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Abstract The aim of present study is to examine the augmentation of thermal energy transfer in

hybrid nanofluid flow caused by a rotating Riga disk in the presence of thermal radiation and chem-

ical reaction. The silver and aluminium oxide nanoparticles are used to examine the thermal effect

of water base fluid. The Darcy-Forchheimer model is considered to endorse the inertial and porous

media effects and makes the model more realistic from the physical scenario. Levenberg-Marquardt

backpropagation algorithm is considered to analyze the hybrid nanofluid’s properties. Using scaling

group transformations, the governing partial differential equations are transformed into a system of

ordinary differential equations. Resulting ordinary differential equations are solved numerically by

applying a suitable shooting technique by MATLAB. The results obtained for the governing differ-

ential equations have been incorporated into a dataset on which the neural network has been

trained. The effects of physical parameters have been analyzed for velocity, temperature, and con-

centration profiles. The determination, designing, convergence, verification, and stability of the

Levenberg-Marquardt backpropagation neural network algorithm are validated on the assessment

of achieved accuracy through performance, fit, regression, and error histogram plots for the dis-

cussed hybrid nanofluid. It is observed that fluid velocity reduces for enhanced Darcy-

Forchheimer number, magnetic parameters and boosted for enhanced modified Hartmann number.

Temperature profile increases by increasing the Brownian motion and thermophoresis parameters.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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Nomenclature

Abbreviations
f Fluid

nf Nanofluid
hnf Hybrid nanofluid
ODEs Ordinary differential equations

PDEs Partial differential different equations
LMBP Levenberg–Marquardt backpropagation
NN-LMBP Neural networks Levenberg-Marquardt back-

propagation

Symbols
ðU; V; WÞ Velocity components (m/s)
ðz; u; rÞ Cylindrical coordinates

v Kinematic viscosity (m2/s)
k0 Permeability of porous medium (m2)

F0 Porous medium coefficient

Cb Drag force coefficient
r Electrical conductivity (S/m)
q Density (kg/m3)
B0 Magnetic field strength (T)

M0 Riga plate (external) magnetic field strength (T)
j0 Current density (A/m2)
a0 Riga plate constant

T Temperature (K)

k Thermal conductivity (W/m K)

cp Specific heat (J/(kg K))
s Shape factor
r� Stefan - Boltzmann constant
k� Absorption coefficient (1/m)

T1 Ambient temperature (K)
Tf Disc temperature (K)
Q0 Heat source (J)

l Dynamic viscosity (kg/(ms))
s Ratio of effective heat capacity of the nanoparticle

material to that of base fluid

DB Brownian diffusion coefficient
C Concentration (kg/m3)
DT Thermophoretic diffusion coefficient
C1 Ambient concentration (kg/m3)

k2r Chemical reaction rate constant
x Constant angular velocity (R/s)
g Similarity transformation coordinate

/1 Volume fraction of Al2O3

/2 Volume fraction of Ag
F0 Dimensionless radial velocity

G Dimensionless azimuthal velocity
h Dimensionless temperature
/ Dimensionless concentration
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1. Introduction

Nanofluids are characterized as having a high concentration of

ultrafine particles suspended in a liquid at lower concentra-
tions. These fluids possess thermophysical properties that are
superior to pure liquid carriers. Khan [1,2] explored the effects

of nanoparticles on blood flow dynamics using Atangana,
Baleanu, and Prabhakar fractional derivative mathematical
models. Many researchers have studied fluid flow problems

in various mediums. Khan [3] examined the hemodynamic of
blood flow over an inclined cylinder. The findings contribute
to our understanding of the behavior of blood flow over
inclined surfaces. Izady et al. [4,5] investigated an aqueous

hybrid nanofluid containing Fe2O3 and CuO nanoparticles
over a permeable stretching/shrinking surface. Magnetic fields
play a crucial role in nanofluids by providing an additional

means of controlling and manipulating the behavior and prop-
erties of nanoparticles suspended in a fluid. Khan [6] investi-
gates the impact of ramped temperature on the dynamics of

unsteady viscoelastic fluids under the influence of the Lorentz
force. The findings emphasize the significance of considering
temperature variations when analyzing the behavior of vis-

coelastic fluids under magnetic fields. Dinarvand et al. [7]
investigated the magnetohydrodynamic (MHD) flow of a
hybrid nanofluid consisting of MgO-Ag particles in water past
a moving slim needle, contributing to the accurate measure-

ment of fluid properties. Khan et al. [8] presented an exact
solution for the flow of a hybrid nanofluid considering the
influence of Lorentz forces, under the combined effects of mag-
netic fields and particle suspensions. Mohanty et al. [9] studied

the effects of an inclined magnetic field on the thermo-solutal
Marangoni stagnation point flow of a hybrid nanofluid.

Heat transfer and mass transfer in nanofluids offer
improved thermal conductivity and enhanced mass transfer

properties, making them valuable in various fields. Khan [10]
studied the influence of ramped heating on the thermal con-
ductivity and stability of nanofluids. Ilyas Khan [11] provided

insights into the heat transfer characteristics of nanofluids in
inclined plane geometries, aiding in the optimization of heat
transfer processes in various engineering applications. Dinar-

vand et al. [12] introduced a mass-based hybrid nanofluid
model to analyze heat transfer in the flow over a convectively
warmed moving wedge, providing insights into the thermody-
namic behavior of nanofluids and their impact on heat transfer

and fluid flow. Mebarek-Oudina et al. [13] provided a compre-
hensive review of the applications of nano-fluids and various
heat transfer enhancement techniques in different enclosures

to improve heat transfer performance. The shape of nanopar-
ticles is important in nanofluids due to its influence on the
overall properties and behavior of the fluid. Dinarvand et al.

[14] examine the effects of shape factors on the flow behavior,
providing valuable insights into the role of particle shape in the
performance and characteristics of hybrid nanofluids. Saman-

taray et al. [15] investigated the Darcy-Forchheimer up/down-
flow of entropy optimized radiative nanofluids, paying special
attention to the shape effects. Ghadikolaei et al. [16,17,18]
explored various shape factor effects on three types of

nanofluids.



Fig. 1a Hybrid nanofluid preparation.

