7).

[Sch15] Jürgen Schmidhuber. „Deep learning in neural networks: An overview“. In:
Neural networks : the official journal of the International Neural Network Society
61 (2015), pp. 85–117 (cit. on p. 1).

[Scu10] D. Sculley. „Web-Scale k-Means Clustering“. In: Proceedings of the 19th Interna-
tional Conference on World Wide Web. WWW ’10. Raleigh, North Carolina, USA:
Association for Computing Machinery, 2010, pp. 1177–1178 (cit. on pp. 18,
19).

[Sib73] R. Sibson. „SLINK: An optimally efficient algorithm for the single-link cluster
method“. In: The Computer Journal 16.1 (Jan. 1973), pp. 30–34. eprint: https:
//academic.oup.com/comjnl/article-pdf/16/1/30/1196082/160030.pdf
(cit. on pp. 18, 19).

[SK19] Connor Shorten and Taghi M. Khoshgoftaar. „A survey on Image Data Augmen-
tation for Deep Learning“. In: Journal of Big Data 6 (2019), pp. 1–48 (cit. on
pp. 5, 7).

[SKP15] F. Schroff, D. Kalenichenko, and J. Philbin. „FaceNet: A unified embedding for
face recognition and clustering“. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2015, pp. 815–823 (cit. on p. 15).

[SOJ18] Y. Shi, C. Otto, and A. K. Jain. „Face Clustering: Representation and Pairwise
Constraints“. In: IEEE Transactions on Information Forensics and Security 13.7
(July 2018), pp. 1626–1640 (cit. on p. 36).

[Son+19] Yanan Song, Quan-Ke Pan, Liang Gao, and Biao Zhang. „Improved non-maximum
suppression for object detection using harmony search algorithm“. In: Applied
Soft Computing 81 (2019), p. 105478 (cit. on pp. 6, 8).

[SWC20] Atefeh Sohrabizadeh, Jie Wang, and Jason Cong. „End-to-End Optimization of
Deep Learning Applications“. In: Proceedings of the 2020 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. FPGA ’20. Seaside, CA,
USA: Association for Computing Machinery, 2020, pp. 133–139 (cit. on pp. 6,
7).

[Sze+16] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. „Inception-
v4, Inception-ResNet and the Impact of Residual Connections on Learning“. In:
(Feb. 2016). arXiv: 1602.07261 (cit. on p. 24).

Bibliography 141

https://academic.oup.com/comjnl/article-pdf/16/1/30/1196082/160030.pdf
https://academic.oup.com/comjnl/article-pdf/16/1/30/1196082/160030.pdf
https://arxiv.org/abs/1602.07261

[Sze+17] Vivienne Sze, Yu-hsin Chen, Tien-Ju Yang, and Joel S. Emer. „Efficient Process-
ing of Deep Neural Networks: A Tutorial and Survey“. In: Proceedings of the
IEEE 105 (2017), pp. 2295–2329 (cit. on p. 2).

[Ten17] A. TensorFlow. „Implementation of control flow in TensorFlow“. In: TensorFlow
Whitepaper (2017) (cit. on p. 34).

[TL19] Mingxing Tan and Quoc V. Le. „EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks“. In: ArXiv abs/1905.11946 (2019) (cit. on
p. 5).

[TPL20] Mingxing Tan, Ruoming Pang, and Quoc V Le. „Efficientdet: Scalable and effi-
cient object detection“. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 10781–10790 (cit. on p. 4).

[Vas+17] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, et al. „Attention is All you
Need“. In: ArXiv abs/1706.03762 (2017) (cit. on p. 52).

[Wan+17] X. Wang, Ross B. Girshick, Abhinav Kumar Gupta, and Kaiming He. „Non-
local Neural Networks“. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2017), pp. 7794–7803 (cit. on p. 52).

[Wan+18] H. Wang, Y. Wang, Z. Zhou, et al. „CosFace: Large Margin Cosine Loss for Deep
Face Recognition“. In: 2018 IEEE/CVF Conf. on Computer Vision and Pattern
Recognition. June 2018, pp. 5265–5274 (cit. on p. 34).

