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ABSTRACT: The cognitive basis of geometry is still poorly understood, even the ‘simpler’ issue of what 
kind of representation of geometric objects we have. In this work, we set forward a tentative model of the 
neural representation of geometric objects for the case of the pure geometry of Euclid. To arrive at a co-
herent model, we found it necessary to consider earlier forms of geometry. We start by developing models 
of the neural representation of the geometric figures of ancient Greek practical geometry. Then, we pro-
pose a related model for the earliest form of pure geometry – that of Hippocrates of Chios. Finally, we de-
velop the model of the neural representation of the geometric objects of Euclidean geometry. The models 
are based on the hub-and-spoke theory. In our view, the existence of specific models opens the possibility 
of addressing the relationship between geometric figures and geometric objects, in a novel way, in terms 
of their neural representation. 
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RESUMEN: La base cognitiva de la geometría aún no se comprende bien, incluso la «simple» cuestión de 
determinar qué tipo de representación de objetos geométricos existe. En este trabajo presentamos un modelo 
tentativo de la representación neuronal de objetos geométricos para el caso de la geometría pura de Euclides. 
Para llegar a un modelo coherente, encontramos necesario considerar formas anteriores de geometría. Comen-
zamos desarrollando modelos de la representación neuronal de las figuras geométricas de la geometría práctica 
griega antigua. Después, proponemos un modelo, relacionado con los anteriores, para la forma más antigua 
de geometría pura: la de Hipócrates de Quíos. Finalmente, desarrollamos el modelo de la representación neu-
ronal de los objetos geométricos de la geometría Euclidiana. Los modelos se basan en la teoría hub-and-spoke. 
Desde nuestro punto de vista, la existencia de modelos específicos abre la posibilidad de tratar la relación entre 
figuras y objetos geométricos, de manera novedosa, en términos de su representación neuronal.
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1. Introduction

The cognitive sciences research on geometric concepts is still limited.1  But there are 
more general results regarding human conceptualization and concept processing that can 
guide us in addressing geometric concepts (see, e.g., Baddeley et al., 2020, pp. 210-231). 
The purpose of the present work is to set forward a model of the neural representation 
of geometric concepts that underline our cognitive activity related to the practice of pure 
geometry.2 

From the perspective of a philosophy of mathematical practices, we should consider 
actual practices in their historical context (see, e.g., Ferreirós, 2016). This is particularly 
the case with the present endeavor. Our purpose is not to address modern forms of pure 
geometry but pure geometry at its beginning, or close to it. Our object of interest is the 
pure geometry of Euclid’s Elements. To arrive at a coherent model, we found it necessary 
to consider earlier forms of geometry, ancient Greek practical geometry and the geome-
try of Hippocrates of Chios.

Currently, research points to ‘hybrid theories’ of the neural representation of con-
cepts combining what we may call modal and amodal neural representations (Kuhnke 
et al., 2023). Within these, the hub-and-spoke theory is the theory with more accept-
ance (Rogers & Ralph, 2022; Ralph et  al., 2017). According to this theory, the neu-
ral representation of concepts is made in terms of spokes, which are modality-spe-
cific brain regions that codify modal features of concepts.3 For example, there are the 
spokes that encode visual, verbal (speech), and praxis representations.4 There are also 
integrative regions—the hub—which blends, in an amodal format, the different as-
pects codified in the spokes and gives rise to coherent concepts. The hub enables a 
modality-free codification of further aspects of concepts; accordingly, “[It] allows the 
formation of modality-invariant multi-dimensional representations that […] code the 
higher-order statistical structure that is present in our transmodal experience of each 
entity” (Ralph, 2014, p.  7). In this way, the ‘hub’ is “a modality-independent unified 
representation efficiently integrating our conceptual knowledge” (Eysenck & Keane, 
2020, p. 319). This neural organization of concepts enables us to address a particular 
concept directly in terms of ‘spokes’ and a ‘hub’ not has brain regions but as ‘parts’ of 
the concept. 

It must be noticed that the intended model of geometric concepts is highly sim-
plified and idealized. It will be based on these basic features of the hub-and-spoke the-
ory (modal spokes and an amodal hub). The models will be arrived at by considering 

1 Some examples of recent research are: Lupyan (2017), Dillon et  al (2019), and Sablé-Meyer et  al 
(2021).

2 For other works on somewhat related issues, see, e.g., Hohol & Miłkowski (2019), Hohol (2020), 
Ferreirós & García-Pérez (2020), and Pantsar (2022).

3 For this work, we will only consider the original hub-and-spoke model and not the graded hub-and-
spoke model. On the differences see Ralph et al (2017).

4 The spoke related to vision encodes representations in the visual modality related to visual fea-
tures of concepts. The spoke related to the praxis can encode, e.g., representations related to ob-
ject use. The spoke related to verbal (speech) descriptors encodes the ‘labels’ we use to name con-
cepts.
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what we know about ancient practices through the history of mathematics. We do not 
intend to move beyond what history enables us to (or what we already know from re-
search in neuroscience). Possible limitations of the model will be referred to (in more 
technical footnotes). The purpose of this work is just to set forward a tentative model 
of the neural representation of abstract geometric objects.5 

One of the motivations for this work is that this model might be useful in rela-
tion to the development of a future theory of the geometric cognition underpinning 
pure geometry. Another motivation is that having models of the neural representation 
of geometric concepts gives us a new venue to address the issue of the relationship be-
tween geometric figures and geometric objects. That has already been addressed from 
a historical perspective (see, e.g., Valente, 2020), and also cognitive considerations 
have been taken into account in somewhat related issues (see, e.g., Giaquinto, 2007; 
Dal Magro & García-Pérez, 2019; and Ferreirós & García-Pérez, 2020). But here, we 
present specific models developed in the context of a theoretical framework (the hub-
and-spoke theory), which provides a more ‘tangible’ way to address this issue (since we 
have models of the neural representation of geometric figures and objects).6

The organization of this work is as follows. In section 2, we will address features of 
the practical geometry of ancient Greece shared by the practical geometries of other an-
cient cultures. This helps in giving a more general characterization of practical geome-
try and arrive at models of geometric figure for it. In section 3, we consider the earliest 
extant form of pure geometry as revealed in Hippocrates of Chios’ work. We develop 
a model for the case of this pure geometry, which has important differences to that of 
Euclid’s Elements. In section 4, we present the corresponding model of the neural rep-
resentation of geometric objects in Euclidean geometry. 