Fig. 1b Physical view of the Riga plate.
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Porous medium plays an important role in nanofluids by

providing a structure with interconnected void spaces for the
dispersion and flow of nanoparticles. Dinarvand et al. [19]
examined the flow characteristics of a hybrid nanofluid over

a nonlinearly stretching permeable sheet in a porous medium.
The study highlighted the heat transfer characteristics of
hybrid nanofluid, contributing to the understanding of nano-

fluid dynamics in porous media applications. Ilyas et al. [20]
explored the Cu-Al2O3/H2O hybrid nanofluid in a porous
medium over a rotating disc with joule heating and viscous dis-
solution. Raja et al. [21] investigated the flow characteristics of
a magnetized convective Casson liquid through a porous chan-
nel. Ghadikolaei et al. [22,23,24,25] explored the porous nature
with different shapes on four types of nanofluids. Riga plate

surface is important in nanofluids as it provides a controlled
and well-defined surface for studying the behavior and proper-
ties of nanoparticles dispersed in fluids. Shafiq et al. [26] per-

formed a sensitivity analysis of nanofluids over a radiative
Riga surface, providing insights into the influential parameters
affecting the flow characteristics. The Riga surface has been

explored by many other researchers for hybrid nanofluids
[27,28,29,30,31]. Brownian motion is important in nanofluids
as it leads to the dispersion and stability of nanoparticles by
providing random motion, preventing particle aggregation.

Thermophoresis, on the other hand, influences the distribution
of nanoparticles in a temperature gradient, playing a role in
the heat transfer characteristics of nanofluids. Dharmaiah

et al. [32] explored the influence of Brownian motion and ther-
mophoresis on the flow of Jeffrey fluids with nonlinear thermal
radiation passing over a wedge in the context of nuclear reac-

tor applications. Swaine et al. [33] studied the heat transport
and stagnation-point flow of magnetized nanofluids, consider-
ing variable thermal conductivity, Brownian motion, and ther-

mophoresis effects.
This Riga plate surface finds applications in enhanced heat

transfer. The micro/nanostructures on the Riga plate surface
disrupt the thermal boundary layer, improving heat transfer

in nanofluids. It is beneficial for cooling systems, heat exchang-
ers, and thermal energy storage. Anti-Fouling and Anti-
Corrosion: The surface properties of the Riga plate prevent

fouling and corrosion in nanofluid systems, improving system
efficiency and reliability. The Riga plate’s micro/nanostruc-
tures reduce drag and enable flow control, enhancing energy

efficiency in transportation systems and microfluidic devices.
Biomedical Applications: The Riga plate surface has biocom-
patibility and fluid manipulation capabilities, making it suit-

able for drug delivery systems, biomedical sensors, and tissue
engineering applications. Thermal radiation plays a significant
role in the overall heat transfer process by allowing energy to
be exchanged between the nanoparticles and the surroundings.

Chabani et al. [34] presented a numerical analysis of natural
convective flow of a magnetic hybrid nanofluid in a trapezoidal
enclosure with an adjusted porous medium. Mebarek-Oudina

et al. [35] investigated the convective heat transfer characteris-
tics of Titania nanofluids with different base fluids in a cylin-
drical annulus configuration, considering the presence of

heat sources and thermal radiation. Sahu et al. [36] studied
the flow behavior under Darcy-Forchheimer flow conditions
induced by a thermal radiations system. Nayak et al. [37] did
numerical computations for entropy generation in the Darcy-

Forchheimer transport of hybrid nanofluids in presence of
thermal radiation. Ghadikolaei et al. [38,39,40,41,42,43] stud-
ied the thermal radiations effect on various types of nanofluids

with different combined effects. Chemical reactions in nanoflu-
ids are important as they can influence the stability, reactivity,
and functionality of nanoparticles, which in turn can impact

the overall properties and performance of nanofluids. Saman-
taray et al. [44] investigated the behavior of chemically reactive
and radiative Darcy/non-Darcy stagnation point flow of tern-

ary composite nanofluids providing insights into the heat and
mass transfer characteristics in such systems. Sahu et al. [45]
examined the hydrothermal stagnation point flow of a Carreau
nanofluid over a moving thin needle in a Darcy-Forchheimer



Fig. 1c Geometrical description of the problem.

Table 1 Thermophysical properties of hybrid nanofluid.

Properties Notation Nanoparticles Base fluid

Ag Al2O3 H2O

Specific heat (J/kg K) Cp 235 765 4179

Density (Kg/m3) q 10,500 3970 997

Thermal conductivity(W/m K) k 429 40 0.613
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medium, considering cubic autocatalytic chemical reactions.
Joule heating is important in nanofluids as it contributes to

the overall heat transfer process by converting electrical energy
into thermal energy, thereby raising the temperature of the
nanofluid, and influencing its thermal behavior. Mohanty

et al. [46] did an analysis of irreversibility in the context of con-
vective Darcy-Forchheimer Casson hybrid nanofluid flow
induced by Joule heating. Sahu et al. [47] studied the thermal

management of Darcy-Forchheimer single-walled carbon nan-
otube and multi-walled carbon nanotube cross hybrid nano-
fluid flow. Abbas et al. [48] presented a numerical
investigation on heat transfer characteristics in hybrid nano-

fluid flow over a curved surface with Joule heating effects.
Due to high thermal conductivity, silver and aluminium

oxide nanoparticles make good nanofluids. Silver nanoparti-

cles don’t agglomerate, keeping the nanofluid steady. Low-
cost aluminium oxide is stable. Aluminium oxide nanoparticles
are suitable for heat transfer and thermal management due to

their dispersibility, specific surface area, and chemical stability.
Also, combining silver and aluminium oxide gives a better
hand by combining the unique properties of each nanoparticle.
Additionally, using two nanoparticles can increase the flexibil-

ity of the nanofluid to be tailored for specific applications. The
thermophysical properties of the nanoparticle are studied in a
combined manner with the base fluid.

In today’s world, neural networks (also called artificial neu-
ral networks) play a vital role in every domain of science and
engineering for problem-solving. AAN is an adaptive system
that learns using interconnected nodes or neurons in a layered
structure that is similar in appearance to a human brain.

