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Abstract
In this study, we explore interactions between cancer cells by using the hawk–dove
game.We analyze the heterogeneity of tumors by considering games with populations
composed of 2 or 3 types of cell. We determine what strategies are evolutionarily
stable in the 2-type and 3-type population games and what the corresponding expected
payoffs are. Our results show that the payoff of the best-off cell in the 2-type population
game is higher than that of the best-off cell in the 3-type population game. When these
mathematical findings are transferred to the field of oncology they suggest that a
tumor with low intratumor heterogeneity pursues a more aggressive course than one
with high intratumor heterogeneity. Some histological and genomic data on clear cell
renal cell carcinomas is consistent with these results. We underline the importance of
identifying intratumor heterogeneity in routine practice and suggest that therapeutic
strategies that preserve heterogeneity may be promising as theymay slow down cancer
growth.
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1 Introduction

Precision oncology loses much of its efficiency when significant genetic differences
appear between different regions of the same tumor and remain hidden because of
incomplete sampling. In terms of therapy this means that some areas of the tumor
will respond to treatment while others will not. The reliable identification of such
intratumor heterogeneity (ITH) so as to assure the efficacy of current therapies is a
cornerstone of modern oncology (Middleton et al. 2021). From a genomic perspective,
temporal and spatial heterogeneity develop in every tumor, following different evolu-
tionarymodels. To date, four different patterns have been identified: Linear, branching,
neutral, and punctuated (Davis et al. 2017). Branching and punctuated patterns have
been extensively analyzed in clear cell renal cell carcinomas (CCRCC), an aggressive
variant of renal cancer (Turajlic et al. 2018b).

It is widely agreed that the punctuated pattern, corresponding to tumors that display
low ITH, shows a worse prognosis than the branching pattern, which corresponds to
high ITH. Motivated by this finding, we set out to design a game theoretical model
that represents it well in oncology and to see whether the solution to that model is
consistent with it.

Game theory has recently been identified by 33 expert oncologists as a key model
for understanding tumorigenesis and potentially guiding therapy (Dujon et al. 2021).
Several games (or a combination of games) have been used to study cancer, including
the prisoner’s dilemma (West et al. 2016), the hawk–dove game (Tomlinson 1997;
McEvoy 2009; Kareva and Karev 2019; Swierniak et al. 2019, 2020), coordination
games (Bayer et al. 2022) and public good games (Nogales and Zazo 2021).

In particular, evolutionary game theory is a powerful tool for studying cancer as it
models how types of cells compete with each other for resource and space, and how
their strategies evolve over time. See for instance, Wölfl et al. (2022) for a review
of this literature. An evolutionarily stable strategy (ESS) guarantees that no mutant
strategy can invade the population (Maynard-Smith and Price 1973; Maynard-Smith
and Parker 1976; Maynard-Smith 1982). That is, an ESS is a strategy which, when
adopted by a population of individuals, cannot be invaded by any alternative strategy.1

In the context of cancer, ESS can be used to understand the evolution of tumor cell
populations.

In this paper we use a non cooperative game and the ESS as a solution concept.
This approach has several advantages. From a mathematical perspective, it avoids
having to explain possible evolutionary trajectories that might conflict with empirical
oncological findings. From a medical perspective, it is not feasible to conduct a large
number of biopsies over time in patients: The evolutionary trajectories of cells over
time cannot be assessed in the clinical practice due to deontological reasons. From

1 Note that the ESS corresponds to the outcome of a replicator dynamics system when the latter reaches
an asymptotically stable state.
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a game theory perspective, the ESS can be applied in games in normal form - the
archetypal model of interactions.

Our contribution consists of developing a game theoretical model that relates ITH
to the prognosis of the tumor. More specifically, we start by choosing the hawk–dove
game because of its simplicity and its affinity to cell behavior.2 Hawk–dove games
are defined by two parameters: The resource (v) and the cost (c). The resource in
tumors consists of a varied spectrum of diffusible factors released into the medium by
tumor and/or non-tumor cells. An example is the fibroblast activation protein (FAP)
produced and released by a specific sub-type of cancer-associated fibroblasts (Errarte
et al. 2020). The cost is the energy required to obtain the resource. The Atkinson level
enables the energy spent by any cell, normal or neoplastic, to bemeasured. It takes into
account the relative cytoplasmic concentrations of adenosine tri-(ATP), di-(ADP), and
mono-(AMP) phosphate (the essential molecules fueling all cellular processes) (De la
Fuente et al. 2014). The hawk–dove game is applied under the assumption that cells
do not recognize their own type but detect the type of their opponents. Examples of
how cancer cells behave differently depending on the recognition of their respective
cellular contexts are available in the literature (Maruyama and Fujita 2017).

Then we use a heterogeneous game (Inarra and Laruelle 2012), i.e. we consider
heterogeneous populations composed of two or three types of cells: The 2-type popu-
lation model represents low ITH (punctuated pattern) and the 3-type population model
represents high ITH (branching pattern). Clinical practice suggests that encountering
more than three different types of cells in a tumor is quite unusual. Therefore, we do
not consider populations composed of four or more types.

