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ABSTRACT 

This PhD thesis deals with the feasibility of the application of machine-learning 

algorithms for energy characterization in district-heating networks. In particular, the 

dissertation will be focused on four main applications: 

• Energy demand outlier identification and removal. 

• Recognition of main energy demand patterns in buildings connected to the 

network. 

• Study of interpretability/classification of the energy patterns. 

• Forecasting of the energy demand in daily and hourly resolution.  

The interest of the thesis was awoken by the current energy situation in the European 

Union, where buildings are responsible for more than the 40% of the total energy 

demand. District-Heating networks, and specifically, modern networks (the so-called 

fourth and fifth generation district-heating network) have been identified as efficient 

systems for supplying energy from production plants to the final consumers/buildings. 

Moreover, due to the grouping of multiple buildings that is allowed in these systems, 

district heating networks enable the development and implementation of unique 

algorithms for energy management in the overall system. 

New directives from the European Commission obliges to remotely read and save the 

data from the consumption points, opening a new opportunity for large scale algorithm 

based on big-data structures. In this context, artificial intelligence and in particular, 

machine learning algorithms are positioned as a great alternative to energy 

characterization against the traditionally used energy simulation models. The 

advantages of artificial intelligence models against traditional methods are the time and 

cost efficiency, flexibility for training and testing models and the lack of necessity of 

information about the buildings. It is necessary to mention that although this Thesis is 

focused on buildings that are connected to DH networks, the scope of these models is 

applicable to the characterization of any heat-load in buildings.     
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The development of this thesis faces the steps given for the analysis of data coming from 

real buildings located in Tartu (Estonia) and connected to the district-heating network 

of the city and it comprises all the steps for the analysis of the data and development of 

several machine-learning models. The main body of the dissertation finishes in Chapter 

IX. This final section evaluates the efficiency of the models developed with data from 

Tartu´s buildings but applied to a simulated case-study in Bilbao, Spain.  

Regarding the results obtained, it can be concluded that this PhD Thesis validates the 

possibility of using machine-learning algorithms in the context of energy 

characterization in building and district scale. Therefore, the new method developed for 

the prediction of demand, combining several machine-learning techniques, 

overperform the rest of the models and is capable to work efficiently for a wide variety 

of buildings and locations. Additionally, when this model is applied for energy 

management of a network, relevant economic savings are obtained, reaching a 10% of 

savings in the simulated case analyzed in the last chapter of the dissertation.   

Finally, even though the scope of the dissertation is limited to these ten chapters, in the 

close future, two different research lines have been identified. On the one hand, these 

studies are planned to be extended also to the application of Deep-Learning (Neural 

Networks) algorithms for similar purposes, so that the efficiency of these models could 

be sized. On the other hand, Industrialization of the models developed in the 

dissertation is proposed. This type of works that are limited to laboratory research 

require a high effort investment and more research to be applied in real applications.  
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RESUMEN 

Esta tesis doctoral estudia la viabilidad de la aplicación de algoritmos de aprendizaje 

automático para la caracterización energética de los edificios en entornos de redes de 

calefacción urbana (o en inglés, district-heating). En particular, la disertación se centrará 

en el análisis de las siguientes cuatro aplicaciones principales: 

• La identificación y eliminación de valores atípicos de demanda en los edificios. 

• Reconocimiento de los principales patrones de demanda energética en edificios 

conectados a la red. 

• Estudio de interpretabilidad/clasificación de dichos patrones energéticos. 

Análisis descriptivo de los patrones de la demanda. 

• Predicción de la demanda de energía en resolución diaria y horaria. 

El interés de la tesis fue despertado por la situación energética actual en la Unión 

Europea, donde los edificios son responsables de más del 40% del consumo total de 

energía. Las redes de distrito, y en concreto, las redes modernas han sido identificadas 

como sistemas eficientes para el suministro de energía desde las plantas de producción 

hasta los consumidores finales/edificios debido a su economía de escala. Además, 

debido a la agrupación de edificios en una misma red, permitirán el desarrollo e 

implementación de algoritmos para la gestión de la energía en el sistema completo. 

Las nuevas directivas de la Comisión Europea obligan a monitorizar y enviar de forma 

remota los datos de los puntos de consumo, abriendo una nueva oportunidad de 

implementar algoritmos a gran escala basado en estructuras de big-data. En este 

contexto, la inteligencia artificial y en particular los algoritmos de aprendizaje 

automático se posicionan como una gran alternativa para la caracterización energética 

frente a los modelos de simulación energética tradicionalmente utilizados. Los modelos 

basados en datos se han aplicado desde la década de 1980 para la caracterización de 

datos de energía de baja frecuencia. Sin embargo, la aplicación de algoritmos de 

aprendizaje automático abrió nuevas líneas de investigación porque muestran varias 
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ventajas respecto a los métodos más tradicionales como son, la eficiencia de tiempo y 

coste computacional, flexibilidad para entrenar y validar diversos modelos y la no 

necesidad de información acerca del edificio. Es necesario mencionar que, si bien esta 

Tesis está enfocada a edificios que están conectados a redes de DH, el alcance de estos 

modelos es aplicable a la caracterización de cualquier carga térmica en edificios. 

El desarrollo de esta tesis se enfrenta a los pasos dados para el análisis de datos 

procedentes de edificios reales ubicados en Tartu (Estonia) y conectados a la red de 

calefacción urbana de la ciudad. La parte principal de la Tesis finaliza con el Capítulo IX. 

Esta sección evalúa la eficiencia de los modelos desarrollados con datos de los edificios 

de Tartu, pero aplicados a un caso de estudio simulado en Bilbao, España. 

En cuanto a los resultados obtenidos, se puede concluir que esta Tesis Doctoral valida la 

posibilidad de utilizar algoritmos de aprendizaje automático en el contexto de la 

caracterización energética a escala de edificios y barrios. Por lo tanto, el nuevo método 

desarrollado para la predicción de la demanda, que combina varias técnicas de 

aprendizaje automático, supera al resto de los modelos y es capaz de funcionar de 

manera eficiente para una amplia variedad de edificios y ubicaciones. Adicionalmente, 

cuando se aplica este modelo para la gestión energética de una red, se obtienen 

importantes ahorros económicos, llegando a un 10% de ahorro en el caso simulado 

analizado en el último capítulo de la tesis. 

Finalmente, aunque el alcance de la tesis se limita a estos diez capítulos, en un futuro 

próximo se han identificado dos líneas de investigación diferentes. Por un lado, se prevé 

que estos estudios se extiendan también a la aplicación de algoritmos de Deep-Learning 

(Neural Networks) para fines similares, de manera que se pueda dimensionar la 

eficiencia de estos modelos. Por otro lado, se propone la industrialización de los 

modelos desarrollados en la tesis. Este tipo de trabajos que se limitan a la investigación 

de laboratorio requieren una inversión de alto esfuerzo y más investigación para ser 

aplicada en aplicaciones reales. 
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LABURPENA 

Doktorego-tesi honek hiri-berokuntzako sareen inguruneetan eraikinen karakterizazio 

energetikorako (edo ingelesez, district-heating) ikasketa automatikoko algoritmoak 

aplikatzearen bideragarritasuna aztertzen du. Zehazki, honako lau aplikazio nagusi 

hauen analisian oinarrituko da hitzaldia: 

• Eraikinetako eskariaren balio atipikoak identifikatzea eta ezabatzea. 

• Sarera konektatutako eraikinetako energia-eskariaren eredu nagusiak 

ezagutzea. 

• Patroi energetiko horien interpretagarritasuna/sailkapena aztertzea. Eskariaren 

patroien analisi deskribatzailea. 

• Energia-eskaria eguneroko eta orduko bereizmenean iragartzea. 

Europar Batasuneko egungo egoera energetikoak piztu zuen tesiaren interesa, eraikinak 

baitira guztizko energia-kontsumoaren % 40 baino gehiagoren erantzuleak. Barruti-

sareak, eta, zehazki, sare modernoak, energia-hornidurarako sistema eraginkor gisa 

identifikatu dira, ekoizpen-instalazioetatik azken kontsumitzaileetara/eraikinetara, 

eskala-ekonomia dela-eta. Gainera, eraikinak sare berean biltzen direnez, sistema osoan 

energia kudeatzeko algoritmoak garatzea eta ezartzea ahalbidetuko dute. 

Europako Batzordearen zuzentarau berriek kontsumo-puntuetako datuak urrutitik 

monitorizatzera eta bidaltzera behartzen dute, big-data egituretan oinarritutako eskala 

handiko algoritmoak ezartzeko aukera berri bat irekiz. Testuinguru horretan, adimen 

artifiziala eta, bereziki, ikasketa automatikoko algoritmoak aukera handia dira energia-

karakterizaziorako, tradizionalki erabili izan diren simulazio energetikoko ereduen 

aldean. Datuetan oinarritutako ereduak 1980ko hamarkadatik aplikatu dira behe-

maiztasuneko energia-datuen karakterizaziorako. Hala ere, ikasketa automatikoko 

algoritmoen aplikazioak ikerketa-lerro berriak ireki zituen, metodo tradizionalenen 

aldean hainbat abantaila erakusten dituztelako, hala nola denboraren eraginkortasuna 

eta kostu konputazionala, entrenatzeko eta hainbat eredu baliozkotzeko malgutasuna 
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eta eraikinari buruzko informaziorik behar ez izatea. Aipatu beharra dago tesi hau DH-

ko sareetara konektatuta dauden eraikinetara bideratuta dagoen arren, eredu horien 

irismena eraikinetako edozein karga termikoren karakterizazioari aplika dakiokeela. 

Tesi honen garapenak aurre egin behar die Tartun (Estonia) dauden eta hiriko 

berokuntza-sareari lotuta dauden benetako eraikinetatik datozen datuak aztertzeko 

emandako pausoei. Tesiaren zati nagusia IX. kapituluarekin amaitzen da. Atal honek 

Tarturen eraikinen datuekin garatutako ereduen eraginkortasuna ebaluatzen du, baina 

Bilboko (Espainia) azterketa simulatuko kasu bati aplikatuta. 

Lortutako emaitzei dagokienez, ondoriozta daiteke doktore-tesi honek baliozkotu egiten 

duela ikaskuntza automatikoko algoritmoak erabiltzeko aukera, eraikinen eta auzoen 

eskalako karakterizazio energetikoaren testuinguruan. Beraz, eskaria iragartzeko 

garatutako metodo berriak, ikasketa automatikoko hainbat teknika konbinatzen 

dituenak, gainerako ereduak gainditzen ditu eta eraikin eta kokapen mota askotarako 

modu eraginkorrean funtzionatzeko gai da. Gainera, sare baten energia-kudeaketarako 

eredu hori aplikatzen denean, aurrezpen ekonomiko handiak lortzen dira, eta % 10eko 

aurrezkia lortzen da tesiaren azken kapituluan aztertutako kasu simulatuan. 

Azkenik, tesiaren irismena hamar kapitulu horietara mugatzen bada ere, etorkizun 

hurbilean bi ikerketa-ildo desberdin identifikatu dira. Alde batetik, azterlan horiek 

antzeko helburuetarako Deep-Learning (Neural Networks) algoritmoak aplikatzera ere 

hedatzea aurreikusten da, eredu horien eraginkortasuna dimentsionatu ahal izateko. 

Bestalde, tesian garatutako ereduen industrializazioa proposatzen da. Laborategiko 

ikerketara mugatzen diren lan horiek ahalegin handiko inbertsioa eta ikerketa gehiago 

eskatzen dute benetako aplikazioetan aplikatzeko.  
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Chapter I 

Preamble & Structure 

 



 

 

  

 

Abstract 

This first chapter is used for introducing the framework of the thesis and for 

analyzing which are the main objectives of the dissertation. It will show which were 

the motivations behind all the studies covered along the document and how this 

work matches the general research lines of the research group. Additionally, this 

chapter could be used as the guide for the rest of the chapters since the general 

structure of the chapters will be covered.    

 

Resumen 

Este primer capítulo se utiliza para introducir el marco de la tesis y para analizar 

cuáles son los objetivos principales de esta disertación. Se mostrarán cuáles fueron 

las motivaciones detrás de todos los estudios cubiertos a lo largo del documento y 

cómo este trabajo se ajusta a las líneas de investigación generales del grupo de 

investigación ENEDI. Además, este capítulo podrá usarse como guía para el resto de 

los capítulos, ya que se cubrirá la estructura general de los diferentes capítulos que 

forman el conjunto de la disertación. 
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Chapter I Preamble & Structure 

This first chapter of the thesis will serve as a guide or reference for all the readers of 

this document, since the objective of this section is to explain how this document is 

ordered and to set the basis of some of the concepts that will be developed during all 

the dissertation. All in all, this chapter presents the following sections: 

• Problem statement that motivates the development of this thesis. 

• Main Structure of the document. It will present the main body of the document 

and how the chapters are presented. 

• Framework of the thesis.  

1. Problem Statement 

This thesis responds to the necessity of accurate characterization of building energy load 

since accurate prediction of energy load is one of the effective means to reduce building 

energy consumption, since it helps achieve better control of power system and improve 

energy utilization. Accurately characterizing the energy load of buildings can provide 

benchmarks for energy management of building systems and show the energy-saving 

potential of buildings.  

Traditional heat-load meters allowed to read energy reading with daily or lower 

frequency. However, the current smart energy meters for heat-load measuring enable 

to remotely read this variable with hourly and even higher frequency. This high accuracy 

readings open a new opportunity for accurate data-driven models and in addition to the 

increasingly use of artificial intelligence in different fields, a novel research area is 

studied combining energy characterization and machine-learning models.   

We will mainly focus on characterizing heat-load energy in buildings that are connected 

to a DH network, but the models that are developed and analyzed could be oriented for 

their application in any building.  
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The document will present different research topics on how machine-learning 

algorithms can be applied for the characterization of energy demand in buildings. 

Therefore, we consider relevant for the comprehension of the studies to set the 

definitions for the following concepts: Energy (or Heating) Demand, Energy (or heat) 

Load and Energy Consumption in buildings.  

• Heating Load: It refers to the amount of energy a space with occupancy and plug 

loads needs to receive to maintain its temperature at the required level (no air 

changes or re-circulation or anything else; mostly energy transfer except for 

infiltration).  

• Heating Demand: is the amount of energy an HVAC system will provide to 

condition that space or to condition outdoor air before supplying it to the space.  

• Heating Consumption: is the amount of energy that will be consumed by that 

HVAC system to satisfy the heating demand. 

In our cases, the data from the buildings was received in hourly basis and consequently 

the heating-load (kW) and heating demand (kWh) presents the same value, even though 

the theoretical content behind these two concepts are the same. This is why, these two 

variables are used indistinctly along the document. As we do not have enough 

information about the efficiency of the HVAC systems inside the buildings, we are not 

going to use consumption variable, although this value would be completely dependent 

of the other two.   

2. Main Structure 

The chapters in the dissertation are structured as follows. 

The dissertation can be divided into four main parts. The first part embraces the first 

three chapters (Chapter II and Chapter III) and includes the introduction and the general 

state of the art of the dissertation. The second and main part of the document embraces 

from Chapter IV to Chapter VIII and groups the studied carried out using real data from 

the DH in Tartu. The following chapter (Chapter IX) transfers the knowledge obtained 
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with real data of Tartu to a simulated case in Bilbao and the final part consists of the 

main conclusions of the dissertation (Chapter X).  

The following figure (Fig. I-1) summarizes the structure of the document and will serve 

as a reference point to be consulted during the reading of the document.  

 

Fig. I-1. General Structure of the document 

The first chapter (Chapter II) aimed to introduce the main topics covered within the 

thesis. In this chapter, the author has tried to introduce the technology of DH networks 

and the evolution of the technology suffered from the beginnings until today. Moreover, 

it gives an overview of what artificial intelligence is and specially explains machine-

learning concept. This first chapter has tried to set the basics for the rest of the chapters. 

Whereas this section (Chapter I) introduce the context of the thesis, in the following 

chapter (Chapter II), an in-depth analysis of the literature available in the topics covered 

by the thesis is presented and it includes the most important gaps that this thesis is 

trying to fulfill. 

Moreover, in a second section including Chapter IV and Chapter V, an introduction to 

the data used within this work is presented. In particular, Chapter IV aims to explain the 
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different data sources used and gives the context of the case-study. This chapter shows 

the different buildings analyzed and gives an overview of the heat demand profiles of 

these buildings. Furthermore, Chapter V summarizes the data pre-processing 

techniques used and presents a general analysis of the main variables, including the self-

called Q-T algorithm for demand characterization based on basic linear regression As 

previously mentioned, Q-T algorithm was developed also by the author based on the 

nature of the data and using multi-variable linear regressions. It brings forward the work 

developed in collaboration with R. Garay-Martinez, B. Arregi and people from GREN 

Eesti [1] and published in ENERGY Journal [2]. A complete version of this article can be 

found In Appendix section (Chapter XI).    

In a third section of the thesis, the different steps that embrace the method for energy 

management in a district are covered. Thus, Chapter VI, Chapter VII and Chapter VIII aim 

to present the main tasks of the method and present the different algorithms used and 

evaluated for each of the steps. First, Chapter VI explore the use of different clustering 

techniques for the identification of heating patterns. This chapter shows all the analysis 

done for resulting in the article presented in collaboration with R. Garay-Martinez and 

B. Arregi in JOURNAL OF BUILDING ENGINEERING [3]. Also, the complete version of this 

article is attached to the Appendix section.  

Then, Chapter VII will include the modelling of the typical heating energy daily profiles 

by means of the supervised classification models and finally Chapter VIII show the 

energy forecasting models developed. As a result of this whole section, the paper is 

expected to be published in ENERGY Journal. A complete version of this article can be 

found In Appendix section.    

Finally, a summary of the main conclusions of the dissertation are shown in Chapter X. 

In this final chapter, a brief overview of the achievements made is presented and it is 

followed by the contributions and future research objectives. 
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3. Framework of the thesis 

The research developed in this thesis can be considered as part of the research lines 

carried out by ENEDI Group. Enedi Group (or Grupo de Investigación ENergética en la 

EDIficación de la UPV/EHU) [4] is a research group that was established in 2005 as a 

result of the Agreement signed between the Basque Government Department of 

Housing and the UPV/EHU by virtue of which this Research Group is in charge of 

managing and developing the Thermal Area of the Building Quality Control Laboratory 

(LCCE) of the Basque Government.  

The next figure (Fig. I-2) shows the three research lines of the group: EnediPHYS (building 

physics), EnediSYST (installations) and EnediTES (thermal energy storage) [5]. 

Furthermore, these research lines, depending on the study to be carried out, can be 

classified by the scale (material/component, thermal zone, building and district/city) or 

by the type of study (characterization of properties, monitoring and data processing, 

simulation and numerical modelling). This classification of the research lines is shown in 

Fig. I-2. 

 

Fig. I-2. Research lines of ENEDI group 

This thesis presents a building´ energetic characterization work using monitored data. 

The monitoring of the data is not done by the author since the real buildings are located 

in Tartu (Estonia). The work is focused on the characterization of the demand in building 

only using real data, using different machine-learning models. Therefore, this thesis is 

integrated in the EnediPHYS line, varying between building and district scale 
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(enediBUILD and enediDIST) and in enediDATA field of study. The research activities 

within EnediPHYS are the following: 

- Thermal characterization of materials: optimization of existing products and 

development of innovative products. 

- Steady-state and dynamic thermal characterization of constructive solutions 

both under controlled conditions and under real outdoor conditions. 

- Thermal characterization of dwellings by means of in situ measurements and 

parametric modeling. 

- Development of thermal models using parameter identification techniques. 

- Modeling the transport and storage of moisture in walls 

- Influence of moisture in buildings 

- Hygrothermal properties of building materials 

- Behavior of wet granular media 

Besides, the first steps of this thesis were developed within RELaTED project [6]. 

RELaTED (or REnewable Low TEmperature District) provided an innovative concept of 

decentralized Ultra-Low Temperature (ULT) network solution that can pave the way for 

expanding and modernizing existing DH networks as well as introducing and establishing 

district heating in emerging EU markets. This project, funded under the European 

Union’s Horizon 2020 research and innovation programme, has developed a robust 

ultra-low temperature concept, which allow for the incorporation of low-grade heat 

sources with minimal constraints. Also, ULT DH reduces operational costs due to fewer 

heat losses, better energy performance of heat generation plants and extensive use of 

de-carbonized energy sources at low marginal costs. The RELaTED ULT DH concept has 

been demonstrated in four complementary operation environments (new and existing 

DH, locations, climatic conditions, dimension…) in Denmark, Estonia, Serbia and Spain. 

Therefore, all the data used in this dissertation was provided by the DH operator in Tartu 

(Estonia). The DH operator in this area is GREN Eesti [1] and they provide 1-hour 

frequency heating demand data (among other variables) from more than 40 buildings 
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connected to their DH network. The different types of provided data and their 

monitoring will be explained and discussed in Chapter IV. At this point, I would like to 

thank GREN Eesti (again) for providing the data from the substations for academic 

purposes. 
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Abstract 

This first chapter introduces the main concepts covered along the dissertation and 

explains the motivations behind the development of this PhD Thesis. It will give an 

overview of the current situation of energy consumption in buildings and how 

district-heating networks could improve the efficiency of energy production and 

supply. This chapter will also outline the “trendy” concept, artificial intelligence, and 

will explain how this technology could be applied for the energy management 

purposes.      

 

Resumen 

Este primer capítulo introduce los principales conceptos tratados a lo largo de la 

tesis y explica cuáles son las motivaciones detrás de iniciar esta Tesis doctoral. El 

capítulo ofrecerá una visión general de la situación actual del consumo de energía 

en los edificios y cómo las redes de calefacción urbana podrían mejorar la eficiencia 

de la producción y el suministro de esta energía. Este capítulo también describirá el 

concepto ampliamente utilizado hoy en día, inteligencia artificial, y cómo esta 

tecnología podría aplicarse realmente para fines de gestión de la energía. 
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Chapter II Introduction  

Energy management is becoming more and more important in today´s scenario and as 

well as it gains importance, it also becomes a more complex task. Energy consumption 

is suffering a transition to electrification of the consumption and the very used fossil fuel 

are being replaced by renewable energy sources or RES. During the last two decades 

primary energy has grown by 49% and CO2 emissions by 43%, with an average annual 

increase of 2% and 1.8%, respectively [7].  

In addition, the COVID-19 pandemic suffered in 2020 and the current instability caused 

by geopolitical issues around the world increases even more the energetic instability. 

On the one hand, the COVID-19 pandemic decreased (and practically stopped) the global 

activity with an associated energy consumption reduction, reducing the price of the 

energy sources due to a lower demand. On the other hand, the geopolitical problems 

reduce the availability of the energy sources (specially, natural gas and other fossil fuels) 

imported to the European Union (EU). Thus, from these events on, energy management 

have become even a more important issue for all the countries in the EU and worldwide. 

The increasingly evident global warming is accelerating the transition from traditional 

fossil fuels to RES and consequently, the direction of the energy scenarios of tomorrow 

are very difficult to predict.  

The unique conclusion that is valid to all the phenomena surrounding energy 

management is that for maintaining a sustainable energy situation it is necessary to 

reduce energy consumption as much as possible in a wide range of contexts and apply 

energy efficiency measures to optimize all the energy transformations. Every energy unit 

must be optimized for its final consumption. Buildings account for more than 40% of the 

total energy consumption [8], so it becomes a very relevant part of the global energy 

scenario. This thesis will be focused on the efficiency of energy management in 

buildings.  
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1. Energy Demand in Buildings 

Buildings are responsible for a large share of the total energy demand worldwide. The 

latest references on this topic estimate the total energy demand in buildings to reach 

40% of the total energy demand in the EU [8], whereas in developed countries this 

energy share is reduced to a percentage between 20 to 40%. Moreover, according to 

International Energy Agency (IEA), buildings are responsible for producing more than 

30% of CO2 emissions [9]. Thus, and answering to the big part of the “problem” that are 

the buildings´ energy demand, the European Commission (EC) is focusing on increasing 

energy efficiency in buildings by means of directives [10] and [11]. 

The energy demand in buildings includes energy consumption for heating purposes (the 

so-called heating load), for cooling purposes (the so-called cooling load) and the electric 

consumption for all the devices in the building. This dissertation will be focused only on 

the heating load, which is as well divided into the next two demands: (i) Demand for 

Space-Heating (SH) and (ii) Demand for Domestic Hot Water (DHW). SH demand comes 

from the necessity to maintain a certain thermal comfort inside the building and heating 

the air in the dwelling. On the other hand, DHW demand covers the energy used for 

heating the water for different applications and devices. The heat load for space heating 

(SH) is highly correlated with external climate, but relevant transitory effects are 

generated with building usage and scheduling of Heating, Ventilation & Air-Conditioning 

(HVAC) systems. Furthermore, the demand for DHW load is principally correlated with 

the building usage (i.e., scheduling of showers) and the energy demand patterns of the 

occupants. Energy demand patterns are daily loads or a fraction of the daily demand 

profile that are repeated over time. 

According to the IEA, the energy share of the components that form the total energy 

demand in buildings vary depending on the final use or building type [9]. The following 

table (Table II-1) shows the distribution of the energy components for residential 

buildings and offices in different countries. 
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Table II-1. Energy demand by end uses in residential and office buildings. 

Residential [%] Spain USA UK Offices [%] Spain USA UK 

SH 42 53 62 SH 52 48 55 

DHW 26 14 22 DHW 0  10 4 

Others1 32 18 17 Others 48 42 41 

 

Moreover, the share of the different types of energy demands is not the unique point in 

which the buildings with different uses differ. The peak demand, the valley demand and 

the general shape of the energy profiles are different in a residential building and an 

education building, for example. Demand profiles are also different in buildings with the 

same final use depending on the user’s behavior inside the building. A residential 

building occupied by people that work will not present the same energy demand profile 

than the same residential building occupied by retired people. This does not only refer 

to the total energy consumed but also to the profile of the heat demand and their 

corresponding energy demand schedule. In any case, when the energy consumption of 

multiple buildings is grouped and ruled by a unique energy management cluster, 

individual demand patterns are masked and synergies between the different energy 

demands can be obtained. The following section introduces the concept of DH networks, 

which allow to group several buildings in one or few distribution lines, so that could be 

supplied by a low number of energy production plants.  

2. District-Heating Networks 

District-heating (DH) networks are usually centralized thermal systems that distribute 

heat (and cold in some cases) from a production level to different customers, enabling 

the connection of multiple buildings in the same energy distribution grid. Owing to the 

high efficiency levels of these networks, DH networks will play a very relevant role in the 

task of increasing energy efficiency by the optimization of every energy unit produced 

 
1 Others include lighting and appliances and other cooling loads. 
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[12]. DH comprises a network of pipes connecting buildings in a neighborhood or a 

whole city, so that they can be served from centralized plants or a number of distributed 

heat production plants. These networks enable the connection of multiple heat sources 

as production units [13]. This technology is currently responsible for covering around 

13% of the total thermal energy demand in the European Union and this value is 

supposed to increase in the following years [14].  

In order to understand the context of this dissertation and the activities carried out for 

this purpose, the following paragraphs will cover a wide range of topics around DH 

networks and will set the basis for all the analysis and research done in this dissertation. 

First, Section 2.1 will present a brief summary of the different DH generations and their 

main characteristics. Then, Section 2.2 shows how the energy management works in 

these systems, followed by the cost-distribution schemes in Section 2.3.  

2.1. Evolution of District-Heating Networks 

In the easiest DH scheme configuration (Fig. II-1) the energy is produced (or 

transformed) in a large production plant (Combined Heat & Power or CHP as shown in 

Fig. II-1) and distributed throughout the transmission lines up to the DH substation. In 

order to balance the system against intra/inter-day oscillations, usually there are 

intermediate thermal storage installations through the transmission line. Then, the 

substation transforms the energy from the transmission line of the network to the end 

users in the grid. Thus, substations are responsible for bringing the energy from the 

primary side of the network (from production to substation) and secondary side of the 

network (from substation to the building). Fig. II-1 presents a schematical illustration of 

how a DH networks is distributed.  
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Fig. II-1. Basic scheme of DH Network with indicative temperatures. 

Regardless of the DH generation, the efficiency of DH networks mainly depends on the 

three following factors: 

• Energy Source: It is the first step in every DH network and the inlet energy to the 

network. It could be based on common fossil fuels or alternative sources, such 

as solar thermal heat or waste heat stream. In this step, the first efficiency metric 

is the one that evaluated the energy transformation from the heating plant to 

the network and transferred the energy to the heat carrier fluid of the network. 

• Energy Conversion Efficiency: Specially used for the energy conversion and 

exchange in the heat storage tanks and the DH substations. In these devices, part 

of the energy will be lost due to the heat exchange efficiency. 

• System Configuration: DH networks usually comprises very long pipelines, so 

that the configuration of all the devices is crucial for reducing the energy loss due 

to the distribution heat losses.    

Even though literature defines five DH generation, this study will classify these networks 

into high-temperature DH and low-temperature DH. High temperature networks 

comprise first, second and third generation networks, whereas low temperature 

networks comprise fourth and fifth generation. The characteristics of each generation 

are shown in the following lines.  

2.1.1. High-Temperature Networks: First, second and third DH Network Generations  

The first DH networks started to commercialize in Lockport (USA) and New York (USA) 

cities in 1880s and 1890s, respectively. The so-called first DH generation were placed 
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between 1880s and 1930s and their main characteristic is that water stream was used 

as fluid carrier in the system. The use of water steam (and not water) was motivated 

due to the lack of electric motors for supplying liquid water. The extreme conditions for 

supplying steam (high temperatures and high pressure) required large pipelines and the 

heat losses in the line were very relevant. Thus, in second generation DH generation, 

the steam was substituted by pressurized water, reducing the supply temperature up to 

120°C approximately. However, the insulation of the elements (distribution lines and 

heat exchangers) was still inexistent and that was the main reason for the development 

of the third-generation networks in 1980s. These new generation networks include pre-

insulated pipelines and start using heat meters for monitoring the energy flows in the 

grid. In this third-generation network started the development of the data-driven model 

for energy management. This topic will be deeply covered in next chapter (Chapter III) 

Thus, Table II-2 presents a brief summary of the most relevant characteristics of these 

networks.     