Because neural networks can learn from their input data, they
can be taught to recognize patterns, organize data, and predict
the outcomes of future events. Nowadays ANNs are being

used aggressively in the field of nanofluids. Shafiq et al. [49]
explored the significance of machine learning algorithms in
analyzing the flow of electromagnetic hydrodynamics gra-

phene oxide, water, and ethylene glycol nanofluids in a
Darcy-Forchheimer medium. Shafiq et al. [50] developed an
artificial neural network (ANN) model to investigate nanofluid
convective heat transfer through a moving needle. The investi-

gation included the effects of Soret and Dufour’s coefficients,
and a highly accurate ANN model was trained to predict heat
transfer performance. Shafiq et al. [51] created an ANN model

to examine the effects of nanoparticle and solid–fluid interfa-
cial layer on the flow of single-walled carbon nanotubes/ethy-
lene glycol nanofluids through narrow slender needles. The

study discovered that the ANN model accurately predicted
the nanofluid’s fluid flow characteristics and heat transfer per-
formance. Shafiq et al. [52] used numerical and ANN mod-
elling to examine the erratic hydromagnetic Williamson fluid

flow on a radiative surface. The research found that the
ANN model provided accurate predictions of the fluid flow
and heat transfer performance, which can be applied to the

design of heat transfer devices that are effective. Some good
applications of ANNs can be found in the reliability of electri-
cal components [53], reliability analysis using a mixture of



Fig. 2a Comparative analysis of.

Fig. 2b Comparative analysis of..h
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Lindley distributions [54], to study Soret and Dufour effects in
chemical equations [55] COVID-19 data analysis [56].

On the basis of the literature survey performed above, no

attempt has been made to accomplish thermal energy transfer
in hybrid nanofluid flow caused by a rotating Riga disk in the
presence of thermal radiation and chemical reaction. Based on

literature review, it can be concluded that the following are the
novelty of the present study:

� A novel mathematical model is developed utilizing hybrid
nanofluid composed of nanoparticles Ag and Al2O3 with
H2O as the base fluid.

� Combined effects of porous medium, Riga surface, thermal

radiation, joule heating, viscous dissipation, magnetic field,
and chemical reaction is examined.

� Levenberg-Marquardt backpropagation algorithm is used

to examine the hybrid nanofluid’s performance, network
training, regression, error histograms, and fit plots.

2. Problem formulation

Considered an incompressible, steady, pseudoplastic, and elec-

trically conducting Ag-Al2O3/H2O hybrid nanofluid (as shown
in Fig. 1a) passing through a rotating disc. Fluid flow is con-
sidered as highly porous medium subjected to a convectively

heated Riga plate, thermal radiation, external magnetic field,
and viscous dissipation. The mass transfer phenomena is con-

sidered by assuming a chemical reaction with k2
r as the rate of

constant. The combination of electrodes and magnets to design
the Riga plate for the present problem is illustrated in Fig. 1b.

The cylindrical coordinate system z; u; rð Þ is considered to for-
mulate the physical model. The disc is placed in the r� u plane
and the fluid flows in the increasing direction of z axis. It is

assumed that the disc rotates about the positive u direction
with uniform angular velocity x. The disc has a constant tem-
perature Tw and the outside temperature is T1. The disc sur-
face is stretching with a velocity of Uw ¼ rx: A uniform

magnetic field, B0

�! ¼ ðB0; 0; 0Þ, is applied parallel to the z-
axis, where B0 represents the strength of magnetic field. The

physical model of the problem can be visualized in Fig. 1c.
Due to the axial symmetry of the problem, the derivatives with
respect to the coordinate u are omitted. The governing equa-
tions of the fluid flow problem under above assumptions can

be written as [57–60]:
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Table 3 Various cases and values of dimensionless parameters.

Parameter Case-1 Case-2 Case-3 Case-4

M 0.0 1.0 2.0 3.0

Fr 0.0 1.0 2.0 3.0

Rd 4.0 5.0 6.0 7.0

Ha 0.0 0.5 1.0 1.5

Nb 0.5 1.0 1.5 2.0

Nt 0.0 0.2 0.4 0.6

Kr 0.0 2.0 4.0 6.0

/1 0.0 0.01 0.02 0.03

/2 0.0 0.01 0.02 0.03

Table 2 Comparative study of F and..h

g 0.000000 0.200000 0.400000 0.600000 0.800000 1.000000

F (Present study) 0.000000 0.016268 0.054116 0.102055 0.155561 0.177550

F (Ilyas et al. [20]) 0.000000 0.016268 0.054116 0.102053 0.155560 0.177551

½03B8�(Present study) 1.000000 0.909069 0.752077 0.549457 0.300000 0.000000

½03B8�(Ilyas et al. [20]) 1.000000 0.909069 0.752079 0.549458 0.300000 0.000000

Table 4 Reference and default values of flow parameters.

Parameter Range Default Reference

b 0–1 0.1 [20]

M 0–8 5 [69]

Fr 0–8 5 [68]

Rd 0–8 5 [67]

Br 0–6 4 [66]

Pr 0–20 6.9 [65]

/1 0–0.05 0.01 [20]

/2 0–0.05 0.01 [20]

Ha 0–6 2.5 [66]

c 0–1 0.8 [69]

Nb 0.1–1 0.6 [65]

Nt 0–1 0.6 [65]

Sc 0–1 0.5 [70]

Kr 0–5 2.1 [68]

s 0–15 3.7 [70]
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The corresponding boundary conditions are [57]:
W ¼ 0;V ¼ rx;U ¼ 0;C ¼ 2C1;T ¼ Tw; atz ¼ 0

W ! 0;V ! 0;T ! T1;C ! C1asz ! 1
�

ð7Þ

Where,F0 ¼ Cb

rk0:50

represents the porous medium coefficient.

vhnf; rhnf, and lhnf are kinematic viscosity, electrical conductiv-

ity, and dynamic viscosity of the hybrid nanofluid, respec-

tively. For the considered hybrid nanofluid, the
thermophysical properties are mentioned in Table 1 [4,5,14]
and mathematically expressed as [63]:

khnf
knf

¼ k2þ/2 1�sð Þ knf�k2ð Þ�knf 1�sð Þ
k2þ/2 knf�k2ð Þþknfð1�sÞ ;
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The radiation term included in Eq. (4) can be obtained by
using Rosseland estimation, qr is mathematically expressed in
the following way [61,62]:

qr ¼ � 4

3

r�

k�
rT�4

By assuming that the temperature diffusion inside the flow

is sufficiently modest, the term T�4 can be expressed as a linear
temperature function in the Taylor series with respect to T0

and ignoring the higher expressions, we get:

T�4 � �3T4
0 þ 4T�T3

0



Fig. 2c Flow chart for ANN methodology.