Finally, we compare the ESS for the 2-type and 3-type populations models. In the
ESS, different types of cells obtain different levels of payoffs. The cells that obtain
the highest expected payoffs are the fittest ones, i.e. those that divide at the highest
rate, increasing their proportion over time. Thus, these cells determine how aggressive
the tumor is. Therefore, we compare the expected payoffs of the fittest cells for the
two population games to assess the prognosis of tumors. The findings obtained are
consistent with what is observed in histological and genomic studies on CCRCC
(Turajlic et al. 2018a, b; Manini et al. 2022).

The paper is organized as follows. Section2 presents a case study that enables us
to develop our 2-type and 3-type game theoretical models. Section3 sets out the game
theoretical models and gives the main results. Section4 contains a discussion and our
conclusions.

2 A Case Study

In clinical practice, tumors are classified using two types of approaches: Histological
and genomic. In the former, tumor classification is based on themorphological features
of tumor cells under themicroscopewhen pathologists assign tumor grading following
internationally accepted criteria. Most tumors in the body are graded from 1 to 3, or
more rarely from 1 to 4, where grade 1 means the lowest aggressiveness and grade

2 See the discussion in Beckman et al. (2020),
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3 (or 4) means the highest aggressiveness. In such analyses, a distinction can also be
drawn between low and high ITH.

In genomic analysis, a distinction can be drawn between punctuated and branching
cancer evolutionary patterns as discussed in Davis et al. (2017). With the recent devel-
opment of next-generation sequencing (NGS)-based platforms, it has become feasible
to conduct concurrent analysis on hundreds of genes or even the entire genome using
small quantities of tumor tissue collected by needle biopsy.

The two types of tumor analysis agree that low ITH (corresponding to the punc-
tuated evolutionary pattern) is more aggressive than high ITH ( corresponding to the
branching pattern) (Manini et al. 2022; Turajlic et al. 2018b).

To study the effects of low and high ITH in CCRCC, Manini et al. Manini et al.
(2022) have recently reviewed a series of 28 exhaustively sampled CCRCC focusing
specifically on the variability of tumor grades. The follow-up on all patients varied
between 5 and 10 years. More than 1500 tumor samples were assessed, averaging
more than 50 samples per case. In 5 of the 28 cases a single grade was observed in all
the samples analyzed. In 15 cases two different grades were observed; and in 8 cases
three grades were observed. Cases with two different grades across all the regions
analyzed were considered to show low ITH, whereas cases with three different grades
were considered as high ITH.

The 23 cases that display some heterogeneity are summarized in Table 1.3 For
each case we give the level of heterogeneity, the percentage of the highest grade and
the outcome at last contact. It can be observed that 9 of the 15 patients with tumors
showing low ITH died of the disease, 5 were alive with the disease, and 1 was alive
without the disease at last contact. By contrast, all 8 patients with tumors showing
high ITH were alive without the disease at last contact. Moreover, with the exception
of Cases 1 and 16, all tumors showing low ITH also show high proportions of the
highest grade cells.

The prognosis of patients with low ITH and high proportions of the most malignant
type of cells is bad. Indeed all but two of them died of the disease. Conversely, all the
patients with tumors showing high ITH are alive and show small proportions of the
highest grade cells.

3 The Hawk–Dove Game in Tumors

In this section we present our game theoretical approach based on the case study in the
previous section.We first introduce the hawk–dove game in a homogenous population.
To adapt our modeling to the ITH problem we refer to cells rather than players, and
seek to justify every assumption that wemake in the cancer setting. Then we introduce
the hawk–dove game in populations with 2 different types of cells (referred to as 2-
type populations) and 3 different types of cells (referred to as 3-type populations)
exemplifying interactions within cells in low ITH and high ITH tumors, respectively.

3 The complete table is given in Manini et al. (2022). Here we omit data such as gender, age, number
of samples per case, number of months of follow-up and highest grade encountered. Note that we have
maintained the numbering of the original table.
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Table 1 Cases of CCRCC
showing some degree of ITH,
adapted from Manini et al.
(2022)

Case Proportion of
the Highest
Grade (%)

Heterogeneity (ITH) Outcome

1 10 Low AWD

2 5 High AwoD

3 80 Low AwoD

5 60 Low AWD

7 5 High AwoD

8 10 High AwoD

9 70 Low DOD

10 90 Low DOD

11 90 Low DOD

12 70 Low DOD

13 80 Low DOD

14 70 Low DOD

15 5 High AwoD

16 10 Low AWD

17 5 High AwoD

18 50 Low DOD

19 90 Low AWD

20 20 High AwoD

21 5 High AwoD

22 90 Low AWD

23 70 Low DOD

24 90 Low DOD

25 10 High AwoD

Outcome at last contact—AWD, alive with disease; AwoD, alive with-
out disease; DOD, died of disease