Table II-2. Main characteristics of first, second and third generation DH networks. 

DH Generation 1St Generation 2nd Generation 3rd Generation 

Years 1880-1930 1930-1980 1980-2020 

Main energy 

production Plants 
Coal  

Coal boilers and 

CHP (Coal) 

CHP, Biomass, 

large ST, etc. 

Supply 

Temperatures  
300°C (20 bar) 110-120°C 80-100°C 

Heat Carrier Steam Pressurized Water Water 

 

2.1.2. Low-Temperature Networks: Fourth Generation and Next Generations´ DH 

networks 

It is still unclear which is the difference between the fourth and fifth-generation DH 

networks and depending on the reference, different definitions and boundary 

conditions are defined for each of the type. In some references, such as [13] or [15], 
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there is no difference between these two generations since the so-called fourth 

generation was supposed to cover DH networks up to 2050. However, in other 

references ([16] or [17]), certain differences are emphasized to distinguish these two 

generations. This dissertation is focused on developing data-driven models for different 

purposes, so that the models developed and explained within this work could be applied 

in both of them.  

Regarding the fourth generation DH (or 4GDH hereinafter). This concept is an evolution 

of the third-generation networks and was motivated by an increased focus on energy 

efficiency, smart integrated energy systems, and the utilization of locally available RES, 

such as solar facades or waste heat from factories. Even though it is not part of this 

dissertation´ main objective, the author studied the connection of façade integration 

solar thermal (ST) energy to these types of networks and the paper resulting from that 

study is attached in Chapter XI [18].   

One of the most relevant features of these networks is that the supply temperature in 

the transmission line was reduced to temperature levels as close to the actual 

temperature demand. Therefore, the maximum supply temperature in these systems 

round the 60-70°C or lower. The lower supply temperature lowers DH grid losses and 

enables the economically feasible integration of even more waste heat sources than in 

third generations’, such as excess heat from data centers and supermarkets ([19],[20]). 

The temperature levels of 4GDH are normally sufficiently high to cover SH demands 

directly without using devices for temperature boosting through, e.g., heat pumps at 

the end-users [21]. 

Therefore, the 4GDH networks may fulfill the following five abilities [17]: 

(i) The ability to supply existing, renovated, and new buildings with low-

temperature DH for space heating and domestic hot water. 

(ii) The ability to distribute heat in DH networks with low grid losses. 

(iii) Reuse heat from low-temperature waste sources and integrate RES, such as 

ST and geothermal heat. 
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(iv) Be an integrated part of smart energy systems and thereby helping to solve 

the task of integrating fluctuating renewable energy sources and proving 

energy conservation into the smart energy system. 

(v) Ensure suitable planning, cost and incentive structures in relation to the 

operation as well as to strategic investments related to the transformation 

into future sustainable energy systems. 

Regarding the fifth-generation DH networks (or 5GDH hereinafter), the concept was 

firstly introduced in 2015 by the FLEXYNETS project from the H2020 program [22]. These 

networks are described as networks operating at near-ground temperatures (20-45°C) 

using a bidirectional exchange of heat and cold between connected buildings, facilitated 

by seasonal storage. 5GDH requires heat pumps at the connected buildings in order to 

reach the proper temperature for domestic hot water for avoiding the risk of Legionella. 

Thus, this type of networks includes the possibility to supply district-cooling at the same 

time due to the low temperature of the double-loop network. Similar to the analysis for 

4GDH and according to [17], the main vectors of this concept are the following: 

(i) Take advantage of the synergies of combining heating and cooling in areas of 

mixed purpose buildings. 

(ii) Minimize the barrier of utilizing local waste heat sources and minimize 

upfront investment cost for the utility company, though the required initial 

investment at the end-users will be higher. 

(iii) Enable less restrictive organic growth of the system, as central heat supply is 

not as critical since new additional end-users will both add and use heat from 

the network. 

To sum up with the analysis of both modern DH network types, the main difference 

between 4GDH and 5GDH consists in the ability to supply both heat and cooling load in 

the same grid, making rather difficult for 5GDH to implement smart energy management 

system. Besides, this dissertation is only focused on heating loads and consequently, all 

the works presented along this document are more appropriate to be implemented in 
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4GDH. Thus, from here on, we will focus only on the analysis of fourth generation DH 

networks. 

2.2. Energy Management of a District-Heating Network 

DH network management is not an easy issue. The demand in a district will vary 

throughout time and the network will have to adapt and control the energy provided at 

every moment. Basically, there are two ways to control the energy input. 

• Varying the flow/supply temperature with constant flow rate in the 

transmission lines. 

• Varying the flow rate of the heat transfer fluid and with a constant flow/supply 

temperature. 

Usually heat production in real DH networks is only based on the temperature prediction 

for the following hours. It also depends on the heat production system and the inertia 

and flexibility of each generation plant to increase and decrease the instant heat 

production. For example, the ease to increase the demand in a medium-size gas boiler 

is not the same than the one that needs a large CHP system in which the turbine requires 

some time to reach a steady and secure status. It is neither the same for intermittent 

heat production systems such as ST production. Another variable to be considered in DH 

energy management is the size of the network. Thus, the energy generated in the 

network requires some time to reach all the buildings connected to the heating grid. A 

large distance from the production point(s) to the buildings increases the heat losses in 

the distribution pipeline and increases the time required for the hot water to reach the 

buildings (substations).  

To sum up, the management of a real network includes the analysis of many variables 

in the system and depends on the specific network to be managed. Before starting with 

the application, the following section will summarize the main components of the cost 

structure of DH systems. 
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2.3. Cost-Distribution Models in District-Heating Networks 

The main cost in a DH network is energy production cost. Fixed costs and variable costs 

are the two main components a DH plant incurs when producing heat and are also the 

primary inputs for the two main DH pricing structures used for DHs cost-plus pricing 

model and the marginal-cost pricing model - underscoring their importance to a DH cost 

analysis [23].   

• Cost-plus Pricing Model: It is used in regulated DH markets. The main reason is 

that DH companies are not allowed to adjust their heating prices below the 

market price. As a result, DH companies must rely on premiums for their profits, 

the amount of which is determined by the costs incurred by DH companies.  

• Marginal-Cost Pricing Model: It is alternatively used in deregulated DH markets. 

Essentially, DH companies in a deregulated market compete by pricing the 

production of heat less than the equilibrium market price, therefore increasing 

the DH company’s market share and profit. The price that is set under the market 

price is known as the marginal cost, which in the case of DH systems, is the cost 

of one more unit of heat through DH.  

Additionally, this chapter seeks to provide a general overview of the main components 

for each DH heat production plant, highlighting any special considerations that could 

affect the total cost related with each facility. Therefore, the objectives will be to 

address the following for each DH plant:  

A. Identify fixed costs (FC) attributed to heat generation.  

B. Identify variable costs (VC) attributed to heat generation. 

C. Discuss any special features that should be considered regarding the cost of 

DH plant Most of the cost data for the subchapters.  

Based on desk research, the catalogue of common DH technologies provides the most 

comprehensive overview of the costs corresponding with each technology that is used 

in low temperature (fourth and fifth generation) DH networks. Furthermore, the 
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catalogue of technologies is updated on a regular, which ensures that the cost data used 

in this report is the most up to date. Lastly, the catalogue is meant for international and 

Danish audiences, and the data provided gives a generalized analysis of energy systems 

for economic scenario models; in this sense, the information can be seen as a baseline 

or standard representation of the energy systems and economic indicators. 

In this context, it is important to define what cost data was included by the Danish 

Energy Agency for investment costs, fixed costs, and variable costs.  

• Investment costs: Investment costs include engineering, procurement, 

construction, infrastructure, and connection costs [24].  

• Fixed Operation and Maintenance (O&M) costs: Includes all costs independent 

of how many hours the plant is operated i.e., administration, operational staff, 

payments for O&M service agreements, network or system charges, property 

tax, insurance, and reinvestments to extend the lifetime of the plants [24]. 

• Variable O&M costs: Include consumption of auxiliary materials (water, 

lubricants, fuel additives), treatment and disposal of residuals, spare parts and 

output related repair and maintenance (however not costs covered by 

guarantees and insurances). Fuel costs are not included [24]. 

Investment costs are presented with fixed O&M costs because the assets procured from 

the initial investment – heat production unit(s), infrastructure, etc. – depreciate over 

time. Thus, companies will create a depreciation expense schedule for asset investments 

with values falling over time. The depreciation costs therefore fall under a fixed O&M 

cost. The goal is to have a general overview of the costs and factors to consider for 

making the business case for a mixture of different DH plants. The hope for this report 

is to provide a starting point for policy makers to assess the viability of different DH 

systems in their city or region. It is important to remark that the production costs 

identified must be considered as a general reference, as each plant, DH network and 

country has its own characteristics and, therefore, specific production costs. For 
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example, electricity tariffs and the cost for energy may differ at any given time from 

country to country. 

Therefore, Table II-3 presents a brief summary of the approximate costs of different 

heating plants: CHP, Heating Only Boilers (HOB), ST systems and large heat pumps (HP).  

Table II-3. Brief Summary of generation costs in DH networks.  

 CHP HOB ST Systems Large HP 

Generation 

Capacity 
1-500 MW <100 MW <100MW <20MW 

Investment 

Costs 

0.59-3.3 

M€/MWe 
0.59 M€/MW 150-500 €/m2 M€/MW 

Fixed O&M 
104-105 

€/MWe·Year 

7-40E4 

€/MW·Year 
Very Low 

20000 

€/MW·Year 

Variable 

O&M 
5 €/MWh 1.1-2.7€/MWh €/MWh 4-6€/MWh 

 

3. Artificial Intelligence: Algorithms used in this dissertation. 

Artificial Intelligence or AI is a very wide and deep concept at the same time, as the 

following definition by IBM states [25]: 

"It is the science and engineering of making intelligent machines, especially intelligent 

computer programs. It is related to the similar task of using computers to understand 

human intelligence, but AI does not have to confine itself to methods that are 

biologically observable." 

We will try to write the definition of the AI with our own words: 

“Artificial Intelligence is the science of developing computer programs that try to reach 

their goals by thinking the same way the humans do.” 

Several applications for this science are currently under development: 



  

Chapter II  62 

  

• Natural Language Processing commonly referred as NLP. 

• Artificial Vision and other robotic stuffs 

• Any kind of predictions: from a disease prediction to any numeric variable 

• And a large etc. 

It is not part of the objectives of this work to deeply introduce to AI. Conversely, we 

found interesting to introduce the basics of this science and clarify some aspects of its 

terminology, which is still confusing for the wide public.  

AI, in turn, includes Machine-Learning (ML) and Deep Learning (DL) algorithms, among 

other methods. Even though deep learning and machine learning tend to be used 

interchangeably, it is worth noting the nuances between the two. Both are subfields of 

artificial intelligence, but deep learning is actually a subfield of machine learning. The 

hierarchies of these concepts can be observed in Fig. II-2. 

 

 

Fig. II-2. Hierarchy definition in AI, Machine-learning and Deep-Learning. 

The main difference between machine learning and deep learning is the way the 

algorithms learn from data. In general, ML requires more human intervention than DL, 

since the algorithms that are developed depend exclusively on the data model that is 

obtained and require an understanding of the data and objectives. On the other hand, 
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in the concept of deep learning (mainly artificial neural networks), no human processing 

(at least, not at the level of machine learning) of the data is required. In deep learning, 

it is only required to design the form/structure (input layers, output layers, etc.) of the 

model without data preprocessing. The model itself is the one that conforms to the 

specific case study. Therefore, ML models offer greater flexibility when designing AI 

algorithms, while DL allows us to use more data and a greater scope. Thus, among the 

black-box models inside AI, ML are more transparent and easier to tune, and they are 

more suitable for energy topics.  

ML or automatic learning is a branch of artificial intelligence that was born in the 1950s. 

Within ML algorithms there is an extensive classification, where supervised learning and 

unsupervised learning algorithms stand out. There are other algorithms that would fall 

somewhere between these two branches: semi-supervised algorithms, reinforcement 

learning algorithms, etc. The main characteristics of these algorithms are shown in Table 

II-4. 

Table II-4. Main characteristics of ML algorithm types 

Supervised 
Learning 

Unsupervised 
Learning 

Semi-supervised 
Learning 

Reinforcement 
Learning 

Data Scientist 
provide input, 

output, and 
feedback to build 

model 

Use deep learning 
to arrive at 

conclusions and 
patterns through 

unlabeled training 
data 

Builds a model 
through a mix of 

labeled and 
unlabeled data, a 
set of categories 
suggestions and 
exampled labels 

Self-interpreting 
but based on a 

system of rewards 
and punishments 
learned through 
trial and error, 

seeking maximum 
reward 

Linear regressions, 
support vector 

machines, decision-
trees, etc. 

Principal 
Component 

Analysis, 
clustering, a priori 

etc. 

Self-training, Label 
propagation, etc. 

Q-learning, model-
based value 

estimation, etc. 

Used for 
Classification and 

regression problems 

Used for labelling 
data 

Idem than 
supervised 

Application-based: 
estimate 

parameters, 
reduce 

consumption, etc. 
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Furthermore, Deep-learning, semi-supervised learning and reinforcement learning are 

discarded in this dissertation due to the nature of these algorithms. Energy, as a concept, 

is a measurable variable and its value is closely related to external variables, such as 

climatic and calendar variables. Moreover, the correlation between these variables is 

commonly known by the developers. For instance, it is known that when the outdoor 

temperature is very low, the heat demand for SH will increase and when the sun is 

shining, this energy demand will decrease. Therefore, it is not essential to tune deep-

learning models to understand the correlation between the variables because they are 

(roughly) known before stating the problem. The applicability of semi-supervised 

learning is limited to the cases in which only some observations are labelled. This is not 

the case for this dissertation, as it will be presented in Chapter IV where the data used 

in this study is presented. In the case of reinforcement learning, it is more application-

oriented and the approach to these models is different. In this work we are not trying to 

make a machine model oriented to any application, so that the objective of this 

dissertation does not require the use of reinforcement learning. 

Therefore, this chapter is focused on introducing the supervised and unsupervised 

learning concepts. To do so, we will list the main algorithms that can be found in recent 

literature. The insights of all the algorithms will be provided along the dissertation in the 

corresponding chapter (from Chapter IV to Chapter VIII). The Fig. II-3 illustrates the main 

differences among these two types of ML algorithms. 
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Fig. II-3. Supervised and unsupervised learning concepts 

Whereas supervised learning models are built under labelled data (left side in Fig. II-3)  

for different purposes, unsupervised models are used to discover hidden patterns in 

unlabeled data. In other words, in the case of supervised learning algorithms, the 

attributes and classes of the data are used to train a model and gain insight from the 

data. However, in unsupervised learning, only the attributes are available and there is 

no knowledge about the class/label of the data, so the objective of this second type of 

algorithm is to provide knowledge about the data structure.  

As a consequence of the differences, each type of algorithm will be used for different 

purposes. On the one hand, supervised learning uses already labelled data to train a 

model and can be used for both, classification, and regression problems. The main 

difference between these two applications is that classification is used for categorical 

variables (for example, day of the week) and the regression problems concern only 

numeric variables (energy demand, for example). On the other hand, unsupervised 

learning is used for dimensionality reduction, association problems and labelling the 

data. 

The supervised algorithms used in this work are the following: 

• Linear Regression: Explained in Chapter V. 

• Decision-Trees: Explained in Chapter V. 

• Support Vector Machines: Explained in Chapter VIII. 
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• Random Forest: Explained in Chapter VIII. 

• Extreme Gradient Boosting: Explained in Chapter VIII. 

The unsupervised algorithms covered in this work: 

• K-means: Explained in Chapter VI. 

• Density Based Clustering: Explained in Chapter VI. 

• Dynamic Time-Warping: Explained in Chapter VI. 

• Fuzzy C-means Clustering: Explained in Chapter VI. 

4. Using Data & Machine-Learning in District-Heating Networks 

One of the main characteristics from the third generation DH network on was the use of 

monitored data to manage energy, as it was presented in Table II-2. This trend increased 

in fourth and fifth generation DH networks. The most usually used devices for the 

monitoring of the thermal energy in buildings are heat meters, which are usually located 

near the end-user (building). They allow the thermal energy demand of each consumer 

from the heat network to be measured ([26] & [27]). Modern devices allow the hourly 

or sub-hourly gathering of energy and additional operational variables, including 

continuous communication with the DH utility. These devices are being widely 

implemented across the EU, mandated by Directive 2018/2002 [11], which deals with 

the disaggregation of the final energy use by customers and the obligation to implement 

remote reading functionalities. Therefore, all meters will be remotely readable by 

January 2027.  

The remote access of such data leads to different energy management systems of heat 

production in DH networks, such as [28] and [29], based on frequent readings of smart 

heat meters at consumer level. These systems usually perform short-term forecasting in 

the range of some hours or days. Another application for demand monitoring applied in 

DH environment is the urban planning and the design of new and optimized DH 

networks. Similar than in reference [18], the author of this dissertation with other co-

authors, we developed a novel method for the design of a new network using demand 
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data and LiDAR data with Georeferenced Information System or GIS [30]. The cover of 

the article resulting from that study is also attached in Chapter XI. 

To sum up, modern networks and the use of devices for the remote monitoring enable 

the application of data driven models, such as artificial intelligence and, specially, 

machine-learning models. This field, even tough is not new, has recently gained 

significant relevance due to the use of large datasets and digitalization of data storage 

systems and can noticeably contribute to energy efficiency in buildings. The state-of-

the-art on this topic is presented in Chapter III, which shows the most important works 

on the topic and identifies the literature gaps covered by this dissertation.    
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Abstract 

This chapter presents the analysis of the state of the art. This literature review will 

cover from the first data-based models to the most advanced and modern machine 

learning models used in the framework of the Thesis. A large number of references 

to other works carried out in the field of electricity demand and how these models 

could (or not) be adapted to the thermal demand in buildings are presented. The 

sections that cover the studies on the thermal demand are divided into models 

oriented to the identification of patterns and to the prediction of the same. The 

chapter ends with the gaps identified and covered by the development of this Thesis. 

 

Resumen 

En este capítulo se presenta el análisis del estado del arte. Esta revisión de la 

literatura cubrirá desde los primeros modelos basados en datos hasta los modelos 

de aprendizaje automático más avanzados y modernos utilizados en el marco de la 

Tesis. Se presenta un amplio número de referencias a otros trabajos realizados el 

ámbito de la demanda eléctrica y cómo estos modelos podrían (o no) adaptarse a la 

demanda térmica en los edificios. Las secciones que cubren los estudios sobre la 

demanda térmica se dividen en modelos orientados la identificación de patrones y 

a la predicción de la misma. El capítulo finaliza con los vacíos identificados y 

cubiertos por el desarrollo de esta Tesis. 
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Chapter III State of the Art 

The analysis of energy using machine-learning models (ML models) and data-driven 

models in general is not new. Thus, the analysis of the most relevant references in the 

current literature will enable to understand which are the main gaps that this thesis 

covers and the advantages that the developed models bring compared with current 

status of the literature. The chapter starts with the presentation of the origin of data-

driven models applied to different energetic applications and the rest of the chapter will 

bring a review through the most relevant references.  

Note that the state of the art presented in this section of the dissertation can be 

considered to be a general analysis, while specific literature review is presented in each 

of the chapters of the document.  

When talking about energy characterization and building modelling, it is important to 

define the three most relevant type of models, depending on the way they are built.  

• White-Box Models: In these models one can clearly explain how they behave, 

since they are models whose inner logic, workings and programming steps are 

transparent and therefore its decision-making process is interpretable. Usually, 

these models are significantly easy to explain and interpret and in contrast, they 

present low accuracy and less predictive capacity than the other two types of 

models since they require to re-simulate the buildings in case something 

changed in the system. Anyway, there has been research on white-box model 

forecasting based on such tools as EnergyPlus [31] or TRNSYS [32], including their 

calibration against meter data. However, these methods are difficult to be 

implemented at district scale, as the DH utility does not usually have access to 

all the required information to develop such models (architectural data, use 

patterns, etc.) and the model development and calibration process is considered 
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to be time and resource intensive. Thus, this approach is not considered to be 

reasonable on a district or city scale. 

• Grey Box Models: These models are formulated through differential equations 

that combine metered data with prior physical knowledge. Grey-box models 

integrate prior physical knowledge and are typically formulated as state-space 

models through a set of stochastic linear differential equations, either in discrete 

or continuous time. Grey box models require a deep understanding of all 

relevant phenomena in a building that impact instantaneous or cumulated 

values of the load. Due to the complexity of these models, many grey-box models 

in the literature have been formulated for individual components of the building, 

such as walls or windows [33]. Thus, it is challenging to fit suitable grey-box 

models for multi-element systems such as buildings (and even more complex for 

whole districts), because the interaction between the different elements and 

parameters is frequently unknown or too complex to be explicitly formulated. 

Some examples of grey-box models in buildings are provided next. Madsen et al. 

developed a model based on discrete-time building performance [34]. Andersen 

et al. described the time modelling of the heat dynamics using stochastic 

differential equations  [35]. Similarly, Bacher et al. applied grey-box modelling 

for different applications regarding heat dynamics of a building, such as, control 

of indoor climate and energy demand forecasting [36]. 

• Black-Box Models: Finally, these models are purely based on data and can be 

trained to infer relations between inputs and outputs using statistical techniques 

with no physical interpretation. A wide variety of black box models are available 

in the literature, from the simplest energy signatures op to complex multi-step 

machine learning models using the most modern algorithms. The most 

important advantages that present these models is the low computation cost 

and the high predictive capacity. 
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This thesis will be focused only on the development of black-box models using different 

ML techniques. Consequently, the following paragraphs show the evolution of this type 

of models.  

1. First Data-Driven Models for Energy Characterization: Energy Signatures. 

The first data-driven methods for thermal energy characterization are found in the 

1980s [37]. The first evolution from these models derived into the simplest energy 

signatures. Energy signature models are widely applied data-driven models that express 

the heating energy use as a function of weather variables. In a study presented by M. 

Fels in 1986, a data-driven methodology was developed for energy demand modelling 

using only the variable of heating degree days (HDD). Heating degree days or HDD are a 

measure of how cold the temperature was on a given day or during a period of days. 

This method used a unique variable as predictor to define the slope of the gas demand 

curve and the model was specially used for estimating the total potential savings in 

buildings. Fig. III-1 (accompanied by Eq. (2)) illustrates how the model estimated the gas 

demand in buildings, where the function was divided by a reference temperature. 

 

Fig. III-1. PRISM method to characterize gas demand in buildings. Source: [37] 

𝑓 =  𝛼 +  𝛽 · (𝜏 − 𝑇𝑂𝑈𝑇) Eq. (2) 
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where;  𝑓 is the fuel consumption per day, 𝜏 is the reference temperature and 𝑇𝑂𝑈𝑇 is 

the mean daily temperature.  

Some years later and with the objective of generalizing the previous PRISM method, the 

ASHRAE changepoint method was presented in 2002 by J. Kelly Kissock et al [38]. This 

report is formed by more than 180 pages explaining the method but, summarizing, this 

method generalized the PRISM method in order to characterize heating, cooling and a 

combination of both energy demand. Fig. III-2 illustrates the different types of 

regression models proposed in [38], from the two-parameters modelling to five-

parameters models. 
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Fig. III-2. ASHRAE Changepoint models. Source: [38] 

As an example of the regression proposed, Eq. 3 presents the five-parameter regression 

equation: 

𝑌 =  𝛽1 + 𝛽2 · (𝑋1 − 𝛽4 )− +  𝛽3 · (𝑋1 − 𝛽5)+  Eq. (3) 

where 𝛽1 is the constant term, 𝛽2 is the left slope, 𝛽3 is the right slope, 𝛽4 is the left 

change point and 𝛽5 is the right change point. As it was mentioned in [38], this five-

parameter models are appropriate for modelling energy consumption data that includes 

both heating and cooling.   
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The last method that we find in these types of simple models is the Holt methods and 

its complement Holt-Winters method [39]. Other extensions/complements from the 

first methods can be also found, such as the four-parameter exponential smoothing 

developed by Ferbar et al. in 2016 [40]. These methods changed the view from the 

original energy signature models and started to focus on developing time-series 

modelling. It was found that these methods were appropriate for the long-term heat 

load forecasting because they were able to follow seasonal patterns that it was not 

possible until then. 

Thus, energy signatures were the first data-driven models used for the characterization 

for both heating and cooling energy. Most of these studies concluded that the most 

dominant predictor within weather variables is outdoor temperature [41]. However, 

energy signature models have been demonstrated to be valid only for low resolution 

heat load predictions, such as weekly or monthly accumulated energy forecasting [42].     

2. Artificial Intelligence for Electricity and Applicability to Heating Energy 

Due to the greater number of electricity meters that have been installed over the years 

(compared to heat meters), most of the studies regarding energy characterization are 

applied to electric energy. Specially, we are referring to high frequency monitoring 

meters that enable the development of data-driven models for several applications in 

electricity. Therefore, it is important to summarize the most relevant references on 

electric demand characterization.  

Data driven models, based on different machine learning methods focused on electricity 

demand, have been widely used in recent years (from [43] to [44]). Despite the different 

nature of thermal and electric demand, some of the methods developed for electric 

demand are interesting to be studied.  

Regarding unsupervised ML techniques, Tureczek et al. studied the conclusions from 

more than 30 papers about the applicability of clustering techniques to electricity 

demand profiles in [43]. That study resulted in a large number of references on that 
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topic. The review applied 30 search phrases with relevance to smart meters, initially 

encompassing 71 papers containing potential studies regarding electricity demand 

classification using smart meter data. These 71 papers were thoroughly screened for 

purpose, data, method and results until a final list of 34 relevant papers concerning 

electricity demand classification using smart meter data. These studies are classified by 

the application and the method used: classification, forecasting, dimension reduction, 

etc.  

Analyzing particular studies amongst the selected 34 papers, McLoughlin et al. 

presented a study about electricity use patterns within the residential sector in Ireland, 

based on different clustering processes [45]. This study characterized diurnal, intra-

daily, seasonal and between customer electricity use. For this analysis, the paper 

investigates three of the most widely used unsupervised clustering methods: K-means, 

K-medoid and Self Organizing Maps (SOM) [46]. This last method (SOM) is included 

within deep-learning algorithm. Moreover, in a study carried out by Madeira Do Carmo 

et al., data from more than 4500 smart meters were used to conclude that individual 

electricity loads should be differentiated by use categories (residential, industrial, etc.), 

weekday and weekend, and summer and winter [47]. Lopez et al. in 2011 proposed the 

very used K-means algorithm for the segmentation of electricity demand [48]. Then, in 

another study carried out by Albert et al., Hidden Markov Model was proposed to infer 

occupancy states from demand time series data [49]. They shew that temporal patterns 

in the user's demand data can predict with good accuracy certain user characteristics. 

In another interesting article published by Ozawa et al. in 2016, they investigated the 

correlation between households´ lifestyle and the total electricity demand [50]. Two 

different methods were developed for determining the typical lifestyle in those buildings 

and, in both cases, it was concluded that most households consume less electricity when 

following a regular routine. Furthermore, the use Demand Side Response in smart grid 

context was discussed in [51]. They created simulated patterns of load curves, used 

these patterns to train and validate Artificial Neural Networks (or ANNs) and used this 

ANN to classify new data using these defined patterns.  
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There are also several works and references focused on forecasting electric demand in 

buildings. In a study carried out by Lindberg et al. developed a review analysis where 

most relevant trends in electric load forecasting were identified [52]. This work 

identified the most relevant works in this field, presenting the most updated 

methodologies and the challenges that these methodologies were facing. The most 

important challenge identified is the need for new approaches that can forecast long-

term electric load with hourly or sub-hourly time resolution, with chronological hours 

(preferably over weeks or months). It is searched that these approaches could include 

the effects of energy-efficiency measures and new technologies for electric 

heating/cooling, EVs, local storage and flexibility resources. In another work in the same 

research line, Andersen et al. in 2013 concluded that climatic conditions highly affect 

final electricity demand in dwellings and applied this knowledge for the long-term 

forecasting of hourly electricity load [53].  

Following with other methods, [54] and [55] developed different frameworks for 

prediction of peak electricity load and fault prediction, respectively. In the framework 

presented by Youngchan et al. in 2020, the daily peak electric demand is estimated 

combining a method to estimate peak temperatures and demand side management and 

they obtained accurate results [54]. Finally, the method used by Hu et al in [55] 

concluded that the combination of support vector machine and a model for signal 

decomposition achieved very accurate results for predicting the fault prediction. 

From all the previous references studied regarding data driven models for electric 

demand, it is concluded that several applications using ML models have been already 

developed in this field: fault detection, households´ lifestyle identification or electricity 

demand forecasting. However, although the existing literature developed with data 

from electric loads [56] can be partially applicable to heat loads, it presents specificities 

through several effects [44], such as outdoor temperatures and activities taking place in 

the building. Electric and thermal load are different since the variables affecting the 

energy demand are different. Thus, some of the predictors used for electricity 

characterization are not applicable in thermal load and vice versa. In the end, the 
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methods used for building the ML models are different and consequently, this literature 

review cannot be directly used in our application. The following two sub-chapters will 

introduce to the most relevant studied in heating loads in buildings and some of them 

in DH context.   

3. Review on Heating-Load Pattern Identification 

The literature on heat load patterns is more limited than those on electric 

characterization. This is due to the access to high-quality and high-frequency data on 

heating loads to be pretty recent. Before starting the analysis of the state of the art on 

this topic, we find interesting to define what a heat demand pattern is. Energy demand 

patterns are daily loads or a fraction of the daily demand profile that are repeated over 

time [57]. These energy demand patterns may be caused by a repetitive demand action 

by the users of the buildings or the energy management strategies by the DH operator, 

and they may be repeated over different days within a heating season. A correct 

understanding of the energy demand patterns and the causes will help in the 

characterization process of the heating demand in the building [58]. Unsupervised 

learning algorithms have been successfully applied to identifying usage patterns 

commonly used in electricity load analysis ([59]–[62]); however, their use in heat-related 

applications has been limited so far.  