2. The ancient Greek practical geometry 

In this work, we will consider basic aspects of the Greek practical geometric practice that 
are common to other ancient practical geometries. We will include examples of these prac-
tices when helpful for us to grasp what ancient practical geometry was. A more general 
presentation of ancient practical geometry enables us to use examples that are more com-

5 In physics and elsewhere these models are called toy models (see, e.g., Reutlinger et  al., 2017). One 
should not be misled by their extreme simplicity. In many cases, these models enable us to treat 
issues that are otherwise of unsurmountable difficulty. Some examples are the spin-1/2 Ising model 
(in statistical mechanics; see, e.g., Yeomans, 1992), a model of the interaction of neutral pions with 
a point-particle of infinite mass (in quantum field theory; see, e.g., Mandl, 1959), the Horseshoe 
map (in dynamical systems; see, e.g., Kautz, 2011), and the Lorentz model of convection rolls in the 
atmosphere (also in dynamical systems; see, e.g., Kautz, 2011). For a philosophical defense of toy 
models see, e.g., Nguyen (2020).

6 Here, our purpose is simply to present a new possibility to address the issue of the relationship 
between geometric figures and geometric objects, calling attention to basic features enabled by having 
models of the conceptual representation of geometric figures and objects. It is beyond the scope of the 
present work to develop a philosophical inquiry based on it. 



 Mario B. Valente

28 Theoria, 2023, 38/1, 25-44

prehensible, since there are not many direct sources related to ancient Greek practical ge-
ometry (see, e.g., Asper, 2003, pp. 109-114).7

A key aspect of land measurements is to have a common unit of length so that we have 
a common standard. In this way, different surveyors will arrive at the same measure when 
using different measuring instruments (e.g., rods or ropes). These measuring instruments 
are ‘calibrated’ to the adopted standard. For example, in ancient Egypt, the unit of length 
measure was the cubit. This unit corresponds to the common measure of the forearm (Im-
hausen, 2016, p. 47; Rossi, 2007, p. 59). For land-surveying, it seems that Egyptians used 
ropes having a standard length of 100 cubits, which were divided using knots placed at 
1-cubit intervals (Imhausen, 2016, p. 18; Rossi, 2007, p. 154). Regarding the Greek length 
units, a widely used unit during Hellenistic times was the foot which was about 30-32 cm 
(Lewis, 2004, p. xix).

Besides the measurement of the boundaries of fields, it was essential to calculate 
the areas of these fields. Agricultural plots in the middle Euphrates valley usually had 
rectangular shapes (Høyrup, 2002, p.  34; Mori, 2007).8 This led to the development 
of the so-called surveyors’ formula, which gives good results when a shape approaches 
that of a rectangle. Let l1, l2, l3, and l4 be the sides of a quadrilateral field plot that are 
measured by a surveyor (e.g., l1 and l3 are the ‘long sides’, and l2 and l4 are the ‘short 
sides’). The surveyors’ formula gives for the area of the field plot the value (l1 + l3)/2 × 
(l2+ l4)/2.

Here, we find an important and common feature of practical geometries. The lengths 
are measured (or taken to be measured), and as such are given in terms of a unit of measure. 
The area is calculated from these length measures and given in terms of a unit of area. For 
example, in the Old-Babylonian period, the main unit of length was the rod (approximately 
6 m), and the unit of area was the sar, corresponding to one square rod (36 m2) (Robson, 
2008, p. 294).

For different reasons, in practical geometries, some figures are widely used. These 
figures are clearly distinguished from all the other possible figures by naming them, 
even if definitions do not exist (contrary to the case of the pure geometry in Euclid’s 
Elements). A good example is the circle. In ancient Mesopotamia, a circle, like other 
geometrical figures, was conceptualized in terms of its boundary. The circle was the 
shape enclosed in a circumference. In this case, both had the same name. Perhaps the 
best translation of the name is “thing that curves” (Robson, 2004, p. 20). The area of 
the circle was determined from the measure of the length of the circumference. It was 
given by the square of the length of the circumference divided by 12 (Robson, 2004, 
p. 18). The circle was drawn using a specific instrument – the compass (Høyrup, 2002, 

7 Much of the practice of practical geometry relied on oral transmission. According to Asper, “the 
mathematical passages in Aristotle or Plato (minus the general differences between written prose 
and oral discourse) might be a model of how mathematicians talked about their objects” (Asper, 
2003, p.  119). In fact, in Plato’s Meno there is an example of ancient Greek practical geometry 
(Plato, 1997, pp.  881-5; Valente, 2020), and the corresponding text can be seen as a written 
rendering of the oral teaching and discussion of geometry in ancient Greece (Saito, 2018).  

8 In the case of ancient Greece, there is also evidence of the division of land in rectangular plots 
(Lewis, 2004, p. 3; Cuomo, 2001, pp. 7-8).
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p. 105; Friberg, 2007, p. 207). The compass made it possible to have a precisely drawn 
figure.

