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AN AXIOMATIZATION OF SUCCESS

M. JOSUNE ALBIZURI*, ANNICK LARUELLE®

ABSTRACT. In this paper we give an axiomatic characterization of three fami-
lies of measures of success defined by Laruelle and Valenciano (2005) for voting
rules.
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1. INTRODUCTION

The aim of this paper is to provide an axiomatization of the measures of success
in voting rules. We look for a set of axioms, that is, assumptions that, whatever
their plausibility, have a clear meaning and make sense one by one, independently
of the others. What we obtain in this paper are the three families of measures of
success for voting rules defined by Laruelle and Valenciano (2005). These measures
are associated with probability distributions p over the set of all possible vote
configurations. Measure 2P, which is formalized in the following section, gives the
probability for a voter of having the result he voted for. Measure QPT gives the
probability for a voter of having the result he voted for conditioned on voting yes.
And measure QP~ gives the probability for a voter of having the result he voted for
conditioned on voting no.

In this paper we give three axiomatic characterizations. One for the family of
measures {2} _p, where P denotes the set of all the possible probability distribu-
tions. Other for the family of measures {Q?*} _p,. And the last one for {77} _p.
The axioms we employ are some common ones together with others which are
specific for each family.

In the following section we present the measures of success defined by Laruelle
and Valenciano (2005), and in Section 3, 4 and 5 we give the axiomatic characteri-
zations of the three families.

2. BACKGROUND

We consider voting rules to make dichotomous choices (acceptance and rejection)
by a voting body. Let N = {1,2,..,n} denote the set of seats. If any vote different
from ’yes’ is assimilated into 'no’, there are 2" possible vote configurations. Each
vote configuration can be represented by the set S C N of ’yes’ voters. An N-voting
rule is fully specified by the set W of winning vote configurations, that is, those
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which lead to the acceptance of a proposal (the others would lead to the rejection
of the proposal):

Wy = {9 : S leads to a final ’yes’}.

When N is obvious from the context, we omit the subscript’ N’ and write W instead
of Wy . In order to exclude unconsistent voting rules, we assume that the set W
satisfies the following conditions: (i): The unanimous ’yes’ leads to the acceptance
of the proposal: N € W; (ii): The unanimous 'no’ leads to the rejection of the
proposal: (} ¢ W; (iii): If a vote configuration is winning, then any other configura-
tion containing it is also winning: If S € W, then T' € W for any T' containing S
(iv): If one vote configuration leads to the acceptance of a proposal, the opposite
configuration will not: If S € W, then N\S ¢ W. Let VRy denote the set of
voting rules with set of seats N. A voting rule can also be described by its set of
minimal winning configurations. A configuration S is minimal winning if S € W
and for any 7 € S, S\ i ¢ W. The set of minimal winning configurations of rule W
is denoted M (W). A seat i is said to be a dictator seat if for all S we have S € W
if and only if i € S. The T-unanimity rule, denoted W7, is the voting rule

Wr'={SCN:8DT}

The extreme cases are when 7' = N (unanimity) and T' = {i} (seat i is a dictator
seat). For any voting rule W € V Ry such that W # UY | and any T' € M (W), the
modified voting rule W7 is the voting rule such that Wy = W\ {T'}.

Let G denote the set of transferable utility games with player set N. That
is, G is formed by the mappings w from 2% into R" such that w (§) = 0. And
SGy denote the subset of G formed by simple superadditive games such that the
worth of N is 1. That is, by the mappings w € G such that w (S) € {0,1} for
any SC N, w(N)=1land w(SUT) > w(S)+w(T) whenever SNT = (). Notice
that superadditivity implies monotonicity, that is, w (T") > w (S) whenever S C T.
Then we can obviously identify V Ry with SGy, by associating W € V Ry with the
game w € SG that satisfies w(S) = 1 if and only if S € W. We distinguish the
game and the procedure by using the small letter in the first case and the capital
letter in the second case.