Starting with the found references, a statistical approach to heating energy demand 

patterns of buildings connected to a DH was presented by Ma et al. (2014), based on 

such simplified variables as time and building types [63]. In the study, a Gaussian mixture 

model was presented for heat load prediction with an average absolute deviation of 4-

8% (Mean Absolute Error or MAE). In the same year, a fault detection algorithm was 

proposed by Gadd et al. (2015) based on the identification of two heat-load patterns 

corresponding to DHW and SH demand [64]. This method clustered the customer 

profiles into different groups, extracting their representative patterns, and they 

detected unusual customers whose profiles significantly deviate from the rest of their 

groups.  
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Moreover, Gianniou et al. (2018) performed a clustering work over district heating data. 

It successfully identified a set of daily building heat load profiles, with specific patterns 

for weekdays and weekends [65]. The likeliness of pattern changes in a building based 

on calendar due to changes in the space heating baseload magnitude was set with a 

monthly resolution. Tureczek et al. (2019) and Calikus et al. (2019) included clustering 

methods to study the energy demand patterns in [66] and [67], respectively. Tureczek 

et al. (2019) demonstrated that unsupervised clustering can be applied to heat load data 

by analyzing data from 49 district heating substations and showing the autocorrelation 

existence between the clusters identified [66]. Moreover, decision-trees were used by 

Calikus et al. (2019) for mining the different demand patterns in a unique office building 

located in New York [67].  

Johra et al. (2020) also performed clustering over district heating data, resulting in the 

profiling of 1665 households to 4 profiles [68]. This work was performed independently 

for all 4 seasons in a year, and the correlation between the clusters assigned for each of 

the 4 seasons was studied. In both cases, the data presented a quite stable baseload, 

mainly with one clear peak in the morning, which somehow limited the handling of more 

varied building usage. In addition, the clustering process was performed jointly for all 

the daily profiles in all the buildings, which hindered the possibility of adapting the 

cluster identification processes to the specificity of each building. What is more, the way 

to use the identified patterns in forecasting applications was not defined, which would 

anyhow be limited to the lack of any explicit relation to climate and calendar. Finally, Liu 

et al. (2021) presented an application for anomaly detection of building energy demand 

based on the knowledge obtained with unsupervised learning techniques [69]. The 

knowledge developed in these studies focused on electricity demand is partially 

applicable also to heat loads.  

An overview of all these references and the main features of these works are provided 

in Table III-1. 
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Table III-1. Overview of the main features in references concerning heat-load patterns. 

Location Buildings 
Data 

Frequency 
Algorithm  Reference 

Shandong 
Province, 

China 

Multiple 
buildings  

Hourly 
Gaussian 

mixture model 
(GMM) 

[63] (Ma et al. 
2014) 

Helsingborg & 
Ängelholm 
(Sweden) 

82 & 53 Hourly 
Statistical 
Analysis 

[64] (Gadd et 
al. 2015) 

Aarhus City, 
Denmark 

8293 single 
family 

household 
Hourly K-means 

[65] (Gianniou 
et al. 2018) 

Aarhus City, 
Denmark 

53 substations 
Hourly (Only 1-

month) 
K-means 

[66] (Tureczek 
et al. 2019) 

Helsingborg 
and Ängelholm 

(Sweden) 
2239 buildings Hourly K-shape 

[67] (Calikus et 
al. 2019) 

Denmark 1665 dwellings Hourly K-means 
[68] (Johra et 

al. 2020) 

Chongqing 
(China) 

3 Office 
buildings 

Hourly 
DBSCAN + K-

means 
[69] (Liu et al. 

2021) 

 

Most of the studies are located in Denmark and similar countries due to the extended 

use of DH networks. Additional references on this topic can be found in [70], [71]. 

4. Review on Heating-Load Forecasting  

The other main application of ML models is short and long-term forecasting of heat load 

in dwellings. Built on energy signatures, more advanced ML models have been 

developed for heat energy demand forecasting.  

In contrast to the advanced situation of electricity demand analysis, forecasting 

methods applied to heat loads are relatively new, and this research field is yet to be 
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consolidated. To the best knowledge of the author, initial works in this field ([72] and 

[73]) were developed in the early 2000s. In reference [72], a simple model was 

developed for forecasting demand in a DH network using outdoor temperature and 

social behavior. Besides, [73] presented an energy signature model for modelling 

different variables for the operation of a DH network. 

Starting with the more advanced ML models for heat load prediction, Grosswindhager 

et al. developed a model for online short forecasting of thermal loads in DH networks 

using Seasonal Autoregressive Integrated Moving Average (SARIMA) models [74]. 

SARIMA models are variations for linear regression, and they use both seasonal variables 

and the outputs obtained from timesteps before. In this study, a mean absolute 

percentage error (MAPE) of around 5% was obtained for one-day-ahead forecasts. In 

another work published by paper Paudel et al. in 2017, a ML model using support vector 

machine algorithm was developed [75]. The main objective of this model was to forecast 

energy in Low Energy Buildings (LEB). The aim of the analysis was to demonstrate that 

using only part of the training data the model was able to achieve better prediction 

results. The forecasting results achieved reached an R2 value of 0.93 and RMSE value up 

to 7.1. Following with similar works in 2017, Dahl et al. presented a simple 

autoregressive forecast model with weather prediction input for DH network load 

prediction [76]. The prediction accuracy was also measured by MAPE metric, and they 

achieved MAPE values between 5.4% and 5.7%.  

Although some of the following recent references include deep-learning models, we 

consider interesting to present them in this analysis of the state of the art. In a study by 

Sandberg et al. a forecasting model using a neural network but only for a commercial 

building connected to a DH was developed [77]. The obtained R2 for this prediction was 

0.968 for a whole year in hourly basis and a MAPE value of 3.2%. Following with deep 

learning models and neural networks, Lei et al. studied the efficiency of these models 

for energy forecasting of more than 100 civil public buildings [78]. These neural 

networks had a MAPE value between 4% and 5%. In general, deep learning has accurate 

results for the prediction of hourly heat load, however, the computational cost of this 
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models is very high in comparison with simpler ML models. Another approach was 

developed by [79] in which the heat load predictions were carried out for the whole DH 

network, and thus individual effects of each building are avoided. This study compared 

various ML models and concluded that the most accurate was a gaussian process 

regression with MAPE below 3% for the accumulated energy in one year for the whole 

DH network. Furthermore, Sauer et al. presented a forecasting optimizer using extreme 

gradient boosting (XGB) algorithm and applied to simulated heat and cool loads in 

buildings [80]. The prediction results obtained in the analysis achieve R2 values above 

0.90. In [81] several ML algorithms were developed using neural networks for load 

forecasting in several buildings and the MAPE varied from 28,81% down to 8,98% in the 

optimal variant of the model. To finish with the state of the art on heat load forecasting, 

Zhao et al. in 2022 developed an optimization of convolutional neural network for short-

term forecasting in residential buildings and he MAPE was reduced by 12.33% compared 

with a traditional network [82]. The MAPE values in this work ranged between 0.6% and 

1.1%. 

This being so, several references are found in this context and specially in recent years. 

Similar than it has been presented for pattern recognition, an overview of all these 

references and the main features of these works are provided in Table III-2. 
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Table III-2. Overview of the main features in references concerning heat-load forecasting. 

Location 
Data 

Frequency 
Algorithm  Error Metric Reference 

Tannheim 
(Austria) 

Half-Hourly 
(30’) 

SARIMA 
MAPE ~5% (24 
hours ahead) 

[74] 
(Grosswindhager 

et al. 2011) 

France  

LEB 
Standards 
(Not real 

Data) 

Support Vector 
Machine (SVM) 

R2 = 0.93; 
RMSE = 7.1 

(kWh) 

[75] (Paudel et 
al. 2017) 

Aarhus 
(Denamrk) 

Hourly 
Autoregressive 
forecast model 

(ARX) 

MAPE between 
5.4%-5.7% 

[76] (Dahl et al 
2017) 

Sweden  Hourly 
Autoregressive 
neural network 

R2 = 0.96 & 
MAPE = 3.2% 

(1 Commercial 
building) 

[77] (Sandberg 
et al. 2021) 

Dalian 
(China), 
Public 

buildings 

Hourly 
Neural Networks 

(Deep, back-
propagation, etc.) 

MAPE ~5% 
[78] (Lei et al- 

2021) 

Ljubljana 
(Slovenia) 

Hourly 
Gaussian process 

regression 
MANE ~3%2 

[79] (Potočnik et 
al. 2021) 

Simulated 
Data 

Not 
Defined 

eXtreme Gradient 
Boosting (XGB) 

R2 around 0.98 
[80] (Sauer et al. 

2022) 
Cottbus 

(Germany) 
Hourly 

Artificial neural 
networks 

MAPE = 
[8,98%,28,81%] 

[81] (Sakkas et 
al. 2022) 

Xi’an, 
Shaanxi 
Province 
(China) 

Hourly 
Convolution 

Neural networks 
(CNN) 

MAPE = 
[0.6%,1.1%] 

[80] (Zhao et al. 
2022) 

5. Gaps Identified 

Based on the literature review carried out in the previous paragraphs, the gaps identified 

and consequently the challenges faced in this thesis are listed below: 

• Wide range of applicability: the multi variable models presented in this thesis 

aim to be valid for any type of building, regardless of the heating profile or final 

 
2 MANE = Mean Absolute Normalized Error 
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use, since the building stock connected to a DH network is usually made up of all 

kinds of building types. Thus, the models are also valid for any type of climatic 

conditions and location of the network.  

• High temporal resolution predictions: the present model is applied to hourly 

and daily data, thus meeting the necessity of high temporal resolution models. 

Most of the models are focused on hourly resolution data. This resolution is 

considered as high-frequency data for heat-load due to the heating load patterns 

in buildings.  

• Low-Calculation/Computation Cost: In line with the first point, the models are 

suitable for the characterization of entire district, and they have to be valid for 

hourly energy management. Thus, the simulations must be fast enough to be 

able to control energy production. The developed models are based on relatively 

simple equations so that they maintain certain relation with real effects on 

buildings. 

• High Simplicity and accuracy: Of course, the obtained accuracy must be high. 

The objective is to achieve similar predictions´ accuracy than more complex 

deep-learning models.  

• Use of Heat demand Pattern as predictors: No other studies found in references 

used heat demand patterns as input variables for the prediction models.  

• Based on Real Data: As it will be presented in Chapter IV, all the simulations and 

models are trained and tested against real data. This type of data usually includes 

higher deviation, and it is usually more difficult to obtain high accuracy. 

However, the models are tested in real conditions.   

• Application to manage a simulated district: All the calculations are based on 

data from real buildings and to conclude the thesis in Chapter IV, the models are 

scaled to manage the energy production of an entire district and transferred to 

other location´ buildings.  
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6. Objectives  

The main goal of this thesis is to explore the usability of Machine-Learning (ML) 

algorithms for energy characterization in a building-scale and evaluate the efficiency of 

these black-box models for the energy management in a district-scale. The objective of 

the thesis is to characterize the demand (SH + DHW) in building connected to DH 

networks. The thesis is purely based on data and as every data-based project, it will 

include: 

- Data access and pre-processing activities. 

- Different ML models development and evaluation. 

- Application of the optimal model for a simulation of a district-heating network 

energy management. 

This goal is reached by the development of a multi-step method in which different 

algorithms and models are built and evaluated with the purpose of characterizing the 

thermal demand in buildings connected to DH networks.  

Apart from the abovementioned main objective of the dissertation, several technical or 

secondary objectives are expected to be achieved: 

• To give an overview of the current status of district-heating networks and 

focusing on modern grids: fourth and fifth generation. This study analyses the 

energy generation systems, distribution temperatures and other technical 

characteristics of heating grids.  

• To analyze heat demand in buildings using real data. This analysis will try to 

discover the main demand patterns in buildings for different uses: residential 

buildings, educational buildings, commercial buildings and offices. It enables to 

understand the occupational behavior of the dwellings as well as the space-

heating techniques. 
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• To develop ML models using unsupervised techniques for the evaluation of heat 

demand patterns in different buildings. The dissertation will try to obtain a 

method to evaluate the efficiency of these unsupervised techniques.  

• To develop ML models using supervised techniques for different purposes: 

classification of typical heating profiles or hourly demand forecasting in building 

and district-scale, among others.  

• To compare the efficiency of the developed models against other models for the 

same purposes that are nowadays used or that can be found in a literature 

review. 

• To apply the forecasting model for the energy management of a simulated 

district-heating and compare the results against a baseline.       
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Chapter IV 

Data Presentation & Tartu´s Case-Study  

 



 

 

 

 

 

Abstract 

After the analysis of the state of the art, this chapter starts with the introduction to 

the data that will be used throughout all the dissertation. This chapter introduces 

the data sources used and presents a general description of the district-heating 

network where all the buildings are connected. Two main data-sources will be used 

along the dissertation: (i) climatic data-source and (ii) demand data from the 

buildings. It will finally analyze the correlation between these two data-sources 

using correlation coefficients.   

 

Resumen 

Tras el análisis del estado del arte, este capítulo comienza con una introducción 

general de los datos que se utilizarán a lo largo de toda la tesis. Este capítulo analiza 

las fuentes de datos utilizadas y presenta una descripción general de la red de 

calefacción urbana donde están conectados todos los edificios. Se utilizarán 

únicamente dos fuentes de datos principales a lo largo de toda la tesis: (i) una fuente 

de datos climáticos y (ii) los datos de demanda de los edificios. Finalmente, se 

analizará la correlación entre estas dos fuentes de datos utilizando coeficientes de 

correlación típicamente utilizados en análisis estadísticos. 
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Chapter IV Data Presentation & Tartu´s 

Case-Study  

1. Introduction & Objectives of this Chapter 

Today, data is becoming more and more important in all kind of activities, and it is often 

said that the one who owns data also owns power. This dissertation concentrates on 

developing ML models that use real energy demand data so that all the dissertation is 

based on data. Before starting with ML aspects, we have considered necessary to 

present the nature of the data and how the used data sources are associated. 

Therefore, the main objective of this chapter is presenting the characteristics of the DH 

network used as a case-study, in which the buildings are connected and where all the 

following sections of the dissertation are located.  

We are presenting the two main data sources used as input for our models: 

- Climatic data, obtain from an available weather station.  

- Heat Load data from the buildings connected to the DH network. 

Besides, this chapter aims to fulfill the following additional objectives: 

- Analyze the characteristics of the DH Network of this Case-Study. 

- Present the nature of the data, analyzing frequency, data-sources, data 

acquisition, etc. 

- Describe the characteristics of the buildings under study.  

- Analyze the potentially existing correlation between the heat-load and climatic 

variables. 
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2. Summary of the DH in Tartu (Estonia) 

The DH adopted as a case-study is located in Tartu (Estonia). With over 90.000 

inhabitants, Tartu is the second largest city of the country. Tartu is served by a district 

heating system privately owned and operated by GREN [1]. The most used technology 

for energy production is CHP, which yearly delivers around 500 GWh to over 1500 

consumers/buildings in the city. From this energy, 94 % is obtained from biomass and 

peat. In Fig. IV-1, the lay-out of the most important heat production facilities is shown, 

accompanied by the fuel source used and the nominal capacity (in MW) of each plant. 

 

Fig. IV-1. DH Production-Scheme of Tartu´s Network 

The main consumers of this network are collective housing (49%), industry and 

commercial buildings (33%) and individual housing (18%). The grid receives 40-60 new 

connections per year. While it is important to describe the entire network, this 

dissertation will focus on a specific part of the network (subnetwork) consisting of 43 

buildings connected in the Tarkon-Tuglase district in the northern part of the city. Each 

building is identified by a code (or ID number), completely independent from its real 

address to avoid any identification problem and preserve the privacy of the users. A 

statistical analysis of the data of these buildings is presented in the following section, 
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All the data is collected for the complete year of 2019.  

3. Data from Weather Station 

Used climatic data was obtained from a weather station located and managed by the 

Physics Institute of the University of Tartu [83]. It collects data with a 15-min frequency 

and the station is located at a maximum distance of 5 kilometers from the buildings 

under study (the distance can be less, depending on the location of each building). Fig. 

IV-2 show the location of the weather station and the distance to the train station of 

Tarkon-Tuglase. The real address of the buildings is avoided for privacy concerns. 

 

Fig. IV-2. Location of the Physics Institute of the University of Tartu and Tarkon-Tuglase. Source: 
Google Maps 

For extracting the data, an online query provided by the Physics Institute of the 

University of Tartu is used. For extracting the data, we only required to introduce the 

starting and final date and the climatic variables that were considered to be relevant for 

the study.   
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According to the Köppen-Geiger classification [84], Tartu's climate is classified as Dfb, 

characterized by a very low outdoor temperature. Minimum outdoor temperature in 

winter can reach −20 °C, and all monthly averages fall below 20 °C. The climatic variables 

analyzed in this dissertation are the detailed next. Note that relative humidity has not 

been considered in the model, due to its little relevance in the absence of cooling 

demand.  

- Outdoor temperature (TOUT) in [°C]. 

- Global Solar Irradiance on a horizontal plane (GT) in [W·h/m2] 

- Wind Speed (WS) in [m/s] 

- Wind Direction (WD) (from 0 to 360°) 

The pictures below show a statistical distribution of these four climatic variables under 

study. First, the outdoor temperature and solar irradiance are shown in Fig. IV-3 and Fig. 

IV-4, respectively.  

 

Fig. IV-3. Yearly outdoor temperature or TOUT in °C in Tartu (Estonia). Data for 2019. 
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Fig. IV-4. Yearly global solar irradiance on the horizontal plane in Tartu (Estonia). Data for 2019. 

The temperature distribution, TOUT, presented in Fig. IV-3 shows that the minimum 

temperatures almost reach -20°C in the coldest months of the year, especially in 

January. The summer is quite hot, with maximum outdoor temperatures around +30°C 

in June and July. Almost all the months of the year present hour intervals with outdoor 

temperatures below 0°C. The only months with positive temperatures during all hours 

are June, July and August, coinciding with the summer period in Tartu3.  

Regarding the global solar irradiance, illustrated in Fig. IV-4, the hourly maximum solar 

energy received is below 1000 W/m2 and the general profile of the daily solar irradiance 

follows a Gaussian distribution. The median value of this energy at 12am slightly 

surpasses 250 W/m2.  

Additionally, Fig. IV-5 and Fig. IV-6 characterize the wind speed (WS) and wind direction 

(WD), respectively. As observed in Fig. IV-5, the distribution of wind speed frequency 

follows a Weibull distribution [85]. 

 

3 The Appendix section presents a data-based method for determining the beginning 

and the end of the summer period in function of the delivered heat.  



    

95    Data Presentation & Tartu´s Case-Study 

 

 

Fig. IV-5. Yearly wind Speed histogram in Tartu (Estonia). Data for 2019. 

 

Fig. IV-6. Yearly wind direction Wind Rose in Tartu (Estonia). Data for 2019. 

In addition to these weather data, it is essential to analyze the heat demand patterns 

from the buildings in the same location. It is performed in the following section.   
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4. Data from DH Substation. Buildings´ demand 

The heating load profile consists of data from 43 substations of the DH network in Tartu 

(Estonia) (see The hourly energy use is calculated as the measured reading in that hour 

minus the measured value in the previous hour. Among the substations under study, 

different types of thermal zones can be found in terms of the final use or demand profile 

of the building. In this sense, residential apartments (also referred as private house), 

offices, educational buildings and commercial buildings are included.  

This dissertation is focused on 43 different buildings connected to the DH in Tartu and 

the most relevant characteristics of these building are shown in Table IV-1. Each building 

is identified by a code (ID number), completely independent from the real address of 

the location to avoid any type of identification problems and to preserve the privacy of 

the users.  Some buildings have a NO in the “DHW (Y/N)” column although that does not 

mean that there is no DHW demand in the building but that they might use other energy 

sources but DH to fulfill these requirements. 

 

Table IV-1), all located in the sub-network of Tarkon. Each substation contains a smart 

meter that measures different variables in the system with an hourly frequency and 

sends it remotely to GREN, the DH operator. The energy meter installed in the buildings 

is the Multical® 603 from Karsmtrup [86]. The uncertainty of this device remains below 

5% in all the measured variables, which is better than that specified in the European 

directive for this purpose (EN-1434-1:2015 [87]). Heat energy demand is saved as a 

cumulated variable and read hourly. The measures of each substation correspond to the 

features of one building. Fig. IV-7 presents the monitoring scheme of the heat meters 

used. As it can be observed, the smart heat meter measures additional operational 

variables in the system, such as the supply and return temperatures of the primary and 

secondary sides of the substation (from T1 to T5 in Fig. IV-7) and volumetric flow (m in 

Fig. IV-7). Nevertheless, this dissertation will on be focused on the total heat demand on 

the buildings, which comprises the sum of SH and DHW demand. Of course, these two 
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energy-demands are correlated with the rest of the operational variables in the system 

(temperature difference and volumetric flow) and consequently, cannot be used for the 

characterization of the total energy demand.   

 

Fig. IV-7. Location and lay out of the smart energy meters in the DH in Tartu 

The hourly energy use is calculated as the measured reading in that hour minus the 

measured value in the previous hour. Among the substations under study, different 

types of thermal zones can be found in terms of the final use or demand profile of the 

building. In this sense, residential apartments (also referred as private house), offices, 

educational buildings and commercial buildings are included.  

This dissertation is focused on 43 different buildings connected to the DH in Tartu and 

the most relevant characteristics of these building are shown in Table IV-1. Each building 

is identified by a code (ID number), completely independent from the real address of 

the location to avoid any type of identification problems and to preserve the privacy of 

the users.  Some buildings have a NO in the “DHW (Y/N)” column although that does not 

mean that there is no DHW demand in the building but that they might use other energy 

sources but DH to fulfill these requirements. 
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Table IV-1. Summary of the buildings connected to the DH in Tarkon-Tuglase (Estonia) 

Building ID Type of Use 
DHW 
(Y/N) 

Building ID Type of Use 
DHW 
(Y/N) 

10045 
Residential 

(Apartments) 
Y 11163 School N 

10051 Residential  N 11164 School Y 

10258 Residential  N 11165 School Y 

10259 Residential  Y 11166 School Y 

10266 Residential  N 11195 
Commercial 

Building 
Y 

10280 Residential  N 11491 School Y 

10298 
Private house 
(residential) 

Y 11494 Residential  Y 

10512 Residential  N 11522 Residential  Y 

10686 Residential  Y 11582 Residential  Y 

10696 Residential  Y 11604 Residential  Y 

10718 Residential  Y 11676 Residential  Y 

10725 Residential  Y 11708 Residential  Y 

10777 Residential  N 11718 Office Y 

10888 Residential  Y 11741 Residential  Y 

10922 Residential  Y 11765 Residential  Y 

10949 Kindergarten Y 11780 Residential  Y 

11008 
Private house 
(residential) 

Y 11794 
Private 
house 

(residential) 
Y 

11009 
Private house 
(residential) 

Y 11795 
Private 
house 

(residential) 
Y 

11014 
Private house 
(residential) 

Y 11836 Residential  Y 

11015 
Private house 
(residential) 

Y 11860 
Private 
house 

(residential) 
Y 

11044 Residential  N 11882 Residential  Y 

11064 Residential  Y    



    

99    Data Presentation & Tartu´s Case-Study 

 

There is no additional information available about the external energy sources neither 

about the constructive characteristics such as: number of floors, windows-to-wall ratios 

or other useful information for characterizing the energy demand inside the buildings. 

Thus, the main objective of the work is to characterize the demand only using the 

climatic data. 

As there is data for 43 buildings, the following figures will show some general 

information about the statistics of demand variable and the demand of some particular 

buildings. The images for the rest of the figures are annexed in the Appendix Section 

(Chapter XI). 

Fig. IV-8 shows a boxplot with the hourly total demand of the 43 buildings under study. 

These boxplots enable to visualize the minimum, maximum, median and quartiles of the 

demand. The standard deviation of the data is represented by the height of the box in 

each of the buildings. A greater difference between quartiles means that the data is 

more diffuse and that the point dispersion is larger. 



 

 

 

 

Fig. IV-8. Heating Demand statistics in the 43 buildings in Tarkon-Tuglase



 

 

Additionally, the following figures (Fig. IV-9, Fig. IV-10, Fig. IV-11 and Fig. IV-12) present 

the heating profile of certain individual buildings. These building are examples of each 

of the typologies studied: Building 10045 and Building 10051 are residential apartments 

with and without DHW, respectively. Additionally, Building 10949 and Building 11718 

are offices and a kindergarten, respectively, both with DHW demand covered by the DH 

network. As commented above, only some representative examples are herein shown; 

the rest of the buildings are detailed in the Appendix 2 (Page 315). The pictures labelled 

with (a) present the hourly total heating demand hourly profile while those marked with 

(b) represent the relation between demand and the outdoor temperature, TOUT.   

(a) (b) 

Fig. IV-9. Heating year profile and Demand vs TOUT for Building 10045 (Residential apartment) 
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(a) (b) 

Fig. IV-10. Heating year profile and Demand vs TOUT for Building 10051 (Residential Apartment) 

(a) (b) 

Fig. IV-11. Heating year profile and Demand vs TOUT for Building 10949 (Educational Building) 
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(a) (b) 

Fig. IV-12. Heating year profile and Demand vs TOUT for Building 11718 (Office) 

To see the rest of the demands, go to Page 315. 

Previous figures show the hourly profile of the demand (on the left) and the demand 

against the outdoor temperature (on the right) of four buildings. The first difference 

observed is the magnitude of the demand. While the office (Building 11718 Fig. IV-12) 

presents a maximum demand above 150 kWh, the first residential building (Building 

10045 in Fig. IV-9) only reaches a maximum demand slightly above 60 kWh. Other 

remarkable difference that can be observed n this raw data is that some of the buildings 

do not present demand with high outdoor temperature, coinciding with the summer 

period. While Building 10051 presents a lot of observation with no demand, the rest of 

the buildings in this paragraph show a minimum demand above zero throughout all the 

year. This is caused by the DHW supply using other heating sources than the DH 

network. Additionally, in general, the nature of the demand is different in all the 

buildings. Some of the buildings present relatively low dispersion (Building 10051), while 

Building 10949 presents, at least, two or three clear trends in high demand zone. 

Therefore, it is concluded that the nature of the demand is different in each building so 

that we need a general method that may adapt to the different “shape” of the demand, 

finding real relations (or correlations) with external variables that may be affecting the 
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demand. And we refer as external variables because they are not dependent on the 

buildings itself. The challenge of this dissertation is characterizing the demand in all the 

buildings using a unique model for all the buildings and only based on external variables, 

since there is no information about the characteristics of the buildings.  

The following section presents an introduction to correlation analysis between external 

variables and the demand, which is the basis for the rest of the chapters.      

5. Correlation between Data Sources 

As a final part of the data presentation, it is important to discuss how the variables used 

for the study are correlated with the total demand in each building. For that purpose, 

the Pearson correlation coefficient and pairs of scatter plots are shown for Building 

10045 and Building 10051 in Fig. IV-13 and Fig. IV-14, respectively. Pearson correlation 

shows the linear correlation between two variables, and it range between -1 and 1. A 

coefficient equal to -1 shows a negative perfect relation between the variables and +1 

presents a perfect positive correlation. When this coefficient is near to zero means that 

these variables are hardly correlated and will not contribute with added value to data-

driven models.   

These two buildings are shown (Fig. IV-13 and Fig. IV-14) to cover different buildings 

with and without DHW demand, but the discussion would be very similar for the rest of 

the buildings. 



 

 

 

 

Fig. IV-13. Pearson Correlation between heat-load and climatic variables in Building 10045 (Residential with DHW demand). 
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Fig. IV-14. Pearson Correlation between Heat-load and climatic variables in Building 10051 (Residential without DHW demand). 



 

 

The following tables (Table IV-2 and Table IV-3) enables a better visualization of the 

coefficients shown in the previous figures.  

Table IV-2. Pearson coefficients in Building 10045 

Building 10045 DEMAND TOUT GT WS WD 

DEMAND 1 -0.89 -0.37 0.14 0.039 

TOUT -0.89 1 0.50 -0.11 -0.063 

GT -0.37 0.50 1 0.052 -0.042 

WS 0.14 -0.11 0.052 1 0.12 

WD 0.039 -0.063 -0.042 0.12 1 

 

Table IV-3. Pearson coefficients in Building 10051 

Building 10051 DEMAND TOUT GT WS WD 

DEMAND 1 -0.90 -0.40 0.14 0.063 

TOUT -0.90 1 0.50 -0.11 -0.063 

GT -0.40 0.50 1 0.052 -0.042 

WS 0.14 -0.11 0.052 1 0.12 

WD 0.063 -0.063 -0.042 0.12 1 

 

The conclusions from the correlation analysis are the followings: 

• The outdoor temperature and the solar irradiance are the variables with highest 

correlation to the demand, followed by the wind speed. Finally, the wind 

direction has almost no correlation with the demand. 

• Outdoor temperature and solar irradiance have negative correlation with the 

demand. Thus, when the outdoor temperature is low (or the solar irradiance), 

the demand in the buildings increases and vice versa. The opposite trend is 

observed with the wind speed. When the wind is strong, the building losses by 

convective effects are higher and consequently, the demand increases. 
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• The correlation coefficients in Building 10051 are higher than Building 10045. 

This is caused by the lower dispersion of the demand observations in this 

building.  
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Chapter V 

Data Analysis & Q-T Algorithm 



 

 

 

 

 

Abstract 

This chapter presents the first analysis of the data received from the smart meters 

in the substations of the buildings. This chapter analyzes the nature of the data and 

will present a novel method for outlier removal based on a density-based clustering 

algorithm. Additionally, and once that the anomalous values are removed from the 

dataset, it will present a novel method for characterizing the demand, the so-called 

Q-T algorithm. This chapter will study the efficiency of this method for hourly and 

daily frequency data. 