In terms of a model based on the hub-and-spoke theory, we can conceive of the 
concept of circle as relying heavily on a ‘visual spoke’ that represents aspects related to 
the visual shape of a circle, a ‘verbal spoke’ that codifies the name of the circle, and a 
‘praxis spoke’ related to the drawing and measurements on the circle. Here, going be-
yond the spokes considered by Ralph and co-workers (see, e.g., Ralph et  al., 2017), 
we propose another spoke related to measure-numbers, i.e., numbers that result di-
rectly from measurements in the case of length, or indirectly in the case of areas, and 
are addressed in terms of abstract symbols in the context of metrological systems (see 
 figure 1).9, 10, 11

9 There is evidence for a ‘number spoke’. According to recent research, adult humans possess 
two distinct systems to support magnitudes: 1) a symbolic system used specifically to represent 
symbolic numerical magnitudes, and 2) a general magnitude system used to represent both 
discrete and continuous magnitudes (Sokolowski et  al., 2021, p.  10). In this work we depart 
from the idea that the spokes consist in modality-specific representations. In our case the 
number spoke is amodal. Also, it might be best to address the verbal spoke in terms of an amodal 
representation if we are to include more than simple words in it (on the possible kind of amodal 
representation underlying language see, e.g., Frankland & Greene, 2020). This is not such a 
radical departure from the original model as it might seem. A clear-cut modal/amodal dichotomy 
has been challenged; it might be best to think of modal and amodal representations as limiting 
cases in a “continuum” that goes from “low-level sensorimotor [representations] to highly 
abstracted and convolved ones” (Michel, 2021, p. 671). A spoke might consist of an “hierarchical 
representational structure” (Michel, 2021, p. 669). In some cases, we might simplify, addressing it 
in terms of a modal representation; in other, more complex, situations it might be best to address 
it in terms of an amodal representation. See also footnote 19.

10 We address the neural representation of the concept of geometric figure without trying to 
include in our account Spelke’s views (see, e.g., Spelke, 2011; Spelke et  al., 2010; Spelke & 
Lee, 2012). However, one might try to include one of the two core representational systems 
of geometry identified by Spelke and co-workers in the hub-and-spoke model. We hypothesize 
that the spatial layout system might not be too relevant for the neural representation of the 
concept of geometric figure, while the visual form system might be ‘connected’ to the visual and 
praxis spokes, since it is taken to “represent the shapes of 2D visual forms and movable objects” 
(Spelke, 2011, p.  303). Since this is too speculative, it will not be taken into account in the 
present work.

11 In his study of the conceptual representation of triangles (the concept TRIANGLE), in relation 
to the linguistic label “triangle”, Lupyan concluded that “(even formal) concepts have a graded 
and flexible structure, which takes on a more prototypical and stable form when activated by cat-
egory labels” (Lupyan, 2017, p. 1). More specifically, he arrived at the following results: “(a) the 
representations of even a formally defined category like triangle reflect formally irrelevant, but 
perceptually relevant, properties; and (b), category names help to form a kind of idealized percep-
tual state—a prototype of sorts” (Lupyan, 2017, p. 9). These results fit well with the model pre-
sented here: (a) The praxis spoke might provide for the typicality effects related to, e.g., prototyp-
ical drawings being favored; and (b) The verbal spoke—the label ‘triangle’ —is part of the neural 
representation of triangle.
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Figure 1
Hub-and-spoke model of the neural representation of geometric figure in practical geometry

Another aspect shared by different practical geometries is the existence of written ge-
ometrical problems. These are couched in the terminology of practical geometry. But they 
are a somewhat different way of doing practical geometry. Being written problems that are 
disconnected from an immediate surveying activity, there are no actual measures taken into 
account in the problems. The measures are putative measures that could have been made 
according to the practice of practical geometry. This led, for example, to the adoption of 
conventional lengths in the problems. In Old Babylonian mathematical texts, all circum-
ferences are taken to have the same standard length. That is so, independently of the actual 
length of the circumference drawn with a compass (Friberg, 2007, p. 207). So, while there 
are references to length measures in problems, these have not been actually measured, and 
neither corresponds to the actual measures of the drawn figure.

Whatever cognitive processes are at play during actual measurements these are not ac-
tive during problem solving with conventionalized measures. One still uses whatever con-
ceptual representation is at play when also making measurements, but only part of it. For 
example, the concept of line segment must include aspects related to the act of measuring. 
These are the procedures by which one attributes to the line segment a number (its length). 
In problems, we address these segments taking into account that there is a number associ-
ated with them—it is part of the concept—, but we disregard the use of a measuring instru-
ment and the procedure by which the number is obtained. In our view, some aspects of the 
concept are only loosely taken into account.

There is a cognitive basis for this loosening of the connection of lengths to metrolog-
ical units in problem solving in the context of practical geometry. We do not make use of 
concepts in a rigid way in which the ‘full’ concept is always taken into account. Research 
shows that conceptual processing is flexible, in the sense that “one aspect of a ‘concept’ 
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may be used in one context or task, but another aspect of the concept may be used in an-
other” (Mahon & Hickok, 2016, p. 949). A very simple way to take into account concep-
tual flexibility within a hub-and-spoke model of a concept is by taking a particular spoke 
not to be fully active during particular tasks. This can be accounted for by a reduced neu-
ral connectivity between the hub and the spoke depending on the context (Chiou & 
Ralph, 2019). In this way, during problem solving, the praxis spoke of the concept of ge-
ometric figure would not be fully taken into account. The only thing that is included is 
the association of measure-numbers to drawn lines that in a full practical geometric prac-
tice are measured.