Laruelle and Valenciano (2005) define some measures of success. They consider
a probability distribution over the set of all possible vote configurations, which can
be interpreted as a ”common prior” about the voters voting behavior. Let p denote
a probability distribution over the set of vote configurations, and let p(S) denote,
for each S C N, the probability of S being the vote configuration. Let P denote
the set of all probability distributions. For a given p let

v;(p) := Prob (i votes ’yes’) = Z (S).
S:es
In the following we will assume that 0 < v,(p) < 1.
A voter’s probability of being successful (having the result one voted for) for a
voter ¢ is given by

QP(W) = Prob (i is successful) = Z p(S) + Z p(S).
S:eSewW S:g¢S¢w

We will deal also with the following ’interim’ evaluations (i.e., conditional expec-
tations updated with the private information of each voter’s own vote) for which
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we use the following notation:
+ .o . 9 )
QPT(W) = Prob (i is successful | i votes "yes’)

> p(9)

SHESEW
7i(p)
and
QPT (W) : = Prob (i is successful | i votes 'no’)

1 S p(s)

S:igS¢Ww
1 —;(p)

We will consider QP, QP* and QP~ as mappings from V Ry into RV.

3. CHARACTERIZATION OF {QP} _p

The following axioms permit to characterize the family {QP} . We represent
by ® a mapping from V Ry into RY in this section and the following ones.

Transfer axiom states that the impact on a voter’s index of deleting a minimal
winning coalition from the list of winning ones is the same whatever the voting
procedure in which the deleted coalition is minimal winning:

Transfer* (T*) : Forall VW € VRy,andall S € M(V)NM (W) (S # N) :
(V) — ®,(VE) = &;(W) — ®;(W3) for all i € N.

This axiom was introduced by Laruelle and Valenciano (2001) for simple superad-
ditive games in order to characterize the Shapley-Shubik (1954) and Banzhaf (1965,
1966) indices. It was also employed by the same authors (2003) to characterize the
semivalues.

Contrary Gain-Loss states that the effect of eliminating a minimal winning coali-
tion is just the opposite for a voter inside the coalition and for a voter outside it.

Contrary Gain-Loss (ConGL): For all W € VRy, all S € M(W) (S #
N),and alli € S, j ¢S,

(W) — @:(W3) = ©;(Ws) — @;(W).

The following axiom is equivalent to ’coalitional monotonicity’ (Young, 1985)
in the domain of simple games. It postulates something about the effects on the
voters’ index of a minimal modification of a voting procedure. Namely, when a
minimal winning coalition is deleted from the list of winning ones that specifies it.
The elimination of a minimal winning coalition diminishes the index of the voters
within this coalition.

Coalitional Monotonicity* (CMon*): For all W € VRy, and all S €
MW) (S #N):
&;(W) > ©;(W%) for all i € S.
The following axiom requires a dictator voter index to be equal to 1. Notice that
if we consider (2P, the index of any voter is less or equal than 1.
Dictator Seat Axiom (DS): If 7 is a dictator seat in W then ®;(W) = 1.

In the last axiom an upper bound is settled for the decrements associated with
deletions of minimal winning coalitions in voting procedures.
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Upper bound (UB): Leti € N. Forall S ¢ N, S # 0, let W° € VRy such
that Se M (WS) Then,

> (@) —a(WH9) + > (@)Y - @) <1
SGN SCN
ies S#0,i¢ S

Observe that this axiom states an upper bound for the total amount of decre-
ments associated with deletions of all likely minimal winning coalitions containing
and not containing voter i.

These axioms characterize the family {Qp}p,E p - First we prove two lemmas. In
the first V Ry is identified with SGy.

Lemma 1. If®: VRy — RN satisfies Transfer™ then there exists a unique linear
mapping ® : Gn — RY such that ® (w) = & (W) if W € VRy.

Proof. The proof is similar to the beginning of the proof in Theorem 2.4 (Einy,
1987). O

Lemma 2. Q7 : VRy — RY satisfies T*, ConGL, CMon*, DS and UB.

Proof. First of all notice that if W € VRy

p(S)itie s
—p(S)ifi ¢ S.

