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Abstract: Increasing numbers of individuals follow plant-based diets. This has sparked interest in
the nutritional evaluation of the meat substitute sector. Nutritional understanding of these products
is vital as plant-based eating becomes more common. For example, animal products are rich sources
of iron and zinc, and plant-based foods could be inadequate in these minerals. The main aim was to
analyse the mineral composition and absorption from a range of plant-based meat-free burgers and
compare them to a typical beef burger. Total and bioaccessible mineral contents of plant-based burgers
and a beef burger were determined using microwave digestion and in vitro simulated gastrointestinal
digestion, respectively. Mineral bioavailability was analysed by in vitro simulated gastrointestinal
digestion of foods, followed by exposure of Caco-2 cells to the sample digests and assessment of
mineral uptake. Mineral quantification for all samples was achieved using inductively coupled
ICP-optical emission spectrometry (ICP-OES). The content of minerals varied significantly amongst
the burgers. Significantly greater quantities of Fe and Zn were found in the beef burger compared to
most meat substitutes. Bioaccessible Fe was significantly higher in the beef compared to most of the
plant-based meat alternatives; however, bioavailable Fe of most plant-based burgers was comparable
to beef (p > 0.05). Similarly, bioaccessible Zn was significantly (p < 0.001) higher from the beef burger.
Moreover, beef was superior regarding bioavailable Zn (p ≤ 0.05–0.0001), with only the mycoprotein
burger displaying comparable Zn bioavailability (p > 0.05). Beef is an excellent source of bioaccessible
Fe and Zn compared to most plant-based substitutes; however, these plant-based substitutes were
superior sources of Ca, Cu, Mg and Mn. The quantity of bioaccessible and absorbable Fe varies
dramatically among the meat alternatives. Plant-based burgers have the potential to provide adequate
quantities of iron and zinc to those consuming such burgers as part of a varied diet. Thus, guiding
consumer choices will depend on the variety of the vegetable constituents and their iron nutritional
quality in different burgers.

Keywords: iron; burgers; plant; bioaccessibility; bioavailability

1. Introduction

To meet the United Nations Sustainable Development Goals and Paris Agreement,
it may be necessary for global diets to shift to embrace greater reliance on plant-based
foods. According to the EAT-Lancet Commission, to help meet global targets by 2050, a
dietary pattern that is healthy for both people and planet should double the consumption of
fruits, vegetables, legumes and nuts, and reduce by 50% the consumption of added sugars
and red meat [1]. These practices could support environmental sustainability, alongside
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potential health benefits for the population. For instance, those who choose to follow a
vegetarian or vegan diet are reported to have a lower risk of cardiovascular disease, type 2
diabetes, and obesity [2]. In general, though iron stores of vegetarians may be low, anaemia
incidences may not differ significantly from those of omnivores [3]. Hence, a well-planned
varied vegetarian diet could maintain optimal iron nutrition in the populace. In addition, a
plant-based diet appears to be beneficial for human health by promoting the development
of more diverse and stable microbial gut populations [4].

Although vegetarian and vegan diets have been claimed to have a variety of positive
health effects, there is much debate about whether they can match an omnivorous diet
in terms of nutrient intake [5]. Minerals of concern are calcium, iron, and zinc, as well as
vitamin B12, vitamin D, and omega-3 fatty acids [6]. As these micronutrients are found
abundantly in animal-derived products, vegetarian and vegan diets must be properly
guided to avoid nutritional deficiencies.

Iron deficiency is the most common mineral insufficiency worldwide and is estimated
to affect two billion people globally [7,8]. The importance of iron cannot be understated,
as iron inadequacy can have devastating and irreversible consequences, such as impaired
cognitive development during childhood [9]. Those on a vegetarian or vegan diet, are at
a risk of iron deficiency if they do not follow professional dietary guidelines, because the
iron obtained is predominantly in the form of nonheme iron [10]. On the other hand, an
omnivorous diet contains a combination of heme (from meat and fish products) as well
as nonheme iron (from plant products). Heme iron is absorbed more efficiently from a
human diet (20–30%) than nonheme iron (5–15%); thus, heme iron demonstrates greater
bioavailability [11].