3.1 Homogenous Population

We consider a tumor formed by a population of n cells. Encounters between cells are
bilateral and in each encounter a cell can behave aggressively, like a hawk, or passively,
like a dove, to acquire a resource v. If one cell is aggressive and its opponent is passive,
the former obtains the resource and the latter gets nothing. If both cells are aggressive
there is a fight and the winner gets the resource while the loser bears a cost c > v.
Assuming that they both have the same probability of winning, the expected reward,
(“expected payoff” hereafter) for each cell is (v − c)/2. If both cells are passive, one
withdraws and gets nothing while the other takes the resource. Assuming that they
both have the same probability of withdrawing, the expected payoff for each cell is
v/2. These contingencies are summarized in the following payoff matrix.
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hawk dove
hawk v−c

2 v

dove 0 v
2

A strategy denoted by α represents the probability of a cell being aggressive on
meeting another cell. A cell can choose to play hawk (α = 1), dove (α = 0) or a mixed
strategy (0 < α < 1). The expected payoff of a cell that plays α when its opponent
plays β is given by u(α, β):

u(α, β) = v

2
(1 − β) + c

2

(v

c
− β

)
α. (1)

The solution concept applied to solve this game is the evolutionarily stable strategy
(ESS). An ESS is a strategy that maximizes the expected payoff of a player when its
opponent chooses the same strategy, i.e. a symmetric Nash equilibrium. An ESS also
guarantees that no mutant strategy can invade the population. It is known that strategy
v/c is the only ESS (Maynard-Smith 1982) when the population is homogeneous, i.e.
composed of a single type of cell.

3.2 Heterogeneous Population

To analyze the effect of ITH on the fitness of tumors, we need to compare cells with
identical capacities in terms of both the level of resources to which they are exposed
and their energy cost in fighting for those resources. Notice that a priori types do not
confer any advantage: The same payoff matrix is played in every encounter.

Tumors are usually composed of different types of cells. In our modeling we follow
the above case study, and consider two levels of ITH: Low and high. For notation
purposes, we define A-cells as the best-off cells, i.e. those with the strictly largest
expected payoff, thus those that reproduce fastest and define the aggressiveness of a
cancer tumor. A tumor with low ITH is composed of two types of cells, say A-cells
and B-cells. A tumor with high ITH is composed of three types of cells, say A-cells,
B-cells and E-cells.

As mentioned in the Introduction, cells are sensitive to their environment and rec-
ognize the type of their opponent, but not their own type. Hence, a cell sees itself as
I -cell, i.e. it does not know its own type, which may be A-cell or B-cell in a 2-type
population game or A-cell, B-cell, or E-cell in a 3-type population game.

3.2.1 2-Type Population Game

Consider a heterogeneous tumor formed by A-cells and B-cells. A 2-type population
game is denoted by �2(v, c, xA), as it can be defined by parameters v, c, and the
proportion of A-cells, xA. Cells cannot adopt a different strategy according to their own
type but are able to choose a different probability of playing aggressively when facing
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any type of opponent.4 Thus, a strategy of a player is a pair (αA, αB), where αI denotes
the probability of behaving aggressively on meeting an I -cell (I = A, B). In other
words, αI indicates the level of aggression received by an I -cell. Game �2(v, c, xA)

is analyzed in Inarra and Laruelle (2012). It is shown that no strategy with αA = αB is
evolutionarily stable. The game has two evolutionarily stable strategies in which cells
of one type receive less aggression and obtain a larger expected payoff than cells of
the other type.5

We focus on the ESS where the A-cells have the largest expected payoff and face
the least aggression. This ESS depends on the proportion of A-cells. We denote it by(
α∗∗
A , α∗∗

B

)
ESS:

(
α∗∗
A , α∗∗

B

)
ESS =

⎧⎪⎪⎨
⎪⎪⎩

(
0, n−1

n−nxA−1
v
c

)
if xA < x̄ A

(0, 1) if x̄ A < xA < x̄ A + 1
n(

(n−1)v/c−n+nxA
nxA−1 , 1

)
if xA > x̄ A + 1

n ,

where x̄ A = (
1 − v

c

) (
1 − 1

n

)
.

In the ESS the best-off A-cells receive less aggression than B-cells (αA < αB)
do. The level of aggression toward the latter increases when the proportion of A-
cells increases, until full aggression ( αB = 1) is reached (for xA > x̄ A). Also, if
the proportion of A-cells is below a threshold (xA < x̄ A + 1/n), A -cells suffer
no aggression (αA = 0) and aggression is concentrated only on B-cells. Above that
threshold, however, A-cells do receive someaggression. Since only the expectedpayoff
of the best-off cells is of interest in this context, we focus our analysis on the expected
payoff of those cells in the ESS, denoted by U∗∗

A (xA), which is given by:

U∗∗
A (xA) =

⎧
⎪⎨
⎪⎩

v
2 (1 − v

c ) + v2

2c
2n(1−xA)−1
n−nxA−1 if xA < x̄ A

v
2 (1 − v

c ) + v
2c

v(n−1)+cn(1−xA)
n−1 if x̄ A ≤ xA ≤ x̄ A + 1

n
v
2 (1 − v

c ) + c−v
c

vn(1−xA)
nxA−1 if xA > x̄ A + 1

n .