This equality implies that QP satisfies T*. It implies also ConGL since
Q7 (W) = Q7(W3) = p(S) = — (=p(8)) = Q(Wg) — Qf(W)
when i € S, j ¢ S. CMon* is also satisfied because if i € S
(W) = QF(Wg) = p(S) = 0,

where the inequality is true since p is a probability distribution.
On the other hand, if i is a dictator seat in W then

QW)=Y pS)+ Y plS) =1,

S:ieS S:i¢S

orv) - apv) = {

where we have taken into account also that p is a probability distribution.
Finally, let i € N and for all S ¢ N, S # 0, let WS € VRy such that S €
M (WS ) Then

S (@S — e )+ S (@)Y - aWS)) = 3 p(S),
% shbigs £y

and this expression is smaller or equal than 1 since p is a probability distribution.
Therefore QP satisfies UB. O

In the characterization theorem we employ the basis of G formed by the games
ug, S C N, S # 0, defined by

uS(T):{l ifS=T

0 otherwise.

Theorem 3. A mapping ® : VRy — RY satisfies T*, ConGL, CMon*, DS and
UB if and only if there exists a probability distribution p on 2V such that ® = QP.
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Proof. We have proved in Lemma 2 that QP satisfies T*, ConGL, CMon*, DS and
UB for all probablity distribution p.

Now let us prove the other implication. Let ® : VRy — R which satisfies the
above axioms. By Lemma 1 there exists a linear mapping ® : Gy — R such that
P (w) = ® (W) when W € VRy.

Let w € G . We have that

w= Z w(S) - us.

SCN
S0

Since @ is linear then

B (w)= Y w(S) ®(us).
SCN
S0

And taking into account Lemma 1, if W € V Ry then
(2) W)=Y w(S) T (us).

SCN
S#0

Let S ¢ N, S # (. Consider W € VRy such that S € M (W). If 4,5 € S,
ConGL and (2) imply

P; (ug) = ; (W) — ®; (W3) = &; (W) — ®; (W) = @; (us)

So let
(3) cs = ®; (us),
where ¢ € S. And let us prove that if k ¢ S then
(4) Dy (us) = —cs.

Indeed, let i € S. ConGL and (2) imply
P, (us) = Pk (W) — @i (W5) = @; (W3) — @i (W) = —cs,
and (4) is obtained.
We have that c¢g > 0. This inequality is implied by CMon*, (2) and (3) since
given i € S and W € VRy such that S € M (W),

Let us fix now i € N. If we consider the voting rule W in which i is a dictator
seat, then

(5) 1= (Di (Wd) = E El (US) = E Cs +6l (UN),
SCN S¢N
i€S €S

where the three equalities are implied by DS, (2) and (3) in the same order.
Besides, UB implies
Z Ccs S 1.

SCN
S#£0

This inequality and (5) imply
1<1-— Z CS+61'(UN).

SCN,
S#£0,i¢S
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And therefore,
(6) P (un)=co+ », cs,

SCN,
S#0,i¢S

with ¢o > 0.
Consider now W € VRy. The equalities (2), (3), (4) and (6) imply

o;(W)=co+ > w(S)-cs+ Y. (I-w(S))-es.

SCN SCN
i€S S£0,i¢S
Let a,b > 0 such that ¢g = a + b and define
Ccs if S 75 (Z), N
p(S)=¢ a ifS=N
b if §=40.

Obviously, p is a probability distribution over the set of vote configurations.
Then the above expression turns into

W)= >, pS+ >, ),

S:eSew S:i¢S¢w
and the proof is complete. ([l

Remark 1. UB does not depend on T*, ConGL, CMon* and DS. Indeed, let N

be such that [N| >2 , >0, and ¥} (W)= > q(S)+ > q(S) such that
S:HESEW S:gS¢W

g(N) = —¢£,q(0) =0,q(i) = (1+¢)/|N| for alli € N and q(S) = 0 otherwise. This

mapping satisfies all these axioms except UB.

Remark 2. We can alternatively define an indexr as a mapping from V Ry into
[0, 1]N. Then, DS would require the index for a dictator seat to be the maximum
possible one, and UB would require the decrements to be bounded by this possible
mazimum indez.

4. CHARACTERIZATION OF {QP*}

Now we characterize the family {Q"} _p.

We employ Transfer® (T*), Coalitional Monotonicity* (CMon*), Dictator Seat
Axiom (DS) and the following axioms.

According to the first one, the elimination of a minimal winning coalition does
not have any effect on the index of the voters outside this winning coalition.