The bioavailability of nonheme iron varies in different foods, and this is largely
influenced by endogenous constituent inhibitors and promotors within these foods. The
main inhibitor of iron absorption is phytic acid, whilst polyphenols, tannins, calcium, and
soy also play inhibitory roles [12,13]. In contrast, ascorbic acid, meat, and citric acid are
all enhancers of iron absorption [14]. Ascorbic acid in the diet reduces ferric iron into
ferrous iron, which has a greater capacity for absorption [15]. In addition to iron, a large
proportion of zinc is derived from animal products, with meat constituting a third of
the zinc intake in UK diets (National Diet and Nutrition Survey NDNS) [16]. As meat is
eliminated from the diet, it is replaced by an increase in phytate-rich foods such as legumes
and wholegrains, which can have negative effects on the ability to absorb both minerals.
Thus, while those following vegetarian or vegan diets can acquire minerals from plant
products, their absorption is largely inhibited by phytic acid [17].

The change in consumer needs, i.e., the greater requirement for vegetarian and vegan
food products, has not gone unnoticed by retailers in the UK. The vegetarian and vegan
market has experienced substantial growth, particularly in the ready meals and convenience
food sectors [5]. It is estimated that meat analogues contribute significantly to human diets
which exclude animal flesh and their derivatives [18]. Meat-alternative products are aimed
primarily at vegetarians, vegans, pescetarians, or flexitarians, as well as those seeking
to diversify their diets [19]. Meat substitutes are largely based on soya, mycoprotein,
vegetables, wheat derivatives, and pulses [20,21]. These meat analogues often mimic
products traditionally prepared from animals, as they can be manufactured into burger,
meatball, and sausage formats.

Plant-based meat substitutes as ready meal products are also widely consumed by
adults due to their convenience as controlled portions (single servings help consumers
manage their meal intake) and easy cooking by microwave, and they offer a variety of
choices of food types. These products have been reported to be nutritionally adequate, as
well as having some shortfalls [22–24]. For example, a fava bean protein substitute for beef
or fish exhibited reduced iron bioavailability in healthy females [25].

There are limited data assessing whether plant-based meat alternatives can match the
high mineral profile of comparable nonvegetarian meals, and this could have important
implications on the mineral statuses of individuals who do not consume meat products.
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Arising from this, the main purpose of this study was to assess whether plant-based burgers
can compare with the mineral content and bioavailability of their meat-based equivalents
to inform consumers about their choices. Consequently, the study determined the mineral
content and bioaccessibility and bioavailability of iron and zinc as a novel approach, in
both vegetarian and vegan burgers, and compared them to those of a beef burger.

2. Materials and Methods
2.1. Reagents and Chemicals

Unless otherwise stated, all the reagents and chemicals used in this study were pur-
chased from Sigma-Aldrich Ltd. (Dorset, UK). Solutions of enzymes (pepsin and pancratic-
bile extract) were all freshly prepared just before use.

2.2. Sample Collection and Preparation

Burger samples were sourced from a major supermarket in the UK. Samples were
cooked as per the manufacturers’ instructions using an oven or a grill. Each burger (50 g)
was placed in an aluminium dish, frozen at −20 ◦C, and freeze-dried for five days using a
freeze dryer (CHRIST ALPHA 1-4 L Dplus SciQuip Ltd, Newtown, UK). Dried samples
were ground in a blender to obtain a fine powder, stored in sealed bags, and kept at 5 ◦C.

2.3. Moisture Content Analysis

To determine the dry matter, 5 g of each burger was placed in a crucible and dried in
an oven at 65 ◦C for 48 h until constant weight was attained and transferred to desicca-
tors. Dried samples were reweighed, and moisture content was calculated. The data are
presented as means n = 5 ± SEM.

2.4. Total Mineral Content of Samples

The total mineral content of each sample was determined by inductively coupled
plasma-optical emission spectroscopy (ICP-OES) (MS) after microwave digestion as de-
scribed [26]. Essentially, 0.5 g of each sample was placed into digestion to which 10 mL
of 70% 1 M HNO3 was added. Tubes were loaded into a MARS 6 microwave digestion
system (CEM Microwave Technology Ltd., Buckingham, UK) and the temperature was
raised to 210 ◦C for 45 min, and then cooled to room temperature. For ICP-OES, samples
were decanted into tubes and 140 µL of 1 ppm yttrium was added; thereafter, the volume
was made up to 14 mL using Milli-Q water. For ICP-MS, 50 µL of each sample was added
to a solution consisting of 4.9 mL Milli-Q water and 50 µL of 5 ppm gallium. The data are
presented as means n = 5 ± SEM.