(2)

Observe that if the proportion of A-cells is below a threshold (xA < x̄ A), in the
ESS the larger xA is, the larger the expected payoff of the A-cells is (see “Appendix
A”). Indeed, A-cells receive no aggression while B-cells receive more aggression
as xA increases. In consequence, an A-cell more frequently obtains resource v, thus
increasing its expected payoff. The expected payoff of an A-cell peaks when xA = x̄ A
and starts decreasing thereafter. This finding suggests that A-cells start fighting among
themselves for resource v.

Figure 1 plots the expected payoff of the A-cells as a function of xAin the ESS for
xA < x̄ A. This figure shows that both the first and second derivatives are positive: The
larger xA is, the larger U∗∗

A (xA) is and the larger the increase in U∗∗
A (xA) is.

4 This assumption contrasts with the traditional assumption in game theory (usually players know their
own type but not that of their opponent).
5 That is, in one ESS, A-cells face less aggression and have a larger payoff than B-cells. In the other ESS
the opposite holds.
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Fig. 1 Expected payoff of the best-off A-cells in the ESS in a 2-type population game (U∗∗
A ) as a function

of xA . Parameters: v = 10, c = 50, n = 201 (Color figure online)

3.2.2 3-Type Population Game

Consider a heterogeneous tumor formed by A-cells (in a proportion of xA), E-cells
(in a proportion of xE ) and B-cells (in a proportion of xB = 1 − xA − xE ). A 3-type
population game is denoted by �3(v, c, xA, xE ), as defined by parameters v, c, and
the proportions of A-cells and E-cells.

A strategy is denoted by (αA, αB, αE ) where αI is the probability of behaving
aggressively when facing an I -cell (I = A, B, E). If an I -cell plays (αA, αB, αE )

against an opponent playing (βA, βB , βE ) its expected payoff is the sum of the proba-
bility of meeting a cell of its own type, i.e. (nxI −1)/(n−1), multiplied by u(αI , βI ),
and the probability of meeting a cell of each other cell type, i.e. (nxJ )/(n − 1), multi-
plied by u(αJ , βI ). The expected payoff of an I -cell denoted byUI , gives the following
expressions:

UA = nxA − 1

n − 1
u(αA, βA) + n(1 − xA − xE )

n − 1
u(αB, βA) + nxE

n − 1
u(αE , βA),

UB = nxA
n − 1

u(αA, βB) + n(1 − xA − xE ) − 1

n − 1
u(αB, βB) + nxE

n − 1
u(αE , βB),

UE = nxA
n − 1

u(αA, βE ) + n(1 − xA − xE )

n − 1
u(αB, βE ) + nxE − 1

n − 1
u(αE , βE ). (3)

Moreover, as a cell does not know its own type, what can be maximized is the
expected payoff of a generic cell, denoted by U . This is computed as the sum of
the probability of being I multiplied by the expected payoff of an I -cell with I ∈
{A, B, E}:

U = xAUA + (1 − xA − xE )UB + xEUE . (4)
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Substituting (1) into (3) and then substituting (3) into (4), the expected payoff of a
generic cell can be written as follows:

U = f (βA, βB, βE ) +
∑

I∈{A,B,E}
f I (βA, βB, βE )αI , (5)

where f (βA, βB, βE ) = v

2

[
1 −

∑
I

xIβI

]

f I (βA, βB, βE ) = c

2

nxI
n − 1

[
v

c

(
1 − 1

n

)
−

∑
I

xIβI + βI

n

]
for I = {A, B, E} .

As in the 2-type game, whenever cells choose the same strategy the cell that receives
the largest payoff is the cell that receives the least aggression. That is, UI > UJ is
equivalent to αI < αJ (for I , J ∈ {A, B, E} and I �= J ). See “Appendix B” for the
proof.

We focus on the ESS where the three different types receive different expected
payoffs. To make the comparison with the 2-type game, we set UA > UB > UE . The
following proposition, proven in “Appendix C”, indicates that the ESS depends on the
proportions of the A-cells and E -cells. We denote it by

(
α∗∗∗
A , α∗∗∗

B , α∗∗∗
E

)
ESS .