[Wan+19] Zhongdao Wang, Liang Zheng, Yali Li, and Shengjin Wang. „Linkage Based Face
Clustering via Graph Convolution Network“. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 1117–1125
(cit. on pp. 16, 18–20, 36, 37).

[WBL22] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
2022 (cit. on p. 4).

[Whi+17] C. Whitelam, E. Taborsky, A. Blanton, et al. „IARPA Janus Benchmark-B Face
Dataset“. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). July 2017, pp. 592–600 (cit. on p. 17).

[WSH20] Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. „Recent advances in deep
learning for object detection“. In: Neurocomputing 396 (2020), pp. 39–64 (cit.
on p. 4).

[Xia+20] Youzi Xiao, Zhiqiang Tian, Jiachen Yu, et al. „A review of object detection
based on deep learning“. In: Multimedia Tools and Applications 79.33 (2020),
pp. 23729–23791 (cit. on p. 4).

[Xie+20] Zihao Xie, Li Zhu, Lin Zhao, et al. „Localization-aware channel pruning for
object detection“. In: Neurocomputing 403 (2020), pp. 400–408 (cit. on pp. 6,
7).

[XZ17] Jia Xiang and Gengming Zhu. „Joint face detection and facial expression
recognition with MTCNN“. In: 2017 4th international conference on information
science and control engineering (ICISCE). IEEE. 2017, pp. 424–427 (cit. on p. 5).

142 Bibliography

[Yan+19] L. Yang, X. Zhan, D. Chen, et al. „Learning to Cluster Faces on an Affinity Graph“.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2019, pp. 2293–2301 (cit. on pp. 18, 19).

[Yan+20a] Dongfang Yang, Ekim Yurtsever, Vishnu Renganathan, Keith A. Redmill, and
Ümit Özgüner. A Vision-based Social Distancing and Critical Density Detection
System for COVID-19. 2020 (cit. on p. 30).

[Yan+20b] L. Yang, D. Chen, X. Zhan, et al. „Learning to Cluster Faces via Confidence and
Connectivity Estimation“. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2020, pp. 13366–13375 (cit. on pp. 18, 19).

[Yiz95] Yizong Cheng. „Mean shift, mode seeking, and clustering“. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 17.8 (1995), pp. 790–799 (cit. on
p. 19).

[YMA21] J. Javier Yebes, David Montero, and Ignacio Arriola. „Learning to Automati-
cally Catch Potholes in Worldwide Road Scene Images“. In: IEEE Intelligent
Transportation Systems Magazine 13 (2021), pp. 192–205 (cit. on pp. 10, 11).

[Zha+16a] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. „Joint Face Detection and Alignment
Using Multitask Cascaded Convolutional Networks“. In: IEEE Signal Processing
Letters 23.10 (Oct. 2016), pp. 1499–1503 (cit. on p. 39).

[Zha+16b] Z. Zhang, P. Luo, C. Loy, and X. Tang. „Learning Deep Representation for
Face Alignment with Auxiliary Attributes“. In: IEEE TPAMI 38.5 (May 2016),
pp. 918–930 (cit. on p. 35).

[Zha+18] Xiaohang Zhan, Ziwei Liu, Junjie Yan, Dahua Lin, and Chen Change Loy.
„Consensus-Driven Propagation in Massive Unlabeled Data for Face Recogni-
tion“. In: Proceedings of the European Conference on Computer Vision (ECCV).
Sept. 2018 (cit. on pp. 18, 19).

[Zha+19a] Zhi Zhang, Tong He, Hang Zhang, et al. Bag of Freebies for Training Object
Detection Neural Networks. 2019 (cit. on p. 5).

[Zha+19b] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. „Object detection
with deep learning: A review“. In: IEEE transactions on neural networks and
learning systems 30.11 (2019), pp. 3212–3232 (cit. on p. 4).