2.5. In Vitro Simulated Gastrointestinal Digestion of Samples

An in vitro simulated enzymatic digestion of samples was employed to mimic gas-
trointestinal conditions and assess bioaccessibility of minerals [27–29]. In brief, 0.5 g of
sample was mixed with 10 mL of saline solution (140 mM NaCl; 5 mM KCl, pH 2.0) and left
for 15 min in the dark (20 ◦C). The pH was adjusted (HANNA Instrument) to 2.0 using 1 M
HCl, and 0.5 mL of pepsin (16 mg/mL) from porcine gastric mucosa was added. Samples
were incubated for 90 min in the dark at 37 ◦C on a rocking platform (Stuart Scientific
Shaker) set to 150 rpm. The pH was then altered to 7.0 using 1 M NaHCO3 before adding
2.5 mL porcine bile and pancreatin extracts (8.5 mg/mL bile; 1.4 mg/mL pancreatin) was
added. Volumes were raised to 15 mL using pH 7.0 saline solution and then incubated on
the rocking platform as described earlier. Thereafter, samples were centrifuged (Eppendorf
Centrifuge 5804R, Sigma) at 5000 rpm for 10 min. Supernatants were decanted and filtered
overnight in the dark at 5 ◦C using Whatman 540 filter paper, and filtrates were stored at
−20 ◦C until used. The procedure was also performed for sham controls to which no food
sample was added. The data are presented as means n = 3 ± SEM.
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2.6. Mineral Uptake by Caco-2 Cells

Caco-2 cells were seeded into six-well plates and grown for 14 days under the con-
ditions to allow for full differentiation. On the day before experimentation, the culture
medium was discarded and replaced with 2 mL/well of serum-free RPMI-1640 medium.
The next day, digests were defrosted, heated to 100 ◦C for 5 min to inactivate enzymes, and
then centrifuged for 5 min at 5000 rpm (Eppendorf Centrifuge 5804R, Sigma). Cell medium
was removed and replaced with 2 mL/well of working solution, which consisted of 1 part
digest to 1 part serum-free medium. Cells were incubated for 1 h for ICP-OES analysis and
4 h for ICP-MS analysis (5% CO2; 37 ◦C).

For ICP-OES analysis, working solutions were removed, wells were washed twice
with Versene, and 500 µL/well of 50 mM NaOH was added. Plates were placed on a
rocking platform at 20 ◦C for 2 h. For lysis, cells were subjected to 45 min of sonication
using a heated (40 ◦C) ultrasonic bath (FB 11021, Fisherbrand). To adjust for variability
in cell number between samples, 20 µL aliquots of each lysate were transferred to 96-well
plates for protein quantification. The remaining lysates were desiccated for 2 h at 60 ◦C
using a vacuum-integrated centrifugal concentrator to minimise variations due to volume
differences (miVAC DNA-23050-A00, Genevac). Dried lysates were mixed with 250 µL
of 65% HNO3, and then 200 µL aliquots were made up to 6 mL using 17% HNO3 (which
contained 1.0175 mL of 1000 ppm yttrium per 1 L of acid). Samples were digested at 80 ◦C
for 12 h and left to cool before analysis by ICP-OES. The data are presented as means
n = 4 ± SEM.

2.7. Protein Analysis

A Bio-Rad protein assay kit (Bio-Rad Laboratories, UK) was utilised to determine
the protein from Caco-2 cell lysate. To a 96-well microtiter plate, 20 µL of the sample,
20 µL of reagent A + S (1 mL of solution A added to 20 mL), and 160 µL of reagent B
were added. Bovine serum albumin was used as a standard. The plate was incubated at
room temperature on a platform shaker for 10 min and absorbance was read at 750 nm. A
standard curve was plotted, and protein content was extrapolated and calculated.

2.8. Statistical Analysis

Data were analysed using Microsoft Office Excel 2017 and GraphPad Prism 8.0. Data
are expressed as mean ± standard error of the mean (SEM). Comparisons of means were
analysed by one-way analysis of variance (ANOVA). Dunnett’s post-hoc test was used for
multiple comparisons, with beef set as the control group. Differences were significant when
p < 0.05.