No-Gain-No-Loss Out (NGNL-OUT): For all W € VRy, and all S €
MW) (S # N):

O, (W) = ®;(W3) for all i € N\S.

If the elimination of a minimal winning coalition does not affect on the index of
a voter in this coalition, then the index of the other agents in the minimal winning
coalition will not be affected either. Moreover, if the index of a voter is zero in the
unanimity rule then the index of any voter is zero too. This is what the following
axiom requires.
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Symmetric Null Gain-Loss (SymNGL): Let W € VRy, S € M(W)
(S # N) and ¢ € S such that &;(W) — ®&;(W¢) = 0. Then, ®;(W) —
®,;(Wg) =0 for all j € S. Moreover, if ®;(UY) = 0 then ®;(UYN) = 0 for
all j € N.

We also require a proportionality axiom.

Proportionality (Prop): Let W € VRy, S1,S52,53 € M(W) (51,52, 55 #
N) and 11,1%2,13 € N such that iq,i3 € 5177;1,7:2 S 52,7:277;3 € S3 . Then

@il (W) - q)il (ng) cbil (W) - cbil (Wg:z) CI)i2 (W) - CI)i2 (Wg:g)

O (W) = @3, (W5,) @iy (W) = &4, (Wg,) @iy (W) = 04, (W)

whenever ®;, (W) — (I)ia(ng) #0, ®;,,(W) — P, (Wgz) #0 and @, (W) —
P, (Wg,) # 0.
So the deletion of Sy affects to i; and i3 as the product of what affects the
deletion of Sy to 71 and is, by what affects the deletion of S35 to i and i3.
Notice that if i3 = i3 and Sy = S3 (or S; = S3), then i1,i2 € S1 NSy and the
equality in this axiom turns into

@i (W) — @5, (Wg,) _ 20, (W) — @i, (W,)

®;, (W) -, (W.‘;"kl) ®;, (W) - (Wg'g) .

That is, it requires the deletion of S7 and S5 to affect in the same proportion to iy
and 5.
And the last axiom requires the index to be non negative in the unanimity rule.

Non-negativity for the unanimity rule (NNU):
®;(UN) >0 forallic N.
First let us prove that QPT satisfies these axioms.
Lemma 4. QP satisfies T*, CMon*, DS, NGNL-OUT, SymNGL, Prop and NNU.
Proof. If W € V Ry then

p(S) ¢
QP — QP (W) = 3 i 1€
: i 0ifi¢S.

This equality implies that QP satisfies T* and Sym NGL. And if ¢ € S then

artw) - g = 25
7i(p)
since p is a probability distribution. Hence, CMon* is also satisfied.
If ¢ is a dictator seat in W then
3 a(s)
QW) = 22— =1,
W) 7i(p)

and therefore DS is satisfied.
NGNL-OUT is satisfied because for all i € N\S

T~'; Wp(T)
(W) = T = W),
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Prop is satisfied because

QW) - QW) 7,(0) _ 7 (p) 73, (p)
QFW) = wz) () v, () i, (p)

_OPTW) - Q7T (Wg,) Q57 (W) - Q5T (W)
QLS (W) = QpF (Wg,) Q5F (W) = QFF (W3,
And finally NNU is satisfied because if i € N

QT (ur) =

O

Theorem 5. A mapping ® : VRy — RY satisfies T* CMon*, DS, NGNL-OUT,
SymNGL, Prop and NNU if and only if there exists a probability distribution p on
2N such that ® = QPF.

Proof. We have proved in Lemma 4 that QPT satisfies T*, CMon*, DS, NGNL-
OUT, SymNGL, Prop and NNU for all probablity distribution p.

To prove the other implication, let ® : VRy — RY which satisfies the above
axioms. Applying Lemma, 1, there exists a linear mapping ® : Gy — RY such that
@ (w) =& (W) when W € VRy. And given w € Gy we have that

B (w) =Y w(S) ®(us).

