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Abstract

We study the endogenous formation of cartels in two contexts. First,
we consider internal-external stability based models which, due to �rms�
free-riding incentives, lead to the formation of very small stable cartels
(if any). Second, we introduce the dynamic aspect of coalition formation.
That is, when considering a cartel we take into account also any other
cartel that can be reached through a succession of moves. We apply
notions such as the generalized stable sets and the absorbing sets solutions
which predict that collusion of the whole industry can occur with some
regularity. Then we apply the two approaches to a Cournot game, and
study the in�uence that the internal organization of �rms has on the size
of the cartels that form by means of a comparison between a situation
where ownership and management are not separated and one in which
they are.

JEL Classi�cation: L22, C70, C72.

Key words: Cartels, stability, absorbing sets solution, strategic del-
egation.

�Dept. Mathematics, Maastricht University.
yDept. de Fundamentos del Análisis Económico I. Facultad de Ciencias Económicas y

Empresariales. University of the Basque Country. Avenida Lehendakari Agirre 83, 48015,
Bilbao, Spain. Fax : 34 946013891, Phone : 34 946017075. e-mail : etpolorn@bs.ehu.es

zThe authors thank J.C. Bárcena-Ruiz and E. Iñarra for helpful discussions. N. Olaizola
gratefully acknowledges �nancial support from Basque Country University project: 9/UPV
00031.321-15352/2003 and Spanish Education and Science Ministry project: BEC2003-08182.

1



1 Introduction

This work deals with the study of endogenous formation of cartels. D�Aspremont
et al.�s [1983] concept of a stable cartel is the �rst contribution in this area: a
stable cartel is one where for all �rms in the cartel there is no incentive to defect
from the cartel (internal stability), and for all �rms outside the cartel there
is no incentive to join the cartel (external stability). While the de�nition of
stability due to d�Aspremont et al. [1983] excludes the possibility of coalitional
deviations, i.e. only deviations by a single �rm are considered, Thoron [1998]
develops a model of coalition formation in oligopolies which incorporates the
possibility of coalitional deviations. Applying the concepts of a strong Nash
equilibrium and a coalition-proof Nash equilibrium to the coalition formation
model, the concepts of a strong stable cartel and a coalition-proof stable cartel
are de�ned. The formation of a cartel can be interpreted as a public good which
induces positive externalities on �rms outside the cartel. Then, due to the free-
riding incentive that those positive externalities create, collusive agreements are
highly unstable. Consequently, the stability concepts mentioned above predict
stable cartels (if any) formed by a small number of �rms.
In this work we study the formation of cartels in two di¤erent contexts. First,

we analyze internal-external stability based models. It is found that, under
very general assumptions,1 strong stable cartels may not exist, while stable and
coalition-proof stable cartels do exist, but they are formed by a small number
of �rms. Second, we introduce the dynamic aspect of coalition formation. In
this part, we allow for coalitional deviations of �rms, and assume that certain
groups of �rms are able to force a transition from a given cartel to a new one.
We assume that �rms show myopic behavior, i.e. they do not take into account
the consequences of a move. In this context, a natural solution concept would
be that of a strong stable cartel. However, since internal-external stability based
models assume that cartels only form if there is some guarantee of long-term
stability, due to the free-riding incentive there exist many situations for which
no strong stable cartels can form. This leads us to analyze what may happen
in situations where no inherently stable agreement exists. We study how �rms
in those cases may join or leave a cartel, whenever the new situation provides
larger pro�ts for the �rms that induce the change. We describe how transitions
between cartels may take place, and take up the question of how �rms react if a
�rm or a group of �rms deviate. In this way, we allow �rms to move successively
in discrete steps unless they converge upon cartels which are stable. This process
of formation and destruction of cartels is modeled by means of an abstract game
(von Neumann and Morgenstern [1944]). Then, we use solution concepts for
abstract games such as the notions of a generalized stable set (van Deemen
[1991]) and an elementary dynamic solution (Shenoy [1979]). In particular, we

1Assumption A1: the pro�t of an independent �rm increases as the number of �rms in
the cartel increases. Assumption A2: given any non-degenerated cartel, an independent �rm
receives a greater pro�t than a �rm in the cartel. Assumption A3: a cartel formed by a single
�rm is equivalent to the inexistence of a cartel, and all �rms receive the same pro�ts in these
two situations.
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interpret an elementary dynamic solution (or absorbing set) as a set of cartels
to which the transitions may become restricted in the long run. In this way, it
is possible to predict which cartels might be observed with some regularity, and
which cartels will not be observed.2

Our results show that a unique absorbing set exists, and provide a character-
ization of that set. Two di¤erent situations may arise. First, we �nd conditions
where there is a unique cartel-size (number of �rms in a cartel), say k�; from
which no pro�table move exists. Moreover, we prove that, starting at any car-
tel, after a �nite number of moves, �rms will form a cartel of size k�: And from
then on, no cartel of di¤erent size can form. Since the unique cartel-size from
which no pro�table move exists is k�; this is the unique size of a strongly stable
cartel, the unique cartel-size in the unique elementary dynamic solution, and
also the unique cartel-size in the unique generalized stable set. Second, we �nd
conditions where there is a set of cartel-sizes, say A; such that no pro�table
move from one cartel in A to a cartel not in A exists. Moreover, we prove
that, starting at any cartel, after a �nite number of moves, �rms will form a
cartel-size in A: And from then on, no cartel outside A can form. Since �rms
join and leave cartels endlessly, no strongly stable cartel exists. However, the
absorbing sets solution selects a unique group of cartels to which the process of
formation and destruction of cartels is restricted in the long run.
In the rest of the study we apply the two approaches of cartel formation

mentioned before to a Cournot game. We further study the in�uence of the
internal organization of �rms on the size of the cartels that form in the context
of an oligopolist industry. The literature that analyzes the formation of cartels
in oligopoly markets usually treats �rms as economic agents with the sole objec-
tive of pro�t maximization. However, for modern corporations, ownership and
management are often separated. Fershtman and Judd [1987], Sklivas [1987]
and Vickers [1985], examine the incentive contracts that owners of competing
�rms give their managers and how these incentive contracts a¤ect the oligopoly
outcome. These works show that pro�t-maximizing owners will turn their man-
agers away from strict pro�t maximization for strategic reasons. We study the
in�uence that the internal organization of �rms has on the size of the cartels
that form by means of a comparison between a situation where ownership and
management are not separated and a situation in which they are separated. For
the latter we assume, as in Fershtman and Judd [1987], that �rms�managers
will be given an incentive to maximize an objective function consisting of a lin-
ear combination of pro�ts and sales revenue. Under quantity competition, this
leads to lower prices and higher quantities than strict pro�t maximization (see,
for example, Fershtman and Judd [1987]). Firms may form cartels in order to
reduce market competition, which in turn leads to larger pro�ts. We show that
the free-riding incentives decrease and the incentives to form cartels increase

2Bloch [1996] proposes an alternative dynamic approach in which the formation of a cartel
depends on the sequentiality of the coalition formation process. Espinosa and Inarra [2000]
propose a model which allows the formation of multiple cartels, and use the notion of von
Neumann and Morgenstern stable sets.
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when �rms�owners delegate production decisions to managers.3