[Zha+88] Wei Zhang, Jun Tanida, Kazuyoshi Itoh, and Yoshiki Ichioka. „Shift-invariant
pattern recognition neural network and its optical architecture“. In: Proceedings
of annual conference of the Japan Society of Applied Physics. 1988, pp. 2147–
2151 (cit. on p. 1).

[Zha+90] W Zhang, Kazuyoshi Itoh, Jun Tanida, and Yoshiki Ichioka. „Parallel distributed
processing model with local space-invariant interconnections and its optical
architecture.“ In: Applied optics 29 32 (1990), pp. 4790–7 (cit. on p. 1).

[Zop+20] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, et al. „Learning data augmentation
strategies for object detection“. In: European Conference on Computer Vision.
Springer. 2020, pp. 566–583 (cit. on p. 30).

[ZZL19] Pengyi Zhang, Yunxin Zhong, and Xiaoqiong Li. „SlimYOLOv3: Narrower, Faster
and Better for Real-Time UAV Applications“. In: CoRR abs/1907.11093 (2019)
(cit. on p. 30).

Bibliography 143

List of Figures

1.1 Publications per year related to Neural Networks in Sciencedirect . . . 2

2.1 Example of an online clustering system. A continuous stream of face im-
ages, extracted from a set of video-surveillance cameras, are processed
by a face recognition model and the extracted f-vectors are enqueued.
The online clustering process updates the database with every new
sample without repeating the whole process. 16

2.2 Example of the operation of the proposed online clustering algorithm
when a new sample arrives. 17

2.3 Evolution of the clustering time per sample with the number of samples
clusterized compared to the evolution of the number of clusters in the
database. 19

2.4 AUTOPILOT H2020 project illustration [24] 21

2.5 Samples of annotated potholes. They come from several sources and
represent varied places, environmental conditions and camera viewpoints. 23

2.6 Distribution of the aspect ratio and area in pixels of the annotated
potholes for the train dataset. The boxplot on the left has a linear repre-
sentation of the aspect ratios. The quartiles are Q1 = 2.053, median =
3.062, Q3 = 4.0. The boxplot on the right shows the area in pixels and
has a logarithmic axis for the purpose of visualization. The quartiles
are Q1 = 1276, median = 3081, Q3 = 7744 pixels 23

2.7 Precision-recall curves for the test set. Three Faster R-CNN models
with a different feature extractor network and two values of IoU are
compared. Due to the nature of road potholes, there is a larger error
in the localization accuracy of the ground-truth bounding boxes. Thus,
we opted to report IoU = 0.4 in addition to the commonly used 0.5
value. The aim is reducing false negatives and false positives in road
scenes with deteriorated surfaces where manual pothole labelling is
also challenging. 26

2.8 Illustration of the considered scenario. Multiple omnidirectional cam-
eras with a small overlap cover the monitored area. The cameras are
connected to a central GPU-enabled server. 28

145

2.9 Overview graphical diagram of the proposed workflow. Note that the
rectified images (in the lower row) are generated only for visualization
purposes and are not necessary for fusing the detections, tracking, or
data analysis. 29

2.10 Overview flowchart of the proposed workflow. Note that until the
cylinders fusion step, the detections of each camera are processed
separately. 29

2.11 Overall processing architecture and data flow diagram of the proposed
VSS. 34

2.12 MSDB procedure in the image processing thread. 35
2.13 Detection time per image for different resolutions and batch sizes in

MB-MTCNN (in stage 1 of MSDB), compared to MTCNN (batch=1). . 37
2.14 Average time per face of the dynamic batching procedure for stages 2

and 3 of MSDB, compared to alternative state-of-the-art approaches. . 38
2.15 Average times per batch (for the image processing thread) with the

considered setup for different resolutions. 38
2.16 Illustration of the proposed training pipeline. The image selector de-

cides whether the next input image should be masked or not. The
trained network is modified to output also the probability that the face
is wearing a mask. 41