 

Resumen 

Este capítulo presenta un primer análisis de los datos recibidos de los medidores 

inteligentes en las subestaciones de los edificios. Este capítulo analiza la naturaleza 

de los datos y presentará un método novedoso para la eliminación de valores 

atípicos de la demanda basado en un algoritmo de agrupamiento no-supervisado 

basado en la densidad de puntos. Adicionalmente, y una vez que se eliminen los 

valores anómalos del conjunto de datos, se presentará un método novedoso para 

caracterizar la demanda, el denominado algoritmo Q-T. Este capítulo estudiará la 

eficiencia de este método para los datos con frecuencia horaria y diaria. 
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Chapter V Data Analysis & Q-T Algorithm 

1. Introduction 

As mentioned in previous chapters, predicting (with high accuracy) the energy demand 

in buildings connected to a DH network is a key factor for developing energy reduction 

strategies or for detecting anomalies in the networks.  

As we commented in the State of Art chapter (Chapter III), regarding heat load 

forecasting alternatives for buildings, white-box model forecasting (using tools as 

EnergyPlus [31] or TRNSYS [32]), including their calibration against meter data became 

an opportunity for buildings and lower scale (elements of the building, for example). 

However, these methods are not valid at DH scale, as the DH utility does not have the 

required information to develop such models (architectural data, use patterns, etc.) and 

the model development and calibration process is considered to be time and resource 

intensive.  

Similarly, grey-box approaches require to simulate complex and time-consuming 

differential equation to model the demand. These methods could be considered 

reasonable for building scale. However, each building would require the 

characterization of a differential equation and this model requires a large amount of 

information that is usually not available for the DH operators.  

In contrast, black-box data-driven models do not require the differential equations that 

govern building physics to be understood and implemented. Such models are purely 

based on data and can be trained to infer relations between inputs and outputs using 

statistical techniques with no physical interpretation. Energy signature models are one 

of the simplest types of black-box models that express the heating energy use as a 

function of weather variables. They can provide successful results for low-resolution 

heat load predictions, such as monthly or seasonal data. In energy signature literature, 
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outdoor temperature is the most dominant weather variable ([41] or [88]). The usual 

choice of outdoor temperature as the unique predictor variable can be partially 

explained by the difficulty to access good historical data of other climatic variables. 

However, there are also studies, such as [89] where, outdoor temperature, global solar 

radiation and wind speed were used as the weather parameters for the models. In other 

studies, such as [90], relative humidity was also included. Results from all these studies 

concluded that outdoor temperature is the most influential parameter, although it is 

highly commendable to consider also solar radiation [79].  

This chapter will explain, step by step, a self-developed Q-T algorithm which is 

considered as an evolution of simple energy signature models.   

2. Objectives of this Chapter 

This chapter is focused on the two following objectives: 

• Analyze the relation between the heat-load, climatic variables and calendar 

variables for the DH in Tartu and assess the dependencies between these 

variables. This chapter will go one step further in correlation analysis and will 

explain how some of the variables are related.  

• Developing a simple ML model (the so-called Q-T algorithm) based on the 

dependencies found on this chapter.  

Thus, the main objective of this chapter is understanding the data and developing a 

simple model based on the general knowledge obtained in this study. The proposed 

model will be based on relatively simple equations and the low calculation/processing 

cost, and the consideration of any type of final use of the buildings modelled, makes it 

suitable for deployment on such large scales as full DH networks. Moreover, the model 

presented in this study aims to be valid for any type of building, regardless of the heating 

profile or final use, since the building stock connected to a DH network is usually made 

up of all kinds of building types.  
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3. Methodology 

This section details the general methodology followed in this chapter. In terms of 

structure, section 3.1 provides an overview of two methods to identify the outliers or 

anomalies in the raw dataset presented in the previous chapter. The study of the 

anomalies will be limited to heat-Load variables since it is the variable to be 

characterized. Then, section 3.2 analyzes the relations between all the variables in the 

study and stablishes the basics for the model development using simple decision-trees 

(DT). Section 3.3 defines the equations that rules the model, while section 3.4 shows the 

error metrics that have been used for evaluation the efficiency of the model. Section 4 

will show the results, divided by general results and specific results for some individual 

cases. 

The described methodology is illustrated in Fig. V-1.  

 

Fig. V-1. General Methodology followed for developing Q-T algorithm. 

3.1. Pre-Processing of the Data: Outlier Identification 

The first pre-processing activity that is required for preparing any original data set for a 

further analysis is the outlier removal. Outliers in a dataset are defined as anomalous 

observations that have been caused by reading errors or by unusual heating demand. 
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Usually, the reading errors are saved as NULLs or NAs by the installed energy meter and 

could be directly removed from the original data set. However, unusual observations 

can be caused by a sudden increase in the demand or by electricity peaks. Regardless of 

the cause, these observations can disturb the real nature of the demand and this way, 

decrease the accuracy of the data-driven methods subsequently developed. 

Even though outliers and reading errors have been found in the two used data sources 

(data from substations and data from weather stations, described in Chapter IV), this 

study is only focused on identifying the outliers of heat-load demand variable (from 

substations). Then, the weather variables corresponding to the heat-load hour identifies 

as an outlier will also be removed from the original dataset.  

Reading errors are directly removed from the original dataset, reducing the total data 

points available. 

For the identification of outliers, the following two methods are proposed: 

• IQR (Interquartile) Method 

• Density Based Clustering 

3.1.1. IQR Method 

For the identification of the outliers, quartiles of each variable are calculated using a 

boxplot function in R [91]. R software is a programming language for statistical 

computing and graphics supported by the R Core Team and the R Foundation for 

Statistical Computing. For a specific variable such as heat demand, the statistical 

distribution consists in the identification of three quartiles (Q1, Q2 and Q3).  The first 

quartile, Q1, is defined as the value in which the 25% of the observations are below. The 

second quartile, Q2, is defined as the median value and finally, the third quartile 

corresponds with the 75% of the data below this value. The interquartile (IQR) variable 

is defined as the difference between third and first quartile, as it is observed in Fig. V-2. 

The values above Q3 + 1.5·IQR and the value below Q1-1.5·IQR are considered as 
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outliers, coinciding with the values that are the furthest from the median value of the 

variable. All this process is illustrated in Fig. V-2. 

 

Fig. V-2. IQR Method for outlier removal 

This methodology is only based on the statistical distribution of the observations and 

may remove values that are not real outliers. However, as an initial approach to outliers’ 

removal this method is quite efficient and is usually used in similar studies such as [92] 

and [93]. 

3.1.2. Density Based Clustering 

The other main methodology studied for outlier removal is based on an unsupervised 

clustering method named as density-based clustering or DBSCAN. The objective of this 

algorithm is to identify high-density observations that are closely together and the 

points that are identified in low-density areas are considered outliers. This algorithm 

was firstly proposed in 1996 by M. Ester et al. [94] and the implementation of this 

algorithm in R is made using the library “dbscan” [95].  

This density-based clustering algorithm has the main advantage that is not required to 

pre-assign the number of clusters (unlike other clustering algorithms such as K-means) 

and that the outliers usually coincide with the isolated points in the low-density areas 

identified with this algorithm. The initialization of DBSCAN is made with the process 

called hyperparameter tuning, by the determination of the following two parameters: 
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Eps and MinPts. Eps represents a radius used from different observations in the 

algorithm and MinPts is used to denote the minimum number of observations within 

the circular region formed by Eps are key parameters in this clustering process. The 

density-based clustering algorithm starts with an arbitrary point selection and 

generating the neighborhood based on the Eps selected. The number of points within 

this region are assessed; if the number of points is higher than MinPts, this point is 

labelled as a core-point and the cluster formation starts. Otherwise, the point is labelled 

as noise. However, this point can be later found within the Eps neighborhood of a 

different point and thus can be part of the cluster. All the points within the region will 

be part of the cluster if they are also core points and this process continues until the 

density-connected cluster is completed. The next step is to randomly select another 

point that has not been selected in previous steps and apply the same procedure. After 

all the points are processed, the points that are not assigned to any cluster are labelled 

as noise.  

The main difficulty of this algorithm is the optimization of these two parameters. 

According to the authors of the library “dbscan” [95], the variable MinPts is initialized as 

the dimensionality of the dataset or dimensionality of the dataset plus one.  An overly 

small Eps can cause that values that are not outliers are considered as outliers and an 

overly high Eps value cause that the outliers are not identified. For the optimization of 

this step, calculation of K-nearest neighbors’ (k-NN) distances is carried out and the 

elbow of the ascending ordered distances correspond the optimal Eps value. The elbow 

of that curve is calculated by means of the second derivative of the k-NN distances. 

3.2. Initial Data Analysis, Correlation Analysis and Modelling Approach 

In a first analysis of the heating energy demand, a range of different heat profiles were 

found among the different buildings under study. These can be attributed to the 

different final uses of the buildings and the energy demand patterns of the users in their 

respective dwellings. As it has been presented in Table IV-1, some of the buildings 

included in the study show energy demand only for SH purposes (e.g., Building 10051, 
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Building 10512, etc.); whereas other buildings consume energy from the DH network for 

both SH and DHW production (e.g., Building 10045, Building 10718, etc.). In all cases, 

the measured heat-load represents the total heat demand of the building (see location 

of the energy meter in Fig. IV-7). Even though the district is composed by several building 

typologies, the model presented in the following section aims for a general application 

to any building, independently of the usage or heat profile of that building. The model 

and the method to train will be the same in all the buildings under study. 

The energy required to satisfy the SH demand is dependent on both the climatic 

variables and the characteristics of the building (such as geometry and thermal 

envelope). It can be anticipated that when the outdoor temperature is low or the solar 

irradiance is low, the demand for space heating demand will be higher and thus, the 

weather variables and SH demand show a large correlation. However, DHW demand 

shows little to no dependence on climatic variables and primarily responds to use 

patterns and seasonal variations (e.g.: a young worker and a retired person are expected 

to have quite different DHW demand profiles). As an example, the heat demand of 

Building 10051 is not affected by DHW demand, whereas, in Building 10725, part of the 

heat demand is dedicated to that purpose. These figures have been shown in Chapter 

IV (Fig. IV-9 and Fig. IV-10) or Chapter XI (Appendix). 

A night setback or a reduction in the demand has been identified in certain buildings, 

where heat energy demand patterns differ along different hours, independently from 

the climatic variables of that moment, incorporating a time dependency into the 

demand. Thus, calendar variables and heating demand variables are correlated, as it was 

proven with Fig. IV-13 or Fig. IV-14. The night setback can be used by the DH operator 

to reduce energy production in periods when a low heat load is expected, regardless of 

the climate conditions. Moreover, the high thermal inertia of the DH network could be 

used to satisfy the possible heat energy demand at night. In this context, Fig. V-3 shows 

the heat profile of two buildings under study where a night setback has been identified. 

In both buildings, a reduction of the heat load is identified between 3AM to 5AM.  
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The mining of the effect of the night setback in the demand results in the definition of 

the first level for the decision-tree (LVL3 in Section 3.3) for application in the model. 

 

(a) 

 

(b) 

Fig. V-3. Identification of night setback in Building 10718 (a) and Building 10686 (b) 

The usually low activity of the occupants at night gives the possibility to DH operators to 

carry out demand flexibility strategies in order to reduce energy resources in the system. 

Even though the size of the buildings under study is unknown, large buildings have high 

thermal inertia that permits to maintain an indoor temperature within the comfort limits 

for some hours. These thermal inertias in the system (building and network) enable to 

control the demand peaks and reduce energy use in the network. 

Furthermore, the daily aggregated heating energy demand profiles allow the energy 

share used for daily DHW to be identified, as shown in the next section. However, in the 

same way as has been done for the hourly data, additional time-dependent patterns 

have been identified in the daily aggregated data. In buildings that have no occupation 

at the weekends (e.g., offices or schools), this phenomenon is more noticeable. Fig. V-4 

shows an example of how heat energy demand varies with respect to the day of the 

week, by means of a boxplot of the quartiles of daily heat energy demand. It can be 

observed that Building 11166 presents a lower demand on Saturdays and Sundays, 
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matching the days of no occupancy. In the same manner, in Building 11195, which 

corresponds to a commercial building, only presents lower demand on Sundays, as this 

type of building is usually closed on this day. As a general conclusion, heat demand at 

the weekends is lower than on weekdays in some of the buildings. This is caused by the 

lower or non-occupancy of the buildings those days. This effect leads to the definition 

of the second variable of the decision-tree (LVL2 in section 3.3). 

 

(a) 

 

(b) 

Fig. V-4. Daily demand patterns in Building 11166 (a) and Building 11195 (b) 

Specific seasonal patterns have been also identified, grouped in two main periods: 

summer & rest of the year (referred as REST). Despite undergoing relatively low external 

temperatures at some moments of the summer, the monitored heat energy demand 

does not correspond to the expected values for similar climatic conditions outside this 

season. This divergence could be motivated by a reduction of the heat load by the DH 

operator in this period.  

As an example of the seasonal heat-load variation, Fig. V-5 presents the yearly demand 

profiles for two residential buildings (Building 10258 and Building 10718). The demand 

in the intermediate part of the year, the so-called “SUMMER” is lower than the rest of 

the year.  
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(a) 

 

(b) 

Fig. V-5. Seasonal demand patterns in Building 11166 (a) and Building 11195 (b) 

This phenomenon is not identified in all the buildings under study, and, in consequence, 

a general methodology is necessary for the identification of the summer period 

performance. It has been observed that the variability of the demand in the summer 

period is much lower than the variability in other periods of the year. Consequently, the 

summer heat demand follows a more stable (less varying) profile through time. Indeed, 

the comparison of the standard deviation between data periods was found to be an 

accurate method for identifying the relevant summer period for each building. Batches 

of 15 days were selected, and this methodology was applied to all the buildings under 

study. As a result, from the application of this method, the start and finish day of the 

summer are obtained for each of the buildings. These periods differ from building to 

building and this is way this methodology is applied to all the buildings independently. 

This list of days will serve as the input variable in the decision-tree (LVL1 in section 3.3).  

It can be concluded that energy demand in the analyzed buildings is highly dependent 

on the weather parameters and also on the specific user-behavior. The latter factor is 

frequently omitted in modelling tools due to its random nature, which adds a significant 

complexity to the problem. However, it has been considered here for the sake of 

accuracy. The developed model is detailed in the following sections. 
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3.3. Definition of the Model. Q-T Algorithm 

As a first approach for the mathematic characterization of the model, it was proposed 

to split the data in two parts by a specific temperature threshold. The demand data 

matching an external temperature above that threshold was attributed to periods with 

no space heating demand (no demand or DHW demand only); whereas the data below 

that temperature threshold would also entail SH demand. However, unsuccessful results 

were obtained, since this initial premise was not representative of most of the buildings 

and a large part of the data was not included in the characterization process by the 

model. That first approach was named as T-Algorithm, but it was finally discarded for 

the low accuracy that was capable to obtain.  

As a more suitable alternative, we decided to use the heat load as the threshold and the 

following type of equation is proposed, the baseline equation for the so-called Q-T 

algorithm: 

Qalg   Q = {
𝛼1 · 𝑇𝑂𝑈𝑇  + 𝛼2 · 𝐺𝑇 + 𝛼3 · 𝑊𝑆 + 𝛼4 · 𝑊𝐷 , 𝑄 < QREF

α0, 𝑄 ≥ QREF
 Eq. (4) 

Relative humidity is not included in the model proposed in this work, since the climate 

in Tartu is very cold and dry, its impact on the heating energy use thus being low.  

In this algorithm, a calibration process must be performed using training data to obtain 

the coefficients needed for the application of the same model to testing data. For this 

calibration process, the data are split by a reference heat load, QREF. The data below this 

reference load would not be weather dependent, whereas the data above this point is 

assumed to follow a linear correlation with the abovementioned set of climatic 

variables. The process for the calculation of QREF is carried out in an iterative manner by 

using a range of different heat load thresholds to split the data, ranging from a minimum 

of Q = 0 to a maximum of 0.5·QMAX.  

DHW corresponds with the horizontal trend observed in Fig. V-3, where the heat-load 

maintains relatively constant despite different outdoor temperatures. Observing data, 
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the instant DHW demand never exceeds 40% of the maximum load in any building. Thus, 

50% is taken as the maximum limit for this iterative process. The absolute error of the 

regression is calculated in each step, so the heat load that minimizes the error in the 

second part of the equation (Q ≥ QREF) determines the QREF value. This same algorithm 

logic is applied to both hourly and daily data.  

The iterative process proposed for the calibration of the model is replicated for all the 

buildings under study. As expected, different calibration coefficients are obtained for 

each of the buildings in the district. Fig. V-6 illustrates 4 steps (the number of iterations 

for each building are 50) of the iterative calibration process for one of the buildings 

studied: in this example, the third one (bottom left) would represent the most accurate 

choice. Together with the figure of the iterative process, the R2 value obtained in each 

of the regressions is shown. Note that the QREF value is not necessarily equal to the base 

DHW demand. In all the cases the heat demand for DHW is equal or less than QREF. In 

other words, the optimal QREF is the same or higher than the constant part of the demand 

in Fig. V-6 (third step). 
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Fig. V-6. Four steps of the calibration iterative process of one building (Building 10045, residential) 
using hourly data. 

As concluded from the previous section, heat demand data is not only weather 

dependent but also time dependent, following different demand patterns as a function 

of the hour of the day, day of the week and day of the year. But if Eq. (4) is applied to 

small batches instead of applying to the whole data, characterization of heat demand is 

more precise. Therefore, and in order to obtain a more accurate result, decision trees 

(DT) are proposed to be applied in three different levels, resulting in the so-called Q-T 

algorithm. Decision trees are non-parametric supervised techniques that predict values 

of responses by learning decision rules derived from features. For this model, the 

following three time-variables or features are introduced:  

• LVL1: Variable season, divided into summer and rest of the year (SUM/REST) 

• LVL2: Day of the week (MON, TUE, WED…)  

• LVL3: Hour of the Day (1AM, 2AM, 3AM…) 

This supervised classification process enables the characterization of a dynamic problem 

using stationary equations. The first level of the DT enables the characterization of the 

possible seasonal variations in the demand, as observed in some of the buildings under 

study. Besides, daily and hourly levels of the DT allow to introduce the influence of user-
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behavior in the demand and identifying the different heat demand patterns shown in 

Fig. V-3 and Fig. V-4 for some of the buildings.  

Therefore, for the hourly model, each hour is classified by the consecutive application 

of the three levels of DT, whereas for the daily data model, only the two first levels of 

the DT are used for the corresponding classification. The classification by means of the 

supervised clustering method results in different equation coefficients for each data 

subset, increasing both the calculation cost and the accuracy of the proposed model.  

The whole process, including the decision trees and the abovementioned iterative 

process of the Q-T algorithm, is applied to the training data to obtain the parameters 

that make up the model for each of the buildings. Then, the fitted model is applied over 

testing data to verify the accuracy of the model. 

3.4. Training and test datasets and metrics employed for result analysis 

Finally, training and test datasets are determined. Different demand patterns have been 

recognized with respect to the season of the year. In order not to exclude these demand 

patterns, training and testing data are defined containing odd and even days, 

respectively. The data from odd days have been used to calibrate and train the models; 

whereas data from the even days have been used to test and verify the model’s 

performance. 

The accuracy and efficiency of the model is numerically evaluated by the R squared value 

or coefficient of determination, R2. This value represents the proportion of the variance 

that is predictable using the predictors of the model. The R2 variable is calculated as 

follows: 

𝑅2 = 1 − 
𝑆𝑆𝐸

𝑆𝑆𝑌𝑌
 Eq. (5) 

𝑆𝑆𝐸 =  ∑(𝑋𝑖 − 𝑌𝑖)
2

𝑁

𝑖=1

 Eq. (6) 
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𝑆𝑆𝑌𝑌 =  ∑(𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋))
2

𝑁

𝑖=1

 Eq. (7) 

However, the approach for the evaluation of the accuracy of the model is not only based 

on the calculation of the R2 value and its analysis. The practicality of the model resides 

in the prediction of the heating demand so that the heat generation process can be 

optimized. The DH operator is responsible for the management of the heat production 

process in the entire DH network, and in this context, the analysis of the model’s 

accuracy also is evaluated in energy terms. Adopting the R2 value as the only criterion 

can favor an overfitted or biased model. For the application assessed in this study, the 

high thermal inertia of the DH network could assume these fluctuations and, therefore, 

the analysis focuses on global energy results.  

The other metric used evaluates total difference between the predicted demand and 

the real demand in a complete year. Thus, the total yearly energy demand deviation 

(YEC) is calculated as follows, where 0% indicates a perfect match between 

measurement and prediction. This metric is comparable with the abovementioned 

Mean Absolute Percentage Error (MAPE) mentioned in Chapter III.  

  

YEC = 100 ·
| ∑ 𝑋𝑖

𝑁
𝑖=1 − ∑ 𝑌𝑖

𝑁
𝑖=1 |

∑ 𝑋𝑖
𝑁
𝑖=1

 Eq. (5) 

4. Results 

This section is divided into general results for all the buildings and a specific analysis of 

some of the buildings as representing the whole dataset. First, the results obtained for 

the outlier identification process are presented, followed by the energy characterization 

obtained with the self-developed Q-T algorithm.  
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4.1. Outlier Identification 

Due to the scattered nature of heat demand data and its correlation with climatic 

variables, we decided to use density-based clustering for the identification and removal 

of the possible outliers from the original dataset. Outdoor temperature (TOUT) and solar 

irradiance (GT) are found to be the climatic variables with the highest correlation to heat 

demand (as concluded in Section 5 from Chapter IV). Thus, DBSCAN algorithm is applied 

to the hourly heat demand against these two variables and, consequently, MinPts is 

initialized as three. The 3-NN distance is calculated, and the Eps variable is calculated in 

the elbow of the sorted curve. As a first approach to outlier detection, first overall results 

for all the buildings are shown followed by the step-by-step images for one of the 

buildings. Focusing on this process in one of the buildings, Fig. V-7 shows the sorted 3-

NN distance on the left, and the clusters formed in the unsupervised process on the right 

side of the figure.   

 

 

(a)  

 

(b)  

Fig. V-7. (a) 3-NN sorted distance and (b) clusters formed in DBSCAN process in Building 10045 
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Finally, the output from the algorithm is a Boolean vector with FALSE/TRUE, 

corresponding FALSE with the outliers’ observations. Fig. V-8 presents the result for two 

of the buildings under study: Building 10045 (left) and Building 10718 (right). 

(a) (b) 

Fig. V-8. Outliers identified in (a) Building 10045 and (b) Building 10718 

Even though only two buildings are shown, the type of outliers identified by this 

algorithm is similar in all the buildings: individual observations that are far from the data 

core. These outliers could be: (i) Heat demand values equal to cero (in buildings with 

domestic hot water demand), (ii) High heat demand values with high outdoor 

temperatures and extremely high and low demand. 

Fig. V-9 summarizes the number of outliers identified in each building in function of the 

observations in the original data. The same DBSCAN process is carried out for all the 

buildings under study, independently from the building type or any other building 

characteristics. Blue points represent the number of observations in the raw data (after 

removing the NAs) and the red points correspond with the amount of data after the 

application of density-based clustering and after removing the outliers.  
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Fig. V-9. Summary of the number of points identified as potential outliers. 

Fig. V-9 presents the number of hourly measures before and after the application of 

density-based clustering in blue and red respectively. Note that the radial axis starts (the 

central point of the circumference) at 7000 hours and a full year contains 8760 hours 

(2019). Due to the measuring errors in both data sources (smart meters in the buildings 

and weather station), the raw data is reduced to around 8400 available yearly reading 

in the best cases.  

The number of outliers range between 37 and 260 hours in different buildings. This 

difference is consequence of the nature of the data in each case and for analyzing this 

difference, original data is compared with the number of outliers. The DBSCAN 

clustering algorithm sets its basis on identifying the outliers as lonely points out of the 

trend of most of the data. Hence, heat demand data with higher variability is supposed 

to result on a larger number of outliers. Moreover, the climatic dependence of heat 

demand (analyzed in Section 5 from Chapter IV) makes this effect more important, since 

a high SH demand in summer may be considered an outlier or the same with low SH 

demand in cold days/hours. Standard deviation of heat-load represents the variability 

degree and consequently, Fig. V-10 presents the number of outliers against the standard 
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deviation of heat-load and the same variable divided by the mean value of the heat-

load.  

(a) (b) 

Fig. V-10. Number of outliers vs (a) Standard deviation and (b) Standard deviation divided by mean 
demand. 

In Fig. V-10 the correlation between the number of outliers identified by DBSCAN and 

the standard deviation for all the buildings (grouped by type of use) is observed. On the 

left side of the figure (Fig. V-10a) it is observed the positive correlation between the 

standard deviation of the data and the number of outliers identified by the algorithm. 

When dividing the standard deviation with the mean heat demand of each building (Fig. 

V-10b), this effect is the opposite. The number of outliers identified by this algorithm 

increases with the deviation of the data and with high mean heat demand. This is caused 

because the algorithm usually considers the peak demand as outliers. 

4.2. Q-T Model for Heat-Load Characterization 

After the application of DBSCAN algorithm for identification and removal of anomalies, 

it is time for the analysis and evaluation of the characterization results obtained by the 

proposed Q-T Algorithm.  
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4.2.1. General Results 

Before starting with the discussion of the results, it has to be remarked that, even if the 

basis of the model is the same, the results obtained for daily and hourly data will be 

separately shown and discussed. Besides, it is important to clarify that, when the model 

is applied to the training data (odd days) again, the results measure the accuracy of the 

model to characterize the heat load of the building. If the model is applied to testing 

data (even days), the results measure the accuracy to predict the heat-load.  

First, in order to evaluate the accuracy of the model, Fig. V-11 presents the R2 values 

obtained from the application of the model to daily and hourly data. In these plots, both 

results for characterization and prediction of heat loads are shown. Whereas Fig. V-11-a 

(left figure) presents the results for daily data, Fig. V-11-b shows the results of the 

application of the Q-T algorithm to hourly data. Note that when Q-T algorithm is applied 

to daily data only LVL1 and LVL2 of the decision-trees are used. 
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(a) 

 

(b) 

 

 

 

 

 

 

 

 

Fig. V-11. R2 Values in all the cases from (a) daily model and (b) hourly model 

For a daily resolution, the model yields an excellent fit to the monitored data: the 

minimum value for the R2 among the studied 43 buildings is 0.69, with the maximum 

value very close to one (R2= 0.99). The daily aggregation filters out the hardly predictable 

intra-daily variations, thereby reducing the inherent uncertainty of demand prediction. 

In general, R2 values in characterization of the heat load are higher than the ones for 

prediction because the data used for tuning the parameters of the model is the one 

applied for characterization. However, in some of the buildings (e.g., Building 10922 and 

Building 10949) where the model obtains R2 values above 0.90, prediction results are 

even better than those for characterization.    
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Lower accuracy is obtained for hourly data resolution. The lower correlation and 

changing variability of the demand patterns of the users in the building reduces the 

accuracy of the model. Nevertheless, accuracy results with R2 values above 0.60 are 

obtained for around 90% of the buildings. The minimum R2 value (R2 = 0.47) is obtained 

in Building 11676 (residential building) and the maximum R2 (R2 = 0.97) is reached in 

Building 10051 (residential building). As it occurs in daily data, the prediction accuracy 

results to be lower than characterization.   

Some of the biggest deviations between model estimations (prediction) and monitored 

data (real data) correspond to buildings with private dwellings (e.g., Buildings 11795, 

11009 & 11860). From the authors´ belief and experience, the implementation of 

statistical models on this type of buildings can be challenging, especially if they feature 

manual heat switching systems with an intermittent usage. These activities are hardly 

predictable for a data interval as low as one hour. For this purpose, Fig. V-12 presents 

the correlation between R2 and YEC (defined in Section 3.4). The correlation between a 

purely statistic variable (R2) and the variable including energy management is observed 

(YEC), classified by the final use of the building. This figure is divided into results for daily 

data (Fig. V-12a) and hourly data (Fig. V-12b). 
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(a)  

 

(b)  

 

 

 

 

 

 

 

Fig. V-12. R2 vs YEC classified by type of building for (a) daily model and (b) hourly model. 

As illustrated in Fig. V-12, a slightly negative correlation is observed between R2 and YEC 

values. Thus, lower R2 values mean that the yearly energy predicted to be used in the 

building deviates more from the real energy use. This figure confirms that buildings used 

as private houses (purple) present the lowest accuracy results, both for daily and hourly 

data. It is remarkable that some of the buildings with relatively low R2 values show 

almost no error for YEC. This means that despite that the prediction deviations 

throughout the year are offset by each other, reaching a perfect result for the annual 

energy demand (YEC = 0 %) at the end of the year is possible.  

As the buildings are connected to a DH network, the proposed model can be used to 

improve the control of the heat production system in the network. The modelling of 

individual buildings´ demand enables the characterization of heat load patterns in each 

dwelling. This methodology provides an individual demand characterization and the 

demand of the whole district or specific branches could be obtained by the aggregation 

of the relevant buildings´ demand. Thus, one of the most important advantages of this 

methodology is that the demand of the network can be adjusted if one building is 
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disconnected from the network or if a new building is connected to the heating grid. 

Therefore, the heat production can be continuously optimized by matching the 

production to the predicted demand. 

4.2.2. Heat-Load Characterization. Individual Buildings 

 A deeper focus has been placed on four buildings. These buildings have been selected 

for a deeper analysis because they cover a range of different heat load profiles, as 

requirements for their associated building uses are completely different. In this sense, 

residential apartments (also referred as private house), offices, educational buildings 

and commercial buildings are included. The following table (Table V-1) shows the R2 

values obtained in the following four buildings: Building 10051 (residential building), 

Building 10949 (kindergarten), Building 11164 (school) and Building 11718 (offices).  

Table V-1. R2 values for the buildings selected for a deeper analysis. 

 DAILY MODEL  HOURLY MODEL 

 Characterization Prediction Characterization Prediction 

Building 10051 0.99 0.99 0.98 0.97 

Building 10949 0.95 0.95 0.72 0.70 

Building 11164 0.96 0.92 0.85 0.81 

Building 11718 0.91 0.96 0.93 0.90 

 

In Fig. V-13, the hourly heat loads of these buildings are presented, comparing the 

monitored heat loads (black points) to the model estimations (red points). The 

mentioned Fig. V-13 presents a plot of the heat load against the outdoor temperature 

for the selected buildings, while Fig. V-14 shows a monotonic plot of their heat loads. In 

Fig. V-14, the quartiles (0%, 25%, 50%, 75% and 100% percentiles) of the demand are 

also included as vertical blue lines. The plotted monotonic functions represent the 

ordered hourly heat profile from maximum (peak) to minimum load. These are valuable 

for DH operators as they portray a good overview of the heat demand patterns of a 

building, such as maximum peak load, number of hours at peak load, number of hours 
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at summer demand pattern, etc. They convey the most important variables for 

managing and controlling heat production in the district by means of the different heat 

production plants along the network. 