Proposition 1 Let �3(v, c, xA, xE ) be a 3-type population game. There is an ESS with
UA > UB > UE if and only if xA < x̄ A and xE < x̄E , where x̄E = v

c

(
1 − 1

n

)
which

is given by:

(
α∗∗∗
A , α∗∗∗

B , α∗∗∗
E

)
ESS =

(
0,

(n − 1)v/c − nxE
n − nxA − nxE − 1

, 1

)
. (6)

As expected, A-cells receive less aggression than B-cells, which in turn receive less
aggression than E-cells (αA < αB < αE ). The best-off cells receive no aggression,
B-cells receive some aggression and E-cells receive full aggression. Figure2 plots
the aggression suffered by B-cells in the ESS for different proportions of A-cells and
E-cells, showing that: (i) The larger xA is, the greater the aggression suffered by
B-cells is; and (ii) the larger xE is, the lesser the aggression suffered by B-cells is
(see “Appendix D”).

Recall that the expected payoff of the best-off A-cells is of interest in this context,
so we present the expected payoff in the ESS of these cells, denoted byU∗∗∗

A (xA, xE ),
which is given by:

U∗∗∗
A (xA, xE )

= v

2

(
1 − v

c

)
+ v2

2c

2n(1 − xA − xE ) − 1

n − nxA − nxE − 1
− v

2

nxE
(n − nxA − nxE − 1) (n − 1)

.(7)
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Fig. 2 Aggression received in the ESS by B-cells (αB ) in a 3-type population game as a function of xA for
different values of xE . Parameters: v = 10, c = 50, n = 201 (Color figure online)

Observe that the larger xA is, the larger the expected payoff of each A-cell is (see
“Appendix E”). Indeed, aggression towards B-cells increases while A-cells receive no
aggression (and E-cells receive full aggression). As a result, an A-cell obtains resource
v more often and its expected payoff therefore increases. By contrast, the larger xE
is, the smaller the expected payoff of each A-cell is. As xE increases two opposite
effects come into play: On the one hand there are more E -cells, which receive full
aggression, so overall aggression levels increase, which is beneficial for A-cells. On
the other hand, as xE increases the aggression received by B-cells decreases, which
reduces overall aggression, which is detrimental for A-cells. This negative effect turns
out to outweigh the positive effect, so the expected payoff of each A -cell decreases
with xE .

An important point to highlight here is that there is no ESS with UA > UB > UE

when the proportion of A-cells or E-cells exceeds thresholds x̄ A or x̄E . However,
having xA > x̄ A or xE > x̄E does not rule out the existence of ESS. In these cases
two cell types receive the same expected payoff: Either UA > UB = UE or UA =
UB > UE , reproducing the outcomes of the 2-type population game described above.
This can be illustrated as follows for the case UA > UB = UE .

Proposition 2 Let �3(v, c, xA, xE ) be a 3-type population game. There exists an ESS
with UA > UB = UE for xA > x̄ A which is given by

(αA, αB , αE )ESS =
{

(0, 1, 1) if x̄A < xA < x̄ A + 1/n(
(n−1)v/c−n(1−xA)

nxA−1 , 1, 1
)
if xA > x̄ A + 1/n.

In this ESS, the E-cells are not distinguished from the B-cells (αB = αE). The level
of aggression received and the expected payoffs are identical to those obtained in the
ESS in the 2-type population game. This is equivalent to a high ITH tumor evolving into
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Fig. 3 Expected payoff of the best-off A-cells in the ESS in a 2-type population game (U∗∗
A ) and 3-type

population game (U∗∗∗
A for different values of xE ) as functions of xA . Parameters: v = 10, c = 50, n = 201

(Color figure online)

a low ITH tumor whenever the proportion of the best-off cells in the tumor becomes
large enough. In Table 1 every case in which the proportion of the highest grade is
large shows a tumor with low ITH, except those of the patients described in Cases 1
and 16.

3.3 Comparison of Heterogeneous Tumors

Asmentioned, the main question here concerns the comparison of the expected payoff
of the best-off A-cells in the 2-type and 3-type population games. Clearly, the com-
parison is pertinent for equal proportions of A-cells in the two tumors under analysis.
The following proposition (see “Appendix F”) indicates when the expected payoff of
an A-cell in ESS is strictly larger in the 2-type population game than in the 3-type
population game.

Proposition 3 Let yA beaproportionofA-cells and let�2(v, c, yA)and�3(v, c, yA, xE )

with yA < x̄ A and xE < x̄E . Then U∗∗
A (yA) > U∗∗∗

A (yA, xE ).
This result is illustrated in Fig.3. Recall that the ESS for xA < x̄ A in �2(v, c, xA)

is
(
0, n−1

n−nxA−1
v
c

)
while the ESS in �3(v, c, xA, xE ) is

(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
. In both

games the best-off A-cells receive no aggression, while E-cells receive full aggression
in the 3-type population game. B -cells receive some aggression in both games. The
aggression received by B -cells in the 2-type population game is greater than in the
3-type population game. This difference confers an advantage to A-cells in the former.
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4 Discussion

Below, we discuss the consistency of our results obtained from extending the clas-
sic hawk–dove game to a heterogeneous population as outlined in Sect. 3 with the
observations in the histological study on CCRCC described in Sect. 2.