3. Results
3.1. Moisture and Mineral Composition of Burger Samples

The ingredient compositions of all burgers differed, and these are shown in Table 1. The
main vegetable-based constituents of the samples are as follows: A (pumpkin), B (beetroot),
C (mycoprotein), D (red cabbage), E (jackfruit), F (potato), G (soy), H (mushroom), and I
(beef). The moisture content of raw burgers ranged from 50.5% to 77.9%, whilst cooked
burgers ranged between 47.8% and 75.2% (Table 2). Ca, Cu, Fe, Mg, Mn, and Zn content
were estimated in the samples. Significant differences in mineral contents were observed
between the plant-based burgers versus the beef burger (Table 2). Overall, the plant-based
burgers contained higher amounts of Ca, Mg and Mn, whereas beef burgers had lower Cu
contents (Table 2).
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Table 1. Ingredient composition of burger samples.

Sample Ingredient List

A Pumpkin (50%), sweet potato, soya protein, sunflower oil, potato starch, methyl cellulose, coriander, turmeric,
white pepper, cumin, fenugreek, wheat fibre, salt, paprika powder, onion powder, garlic powder, red paprika

B Beetroot (80%), potato starch, onion, soya protein, wheat fibres, methyl cellulose, salt, potato protein, garlic
purée

C
MycoproteinTM (38%), textured wheat protein (wheat flour, sodium alginate, plain caramel), rehydrated free
range egg white, vegetable oil, onion, smoked yeast, potassium chloride, milk proteins, roasted barley, calcium
chloride, calcium acetate

D
Red cabbage, black turtle beans, breadcrumbs (wheat flour, calcium carbonate, iron, niacin, thiamin), sunflower
oil, salt, yeast, rosemary, soya protein concentrate, sushi rice, carrot, rice vinegar, water, onion, dark soya sauce,
beetroot, rapeseed oil, red chilli purée, red miso, maple syrup, garlic, black pepper

E

Jackfruit (45%), water, rice flour, gram flour, maize flour, maize starch, yeast extract, brown sugar, tomato paste,
cornflour, potato starch, salt, sunflower oil, red pepper, spirit vinegar, muscovado sugar, cider vinegar, parsley,
onion powder, garlic powder, lemon powder, sodium bicarbonate, disodium diphosphate, paprika, cane
molasses, grape vinegar, fennel seed, cayenne pepper, cumin, coriander, rosemary, dextrose monohydrate,
pepper, xanthan gum, black treacle, tamarind paste, pimento, ginger, cloves

F
Potato (15%), aubergine, onion, lentils, rapeseed oil, feta, spring onion, chickpeas, sweet potato, egg, cornflour,
potato starch, wheat flour, calcium carbonate, iron, niacin, thiamin, garlic purée, red chilli purée, parsley, mint,
salt, cumin, extra virgin olive oil, tomato purée, pepper, coriander, paprika, yeast

G
SOY structure (Water, soya protein, wheat starch, wheat protein) (64%), broad beans, sunflower oil, palm oil,
onion powder, pepper, garlic, ginger, mace, onion, clove, coriander, oregano, methyl cellulose, bamboo fibre,
tapioca starch, seaweed, salt, iron, vitamin B12

H Water, mushrooms (32%), wheat gluten, pea flour, wheat flour, vegetable suet, pea fibre, methylcellulose, pea
starch, salt, onion, yeast, pepper, sodium metabisulphite

I Beef (95%), onion, salt, butter, pepper, sodium sulphite, sodium ascorbate

Vegetarian: C, F, & G; Vegan: A, B, D, E, & H; Animal: I. Ingredient list was reproduced from labels on the burger
samples purchased from a supermarket in the UK.

Table 2. Mean moisture and mineral contents of vegetarian, vegan, and beef burgers (mg/100 g) dry
weight.