 

(a) 

  

(b) 

 

 

 

 

 

 

 

 

  

(c) 

  

(d) 

Fig. V-13. Hourly heat load vs outdoor temperature for (a) Building 10051, (b) Building 10949, (c) 
Building 11164 and (d) Building 11718. 

From Fig. V-13 it is concluded that the model fits the general shape of the real data in 

the four buildings, with a minimum R2 value of 0.85 in the school and a maximum R2 
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value of 0.97 in Building 10051 (Fig. V-13a). A low scattering of the demand points in 

Building 10051 facilitates the gathering of very accurate results when applying the 

model to predict the heating demand. The high scattering of the demand in Building 

11164 (Fig. V-13c) results in a lower R2 value, probably caused by the greater variation 

of the set-point in the heating system due to the larger size of the building under study. 

 

(a) 

 

(b) 

 

 

 

 

 

 

 

 

  

(c) 

  

(d) 

Fig. V-14. Monotonic function of Building 10051 (a), Building 11164, Building 10949 (c) and Building 
11718 (d) 
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The monotonic function of the hourly heating demand shown in Fig. V-14 presents the 

general trend of the prediction profile from the model. Note that hour zero corresponds 

with the 00:00AM of 1st January in 2019. In Building 10051 (Fig. V-14a), the demand 

difference between both lines representing the real demand profile and the result from 

the model is always lower than 1% of the peak demand. However, in the other two 

buildings under study, similar results are obtained. In peak demand (first blue line 

starting from the left, 100% quartile) moments, the difference between the demand 

from the model and the real data is very low. At high demand moments up to the 3rd 

quartile, the model slightly underestimates the demand, as can be observed when the 

red line is below the black line in Fig. V-14b and Fig. V-14c. The inflection point in both 

cases is located in the hour 2500, after which the model slightly overestimates the real 

demand. Lastly, in the summer period, the model again fits the real demand.  

An additional variable for measuring the accuracy of the model for the energy 

management of the DH network is the total yearly aggregated demand estimated for 

each building. The sum of the estimations of each building would anticipate the total 

energy required to be produced and distributed by the network. Due to the large 

thermal inertia within the network, the variation in hourly demand could be 

compensated with heat storage. However, the annual heat production requirement is a 

key variable for avoiding the overuse of resources to produce heat for the network. 

Table V-2 shows the total annual delivered heat monitored and estimated for each of 

the three buildings considered for the analysis. 
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Table V-2. Yearly demand in GWh for real data and results from the model. 

 TRAINING DATA TESTING DATA 
 REAL DATA MODEL REAL DATA MODEL 
 GWh/Year YEC GWh/Year YEC GWh/Year YEC GWh/Year YEC 

Building 
10051 

31.70 0 31.93 0.71 31.13 0 31.23 0.32 

Building 
10949 

80.38 0 79.36 1.27 79.50 0 77.87 2.05 

Building 
11165  

150.55 0 156.96 4.25 148.52 0 154.48 4.01 

Building 
11718 

204.02 0 204.01 0.01 201.00 0 201.61 0.30 

 

Small variations between the real demand data and demand resulting from the model 

are observed. Table V-2 presents the yearly energy demand divided into training and 

testing data. The relative error of the real data is 0%. The total heat demand error 

remains below 5% of its real value and, in both Building 10051 & Building 11718, the 

error is near the top zero. Moreover, apart from one case (Building 11718 and training 

data), the rest always show a positive relative error; in other words, the model estimates 

a slightly higher demand than the real one, which ensures the comfort conditions in the 

buildings. 

On the whole, the proposed model appears to be viable for both daily and hourly heat 

demand, considering the ease of application and the good accuracy of the estimations 

for most of the buildings. The application of this type of data-driven models in the 

operation and management of DH networks would be useful to reduce primary energy 

demand, as well as to achieve a more efficient operation within the flexibility allowed 

by the network.  

5. Discussion & Conclusions 

In this chapter, a data-driven model for the characterization and prediction of heating 

loads in buildings connected to a DH network has been presented. In a preliminary 

analysis of these heat loads time dependencies related to time-varying demand patterns 
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were found, as well as transient effects with a great effect on the instantaneous value 

of the heat demand. These time dependencies have been captured using decision trees 

with three levels, thus maintaining the simplicity and stationarity of the model. This 

supervised clustering method allows the implicit consideration of transient effects 

without the need for an explicit formulation of the thermal inertia in the model and 

allows to characterize the effects of users´ behavior. 

The main objective of the chapter is the development of a simple model that can be 

deployed over a large set of buildings. This implies that the model needs to be generally 

applicable to any building, regardless of its usage pattern or construction characteristics. 

For this reason, no prior knowledge of the building has been incorporated into the 

model. Model inputs are limited to weather variables and calendar information, with 

hourly or daily heating demand being obtained as a prediction output. 

The following conclusions can be drawn from the study: 

• The part of the heat demand corresponding to SH is weather and time 

dependent, while demand for DHW is solely dependent on the heat demand 

patterns of the building. Supervised clustering enables the incorporation of this 

time-dependent demand patterns into the model. 

• When the presented model is applied to hourly data for a full year, the results 

show good agreement with metered data in predicting yearly and daily heat load 

profiles. Therefore, the developed model is suitable for applications that require 

to analyze the long-term energy performance of buildings, such as measurement 

and verification processes. 

• Weekly patterns are affected by occupancy schedules, mostly due to the 

weekday-weekend cycle. Generally, lower heat loads are found when the 

building remains unoccupied, with peak demands on the initial day of the week 

(presumably due to thermal inertia). 

• Intra-daily patterns are also related to occupancy schedules, mostly business and 

leisure hours. However, additional variations have been found in heating 
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patterns due to night setbacks. The application of the model with hourly data is 

found to be significantly impacted by the dynamics of the building and manual 

heat switching systems. 

• Statistically, the model obtains more accurate results in the prediction process 

for daily data resolution than for an hourly resolution. This can be attributed to 

the uncertainty of intra-daily demand patterns. Heat demand data of daily 

resolution presents less variability and deviation between demand points, which 

eases the modulation of the loads the high values obtained for daily R2 in most 

of the buildings would make the deployment of the model viable for a larger 

building set.  

• From a DH operator perspective, the hourly R2 is not the most determining 

variable since the high thermal inertia of a DH network can assume the energy 

difference between production and demand in a short period of time. The model 

shows a good performance in predicting the total yearly aggregated heat 

demand in each of the buildings, with a maximum deviation of around 15% for 

the worst-fitted building.  

• The data-driven model presented in this study is straightforward to implement 

and does not require a large computational capacity. The results of the study 

demonstrate that an accurate hourly heat load prediction is obtained for most 

of the buildings under study. The availability of such estimations for a range of 

different buildings in a DH network could enable the optimization of the 

resources for heat generation, deriving in both primary energy and economic 

savings.   

6. Referred Appendix 

The content of this chapter has been published as an article in the ENERGY journal by 

ELSEVIER. The literature details (title and DOI) and the first page of this article can be 

found in the Chapter XI: Appendix.  
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Chapter VI  

Demand Pattern Recognition 

 



 

 

 

 

Abstract 

This chapter aims to identify energy demand patterns among the raw dataset of the 

group of buildings in the district-heating network in Tartu. While the previous 

chapter uses calendar variables to identify demand patterns, in this chapter 

unsupervised machine-learning algorithms will be applied only using energy 

demand profiles. This analysis will examine the optimal pre-processing actions to 

raw data and will determine the optimal unsupervised clustering algorithm using 

validation indexes. The study also presents individual patterns identified in four 

particular buildings.   

 

Resumen 

Este capítulo tiene como objetivo identificar los patrones de la demanda de energía 

en el conjunto de datos sin procesar del grupo de edificios conectados a la red de 

calefacción urbana en Tartu (Estonia). Mientras que el capítulo anterior ha utilizado 

variables de calendario para identificar patrones de demanda, en este capítulo se 

aplicarán algoritmos de aprendizaje automático no supervisado solo usando perfiles 

de demanda de energía. Este análisis examinará las acciones óptimas de 

preprocesamiento de los datos y determinará el algoritmo óptimo de agrupamiento 

no supervisado utilizando índices de validación. El estudio también presenta los 

patrones específicos identificados en cuatro edificios particulares. 
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Chapter VI Demand Pattern Recognition  

1. Introduction 

Energy demand patterns in buildings are daily loads or a fraction of the daily demand 

profiles that are repeated over time [57]. These energy demand patterns may be caused 

by a repetitive demand action by the users inside the building or by energy management 

strategies by the DH operator (in case the building is fed by a DH network) and they may 

be repeated over different days within a heating season. A correct understanding of the 

energy demand patterns and its causes will help in the characterization process of the 

heating demand in the buildings [58]. Moreover, the repetitive nature of these patterns 

could be used as an input variable for advanced models for the prediction of heat 

demand.  

Unsupervised learning algorithms have been successfully applied to identifying usage 

patterns commonly used in electricity load analysis [59]–[62]; however, their use in 

heat-related applications has been limited so far. Amongst the existing references for 

electricity loads, Liu et al. (2021) studied the daily electricity usage pattern of three office 

buildings with a combination of unsupervised and supervised clustering techniques [96] 

and they also developed an application for anomaly detection. Carmo et al. (2016) 

clustered the electricity profile of the distributed heat pumps´ demand located in more 

than one hundred buildings in Denmark [47]. Two clusters representing weekend and 

weekdays were identified. A Demand-Response program is proposed by [97] based on 

electricity demand patterns identified in the electricity demand of a residential building, 

while Haben et al. (2016) presented a feature-based clustering method in which the 

computational costs of the algorithm were reduced by using representative variables of 

the raw dataset [98]. 

Even though some clustering works are applied over thermal energy, most of these 

studies are focused identifying electric energy demand patterns. This is mainly caused 
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by the fact that smart meters for electricity demand have been installed for a longer 

time than smart meters for thermal loads. Furthermore, the identified energy profiles 

and their approach to the real causes have hardly been discussed to date. However, the 

impact of external variables such as climatic variables or seasonal patterns is even more 

important in thermal loads than in electricity. Additionally, pre-processing activities are 

a key factor when using unsupervised algorithms. A wrong pre-processing of the original 

data could lead to inaccurate results, even though the methodology and algorithms used 

are the optimal ones. 

Thus, there is a gap in current literature since there is no other studies in which different 

clustering algorithms are analyzed and applied to heating energy demand.  

2. Objectives of this Chapter 

The main objective of this chapter is to explore the use of unsupervised learning for the 

mining of heat-load patterns in the heating demand of buildings connected to a DH 

network.  

The secondary objectives of this chapter are the following: 

• Identification of heat demand patterns in buildings connected to the DH in Tartu 

and developing a general framework for this study. 

o Identification of optimal clustering method for pattern recognition.  

o Evaluation of several Clustering Validation Indexes or CVIs.  

o Data analysis, by means of different normalization processes and 

evaluation of the formed clusters with different pre-processing activities. 

• Analysis of the identified clusters and heat demand patterns, identifying 

similarities and possible synergies between the buildings under study and their 

final use. 
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3. Methodology 

This section outlines the general methodology followed in this chapter. In order to 

achieve the objectives listed in the previous paragraph, this chapter proposes a 

multistep method that is illustrated in Fig. VI-1. 

 

Fig. VI-1. General Methodology followed in Chapter VI 

First, Section 3.1 analyzes the pre-processing activities carried out before the 

unsupervised study. Then, Section 3.2 describes the algorithms used for this purpose 

and finally in Section 3.3, the metrics used for the evaluation of the clustering process 

are presented. Additionally, Section 4 will show the results obtained and, as it was done 

in Chapter V, the results are divided into general results and special and deeper focus 

on some of the buildings in the DH in Tartu. Finally, Section 5 will summarize the most 

relevant conclusions and will present the next steps in the method.  

3.1. Data-Preprocessing. Data Normalization 

For this chapter also applies the outlier removal method presented in the previous 

chapter and the current dataset starts from the clean dataset after the application of 

DBSCAN algorithm.  
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Heat loads are known to vary in time. Lumbreras et al. (2022) and Chapter V showed 

there are two types of heat-load variations [2]: 

• Intra-daily variations, where different load levels occur for each moment in time 

within the day. These variations might be caused by such variables and factors 

as climate, occupancy schedules, activation of thermostats and building 

management systems, as well as the transient response of buildings to the 

aforementioned issues. 

• Inter-daily variations, where the variations are mainly associated to changes in 

how the building is used (i.e., public holidays). 

Within this work, heat load profiles are considered as 1-day long datasets. Each profile 

contains the variation of the heat load along the day. Considering the 1-h resolution in 

the data, arrays of 24 values are generated. In each building, profiles for all individual 

days are generated. Days with data gaps and/or outliers are discarded. 

The other main key data process for the application of efficient clustering process is the 

normalization of the energy daily profiles from the buildings. So, firstly the hourly 

observations for heat demand are re-order to daily vectors, corresponding each of the 

vector with the hourly observation of one day, as it is observed in Fig. VI-2. Thus, a vector 

XT = {X0, X2… X23} containing hourly observations are obtained, corresponding each of the 

elements of the vectors with the parameters to be clustered. 

 

Fig. VI-2. Ordering Hourly observations to daily profiles 
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The normalization of the daily heat demand profiles is carried out for two reasons. First, 

the clustering process that is explained in the following section is optimized in terms of 

computational cost and second, and the most important, is that the main objective of 

this study is the recognition of the patterns of use of the energy demand. Thus, when 

dealing with pattern recognition, the absolute value of the load is not considered as 

relevant as its variation throughout the day. All the values of the energy demand are 

ranged between 0 and 1 (except the normalization process using Eq. 8)). For this 

normalization process, three different equations are proposed to identify the best pre-

processing conditions for each type of data. 

𝑞𝑛𝑜𝑟𝑚1𝑡
=

𝑞𝑡 − 𝑞𝑚𝑖𝑛 𝑡

𝑞𝑚𝑎𝑥 𝑡  − 𝑞𝑚𝑖𝑛 𝑡
 Eq. (6) 

𝑞𝑛𝑜𝑟𝑚2𝑡
=

𝑞𝑡

𝑞𝑚𝑎𝑥 𝑡
 Eq. (7) 

𝑞𝑛𝑜𝑟𝑚3𝑡
=

𝑞𝑡 −  �̅�

𝑠𝑑𝑞𝑡

 Eq. (8) 

Where; 𝑞𝑡 is the hourly value for heat demand, 𝑞𝑚𝑎𝑥 𝑡  and  𝑞𝑚𝑖𝑛 𝑡 are the maximum and 

minimum daily demand respectively. 𝑞 ̅ is the daily mean value of the heat demand and 

finally, 𝑠𝑑𝑞𝑡
 is the standard deviation of the demand profile. 

The effectiveness of the clustering process is completely dependent on the 

normalization process applied to the original data. Fig. VI-3 shows the original data and 

the normalized profiles for one of the buildings under study (Building 10045) for the 

three normalized equations abovementioned. As it is observed, the normalized profiles 

generated with each of the equations are notably different and can affect the clustering 

process and the accuracy of the patterns that may be identified. 
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Fig. VI-3. Real Data (left) and the normalized data using Eq. (6), Eq. (7) and Eq. (8) on the right from 
the top to bottom, respectively.  

The generation of the datasets (DS in Table VI-1) for the next steps is a combination of 

the different pre-processing activities proposed. Therefore, these datasets are 

compared in terms of efficiency levels, to determine what the optimal preprocessing 

method is for this process. The characteristics of each data set are shown in Table VI-1.   
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Table VI-1. Generation of the 6 datasets (DS) and their pre-processing actions 

 Nomenclature 
Outlier 

Removal 
Norm. Eq. 6  Norm. Eq. 7 Norm. Eq. 8 

DATA SET 1 DS1 YES X   

DATA SET 2 DS2 YES  X  

DATA SET 3 DS3 YES   X 

DATA SET 4 DS4 NO X   

DATA SET 5 DS5 NO  X  

DATA SET 6 DS6 NO   X 

 

The generation of these datasets enable to study the efficiency of different pre-

processing actions before clustering.   

3.2. Studied Clustering Methods 

Clustering or the unsupervised classification of unlabeled patterns into groups is one of 

the most important tasks in data analysis and data mining. The main objective of 

clustering resides in gaining insights of the data, discovering patterns and information 

that are currently hidden. The clustering technique, unlike supervised classification and 

regression, is part of the unsupervised learning techniques and these unsupervised 

techniques enable to find all kind of unknown patterns from datasets, without the need 

of having known experience from previous data. This ML technique has been applied 

into a wide variety of scientific fields including biology, medicine, engineering and 

computer science. The first clustering algorithms are found in 1950s. 

Among clustering algorithms, hard clustering and soft clustering are found. Whereas in 

hard clustering one observation can only belong to one cluster, in soft clustering each 

observation is given a probability likelihood to be part of each of the clusters pre-defined 

in the algorithm. In function of the mathematical approach, the most used clustering 

techniques are divided into partitioning clustering, hierarchical clustering, density-based 
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clustering and model-based clustering. Some of the most important and robust 

clustering algorithms are briefly explained in the following sections. 

The following algorithms have been used in this study: 

• K-means Algorithm 

• Dynamic Time Warping or DWT 

• Fuzzy c-means Algorithm 

3.2.1. K-MEANS 

This algorithm is part of the partitioning clustering algorithms and is one of the most 

used clustering algorithms, probably due its robustness and flexibility. Some studies 

([99]-[100]) show that this algorithm is the most appropriate for the application in 

clustering electricity profiles, thus, it is very useful also in heat demand profiles.  

The so-called K-means clustering [101] is used to partition the dataset into K predefined 

clusters and since it is a hard clustering algorithm each observation belongs only to one 

cluster. The algorithm starts with the random selection of K centroids. As the 

initialization of this algorithm is a random process, it is recommendable to run the 

algorithm more than once with different initial centroid selection. Then, each 

observation is assigned to the closest centroid based on the dissimilarity distance 

between the observation and the centroid. Different distances are used and studied: 

• Euclidean distance is defined by Eq. (9) and defines the shortest path between 

two points which corresponds with the straight line between the observations. 

• Manhattan distance is defined by Eq. (10) and is defined as the absolute 

difference between coordinates of the observations.  

• Pearson correlation is a correlation-based clustering and is defined by Eq. (11). 

• Cosine distance is defined by Eq. (12), and it is usually used for word clustering. 

However, as it is very useful when the real value is not important, this measure 

is also tested in this chapter. 
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For a pair of observations (X, Y) with n features the distances are calculated by the 

following equation: 

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =  √∑(𝑋𝑖 − 𝑌𝑖)2

𝑁

𝑖=1

 Eq. (9) 

𝑑𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 =  ∑|𝑋𝑖 − 𝑌𝑖|

𝑁

𝑖=1

  Eq. (10) 

𝑑𝑝𝑒𝑎𝑟𝑠𝑜𝑛 = 1 −  
∑ (𝑋𝑖 −  �̅�)(𝑌𝑖 −  �̅�)𝑁

𝑖=1

√∑ (𝑋𝑖 − �̅�)2  ∑ (𝑌𝑖 − �̅�)2  𝑁
𝑖=1  𝑁

𝑖=1

 
Eq. (11) 

𝑑𝑐𝑜𝑠𝑖𝑛𝑒 =
𝑋·𝑌

‖𝑋‖·‖𝑌‖ 
  Eq. (12) 

In K-means algorithm, as a partitioning clustering algorithm, each observation belongs 

only to one group. This partition starts with a random selection of K centroids. The 

objective function (J in Eq. 13) that hast to be minimized in this algorithm is the 

following: 

𝐽 = ∑ ∑ 𝑤𝑖𝑘 ‖𝑥𝑖 −  𝜇𝑘‖2

𝐾

𝑘=1

𝑚

𝑖=1

 Eq. (13) 

where 𝑤 corresponds to a relative weight, x is the measurement value (in this case, heat 

load), and 𝜇 is the cluster center.  

After the random mapping of the initial centroids, the Euclidean distance between each 

point and the centroid is calculated to assign the point to its closest cluster center. Then, 

the centroid is updated with new values and this process is repeated until the centers 

do not change. Thus, the initially chosen K centroids may vary the clustering results and, 

consequently, for choosing optimal clustering, the algorithm is applied 50 times with 

different initial conditions for every K.  
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There are no initial indications to determine which is the optimal number of clusters to 

identify the different energy demand patterns in the building. Therefore, the algorithm 

is applied for K = {3, 4… 10}. K = 2 is skipped in order to avoid weekday/weekend 

identification. Thus, for a specific building, eight different clustering processes are 

carried out.  

3.2.2. DYNAMIC TIME WARPING 

Dynamic Time Warping or DTW is a hierarchical clustering algorithm that is usually used 

in time series clustering [102]. This algorithm uses DTW distance as dissimilarity function 

and unlike the Euclidean distance, this metric enables to consider similarity when there 

is temporal translation between the patterns. This warping of two temporal sequences 

is represented in Fig. VI-4. 

 

Fig. VI-4 A warping between two temporal signals. Source: [102] 

This algorithm has the advantage over k-means if observations are shifted between each 

other and want to look rather at its shape. DTW calculated the smallest distance 

between all observations and for the implementation of this algorithm library dtwclust 

[103] has been used in R.  

3.2.3. FUZZY C-MEANS CLUSTERING 

Finally, Fuzzy C-means (or only C-means) is a partition soft clustering algorithm that was 

firstly proposed by [104] in 1970s and updated by [105] and later on by [106]. In this soft 

clustering algorithm, an observation is part of all the resulting clusters with varying 

degrees of fuzzy membership between 0 and 1. Therefore, the resulting cluster for an 

observation is the one with highest probability. This algorithm is initialized similarly as 
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K-means of previous section, starting with the specification of the number of centroids 

by the user. Similar to the previous case, the study analyses the clusters when using 3 to 

10 centroids.   

The implementation of this algorithm in R is carried out using library named ppclust 

[107]. A deeper analysis of the algebra behind this algorithm can be found in [106]. 

3.3. Cluster Validation Indexes 

The efficiency of the pattern recognition process of previous section is evaluated by 

using normalized metrics for all the clustering processes, so that their efficiency can be 

numerically compared. Thus, the optimal data-set, number of clusters or data 

normalization process could be concluded. The metrics used for cluster validation are 

Cluster Validation indexes or CVIs and they can be categorized by three categories [108]: 

• Internal CVIs: These indexes use the internal information of the clusters to 

evaluate this classification process and it can used for estimating the number of 

clusters when there are no initial conditions for the number of clusters.   

• External CVIs: These indexes use external labelled data to calculate the 

effectiveness of the clustering process. This external data is considered as the 

true condition and these indexes are usually used for selecting the optimal 

clustering algorithm.  

• Relative CVIs: These indexes evaluate the clustering structure by varying 

different parameter values for the same algorithm (e.g., varying the number of 

clusters). It is usually used for determining the optimal number of clusters.  

Regarding the nature of the problem of pattern recognition, in which there is no initial 

conditions (or true conditions) to define the optimal number of clusters, internal CVIs 

are the most appropriate for cluster validation.  

Each of the indexes analyzed present their own evaluation equation, but in general, 

these indexes evaluate the inter-cluster (distance between points in the same cluster) 

and intra-cluster (distance between points from different clusters) distances. Therefore, 
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a low intra-cluster distance and high inter-cluster distance mean that the identified 

clusters are separated and compact. In other words, these indexes evaluate the 

compactness, separation and connectivity of clusters. Compactness or cluster-

cohesion measure how close the objects are within the same clusters (inter-luster) and 

separation refers to the separation between clusters centers and pairwise minimum 

distances between observations in the same cluster. Finally, connectivity corresponds 

with the measure when items are placed in the same cluster as their nearest neighbors.  

Thus, many indexes are found in literature, but some of them are more robust than 

others and their use is widely applied. These indexes are Silhouette Index [109], [110], 

Davies-Bouldin [110], Dunn Index [111] or C-Index [112], among others. Even if a deeper 

focus is carried out for these indexes, a statistical study from more than 40 internal 

indexes is carried out using the library ClusterCrit [113] in R.  

All the clustering processes mentioned in the previous section, including different 

buildings, data normalization processes, outlier removal and clustering algorithms are 

evaluated using CVIs, comparing the effect of each of the steps of the abovementioned 

methodology, defining the optimal framework for pattern recognition of heat demand.  

Using too few clusters could not be useful to discover the patterns in the building, while 

using too many clusters could result in insignificant differences across some of the 

patterns. Therefore, the optimal number of clusters to be analyzed is selected to be from 

3 to 10. 

4. Results 

This section summarizes the results obtained from different clustering processes, 

comparing normalization, clustering algorithms and number of clusters. First, the results 

comparing clustering algorithms are shown, followed by the general results for the 

different datasets proposed in  

Table VI-1. Finally, the specific patterns of four of the buildings are presented. 
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4.1. General Results 

4.1.1. Comparison between clustering Algorithms 

The nature of each clustering algorithm is different and the way they find clusters varies. 

Consequently, as the clustering algorithm proposed fully determines the efficiency of 

the methodology and regarding the large number of cases simulated, it is necessary to 

start with a global analysis for determining the algorithms that best perform according 

to the Cluster Validation Indexes (CVI) and for the case study that we are studying. 

Firstly, and due to the very large convergence time required by the DTW algorithm and 

especially with a high number of clusters, Dynamic Time Warping algorithm was initially 

discarded. For a potential application of the method in a real operation of the DH 

network, the algorithm must converge in a reasonable time and even further for a high 

number of buildings. The instant and random nature of DHW demand profile makes 

inefficient the advantages of this algorithm. The most relevant advantage of this 

algorithm is not valuable for this type of energy profile.  

On the other hand, K-means algorithm behaves very similarly with different dissimilarity 

distances (Euclidean, Manhattan and Pearson correlative distance) and no particular 

distance performs better than others do. Consequently, hereinafter the results will only 

be shown for the Euclidean dissimilarity distance. The K-mean variant using Cosine 

distance is separately shown in the following figures.  

Thus, K-means and its variant Cosine distance K-means and along with Fuzzy c-means 

algorithm are tested for their effectiveness evaluation. For this purpose, all the 

simulated cases are accumulated in bar plots, where the number of optimal cases is 

shown for the different clustering algorithms. The abovementioned four CVIs (C_index, 

Davies-Bouldin, Dunn Index and Silhouette) are used for quantifying the clustering 

effectiveness and this process is run for the six datasets defined in   

Table VI-1. This being so, Fig. VI-5 presents the sum of the number of optimal cases 

including the 43 buildings in the network for each of the clustering variants commented 

before.  
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(a) 

 

(b) 

Fig. VI-5. Number of Optimal Cases for Different Clustering algorithms. (a) Divided by CVIs and (b) 
Divided by Datasets 

From previous images can be concluded that Fuzzy c-means algorithm (and soft 

clustering algorithms in general) is not optimal for energy profile clustering. Even though 

it shows some cases that presents optimal results, it is the algorithm with lower number 

of cases, so it is discarded as the best clustering algorithm for this application. Besides, 

K-means using Euclidean distance performs the best followed by K-means with the 

Cosine distance. Thus, hereinafter, the identification of specific heat demand patterns 

in buildings is carried out with K-means algorithm and using the Euclidean distance as 

dissimilarity metric. 

4.1.2. General Results. Comparison between Datasets 

From previous paragraphs we concluded that among the different algorithms tested, K-

means clustering using Euclidean distance is the most appropriate for this case. After 

analyzing the efficiency of different clustering algorithms, this section presents the 

results for different datasets (DS) generated and shown in Table VI-1. 

The pre-processing of the original-raw data, by means of outlier removal and 

normalization process, defines the differences between datasets. Thus, K-means with 

Euclidean dissimilarity distance and Cosine distance are used and validated with the 
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same CVIs than in the previous section. Same methodology than for the comparison 

between algorithms is carried out, so K in K-means is varied from 3 to 10 for all the 

buildings under study and evaluated by 4 different CVIs for the two dissimilarity 

distances abovementioned.  

Fig. VI-6 summarizes the number of cases in which each of the datasets generated 

results as the optimal dataset.  

 

Fig. VI-6. Bar plot of the Number of optimal DS cases divided by buildings. 

The ID of the building in Fig. VI-6 are removed for the sake of clarity.  

Although there is not a unique dataset which groups all the most compact clustering 

processes, DS2 and DS5 presents the highest number of optimal cases. These datasets 

correspond with the normalization process in which the instant hourly heat demand is 

divided by the maximum daily heat demand value. Between DS2 and DS5, DS2 presents 

a slightly higher number of optimal cases, probably caused by the outlier removal. 

Nevertheless, the other datasets also present many positive results, especially DS3 and 

DS6 in which the normalization process includes more complex variables, such as the 

standard deviation of the heat demand daily profiles.  
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From Fig. VI-6 can be concluded that normalization of the heat demand profiles is a vital 

step for pattern recognition but identifying the optimal normalization equation is 

completely dependent on the shape of the data. The nature of the profiles (maximum 

value, minimum value, deviation, etc.) will determine the optimal way of normalizing 

data. Consequently, normalization process will not be an excluding condition and for 

each building the dataset with best results will be considered. Moreover, the optimal 

clustering results may not coincide with the most clarified pattern recognition, and 

therefore, the different data-sets are studied also in the following chapters. The relation 

between clusters, heat demand patterns and the external conditions affecting the heat 

demand will be analyzed in the following chapter (Chapter VIII). 

4.2. Individual Buildings Analysis 

The same way that it was done in Chapter V, this section will focus on the identification 

of four individual buildings´ patterns. The final use of the building, and consequently, 

the occupational behavior in the buildings will completely determine the potential 

patterns to be recognized. Thus, two residential buildings (Building 10045, with DHW 

and Building 10051, with no DHW demand), an educational building (Building 10949) 

and a commercial building (Building 11195) will be presented in the following 

paragraphs. At this point, we remember that the heating profiles of these buildings can 

be found in Chapter XI, Appendix.  