2.17 Some examples of the training faces and their corresponding masked
version generated with the MaskTheFace tool 41

2.18 Diagram of the annotation process. 45
2.19 Offline tracking dataflow where input data stands for the obtained CNN

detections, and output data are the updated tracks. 46

146 List of Figures

List of Tables

1.1 List of the main publications that support the thesis along with the type
of publication, the author position, and the tackled objectives. 10

2.1 Comparison with baseline methods in terms of BCubed F-Measure using
subsets of different sizes from MS-Celeb-1M dataset. All methods use
the same 256-dimensional vectors provided by [Yan+20b]. 18

2.2 Comparison with baseline methods in terms of BCubed F-Measure with
DeepFashion dataset. All methods use the same vectors from [Yan+20b]. 19

2.3 Average inference time for the 3 pothole detectors and different gpu
devices. 25

2.4 Details of the different sequences considered for the system evaluation.
For each sequence we specify the scenario, number of cameras, camera
heights in meters, radius of the monitored area for each camera in
meters, number of frames, number of identities, and occlusion level
(from 1 to 5). 31

2.5 Comparison of the performance of the proposed method using different
3D projection approaches: projecting the center of the bounding box;
projecting the point closest to the center of the image; and estimating
the 3D cylinder (proposed approach). S stands for the sequence number
and C for the camera IDs involved in the test. 32

2.6 Comparison with baseline methods in terms of BCubed F-Measure and
processing time using IJB-B-1845. Superscript* denotes results reported
from original papers, otherwise, it uses the i-vectors from [Wan+19].
Times are in hh:mm:ss format. 36

2.7 Comparison with baseline methods in terms of BCubed F-Measure and
processing time using IJB-C dataset. All methods use the same i-vectors
extracted from our VSS and the same hardware. Times are in hh:mm:ss
format. 37

2.8 Comparison of the verification performance (%) with the masked
datasets between the proposed method and the original ArcFace model. 43

2.9 Comparison of the verification performance (%) with the original
datasets between the proposed method and the original ArcFace model. 43

2.10 Mask-Usage verification performance (%) of the proposed method. . . 44

2.11 Association algorithms comparison . 46

147

2.12 Tracker results with combined noise . 47
2.13 Tracker results with real detector . 47

148 List of Tables

List of Tables 149

	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Context of this research work
	1.2 Motivation
	1.3 Hypothesis
	1.4 Objectives
	1.4.1 Optimization of Deep Neural Networks
	1.4.2 Optimization of Computer Vision Systems

	1.5 Main publications
	1.6 Thesis Structure

	2 Research results
	2.1 Efficient Large-Scale Face Clustering Using an Online Mixture of Gaussians
	2.1.1 Motivation and objectives
	2.1.2 Results and contributions

	2.2 Learning to Automatically Catch Potholes in Worldwide Road Scene Images
	2.2.1 Motivation and objectives
	2.2.2 Results and contributions

	2.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring of Social Distancing
	2.3.1 Motivation and objectives
	2.3.2 Results and contributions

	2.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance
	2.4.1 Motivation and objectives
	2.4.2 Results and contributions

	2.5 Boosting Masked Face Recognition with Multi-Task ArcFace
	2.5.1 Motivation and objectives
	2.5.2 Results and contributions

	2.6 BEV Object Tracking for LIDAR-based Ground Truth Generation
	2.6.1 Motivation and objectives
	2.6.2 Results and contributions

	3 Conclusions
	3.1 Discussion
	3.2 Future work

	4 Publications
	4.1 Efficient Large-Scale Face Clustering Using an Online Mixture of Gaussians
	4.2 Learning to Automatically Catch Potholes in Worldwide Road Scene Images
	4.3 Multi-Camera BEV Video-Surveillance System for Efficient Monitoring of Social Distancing
	4.4 Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance
	4.5 Boosting Masked Face Recognition with Multi-Task ArcFace
	4.6 BEV Object Tracking for LIDAR-based Ground Truth Generation
	4.7 Other Publications
	4.7.1 MFR 2021: Masked Face Recognition Competition
	4.7.2 Accurate 3D Object Detection from Point Cloud Data using Bird’s Eye View Representations

	Bibliography