Sample Moisture (%) Fe Ca Cu Mg Mn Zn

A 67.9 3.36 ± 0.03 134 ± 0.93 *** 0.43 ± 0.01 *** 85.9 ± 0.34 *** 1.20 ± 0.12 *** 1.10 ± 0.02 ***
B 75.2 3.39 ± 0.06 156 ± 1.38 *** 0.42 ± 0.01 *** 94.1 ± 0.70 *** 1.88 ± 0.01 *** 1.67 ± 0.03 ***
C 62.2 1.13 ± 0.04 *** 260 ± 7.01 *** 0.56 ± 0.01 *** 50.5 ± 0.54 *** 3.25 ± 0.04 *** 7.15 ± 0.08 *
D 54.3 2.70 ± 0.05 *** 93.4 ± 1.39 *** 0.33 ± 0.00 *** 70.4 ± 0.96 *** 0.97 ± 0.01 *** 1.14 ± 0.04 ***
E 57.1 1.27 ± 0.03 *** 31.7 ± 0.10 *** 0.24 ± 0.00 *** 40.1 ± 0.20 *** 0.63 ± 0.00 *** 0.89 ± 0.02 ***
F 47.8 1.99 ± 0.08 *** 57.9 ± 0.92 *** 0.23 ± 0.00 *** 39.5 ± 0.34 *** 0.47 ± 0.01 *** 0.91 ± 0.03 ***
G 53.6 14.5 ± 0.03 *** 150 ± 1.32 *** 0.28 ± 0.00 *** 62.5 ± 0.46 *** 0.87 ± 0.01 *** 1.14 ± 0.01 ***
H 61.2 2.90 ± 0.02 *** 46.2 ± 0.28 *** 0.43 ± 0.00 *** 44.5 ± 0.15 *** 0.83 ± 0.01 *** 2.24 ± 0.01 ***
I 54.1 3.42 ± 0.01 9.59 ± 0.21 0.14 ± 0.00 37.2 ± 0.12 0.07 ± 0.00 7.41 ± 0.06

Mineral content quantified by ICP-OES. The main ingredients represented by the sample coding are as follows: A:
Pumpkin, B: Beetroot, C: Mycoprotein, D: Red cabbage, E: Jackfruit, F: Potato, G: Soy, H: Mushroom, I: Beef. Data
expressed as mean ± SEM (n = 5). A one-way ANOVA and Dunnett’s test were performed to determine significant
differences to beef. * Significant at the 0.05 probability level; *** Significant at the 0.001 probability level.

The ingredient compositions of all burgers varied, and these are shown in Table 1. The
first procedure was the determination of the moisture content of each burger, and these
ranged between 47.8% and 75.2% (Table 2). Significant differences in mineral content were
observed between the vegetarian and vegan burgers versus the beef burger (Table 2). The
beef burger had significantly (p < 0.001) higher levels of iron than most meat alternatives,
except for pumpkin and beetroot, which did not reach significance. The soy burger had
significantly higher (p < 0.001) Fe than the beef burger (Table 2). Furthermore, the Zn
content was significantly (p < 0.001) higher in the beef burger compared to all the meat
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substitutes. All meat alternatives had significantly (p < 0.001) higher levels of Ca, Cu, Mg,
and Mn than the beef burgers (Table 2).

3.2. Iron and Zinc Bioaccessibility from Burger Samples

A well-established in vitro method was employed to estimate the bioaccessibility of
minerals from burger samples. Fe bioaccessibility was significantly greater from the beef
burger than all other raw burger samples except for soy and pumpkin samples (Figure 1A).
Total bioaccessible Zn was significantly (p < 0.001) higher from the beef burger than all
other burger samples (Figure 1B).
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Figure 1. (A): Iron bioaccessibility from burgers. A one-way ANOVA and Dunnett’s test were per-
formed to determine significant differences to beef with significance displayed as follows: p ≤ 0.05 (*),
≤0.01 (**), ≤0.001 (***), and ≤0.0001 (****). Data represent means (n = 3) ± SEM. (B): Zinc bioaccessi-
bility from burgers. A one-way ANOVA and Dunnett’s test were performed to determine significant
differences to beef with significance displayed as ≤0.0001 (****). Data represent means (n = 3) ± SEM.
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3.3. Mineral Uptake from Plant-Based Burger Digests by Caco-2 Cells