The study for the heat demand patterns identification is divided into two main parts. In 

the first part, a statistical analysis of the resulting clusters using more than 30 CVIs (the 

four CVIs used in the previous paragraph are also included) is presented and followed 

by a detailed analysis of the four most used CVIs. 

4.2.1. Building 10045 (Residential Apartment with DHW demand) 

First, we will start with the analysis of the patterns of a residential apartment where the 

DHW demand is also fed from the DH network. Fig. 11 presents the number of optimal 

cases that are defined by all the CVIs under study in Building 10045. As it can be 

observed, and similarly to the algorithm decision study, there is not a unique answer 
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about which is the optimal clustering number. Moreover, the dataset and its associated 

normalization process also influence in the identification process of the patterns on that 

building.  

On the one hand, Table VI-2 summarizes the number of CVIs that asserts which of the 

clustering processes developed is optimal for Building 10045.  

Table VI-2. Number of CVIs for optimal clustering process in Building 10045 

Nº of Clusters 
BUILDING 10045 

DS1 DS2 DS3 DS4 DS5 DS5 

K = 3 15 24 15 28 20 25 

K = 4 0 1 0 1 3 2 

K = 5 7 1 0 0 0 0 

K = 6 2 1 1 0 3 1 

K = 7 0 0 1 0 0 0 

K = 8 4 1 3 0 3 0 

K = 9 1 3 11 0 0 0 

K = 10 5 3 2 5 4 6 

In general, the K=3 clustering process gather the highest share of optimal cases, 

especially for DS2, DS4 & DS6 datasets. Four different clusters (K=4) and five different 

clusters (K=5) also gather a large number of optimal cases for DS5 and DS1, respectively. 

Finally, for K=10, there are also a significant amount of optimal clustering process for all 

the datasets studied. 

Focusing the study on the most common CVIs, the evolution of these indexes for the 

different datasets and cluster numbers are shown in Fig. VI-7. The dashed lines 

correspond with the optimal clustering process and the CVI value for each case. The 

optimization of C_Index and Davies-Bouldin index is obtained with the minimization of 

the index and optimization of Dunn Index and Silhouette is obtained with the 

maximization. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. VI-7. Evolution of (a) C_Index, (b) Davies-Bouldin, (c) Dunn Index and (d) Silhouette Index in 
Building 10045 

Observing the results for the CVI analysis, it seems to be a very complex and chaotic 

problem to be solved. However, when analyzing the individual clusters of the best cases, 

similar patterns are recognized. The optimal number of clustering seems to be K=3, for 

cases with normalized data, as per Eq. 2 (DS2 and DS4). There is also a relatively high 

number of CVIs that conclude that K=5 is the optimal clustering process, with 7 CVIs with 

DS1. Consequently, Fig. VI-8 presents the clustering results for these two cases. 
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(a) 

 

(b) 

Fig. VI-8. Daily energy demand clusters for normalized data in Building 10045: a) K=3 with DS4 and b) 
K=5 with DS1 

If the energy demand patterns shown in Fig. VI-8 are visually analyzed, it can be inferred 

that both clustering approaches are not very different: 
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• Cluster 1 from DS4/k=3 (Fig. VI-8a) corresponds to Cluster 3 in DS1/k=5 (Fig. 

VI-8b). 

• Cluster 2 from DS4/k=3 and Cluster 5 & Cluster 1 from DS1/k=5 correspond to 

the same pattern. 

• Cluster 3 from DS4/k=3 corresponds to Cluster 2 and Cluster 4 from DS1/k=5. 

Therefore, the following patterns were identified, based on the clusters from DS4, K=3: 

• In cluster 1, the heat load is heavily increased between 3am to 5am. It remains 

relatively constant and at very high values from 5am to 11pm. At 11pm, another 

strong demand variation is identified and the levels of the demand before 3am 

are maintained. The high demands along the day are caused by the very cold 

temperatures that Tartu (Estonia) usually presents in winter and requires a 

constant demand for SH. The strong variations are caused by a night setback 

induced by the DH operator, in which the set-point temperature is reduced. It is 

expected that the users of this residential building will be sleeping and there will 

be no need to maintain the same comfort conditions as at other times. This night 

setback means that the energy demand differs from its dependency with climatic 

variables.  

• The second cluster shows the most stable profile, grouping days with relatively 

constant energy demand along the day in the same cluster. A relative peak 

demand is identified at 7-8am, coinciding with the same peak demand of the 

other clusters. 

• In Cluster 3, the energy demand gradually increases until approximately7-8am, 

when the peak demand is reached due to the DHW demand in these hours. From 

8am onwards, energy demand decreases until 5pm, coinciding with the hours 

when the users of the building are supposed to be out of the building. After this 

hour, the demand starts to increase, up to the levels of the first hours of the day.  
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4.2.2. Building 10051 (Residential Apartment with NO DHW demand) 

The same methodology followed in Building 10045 will be followed also in this building. 

For this building, Table VI-3 presents a summary of the number of optimal clusters for 

all the cases and evaluated with all the CVIs considered in this study. 

Table VI-3. Number of CVIs for optimal clustering process in Building 10051 

Nº of Clusters 
BUILDING 10051 

DS1 DS2 DS3 DS4 DS5 DS5 

K = 3 15 24 15 28 20 25 

K = 4 0 1 0 1 3 2 

K = 5 7 1 0 0 0 0 

K = 6 2 1 1 0 3 1 

K = 7 0 0 1 0 0 0 

K = 8 4 1 3 0 3 0 

K = 9 1 3 11 0 0 0 

K = 10 5 3 2 5 4 6 

The number of optimal clustering processes are more concentrated than Building 10045, 

with a large share of cases in K=3 clusters. Besides, some optimal clustering cases can 

also be found for six, seven and ten clusters. Regarding datasets, DS2 & DS5 present a 

slightly higher number of cases, corresponding with the datasets normalized by the 

maximum value. Focusing on the 4 indexes, Fig. VI-9 illustrates the evolution of these 

indexes for different clustering processes.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. VI-9. Evolution of (a) C_Index, (b) Davies-Bouldin, (c) Dunn Index and (d) Silhouette Index in 
Building 10051. 

In this building, C_Index, Davies-Bouldin, and Silhouette coincide that K=3 results in the 

optimal separation between clusters. Moreover, these optimal values are reached with 

DS2 & DS5. Regarding Dunn Index, the optimal value is obtained with K=4 and DS3. It 

could be considered an exceptional case because it is the only dataset that increases the 

clustering effectiveness when K increases from three to four. In order to study the 

differences between these clustering processes, Fig. VI-10 shows the result for two 

clustering processes. 
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(a) 

 

(b) 

Fig. VI-10. Daily energy demand clusters for normalized data in Building 0051 (apartments building): a) 
K=3 with DS4 and b) K=5 with DS1 

Observing the separated energy demands profiles provided by the unsupervised 

clustering, the following heat demand patterns could be identified in Building 10051. 
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• Pattern 1: The demand in this cluster corresponds with the days in which there 

is no heat demand. Considering that this building is used as a residential 

apartment, the DHW may be supplied by an external heat source. Thus, this first 

pattern corresponds with summer period when there is no eat supply for space-

heating purposes. This pattern can be identified in Cluster 3 with K=3 or Cluster 

3 with K=6.  

• Pattern 2: This energy pattern is similar to Pattern 2 in Building 10045. The 

energy demand is gradually increases until 7-8am approximately, when the 

peak demand is reached due to the DHW demand in these hours. From 7am 

onwards, energy demand decreases until 17pm, coinciding with the hours when 

the users of the building are supposed to be out of the building. After this hour, 

the demand starts to increase up to the levels of the first hours of the day. This 

pattern can be identified in Cluster 1 with K=3 or Cluster 2 & Cluster 4 with K=6. 

• Pattern 3: This third pattern is constituted by days in which the heat demand 

remains relatively constant but with slight increase throughout the day. So, the 

minimum demand occurs at 0am and from then on, the heat demand increases 

throughout the hours, reaching the maximum demand value at 23pm. This 

pattern can be identified in Cluster 4 with K=4 or Cluster 6 with K=6. For K=3 

case, this pattern is hidden in Cluster 2 

• Pattern 4: This last pattern clusters the days with a constant heat demand all 

over the day, but contrary to the first pattern, heat is used in the building in 

these days. Since the normalized profile in some cases is similar to the days of 

pattern 1, Pattern 4 is hidden in Cluster 4 for K=4. However, it is necessary to 

distinguish between Pattern 1 and Pattern 4. This pattern can be identified in 

Cluster 2 with K=4 or Cluster 1 with K=6. 
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4.2.3. Building 10949 (Kindergarten) 

The results from Table VI-4 show a greater concurrence that the optimal clustering 

process is obtained with K=3, especially in datasets DS3 and DS6. Table VI-4 presents the 

daily energy profiles obtained from this process with DS3. Similar to the analysis in 

Building 10045 (residential apartment), these results were compared to results from K=4 

and DS4, which obtained 9 CVIs. As expected, different energy demand profile types 

from those in Building 10045 were found, since this building is used as a kindergarten. 

Table VI-4. Number of CVIs for optimal clustering process in Building 10949 

Nº of Clusters 
BUILDING 10949 

DS1 DS2 DS3 DS4 DS5 DS5 

K = 3 15 17 28 19 22 26 

K = 4 1 1 0 9 5 2 

K = 5 0 3 0 0 1 0 

K = 5 0 4 0 2 0 0 

K = 6 0 3 0 0 0 0 

K = 8 1 1 2 0 0 0 

K = 9 0 0 0 0 1 1 

K = 10 16 4 3 3 5 4 

In the same way than for the rest of building analyzed, focuses on only 4 usual CVIs and 

presents the evolution of these indexes for the different clustering algorithms applied. 
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(a) 

 

(b) 

 

(c) 

 

(d)  

Fig. VI-11. Evolution of (a) C_Index, (b) Davies-Bouldin, (c) Dunn Index and (d) Silhouette Index in 
Building 10949 

In this building, all specific indexes shown in Fig. VI-11 agree that K=3 clustering process 

is the optimal and regarding the datasets, all the indexes expect Dunn Index show their 

optimal value with DS5, followed by DS2. Dunn index presents its optimal value with DS3 

and DS6. Fig. VI-12 shows the result for these clustering processes. 
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(a) 

(b) 

Fig. VI-12. Daily energy demand clusters for normalized data in Building 10949 (kindergarten): (a) K = 3 
with DS3 and (b) K=4 with DS4 

As occurred in Building 10045, slight differences between profiles could be found in 

Building 10949: 
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• Cluster 1 from DS3/k=3 (Fig. 4a) corresponds to Cluster 1 and Cluster 2 in 

DS4/k=4 (b). 

• Cluster 2 from DS3/k=3 and Cluster 3 from DS4/k=4 correspond to the same 

pattern. 

• Cluster 3 from DS3/k=3 corresponds to Cluster 4 from DS4/k=4. 

Therefore, based on the energy demand profiles from K=3, the patterns recognized from 

Fig. VI-12 are the following: 

• Cluster 1 presents a quite stable energy demand profile. This cluster groups the 

days in summer with no demand for SH and the days with very stable profiles 

with SH demand. A relative minimum demand is found at 12am. The energy 

profiles in this cluster show a very low correlation with climatic variables. 

• Cluster 2 is similar to Cluster 1, but a greater load reduction is observed at 

approximately 12am, increasing dependency on the climatic variables. At noon 

and coinciding with the hours with the highest ambient temperature and highest 

solar irradiance levels, the demand is reduced.  

• Cluster 3 shows the profile with greater variability. The energy demand profiles 

in this cluster remain relatively constant until approximately 7am. This time 

coincides with a common opening hour of kindergartens, or shortly before, so it 

is possible to condition the building before the arrival of the occupants. At this 

time, a steep increase in the demand is observed, reaching the first peak at 

around 10am. In the next hour, the demand slightly decreases, probably taking 

advantage of the thermal inertia of the building. Then from 12noon to 1pm 

(more or less), another increase in the demand is observed, and from 1pm to 

3pm the demand increases again. A third maximum demand, in this case a 

relative maximum, is observed at around 4pm, before the demand starts to 

decrease to the levels of the first hours of the day. Finally, at around 6pm, the 

demand reaches a relatively constant value for the rest of the day. 
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4.2.4. Building 11195 (Commercial/Shopping building) 

The most predominant optimal clustering results are obtained with K=3 in all the 

datasets, but with K=4 (DS3) and K=5 (DS5) also showing good results, as can be 

observed in Table VI-5.  

Table VI-5. Number of CVIs for optimal clustering process in Building 11195 

Nº of Clusters 
BUILDING 11195 

DS1 DS2 DS3 DS4 DS5 DS5 

K = 3 27 27 11 19 2 23 

K = 4 0 0 15 5 3 5 

K = 5 0 2 1 0 23 0 

K = 5 0 0 0 0 1 0 

K = 6 2 2 0 0 0 0 

K = 8 0 0 1 0 1 0 

K = 9 0 1 1 0 0 1 

K = 10 5 2 4 10 4 4 

The same way than in the rest of the buildings, Fig. VI-13 presents the evolution of these 

four CVIs analyzed: 

 

(a) 

 

(b) 
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(c) 

 

(d)  

Fig. VI-13. Evolution of (a) C_Index, (b) Davies-Bouldin, (c) Dunn Index and (d) Silhouette Index in 
Building 11195 

Additionally, Fig. VI-14 presents the obtained clusters for K=3 with DS2 and K=5 with 

DS5, corresponding to the two processes with the largest amount of CVIs. 

(a) 
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(b) 

Fig. VI-14. Daily energy demand clusters for normalized in Building 11195 (Commercial building) (a) K = 
3 with DS2 and (b) K = 5 with DS5 

The following patterns are identified, based on the clusters from DS2, K=3: 

• In Cluster 1, days with relatively constant profiles are grouped, including days 

with very low demand and other days with intermediate loads. 

• The daily energy profiles in Cluster 2 correspond to intermediate load days. As in 

Cluster 1, the maximum demand is identified at around 7am. However, from 7am 

onwards, the demand decreases, probably due to the more favorable climatic 

conditions outside. The lowest demand period is found at around 1pm, and then 

the demand gradually increases until 9pm. At this time, the night setback 

decreases the set point of the SH, and the demand returns to values of the first 

hours of the day. 

• In Cluster 3, a relatively constant demand is observed until 7am, when the 

demand drastically increases. At this time, the shopping building may open, 

coinciding with when the potential customers start to use this building. A high 

demand is maintained from approximately 7am to 9pm, probably coinciding with 
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the opening hours of this building. Finally, at 9pm, the heating demand returns 

to the same values as the first hours of the day.  

5. Discussion & Conclusions 

This chapter has proposed the use of unsupervised learning techniques for the 

identification of energy demand patterns in the buildings connected to the DH of Tartu. 

In order to study the accuracy of these mathematical ML techniques, different datasets 

have been tested in which different pre-processing activities are conducted. The great 

differences found between heat demand patterns in the buildings make impossible to 

present all of them. Therefore, a deeper analysis of four buildings has been presented, 

including buildings with significantly different energy demand profiles. 

On the one hand, K-means algorithm using Euclidean distance as dissimilarity measure 

is the clustering algorithm that best performs among the tested algorithms. It is closely 

followed by the same algorithm but with Cosine distance. However, and with the 

objective of standardize the process, the identification of heat demand patterns is 

performed using K-means algorithm. Besides, between the six DS generated for each 

building, DS2 and DS5 are the datasets which obtain the largest amount of CVIs 

concluding the optimal clustering processes. Both data-sets coincide with the 

normalization process that only divided the hourly values by the maximum daily 

demand. However, the best normalization process completely depends on the profile 

shape of the demand in each building and cannot be a general conclusion for all the 

buildings under study. Thus, in some of the buildings one normalization process can be 

the best to separate demand patterns, whereas in other building other normalization 

process can be better.  

The results for four buildings with different demand profiles are presented, showing the 

identified clusters and optimal clustering techniques for their respective profiles. 

Building 10045 corresponds with a residential apartment with SH and DHW demand fed 

by the district-heating network and Building 10051 is a residential apartment with no 

DHW demand. This building will probably have another heating system for this purpose. 
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However, as the smart meters are installed in the substations of the DH network, this 

demand is not measured. Building 10949 corresponds with a kindergarten in which the 

heat demand will be completely affected by the occupation of the buildings.  

Regarding Building 10045, three main patterns have been identified. The first pattern 

reveals the night setback that rules the energy demand in that building from 11pm to 

3am. However, the energy demand (including DHW + SH) increases and stays relatively 

constant throughout the day. This demand pattern matches the very cold months in 

winter, when the SH demand is much higher than the DHW and, therefore, there are no 

relevant energy demand peaks during these days. The second pattern reveals a typical 

energy demand for mid-season, when the energy demand for DHW is similar to that for 

SH and, consequently, the DHW demand peaks are not very relevant. Finally, the third 

demand pattern identified enables us to visualize the energy demand for summer days, 

when there is no demand for SH. Thus, the energy demand profile of this cluster roughly 

matches the DHW demand profile in this building.  

Building 10051 identified four main patterns. This first pattern corresponds with 

summer period when there is no heat supply for space-heating purposes. The second 

pattern corresponds with cases in which the energy demand gradually increases until 7-

8am approximately, when the peak demand is reached due to the DHW demand in these 

hours. From 7am onwards, energy demand decreases until 17pm, coinciding with the 

hours when the users of the building are supposed to be out of the building. This third 

pattern is constituted by days in which the heat demand remains relatively constant but 

with slight increase throughout the day and finally, the last pattern groups the days with 

a constant heat demand all over the day, but contrary to the first pattern, energy is 

consumed in the building in these days.  

Regarding Building 10949, three main patterns were also identified. The first pattern of 

this building shows the most stable demand profile and matches the mid-season 

demand, when the demand for SH and DHW are similar. Thus, there are no relevant 

demand peaks throughout the day. The second pattern in Fig. VI-12 shows a similar 
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profile to the third pattern in Building 10045 and, similarly, this demand profile matches 

the typical demand in summer. In these days, the unique demand is the one 

independent from climatic conditions; even though the kindergarten is supposed to be 

empty of children, there might be activity inside the building. Finally, the third pattern 

matches the heat demand in the cold days in winter. The three demand peaks are 

caused by the SH demand required over these days and probably matches the 

occupational pattern of the building. 

Finally, Building 11195 also presents three main patterns. The first pattern corresponds 

to the typical profile in summer days, when the heat demand in the building is very low. 

There is residual heat demand when the commercial building is supposed to be open. 

The second pattern in Building 11195 is very similar to the second pattern in Building 

10949 and the third of Building 10045. Thus, the conclusions drawn are the same for 

this building. Finally, the third pattern identified in this building corresponds to the heat 

demand profile for winter days, when there is a high and relatively constant SH demand 

along the day due to the low outdoor temperature and the continuous comfort 

requirement in that building. 

As a result of the abovementioned framework, the following conclusions are drawn: 

• K-means algorithm using Euclidean distance as dissimilarity measure is the most 

robust clustering algorithm for this purpose. 

The selection of the optimal normalization process is completely dependent on the heat 

demand values in each case. There are no general rules for the selection of the 

normalization equation. DS2 and DS5 from  

• Table VI-1 are the most repeated optimal process along the 43 buildings under 

study.  

• Accuracy evaluation of the different clustering processes is performed with more 

than 30 CVIs and mainly focusing on 4 mainly used indexes: C_Index, Davies-

Bouldin Index, Silhouette Index and Dunn Index. Each of the analyzed indexes 

evaluate the clustering process using their own equation and therefore, different 
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results are obtained. From this study could be concluded that there is not a 

unique correct solution for determining the best clustering process.  

• Theoretically, the optimal number of clusters is always equal to the number of 

daily profiles available. In other words, one day would correspond to one cluster. 

However, the objective of this study is to identify heat demand patterns that are 

repeated in different days, and this is why, the number of clusters that we are 

looking for is the minimal number of clusters that allow the visualization of all 

the patterns in the buildings. This is why, even though the optimal number is 10 

in some of the clustering processes, a lower number of clusters is preferred.  

• The final use of the buildings and consequently, the users’ behaviors and 

energetic requirements determine the demand differences. Buildings for 

residential purposes present a night setback in the heating season (no setback in 

summer), whereas other type of buildings patterns depend on the particular use 

and occupation of the buildings.  

6. Referred Appendix 

The research presented along this chapter has been published by the author in JOURNAL 

OF BUILDING ENGINEERING journal by ELSEVIER. The reference (title and DOI) and the 

first page of this article can be found in the Chapter XI: Appendix.   
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Abstract 

This chapter presents an exhaustive analysis for finding the solution to understand 

the clusters from previous chapter and to analyze the external variables that are 

determining the unsupervised classification. Thus, this chapter analyzes the use of 

different machine-learning classification models, influence of the dataset used or 

other conditions in order to optimize the classification accuracy. Additionally, 

classification and regression trees are applied to visually identify the heat demand 

patterns.    

 

Resumen 

Este capítulo presenta un análisis exhaustivo con el objetivo de encontrar una 

solución a la comprensión de los clústeres identificados en el capítulo anterior y 

analizar las variables externas que están determinando dicha clasificación no 

supervisada. Por lo tanto, este capítulo analiza el uso de diferentes modelos de 

clasificación de aprendizaje automático, la influencia del conjunto de datos utilizado 

u otras condiciones para optimizar la precisión de este proceso. Además, se aplican 

árboles de clasificación y regresión para identificar visualmente los patrones de 

consumo de calor en el distrito. 
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Chapter VII Classification Models for 

Pattern Prediction 

1. Introduction 

Previous chapter identified and analyzed different heat demand patterns among the 

different buildings under study and concluded the optimal processes for the 

identification of these patterns. Different unsupervised algorithms, by means of 

clustering, enabled to identify and classify the daily heat demand profiles by different 

datasets and number of clusters. It was concluded that there was not a unique correct 

clustering process but different processes in which each Cluster Validation Index (CVI) 

determine as optimal.  

In this chapter, we are going one step further and we are developing classification 

models for predicting the patterns. Classification in ML is the process of predicting a 

categorical label using different variables and properties (predictors). For the case in this 

analysis, the categorical vector will correspond to the cluster/pattern variable resulting 

from the previous chapter. Thus, the main objective of this study is the prediction of the 

cluster classification, by means of external variables than are affecting this unsupervised 

clustering classification.   

However, the pre-processing activities, by means of datasets and number of clusters will 

also determine the effectiveness of this process and it might differ from the conditions 

of the previous chapter. Therefore, a clustering process that was not considered optimal 

in the previous chapter might result to be the process in which the resulting classification 

has the closest correlation with the external factors affecting the heat demand in the 

buildings. While in the previous chapter the analysis was completely unsupervised and 

data-based, this chapter will find the relation between patterns and the variables 

affecting the demand, by means of different classification (supervised) models.    
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This chapter aims to gain insights on the possible conditions that determine the causes 

of the different heat demand patterns. In the way of developing a heat-load prediction 

model, it is necessary to identify the external conditions that could determine the 

classification. For this purpose, classification models, supervised ML models, are 

proposed where part of the data is used to train the model and the other part is used to 

as testing data. As a brief summary of the state of the art in this context, some 

classification models such as decision-trees (DT) [114] or association rules mining (ARM) 

enable to discover the potential variables affecting heat demand patterns [115]. ARM is 

widely used for discovering associations in large Boolean datasets; however, for 

numerical values such as outdoor temperature, this model is not valid. Thus, DT or 

specially classification and regression trees (CART) [116] are modelled to develop the 

linear relations between the external variables and the cluster classification. Besides, 

there are more complex classification models such as random forest (RF) classifier [117] 

or support vector machine (SVM) [118] for similar purposes. These complex models may 

allow obtaining greater efficiency levels at the expense of losing knowledge of the 

potential influencing variables and conditions.  

In general, there are few works making the efforts towards the commented objectives 

and all the references found are referred to analyze electricity profiles. The variables 

affecting heat demand and electricity demand are different. Weather variables, and 

especially outdoor temperature, highly influence the heat demand (mainly in demand 

for space heating) in a building. Besides, domestic hot water demand is mostly affected 

by the users’ behaviors inside the building. However, some of the methodologies found 

in literature about electricity pattern analysis could be partly used for the analysis of 

heating demand. The following lines summarize the main studies on this topic. 

Regarding classification and regression trees, Capozzolli et al. developed a novel 

methodology combined with an adaptive symbolic aggregate approximation method 

and CART algorithm was proposed to identify infrequent and unexpected building 

energy patterns [119]. Two practical public buildings were used for case study analysis. 

Moreover, Liu et al.  proposed a CART model using 6 different variables in order to 
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classify the electricity demand and improve the interpretability of clustering results [69]. 

This framework was applied to three practical offices in Chongqing (China). 

On the other hand, McLoughlin et al. presented a clustering methodology for creating a 

series of representative electricity load profile classes and linked them with household 

characteristics using multi-nominal logistic regression [45]. The classification model 

developed by Viegas et al. enabled to classify new electricity customers using survey 

data and a limited amount of smart metering data [120]. This model obtained more than 

50% accuracy in this classification task with only one week of smart metering data and 

this accuracy significantly improved with more data from the metering station. On its 

way to predicting electricity load profiles of buildings Vercamer et al. both Random 

Forest and Stochastic boosting in order to predict the load profile [121]. In this work, 

government and commercial data related to building characteristics were used as 

predictors for the classification models. Finally, Fabi et al. concluded that the demand 

patterns are influenced by the building characteristics [122], but they are also 

dependent on the behavior of the occupants and factors e.g., age, the number of 

children, lifestyle, etc.  

However, in our study, the classification model is aimed to use more general information 

for two reasons:  

(i) Lack of information. There is no additional information on building 

characteristics. The challenge is higher but the model resulting from this 

study will be widely applicable to any other case.  

(ii) The model is proposed to be implemented at district-scale. 

Summarizing, there is a gap of investigation of the variables affecting the previously 

defined daily heat demand profiles. Few references can be found on this topic even in 

the analysis of electricity profiles. Thus, this study attempts to study the most 

appropriate classification models for this purpose.   
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2. Objectives of this Chapter 

The main and secondary objectives of this chapter are listed below: 

• Development and analysis of the optimal CART characterize clustering and 

classifying each day to one of the clusters identified in Chapter VI. 

o Analysis of the effects of number of clusters and datasets into the 

effectiveness of the classification models developed. 

o Identification of the most affecting potential variables into clustering 

process. 

• Analysis of the effectiveness of different classification models for the prediction 

of cluster classification in buildings connected to DH networks and comparison 

against CART. 

• Evaluation of different error metrics in the prediction of the cluster classification. 

3. Approach. General Methodology 

For this study, we will start from the end of the previous chapter and we will use all the 

different datasets and pre-processing activities carried out in Chapter VI. The scope of 

this chapter is to develop the optimal classification model for predicting the pattern 

identified by the unsupervised learning, so that we can explain which are the variables 

that are affecting the demand in the different buildings.  

We propose the evaluation of four different models, as it is illustrated in Fig. VII-1 
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Fig. VII-1. General methodology followed in Chapter VII 

The rest of the chapter is ordered as follows. First, in Section 3.1, we are introducing the 

basics for the different models used in the chapter and Section 3.2 explains the way we 

are evaluating the classification accuracy. Then, Section 4 shows the most relevant 

results, and as it was done in previous chapters, this section is divided into general 

results and particular results for individual buildings. Finally, Section 5 ends with the 

discussions and conclusions drawn from this study. 

3.1. Studied Classification Models 

This section will present the basis behind each of the algorithms used for the 

classification of the pattern. This section is as well divided into Classification & 

Regression Trees and the rest of the models, since the first one enables to visualize the 

results by showing the obtained tree. 

3.1.1. Classification & Regression Trees (CART) 

Classification & Regression Trees or CARTs algorithm is a supervised algorithm used for 

the construction of regression trees and was firstly proposed in the 80s by Breiman et 

al. [116]. These decision trees partition a whole dataset into smaller subgroups and then 

fit a simple constant for each observation in the subgroup. In this algorithm the 

partitioning of the dataset is carried out by successive binary partitioning, also called 

recursive partitioning.  
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The model begins with the whole data set, including predictors and the variable to be 

predicted (in this case, the pattern). In this first step the algorithm searches the predictor 

that divides the data into two datasets such that the Gini Index is minimized: 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 −  ∑(𝑃𝑖)2

𝑁

𝑖=1

 Eq. 14 

Where, Pi denotes the probability of an observation being classified to a particular class.  

Having found the optimal best split that divides original dataset intro two subgroups, 

the process is repeated for each of the subgroups generated and this process continues 

until it is no longer possible to generate additional splits or some stopping criterion is 

reached. What results is, typically, a very deep, complex tree that may produce good 

predictions on the training set, but is likely to overfit the data, leading to poor 

performance on unseen (testing) data. 

Thus, there is often a balance to be achieved in the depth and complexity of a tree to 

optimize predictive performance. To restrict a CART to an appropriate size, an early stop 

condition is set by providing the minimum number of observations in a node split. This 

variable is named as MinSplit and is used to avoid over partitioning. However, even 

though this stop condition is met, the tree can still be large and complex. Therefore, the 

normal method is to develop a large tree and then apply a post-pruning process using 

cost complexity parameter or cp. This cost complexity factor penalizes the cost function 

(Gini Index) for the number of terminal nodes of the tree. Usually, a hyper-parameter 

tuning is developed, evaluating multiple models across a spectrum of cp and use cross-

validation to identify the optimal cost complexity factor. 

For this study, the input variables or predictors used for tuning the tree are presented 

in Table VII-1. Note that even though these variables are all introduced to develop the 

tree, not necessarily all the predictors will be used. A simplified classification model 

(CART 2 in Table VII-1) is compared against the raw CART (CART1 in Table VII-1) with the 

above presented results, removing the hourly temperatures and holiday prevision from 
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the variables affecting the clusters. All this is summarized in the following table (Table 

VII-1). 