We show that strategic delegation reinforces the incentives to form cartels
in both the static and the dynamic contexts, that in�uence being stronger in
the dynamic context. At this point we restrict the analysis to a linear Cournot
model as the simplest way of illustrating our results. However, this analysis
can be extended to symmetric oligopoly models with arbitrary cost and de-
mand functions. In fact, we only require these assumptions on �rms�pro�ts: i)
the pro�t of an independent �rm increases as the cartel-size increases, and ii)
given any non-degenerated cartel, an independent �rm receives a greater pro�t
than a �rm in the cartel (a cartel formed by a single �rm is equivalent to the
inexistence of a cartel, and all �rms receive the same pro�ts in these two situ-
ations). Under strategic delegation, managers produce a larger quantity than a
pro�t-maximizer �rm, and �rms�pro�ts are hence lower than in the strict pro�t
maximization case. Under Cournot competition the cartel and each of the in-
dependent �rms produce the same quantity. Consequently, the loss of pro�ts
induced by strategic delegation is smaller for the �rms in the cartel, since those
�rms share the losses while independent �rms do not. As a result, the free-
riding incentive becomes lower and the incentive to form cartels becomes higher
when �rms�owners delegate production decisions to managers. Moreover, the
unique absorbing set under strategic delegation can be obtained by deleting a
number of smallest cartels from the absorbing set obtained under strict pro�t
maximization. Then, the set of cartels to which the moves will be restricted in
the long run contains larger cartels under strategic delegation than under strict
pro�t maximization.
The rest of the paper is organized as follows. Section 2 analyzes the formation

of cartels, applying the notions of stability, strong stability and coalition-proof
stability, and provides a characterization of stable and coalition-proof stable
cartels. In Section 3 we introduce equilibrium concepts for abstract games,
and prove existence and uniqueness of an absorbing set. Section 4 describes
the general features of a Cournot oligopoly model with a homogeneous product
when �rms�owners delegate production decisions to managers, and shows how
strategic delegation a¤ects �rms�decisions to form cartels. Finally, Section 5
contains some conclusions as well as pointers for further research.

2 Stable, strongly stable, coalition-proof stable
cartels

Situations where all decisions are made simultaneously can be modeled as non-
cooperative games in strategic form. A game in strategic form speci�es the
possible strategies of every player in the game and the outcomes associated
with all possible strategy pro�les that can be chosen by the players. Formally:

3González-Maestre and López-Cuñat [2001] study the interactions between mergers and
strategic delegation for a linear Cournot oligopoly model, and apply the concept of subgame
perfect equilibrium. Faulí-Oller and Motta [1996] analyze a model with three initial �rms that
can merge, where only the owner of one �rm delegates production decisions to a manager.
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A game in strategic form is a tuple � =
�
N ; (Si)i2N ; (�i)i2N

�
; where N =

f1; :::; ng denotes the player set, Si denotes the strategy space of player i, and �i
denotes the payo¤ function of player i, which assigns to every s 2 S =

Q
j2N Sj

a payo¤ �i (s) 2 R:
According to this de�nition, every player i 2 N chooses a strategy si 2 Si;

and all players choose these strategies simultaneously and independently. Every
player then receives a payo¤ that in general will depend not only on his own
choice but also on the choices of all other players. If strategy pro�le s 2 (sj)j2N
is chosen, then player i receives �i (s) : The standard equilibrium concept for
games in strategic form is the concept of Nash equilibrium (Nash [1950]), which
we de�ne in the following.
Consider a game in strategic form � =

�
N ; (Si)i2N ; (�i)i2N

�
: Then the

strategy pro�le s� 2 S is a Nash equilibrium of � if for all i 2 N and all si 2 Si;
�i (s

�) � �(si; s��i) where (si; s��i) =
�
s�1; :::; s

�
i�1; si; s

�
i+1; :::; s

�
n

�
:

According to this de�nition, a strategy pro�le is a Nash equilibrium if no
player has an incentive to unilaterally deviate from it, i.e. no player can uni-
laterally improve his payo¤. However, even if a Nash equilibrium is played, a
coordinated deviation by some players might improve the payo¤ of all deviat-
ing players. The strong Nash equilibrium concept (Aumann [1959]) considers
this possibility, and restricts the set of equilibria compared to the set of Nash
equilibria.
Consider a game in strategic form � =

�
N ; (Si)i2N ; (�i)i2N

�
: Let ST =Q

i2T Si and let sNnT be the vector of strategies of �rms not in T: Then the
strategy pro�le s� 2 S is a strong Nash equilibrium of � if there is no coalition
T � N and strategy pro�le sT 2 ST such that �i(sT ; s�NnT ) � �i(s

�) for all
i 2 T , with the inequality being strict for at least one i 2 T:
This notion of a strong stable strategy pro�le is very restrictive, since exis-

tence is not ensured. Bernheim et al. [1987] propose the notion of coalition-proof
Nash equilibrium, which also takes into account coalitional deviations but con-
siders a deviation of a coalition only if it is not threatened by further deviations
by subcoalitions. These further deviations are considered only if they are not
threatened to even further deviation of subsubcoalitions, etcetera. The equilib-
rium is de�ned recursively.
Consider a game in strategic form � =

�
N ; (Si)i2N ; (�i)i2N

�
: For every

T � N and s�NnT 2 SNnT ; let �(s�NnT ) be the game induced on the players of
coalition T by the strategies s�NnT : That is, �(s

�
NnT ) =

�
T ; (Si)i2T ; (�

�
i )i2T

�
;

where ��i : ST ! R is given by ��i (sT ) = �i(sT ; s
�
NnT ) for all sT 2 ST and

all i 2 T: Coalition-proof Nash equilibria are de�ned inductively. In a one-
player game with player set N = fig ; s�i 2 S = Si is a coalition-proof Nash
equilibrium of � = (fig ;Si;�i) if s�i maximizes �i over Si: Now let � be a game
with n > 1 players. Assume that coalition-proof Nash equilibria have been
de�ned for games with less than n players. Then a strategy pro�le s� 2 SN is
called self-enforcing if for all T � N; s�T is a coalition-proof Nash equilibrium
of �(s�NnT ): Now, the strategy pro�le s

� is a coalition-proof Nash equilibrium
of � if s� is self-enforcing and there is no other self-enforcing strategy pro�le
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s 2 SN with �i (s) > �i (s�) for all i 2 N:
This solution concept leads to a set of strategy pro�les which are self-

enforcing (i.e. not based on the players�commitment to cooperation), which
includes the set of strong Nash equilibria.

2.1 Symmetric cartel games

We restrict our study to non-cooperative games in strategic form which have the
following characteristics. The player set N is formed by n identical �rms (i.e.
they all have the same set of actions available). Only one coalition (cartel)K can
be formed at a time. Each �rm must then make a choice between entering the
cartel (action C) or remaining independent (action I). Therefore, the strategy
space of �rm i takes a binary form: Si = fC; Ig. An oligopoly game between
the cartel and the independent �rms determines the payo¤s. As �rms are ex
ante identical we assume that pro�ts inside the cartel are shared equally.4 A
game that takes this particular form will be called a symmetric cartel game.
For a symmetric cartel game, a pure strategy-pro�le is completely deter-

mined by the subset K of �rms that choose action C (i.e. the �rms that form
the cartel). Then, we say that K is a stable cartel if the strategy-pro�le associ-
ated with K is a Nash-equilibrium, K is a strongly stable cartel if the strategy-
pro�le associated with K is a strong Nash-equilibrium, and K is a coalition-
proof stable cartel if the strategy-pro�le associated with K is a coalition-proof
Nash-equilibrium.
Alternatively, stability, strong stability and coalition-proof stability of cartels

can be formulated in terms of internal-external stability. Let �C(k) be the pro�t
of a �rm that belongs to a cartel of size k: And let �I(k) be the pro�t of an
independent �rm when a cartel of size k forms.5 Assume:

A1 �I(k) > �I(k � 1) for all k � 2:

A2 �I(k) > �C(k) for all k � 2:

A3 �C(1) = �I(1) = �I(0):

Assumption A1 says that the pro�t of an independent �rm increases as the
cartel-size increases. Assumption A2 says that, given any non-degenerated car-
tel, an independent �rm receives a greater pro�t than a �rm in the cartel. And
Assumption A3 says that a cartel of size k = 1 is equivalent to the inexistence
of a cartel, and that all �rms receive the same pro�ts in these two situations.6

Then,

4This simplifying assumption is quite common in the literature. Suppose for example that
�rms inside a cartel bargain �a la Nash�, since �rms are symmetric the distribution of gains
will be symmetric.