Fig. 3a Radial velocity VS Magnetic parameter. Fig. 3b Azimuthal velocity VS Magnetic parameter.

Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk 107
W;V; and U are the r;u; and z velocity components, respec-

tively. The following transformations are used to convert the
system of partial differential equations (1) to (6) into ordinary
differential equations:

W ¼ rxF0 gð Þ; V ¼ rxG gð Þ; U ¼ � ffiffiffiffiffiffiffi
xvf

p
F gð Þ;

g ¼
ffiffiffiffi
x
vf

r
z; h gð Þ ¼ T� T1

Tf � T1
; /ðgÞ ¼ C� C1

C1
ð9Þ
Equations (2–6) reduce into the following ordinary differ-

ential equations:

F000 � bF0 ¼ B1B2 F02 � FF00 � G2 þMF02 þ FrF02 �Haecg
� �

;

ð10Þ

G00 � bG ¼ B1B2 2F0G� FG0 þMGþ FrG2 �Haecg
� �

; ð11Þ



Fig. 3c Radial velocity VS Darcy-Forchheimer parameter. Fig. 3e Radial velocity VS Hartmann parameter.
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Fig. 3d Azimuthal velocity VS Darcy-Forchheimer parameter. Fig. 3f Azimuthal velocity VS Hartmann parameter.
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Corresponding boundary conditions become:

F gð Þ ¼ 0;F0 gð Þ ¼ 0;G gð Þ ¼ 1; h gð Þ ¼ 1;/ gð Þ ¼ 1; atg ¼ 0

F0 gð Þ ! 0;G gð Þ ! 0; h gð Þ ! 0;/ gð Þ ! 0; asg ! 1

�
ð14Þ

Where,
B1 ¼ ½ð1� /1Þð1� /2Þ�2:5;
B2 ¼ 1� /1ð Þ þ /1
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The non-dimensional parameters used in Equations (10–13)
are described as:

Porosity parameter:

b ¼ vf
xk0

Magnetic parameter:

M ¼ B2
0rhnf

xqhnf



r

¼ PrEc

Fig. 3g Radial velocity VS Concentration parameter.

Fig. 3h Azimuthal velocity VS Concentration parameter.

Fig. 4a Temperature VS Thermophoresis parameter.

Fig. 4b Concentration VS Thermophoresis parameter.
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Darcy-Forchheimer parameter:

Fr ¼ Cbffiffiffiffiffi
k0

p

Hartmann number:

Ha ¼ p
8

j0M0

rx2qf

Radiation parameter:

Rd ¼ 4r�T3
1

k�kf

Prandtl number:

Pr ¼
vf qcp
� �

f

kf

Brinkman number:
B

Eckert number:

Ec ¼ r2x2

ðTf � T1Þ cp
� �

hnf

Width parameter:

c ¼ � p

a0
ffiffiffi
x
vf

q
Brownian motion parameter:

Nb ¼ sDBC1
vf

Thermophoresis parameter:

Nt ¼ sDT Tf � T1
� �
T1vf



Fig. 4e Temperature VS Radiation parameter.

Fig. 4d Concentration VS Brownian motion parameter.

Fig. 4c Temperature VS Brownian motion parameter.

Fig. 4f Concentration VS Chemical reaction parameter.
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Schmidt number:

Sc ¼ vf
DB

Chemical reaction parameter:

Kr ¼ k2
r

x

Engineering quantities of Interests:
The physical quantities of interest like heat transfer rate,

mass transfer rate, and skin friction coefficient are also ana-
lyzed in this study. The Nusselt number, skin friction coeffi-
cient, and Sherwood number are mathematically expressed

as [63,64]:
Nux ¼ r qw þ qrð Þ
kf Tf � T1
� � ;Cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2W þ s2V

p
qfU

2
w

;

Shx ¼ rmw

qfDBðCf � C1Þ ð16Þ

Where, ðqw þ qrÞ is the heat flux, sW is the radial stress, sV is

the transverse shear stress, and mw is the mass flux. They are

defined as:

qw ¼ �khnf
@T
@z

� �
z¼0

; qr ¼ � 4:33T31r�
k�

@T
@z

� �
z¼0

; sw ¼ lhnf
@W
@z

� �
z¼0

; sV
¼ lhnf

@V
@z

� �
z¼0

;mw ¼�qfDB
@C
@z

� �
z¼0

;Rex ¼ rUw

vf
(Reynolds number)

(17).
The non-dimensional form of above expressions are as

follows:



Fig. 5a Training state for Ha (Case-2).

Fig. 5b Training state for Ha (Case-3).
Fig. 5d Training state for Fr.

Fig. 5c Training state for Ha (Case-4).
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NuxRe
�1

2
x ¼ � khnf

kf
þ 1:33Rd

	 

h0 0ð Þ;CfRe

1
2
x

¼ lhnf

lf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F00 0ð Þ2 þ G0 0ð Þ½ �2

q
;ShxRe

�1
2

x ¼ �/0ð0Þ ð18Þ
3. Numerical solution

This section discusses a numerical methodology to obtain the
solution of the nondimensional higher order coupled ODEs.
For computational analysis, the Shooting procedure is a tech-
nique for solving a boundary value problem (BVP) by reducing
it to an initial value problem (IVP) of first order differential
equation. The obtained ODEs (10–13) and the boundary con-

ditions (14) are treated by a convenient shooting method. Let
us assume:

Y1 ¼ F; Y2 ¼ F0; Y3 ¼ F00; Y4 ¼ G; Y5 ¼ G0;

Y6 ¼ h; Y7 ¼ h0; Y0
7 ¼ n Sayð Þ; Y8 ¼ /; Y9 ¼ /0 ð19Þ

The system of first-order differential equation is given by:



Fig. 5e Training state for Rd.

Fig. 5f Training state for Nb.

Fig. 5g Training state for Nt.