One example of a geometrical problem is a Hellenistic geometrical problem from a pa-
pyrus written in demotic Egyptian in the third-century BCE. The statement of the prob-
lem is as follows: “A plot of land that <amounts to> 60 square cubits, [that is rec]tangular, 
the diagonal (being) 13 cubits. Now how many cubits does it make [to a side]?” (Cuomo, 
2001, p. 71). We have a rectangle and are asked to determine the length of its sides. These 
are calculated to have 12 and 5 cubits (Cuomo, 2001, p. 71; Friberg, 2005, p. 125). This is 
a problem of practical geometry; however, we do not have an actual shape whose relevant 
lengths were measured. In fact, in a strictly practical practice, this problem is unfeasible. 
We can only calculate the area after measuring the lengths of the long side and the short 
side.12 In any case, as a didactic problem of practical geometry, the rectangle is conceived in 
terms of practical measures (in this case, the length of the diagonal) or values that are de-
termined from practical measures (in this case, the area that is calculated from the lengths 
of the sides). In the problem, we consider a rectangle that is not measured nor even drawn, 
which has an area of 60 square cubits, a diagonal of 13 cubits, and sides that have (as calcu-
lated) 12 and 5 cubits.

In the context of a mathematical practice centered on the teaching and learning of ge-
ometry using written geometric problems, the praxis spoke is not fully taken into account. 
There are no actual measurements of lengths. The number-measures are given without be-
ing related to measurement procedures. One way to include this feature in our hub-and-
spoke model is to consider that, due to conceptual flexibility, in the praxis spoke there are 
‘active’ only traces of the measurement procedures (see figure 2).13

12 We might think that areas were directly measured, for example, using some sort of material square 
taken to be a metrological area unit; according to Damerow, this was not the case. Accordingly: “the 
idea to determine the size of an area by covering it with squares was an unfamiliar idea to the whole 
Babylonian mathematical tradition” (Damerow, 2016, p. 101).

13 It is still the case that our conception of geometric figure is such that we might do actual 
measurements on the figure that contradict the adopted conventional values of lengths. In our model, 
the lack of actual measurements can be accommodated by taking into account the reduced neural 
connectivity between the hub and the spokes depending on the context (in this case, problem-solving 
and not the practice of surveying). A simple way to incorporate this particular case of conceptual 
flexibility in our model is, instead of thinking in terms of reduced neural connectivity, to consider 
that in the praxis spoke the aspects related to measurement are less ‘active’. That enables a more direct 
‘visualization’ (see figure 2) of the difference between this step toward abstraction within practical 
geometry. A more ‘rigorous’ interpretation of the neural underpinning of geometric figure in the 
context of problem-solving might stress the role of the connectivity between the praxis and number 
spokes to the hub.
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Figure 2
Hub-and-spoke model of the neural representation of geometric figure in practical geometry in the 

context of problem solving

This implies that in the practice of practical geometry there are two related but 
somewhat different conceptualizations at play: the concept of geometric figure in the 
surveying practice and the concept of geometric figure in problem solving practices.

In the next section, we will consider early Greek pure geometry, having as a back-
ground the basic characteristics of practical geometry and the two hub-and-spoke 
models of the neural representation of geometric figure that we presented in the pres-
ent section.

3. The early pure geometry of Hippocrates of Chios

Hippocrates’ quadrature of lunules is taken to be the earliest evidence of Greek pure ge-
ometry (see, e.g., Netz, 2004; Høyrup, 2019). We know of Hippocrates’ work by a text of 
Simplicius from the sixth-century CE. This text is based on two previous accounts, one by 
Alexander of Aphrodisias and the other by Eudemos.   Hippocrates’ work is believed to 
be from the early second half of the fifth century BCE. Written prose was rare; because of 
this Netz considers that “Hippocrates’ treatise on the lunules could well be among the first 
treatises written in Greek mathematics” (Netz, 2004, p. 247). Regarding Eudemos account, 
Netz realizes an exercise of reconstruction, trying to determine what in the text is closer 
to Hippocrates’ original. Netz assumes that the text “should have two layers, one closer to 
Hippocrates’ original, and another closer to late fourth century mathematics” (Netz, 2004, 
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p. 259). The main difference between these layers concerns the adoption or not of lettered 
diagrams, and the use of letters in the text to refers to parts of these diagrams. 

Here, we want to suggest that the text might refer to an early written rendering of 
oral teaching by Hippocrates. This is not that a bold suggestion. We know that Hip-
pocrates taught about astronomy and geometry (Høyrup, 2019, p. 160). According to 
Høyrup, the text by Alexander, reported in Simplicius’ text, “draws on Hippocrates’s 
teaching, being based either on lecture notes of his or on students’ notes” (Høyrup, 
2019, p. 158).

Hippocrates might have presented his arguments orally to his students accompanying 
them with the corresponding drawing. Even if there was a written rendering of his lectures 
on geometry, we take these to be the main vehicle of his approach to geometry. We suggest 
that like in the case of practical geometry, in pure geometry there is also an oral practice 
which might well be the earliest.

In what follows we will consider the passage about the first quadrature as a rewriting of 
an initially written rendering of oral teaching. It is as follows:

(2) So he made his starting point by assuming, as the first among the things useful to the 
quadratures, that both the similar segments of the circles, and their bases in square, have the 
same ratio to each other. […] [(4)] he first proved by what method a quadrature was possible, 
of a lunule having a semicircle as its outer circumference. (5) He did this after he circum-
scribed a semicircle about a right-angled isosceles triangle and, about the base, <he drew> a 
segment of a circle, similar to those taken away by the joined <lines>. (6) And, the segment 
about the base being equal to both <segments> about the other <sides>, and adding as com-
mon the part of the triangle which is above the segment about the base, the lunule shall be 
equal to the triangle. (7) So the lunule, having been proved equal to the triangle, could be 
squared. (Netz, 2004, pp. 248-9)

Our purpose here is to determine what has changed in relation to practical geometry that 
leads us to say that here we are in the context of a pure geometric practice.