5Throughout the paper we will identify a cartel with a capital letter and the size of the
cartel (i.e. the number of �rms, since �rms are identical) with its corresponding small letter.
Due to symmetry of �rms, all that matters is the speci�cation of a cartel-size k.

6These are very general assumptions, which most oligopolist models (such as Cournot,
Bertrand and price-leadership) full�l.
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Lemma 1 (Thoron [1998] Theorem 1) A cartel-size k is stable if and only if:

i) �C(k) � �I(k � 1) and

ii) �I(k) � �C(k + 1).

That is, a stable cartel satis�es a property of internal stability: for all �rms
in the cartel there is no incentive to defect unilaterally from the cartel, and a
property of external stability: for all �rms outside the cartel there is no incentive
to join the cartel unilaterally.

Lemma 2 (Thoron [1998] Theorems 2 and 3) A cartel-size k is strongly stable
if and only if:

i) �C(k) � �I(k � l) for all l 2 f1; :::; kg and

ii) �I(k) > �C(k + l) for all l 2 f1; :::; n� kg :

That is, a strongly stable cartel satis�es a property of strong internal sta-
bility: for all possible coalitions of �rms in the cartel there is no incentive to
jointly defect from the cartel, and a property of strong external stability: for all
possible coalitions of �rms outside the cartel there is no incentive to jointly add
to the cartel.
Following Thoron [1998], we say that a coalitional deviation is bene�cial if

either i) the new situation provides larger pro�ts for all �rms that induce the
change, or ii) the pro�ts for the �rms that induce the change are the same as in
the previous situation, but the pro�ts of either those who remain in the cartel or
those who remain independent increase. We allow a coalitional deviation only
if it is bene�cial. Then,

Lemma 3 A cartel-size k is coalition-proof stable if and only if:

i) for all l 2 f1; :::; kg such that �C(k) < �I(k � l); there is m 2 f1; :::; l � 1g
such that �C(k �m) � �I(k � l) and

ii) for all l 2 f1; :::; n� kg such that �I(k) � �C(k+l); there is m 2 f1; :::; l � 1g
such that �I(k +m) > �C(k + l):

Proof. Consider a cartel of size k: Suppose �rst that �C(k) � �I(k�l) for all
l 2 f1; :::; kg and �I(k) > �C(k + l) for all l 2 f1; :::; n� kg : From Assumption
A2 we have that �I(k� l) > �C(k� l) for all l 2 f1; :::; kg : Therefore, �C(k) =
�I(k � l) ) �C(k) > �C(k � l): Then, if �C(k) = �I(k � l) the deviation of l
�rms that leave the cartel is not bene�cial. As a result, if �C(k) � �I(k � l)
for all l 2 f1; :::; kg and �I(k) > �C(k + l) for all l 2 f1; :::; n� kg there is
no coalitional deviation from k which is bene�cial, and k is thus the size of a
coalition-proof stable cartel.
Suppose now that �C(k) < �I(k� l) for some l 2 f1; :::; kg : Then, a coalition L
of l �rms �nds it pro�table to defect from the cartel. As the �rms in L become
independent, then the only possibility for further deviation by a subcoalition
of L is that �rms in such a subcoalition rejoin the cartel. From Assumption
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A2 we have that �I(k �m) > �C(k �m) for all m 2 f1; :::; l � 1g : Therefore,
�C(k�m) = �I(k�l)) �I(k�m) > �I(k�l): As a result, a further deviation by
a subcoalition of L which is bene�cial exists if and only if �C(k�m) � �I(k� l)
for some m 2 f1; :::; l � 1g.
Suppose now that �I(k) � �C(k+l) for some l 2 f1; :::; n� kg : Then, a coalition
L of l �rms �nds it pro�table to join the cartel. Then, the only possibility for
further deviation by a subcoalition of L is that �rms in that subcoalition leave
the cartel and become independent again. From Assumption A2 we have that
�I(k+m) > �C(k+m) for all m 2 f1; :::; l � 1g : Therefore, �I(k+m) = �C(k+
l) ) �C(k + l) > �C(k +m): As a result, further deviation by a subcoalition
of L which is bene�cial exists if and only if �I(k + m) > �C(k + l) for some
m 2 f1; :::; l � 1g.

The �rst condition in Lemma 3 says that whenever a coalition of �rms �nds it
pro�table to defect from the cartel, then a subcoalition of that coalition of �rms
�nds it pro�table to rejoin the cartel. The second condition says that whenever
a coalition of �rms �nds it pro�table to join the cartel, then a subcoalition of
that coalition of �rms �nds it pro�table subsequently to defect from the cartel
and become independent again.
D�Aspremont et al. [1983] prove the existence of stable cartels. Thoron

[1998] proves that under assumptions A1 toA3 there is a unique coalition-proof
stable cartel, which is the greatest stable cartel. We now provide a characteri-
zation of stable and coalition-proof stable cartels.
De�ne k� as the maximum size of a cartel for which any �rm that unilaterally

leaves the cartel receives a strictly smaller pro�t. Formally,

k� := max
�
k j �C(k) � �I(k � 1)

	
:

From Assumption A3 we have that �C(1) = �I(0): Consequently, k� is
well-de�ned and k� � 1: Then,

Proposition 1 The cartel of size k� is a stable cartel.

Proof. We have �C(k�) � �I(k� � 1) and �C(k� + 1) < �I(k�) from
de�nition of k�. From Assumption A2 we have that �I(k� � 1) > �C(k� � 1):
Therefore, �C(k�) = �I(k�� 1)) �C(k�) > �C(k�� 1): And then, if �C(k�) =
�I(k� � 1) the unilateral deviation of one �rm that leaves the cartel is not
bene�cial. Conditions i) and ii) in Lemma 1 are then satis�ed, and k� is the
size of a stable cartel.

Proposition 2 The cartel of size k� is the unique coalition-proof stable cartel.