SCN
S0

Applying again Lemma 1,

(8) W)= w(S) P (us).
SCN
S#0

NGNL-OUT implies that ®; (ug) = 0 if 4 ¢ S. Indeed, suppose that there exists
S C N, S # 0, such that i ¢ S and ®; (us) # 0. And let W € VRy such that
S € M (W). By expression (8) we have that

D; (W) — &;(W3) = ®; (us),

and therefore this difference is not null. But by NGNL-OUT &, (W) —®,(W¢§) =0,
which is a contradiction. Hence,

(9) ©; (W)=Y w(S) ®;(us).
SCN
€S
Let us prove now that there exists {p(S) € R: S C N, S # (} such that for all
i€ N and for all § 314
i (ug) - Y _p(T)=p(S).

T>i

Let us fix ¢ € N and consider the folllowing system with unknowns {p () : 8>3 z} ,

D, (us) - Zp(T)i =p(S)" where S > i.
T3i
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This is an homogeneous system with infinity solutions since DS and Lemma 1
imply

ZEZ‘ (us) = 61‘ (Z u5> =1.
S3i S31i

This equality also implies that there exists S; > i such that ®; (us,) # 0, and the
solutions of the system are

i 61 (us)

p(S) = ="—"2p(S;)" where p(S;)’ € R.
P, (usz)
Now let us prove that for all i, € N we have that
(10) p(S) =p(S)

for all S >4,j. 4 _
Let us fix i,j € N. Given S 3 i, 7, we have equality p (S)" = p(S)’ if

Di(us) ovi_ Pilus) o

If ®; (us) = 0, by (9) we have that ®; (W) — ®;(W%) = 0 for some W € VRy
such that S € M (IW). And by SymNGL we have that &; (W) — ®;(W¢) = 0, that

is ®; (ug) = 0, if we take into account (9) again. Therefore, in this case we have

p(S) =0=p(9)._
So suppose that ®; (ug) # 0. In this case (11) can be rewritten as follows

(us;) ®;(us)
(us) ®; (Usj)

(12) p(s) =2 p(S,Y

so we obtain this relation between p (S;)" and p (S;)’.
Since (10) has to hold for any subset containing i and j, consider S” 5 4, j, with
S" # 8. Equality p(S")" = p(S")’ holds if

i 6 ’LLS/) i
= p(S;)) = =2"—"Lp(S,),
(I)Z- (’U,S1> ( ) ‘I)j us. ( J)

(
(us;)

A
=
2
—
<
“Q
N
o
=
g,
on
&
-+
=
c
)
=

which is true if ®; (ug/) = 0, an

that is, if
P (us) @i (us') = ®; (us) Pi (us),
and this equality holds by Prop. Just consider W € V Ry such that S, = S €
M(W),52253:SI€M(W)7i1:7;7i2:jal’ld7;3:i2. B
If there exists k € N such that there exists S* 3 j, k such that @ (ug+) # 0,
reasoning as above we take

@ (

Pk
(13) P =50

us 6 Uug=* i
k)ij( )p(Sj)],
Uug=* <I>j us.

) @ (us;)
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and we have to prove also that if there exists S 3 i, k such that @y, (ug) # 0, then
N Nk
D <S) =p (S) , that is
62‘ us i Ek us
( S)p(Si) _ st)p(gk)k_
Py (us,)
Substituting expression (12) and (13) in this equality, it turns into
(ug) @i (us,) B; (us) i ®n (ug) i (us,)
(us;) @; (us) P; (us,) Dy (us,) Pr (us+)
Taking p (Sj)j # 0 and simplifying,
®; (ug) Ok (us-) ®; (us) = ®; (us) Pk (ug) ®; (us-),
which is true by Prop: consider W € V Ry such that S; = S e MW),Sy = S* €
M(W),Sg =5e€ Z\f(VV)7 and i1 =1, 19 =7 and iz = k.

Hence we have proved that there exists {p (S) € R: S C N, S # (0} such that
for all € N and for all S 34

D, (ug)- > _p(T) =p(S).

T>1

P (S5)

gj (US*) ;
= S5) .
T, us, p(S;)

(us;)

@;
[

And moreover that there exist disjoint sets Ny, ..., Ny € N whose union is N such
that for every S C N;, S # 0 there exists ¢s € R with which p(S) = csz (V).
N; will be formed by players 41, j1, k1, ... such that there exists S} > 41,7, with
®;, (Usg) # 0, there exists ST 2 ji, k1 such that ®;, (US;) # 0, and so on, being
N, as greater as possible. Ny will be formed by another players (if they exist)
i2, jo, ka2, ... such that there exists S} 3 iq,jo with @, (usé) # 0, there exists 55 >
J2, ko such that Ej,z (usg) # 0, and so on, being N, also as greater as possible. N3
would be formed similarly and so on. Notice that furthermore, x (N;) can be any
real number.