We can see that the text begins by calling to attention that the starting point of Hip-
pocrates’ argumentation is the assumption that the similar arcs of circumference of the 
circular figures and their bases in square have the same ratio to each other. Here, we do 
not have postulates like those of the Elements. In fact, this presupposition enters the ar-
gumentation in the same way that in problems of practical geometry. It is taken to be 
known by the interlocutor and without any need of justification. According to Høyrup, 
this presupposition was “known by Near Eastern practical geometers at least since the 
beginning of the second millennium BCE” (Høyrup, 2019, p.  165). Possibly, the only 
difference with the use of background knowledge in practical geometry problems is that 
the assumption that will be used during the argumentation is stated explicitly at the be-
ginning. Notice that Hippocrates is adopting a background knowledge arising from 
practical geometry.  As it is, by now we could still consider that Hippocrates is working 
within practical geometry.

The first quadrature is that of a lunule whose outer circumference can be seen as a 
semicircle. Thinking in terms of an oral presentation, Hippocrates after mentioning the 
assumption to his audience might have drawn an isosceles triangle and using a compass 
drawn a semicircle circumscribing it (see figure 3).
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a
Figure 3

Initial drawing with a semicircle circumscribing an isosceles triangle  

Afterward, he might have completed a square based on the triangle and using a corner of 
the square as the center of a circle drawn an arc segment that is similar to the two formed pre-
viously. According to Netz’s rendering of the text in English, “<he drew> a segment of the 
circle, similar to those taken away by the joined <lines>” (Netz, 2004, p. 249) (see figure 4).

Figure 4
Completion of the drawing of the lunule

As Høyrup mentions, Hippocrates’ arguments have a ‘single-level’, directly based on 
the assumptions taken into account (Høyrup, 2019, p. 179). Based on the presupposition 
mentioned at the beginning, Hippocrates simply mentions that the area of the circular fig-
ure about the base is equal to that of both circular figures about the other sides of the trian-
gle. He then proceeds to add the area not included in either of these to each one of them. 
We have what we might call a visual operation in which we alternatively imagine each of 
the area addition operations (see figure 5, left and right).

 
Figure 5

Two ways of doing the ‘visual operation’ of adding areas of figures
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Evidently, the area of the two figures is the same and so “the lunule, having been 
proved equal to the triangle, could be squared” (Netz, 2004, p. 249). This addition of ar-
eas is something that we find in practical geometry. In fact, it is one of the basic elements 
of ancient Near Eastern geometry. It was clear to practitioners that “the size of a figure 
which consists of partial areas equal the sum of these partial areas” (Damerow, 2016, 
p. 115). We have what we might call the principle of conservation of area. 

What is it then that makes this example a case of early Greek pure geometry and 
not of Greek practical geometry? The key evidence that we are not engaged in a prac-
tical geometrical practice is the lack of reference to metrological units. They are com-
pletely absent. This corresponds to a crucial conceptual change that is at the crux of the 
reformulation of practical geometry as pure geometry. We assist to a perfectioning of the 
geometrical figures that leads to what we might call the abstraction of lengths.

We have seen that within practical geometry we assist to a loosening of the con-
ception of geometric figure by not taking into account directly the measurement prac-
tices. As we have seen, we can have geometric figures that we do not measure but con-
ceive as having lengths that cannot be even approximately like those of the figure. We 
mentioned the case of circles in Old Babylonian problems that adopt a conventional 
length for the circumference. In Hippocrates’ pure geometry we have what we might 
call perfect figures. These are figures that look as having no irregularities and that if 
we were to measure them, we would find measure-numbers that are the same. That is, 
whatever small differences there are, they are invisible to the eye even when using the 
available measuring tools. This perfection of the geometric figure does not correspond 
to doing a more precise practical geometry. It is the opposite; not measuring the fig-
ures with better measuring techniques we take them to be perfect. In this way, e.g., the 
sides of a square are taken to be exactly equal. This is what we mean by the abstraction 
of lengths. In this context, the lengths are exact and ‘belong’ to the figures.  A length 
as a measure-number is the result of a measurement procedure in which, e.g., we put a 
measuring rod side by side with the side of a square and check that they are congruent. 
The length as a measure-number arises from this measurement procedure. In Hippo-
crates’ case, we do not have this anymore. The sides of the square have lengths ‘of their 
own’, independently of whatever measurement we might make, and it is senseless to 
mention a metrological unit in this context.

As it is, early Greek pure geometry is the geometry of perfect figures (not yet of ge-
ometric objects).14 Like in the case of practical geometry, these are not explicitly defined. 
As mentioned by Høyrup, “there is not the slightest reference to a definition in the Eu-
demos text” (Høyrup, 2019, p. 179). This has important consequences that we will ad-
dress in the next section when comparing Hippocrates’ pure geometry to that of the Ele-
ments. The main difference with the previous practical geometry is a further loosening of 
the concepts in relation to its more practical aspects related to measurements.