Proof. We �rst prove that k� is the size of a coalition-proof stable cartel.
We have �C(k�) � �I(k� � 1) by de�nition of k�, and �I(k� � 1) � �I(k� � l)
for all l 2 f1; :::; k�g by Assumption A1. Therefore, �C(k�) � �I(k� � l) for all
l 2 f1; :::; k�g and condition i) in Lemma 3 is then satis�ed. Suppose now that
�I(k�) < �C(k�+ l) for some l 2 f1; :::; n� k�g ; then �C(k�+ l) < �I(k�+ l�1)
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by de�nition of k�; and condition ii) in Lemma 3 is then satis�ed. Consequently,
k� is the size of a coalition-proof stable cartel.
We next prove that k 6= k� cannot be the size of a coalition-proof stable cartel.
If k > k�; then �C(k) < �I(k � 1) by de�nition of k�: Therefore, condition i)
in Lemma 3 is not satis�ed. Consider now k < k�. We have �I(k) � �I(k�) by
AssumptionA1, and �I(k��1) � �C(k�) by de�nition of k�. Let l = k��k; then
for allm < l we have �I(k+m) � �I(k+l�1) = �I(k��1) � �C(k�) = �C(k+l):
Therefore, condition ii) in Lemma 3 is not satis�ed, and k� is the unique size
of a coalition-proof stable cartel.

While the existence of a strong stable cartel cannot be guaranteed, at least
one stable cartel exists under Assumption A2 on the payo¤ function, which says
that an independent �rm receives a greater payo¤ than a �rm in the cartel. The
result of existence and uniqueness of a coalition-proof stable cartel is also inde-
pendent of how �rms compete in the market. In fact, we only need Assumption
A1 on the payo¤ function, which says that the pro�t to an independent �rm
increases as the cartel-size increases. A1 and A2 are very general assumptions
since they only require that independent �rms bene�t from the lower market
competition induced by larger cartels. However, as we will see in Section 4, the
sizes of the stable and coalition-proof stable cartels are often very small or even
not di¤erent to cartel-size k = 1: We next study the dynamic aspect of cartel
formation, which will provide us with a set of cartels that are likely to form at
some time even if they are not stable.

3 Abstract games

The notion of an abstract game (von Neumann and Morgenstern [1944]) provides
us with a general framework for studying the formation of cartels.
An abstract game is a pair (S; R) where S is a set of alternatives and R

is a binary relation de�ned on that set. For a; b 2 S, if aRb we will say that
a dominates b. A path from a to b in S is a sequence of alternatives a =
a0; a1; a2; :::am = b 2 S such that ai�1Rai for all i 2 f1; : : : ;mg.
There are many situations for which no inherently stable cartel (as de�ned

in Section 2) exists. In those cases, it may be interesting to analyze how �rms
may form a cartel and how �rms may leave a cartel, whenever the new situation
provides larger (or at least no smaller) pro�ts for the �rms that induce the
change. An abstract game in which the set of alternatives represents the set of
all possible cartels, and the binary relation represents the possible transitions
between cartels may be a useful instrument for analyzing how �rms may react
when a �rm or a group of �rms deviate.
Von Neumann and Morgenstern [1944] suggested the notion of a stable set

as a solution concept for abstract games. A stable set satis�es two conditions:
i) neither of any two alternatives in a stable set dominates the other (internal
stability), and ii) any alternative outside a stable set is dominated by an alter-
native in the set (external stability). A drawback of the notion of a stable set
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is that existence is not ensured. As a response, van Deemen [1991] introduces
the concept of a generalized stable set and proves existence.
Let RT be the transitive closure of a binary relation R (i.e. aRT b means

that there is a path from a to b).

De�nition 1 Let (S; R) be an abstract game. A nonempty set G � S is called
a generalized stable set if and only if:

i) for all a; b 2 G (a 6= b): not aRT b and
ii) for all b 2 SnG there is a 2 S such that aRT b.

The �rst condition (called internal stability of domination) says that neither
of any two alternatives in a generalized stable set dominates the other, not even
through a path. The second condition (called external stability of domination)
says that any alternative outside a generalized stable set is dominated by an
alternative in the set, either directly or through a path.
Shenoy [1979] introduces the concept of an elementary dynamic solution

(which we call absorbing set) for abstract games. We call the absorbing sets
solution for an abstract game to the collection of all its absorbing sets.7

De�nition 2 Let (S; R) be an abstract game. A nonempty set A � S is called
an absorbing set if and only if:

i) for all a; b 2 A (a 6= b): aRT b and
ii) there is no b 2 SnA and a 2 A such that bRTa.

The �rst condition says that any two alternatives in an absorbing set domi-
nate each other, if not directly then through a path. This implies that whenever
the negotiation process leads to an alternative that belongs to an absorbing set,
it may shift to any other alternative that belongs to the same absorbing set in a
�nite number of steps. The second condition says that no alternative outside the
absorbing set dominates an alternative in the set, not even through a path. This
implies that once the negotiation process leads to an alternative that belongs
to an absorbing set, from this time on, any alternative that does not belong to
this absorbing set is impossible to reach (even if it belongs to another absorbing
set). This solution concept captures the dynamic aspect of negotiations. That
is, when considering an alternative in S, we consider also any alternative in S
that can be reached through a succession of moves.
A relationship between generalized stable sets and absorbing sets can be

established.

Proposition 3 (Inarra, Kuipers, Olaizola [2004a] Theorem 5) Let fA1; :::;Akg
be the absorbing sets solution for the abstract game (S; R) : Then, the set G is
generalized stable if and only if jG \ Aij = 1 for i = 1; :::; k:

7Each absorbing set coincides with the elementary dynamic solution introduced by Shenoy
[1979]. The union of all elementary dynamic solutions is called dynamic solution. This solution
was previously de�ned by Kalai et al. [1976] under the name of the admissible set. Schwartz
[1974] also introduces an equivalent solution, called top cycle solution.
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As the set of alternatives S (the set of all possible cartels that can be formed)
is �nite, the game (S; R) has at least one absorbing set (see Theorem 1 in Kalai
and Schmeidler [1977]). We will prove that under assumptions A1 to A3 on the
payo¤ function a unique absorbing set exists. When each of the absorbing sets
contains a single element, the collection of all absorbing sets coincides with the
(unique) generalized stable set. In this case, we will show that every element in
the generalized stable set is strongly stable, and moreover one of them is certain
to be reached after a �nite number of moves.
To de�ne an abstract game, a set of alternatives S and a binary relation R

on that set are needed. In our context, all possible cartels constitute the set of
alternatives. We now propose a binary relation which we view as appropriate to
describe the arguments that �rms construct in the process of cartel formation.
Let P and Q be two cartels and let M be a minimum set of �rms necessary

to force the move from P to Q. Note that this minimum set may not be unique,
a coalition M is a minimum set of �rms necessary to force the move from P to
Q if one of the following two conditions holds: i) Q � P and M = PnQ; ii)
M = Q:8 We say that the move from P to Q is pro�table via M (denoted as

P
M! Q) if no �rm in M loses with this move and at least one �rm in M strictly

gains. However, not all pro�table moves seem equally reasonable. We assume
that �rms perform some type of �ltering on the possible moves so that only
some pro�table moves (called robust moves) remain.9 Suppose that the �rms
in M are considering the move from P to Q; then they are likely to take other
possible moves from P into consideration as well before making a decision. We
next formalize this idea.
Let �i(S) be �rm i�s pro�t when cartel S forms. Consider the pro�table

move P M! Q: We say that the move from P to Q0 via M 0 is a counter-proposal

for P M! Q if the following three conditions hold: i) the move from P to Q0 is
pro�table via M 0; ii) M \M 0 6= ;; and iii) �i (Q0) � �i (Q) for all i 2M \M 0

with at least one strict inequality. Then,

De�nition 3 We say that P M! Q is a robust move, and denote P M!r Q, if

there is no counter-proposal for P M! Q.