To bridge the results from Sects. 2 and 3, recall that following the empirical oncol-
ogy study in Manini et al. (2022), ITH is considered as low when the tumor has two
different cell populations (grades) measured by histological parameters. Such tumors
are represented in our model by 2-type population games. When the tumor has three
or more identifiable cell populations, ITH is considered to be high. This case is repre-
sented by 3-type population games. In Table 1 the proportion of the highest grade can
be interpreted as the proportion of the best-off type, that is, xA.

Proposition 1 says that in a 3-type population game an ESS exists when the pro-
portions of the best-off and worst-off cells do not exceed certain thresholds. Beyond
those thresholds, for the best-off and worst-off cells, the ESS has two types of cells
that receive exactly the same aggression and therefore have the same expected payoff
(see Proposition 2). In accordance with these results in the case study we do not expect
to find patients with tumors that show high ITH and a large proportion of the highest
grade cells. This is indeed the case and is reflected in Table 1. Indeed, high ITH is
linked to proportions of xA ≤ 20%. From a genomic point of view, this result could
be interpreted as a branching-type tumor becoming punctuated. Such an evolution has
in fact been detected in several types of malignant tumors (Bao et al. 2021).

Proposition 3 says that the best-off cell type obtains a larger expected payoff in 2-
type population games than in 3-type population games. This means that if two tumors
with the same proportion of the highest grade are compared, the one with the higher
ITH should be less aggressive than the one with the lower ITH. In other words, for the
same proportion of the highest grade a three-cell-type tumor pursues a less aggressive
course than a two-cell-type one. This result is also consistent with the findings in the
case-study: Patients with cancer showing high ITH seem to have a better prognosis
than those with cancers showing low ITH.

Figures 1 and 3 can be interpreted as follows: the higher the proportion of the
highest grade cells, the more aggressive a tumor is (and the worse the prognosis is).
Moreover, the rate is increasing. This means that the larger the proportion is, the larger
the effect on the worsening of the prognosis is. More detailed data would be useful to
check this conjecture.

At a practical level, our results suggest the idea that it is appropriate to preserve
high ITH in tumors as a promising therapeutic strategy.Thus, a therapy using the tumor
containment strategy instead of the conventional of maximum tolerable dose could be
more effective since the former procedure forces tumor cells to divide its energy
expenditure in two different tasks to survive, i.e. maintaining the tumor growth on
one hand, and developing resistances to therapy on the other. Since the total amount
of energy into the cell is limited by definition, both tasks will slow down allowing
longer cancer survival rates in patients [24]. Moreover, the maximum tolerable dose
has already been questioned using a game theory approach (Archetti 2021).

The extension of the classic game of hawk and dove to heterogeneous populations
seems to support the results presented in the case study.Webelieve that our contribution
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opens up a path for future research into developing case studies where low and high
ITH in other types of cancer are analyzed in a way that enables the robustness of the
hawk–dove game model to be confirmed for heterogeneous populations.

From a clinical point of view, the results highlight the importance of therapies
focused on maintaining high levels of intra-tumor heterogeneity, with a greater diver-
sity of cancer cells, in order to try to slow down the progress of cancer and decrease
its clinical aggressiveness.
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Appendix A

In a 2-type population game the expected payoff of A-cells in the ESS increases with
xA for xA < x̄ A and decreases for xA > x̄ A.

Proof From (2), compute:

d

dxA

[
v

2

(
1 − v

c

)
+ v2

2c
2n(1−xA)−1
n−nxA−1

]
= v2n

2c (n − nxA − 1)2
> 0

d

dxA

[
v

2

(
1 − v

c

)
+ v

2c

v(n − 1) + cn(1 − xA)

n − 1

]
= − vn

2(n − 1)
< 0

d

dxA

[
v

2

(
1 − v

c

)
+ c − v

c

vn(1 − xA)

nxA − 1

]
= −c − v

c

vn(n − 1)

(nxA − 1)2
< 0.

Therefore, d
dxA

[
U∗∗

A (xA)
]

> 0 if xA < x̄ A and d
dxA

[
U∗∗

A (xA)
]

< 0 if xA > x̄ A. ��
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Appendix B

Whenever cells choose the same strategy, i.e. (αA, αB, αE ) = (βA, βB , βE ), the fol-
lowing holds: UI > UJ is equivalent to αI < αJ (for I , J ∈ {A, B, E}; I �= J ).