Mineral bioavailability is a quantification of the level of minerals taken up by cells after
a specified period of exposure. Here, mineral bioavailability was estimated by applying
the in vitro digested samples to Caco-2 cells. Fe bioavailability for all plant-based burgers
was comparable to the beef burger (I), with the exceptions of the beetroot burgers, which
were significantly lower (Figure 2A). The plant-based burgers had significantly less Zn
uptake than beef; however, the mycoprotein burger (C) was the only plant-based burger
with comparable Zn bioavailability (Figure 2B).
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Figure 2. (A): Iron bioavailability in Caco-2 cells from burgers. A one-way ANOVA and Dunnett’s test
were performed to determine significant differences to beef with significance displayed p ≤ 0.05 (*),
≤0.01 (**), ≤0.001 (***), and ≤0.0001 (****). Data represent means (n = 4) ± SEM. (B): Zinc bioavailabil-
ity in Caco-2 cells from burgers. A one-way ANOVA and Dunnett’s test were performed to determine
significant differences to beef with significance displayed as ≤0.0001 (****). Data represent means
(n = 4) ± SEM.
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4. Discussion

With meat analogues accounting for approximately 1–2% of the total meat market and
increasing by 15% annually in the UK, their consumption, composition, and nutritional
content require further investigation [30]. The current study investigated the content and
availability of minerals from a selection of meat substitutes sold in the UK. The total mineral
content and in vitro availability of Fe and Zn were assessed in the samples. Overall, while
iron bioavailability was comparable for most plant-based and beef burgers, zinc availability
of the plant-based burgers was lower than for beef.

As expected, significant variability was observed in the mineral content across meat
substitutes due to a wide variety of ingredients used in the formulation (Table 1). The
mineral content of burger samples was found to be similar to those described in tables
from [31]. The soy-based burger contained extremely high levels of iron (14.5 mg Fe/100 g),
which is ~4.2-fold higher than that quantified for beef. A recent audit of 50 raw meat-
substitute burgers on the Australian market found that they contained an average of 3.6 mg
Fe/100 g [32]. Varying Fe levels could be attributed to different cultivation conditions
of plant components within the meat substitutes, product development practices, and
processing regimens due to wheat flour components of the burgers (which is fortified by
law in the UK with iron but not in Australia) [33].

Total zinc content was significantly lower in plant-based burgers (excluding the myco-
protein burger) compared to the beef burger. This result is consistent with the literature,
reporting higher total zinc content in ground beef than in plant-based alternatives [34,35].
The data on mycoprotein are also supported by showing that mycoprotein contains compa-
rable amounts of zinc to that found in meat [36,37].

Swing et al. [35] quantified mineral levels in various cooked plant-based burgers,
comparing them to pork and beef burgers. The results indicated that the plant-based
burgers had significantly greater iron and zinc contents than the animal-based burgers. This
contrasts with the current study, which showed plant-based burgers contained significantly
lower iron and zinc contents compared to the beef burgers. This discrepancy may be related
to the differences in the burger components between the two studies. Swing et al. [35]
analysed mock meat burgers such as ‘Beyond Meat’, which were made with a variety of
ingredients. Interestingly, the report did note that soy-based burgers contained the highest
total iron at 36.3 ppm, compared to just 19.4 ppm for beef.

Our current study found that all meat alternatives have higher calcium levels com-
pared to beef. This could be explained by several factors, such as the potential addition
of calcium chloride to plant burgers as a firming agent, the fortification of wheat flour
with calcium, and beef being a poor source of calcium (National Diet and Nutrition Survey
NDNS, [16]. This suggests that meat substitutes could be an important source of calcium
for those who do not consume meat, fish, or dairy products.

The beef burger had significantly greater iron bioaccessibility than meat substitutes,
with the notable exception of soy (Figure 1A). This could be explained in part by the soy
burger being fortified with iron. Soy has been reported to lower iron bioaccessibility, due
to encapsulation of iron within large peptide aggregates during in vitro digestion [38].
Nonetheless, fortification of soy alongside an adequate quantity of ascorbic acid may
partially overcome the inhibitory effect on iron bioaccessibility [39]. In addition, the baking
processes carried out on the burgers may also partially reverse soy inhibition of iron [40].

Animal flesh is the primary source of zinc in UK omnivorous diets and represents
a source of highly bioavailable zinc [41,42]. Perhaps unsurprisingly, zinc bioaccessibility
from the beef burger was significantly greater than from the meat substitutes following
in vitro digestion (Figure 1B).