Fig. 5h Training state for Kr.
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Y0
1 ¼ Y

Y0
2 ¼ Y3

Y0
3 ¼ bY2 þ B1B2 Y2

2 � Y1Y3 � Y2
4 þMY2

2 þ FrY2
2 �Haecg

� �
Y0

4 ¼ Y5

Y0
5 ¼ bY4 þ B1B2 2Y2Y4 � Y1Y5 þMY4 þ FrY2

4 �Haecg
� �

Y0
6 ¼ Y7

Y0
7 ¼

�B3 PrY1Y7þMBr Y2
4
þY2

2ð Þþ Br
B1B2

Y2
5
þY2

3ð ÞþPrdY6þPrNbY7Y9þPrNtY2
7

h i
khnf
kf

þ1:33Rd

� �
Y0

8 ¼ Y9

Y0
9 ¼ ScKrY8 � ScFY9 � Nt

Nb
n

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð20Þ
and the corresponding boundary conditions become:
Y1 0ð Þ ¼ 0;Y2 0ð Þ ¼ 0;Y4 0ð Þ ¼ 1;Y6 0ð Þ ¼ 1;

Y8 0ð Þ ¼ 1;Y2 1ð Þ ¼ 0;Y4 1ð Þ ¼ 0;Y6 1ð Þ ¼ 0;Y8 1ð Þ ¼ 0

ð21Þ
4. Validation of the results:

This section validates the present results to previously pub-
lished research work. Using the appropriate assumptions, the
velocity and temperature profiles of the present work are com-

pared to those of a prior study Ilyas et al. [20]. The present
model is reduced to an already published work of Ilyas et al.
[20]. Fig. 2a shows the F curve for a combination of dimen-
sionless parameters, and Fig. 2b shows the temperature profile.

From these figures, it is concluded that the results obtained in
the current analysis are in good agreement with the study of



Fig. 6a Performance plot for Ha (Case-2). Fig. 6c Performance plot for Ha (Case-4).

Fig. 6d Performance plot for Fr.Fig. 6b Performance plot for Ha (Case-3).
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Ilyas et al. [20]. The comparative study can also be seen form
Table 2. This section further contains details of the work of
this study. Various plots of velocity, temperature, and concen-

tration profiles were plotted for a combination of dimension-
less parameters. The different cases and values of the
physical parameters are shown in Table 3. Table 4 contains
the reference and default values of flow parameters.
5. Solution design:

Levenberg-Marquardt’s backpropagation algorithm is used to

solve nonlinear least squares problems. It has increased con-
vergence speed, avoids long training times, and it is often the
fastest backpropagation algorithm in MATLAB. It interpo-

lates between the Gauss-Newton algorithm and the gradient
descent method. It often finds a solution, even if it starts far
from the absolute minimum. This supervised algorithm solves

by iteratively training the neural networks by backpropaga-
tion. Compared to the traditional methods, the algorithm is
faster for well-behaved functions and reasonable starting
parameters. For fine-tuning the weights, this method requires
taking the error rate of forward propagation and feeding this

loss backwards through the neural network layers. Using
BVP5C in MATLAB, the ODEs (10–13), along with the
boundary conditions, are solved. The present study considered
400 data points (g values) to evaluate obtained functions. This

set of 400 data points is used as the input set for Levenberg-
Marquardt’s backpropagation algorithm. Fig. 2c represents
the flow chart of the ANN methodology and solution with

backpropagation solver. The algorithm steps are discussed
below:

Input data: X-values are the g values, and Y-values are cor-

responding values of F;F0;G; ½03B8�, and /.

1. Initialization: Input data is provided to the network for
training, validation, and testing. Here, 90% (360 obser-

vations) are provided for training. 5% (20 observations)
are provided for validation. 5% (20 observations) are
provided for testing.



Fig. 6e Performance plot for Rd. Fig. 6g Performance plot for Nt.

Fig. 6h Performance plot for Kr.

Fig. 6f Performance plot for Nb.
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2. Network design: Values are assigned to network param-
eters like the number of neurons, number of delays,

number of layers, etc. Here, 80 hidden layer network is
considered.

3. Training weights: Network weights for the input data are
trained through the Levenberg-Marquardt activation

function.
4. Stopping criteria: Step 4 stops in the following

conditions:

� The number of epochs (repetitions) has reached the limit.
� The time limit has been exceeded.
� Performance is minimal.

� The gradient of performance is less than the required min-
imum gradient.

� The algorithm Mu is greater than the given maximum Mu.

� Validation performance (validation error) increased more
than maximum validation failures (when using validation).
5. Testing: The trained model is tested on the testing data.

If a suitable network is not obtained, then repeat Step-2

and 3. Else, the network can be used for further
investigation.
After training the LMBP model, it is analyzed using perfor-
mance, network training, regression, error histograms, and fit

plots. After solving the ODEs (10–13) using BVP5C, we get the
functional solutions. After training the model, we have a
trained model which incorporates those functions. These

trained models can be directly used in many computer applica-
tions, can be integrated with mathematical software, and have
much more importance. These models provide a simple and
accurate way of predicting the fluid properties. The plots used

for analysis provide useful information on the performance of
various models. Depending on the requirements, the best
model parameters can be obtained after studying these plots.

Each plot has its own importance in the analysis, which is men-
tioned in the individual sections ahead.

6. Results and discussions

To get physical insight in to the problem, a combined effects of
physical parameters; modified Hartmann number, ther-



Fig. 7a Error Histogram for Ha (Case-2).

Fig. 7b Error Histogram for Ha (Case-3).

Fig. 7c Error Histogram for Ha (Case-4).

Fig. 7d Error Histogram for Fr.
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mophoresis parameter, Brownian motion parameter, and
chemical reaction parameter have been analyzed on velocity,
temperature, and concentration profiles. The determination,

designing, convergence, verification, and stability of the
Levenberg-Marquardt backpropagation neural network algo-
rithm are validated on the assessment of achieved accuracy

through performance, fit, regression, and error histogram plots
for the discussed hybrid nanofluid. Physical quantities of engi-
neering interest like heat transfer rate, mass transfer rate, skin
friction coefficient are also discussed in this study.