Table VII-1. Summary of selected variables for developing CARTs 

Variable 
Type of 

Variable 
Description CART 1 CART 2 

Weekday Categorical Day of the week: MON, TUE… X X 

Month Categorical Month of the year: JAN, FEB… X X 

Holiday Categorical 
Estonian holidays, including 

weekends: HOL/NO HOL 
X X 

Holiday_Prev Categorical 
Holiday Prediction for next day: 

HOL/NO_HOL 
X  

Mean_Temp Numerical Daily Mean temperature in ºC X X 

Solar_Irradiation Numerical 
Daily total solar irradiation in 

kWh/m2 
X X 

Hourly_Temp. Numerical 

Hourly temperature readings in 

°C. (24 variables, one for each 

hour of the day) 

X  

Summer* Categorical 
Divides summer and rest of the 

year4 
X X 

The implementation of this algorithm in R has been made using rpart library [123], in 

which the tuning of the abovementioned parameters (MinSplit and Cp) is allowed.  

3.1.2. Other Classification Models 

As previously commented, CART models enable to rapidly visualize and understand the 

conditions that determines the cluster classification. However, it is important to 

compare the accuracy of CARTs with other frequently used classification models, even 

though the insights on how the predictors affect the classification is missed. The 

 
4 The Classification of this variable is presented in the Appendix (Chapter 3) 
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following paragraphs are used to introduce the classification models used in this study. 

These models use the same predictors than the CART 1 model shown in Table VII-1.  

3.1.2.1. K-Nearest Neighbor (kNN) 

K-Nearest Neighbor or k-NN classification model is one of the simplest supervised 

models in machine learning and can be used either for classification or for regression. In 

this model, the unique variable used for tuning the model is K, which refers to the 

number of nearest neighbors. The k-NN algorithm works as follows. For a specific 

observation to be classified, the Euclidean distance (or other distances: Manhattan, 

Minkowski, etc.) is calculated and the algorithm finds the K closest observations to that 

point. The label that is more times repeated within these observations will be the output 

for the classification.  

This model performs better with low number of predictors. To avoid overfitting, the 

needed data needs to grow exponentially as the number of variables increase.  

The implementation of this algorithm in R is made using Class library in R [124].   

3.1.2.2. Naïve-Bayes (NB) Classifier 

Naïve Bayes or NB classification model is a probabilistic classifier based on Bayes´ 

theorem, which assumes that each feature makes an independent and equal 

contribution to the target class. NB classifier assumes that each feature is independent 

and does not interact with each other, such that each feature independently and equally 

contributes to the probability of a sample to belong to a specific class. Bayes probabilistic 

theorem equation is the following: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵 | 𝐴) · 𝑃(𝐴)

𝑃(𝐵)
 Eq. 15 

Thus, for each observation a table with probabilities is calculated and then used for 

prediction. For multi-label classification problems, the result for prediction is the class 

with maximum probability. The easiness of the model is compensated with usually poor 

prediction results.   



  

Chapter VII  192 

  

The implementation of Naïve-Bayes algorithm is performed using Naivebayes library in 

R [125]. 

3.1.2.3. Support Vector Machine (SVM) 

Following with complex classification models, Support Vector Machine or SVM enables 

the integration of linear and non-linear relations between the predictors. This 

supervised classification model is quite often used for multi-class classification problems 

by constructing hyperplanes in a multidimensional space that separates cases of 

different class labels. The hyperplane concept is only imaginable with variables with 

three or less dimensions. Thus, for three dimensions (three predictors) data, the 

hyperplane is a 2D plane. Thus, the hyperplane is one dimension less than the data.  

For no linear relations between then variables, classification accuracy is drastically 

reduced. When the spatial separation between observations is not linearly possible, 

original dimension of the data is increased using Kernel functions. Kernel functions can 

be lineal kernel, polynomial Kernel or radial Kernel, among others.  

For the implementation of this algorithm in R, e1071 library [126] is used. 

3.1.2.4. Random Forest (RF) Classifier 

The last classification model used in this study is Random Forest or RF. This model is like 

CART, since both of them are part of decision-trees. This model consists of many 

individual decision-trees that operates as an ensemble. Each individual tree in the 

random forest spits out a class prediction and the class with the most votes become our 

model’s prediction.  

The fundamental concept behind random forest is a simple but powerful one — the 

wisdom of crowds. In data science speak, the reason that the random forest model 

works so well is the following: many relatively uncorrelated models (trees) operating as 

a committee will outperform any of the individual constituent models. 

The tuning of this model is made using similar parameters than in CART and for the code 

implementation in R, library named RandomForest [127] is used. 
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3.2. Evaluation of the Models 

3.2.1. K-fold Cross Validation 

When evaluating the different classification models presented above, original datasets 

are divided into training and testing datasets. In order to obtain an accurate approach 

of the efficiency of the model, different training and testing data should be used for the 

calculation of the error metrics.  

This study uses K-fold cross validation for the evaluation of the model performance. This 

methodology consists of dividing data into different subsets of the training data and 

calculate the average prediction error. This algorithm works as follows (see Fig. VII-2): 

1. Randomly split the data into K subsets or K-folds. 

2. K-1 subsets will be used as training data and the other subsets is used for testing. 

3. Test the model and calculate the error metrics used for the evaluation of the 

model. 

4. Repeat the process K-times, until each of the subsets is uses as testing data. 

5. Calculation of the average metric error. 

 

Fig. VII-2. K-Fold Cross Validation example with K=5 (Training 80% and Testing 20%) 

This study proposes a 5-fold cross validation, dividing data into 5 subsets of 20% of the 

data. Thus, 80% of data is used for training and 20% for testing and this process is 
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repeated 5 times. This process is carried out separately for each of the buildings in the 

network.  

3.2.2. Error Metrics 

For the evaluation of the cluster prediction by the CARTs, the classification accuracy 

defined in Eq. (16) is used. This accuracy metric evaluates the number of correct 

classifications against the total number of predictions. Thus, this metric will vary from 0 

to 1, where 1 corresponds to the perfect classification.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 Eq. 16 

A more specific metrics coming from accuracy is the confusion matrix. More than an 

error metric, confusion matrix is a summary square matrix with same dimension as the 

number of classes to be predicted. The general shape of these matrixes is shown in Fig. 

VII-3. The diagonal of the matrix shown in Fig. VII-3 (colored in blue) corresponds with 

the correct classification predictions from the model, whereas the rest of the cells in the 

matrix are incorrect outputs.  

 

Fig. VII-3. Confusion Matric for a 4-Class Prediction 

4. Results 

This section presents the results obtained for the classification of the clusters and 

divided by the proposed models. Accuracy results for the different datasets, number of 

clusters and other variables are presented. Following the same structure than in the 
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previous chapter, this section is divided into general results analyzing the outcomes of 

all the buildings globally and a section focusing on the outcomes of four buildings. 

4.1. General Results 

4.1.1. CART 

These models enable to obtain ease of visualization of the developed models, showing 

the lineal and binary relations between the predictors. In each of the buildings under 

study, two CART models are developed for the different datasets (normalization 

process) and the number of clusters resulting from the previous unsupervised clustering 

analysis. Thus, for each building 96 CART (six datasets and eighth clustering processes 

and the pruned variant5) models are developed in order to study the impact of each of 

the boundary conditions in the classification task.  

Among all the analyzed cases, the maximum classification accuracy for each of the 

buildings is shown in Fig. VII-4.  

Note that the accuracy that is shown in the following figures is the mean accuracy from 

the K-fold cross validation explained in Section 3.2.1. The model is tested five-times and 

the mean value is calculated.  

 
5 When we refer to the pruned variant we are using an special function in rpart library that enables to 
simplify the CART model 
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Fig. VII-4. Maximum classification accuracy obtained in each building using CART. 

The accuracy metric (Eq. 16) measures the effectiveness of predicting the multi-class 

cluster variable, and in this case, accuracy ranges between 0.543 in Building 11522 and 

0.954 in Building 10280. Using the same predictors than Table VII-1, effectiveness of this 

algorithm strongly varies from one building to another. It indicates that the relation 

between identified cluster and variables in Table VII-1 vary from one building to another. 

Thus, in all the cases the accuracy of the model overtakes the 50%. 

Regarding the normalization process used for the generated datasets, the following 

figure (Fig. VII-5) classifies the maximum classification accuracies presented in Fig. VII-4 

by the type of dataset used in each of the buildings under study. The figure on the left 
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side (Fig. VII-5a) presents the datasets with highest number of optimal cases, whereas 

figure on the right side (Fig. VII-5b) divides the accuracy for original and its pruned 

variant tree.  

 

(a) 

 

(b) 

Fig. VII-5. Number of Optimal cases divided by (a) Datasets and (b) Type of CART 

DS2 and DS5, which corresponds with normalization process using only the daily 

maximum demand, obtain the greatest number of cases with highest classification 

accuracy among the buildings. These two datasets account for more than 80% of all the 

optimal classification process, regardless of if the outliers are removed from the dataset 

or not. Besides, the dataset in which the possible outliers are not removed get even 

more optimal cases than removing the outliers. This effect may be caused by the larger 

datasets trained when not removing the outliers. Thus, it is concluded that the effect of 

removing outliers is not a critical step in this classification process. 

DS2 and DS5 are the most appropriate datasets for this purpose and this conclusion 

matches the one from the unsupervised clustering analysis. In that study, results using 

these datasets were also the optimal. 

Besides, between using the optimal tree or the pruned tree, the results obtained do not 

clearly determine which model obtains better accuracy results. Around 60% of the 
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buildings obtain better results with the complex (not-pruned) CART model, whereas 40% 

of the building obtains the best results using the pruned tree. When using training data, 

it is obvious that the not-pruned model works better but for prediction purposes using 

testing data, this distribution is quite similar. The reduction of maximum depths and 

other variables of the tree simplifies the logic for the cluster classification, using general 

rules for the determination of the cluster. The use of more general rules leads to clearer 

conclusions and sometimes to better results than more complex CARTs.  

On the other hand, among the different number of unsupervised clusters, a low number 

of clusters result in higher accuracy results. For the visualization of this conclusion, Fig. 

VII-6 shows the statistical variation of the accuracy obtained by the different models and 

divided for the number of clusters for all the buildings under study.  

 

Fig. VII-6. Accuracy boxplot for the different number of clusters 

The figure above (Fig. VII-6) shows how the accuracy of the model is reduced while 

increasing the number of clusters introduced. Maximum, minimum and mean values are 

reduced in almost all the cases. Besides, when considering the best classification results 

in function of the number of clusters, K=3 and K=4 (and specially K=3) are the most 

repeated number of clusters as optimal clustering among all the buildings under study. 
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Table VII-2 summarizes the obtained best classification results for each of the building 

as well as the dataset and number of clusters. 
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Table VII-2. Optimal Classification results for each building using CART. 
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To put an end of the presentation of the global results, a simplified classification model 

(CART 2 in Table VII-1) is compared with the above presented results, removing the 

hourly temperatures and holiday prevision from the variables affecting the clusters. 

Thus, this simplified model only considers the five variables shown in Table VII-1. 

Consequently, the number of affecting variables is reduced from 30 to only five 

variables. 

This reduction of the classification accuracy is shown in Fig. VII-7. 

 

Fig. VII-7. Accuracy boxplot for the different number of clusters with and without hourly temperatures 

As it was expected when using this number of variable reductions, the obtained 

classification accuracy is reduced in all the cases. However, this reduction of the 

accuracy of the classification is quite small compared to the reduction in the number of 

variables affecting the clusters.  

Therefore, it is concluded that the importance of hourly temperature in the general 

shape of the heating profile is very significant. The hourly temperature completely 

affects the value of the demand but is not a crucial variable for energy profile 

classification. Moreover, the introduction of the hourly temperature variables in the 

model increases its effect in the classification of large number of clusters. 
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Table VII-3. Optimal Classification results for each building using CART without hourly temperatures. 
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4.1.2. Other Models 

Apart from CARTs, other classification models have been tested in order to compare 

with the accuracy results obtained by CARTs. The main advantage of CART is the ease of 

visualization of the classification and consequently, the direct interpretation of the 

generated clusters. However, other models may obtain better accuracy results at the 

cost of a lower interpretation of this classification. In this section, an overview of the 

general results regarding all the buildings is shown.  

Following the same order as for the CARTs, Fig. 7 presents the maximum mean accuracy 

in the different buildings and showing the three models applied: k-NN, Support Vector 

Machine or SVM and Naive Bayes Classifiers. Note that the presented accuracy is the 

mean accuracy obtained by the K-fold cross validation in the K testing options. 

Therefore, if the mean accuracy is one, it means that in the five cross-validations the 

obtained accuracy is one.  

 

Fig. VII-8. Maximum classification accuracy in each building using kNN, Naïve-Bayes & SVM. 
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Previous figure presents the optimal accuracy among all the simulations including 

different datasets and number of clusters in which the demand profiles are divided. 

Thus, it is important to identify the conditions in which the maximum classification 

accuracy is obtained for each of the buildings. At a first look at the figure above, the best 

classification results are obtained with the simplest model: k-NN. This model obtains a 

classification accuracy of 1 in many buildings and in other cases the accuracy is very near 

to 1. Besides, Naïve-Bayes classifier obtains better results than SVM in almost all the 

buildings.   

First, the complexity of the model is studied. For this purpose, Fig. VII-9 presents the 

number of cases in which the maximum accuracy results are obtained divided by the 

complexity of the variables including in the model. Thus, the “complex” model considers 

the hourly temperatures as input predictors (CART 1 in Table VII-1), whereas “simple” 

model does not include hourly temperature (CART 2 in Table VII-1). 

 

(a) 

 

(b) 

 

(c) 

Fig. VII-9. Comparison between simple and complex model for (a) k-NN, (b) SVM and (c) Naïve-Bayes 

kNN model (Fig. VII-9a) is the unique model in which increasing the number of predictors 

does not increase the accuracy of the results, at least in most of the cases. On the other 

hand, SVM (Fig. VII-9b) always obtain better results when increasing the number of 

variables if these variables correlate with the prediction variable. Naïve-Bayes model 

(Fig. VII-9c) is situated in the middle of the two previous models and the model performs 

better when including hourly temperatures in most of the buildings. 
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Secondly, the type of DS used is also a key factor in this analysis. For this purpose, Fig. 

VII-10 presents the sum of cases in which the optimal classification is reached by the 

type of dataset described in previous chapter. Note that three normalization processes 

and outlier removal are considered within these six datasets. As it occurred with CARTs, 

the most repeated datasets are DS2 & DS5.   

 

Fig. VII-10. Number of optimal cases divided by datasets for kNN, SVM & Naïve-Bayes models. 

Observing the results presented in Fig. VII-10, kNN model present the best accuracy 

using DS2, followed by DS1 & DS5. However, DS5 is the most repeated optimal dataset 

in both SVM and Naïve-Bayes classifiers, closely followed by DS2.  

Ending the analysis of the general results for these three models, a comparison between 

the accuracy results by the number of clusters is presented in the following figure. 

Therefore, Fig. VII-11 shows the statistical distribution of the accuracy by the number of 

clusters and for the three models presented.  
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Fig. VII-11. Accuracy Boxplot for different number of clusters for the three models 

As it was previously concluded, kNN is the model with highest accuracy results by far. 

Support Vector Machines and Naïve-Bayes classifier have similar accuracy results but 

quite far away from kNN. In all the cases, the best class prediction results are obtained 

with the smallest number of clusters (K=3). The efficiency of kNN model slowly 

decreases as long as the number of clusters increases, whereas the efficiency reduction 

of the other two models rapidly increases. Specially, the accuracy is drastically reduced 

in the smallest number of clusters, following a negative exponential reduction trend.  

As it can be observed in Fig. VII-11, for K=3 & K=4, the accuracy of SVM model is higher 

than Naïve-Bayes, whereas this trend is reversed from K=5.  

Thus, the simplicity of kNN model results in the most accurate prediction of the cluster 

in function of the predictor variables shown in Fig. VII-11. The simplicity of this algorithm 

and the relatively low amount of predictor variables used in this study makes this model 

to be the most appropriate for cluster prediction. This is why, kNN model is analyzed in 

the particular building assessment (Section 4.2.2) along with the results for classification 

and regression trees.  
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4.2. Specific Buildings’ Analysis 

Following the same structure than previous study about clustering algorithms, special 

focus on four buildings is presented. The four buildings chosen for this section are the 

same than presented in Chapter V and Chapter VI. Thus, two residential buildings 

(Building 10045, with DHW and Building 10051, with no DHW demand), an educational 

building (Building 10949) and a commercial building (Building 11195) will be presented 

in the following paragraphs. At this point, we remember that the heating profiles of 

these buildings can be found in Chapter XI, Appendix. 

4.2.1. CART 

4.2.1.1. Building 10045 (Residential Apartment with DHW demand) 

To start with the results, Fig. VII-12 presents the evaluation of the accuracy by the 

number of clusters in which the heating demand is divided for the two models above-

presented. Fig. VII-12a presents the accuracy results by the application of CART model 

using hourly temperatures, while Fig. VII-12b presents the results obtained with the 

CART without hourly temperatures. In both cases, DS6 presents the highest accuracy 

(yellow line), closely followed by DS4 and in both cases, the maximum is obtained in K=3 

clusters. 
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(a)  

 

(b)  

Fig. VII-12. Evolution of Accuracy by number of clusters (a) with hourly temperature and (b) without 
hourly temperature in Building 10045 

Additionally, the trees formed using hourly temperatures are very complex to visualize 

due to the high number of variables affecting the clusters and consequently, the high 

number of branches of the tree. Nevertheless, the pruned tree of the model without 

hourly temperatures is shown in Fig. VII-13 along with the classified clusters.  

Therefore, in general terms, Cluster 3 incorporates days from summer and mid-season 

periods with low and stable loads. Cluster 2 groups days in January and February, 

coinciding with cold days (high heat load), when there is a night setback in the demand. 

Finally, Cluster 1 groups the rest of the days, when the demand is highly reduced at mid-

day. Thus, the main variables affecting this model are the Month of the year (with 

particular focus on months 1 and 2), the summer period, the day of the week, and the 

daily mean temperature. 

All this explanation is visualized in Fig. VII-13. In each of the boxes that conform the 

models, the first number defines the cluster number of the predominant cluster in that 

step of the model. In the second row, the distribution of the existing clusters is 

presented and finally, the number in the third row indicates the fraction of the data 
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remaining after the previous classification step. Thus, in the first box of all the CARTs, 

this number in the third row is 100%. 

 

Fig. VII-13. CART Pruned Model without hourly temperatures in Building 10045 

4.2.1.2. Building 10051 (Residential Apartment with NO DHW demand) 

The accuracy results from all the CART models agree that K=3 clustering distribution is 

the optimal for this building. Firstly, Fig. VII-14 presents the evolution of the accuracy in 

the two CARTs proposed models by the different number of clusters. It is observed that 

DS1 obtains the highest accuracy in the CART model with hourly temperatures Fig. 

VII-14a), followed closely by the accuracy of DS4 & DS5. On the other hand, when 

removing hourly temperatures, the DS2 is the one that obtains the highest accuracy. 

Note that the maximum accuracy of the simplified model is higher than the more 

complex CART model. Comparing with Building 10045, the classification accuracy in 

Building 10051 is higher.  
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(a) 

 

(b) 

Fig. VII-14. Evolution of Accuracy by number of clusters (a) with hourly temperature and (b) without 
hourly temperature in Building 10051 

The Fig. VII-15 shows the CART scheme/logic of the simplified pruned model.  

 

Fig. VII-15. CART Pruned Model without hourly temperatures in Building 10051 
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The first classification logic is determined by SUMMER variable. Thus, all the heating 

profiles in the third Cluster correspond with the days that are considered summer in this 

variable. The demand of the days grouped in this cluster (except one) is cero, including 

SH and DHW demand. Considering that the building is a residential apartment, it is 

concluded that DHW is supplied from an external heat source (not the DH). 

Mid-season in this building is defined as all the months except from January, February, 

March, October, November & December, and the summer months. Therefore, winter or 

heating season is composed by the 6 months mentioned before.  

On the other hand, Cluster 2 groups the following days: 

• Mid-season in which the mean temperature is above 1.7°C. 

• Heating season in which the daily mean temperature is between 5.8 and 10°C 

and the day of the week is Wednesday, Friday and Saturday. 

Finally, Cluster 1 is composed by the following logic: 

• Days in the heating season in which the daily mean temperature is below 5.8°C. 

• Mondays, Tuesdays, Thursdays and Sundays in the heating season with daily 

mean temperature above 5.8°C. 

• Wednesdays, Fridays and Saturdays in the heating season in which the daily 

mean temperature is above 10°C. 

• Mid-season in which the mean temperature is below 1.7°C. 

4.2.1.3. Building 10949 (Kindergarten) 

The heat demand pattern identified in the previous chapter were quite different from 

the ones in Building 10045 & 10051 due to the different use of the building. Fig. VII-16 

presents the evolution of the accuracy results for the CART model (Fig. VII-16a) and its 

simplified version (Fig. VII-16b) by the different number of clusters. In both models, the 

highest accuracy results are obtained with three clusters. However, the best results in 

this building are obtained with DS6 but closely followed DS5 & DS4. 
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(a) 

 

(b) 

Fig. VII-16. Evolution of Accuracy by number of clusters (a) with hourly temperature and (b) without 
hourly temperature in Building 10949 

The pruned tree of the simplified model is shown in Fig. VII-17. 

 

Fig. VII-17. CART Pruned Model without hourly temperatures in Building 10949 
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This classification model shows that the most determining variable for classification is 

the seasonal period (95% of the days were properly classified, considering only 

“summer” and “month” variables). Thus, Cluster 3 is composed by heating days in the 

summer period and some days in the heating season, when the daily mean temperature 

is above -5.9°C. Cluster 2 gathers daily heating profiles of the days in the heating season, 

when the daily mean temperature is below -11°C in the first and last months of the year. 

The days grouped in Cluster 2 are the rest of the days in the mid-season. 

4.2.1.4. Building 11195 (Commercial/Shopping building) 

Finally, Fig. VII-18 presents the evolution of the accuracy results for the CART model (Fig. 

VII-18a) and its simplified version (Fig. VII-18b) by the different number of clusters in the 

commercial building. In both models, the highest accuracy results are obtained with 

three clusters. However, the best results in this building are obtained with DS2 and 

followed DS5. 

 

(a) 

 

(b) 

Fig. VII-18. Evolution of Accuracy by number of clusters (a) with hourly temperature and (b) without 
hourly temperature in Building 11195 

Then, Fig. VII-19 presents the form of the model. This classification model also shows 

that the most determining classification variable is the season, followed by the daily 

mean temperature (91% of the days were properly classified, considering only the 
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“summer” and “Mean outdoor temperature” variables). Thus, Cluster 2 is formed by 

days in the summer period and the mid-season with daily mean temperatures above (or 

equal to) 16°C. Moreover, Cluster 1 groups demand profiles in the first and last months 

of the year (heating season) and the mid-season with low outdoor temperatures. Finally, 

Cluster 3 gathers the days that are not classified in Cluster 1 or 2. 

 

Fig. VII-19. CART Pruned Model without hourly temperatures in Building 10949 

4.2.2. Other Models: kNN 

As concluded in section 4.1.2, kNN algorithm shows the greatest accuracy for the 

prediction of the clusters. The following table presents the accuracy evolution for the 

optimal dataset in the four buildings under analysis.  
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Table VII-4. Evolution of the accuracy by clusters in the four buildings 

Building DS K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 

10045 DS2 0.964 0.967 0.911 0.949 0.874 0.946 0.914 0.911 

10051 DS5 0.987 0.977 0.985 0.957 0.906 0.954 0.939 0.960 

10949 DS5 0.981 0.956 0.989 0.926 0.978 0.958 0.936 0.970 

11195 DS2 0.965 0.961 0.979 0.989 0.951 0.941 0.951 0.951 

5. Discussion & Conclusions 

This chapter have presented a wide comparison between different classification models 

to predict the multiclass cluster variable coming from the previous study about 

unsupervised clustering algorithms. Unsupervised clustering groups data only by the 

“shape” of the heating profiles in the building, whereas this supervised study enables to 

obtain the correlation between heat demand patterns and the external variables 

(climatic + calendar variables) that could be the main causes for the existence of 

different heating profiles and heat demand patterns. For this purpose, four different 

models have been developed, including the use of classification and regression trees 

(CARTs). The great differences found between heat demand patterns in the buildings 

make impossible to present all of them. Therefore, a deeper analysis of four buildings 

has been presented. 

Regarding the effectiveness of the analyzed models, the best accuracy results are 

obtained with kNN model. This model enables to obtain very accurate prediction of the 

cluster, with accuracy values above 0.9 in almost all the buildings and cases analyzed. 

The simplicity of the algorithm behind this model contrasts the very accurate 

classification results obtained. However, the main disadvantage of this algorithm is the 

lack of knowledge of the factors determining the cluster classification. The rest of the 

models present similar accuracy results for cluster prediction in which the best result is 

obtained by different models in different buildings. Particularities of each model have 

been previously presented. 
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Moreover, all the models agree that a low number of clusters are easier to be 

characterized and predicted. Thus, the clusters formed with K=3 from previous chapter 

are the one with highest prediction accuracy and consequently, the clusters with greater 

relation with the external variables or predictors. CART, SVM & Naïve-Bayes models 

strongly reduce the accuracy as well as the number of clusters increase. However, 

accuracy from kNN model is also reduced with the number of clusters but with a lower 

slope comparing with the rest of the models.   

As for the datasets used for the various simulations, all the models also agree that DS2 

and DS5 are the optimal for classification purposes. These datasets correspond with the 

normalization process in which the instant heat demand value is divided only by the 

maximum daily heat demand. This result also agrees with the results obtained in the 

unsupervised clustering algorithm, in which these datasets obtained the highest share 

of CVIs. Thus, these two datasets (removing or not the possible outlier from the original 

data) enable to better differentiate heat demand patterns and typical heat profiles as 

well as the formed clusters show the greater relation with the external variables 

including weather and calendar variables (Table VII-1). 

Finally, CART algorithm enabled to obtain a greater knowledge of the causes affecting 

the different heat demand profiles. This study showed that in general, this algorithm is 

effective for cluster prediction based on the obtained results. The results proved that 

the models developed using variables in Table VII-1 (CART 1) perform slightly better than 

the models developed using variables in Table VII-1 (CART 2). However, the “complex” 

model uses 24 more variables than the simplified model and consequently, the accuracy 

difference between these two models is not big enough to justify the use of the 

“complex” models. Thus, we concluded that the CART model without hourly 

temperatures as predictors is the optimal CART for this purpose. Besides, among the 

variables in Table VII-1, SUMMER/REST, DAY of the week and mean temperature are the 

variables that most affect the clustering process. In general, the simplest models are 

more effective for prediction (testing data), whereas complex models are valid for 

characterization purposes (training data). 
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To sum up, the most interesting model is the CART, since it allows visualizing the rules 

that determine the cluster classification. This model results to be quite effective with 

low number of clusters and its effectiveness strongly reduces when the number of 

clusters increase. On the other hand, kNN model results to be the most effective 

classifier with very accurate results for almost all the cases. Note that the advanced 

tuning process of a SVM model requires the grid study of all the variables in the model 

and it requires a large computational cost and time, which makes it very difficult to 

implement in large scale (district or city scale).    

6. Referred Appendix 

The research presented along this chapter has been published by the author in JOURNAL 

OF BUILDING ENGINEERING journal by ELSEVIER. The reference (title and DOI) and the 

first page of this article can be found in the Chapter XI: Appendix.  
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Chapter VIII 

Advanced Models for Demand Prediction 

 



 

 

 

 

Abstract 

This chapter presents the final step of the methodology developed for the 

characterization and hourly forecasting of heating demand in buildings connected 

to DH networks. In this chapter, different predictive algorithms and model 

configurations are trained and tested against real data. This chapter analyzes the 

influence of number of clusters, classification model or predictor variables, among 

others, in the accuracy of the predictions. As a result, it will determine which are the 

optimal conditions for this purpose.    

 

Resumen 

En este capítulo se presenta el paso final de la metodología desarrollada para la 

caracterización y predicción horaria de la demanda de calor en edificios conectados 

a redes de DH. En este capítulo, se entrenan diferentes algoritmos predictivos y 

configuraciones de dichos modelos, para posteriormente validarlos con datos 

reales. Este capítulo analiza la influencia del número de clústeres, el modelo de 

clasificación utilizado o las variables predictoras, entre otras, en la precisión de las 

predicciones. Como resultado, se determinarán las condiciones óptimas para este 

fin. 
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Chapter VIII Advanced Models for Demand 

Prediction 

1. Introduction 

In the previous chapters we studied how heat demand patterns can be identified using 

unsupervised learning and we developed classification models for predicting the 

mentioned pattern. This chapter will finish this multistep methodology by the prediction 

of the heating demand using the knowledge obtained from Chapter IV onwards.  

Among data-driven models, ML (supervised) algorithms turn out to be effective for the 

forecasting of multiple operational variables in buildings´ demand, such as energy 

demand or supply temperature in the SH loop. ML models have been extensively applied 

in electricity demand modelling ([128] or [129]) and to a lesser extent for heating energy 

demand in buildings (e.g., [130]). Data from electricity demand in buildings has been 

more accessible than the heating demand data from heat-meters and consequently, a 

wider literature is found in ML algorithms applied to electricity management.  

Heating energy demand in buildings have been traditionally simulated using the 

commonly known as “white-box” models which are based on computer programs that 

include the equations of the physics of a building. An example of this software can be: 

TRNSYS, Design Builder6 & Casanova, among others. However, this methodology 

presents two main problems: (i) high-computational cost and time and (ii) a lot of 

information about buildings´ characteristics is needed: wall and windows transmittance, 

window to wall ratio or other constructive characteristics. Moreover, this type of 

methodologies does not present high accuracy if there is not much information 

available, including the occupational behavior of people inside the building. On the other 

 
6 We will use this computer program for simulating two small districts in Chapter IX  
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hand, the commonly known as “black-box” models or machine learning models try to 

develop less cost computing models based on demand data from previous years. There 

is a wide variety of models with different efficiency levels that will be analyzed in the 

following paragraphs, but in general terms, machine learning models enable to use the 

knowledge obtained from the data to forecast the demand, specially based on the 

weather and occupational data of the building. In the middle of white box and black box 

models coexist the grey box models. These models integrate prior physical knowledge 

and are typically formulated as state-space models through a set of stochastic linear 

differential equations, either in discrete or continuous time. Grey box models require a 

deep understanding of all relevant phenomena in a building that impact instantaneous 

or cumulated values of the load. Nevertheless, this study is only focused on black-box 

data-driven models since there is a need for low computational cost and high flexibility 

in order to adapt the model to all building typologies. And there is no extra information 

about the buildings under study. 