By CMon* and (9) we have that ®; (ug) > 0 if i € S and S # N, and by NNU
and (9) we have that ®; (uy) > 0 if i € N. Hence, cg > 0 since in the expressions
above ®; (ug) with i € S are the real numbers which can appear as coefficients of
T (Nl) .

Finally let us define p (#) by means of the equality

p(0)=1- Z csx (1) .
SCN
S#0
Since z (IV;) can be any real number we take them so as p () to be non negative.
And the proof is complete. O

Remark 3. Let N be such that |N| > 2. Mapping QF satisfies T*, CMon*, DS,
SymNGL, Prop and NNU, but not NGNL-OUT. Hence this axiom is not implied
by the others.

Remark 4. SymNGL does not depend on T*, CMon*, DS, NGNL-OUT, Prop and
NNU. Let N be such that |[N| > 2,i,j € N,i # j and two probability distributions
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p and p* over the set of vote configurations such that p' (ij) = 1 and p(S) = 0 if
|S| > 2. If we define

Ot WY ifk=i
p -
QYT (W) otherwise,

wwv)—{

this mapping satisfies all the axioms but SymNGL.

Remark 5. Prop does not depend on T*, CMon*, DS, NGNL-OUT, SymNGL and
NNU. Let N be such that |[N| > 3, i1,i2,i3 € N such that iy # iy # i3, i1 # i3
and 51,52753 & N such that 11,13 € Sl,il,ig S Sg,ig,ifg € S3. For each i € N
consider a probability distribution p* over the set of vote configurations satisfying
p'(S) # 0 for all S C N, p (S1) = & = p' (S3), p* (S2) = 2¢ = p® (S1) and
p® (Sg) = p® (S3) for some € > 0. Define

v (W) = ().
U3 satisfies all these axioms except Prop.

Remark 6. NNU does not depend on the other axioms. To prove this, let N be
such that |[N| > 2, e < ﬁ and consider mapping

4 S:iESEWq(S)
v (W) = B

where ¢q(N) = —¢, q(3) = H‘,T and q(S) = 0 otherwise.

5. CHARACTERIZATION OF {QF7} p

To obtain a characterization of the family {QP~} _p we employ Transfer® (T*),
Upper Bound (UB) and the following axioms.

We consider a variation of CMon*. According to the new monotonicity axiom
the elimination of a minimal winning coalition increases the index of the voters
outside this coalition.

Coalitional Monotonicity* (CMon*'): For all W € VRy, and all S €
M(W) (S # N):

The following axiom is also a variation of NGNL-OUT considering now inside
voters instead of outside voters. Now, the elimination of a minimal winning coalition
does not have any effect on the index of the voters inside this winning coalition.

No-Gain-No-Loss-In (NGNL-IN): For all W € VRy, and all S € M(W)
(S#N):
(DZ(W) = (I)l(Wg) for all i € S.

We have also a Symmetric Null Gain-Loss axiom considering outside voters in-
stead of inside voters.

Symmetric Null Gain-Loss’ (SymNGL'): Let W € VRy, S € M(W)
(S # N) and i € N\S such that ®;(Wg) — &;(W) = 0. Then, ®;(WZ) —
®,;(W)=0for all j € N\S.

There is also a proportionality axiom with outside voters.
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Proportionality’ (Prop’): Let W € VRy, Sy, 52,53 € M(W) (S, S2,S3 #
N) and iy,149,i3 € N such that 41,13 ¢ S1,41,42 ¢ Sa,i2,i3 ¢ S3 . Then
®i, (Ws,) — @i, (W) _ @i (Wg,) — @i, (W) @45, (W3,) — @i (W)
Di,(W5,) — i (W) 04, (W3,) — 4 (W) 4 (WE) — 4 (W)’
whenever ®;, (W3, ) — @i, (W) # 0, ©;, (W5, ) — @, (W) # 0 and &4, (W3, ) —
By, (W) # 0.
We require any voter index to be equal to 1 in the voting procedure U”". Notice
that 2P~ does not give greater value for any other procedure.