From a given cartel we can expect a di¤erent one to emerge via a deviating
group of �rms, which pro�t (or do not lose) from this move. The information
provided by the pro�t function thus suggests a process of transitions from one
cartel to another which we identify with robust moves. Then aRb is equivalent
to the existence of M such that the move from b to a via M is robust. In
this way, it is possible to predict what cartels might be observed with some
regularity in the long run, and what cartels will not be observed. Consequently,

8Note that condition ii) implies that a cartel forms if and only if all potential members
agree to form the cartel. By contrast, in Section 2 we consider games in which nonmembers
can join the existing cartel without permission of the previous members.

9A discussion about �ltering processes can be found in Inarra, Kuipers and Olaizola [2004b].
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we can interpret an absorbing set as a set of cartels to which the transitions
may become restricted in the long run.10

We next characterize the generalized stable sets and the absorbing sets so-
lution under assumptions A1 to A3 on the pro�t function. These are very
general assumptions, which most oligopolist models (such as Cournot, Bertrand
and price-leadership) ful�ll. These assumptions re�ect two important aspects
of oligopolist markets. First, if additional �rms join a cartel, �rms in the cartel
reduce their output in order to internalize the positive externalities of output
reduction, and market price rises. Consequently, �rms in the cartel incur the
cost of output reduction while �rms outside the cartel pro�t from the higher
price. Second, independent �rms and the cartel produce the same quantity in
equilibrium. Since inside the cartel the division of pro�ts is equitable, then an
independent �rm receives a higher pro�t than a �rm in the cartel.
De�ne k̂ as the cartel-size for which the payo¤ to �rms inside the cartel is

maximal. If there are di¤erent cartel-sizes for which this payo¤ is maximal, then
choose the smallest of them. Formally,

k̂ := minfk j �C(k) � �C(l) for all l 2 Ng:

Further, de�ne k as the minimum number of �rms needed for a cartel such
that an independent �rm receives a pro�t at least as large as the pro�t of �rms
inside a cartel of size k̂. Formally,

k := minfk j �I(k) > �C(k̂)g:

Observe that �I(k) > �C(k̂) for all k � k; and �I(k � 1) � �C(k̂) and
�I(k) < �C(k̂) for all k < k�1, since the function �I(�) is strictly decreasing by
assumption A1. Also observe that k � k̂, since �I(k̂) > �C(k̂) by assumption
A2. Recall from Section 2 that the unique size of a coalition-proof stable cartel
is

k� := maxfk j �C(k) � �I(k � 1)g:

Since �I(k � 1) > �C(k̂) � �C(k) for all k > k, it follows directly from the
de�nition of k� that k� � k.

Proposition 4 If k� < k, then no strongly stable cartel exists and the unique
absorbing set is A = ffKg j k � 1 � k � k̂g. If k� = k, then the unique
size of a strongly stable cartel is k = k = k�, and each elementary dynamic
solution consists of one strongly stable cartel, i.e. the unique absorbing set is
A = ffKg j k = kg.
10 Inarra, Kuipers and Olaizola [2004b] also model the formation of cartels in a Cournot

oligopoly model by means of an abstract game. Their analysis is more general on the one hand,
since they allow for the existence of more than one cartel at a time (the set of alternatives S
being the collection of all partitions of N). But on the other hand, they restrict to a speci�c
pro�t function.
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Proof. i) Consider �rst the case k� < k: Let K be a cartel of size k � k and
let i 2 K. Then K i! Knfig. This follows from the fact that k � k > k�, hence
�I(k� 1) > �C(k) by de�nition of k�. We even have K i!r Knfig. To see this,
�rst note that a counter-proposal, if it exists, cannot be to a cartel of size k or
k�1. Consider a move to a cartel of size m > k. Then at least one independent
�rm must enter the cartel. Such a �rm loses, since �I(k) > �I(k) > �C(k̂) �
�C(m): Hence, the move is not pro�table and cannot be a counter-proposal for

K
i! Knfig. Now, consider a move to a cartel of size m < k � 1. Then, no

matter whether �rm i will be independent or in the cartel, it will receive less
than �I(k � 1), since �C(m) < �I(m) < �I(k � 1). Therefore, such a move
cannot be a counter-proposal for K i! Knfig either.
Let K be a cartel of size k < k. Then let K̂ denote a cartel of size k̂, such
that K is a proper subset of K̂ (this choice is possible, since k̂ � k > k).

We have K K̂! K̂. This follows since �I(k) � �C(k̂) and �C(k) � �C(k̂),
which shows that neither the independent �rms that join the cartel nor the
�rms that were already in the cartel lose. Moreover, at least one of the two
groups strictly gain, since �I(k) = �C(k̂) and �C(k) = �C(k̂) leads to the
contradiction �C(k) < �I(k) = �C(k̂) = �C(k); where the strict inequality is

by Assumption A2. We even have K K̂!r K̂. To see this, note that for any
move to another cartel, say of size m, and such that an independent �rm w.r.t.
K̂ joins the cartel, will receive a payo¤ that is strictly less than �I(k̂), since
�C(m) � �C(k̂) < �I(k̂). Also, for any move to a cartel, not K̂, such that
all independent �rms w.r.t. K̂ stay independent, the �rms that stay inside the
cartel will receive a payo¤ strictly less than �C(k̂), since then m < k̂, hence
�C(m) < �C(k̂) by de�nition of k̂. Therefore, no counter-proposal exists for the

move K K̂! K̂.
We have proved that a pro�table (even robust) move exists at every cartel. This
shows that no stable cartel exists. We have also proved that for every cartel,
a sequence of robust moves exists leading to cartels of size k � 1; : : : ; k̂, and in
fact any cartel of such size can be reached. This shows that there is a unique
elementary dynamic solution, which contains fK j k � 1 � k � k̂g. To prove
that the unique elementary dynamic solution is equal to this set, we still need
to prove that no robust move from a cartel in this set to a cartel outside this
set exists. To see that this is true, �rst consider a cartel K of size k with
k � k � k̂. We will show that in this case, the moves K i! Knfig for i 2 K are

the only robust moves. To this end, consider a pro�table move, say K M! K 0,
not of the type K i! Knfig. Then for the size of K 0, say k0, we have k0 > k or
k0 < k � 1. We have demonstrated already that a move from a cartel of size k
with k � k to a cartel of size k0 > k is not pro�table, so in fact we must have
k0 < k � 1. Then a �rm i 2 K exists that is an independent �rm w.r.t. K 0,

hence i 2 M . Therefore, K i! Knfig is a counter-proposal for K M! K 0, since
�I(k � 1) > �I(k0). Now consider a cartel of size k � 1. We will show that in
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this case, the moves of the type K K̂! K̂ (where K is a proper subset of K̂ and
K̂ is of size k̂), are the only robust moves. To this end, consider a pro�table

move, say K M! K 0, for which the size of K 0 is not in the range from k� 1 to k̂.
Let k0 denote the size of K 0. If k0 < k� 1, then at least one of the independent
�rms w.r.t. K 0 is a mover and this �rm, say i; receives �I(k0) < �C(k̂), where
the inequality follows by de�nition of k̂. Now construct K̂ of size k̂ with i 2 K̂
and K � K̂. Then we see that K K̂! K̂ is a counter-proposal for K M! K 0. If