14 As we will see in the next section, the key differences between the perfect figures of Hippocrates’ 
geometry and the geometric objects of Euclid’s geometry lie in the further abstraction that we have 
with geometric objects due to the adoption of definitions that go hand-in-hand with a particular way 
of ‘seeing’ the figures (which are not any more geometric figures a such but become representations of 
the geometric objects).
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In terms of the very simple hub-and-spoke model of geometrical concept that we are 
using in this work, the main difference in relation to the concept of geometric figure of 
surveyors’ practical geometry is in the praxis and number spokes. In the praxis spoke the 
main features represented are related to the drawing of figures; however, there is still a 
representation not so much of particular measurement procedures as of the possibility of 
making measurements on the figure – there are ‘traces’ of the praxis of measuring (this is a 
feature that we already have in practical geometry in the context of problem solving). Re-
garding the number-magnitude spoke there is no encoding of measure-numbers or metro-
logical units. Instead, we have a representation of length, which, taking into account the 
praxis spoke, is dissociated from any particular measurement procedure.15 The visual spoke 
is basically the same; it encodes the visual shape of a geometric figure. The verbal spoke is 
also the same. It encodes the ‘label’ for the figure. A ‘higher order’ change can be taken to 
occur in the hub that would enable to encode a conceptualization of figure as a perfect fig-
ure (see figure 6). 

Figure 6
Hub-and-spoke model of the neural representation of geometric figure in Hippocrates’ pure geometry

15 Here, we hypothesize that the number spoke is also the spoke that represents continuous magnitudes, 
like in the case of the non-symbolic representation of both discrete and continuous magnitudes, 
which is made by a general magnitude system (see footnote 9). Accordingly, we change the naming 
of the spoke from ‘number spoke’ to ‘number-magnitude spoke’. Notice that this does not challenge 
the view that for small (non-symbolic) numerical magnitudes there is a different system responsible 
for subitizing (the capacity to determine ‘automatically’—without any counting procedure—the 
quantity of a small set of items up to four; for a review see, e.g., Hyde, 2011). In the context of practical 
geometry, numbers are the result of measurements that are made in a sort of counting-like way. 
Ancient surveyors used, e.g., rods and ropes to measure lengths; they did not ‘subitize’ the results of 
measurements in a fast and ‘automatic’ way. 
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So far, we have addressed Hippocrates’ pure geometry mainly in relation to the 
previous practical geometry. We developed hub-and-spoke models of the neural rep-
resentation of geometric figures in both geometrical practices that are compatible with 
the main changes we have found to have occurred when going from one practice to the 
other.

We are now at a position where we can address the neural underpinning of the Euclid-
ean geometrical practice. We will consider the changes that occur when going from Hippo-
crates’ pure geometry to Euclid’s. By taking into account the model of geometric concept in 
the earlier form of pure geometry and how it changed from the previous models from prac-
tical geometry, we will set forward a hub-and-spoke model of the neural representation of 
an abstract geometric object that makes more understandable how we go from perfect fig-
ures to abstract objects and how this can be encoded neurologically.

4. The pure geometry in Euclid’s Elements

We think that we can conceive the early stages of the geometry of the Elements in terms of 
lectures in which the teacher helps the student to memorize the enunciation of the prop-
osition (the protasis). According to Saito the role of the protasis was to enable to mem-
orize and refer to the propositions (Saito, 2018, pp.  928-9). It suffices to memorize the 
protasis and the corresponding diagram. Accordingly, “with the [unlettered] diagram in 
your memory, you can surely understand the protasis” (Saito, 2018, p.  929). With these 
two elements, a practitioner can recover the whole of the content related to a proposition 
as manifested in the Elements. In Saito’s view, “mathematical teaching was very probably 
performed directly and orally by drawing a diagram in front of pupils, and explaining it” 
(Saito, 2018, p. 924). We can conceive of a lecture as starting with the teacher reciting an 
enunciation (protasis) of a proposition. He would then proceed to the ‘doing’ or the ‘show-
ing’ (Rodin, 2014, pp. 15-35); i.e., the teacher would construct a particular figure by start-
ing to draw a diagram and pointing to the correctness of the successive steps until the final 
figure is constructed. Alternatively, he would show a particular result with the help of the 
diagram.

The diagram was probably drawn “on sand or a wax tablet” (Saito, 2018, p.  928), 
and, importantly, the teacher would indicate the “points and other geometrical objects 
by finger”. (Saito, 2018, p.  928). In the context of an oral presentation, it is very un-
likely that the teacher assigned letters to the diagram. As Netz shows, there is a close re-
lationship between lettered diagrams and the type of written text adopted in the demon-
strations of pure geometry (Netz, 1999). According to him, “the introduction of letters 
as tools is a reflective use of literacy”. (Netz, 1999, p. 62). In this way, with the written 
form, “the lettered diagram is the tool which […] was made more central” (Netz, 1999, 
p. 66). By contrast, the oral teaching as rendered in Plato’s Meno (Plato, 1997, pp. 881-
5) reveals that “the diagram is not lettered, and the geometrical objects in it are referred 
to by the word ‘this’” (Saito, 2018, p. 932). According to Saito, “the written text of the 
Elements with lettered diagrams shows certainly a more developed stage” (Saito, 2018, 
p. 932).

We might speculate that in a more organized lecture, the teacher would first pres-
ent the necessary definitions, postulates, and common notions, or he would refer to 
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them as needed.16 This would be the counterpart of Hippocrates’ practice, where we 
would start by mentioning the presuppositions that are used in the demonstration. 
We can see the Euclidean approach as resulting from the Hippocratic one when the 
presuppositions are “assumed as principles for which no justification is given” (Cel-
lucci, 2013, p. 68).

Where do we find then a cognitively relevant difference between Hippocrates’ pure 
geometry (PG1) and Euclidean pure geometry (PG2)?

That there is a crucial change from the Hippocratic practice can be seen in the fact 
that in the Euclidean practice we have explicit linguistic definitions at play. For example, 
a point is defined as “that which has no part” (Euclid, 1956, p. 153). Regarding lines, ac-
cording to definitions 2 to 4, “A line is breadthless length. The extremities of a line are 
points. A straight line is a line which lies evenly with the points on itself” (Euclid, 1956, 
p. 153).