Unanimity rule axiom(URA):
®;(UN) =1foralli € N.
The following axiom relates decrements associated with different coalitions not
containing different voters.
Decrement equality (DE): For all S ¢ N, S # (), let W9 € VRy such
that S € M (W5). Let T ¢ N, T # 0 and 4,5 ¢ T such that ®;(W7T),) —
(W) #0# &5 (WT),) = @;(W"). Then,

1 *
B, (WT)o) — &, (WT) —&;(UN) + s%:v, (@i((WS)S)_q,i(WSD
S#0,idS
1 *
~army w0 2 (2,((W9)5) - 2;009))
S#0,j¢S

Observe that in this equality we can not withdraw N as a minimal winning
coalition so we just write ®;(U") and ®;(UN).
We prove that P~ satisfies these axioms.

Lemma 6. QP~ satisfies T*, CMon*, NGNL-IN, SymNGL', Prop’, URA, DE and
UB.

Proof. If W € VRy then

QP (W) — QP (W) OifieS
i — 8 = —p(S) e
° oy g8,
Hence, QP~ satisfies T* and Sym NGL’. And if ¢ € N\S then
_ _ —p(S)
ar-(w) —ar-(wg) = 28
i ( ) i ( S) 71(17)

since p is a probability distribution. Therefore, CMon*’ is also satisfied.
NGNL-IN is satisfied because for all i € §

géwp(T)
Q- (w) = BEEW__ P ().
A ( ) 1 _'Yi(p) [ ( S)
If i € N then
> p(S)
QP+(UN) _ S¢S _ 1’
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and URA is implied. Prop’ is satisfied because

QG We) = (W) 1=, 1=7,®) 1 =7, ()
Q- (Wz)— Q8- (W)  1=7,) 1=7,@)1-7,F)

(W) - im (W) QF (W) — QF (W)
O (Wg,) — Qi (W) Q7 (Wg,) — Q5 (W)
For DE, for all S ¢ N, S # 0, let W € VRy such that S € M (W¥), T ¢ N,
T # 0 andi,j ¢ T such that &;(WT) ) — ®;(WT) £ 0#£ 0;(WT),) — 2;(WT).
Then,

1 _OoP— (17N p— S\*Y _ op— S
v e | O 3 (A -ar )
S#0,i¢S

1= p(S) _ 1—(p) 1 —,(p) —p(0)
- SO DI vl iy (‘” [— >

_ _OP— (77N p— S _ Op— S
“wy |00 X (A -arer)

S#£0,j¢S
And finally UB is satisfied. Let ¢ € N. By NGNL-IN we have just to consider
SGN,S#0,and W9 € VRy such that S € M (W¥) with i ¢ S. And,

_ * _ S
> (e -erern) = ¥ 2
dow dox, 1=p)
S£0,i¢ S£0,i¢S
_ 1= —p®) <1
1 —;(p)
where in the inequality we take into account that p is a probability distribution. [J

)

Theorem 7. A mapping ® : VRy — RN satisfies T*, CMon*, NGNL-IN,
SymNGL', Prop’, URA, DE and UB if and only if there exists a probability distri-
bution p on 2N such that ® = QP~.

Proof. In Lemma 6 it is proved that QP~ satisfies T*, CMon*, NGNL-IN, SymNGL/,
Prop’, URA, DE and UB for all probablity distribution p.

For the other implication, let ® : VRy — RY which satisfies all the above
axioms. Applying also Lemma 1, there exists a linear mapping ® : Gy — R such
that ® (w) = ® (W) when W € VRy. And

o(W) = E w(S) - @ (ug).
SCN
S0
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Let S # N. NGNL-IN implies that ®; (ug) = 0 if i € S. If not, there exists S C N
with ¢ € S such that ®; (ug) # 0. If we consider W € V Ry such that S € M (W),
by the above expression we have that

D; (W) — ®,(W5) = B; (ug) £ 0.
But by NGNL-IN &; (W) — ®;(W}) = 0, which is a contradiction. Hence, if i € N,

(W)= (uy)+ > w(S) ;(us).
sebigs

And applying URA,

o;(W)=1+ Y w(S) P (us).
SCN,
S#0,i¢S
Let us prove now that there exists {p(S) € R: S & N} such that for all i € N and
for all S # () such that i ¢ S

D, (us)- Y p(T)=—p(S).
TCN
i@T

Let us fix ¢ € N and consider the folllowing system with unknowns {p (S )Z i ¢S } ,

@, (us) - Z p(T)" = —p(S)" wherei ¢ S.
TCN
igT

This is an homogeneous system and therefore it has a solution.