k0 > k̂, then K N! K̂ is a counter-proposal (where K̂ is a proper subset of K 0 of
size k̂), since �C(k̂) � �C(k0) (�rms that stay in the cartel do not lose compared
to K 0), �I(k̂) > �C(k̂) � �C(k0) (�rms that become independent strictly gain),
and �I(k̂) > �I(k0) (�rms that stay independent strictly gain).
ii) Consider now the case k� = k. For a cartel K of size k > k� = k and i 2 K,
we have that K i! Knfig is a robust move (the proof of this is given in i). For
a cartel K of size k < k, the move K K̂! K̂ is robust, where K is a proper subset
of K̂ and K̂ is of size k̂ (the proof of this is also given in i). We have thus proved
that for an arbitrary cartel a sequence of robust moves exists leading to a cartel
of size k� = k.
We will now show that no pro�table move exists at a cartel of size k. First
consider a move to a cartel of size m with m < k: Then at least one independent
�rm in the smaller cartel is a mover, and its payo¤ is �I(m) � �(k� � 1) �
�C(k�); hence this �rm does not gain. For the possible movers that stay inside
the cartel, we have a payo¤ of �C(m) < �I(m) � �C(k�); so these �rms even
lose. Therefore, the move is not pro�table.
Now consider a move to a cartel of size m with m > k. Then at least one
independent �rm w.r.t. the cartel of size k is inside the cartel of size m. This
�rm loses. Then the independent �rm(s) that enter the cartel lose, since �I(k) >
�C(k̂) � �C(m): Hence, such a move is not pro�table either.
We see that no pro�table move exists at a cartel of size k. It follows that each
cartel of size k = k� is an elementary dynamic solution. These are also the only
elementary dynamic solutions, since robust moves at all other cartels exist. It
follows that the absorbing set equals ffKg j k = kg. From the fact that no
pro�table move at a cartel of size k exists, it also follows that these cartels are
strongly stable. Since a strongly stable cartel is also coalition-proof stable, and
since the unique size of a coalition-proof stable cartel is k� = k, it follows that
k� = k is the unique size of a strongly stable cartel.

From Propositions 3 and 4 we have the following straightforward result.

Corollary 1 If k� < k, then each cartel in A = ffKg j k � 1 � k � k̂g is
generalized stable. If k� = k, then the unique size of a generalized stable cartel
is k = k�.

Then, if k� < k, after a �nite number of moves, �rms will form a cartel with
at least k � 1 and no more than k̂ �rms. From this time on, any cartel of size
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smaller than k� 1 or larger than k̂ can no longer form, while there is a positive
probability of forming any cartel of size k � 1 � k � k̂: Since �rms join and
leave cartels endlessly, no strongly stable cartel exists. However, the absorbing
sets solution selects a group of cartels to which the process of formation and
destruction of cartels is restricted in the long run. On the other hand, if k� = k,
after a �nite number of moves, �rms will form a cartel of size k = k = k�. From
this time on, no cartel of di¤erent size can form. Since the unique cartel-size from
which no pro�table move exists is k = k = k�; it is the unique strongly stable
cartel-size, the unique cartel-size in the unique elementary dynamic solution,
and also the unique cartel-size in the unique generalized stable set.
In the rest of the paper we apply the two cartel formation approaches ana-

lyzed before to a Cournot game. We also study the in�uence that the internal
organization of �rms has on the size of the cartels that form in the context of an
oligopolist industry by comparing a situation where ownership and management
are not separated with one where they are separated.

4 Firms�internal organization and cartel-size

We analyze a linear Cournot model as the simplest way of illustrating our results.
However, this analysis can be extended to symmetric oligopoly models with
arbitrary cost and demand functions. We only require assumptions A1 to A3
on �rms�pro�ts.

4.1 A Cournot oligopoly model

Consider a single industry consisting of n �rms that produce a homogeneous
good. Assume linear demand function p = 1�Q; with p being the price of the
good and Q being the total quantity produced in the industry. Assume constant
marginal cost of production c, 0 < c < 1; equal for all �rms. Firms compete in
the market by setting quantities simultaneously.
In order to analyze whether strategic delegation of production decisions to

managers a¤ects the formation of cartels, we �rst introduce the case in which
�rms� owners do not delegate production decisions as a benchmark, we then
turn to the strategic delegation case.

4.1.1 Pro�t-maximizer �rms

Wemodel the formation of cartels as a non-cooperative game. Assume that �rms
play a two stage game. In the �rst stage �rms�owners decide whether to join a
cartel or not, then at this stage �rms�actions have a binary form: to cooperate
(action C) or not cooperate (action I). The cartel will be formed by the �rms
that choose action C, while �rms that choose I remain independent. Therefore,
if k �rms decide to form a cartel, n�k �rms remain independent. In the second
stage, �rms� owners take production decisions, �rms in the cartel playing as
a single player against �rms outside the cartel. Firms in the cartel jointly
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decide their quantities taking into account the behavior of the independent
�rms. Independent �rms maximize their individual pro�ts taking into account
the behavior of the cartel. Firms in the cartel and independent �rms choose
their quantities simultaneously. Inside the cartel the pro�ts are shared equally.
The aggregate coalitional pro�t of a cartel K is:X

i2K
(1�Q) qi � cqi:

Since �rms in a cartel join forces to make production decisions, the problem
of �rms in K is to choose the per member quantity qi for all i 2 K which
maximizes the coalitional pro�t, taking the quantities of the independent �rms
as given. We can consider an independent �rm as a cartel formed by a single
�rm. The maximization problem an independent �rm faces is then a particular
case of the problem solved by coalition K:
Let qCnd(k) be the quantity produced by a �rm that belongs to a cartel of

size k: And let qInd(k) be the quantity produced by an independent �rm when
a cartel of size k forms. Through the work, subindex nd will denote the case
where owners do not delegate production decisions to managers, i.e. the strict
pro�t maximization case. The �rst order conditions provide,

qInd(k) =
1� c

n� k + 2 and qCnd(k) =
1

k
qInd(k):

Let pnd (k) be the market price when a cartel of size k forms. Let �Cnd(k) be
the pro�t of a �rm that belongs to a cartel of size k: And let �Ind(k) be the pro�t
of an independent �rm when a cartel of size k forms. Substituting the optimal
quantities we obtain the associated equilibrium price and pro�ts. Then,

pnd (k) =
1 + c (n� k + 1)

n� k + 2 ;

�Ind(k) =
(1� c)2

(n� k + 2)2
and �Cnd(k) =

1

k
�Ip(k):

Note that the only Pareto optimal coalition is the cartel formed by all �rms.
Note also the positive externality induced by collusion: �rms in the cartel reduce
their production, rising market price, and as a result �rms outside the cartel
receive larger pro�ts (Assumption A2). On the other hand, independent �rms
receive greater pro�ts when larger cartels form (Assumption A1). This leads to
a free-riding incentive, since �rms in the cartel incur the cost of output reduction
while �rms outside the cartel pro�t from the higher price.