6.1. Velocity profile

Figs. 3a–3h illustrate the behavior of velocity profiles by

changing the values of physical parameters
M;Fr;Ha;/1; and/2: Figs. 3a and 3b reveal that by increasing
the values of magnetic field parameter M, the velocity profile
decrease. Physically, larger values of M generate stronger Lor-
entz force that eventually decreases the velocities. Also, the vis-
cosity of porous medium increases by increasing M, this

enhances the viscosity of the hybrid nanofluid. Fluid velocity
through a porous medium is inversely proportional to the vis-
cosity, hence the velocities of the hybrid nanofluid decreases.
Figs. 3c and 3d show that as increasing the value of Darcy-

Forchheimer parameter Fr, the velocity profile decrease. Phys-
ically, the drag force increases on increasing Fr, as it is directly
proportional to the inertia. Hence decreasing effect can be seen

in velocity profile due to increase in quadratic drag forces.
Figs. 3e and 3f illustrate that increasing the value of Hartmann
parameter Ha, the radial velocity is drastically increases and

azimuthal velocity also shows an improvement, especially at
g ¼ 0:1. This is because, by increasing Ha, the magnetic field
applied on the Riga plate increases, which increases the Lor-

entz force in the direction of fluid flow. The combined effect
of magnetic and Lorentz force sufficiently enhances the veloc-



Fig. 7e Error Histogram for Rd.

Fig. 7f Error Histogram for Nb.

Fig. 7g Error Histogram for Nt.

Fig. 7h Error Histogram for Kr.
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ities. Figs. 3g and 3h depict the effect of concentration of
Al2O3 (/1)and concentration of Ag (/2) on the velocity profile.
It is observed that fluid velocity decreases by increasing con-

centration of nanoparticles. The decrease in fluid velocity
can be justified as, on enhancing the quantities of nanoparti-
cles in the base fluid, the fluid feels resistance for its motion.

From Fig. 3g, the radial velocity decreasing by increasing the
concentrations of nanoparticles. There is a decrease in azi-
muthal velocity also, but not as much as radial velocity. The
velocity of fluid is increasing till g � 0:5, this might be because

a greater number of particles can now carry the energy for fluid
movements.

6.2. Temperature and concentration profile

Figs. 4a–4f shows the effect of Nb, Nt, Rd, and Kr on temper-
ature and concentration profiles. Figs. 4a and 4b illustrate that

by increasing the thermophoresis parameter Nt, the tempera-
ture increases and hence the concentration decreases. Physi-
cally, the particles close to a hot surface produce more

thermophoretic force. Thermophoretic force is the transport
force that occurs due to the presence of a temperature gradi-
ent. When Nt is increases, the temperature gradient increases

and hence the temperature profile enhances. Also from
Fig. 4b, by increasing Nt, the temperature of boundary layer
increases, it moves particles away from the surfaces within
the base fluid. As a result, solute particle deposition away from

the surface rises, causing concentration profile to decrease.
Figs. 4c and 4d illustrate the effect of Brownian motion param-
eter Nb, on temperature and concentration profiles. Brownian

motion is the random movement of suspended particles in the
base fluid. It gets impacted by the fluid’s quickly moving atoms
or molecules. Fig. 4c shows on increasing Nb, the temperature

increases. Physically, enhanced Nb increases the random and
rapid motion of nanoparticles in the base fluid. This increases
the random collisions of the nanoparticles within the fluid. The

greater the number of collisions, the more heat is generated.
Fig. 4d depicts on increasing Nb, the concentration increases.



Fig. 8a Regression plots for Ha (Case-2).
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Physically, as the random motion of particles enhances, the
collisions of nanoparticles with each other increases the rate

of chemical reaction. This faster chemical reaction increases
the fluid concentration. Also, the generated heat energy helps
to reduce the reaction’s activation energy barrier. From the fig-
ure, it can be seen that the concentration increases more when

Nb is changed from 0.5 to 1.0 and then the magnitude of the
change decreases eventually. Fig. 4e shows the effect of radia-
tion parameter on thermal profile. The figure shows that on

increasing Rd, the temperature profile decreases. Physically,
greater values of Rd show a more dominant effect over con-
duction. Radiations release a good amount of heat in the sys-

tem which raises the outside temperature, reducing the fluid
temperature due to temperature difference. Fig. 4f represents
the effect of chemical reaction parameter, Kr on the concentra-

tion. The figure shows that by increasing Kr the concentration
profiles decrease. The collisions between the nanoparticles
enhance within the fluid near the surface for enhanced Kr. This
eventually reduces the concentration of the hybrid nanofluid

and boundary layer thickness.
6.3. Training state plots

Figure 5 shows the training state plots for the trained ANN.
Training state plots are essential as they give us crucial infor-
mation about the obtained model, like gradient, mu, optimal

epochs, and how it reached the optimal state. For the conver-
gence of the model, mean squared error (MSE) is used here.
MSE is obtained by taking the mean of the squared difference

of output or values predicted by ANN and targets or actual
values. There is a pre-decided MSE for each epoch of the
model. If the MSE value of any epoch crosses that value, the
model considers it a validation failure. By default, the model

takes six validation failures as the stopping condition. Figure 5
shows that the model stops the training after six validation fail-
ures and gives the optimal ANN model. The gradient is the

logarithmic value of the backpropagation gradient for each
iteration. It indicates that the model has hit the local minimum
of objective function at its lowest point. The neural network

training algorithm’s control parameter is called mu. Choosing



Fig. 8b Regression plots for Ha (Case-3).
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mu has a direct impact on the convergence of errors. Fig. 5a
shows that the ANN for Case-2 of Ha (i.e., Ha = 0.5) has con-
verged at epoch 12. At epoch 12, it has a gradient of 6.92E-06

and mu of 1.00E-12. It can also be seen that after epoch six, it
saw six validation failures and stopped the training. Fig. 5b
shows the final ANN has a gradient of 3.65E-06 and a mu

value of 1.00E-09. It saw six validation failures after epoch
six and achieved epoch 12 as an optimal epoch. Fig. 5c shows
the model has a gradient of 6.59E-07, a mu value of 1.00E-08,
and 12 as the optimal epoch. Figs. 5d–5h can similarly be inter-

preted. Most of the ANN’s training stopped at the 12th epoch.
Some also have the 11th and 13th epochs. This also shows that
the data was similar in nature.