According to Harari, the definition of point makes reference to the idea of measure-
ment by ‘contraposition’: “a point is characterized as a non-measurable entity, as it has 
no parts that can measure it” (Harari, 2003, p.  18). In the models of geometrical con-
cept that we tentatively suggest in this work, when going from surveyors’ practical geom-
etry to PG1 there is a loosening in the praxis spoke of aspects related to measurements. In 
terms of the notion of conceptual flexibility, the change from PG1 to PG2 might be ac-
counted for by a reduced neural connectivity between the praxis spoke and the hub when 
compared to the neural connectivity between the verbal spoke and the hub. We would 
face an ‘overwriting’, so to speak, by the verbal spoke of any encoding related to a meas-
urement praxis still existing in PG2 (and ‘inherited’ from PG1). This is achieved by ex-
tending the content of the verbal spoke that consist now of a definition and not just a la-
bel. The changes in the spokes go hand and hand with changes in the hub that gives rise 
to a coherent concept. That this can be so can be seen, e.g., in the definitions related to 
lines. In PG1 we already have a perfect figure but one that has a breadth; in PG2 we move 
beyond this and conceive of something that is breadthless. This linguistic term points to 
something that is not even visualizable—it is an abstract object. Another clear example 
is that of point as a geometric object. A point is defined as “that which has no part” (Eu-
clid, 1956, p. 153). Again, something that is not even visualizable. In this way, this defi-
nition goes beyond the “non-measurability” mentioned by Harari. The point is also an 
entity that goes beyond a figure that, as such, we can visualize—as perfect as it might be. 
The verbal spoke helps to recreate the concept of perfect figure of PG1 as the concept of 
abstract object of PG2.

16 This is not such a bold suggestion as one might think. Several books of the Latin version of 
the Elements that was most influential in the Latin West during the 12th and 13th centuries 
have these characteristics. In book 1, in the beginning, we find the definitions, postulates, 
and common notions; then, we have the enunciation of proposition 1, an unlettered 
diagram, and a commentary giving indications about how to carry out the proof (Busard & 
Folkerts,1992, pp. 113-115). If we consider the books to be used by the student with the aid of 
a teacher this is all that is needed. Other examples are, e.g., a second-century CE fragment that 
contains proposition 9 of book 1 of the Elements. It consists only of the enunciation with an 
unlettered diagram (Brashear, 1994), and a fragment from the third century CE with identical 
characteristics (Cairncross & Henry, 2015, p. 24).



https://doi.org/10.1387/theoria.23729 39

A hub-and-spoke model of geometric concepts

What does this imply regarding the diagrams that are drawn during the lectures? 
These are not conceived anymore as perfect figures. They are representations of ge-
ometrical objects as defined and instantiated following the postulates in the Elements 
(see, e.g., Valente, 2021). This has consequences concerning how we address the dia-
grams during the oral lectures (or in the written treatises). According to Ferreirós:

The first definitions indeed suggest a way of reading diagrams, a perspective for seeing or 
conceiving what is implied by a diagram, and what is not. And this way of reading is not at all 
evident, especially if one previously knows only practical geometry. For the definitions and the 
reading that comes with them lead the practitioner to certain crucial idealizations. More im-
portantly, the definitions suggest certain forms of response (and of indifference) to some as-
pects of the diagram: thus, the crossing of two drawn lines will be a (very small) planar region, 
but we are taught to disregard this and consider in the argumentation that one and only one 
point has thus been determined. (Ferreirós, 2016, p. 144)

We suggest that the conceptual change leading from PG1 to PG2 might have arisen in a 
practice based on oral lectures with PG1 where the above-mentioned way of looking into 
and reading diagrams arose. That is, PG2 does not lead to this particular way of attending 
to the diagrams; it would be the other way around. This way of attending to the diagrams 
would give rise to an early oral version of PG2. This change would be made more explicit 
and stable by developing explicit linguistic definitions that help to stabilize the concepts, 
and further ‘sedimented’ by written treatises and a teaching practice that would rely more 
and more on these.17, 18

In terms of the simple model of geometrical concept that we are working with in the 
present paper, the verbal definition might be encoded in the verbal spoke that would be 
much more developed than in the cases of practical geometry and Hippocrates’ pure ge-
ometry. In these cases, the content of the verbal spoke consisted only of the label used to 
name a geometric figure. Now we have a definition. The main difference would occur in 
how the hub re-represents the encoding in the spokes (see figure 7).

The representations in the visual, praxis and number-magnitude spokes are repre-
sented in a highly abstract way by taking into account the encoding of the verbal spoke. 
When we look at a figure there is a particular indifference and responsiveness to its features 
related to the verbal definition such that we re-conceive the figure in terms of an abstract 
geometric object and not as a perfect figure anymore (as mentioned, the figure becomes for 
us a representation of the geometric object). 

17 An anonymous reviewer proposes a more involved situation: “couldn’t it be the case that there was 
a kind of feedback-loop in which diagrams were seen in a different way which made more explicit 
linguistic definitions possible, which then influenced the way diagrams were seen, and so on”. 
According to the reviewer “cognitive development rarely is as neat and unidirectional as suggested by 
[this paper’s] explanation”. 