4.1.2 Strategic delegation

Assume now that each �rm�s owner delegates production decisions to a manager
in order to improve his strategic position in the market. As in Fershtman and
Judd [1987], we assume that owners o¤er �take it or leave it� linear incentive
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schemes to risk-neutral managers. The manager of �rm i receives a payo¤:
�i+BiOi, where �i and Bi are constant, Bi > 0, and Oi is a linear combination
of pro�ts and sales revenue. Formally, �rm i�s manager will be given an incentive
to maximize:

Oi = �i (p� c) qi + (1� �i)pqi;

where qi is the quantity produced by �rm i: And �i is the incentive parameter
chosen by �rm i�s owner, we make no restrictions on �i: Oi can be rewritten as:

Oi = (p� c�i) qi:

As this last equation shows, �rm i�s manager considers c�i as the marginal
cost of production when taking production decisions. In this way, �rm i�s owner
can make his manager more (less) aggressive, i.e. he can make his manager
produce a higher (lower) output level than a pro�t-maximizer �rm by choosing
an incentive parameter such that the marginal cost of production considered by
the manager is lower (higher) than that considered by a pro�t-maximizer �rm.
Assume that �rms play a three stage game: an intermediate stage to the two

stage game described for the strict pro�t maximization case is added. In the
�rst stage, �rms�owners decide whether to join the cartel or not. In the second
stage, �rms�owners decide what incentives are given to their managers. And
in the third stage, �rms�managers take production decisions, with �rms in the
cartel playing as a single player against �rms outside the cartel, which behave
as independent �rms.11

Once a cartel forms, the manager of the cartel is given to maximize a linear
combination of cartel sales and cartel pro�ts. Let �C (k) be the incentive pa-
rameter chosen by the owner of a cartel of size k: Then, the objective function
O (k) that the manager of a cartel formed by k �rms has to maximize can be
written as:

O (k) = (1�Q)
X
i2K

qi � c�C (k)
X
i2K

qi:

The cartel�s manager and the independent �rms�managers are assumed to
choose their quantities simultaneously. Let �C (k) and �Ii (k) be the incentive
parameters chosen by the owner of a cartel of size k and the owner of inde-
pendent �rm i when a cartel of size k forms, respectively. Let qCid(k) be the
quantity produced by a �rm that belongs to a cartel of size k: And let qIid(k)
be the quantity produced by an independent �rm when a cartel of size k forms.

11Once a cartel forms, we assume that the managers of the �rms that join the cartel are
all given the same function to maximize: a linear combination of cartel sales (sum of sales of
all �rms in the cartel) and cartel pro�ts (sum of pro�ts of all �rms in the cartel). In order
to simplify the exposition of the work, we can then substitute in our discussion the collection
of managers of a cartel by a single manager, who competes in the product market against
the managers of the independent �rms. We can also substitute the collection of owners of a
cartel by a single owner, since every owner of a �rm in the cartel assumes as his objective the
maximization of the aggregate cartel pro�t.
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Throughout this study, subindex d denotes the case where owners delegate pro-
duction decisions to managers. The �rst order conditions provide,

qIid(k) =
1� (n� k + 1) c�C (k) + c

P
i=2K �

I
i (k)

n� k + 2 for all i =2 K;

qCid(k) =
1 + (n� k + 1) c�C (k)� c

P
i=2K �

I
i (k)

n� k + 2 for all i =2 K:

Now �rms�owners simultaneously choose the incentive parameters that are
given to managers in order to maximize their pro�ts. Then,

�C (k) = �Ii (k) = 1�
(1� c) (n� k)

c (2 + (n� k + 2) (n� k)) for all i =2 K:

And therefore,12

qId(k) =
(1� c) (n� k + 1)

2 + (n� k + 2) (n� k) and qCd (k) =
1

k
qId(k):

Let pd (k) be the market price when a cartel of size k forms. Let �Cd (k) be
the pro�t of a �rm that belongs to a cartel of size k: And let �Id(k) be the pro�t
of an independent �rm when a cartel of size k forms. Substituting the optimal
quantities we obtain the associated equilibrium price and pro�ts. Then,

pd (k) =
1 + c (n� k + 1)2

2 + (n� k + 2) (n� k) ;

�Id(k) =
(1� c)2 (n� k + 1)

(2 + (n� k + 2) (n� k))2
and �Cd (k) =

1

k
�Id(k):

As in the strict pro�t maximization case, �rms�pro�ts ful�ll assumptionsA1
to A3. Note that all �C (k) and �Ii (k) are less than unity (with the exception
of the monopoly case, in which they are equal to unity).13 Consequently, all
managers consider a lower marginal cost of production than in the strict pro�t
maximization case. As a result, all managers behave more aggressively (i.e.
produce a larger quantity) than a pro�t-maximizer �rm, and all �rms�pro�ts
are hence lower than in the strict pro�t maximization case. We next analyze how
this fact a¤ects to the formation of cartels by using the two di¤erent approaches
introduced in Sections 2 and 3.
We �rst characterize the stable cartels for the linear Cournot oligopoly model

under both strategic delegation and strict pro�t maximization.

12Since in equilibrium qCid(k) = qCjd(k) for all i; j 2 K; and qIid(k) = qIjd(k) for all i; j =2 K,
from now on the subscript i will be ignored.
13The case �C (k) = �Ii (k) = 1 is equivalent to the strict pro�t maximization case.
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4.2 Cartel stability

When �rms�owners do not delegate production decisions to managers the fol-
lowing result is obtained.

Proposition 5 If n = 2, then k = 2 is the only stable, the only strongly stable
and the only coalition-proof stable cartel-size. If n � 3, then k = 1 is the only
stable and the only coalition-proof stable cartel-size, and there is no strongly
stable cartel.14

Proof. Straightforward computations show that if n = 2 we have �Cnd (2) >
�Ind (1) ; and if n � 3 we have �Ind (k � 1) > �Cnd (k) for all k. Then, for n = 2
we have k�nd = 2, and for n � 3 we have k�nd = 1: As a result, the unique stable
cartel according to Lemma 1, and also the unique coalition-proof stable cartel
according to Proposition 2 is the one formed by the two �rms if n = 2; and the
degenerate one formed by a single �rm if n � 3: On the other hand, for n = 2
we have knd = k�nd, and for n � 3 we have knd > k�nd: Then, from Proposition
5 we have that the cartel formed by the two �rms is the only strongly stable
one for n = 2; and from Proposition 4 we have that there is no strongly stable
cartel for n � 3.

We now extend the analysis by allowing �rms�owners to delegate production
decisions to managers. The following result is obtained.

Proposition 6 If n � 3; then k = n is the only stable, the only strongly stable
and the only coalition-proof stable cartel-size. If n = 4, then k = 2 is the only
stable and the only coalition-proof stable cartel-size, and there is no strongly
stable cartel. If n � 5, then k = 1 is the only stable and the only coalition-proof
stable cartel-size, and there is no strongly stable cartel.

Proof. Straightforward computations show that if n � 3 we have �Cd (k) >
�Id(k�1) for all k; if n = 4 we have �Id (k � 1) > �Cd (k) if and only if k � 3; and
if n � 5 we have �Id (k � 1) > �Cd (k) for all k. Then, for n = 2 we have k�d = 2,
for n = 3 k�d = 3; n = 4 k�d = 2; and for n � 5 we have k�d = 1: Then, from
Lemma 1 we have that the unique stable cartel (and according to Proposition
2 the unique coalition-proof stable cartel) is the cartel formed by all �rms if
n � 3; the one formed by two �rms if n = 4; and the degenerate one formed by
a single �rm if n � 5: On the other hand, for n = 2 and n = 3 we have kd = k�d,
and for n � 4 we have kd > k�d: Then, from Proposition 5 we have that the
cartel formed by all �rms is the only strongly stable one for n � 3; and from
Proposition 4 we have that there is no strongly stable cartel for n � 4.

These results on cartel stability illustrate the free-riding incentives induced
by the formation of cartels, which for the Cournot oligopoly model proves to
be so strong that no cartel is formed (except when there is a very low number
of �rms in the industry). From Propositions 5 and 6 we obtain the following
straightforward result.
14This is a result obtained by Thoron [1998].
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Proposition 7 If n = 2 or n � 5; the results on cartel stability are equal under
strategic delegation and strict pro�t maximization. If n = 3 or n = 4; larger
stable cartels can be sustained under strategic delegation.