6.4. Performance plots

Figure 6 shows the validation performance plots. These plots

are obtained when the model is tested on the validation dataset
simultaneously after each epoch to tune the network weights.
The validation failure numbers can also be verified from these

plots. When the model starts the training on the training data,
in the starting epochs, the MSEs are very high on all three
datasets. The errors start decreasing when the model begins
moving toward the optimal state. The plots also show the best

validation performance in dotted lines. This line corresponds
to the best performance of the model in the validation phase.
However, in all the graphs, the validation error increases after

the best-fit line. Along with validation errors, the testing error
is also increasing for each next epoch. In contrast, the training
error is decreasing. This validates the hypothesis of overfitting.
When the model is trained on a lot of training data, it becomes

overfitted and performs poorly on validation and test data.
From Fig. 6a, the validation performance of the model was
very high from epoch 0 to 6. At the 6th epoch, it gave the best

validation performance, with an MSE of 8.66E-07. However,
the model did not stop the training at this epoch, as the train-
ing error decreased. After six validation failures or for six more

MSEs, more than the best performance MSE will be allowed.
After that, the model would reach convergence. Fig. 6b shows
that the best validation performance was achieved at epoch 6
with an MSE of 6.28E-07. After six validation failures, it

stopped the training at epoch 12. The training error decreases



Fig. 8c Regression plots for Ha (Case-4).
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after the best performance, and testing and validation errors
remain the same. Fig. 6c shows the best performance of
1.10E-06 at epoch 6. The training and testing errors almost

became straight lines, whereas validation errors became
straight after the 7th epoch. A similar trend can be observed
from Figs. 6d–6h. From all the plots, it can be concluded that

the models converged with lower values of all three errors.

6.5. Error Histogram

Figure 7 shows the error histograms. As the whole data was

divided into training (90%), validation (5%), and testing
(5%) datasets. From all these three datasets, sampling is per-
formed. Many samples are obtained, and the model is used

on each sample to predict the output and then compared with
the target or actual values. Errors are calculated for each sam-
ple. Those errors are categorized into 20 bins. All those 20 bins

are plotted along with the number of samples constituting
those errors. Figure 7 shows that the X-axis represents the
error bins, Y-axis represents the instance the error occurred

or the number of samples that has an error in that bin. The
orange-colored zero lines represent zero error. Fig. 7a shows
that from training data, around 650 samples has errors almost
0. From validation data, around 20 samples had zero errors,
and from testing data, around 30 samples had zero errors.

Hence, most samples has zero error from all three datasets.
Fig. 7b illustrates that around 850 samples from training data
has zero error, and about 50 from validation and testing has

zero error. Fig. 7c shows 920 samples has zero error, and
around 50 from the other two data has zero error. Similarly,
Figs. 7d, 7e, 7f, 7g and 7h can be interpreted. From all these
plots, most of the samples from the three datasets has zero

errors. Hence, all the obtained ANNs are well-trained.

6.6. Regression plots

Figure 8 shows the linear regression plots. These plots are
obtained when the trained ANN is used on all training, valida-
tion, and testing data to make the prediction, and then the pre-

dicted values are compared with the actual values. The outputs
and targets form a linear relationship that would decide the
model’s goodness. It follows an equation of output = R * tar-

get + bias. If R = 1, then the model is working nicely. If
R = 0, then the model has completely failed. Figure 8 shows



Fig. 8d Regression plots for Fr.
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that most regression plots have R = 1 in full, training, valida-

tion, and testing datasets. That means that all the obtained
ANNs are working excellently. The training data was obtained
using the functions for F, F’, G, h, and / for g values between

0 and 1. The network just incorporated the function into the
weights. Predicting values from the neural network or the solu-
tions obtained from BVP5C would give almost the same

results. However, the neural network is essential, as it has
incorporated all those functions into one model. From an
applications point of view, the ANNs can be used in many

fields rather than just a simple function. From Fig. 8a, when
the model gave R = 1 for all four datasets. The output is
almost the same as the target. The bias is, however, different
in all four cases. Fig. 8b shows training data has

R = 0.99999. Still, it is perfect accuracy. The other datasets
show R = 1 which is the biases in all four are different. In
Fig. 8c, the validation data gave R different form 1. But the

model still performed almost best on all datasets. Similarly,
Figs. 8d, 8e, 8f, 8g and 8h can be interpreted. Overall, it can
be concluded that the ANNs gives excellent results for regres-

sion analysis.
6.7. Fit plots

Figure 9 shows the fit plot for the ANN model for considered

problem. The fit plots are obtained using the trained ANN to
predict the values from training, validation, and testing data
and then comparing with the actual values. In the graphs, blue

represents the training data, green represents the validation
data, and red represents the testing data. The orange line rep-
resents the errors between the target and output values. The
black line corresponds to the best fit of the model. The below

plot shows the zoomed view of errors. The X-axis is between 0
to 1, representing the values of g. The figure illustrates the axial
velocity predictions by the model. Fig. 9a shows that the model

predicted the axial velocity in accordance with the output. The
outputs and targets match with each other. There can be a
slight deviation seen in the first lower part of the values. The

model gave large enough errors throughout the g values of 0
to 1. Fig. 9b shows aroundg = 0.4, the model gave errors.
Otherwise, it was the almost best fit. The outputs and targets
match with each other well. The large error shown in the error



Fig. 8e Regression plots for Rd.
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plot is not much visible in the plot. The starting values and
ending values are in good agreement with each other. The
mid values may see some lower jumps for outputs. Fig. 9c

depicts that the algorithm predicted the outputs well with the
targets. It can be inferred from the figure that with respect to
the earlier two models, the model gave slight variations for

all the g values, but not much larger deviations and errors were
seen. However, significant errors atg= 0 andg= 1 can be seen
in the plot. Similar behavior is observed from Figs. 9d, 9e, 9f,

9g and 9h. Overall, all the plots have shown lesser error.
Hence, the models were the best fit for the data. Now, Table 5
shows the complete analysis of NN-LMBP based on valida-
tion, testing and training datasets for all the scenarios shown

in Table35.
6.8. Engineering quantities of physical interest

Figure 10 shows the contour plots of quantities of physical
interest. The contour plots can determine the desired response
values and operating conditions. Fig. 10a shows the contour
plot for heat transfer rate along with Nt and Nb. It is observed

that by increasing the values of Nt and Nb, the heat transfer
rate is decreasing. Fig. 10b depicts that by increasing the value
of Rd, the thermal radiation would increase, resulting the

increment in heat transfer rate. The effect of heat radiation
improves the conduction properties of the nanofluid. This hap-
pens because more heat will generate, which will enhance the

thickness of the thermal boundary layer. Further, by increas-
ing the value of M, the heat transfer rate decreases. Fig. 10c



Fig. 8f Regression plots for Nb.
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Fig. 8g Regression plots for Nt.
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Fig. 8h Regression plots for Kr.