18 Hippocrates himself is said to have written a treatise and there are references to treatises written 
previous to the Elements during the fourth-century BCE (Knorr, 1986, p. 102).
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Figure 7
Hub-and-spoke model of the neural representation of geometric object in Euclidean pure geometry

In this way, the verbal spoke becomes decisive in how the representations in the visual, 
praxis and number-magnitude spokes are interpreted and recombined in the hub giving 
rise to a ‘higher order’ representation of geometric abstract objects.19

19 It must be noticed that this is a tentative suggestion. In fact, the hub-and-spoke theory has not been 
developed by considering anything like the definitions in the Elements, only individual words (for 
concrete objects like ‘apple’ and ‘rope’, or abstract concepts like ‘rule’ and ‘hope’. See, e.g., Hoffman 
et  al., 2015; Kemmerer, 2015, pp.  343-4).  A model in terms of cross-modal convergence zones 
might be more appropriate. In this kind of model instead of one main brain hub one considers a 
hierarchy of cross-modal convergence zones (Kuhnke et al., 2020). That is so because in a definition 
we engage with complex features of linguistic semantics that seem to be addressed in different brain 
regions than the anterior temporal lobes identified in the hub-and-spoke theory as the main hub. For 
example, there is evidence that what we call thematic role (e.g., agent and patient in an event verbally 
described as “the dog chased the cat”) might be represented in two subregions of the left-mid superior 
temporal cortex (Frankland & Greene, 2020, pp.  289-90). The situation with Euclidean definitions 
is possibly much more complex at a neural level. Even if this is so, the lack of knowledge on the neural 
representation of geometric figures/objects and the lack of development of alternative models is such 
that the present highly simplified and idealized hub-and-spoke model of geometrical concepts seems to 
us as a useful way of framing the discussion at this point. 

  Independently of the issue of ‘verbal spoke’ being an ‘acceptable’ working model or not, a future 
development of the present models must address the issue of the role of language in geometrical 
concepts. Presently, there is evidence in relation to geometric problem solving. It has been found that 
the semantic system in the brain supports geometric problem solving, for example in problems where 
the practitioner must take into account rules that can be expressed linguistically, like “each interior 
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In our view, the hub-and-spoke models of the neural representation of geometric fig-
ure/object make more intelligible what a geometric object might be since we can relate its 
neural representation to that of a geometric figure in Hippocrates’ pure geometry and in 
practical geometry.20 This makes it possible to address the issue of the relationship between 
geometric figures and objects considering these models. In our view, a key notion is that of 
conceptual flexibility that underlies the passing from one model to another (as the neuro-
logical counterpart of the gradual changes between the practices). The geometric object 
results from this gradual evolution from the surveyors’ practical geometry passing by the 
practical geometry in the context of problem solving and the geometry of Hippocrates. Us-
ing our very simple models we can see the gradual change in the spokes (and the hub) lead-
ing from one conceptualization to the next. Some elements of the relevant changes occur 
already at the level of practical geometry, in the context of a practice of problem-solving, in 
the praxis spoke (there is no more actual measuring activity associated with the concept). 
Then, when moving to Hippocrates’ geometry, we go a step further in the loosening of 
the grip of surveyors’ practical geometry. Not only is there no codification/representation 
of actual measurements in the praxis spoke but also there is no representation of units of 
measure in the number-magnitude spoke. However, in these three stages of evolution, the 
visual and verbal spoke are unchanged. In Euclidean geometry, the key change can be found 
in the verbal spoke that now codifies a complex verbal definition that implies an impor-
tant change in the way the hub integrates the different aspects codified in the spokes such 
that we have a coherent concept of geometric object. In this way, in the concept of geomet-
ric object, we find ‘layers’ of previous forms of geometry, reformulated, in particular, by the 
definitions (codified in the verbal spoke) and a new way of ‘seeing’ the corresponding fig-
ures (codified in the hub). 

5. Conclusions

The main purpose of this work is to set forward a tentative model of the neural representa-
tion of abstract geometric objects. This model might be useful in relation to the develop-
ment of a future theory of the geometric cognition underpinning pure geometry.

To develop the model consistent with the previous geometrical practices, we have con-
sidered a historically informed account of practical geometry. The objective was to provide 
a basic characterization of practical geometry. Considering these basic ‘characteristics’ we 
built two models of the neural representation of geometric figure in practical geometry us-
ing, in a very simple way, the hub-and-spoke theory of neural representation of concepts 

angle for an equilateral triangle is 60º” (Zhou et al., 2018, p. 366). We take this to be indirect evidence 
for something like the ‘amodal verbal spoke’ we adopt here.

20 Notice that the ontogeny of the geometric cognition does not have to correspond to the stages and 
kind of models presented here. We would, however, expect that there are some points in common in 
what regards an earlier neural representation of geometric figure and a later neural representation of 
geometric object. The reason is simple; when knowing basic school-level geometry we can understand 
and engage with ancient practical geometry, and the ancient geometries of Hippocrates and Euclid. 
Some commonalities must be at work, at the level of the neural representation of geometric concepts, 
for this to be possible. 
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(one model corresponding to the surveyors’ practice and another to the practice of prob-
lem solving).

We then address pure geometry. Before the geometrical practice related to Euclid’s 
Elements, there was a development of a pure geometry that was an intermediary stage be-
tween practical geometry and the pure geometry of the Elements.

In this work, we present a basic characterization of this geometrical practice as revealed 
in Hippocrates’ work on the quadrature of lunules. In our view, this pure geometry deals 
not with abstract objects, but still with geometric figures—perfect figures. We provide a 
model of the neural concept representation of perfect figures, again relying on the hub-and-
spoke theory.

 We then address what kind of neural representation of geometric concept we have in 
Euclidean pure geometry. For that, we reconstruct some aspects of the Euclidean practice tak-
ing into account how these are different from the corresponding aspects in the Hippocratic 
practice. Taking these differences into account together with the models of neural representa-
tion of concepts in practical geometry and Hippocrates’ pure geometry we proposed a simple 
model for abstract geometric objects. Comparing this model with the ones related to geomet-
ric figures makes more intelligible what it is to have a concept of abstract object.
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