Proof For (αA, αB, αE ) = (βA, βB , βE ), (3) becomes

UA = nxA − 1

n − 1
u(αA, αA) + n(1 − xA − xE )

n − 1
u(αB, αA) + nxE

n − 1
u(αE , αA)

UB = nxA
n − 1

u(αA, αA) + n(1 − xA − xE ) − 1

n − 1
u(αB, αA) + nxE

n − 1
u(αE , αA)

UE = nxA
n − 1

u(αA, αA) + n(1 − xA − xE )

n − 1
u(αB, αA) + nxE − 1

n − 1
u(αE , αA)

Plugging (1) into the above equation gives

UA = v

2
(1 − αA) + c

2(n − 1)
(
v

c
− αA)

[nxAαA + n(1 − xA − xE )αB + nxEαE ] − c

2(n − 1)
(
v

c
− αA)αA

UB = v

2
(1 − αB) + c

2(n − 1)
(
v

c
− αB)

[nxAαA + n(1 − xA − xE )αB + nxEαE ] − c

2(n − 1)
(
v

c
− αB)αB

UE = v

2
(1 − αE ) + c

2(n − 1)
(
v

c
− αE )

[nxAαA + n(1 − xA − xE )αB + nxEαE ] − c

2(n − 1)
(
v

c
− αE )αE

The difference between two pairs of equations gives

UA −UB = nv

2(n − 1)
(αB − αA) + c

2(n − 1)
(αB − αA)

[nxAαA + n(1 − xA − xE )αB + nxEαE ] − c

2(n − 1)

(
α2
B − α2

A

)

UA −UB

= αB − αA

2(n − 1)
[nv + cnxAαA + cn(1 − xA − xE )αB + cnxEαE − c (αB + αA)]

UA −UB

= αB − αA

2(n − 1)
[nv + c (nxA − 1) αA + c (n − nxA − nxE − 1) αB + cnxEαE ] (8)

Given that there is at least one cell of each type, we have xA > 1
n , 1 − xA − xE > 1

n .

Thus UA > UB is equivalent to αA < αB . Following the same reasoning we have
the equivalence between UB > UE and αB < αE . Thus, UA > UB > UE iff
αA < αB < αE .

��
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Appendix C

In a 3-type population game strategy
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
is an ESS if xE < x̄E and

xA < x̄ A.

Proof First, check that strategy
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
is a best response to itself.

From (5), the optimal choice of a cell if the opponent plays (βA, βB , βE ) is to play
αI = 1 whenever f I (βA, βB , βE ) > 0, αI = 0 whenever f I (βA, βB, βE ) < 0 and
αI ∈ [0, 1] whenever f I (βA, βB , βE ) = 0 where I = A, B, E . If the opponent plays
(0, βB, 1) the optimal choice of a cell is αA = 0, αB = βB (with 0 ≤ αB ≤ 1 ) and
αE = 1 as long as f A (0, βB , 1) < 0, fB (0, βB , 1) = 0 and fE (0, βB, 1) > 0.

Equality fB (0, βB , 1) = 0 is satisfied if v
c

(
1 − 1

n

)−(1−xA−xE )βB−xE+ βB
n = 0

or equivalently v
c (n − 1) − (n − nxA − nxE )βB − nxE + βB = 0, leading to βB =

(n−1)v/c−nxE
n−nxA−nxE−1 .

Condition βB > 0 gives (n−1)v/c−nxE > 0 or equivalently xE < x̄E (assuming
there is strictly more than one cell of each type, i.e., nxB = n − nxA − nxE > 1).

Condition βB < 1 gives (n − 1)v/c − nxE < n − nxA − nxE − 1, or

xA < x̄ A. It remains to be confirmed that f A
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)

< 0 and

fE
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)

> 0 hold at
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
, which with simple alge-

braic manipulations can be proved to be true.

Second, it remains to be confirmed that strategy
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
which is a

best response to
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
cannot be invaded by a mutant strategy.

Let the opponent play (γA, γB, γE ), as a best response to
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
. It

must be checked that the expected payoff obtainedwhen playing
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)

is larger thanwhenplaying (γA, γB, γE ).As checked above fA
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)

<

0, fB
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)

= 0 and fE
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)

> 0. Thus, γA = 0,

0 < γB < 1, and γE = 1. From (5) we write the difference in expected payoffs when

playing
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
and (0, γB, 1) whenever the opponent plays (0, γB, 1):

f (0, γB, 1) + f A (0, γB, 1) · 0 + fB (0, γB, 1)
(n − 1)v/c − nxE
n − nxA − nxE − 1

+ fE (0, γB, 1) · 1
− f (0, γB, 1) − f A (0, γB, 1) · 0 − fB (0, γB, 1) γB − fE (0, γB, 1) · 1
= fB (0, γB, 1)

(
(n − 1)v/c − nxE
n − nxA − nxE − 1

− γB

)

= c

2
(1 − xA − xE )

(
v

c
− nxE

n − 1
− n − nxA − nxE − 1

n − 1
γB

) (
(n − 1)v/c − nxE
n − nxA − nxE − 1

− γB

)
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= c

2
(1 − xA − xE )

n − nxA − nxE − 1

n − 1

(
(n − 1)v/c − nxE
n − nxA − nxE − 1

− γB

)2

> 0 if γB �= (n − 1)v/c − nxE
n − nxA − nxE − 1

Thus, the expected payoff is strictly larger when playing
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
than

(0, γB, 1) and strategy
(
0, (n−1)v/c−nxE

n−nxA−nxE−1 , 1
)
is an ESS. ��

Appendix D

In a 3-type population game, the aggression suffered by B-cells in the ESS increases
with the proportion of A-cells, xA; but it decreases with the proportion of E-cells, xE
for xA < x̄ A and xE < x̄E .