We will see that this solution can be chosen as to be non null. If ®; (ug) = 0 for
all S # () such that i ¢ S, then p(S)" =0 for all S # @ such that i ¢ S and p(0)"
can be any real number.

If there exists S; # 0) such that i ¢ S; such that ®; (ugs,) # 0, then the solutions
p(S)" with S # 0 of the system are

;@ (u
p (S)z — ¢t ( S)
Notice that this expression coincides with the one obtained in the proof of Theorem
5 for the solutions. Reasoning as in that proof, Prop’ guarantees different systems
to give the same solutions.
Moreover, in this case p (())" is a solution of the system and

p(S:;)" where p(S;)" € R.

i (S’ =
(14) p0) = Z2EL S 3 ) | 41
®; (us,) TCN,
T#0,i¢T

We need p (0)" = p(0)’ if i # j. This equality holds taking into account DE and
expression (12) if there exists S C N, S # (), such that i,j ¢ S and ®; (us) # 0. If
there is not such a subset S, then p(0)" = p ()’ will give p(S;)" as a function of
p(S;)-

Similarly as in the proof of Theorem 5 we can take p(S) non negative when
S G N,S # () (observe that in this case the expressions ®; (ug) are non positive).
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NGNL-IN, UB and (14) imply p (#) > 0 and finally p (N) can be defined by means
of the equality

pP(N)=1-3 p(S),

SCN

in such a way that p (N) > 0. O

Remark 7. Let N be such that |N| > 2. Mapping U5 (W) = QF (W)-QF (W) +1
satisfies T*, CMon*, SymNGL', Prop’, URA, DE and UB, but not NGNL-IN.
Therefore this axiom is not implied by the others.

Remark 8. SymNGL' does not depend on T*, CMon*, NGNL-IN, Prop’, URA,
DE and UB. Let N be such that |[N| > 3, i,j € N, i # j and thwo probability
distributions p and p' over the set of vote configurations such that p (k) = 1 for
some k € N\{i,5}, p(S) =0 for all SC N, S#0, and p(0) # 0. If we define

W) ifk=i
Tp(W)=49 'k
£ (V) { O (W) otherwise,

this mapping satisfies all the axioms but SymNGL'.

Remark 9. Prop’ is not implied by T*, CMon™, NGNL-IN, SymNGL', URA, DE
and UB. Let N be such that |N| > 3, i1,i2,i3 € N and S1,S2,S3 C N such that
i1,13 ¢ S1,41,12 & Sa,i2,i3 ¢ S3. For each i € N consider a probability distribution
pZ: over the set of vote conﬁgumtz’ons satisfying p* (S) %0 for all S CN, S # 0,
p'(0) =0, p (S1) =& = p' (S3), p* (S2) = 2e = p* (S1) and p* (S2) = p* (53)
for some € > 0. Define
W (W) = Q¥ (W),
U7 satisfies all the axioms except Prop'.

Remark 10. DE does not depend on the other axioms either. Let N be such that
|IN| > 3 and let us fix i € N. Consider two probability distributions p and p* over
the set of vote configurations such that p (0) # 0, p* () = 0, p* (S) = p(S) # 0 if
S G N,S=#0. Mapping

QW) ifk=i
PE(W) =4
e (W) { QF (W) otherwise,

satisfies all the axioms but DE.

Remark 11. UB is not implied by the other axioms. Let N be such that |[N| > 2,
and q(S), S C N, such that q (0) = —e and q (S) > € for all S C N for some e > 0.
Then,
. 'géw q(S)
U (W) = 22w
S STE)
S:¢S

satisfies all the axioms but UB.
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