Asnoted before, �rms in the cartel reduce their production, raising the mar-
ket price, and �rms outside the cartel bene�t from the increased price and
receive larger pro�ts. Moreover, �rms belonging to a larger cartel obtain lower
pro�ts. These facts explain the high instability of cartels. However, we �nd
that under strategic delegation, �rms�free-riding incentives are weakened, and
the size of the unique stable cartel, the size of the unique strongly stable cartel
and the size of the unique coalition-proof stable cartel (if any) are not smaller
than under strict pro�t maximization. In fact, in the triopoly and tetrapoly
cases strictly larger cartels are formed when owners delegate production deci-
sions to managers. This fact may be relevant, since we can �nd many examples
of industries in which very few �rms are present in the market.
The analysis of the dynamic aspect of coalition formation will provide us

with more insights about the in�uence that the internal organization of �rms
has on cartel formation.

4.3 Absorbing sets solution

We have de�ned k̂ as the cartel-size for which the payo¤ to a �rm inside the
cartel is maximum. Straightforward computations show that k̂ = n for the
linear Cournot model under both the strategic delegation and the strict pro�t
maximization cases. Then, k is de�ned as the minimum number of �rms needed
to form a cartel such that every independent �rm receives a pro�t at least as
large as the pro�t it obtains if the whole industry colludes.
When �rms�owners do not delegate production decisions we obtain:

knd =
l
2 + n� 2n 1

2

m
:

And when they do delegate production decisions:

kd =

&
1 + n� 1

6
1
2

Y �
�
1

Y
6
1
2n� 1

6
Y 2 � 1

� 1
2

'
;

where Y =
�
Z + 1

Z 4� 2
� 1
2 and Z =

�
27n2 � 8 + 3n

�
81n2 � 48

� 1
2

� 1
3

: Then,

Proposition 8 If n = 2, And = Ad = fK j k = 2g: If n = 3, And = fK j
k � 1g and Ad = fK j k = 3g: If n � 4, And = ffKg j k � knd � 1g and
Ad = ffKg j k � kd � 1g:

Proof. Straightforward computations show that for n = 2 we have knd =
k�nd = kd = k

�
d = 2, for n = 3 we have knd = 2 > k

�
nd = 1 and kd = k

�
d = 3, and

for n � 4 we have knd > k�nd and kd > k�d: Then, according to Proposition 4 the
result holds.
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For n = 2; under both strict pro�t maximization and strategic delegation,
the collusion of the whole industry will take place at some time, and from then
on the situation will remain unchanged since it is the unique cartel in the unique
absorbing set, and therefore no move from it can be robust. For n = 3; under
strict pro�t maximization �rms will endlessly form and dissolve cartels, and no
cartel can be excluded from this transition process since at any cartel a robust
move can be found. However, under strategic delegation the collusion of the
whole industry will take place at some time, and from then on the situation
will remain unchanged. For n � 4; independently of the starting point, after a
�nite number of moves �rms will form a cartel with at least k � 1 �rms, under
both strict pro�t maximization and strategic delegation. From then on, the
formation and destruction of cartels will be restricted to cartels with at least
k � 1 �rms. Moreover, for n � 4, the cartel formed by n �rms belongs to the
unique absorbing set, and thus the collusion of the whole industry will occur
with some regularity in time.
We now compare the results obtained under strict pro�t maximization and

strategic delegation. Straightforward computations show that kd > kp. From
Proposition 8 we then have:

Proposition 9 If n = 2; And = Ad: If n � 3; Ad = AndnfK j knd � k < kdg.

Consequently, the unique absorbing set under strategic delegation can be
obtained by deleting a number of the smallest cartels from the absorbing set
obtained under strict pro�t maximization. Then, the set of cartels to which the
moves will be restricted in the long run contains larger cartels under strategic
delegation than under strict pro�t maximization. As we have seen, �rms�pro�ts
are lower under strategic delegation than under strict pro�t maximization. As
the cartel and each of the independent �rms produce the same quantity, then the
loss of pro�t induced by strategic delegation is smaller for the �rms in the cartel,
since those �rms share losses while independent �rms do not. As a result, the
free-riding incentive becomes lower and the incentive to form cartels becomes
higher when �rms�owners delegate production decisions to managers. However,
as the results obtained by applying the notions of stability, strong stability
and coalition-proof Nash stability show, although the free-riding incentive is
weakened under strategic delegation it remains strong enough to prevent the
stability of cartels. The reason for the formation of larger cartels lies then
in �rms�higher incentive to form cartels under strategic delegation. As n is
the cartel-size for which the payo¤ to �rms inside the cartel is maximal and
a single �rm always �nds it pro�table to leave a cartel, then given any cartel
there are two possible moves to another cartel: either all �rms together induce
the collusion of the whole industry or some �rms leave the cartel and become
independent. As the minimum number of �rms needed to form a cartel such
that every independent �rm receives a pro�t at least as large as the pro�t it
obtains in the monopoly case is larger under strategic delegation than under
strict pro�t maximization, the free-riding process �stops earlier�under strategic
delegation.
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5 Conclusions

We restrict our study to oligopolist industries where �rms�pro�ts are charac-
terized by assumptions A1 to A3. These are very general assumptions, which
most oligopolist models (such as Cournot, Bertrand and price-leadership) ful�ll.
These assumptions re�ect two important aspects of oligopolist markets. First, if
additional �rms join a cartel, �rms in the cartel reduce their output in order to
internalize the positive externalities of output reduction, and the market price
rises. Consequently, �rms in the cartel incur the cost of output reduction while
�rms outside the cartel pro�t from the higher price. Second, independent �rms
and the cartel produce the same quantity in equilibrium. Since the division of
pro�ts inside the cartel is equitable, an independent �rm therefore receives a
higher pro�t than a �rm in the cartel. Within this framework, we study the for-
mation of cartels in two di¤erent contexts. First, we analyze internal-external
stability based models which, due to �rms� free-riding incentives, lead to the
inexistence of stable cartels (except when there is a very low number of �rms
in the industry). Second, to analyze what may happen in those cases where
no inherently stable cartel exists, we introduce the dynamic aspect of cartel
formation. We prove that there is a unique absorbing set, and provide a char-
acterization. The absorbing sets solution selects a group of cartels to which the
process of formation and destruction of cartels is restricted in the long run even
if no cartel in such a group is stable.
We also study the in�uence that delegation of production decisions has on

the size of the cartels that form. At this moment, we restrict the analysis to a
linear Cournot model as a simplest way of illustrating our results. However, this
analysis could be extended to symmetric oligopoly models with arbitrary cost
and demand functions. We only require assumptionsA1 toA3 on �rms�pro�ts.
We show that strategic delegation reinforces the incentives to form cartels in
both the static and the dynamic contexts, with this in�uence being stronger in
the dynamic context.
Our model assumes �rms�identical cost structure and homogeneous goods.

Possible extensions could consider the case of heterogeneous goods as well as
the case in which �rms have access to di¤erent technologies, since it would be
interesting to analyze which �rms are most likely to join in a cartel in those
cases.
Another extension could take into account the fact that while collusive agree-

ments create positives externalities on �rms outside the cartel, cost-reducing
alliances induce negative externalities on other �rms. An analysis of this case
could lead to very di¤erent conclusions.
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