Proof From (6), compute:

∂

∂xA

[
(n − 1)v/c − nxE
n − nxA − nxE − 1

]
= n ((n − 1)v/c − nxE )

(n − nxA − nxE − 1)2
> 0

given that xE < (1 − 1
n ) v

c = x̄E in the ESS.

∂

∂xE

[
(n − 1)v/c − nxE
n − nxA − nxE − 1

]
= −n (n − nxA − 1) + n ((n − 1)v/c)

(n − nxA − nxE − 1)2
< 0

given that xA < (1 − 1
n )(1 − v

c ) = x̄ A in the ESS. ��

Appendix E

In the 3-type population game the expected payoff of each A-cell in the ESS increases
with xA and decreases with xE .

Proof From (7), compute:

∂

∂xA

[
U∗∗∗
A (xA, xE )

]

= ∂

∂xA

[
v

2

(
1 − v

c

)
+ v2

2c

2n − 2nxA − 2nxE − 1

n − nxA − nxE − 1
− v

2

nxE
(n − nxA − nxE − 1) (n − 1)

]

= v

2

[
v

c

(n − 1)

n
− xE

]
n

(n − nxA − nxE − 1)2
n

n − 1
> 0.
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given that xE < (1 − 1
n ) v

c = x̄E in the ESS.

∂

∂xE

[
U∗∗∗
A (xA, xE )

]

= ∂

∂xE

[
v

2

(
1 − v

c

)
+ v2

2c

2n − 2nxA − 2nxE − 1

n − nxA − nxE − 1
− v

2

nxE
(n − nxA − nxE − 1) (n − 1)

]

= v

2

[
v

c

(n − 1)

n
− (n − 1)

n
+ xA

]
n

(n − nxA − nxE − 1)2
n

n − 1

= v

2

[
xA −

(
1 − v

c

) (
1 − 1

n

)]
n

(n − nxA − nxE − 1)2
n

n − 1
< 0.

given that xA < (1 − 1
n )(1 − v

c ) = x̄ A in the ESS.
Therefore, we have ∂

∂xA

[
U∗∗∗

A (xA, xE )
]

> 0 and ∂
∂xE

[
U∗∗∗

A (xA, xE )
]

< 0. ��

Appendix F

For xA < x̄ A and xE < x̄E the following holds: U∗∗
A (xA) > U∗∗∗

A (xA, xE ).

Proof From (2) and (7), compute:

U∗∗
A (xA) −U∗∗∗

A (xA, xE ) = v2

2c

(
2n − 2nxA − 1

n − nxA − 1
− 2n − 2nxA − 2nxE − 1

n − nxA − nxE − 1

)

+v

2

nxE
(n − nxA − nxE − 1) (n − 1)

.

First, note that:

v2

2c

(
2n − 2nxA − 1

n − nxA − 1
− 2n − 2nxA − 2nxE − 1

n − nxA − nxE − 1

)

= v2

2c

(2n − 2nxA − 1)(−nxE ) + 2nxE (n − nxA − 1)

(n − nxA − 1)(n − nxA − nxE − 1)

= v2

2c

−nxE
(n − nxA − 1)(n − nxA − nxE − 1)

.

This gives:

U∗∗
A (xA, xE ) −U∗∗∗

A (xA, xE )

= v2

2c

−nxE
(n − nxA − 1)(n − nxA − nxE − 1)

+ v

2

nxE
(n − nxA − nxE − 1) (n − 1)

= v

2

nxE
(n − nxA − nxE − 1) (n − 1) (n − nxA − 1)

[
−v

c
(n − 1) + (n − nxA − 1)

]

= v

2

nxE
(n − nxA − nxE − 1) (n − 1) (n − nxA − 1)

[
(n − 1)

(
1 − v

c

)
− nxA

]

123



72 Page 18 of 19 A. Laruelle et al.

> 0 given that xA <

(
1 − 1

n

) (
1 − v

c

)
= x̄ A.

Thus, for xA < x̄ A and xE < x̄E , we have U∗∗
A (xA) > U∗∗∗

A (xA, xE ). ��

References

Archetti M (2021) Collapse of intra-tumor cooperation induced by engineered defector cells. Cancers
13(15):3674

Bao Z, Wang Y, Wang Q, Fang S, Shan X, Wang J, Jiang T (2021) Intratumor heterogeneity, microenviron-
ment, andmechanismsof drug resistance in glioma recurrence and evolution. FrontMed15(4):551–561

Bayer P, Gatenby RA, McDonald PH, Duckett DR, Staňková K, Brown JS (2022) Coordination games in
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