Surprisingly, for most of the plant-based burgers, iron bioavailability did not differ
significantly from beef (Figure 2A). This may be related to the additional food components
present in the various burgers. For example, soy, which has a naturally high iron content,
is an ingredient in several of the plant-based burgers. Furthermore, iron (added as a
fortificant) is also listed in the ingredients for some burgers. This suggests that a diet that
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excludes animal products could achieve adequate intakes of minerals from plant foods;
however, content is a relatively poor predictor of bioavailability [43,44]. Thus, total mineral
content may not correlate with mineral bioaccessibility and bioavailability.

Only the mycoprotein burger exhibited comparable zinc uptake to beef in Caco-2 cells
(Figure 2B). Mycoprotein products have been reported to contain high zinc contents (with
a median content of 6.7 mg/100 g) and had very low content of phytate. This suggests
that mycoprotein, which is already a dominant meat substitute component for vegans and
vegetarians, is equally as effective as beef in supplying adequate zinc amounts in the diets.

Plant food products are known to contain high levels of phytate, which can reduce
iron and zinc uptake from plant-based burgers [45,46]. The inhibitory effect of phytate is
potentiated by forming mineral-calcium-phytate complexes of low solubility in the intesti-
nal lumen [17]. Furthermore, the high phytate content in soy products, alongside high
dietary calcium intake, has been shown to lower zinc bioavailability in rats [38]. How-
ever, in humans, replacing meat by 25% with soy did not impact mineral absorption [47].
This finding might be promising if meat reduction is to be encouraged. However, total
replacement of meat with soy led to significantly lower absorption levels of zinc showing
that the exclusion of meat may exacerbate poor bioavailability of zinc from plant-derived
sources in vegetarian and vegan diets [47]. A recent study estimated the bioavailability of
iron and zinc based on the phytate:mineral molar ratio, from samples of meat substitutes
bought from convenience stores in Gothenburg, Sweden [48]. None of the products were
considered as sources for good mineral bioavailability due to very high content of phytate.
The study therefore concluded that the meat substitutes analyzed did not contribute signif-
icantly to absorbed iron. The variations in ingredients between the plant-based burgers,
as well as the presence and interaction of inhibitors and enhancers in the burgers, can
influence mineral bioavailability and provide insight for future investigations. Current
dietary guidelines recommend a reduction in red and processed meat consumption and an
increase in fruit and vegetable intake to decrease the risk of chronic disease. Therefore, as
the population moves more towards the consumption of a plant-based diet, the exploitation
of the synergy among dietary components to enhance iron absorption by the incorporation
of potent enhancers of mineral absorption in plant burgers becomes increasingly important.

The composition of the vast array of vegetarian and vegan burgers is constantly
changing and developing due to technological advances. Therefore, it is challenging
to assess and compare the mineral content and bioavailability of the different products
currently available in the UK. Burgers are not eaten in isolation, but often as part of a
more complex meal. Consequently, depending on the variety of vegetable constituents of
plant-based burgers, they could provide adequate quantities of iron and zinc in the diet.

A limitation of the current work is that cultured cell models may not reflect true
physiological responses. However, Caco-2 cells have been validated and verified for the
determination of in vitro iron bioavailability because the cells express intestinal microvilli
enzymes and differentiation markers that mimic human small intestine enterocytes [27,49].
Moreover, the lack of modulators of systemic factors of iron absorption could confound
the extrapolation to in vivo iron absorption studies [50]. Nevertheless, assessments of the
bioaccessibility of iron and its bioavailability in Caco-2 cells are useful for predicting the
relative bioavailability of a wide range of plant foods. This information can be used to select
specific food products for further evaluation in human dietary interventions to measure
the bioavailability of minerals from meals containing meat substitutes.

5. Conclusions

In summary, except for soy and mycoprotein burgers, the total iron and zinc contents
of the plant-based burgers were significantly lower than those from the beef. Likewise, zinc
bioavailability was significantly lower from plant-based burgers, while iron bioavailability
was comparable between the meat-containing and the meat-substituted burgers. Thus,
individuals consuming plant-based diets need to be aware not only of the foods that
are rich in iron and zinc, but also of the foods to eat in conjunction to maximise mineral
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bioavailability. Only the mycoprotein-based burger showed comparable zinc bioavailability
to beef, and thus it could be suitable alternative to a traditional meat-containing burger.
Future studies should now investigate the nutritional and health effects of meat substitutes.
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