Fig. 9b Fit plots for Ha (Case-3).Fig. 9a Fit plots for Ha (Case-2).
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Fig. 9c Fit plots for Ha (Case-4).

Fig. 9d Fit plots for Fr.

Fig. 9e Fit plots for Rd.

Fig. 9f Fit plots for Nb.
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Fig. 9g Fit plots for Nt.

Fig. 9h Fit plots for Kr.



Table 5 Complete analysis of NN-LMBP based on validation, testing and training.

P. Cases Time(sec) MSE Perform-ance Gradient Mu Epochs

Training Validation Testing

Ha 1 8 2.77E-07 8.66E-07 7.53E-07 1.40E-07 6.92E-06 1.00E-12 12

2 9 2.89E-07 6.28E-07 9.79E-07 2.42E-07 3.65E-06 1.00E-09 12

3 8 3.09E-07 1.10E-06 8.49E-07 2.60E-07 6.59E-07 1.00E-08 12

Nb 1 8 3.96E-07 6.11E-07 1.06E-06 2.59E-07 1.21E-07 1.00E-09 12

2 10 2.93E-07 8.23E-07 8.73E-07 2.62E-07 1.45E-05 1.00E-09 13

3 9 3.20E-07 1.71E-06 6.22E-07 2.40E-07 3.82E-07 1.00E-09 12

Nt 1 12 1.17E-07 5.84E-07 4.89E-07 1.16E-07 8.91E-08 1.00E-10 15

2 9 4.95E-07 5.17E-07 8.06E-07 2.46E-07 3.08E-06 1.00E-11 11

3 11 3.62E-07 9.06E-07 8.49E-07 2.45E-07 2.21E-06 1.00E-09 14

Kr 1 10 3.18E-07 8.04E-07 9.64E-07 2.34E-07 3.07E-07 1.00E-11 12

2 9 3.10E-07 6.65E-07 5.58E-07 2.79E-07 2.11E-05 1.00E-09 13

3 9 4.03E-07 7.05E-07 1.35E-06 2.38E-07 5.76E-06 1.00E-11 12

Fr 1 11 4.11E-07 5.79E-07 6.92E-07 2.76E-07 5.64E-06 1.00E-09 12

2 11 3.73E-07 7.41E-07 5.44E-07 2.68E-07 7.26E-06 1.00E-09 12

3 10 4.54E-07 4.01E-07 8.08E-07 2.48E-07 6.91E-07 1.00E-09 11

Rd 1 13 2.82E-07 1.28E-06 5.66E-07 2.41E-07 1.10E-06 1.00E-09 12

2 9 4.50E-07 6.38E-07 1.17E-06 2.54E-07 8.92E-07 1.00E-09 11

3 10 5.89E-07 5.05E-07 7.28E-06 2.43E-07 9.97E-06 1.00E-11 11

Fig. 10a NuxRe
�0:5
x VS Nt VS Nb.

Fig. 10b NuxRe
�0:5
x VS M VS Rd.

Fig. 10c ShxRe
�0:5
x VS Nt VS Nb.

Fig. 10d ShxRe
�0:5
x VS Sc VS Kr.
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Fig. 10e NuxRe
�0:5
x VS Fr VS M.

Fig. 10f ShxRe
�0:5
x VS b VS Ha.
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depicts the effect of Nb and Nt on the mass transfer rate. The
mass transfer rate increases by increasing values of Nt while,

reverse trend is observed for Nb. Fig. 10d shows that mass
transfer rate is rising with increasing Kr and Sc. Fig. 10e
depicts that the skin friction coefficient increasing by reducing

the values of M and Fr. Fig. 10f reveals that the skin friction
coefficient increases by increasing the values of b, while reverse
effect is observed for Ha.

7. Conclusion

The hybrid nanofluid Ag-Al2O3/H2O flow through a rotating
disk is investigated under the combined effect of joule heating,

external magnetic field, and viscous dissolution in the presence
of Riga surface, thermal radiation, and chemical reaction. The
effect of different physical parameters like porosity parameter,

Darcy-Forchheimer parameter, Hartmann number, radiation
parameter, Brinkman number, Prandtl number, Eckert num-
ber, width parameter, Brownian motion parameter, ther-

mophoresis parameter, Schmidt number, and chemical
reaction parameter are analysed on velocity, temperature,
and concentration profiles. The major outcomes of the present
study are as follows:

� The velocity profile decreases by increasing values of the
Darcy-Forchheimer parameter and magnetic parameters,
while reverse effect is observed for the modified Hartmann

number.
� The radial velocity decreases by increasing the concentra-
tion of nanoparticles, whereas, the azimuthal velocity ini-

tially increases and then reverse trend is observed.
� The temperature profile increases due to increasing values
of the Brownian motion and thermophoresis parameters
and decreases by increasing the thermal radiation

parameter.
� The concentration profile decreases as the values of the
thermophoresis parameter increases, whereas opposite

behavior is noticed for the values of Brownian motion
and chemical reaction parameters.

� The Nusselt number increases by increasing Rd and

decreasing M, Nt, and Nb. The Sherwood number increases
by decreasing Nb and increasing Nt, Kr, and Sc.

The ANN structure functions are like human brain neurons,
which are able to learn from a given input–output set and then
apply this learning to predict the output for a new sample input

set with high speed and accuracy. There are numerous applica-
tions for artificial neural networks, including image recognition,
machine translation, and medical diagnosis. A significant

advantage of ANN is that it can learn from sample data sets.
The results obtained from the study can be used to analyse the
heat andmass transfer phenomenon in power plants, to prepare

hybrid nanofluids in factories and industries, to make coolants
for air conditioners and refrigerators, to prepare batteries for
electric vehicles. The base fluid can be changed with blood to

study for preparing drugs and medicines. ANN can be used to
predict the fluid properties in industries. Engineers and scientists
will be able to create more effective, efficient, and cutting-edge
fluid systems using ANN, which has the potential to transform

fluid mechanics research and development.
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[51] A. Shafiq, A.B. Çolak, T. Naz Sindhu, Designing artificial

neural network of nanoparticle diameter and solid–fluid

interfacial layer on single-walled carbon nanotubes/ethylene

glycol nanofluid flow on thin slendering needles, Int. J. Numer.

Meth. Fluids 93 (12) (2021) 3384–3404.
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