Therefore, this chapter will be focused on buildings connected to a DH network, a factor 

that determines the objective of predicting the demand. The objective is not just the 

forecast of the heating energy in a single building but in a wide variety of buildings with 

different final uses and different heat demand profiles. This means that all the 

knowledge obtained for a unique building cannot be applied to the rest of the buildings 

(different demand patterns, as studied in previous chapter) and a general method valid 

for all buildings is needed.  

The introduction of digital devices in the system allows the instant measure and 

gathering of all the operational variables in the network. This process opens the door to 

new opportunities in data-driven energy management. With operational data available, 

it is possible to characterize energy demand in buildings and consequently in the DH 

network. A more extensive review of the literature regarding heat load prediction has 

been presented in chapters before. 
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This chapter aims to present a novel method that combines both supervised and 

unsupervised learning algorithms for the hourly prediction of the heating demand in the 

buildings connected to the DH network of Tartu (Estonia). This study uses the data from 

the substations of the mentioned buildings and aims to compare the obtained results, 

in terms of prediction accuracy and computational time, against the model previously 

developed by the authors in [2] (explained in Chapter V), the so-called Q-T algorithm.          

The previous chapters summarized the studies made in: (i) unsupervised clustering for 

the identification of heat load patterns and (ii) classification models for the 

prediction/characterization of the identified patterns. These studies were carried out 

using multiple datasets and machine-learning algorithms in order to identify the most 

suitable for this case study. Chapter VI concluded that K-means algorithm was the most 

suitable clustering algorithm to be applied but the CVI study was quite relative. From 

the classification model chapter (Chapter VII), the kNN model results the highest 

accuracy and CARTs were used to identify the most determining variables affecting heat-

load energy patterns.  

2. Objectives of this Chapter 

This chapter aims to follow and finish with the methodology started in the previous 

chapters. Thus, this chapter aims to predict the hourly heat demand in respective 

buildings by using different machine-learning algorithms and using the knowledge 

obtained in the pattern identification and prediction studies. The prediction of a variable 

in machine learning is the process of obtaining a numerical value of a particular variable. 

Therefore, the main objective of this chapter is to obtain the value of the hourly heat 

demand using the supervised machine-learning models. 

The technical objectives of the present chapter are the followings: 

1. Development and analysis of different machine learning prediction models 

and evaluation of the error metrics. 

o Analysis of the effect of different cluster numbers 
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2. Evaluation of the effect of introducing the heat load patterns as input variable 

for the prediction models against not introducing them. 

3. Analysis of the error metrics and the time spent for the computation of the 

models and evaluate the effect of: 

o Number of clusters 

o Machine-learning models 

3. Approach. General Methodology 

In this chapter, the final step of the multistep method for the heat load prediction in 

buildings is carried out. The chapter starts from the end of the previous chapter, 

therefore by the end of the cluster classification and uses this class prediction for 

evaluating the efficiency of different forecasting algorithms.   

 

Fig. VIII-1. General methodology followed in Chapter VIII. 

The rest of the chapter is ordered as follows. First, Section 3.1 describes the algorithms 

used for the final step of heat-load prediction and presents the variables used as 

predictors in each the variants of the models. Then, Section 3.2 presents the metrics 

used for the evaluation of the forecasting process. Additionally, Section 4 will show the 

results obtained and, as it was done in the previous chapters, the results are divided into 

general results and special and deeper focus on some of the buildings in the DH in Tartu. 

Finally, Section 5 will summarize the most relevant conclusions.  
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3.1. Studied Heat-Load Prediction Models 

This section will provide an overview of the different algorithms used in this study. We 

present a brief overview of the mathematical approaches of 3 different models apart 

from the regression explained in Q-T algorithm.  

Regarding the physical meaning of these models, Q-T algorithm, and its evolutions 

shown in this chapter, is the unique model in which the heat transfer effects are 

introduced. This is why, the study of the comparison between regression models and Q-

T algorithm is presented separately. The rest of the section is divided as follows: Section 

3.1 analyses the Q-T algorithm and is compared with other new regression models while 

Section 3.2 provides a study for the rest of the models developed: Support Vector 

regressor (SVR), random forest (RF) and finally the advanced extreme gradient boosting 

algorithm (XGB). 

3.1.1. Q-T Algorithms versus other Regression Models 

In Chapter V the Q-T algorithm was developed and analyzed. This model is based on a 

multi-variable linear regression (MVLR) and using three decision-trees four hourly data 

(LVL1, LVL2 and LVL3). Thus, the model was formed by 336 equations and more than 

1000 parameters for each building. Even though R2 values above 0.7 were obtained in 

the predictions carried out for a vast majority of buildings, this model was time and 

resource consuming. So, in this chapter, the original Q-T algorithm will be compared, in 

terms of error and computational cost, against other regression models using the 

unsupervised patterns identified for each building. 

In general terms, linear regression attempts to model the relationship between two 

variables fitting a linear equation. In mathematical notation if y is the value to be 

predicted and x the independent variables: 

𝑦 (𝑤, 𝑥) = 𝑤0 + 𝑤1 ∙ 𝑥1 + 𝑤2 ∙ 𝑥2 + ⋯ + 𝑥𝑝 ∙ 𝑥𝑝 Eq. 17 

For determining the curve of the vector w, a cost function has to be minimized. For this 

case the function that to has to be minimized is the least square’s function. This way, all 
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the parameters in the w vector are calculated. Using the same nomenclature, the 

function is the following, determined as L (y, x): 

𝐿 (𝑦, 𝑥) = ∑(𝑦𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 Eq. 18 

Thus, this case study compares the following multivariable regressions: 

1. Q-T algorithm (Chapter V)  

2. Linear regression without clusters (MVLR_1) 

3. Unsupervised Clusters (Chapter VI) + kNN classifier (Chapter VII) + Regression 

using clusters (MVLR_2) 

4. Unsupervised Clusters (Chapter VI) + CART classifier (Chapter VII) + Regression 

using clusters (MVLR_3).  

The input variables (independent) for each of the multi variable regressions are shown 

in Table VIII-1. 

Table VIII-1. MVLR models and the input variables used in each case. 

Model TOUT GT Cluster Weekday Month Hour Day Holiday 
Classification 

Model 

Q-T algorithm 

(Chapter V)  
X X  X X X X -- 

MVLR_1 X X    X X -- 

MVLR_2 X X X   X X KNN 

MVLR_3 X X X   X X CART 

 

3.1.2. Other Advanced Prediction Models 

Besides, the multivariable linear regressions are compared against other less intuitive 

and more complex machine-learning models. The following three algorithms are used 

for the construction of the models. 
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1. Support Vector Regressor (SVR) 

2. Random Forest (RF) 

3. Extreme-Gradient Boosting (XGB) 

3.1.2.1. Support Vector Regressor (SVR) 

This model had also been previously used for classification purpose in Chapter VII. 

Specifically, this model was used as the classification model for clusters. SVR are one of 

the most popular and widely used machine-learning models and the functionality is the 

same as the SV for classification problems. The main advantages of this algorithms are 

the following: 

• Effective in high dimensional spaces. 

• Still effective in cases where number of dimensions is greater than the number 

of samples. 

• Uses a subset of training points in the decision function (called support 

vectors), so it is also memory efficient. 

• Versatile: different Kernel functions can be specified for the decision function. 

Common kernels are provided, but it is also possible to specify custom kernels. 

In SVR models, a hyperplane that divides data with the largest margin has to be found. 

This way, the hyperplane will have the dimensionality of the data minus one. Thus, if 

data has two dimensions, the hyperplane will be a line and if it has three dimensions, 

then hyperplane will have a shape similar to the one in Fig. VIII-2. 
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Fig. VIII-2. Support vector hyperplane example 

The implementation of this algorithm in R is made using e1071 library in R. 

For the evaluation of this algorithm, three models have been developed: 

1. Support Vector Regressor without clusters (SVR1) 

2. SVR with clusters using kNN classifier (SVR2) 

3. SVR with clusters and CART classifier (SVR3) 

Table VIII-3 summarizes the variables used as independent variables for training the 

models in the three variants. Note that some of the variables used in the models are 

naturally categorical (such as months or day of the week) cannot be included directly in 

the model and have to be divided into different features. This process of converting 

categorical into numerical variables is named encoding. Thus, the variable day of the 

week is divided into seven different columns and the values for observations are 0 or 1. 

Table VIII-3 presents the variables included in each of the models for this algorithm. 
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Table VIII-2. SVR models and the input variables used in each case. 

Model TOUT GT Cluster Weekday Month Hour Day Holiday Classification Model 

SVR_1 X X  X X X X -- 

SVR _2 X X X X X X X KNN 

SVR _3 X X X X X X X CART 

 

3.1.2.2. Random Forest Regressor (RF) 

The random forest (RF) is a supervised machine-learning algorithm consisting of many 

decisions trees. It uses bagging and feature randomness when building each individual 

tree to try to create an uncorrelated forest of trees whose prediction by committee is 

more accurate than that of any individual tree. This bagging (also known as bootstrap 

aggregation) consists of random sampling of the data with replacement, enabling a 

better understand the bias and the variance of the dataset. Bagging makes each model 

run independently and then aggregates the outputs at the end without preference to 

any model, as it can be observed in Fig. VIII-3. 

 

Fig. VIII-3. General functioning scheme of the random forest regressor for predictions 

The main advantages of this algorithms are the followings: 
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• Reduced risk of overfitting: Decision trees run the risk of overfitting as they tend 

to tightly fit all the samples within training data. However, when there’s a robust 

number of decision trees in a random forest, the classifier won’t overfit the model 

since the averaging of uncorrelated trees lowers the overall variance and 

prediction error. 

• High efficiency, and specially in large databases where there are lots of input 

variables without variable deletion.  

• Provides flexibility: Since random forest can handle both regression and 

classification tasks with a high degree of accuracy, it is a popular method among 

data scientists. Feature bagging also makes the random forest classifier an 

effective tool for estimating missing values as it maintains accuracy when a 

portion of the data is missing. 

• Easy to determine feature importance: Random-forest makes it easy to evaluate 

variable importance, or contribution, to the model. There are a few ways to 

evaluate feature importance. Gini importance and mean decrease in impurity 

(MDI) are usually used to measure how much the model’s accuracy decreases 

when a given variable is excluded. However, permutation importance, also known 

as mean decrease accuracy (MDA), is another importance measure. MDA 

identifies the average decrease in accuracy by randomly permutating the feature 

values in samples. 

On the other hand, the key challenges for this algorithm are the following: 

• Time-consuming process: Since random forest algorithms can handle large data 

sets, they can provide more accurate predictions, but can be slow to process data 

as they are computing data for each individual decision tree. 

• Requires more resources: Since random forests process larger data sets, they’ll 

require more resources to store that data. 

• More complex: The prediction of a single decision tree is easier to interpret when 

compared to a forest of them. 
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The implementation of this algorithm in R is made using randomForest [127] library in 

R. 

For the evaluation of this algorithm, three models have been developed: 

1. Random Forest Regressor without clusters (RF1) 

2. Random Forest with clusters using kNN classifier (RF2) 

3. Random Forest with clusters and CART classifier (RF3) 

The following table summarizes the variables used as independent variables for training 

the model. The same way as it was done with SVR, the categorical variables are 

converted into binary predictors using the one-hot-encoding method. The variables 

included in each of the models are shown in Table VIII-3. 

Table VIII-3. Random Forest regression models and the input variables used in each case. 

Model TOUT GT Cluster Weekday Month Hour Day Holiday Classification Model 

RF_1 X X  X X X X -- 

RF _2 X X X X X X X KNN 

RF _3 X X X X X X X CART 

 

3.1.2.3. Extreme Gradient Boosting (XGB) 

The final machine learning algorithm chosen for this study is the advanced extreme 

gradient boosting or XGB [131]. This algorithm is supervised learning model that evolves 

from gradient boosting algorithm. The same way than random forest work, this 

algorithm uses multiple decision trees to obtain the results. The result of the algorithm 

is obtained using all the trees developed, what is called ensemble method. Fig. VIII-4 

shows a graphical illustration of how the algorithms performs. 
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Fig. VIII-4. Extreme Gradient Boosting functioning scheme 

For the total comprehension of the workflow of this algorithm, it is necessary to 

introduce the following parameters: 

• Learning Rate: the value of each tree is scaled by the learning rate. This enables 

the algorithm to have a more gradual and steady improvement at each step. 

• Tree depth: the algorithm allows you to control the maximum size of the trees to 

minimize the risk of overfitting the data. 

• Residuals: actual (observed) value — predicted value. 

• Similarity Score and Gain determine are the variables that will determine the 

shape of the models and the node splits in each of the steps. 

The equation that governs Similarity Score is the following (Eq. 19): 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑖

𝑛
𝑖=1 )2

∑ [𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 −  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)]  +  𝜆 𝑛
𝑖=1

 Eq. 19 

Where 𝜆 is a regularization parameter that is used to influence the weight of small leaves 

in the tree. As 𝜆 increases the importance of small leaves is reduced. Thus, the gain in 

each step is determined as follows: 

𝐺𝑎𝑖𝑛 = 𝐿𝑒𝑓𝑡 𝑙𝑒𝑎𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 +  𝑅𝑖𝑔ℎ𝑡 𝑙𝑒𝑎𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑅𝑜𝑜𝑡𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 Eq. 20 

So, the tuning of the algorithm is carried out using the number of trees, the depth of 

each tree and modifying the learning rate. The process consists in developing successive 

weak trees that use the results from the previous tree until the incorporation of more 

trees does not increase the precision of the results. 
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The implementation of this algorithm in R is made using xgboost library in R [132] 

For the evaluation of this algorithm, two models have been developed: 

1. Extreme Gradient Boosting without clusters (XGB1) 

2. Extreme Gradient Boosting with clusters using kNN classifier (XGB2) 

Since this model is expected to obtain higher accuracy results than the rest of the 

algorithms, when introducing clusters analysis, only kNN classifier is used. There are not 

relevant differences between using kNN or CART models for the prediction of the 

pattern class. Thus, the variables used are the same than in the rest of models. Note that 

this algorithm also needs the one-hot-encoding process before introducing variables to 

the model. 

Table VIII-4. XGB models and the input variables used in each case. 

Model TOUT GT Cluster Weekday Month Hour 

Day 

Holiday Classification 

Model 

XGB_1 X X  X X X X -- 

XGB_2 X X X X X X X KNN 

 

3.2. Model Validation and Error Metrics 

This chapter tries to evaluate the efficiency of the models detailed in the previous 

section and to use common metrics that allow comparing results. The problem faced in 

this study is to predict a numerical variable, so it corresponds with a regression problem. 

Thus, the error metrics that needs to be used cannot be the same used in Chapter VII. 

The same way than it was done for classification models, the evaluation of the prediction 

models is carried out using k-fold cross validation (Section 3.2.1 in Chapter VII). As in any 

machine learning model, the dataset is divided into training and testing datasets and the 

efficiency of the models is completely dependent on the way we divide the data. In this 

study, different training and testing datasets are used so that the obtained results can 

be correctly interpreted. Cross validation performance scheme was shown in Fig. VII-2. 
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This study proposes a 5-fold cross validation, dividing data into 5 subsets of 20% of the 

data. Thus, 80% of data is used for training and 20% for testing and this process is 

repeated 5 times. 

Regarding the error metrics used for the evaluation of the prediction, the following 

metrics are used: 

1. R squared value (R2) or Coefficient of Determination: It is one of the most 

used error metrics in regression. Its value ranges between 0 and 1 and 

represents the proportion of the variation in the dependent (regressed) 

variable. Zero is the worst regression and R2=1 means that the prediction is 

perfect. An R2 value equal to 0.9 can be interpreted as: “Ninety percent of the 

variance in the baseline values can be explained by the modeled values”.  

This metrics is calculated using the following equation: 

𝑅2 = 1 − 
∑ (𝑌𝑖 −  �̅�𝑖)

2𝑁
𝑖=1

∑ (𝑌𝑖 −  𝜇)𝑁
𝑖=1

2  Eq. 21 

Where, Yi is the predicted vector, �̅� is the known vector and  𝜇 is the mean 

value of Y. 

2. Root Mean Square Error (RMSE): This metric represents the square root of the 

second sample moment of the differences between predicted values and 

observed values or the quadratic mean of these differences. This metric ranges 

between 0 and ∞ and a low value is desired. The following equation governs 

this metric: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖  −  �̅�𝑖)2𝑁

𝑖=1

𝑛
 

Eq. 22 

 

Where n is length of the vectors. 

3. Mean Absolute Percentage Error (MAPE): This metric is usually used as a loss 

function in regression problems (for example in extreme gradient boosting) 



  

Chapter VIII  236 

  

and present in percentage units the relative error of the predicted vector. This 

metrics ranges between 0% and 100% and the equation is the following: 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∗  ∑ |

𝑌𝑖  − �̅�𝑖

𝑌𝑖
|

𝑁

𝑖=1

 Eq. 23 

 

4. Mean Absolute Error (MAE): This final metric is similar to the MAPE, but the 

error is given in predicted vectors´ unit. In this case for example, this metric is 

given in energy units, kWh. Thus, this metric will range between 0 and ∞. 

𝑀𝐴𝐸 =  
∑ |𝑌𝑖  −  �̅�𝑖|

𝑛
𝑖=1

𝑛
 Eq. 24 

Additionally, the computation time spent for each of the algorithms is also measured 

and analyzed as an indicator of the quality of the model. Execution time for all the 

models has been monitored using Sys.time() function in R. The computational time is 

compared against the time used in the Q-T algorithm, so that the real reduction obtained 

by the reduction of regressions by the unsupervised learning may be observed. This 

variable is defined as the time required by the computer to train and test the 

corresponding multi-step model. The computational time required in this type of 

application is a critical variable when forecasting hour-ahead predictions and the model 

is extended to a high number of buildings connected to a DHN. The developed models 

are run in a personal laptop with no special requirements. The processor of the machine 

is an Intel(R) Core (TM) i5-10210U CPU@1.60GHz 2.11 GHz with 8 GB RAM. Thus, 

computational time should be understood as a relative variable since these times would 

be highly reduced if the models were run in a dedicated server.  

4. Results 

Following the same results’ scheme than in previous chapters, results are divided into a 

section for general results comparing algorithms´ efficiency and other initial conditions 

and another section focusing on the results of the four buildings that we have analyzed 

throughout all the dissertation.  
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4.1. General Results 

The most important and relevant metric used for the evaluation of forecasting heat load 

error has been the R2 value. Fig. VIII-5 shows the value of this error metric for all the 

buildings analyzed using the four prediction models explained and additionally includes 

the results obtained by the Q-T algorithm (presented in Chapter V). Therefore, this figure 

shows the optimal R2 values for all the buildings when including clusters/patterns as 

predictor variables: MVLR_3, SVR_3, RF_3 and XGB_3 from Table VIII-1.  

We have presented some tables (from Table VIII-2 to Table VIII-4) that summarize the 

variables used as independent variables for training the models. Note that some of the 

variables used in the models are categorical (such as months or day of the week) and 

cannot be included directly in the model so that it is necessary to be divided into 

different features. This process of converting categorical into numerical variables is 

named encoding. For example, the variable day of the week is divided into seven 

different columns (from Monday to Sunday) and the values for each observation are 0 

or 1.  

Therefore, Table VIII-2 presents the variables included in each of the models for this 

algorithm. The same way as it was done with SVR, the categorical variables are 

converted into binary predictors using the one-hot-encoding method. The variables 

included in each of the models are shown in Table VIII-3 and Table VIII-4, respectively. 

Since this model is expected to obtain higher accuracy results than the rest of the 

algorithms, when introducing clusters analysis, only kNN classifier is used. There are not 

relevant differences between using kNN or CART models for the prediction of the 

pattern class. Thus, the variables used are the same than in the rest of models. Note that 

this algorithm also needs the one-hot-encoding process before introducing variables to 

the model. 

Fig. VIII-5 illustrates the maximum R2 values obtained for all the buildings among the 

different models, including MVLR, SVR, RF, XGB and Q-T algorithm.  
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Fig. VIII-5. Maximum R2 values for all the buildings in the district 

It is observed that in all the cases, this error metric shows the best results when using 

the extreme gradient boosting algorithm. Only in a few buildings, the Q-T algorithm is 

the best method: Building 11009 and Building 11708. Moreover, the ranges obtained 

with the Q-T Algorithms are maintained when using more complex ML algorithms. Thus, 

the buildings with the worst results with Q-T Algorithm also resulted to be the worst 

with XGB or another algorithm. In the case of the optimal method, XGB, the R2 values 

range between 0.52 in the worst case and 0.99 in the best case. The highest the 

deviation between the points the worst results are obtained since the climatic variables 

result to be less dependent on the final heat demand.  

In general terms, XGB is capable of increasing the R2 metric in around 10% compared 

with the Q-T algorithm. Analyzing the other methods tested, apart from XGB, the best 

algorithm results to be the SVR followed by RF and finally, the simple MVLR. There is 

only one case, Building 10949, where the MVLR obtains the highest accuracy and it is 

closely followed by the Q-T algorithm. This is one case of very high point dispersion in 

which the complex models are not capable of obtaining good results. 

In addition to R2 metric, the Fig. VIII-6 presents the optimal MAE values for the buildings 

under evaluation.  
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Fig. VIII-6. MAE values for all the buildings in the district 

This metric presents an absolute value of the error, and this is why it is very case-

dependent. So, in buildings with higher demand, this metrics is supposed to be higher 

than in buildings with lower demands. As a general conclusion, discussion from the 

previous figure is the same than the one shown with Fig. VIII-5. This metric ranges 

between almost 0 to a maximum error around 12 kWh in Building 11165.   

4.2. Individual Buildings´ Analysis 

As it was previously stated, special focus on four buildings is presented. The four 

buildings chosen for this section are the same than presented previous chapters. Thus, 

two residential buildings (Building 10045, with DHW and Building 10051, with no DHW 

demand), an educational building (Building 10949) and a commercial building (Building 

11195) will be presented. 

For all these buildings, the following figures are shown and discussed: 

• R2 and Computation time comparison between MVLR and Q-T Algorithm. 

• Comparison between the computational time required by the optimal methods. 

• Summary of the optimal error metrics for all the models.   
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4.2.1. Building 10045 (Residential Apartment with DHW demand) 

The following figure (Fig. VIII-7) shows the comparison between the results from Q-T 

algorithm and the three regression models proposed.  

(a) (b) 

Fig. VIII-7. (a) R2 and (b) computation time of MVLR against Q-T Algorithm in Building 10045 

These images show that the prediction errors for MVLR are a higher than Q-T algorithm 

but the difference always remains below 5%. However, the most significant differences 

are found in time analysis, since the introduction of unsupervised patterns reduce the 

number of clusters and consequently, the number of regression coefficients and 

mathematical operations. The R2 value varies from 0.842 in Q-T algorithm up to 0.863 in 

MVLR_2 and 7 clusters. Moreover, the computational time required in these two cases 

goes from 123,81 seconds in Q-T algorithm to only 19,89 seconds. Thus, apart from 

obtaining better accuracy results, the unsupervised study enables to reduce the 

computational time to 20%.  

The following figure presents the computational time required by the four studied 

algorithms when the number of clusters is three.  
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Fig. VIII-8. Computational time of the four models for three clusters in Building 10045 

Model 1, Model 2 and Model 3 refers to the models developed using the same 

nomenclature than in Table VIII-1, Table VIII-2, Table VIII-3 and Table VIII-4. That is to 

say, Model 1 for MVLR refers to MVLR_1 in Table VIII-1. 

Among the four algorithms and 11 models, the lowest computational time is obtained 

with MVLR_1, the simplest regression in which the cluster variable is not used as a 

predictor. Among the other models, XGB is capable, in any of its models, to forecast the 

hourly demand in 1.38 seconds in the first model (XGB_1) and 2.3 seconds by the second 

model (XGB_2). Thus, apart from obtaining the highest prediction accuracy, this model 

is the fastest except for the simple linear regression. The highest computation time is 

achieved when applying the RF model, with more than one minute required for 

achieving the results.  

To finish with this section, Table VIII-5 presents the minimum error for each of the 

models: 
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Table VIII-5. Minimum error metrics for the three models in Building 10045 

Model RMSE 
Nº 

Clusters 
Model MAPE 

Nº 

Clusters 
Model 

SVR 3.5457 9 SVR_2 0.2118 3 SVR_2 

RF 4.5218 6 RF_2 0.3374 3 RF_2 

XGB 3.3533 8 XGB_2 0.1535 6 XGB_2 

 

4.2.2. Building 10051 (Residential Apartment with NO DHW demand) 

Similar to the methodology followed for Building 10045, this section analyzes the 

prediction accuracy and computational time required for each of the multi variable 

regression models. Fig. VIII-9 presents the R2 value and the computational time 

[seconds] for the for variants of the regression.  

(a) (b) 

Fig. VIII-9. (a) R2 and (b) computation time of MVLR against Q-T Algorithm in Building 10051 

The Q-T algorithm explained in a previous chapter achieved better accuracy results for 

this building due to the lower distribution of the heating demand over the time. As it 

happened in Building 10045, the lowest accuracy results are obtained with MVLR_1, 

with R2 values slightly above 0.8. Due to the quite linear trend of the heat-load demand 

and the outdoor temperature, the Q-T algorithm achieved a R2 value of 0.974. However, 
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when applying MVLR_2, the R2 value is even higher in most cases reaching the maximum 

prediction accuracy of 0.982. In the case of MVLR_3, the accuracy is a bit lower than the 

Q-T algorithm but very near any case, with R2 values near 0.95.  

Moreover, these two multivariable regression models achieve similar prediction 

accuracy than Q-T algorithm with very much less computational cost. While in Q-T 

algorithm, the computational cost was around 92 seconds, the MVLR_2 results from 7 

seconds (two clusters) to 42 seconds (in the case of using 10 clusters). The maximum 

prediction accuracy in MVLR_2 is obtained when using three clusters (K=3) and the 

computational cost in this case was 12 seconds. Thus, the use of unsupervised clusters, 

apart from improving the prediction accuracy, enable to reduce the computational time 

to 13% of the time used in Q-T algorithm.  

This time reduction could be critical for live predictions when managing a real DH 

network and a large number of simulations have to be simultaneously run. Fig. VIII-10 

shows the computational time required by all the models under study.  

 

Fig. VIII-10. Computational time of the four models for three clusters in Building 10051 

Lowest computational time is achieved with the simplest linear regression, MVLR_1, and 

as it happened in the previous buildings, it is followed by extreme gradient boosting. In 

this case, the computational time required is 2.53 seconds and 4.53 seconds for XGB_1 
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and XGB_2, respectively. In contrast with Building 10045, the SVR_3 required more time 

than RF to achieve the results.  

To finish the study for Building 10051, Table VIII-6 presents the minimum error for each 

of the models. The MAPE metric is Inf caused by the no heating demand hours that can 

be observed in some of the summer days in this building. As this building does not feed 

the DHW demand from the district-heating network, the total heat demand in summer 

days is zero. Thus, regarding the equation of the metric, this value will always be Inf.  

Table VIII-6. Minimum error metrics for the three models in Building 10051 

Model RMSE 
Nº 

Clusters 
Model MAPE 

Nº 

Clusters 
Model 

SVR 1.0765 3 SVR_2 Inf *** *** 

RF 1.5397 3 RF_2 Inf *** *** 

XGB 0.8472 7 XGB_2 Inf *** *** 

 

4.2.3. Building 10949 (Kindergarten) 

The final use of this building differs from the previous two buildings and the distribution 

nature of the demand in this building is more chaotic and dispersed than in the other 

cases (Fig. IV-11). Worse prediction accuracy results were obtained in Q-T algorithm and 

similar patterns were expected also for the rest of linear regression models. Following 

the same method than in the rest of buildings, Fig. VIII-11 shows the prediction accuracy 

range, by means of the R2 value, for the three models simulated against the Q-T 

algorithms and the computational cost necessary to run the models. 
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(a) (b) 

Fig. VIII-11. (a) R2 and (b) computation time of MVLR against Q-T Algorithm in Building 10949 

The results observed in the figures above are similar to those obtained in the other two 

buildings, concluding that there is a common pattern for most of the buildings. The 

predictions obtained using MVLR_1, the model without unsupervised clusters, have 

much lower accuracy that Q-T algorithm. Whereas Q-T algorithm enabled to reach R2 

value of 0.704 in this building, results from MVLR_1 only reach values below 0.5. In 

contrast to MVLR_1, the other two models enable to reach predictions accuracy very 

near, even higher in some cases, to the results from Q-T algorithm. Additionally, the 

computational cost is still highly reduced from 93 seconds to around 20 seconds. 

Continuing with computational time, Fig. VIII-12 presents all the computational times 

used by the models. 
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Fig. VIII-12. Computational time of the four models for three clusters in Building 10949 

Again, the MVLR_1 is used the minimum time, only needing 0.26 seconds to predict the 

demand. This model is closely followed by the extreme gradient boosting variants. In 

this building, the time required by these models is 1.00 seconds and 2.06 seconds for 

XGB_1 and XGB_2, respectively. Moreover, the time required by the rest of the models 

is lower than in the previously analyzed buildings. The maximum time required in this 

case is slight above 30 seconds with SVR_2, around half of the time required in Building 

10045 and Building 10051.   

Finally, Table VIII-7 presents the optimal error metrics, RMSE & MAPE, for the three 

models applied to Building 10949.  

Table VIII-7. Minimum error metrics for the three models in Building 10949 

Model RMSE 
Nº 

Clusters 
Model MAPE 

Nº 

Clusters 
Model 

SVR 6.9382 5 SVR_2 0.2955 3 SVR_2 

RF 7.5155 3 RF_2 0.4345 3 RF_2 

XGB 6.4517 3 XGB_2 0.2786 3 XGB_2 
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4.2.4. Building 11195 (Commercial/Shopping building) 

The last particular building analyzed in this chapter is the commercial building, Building 

11195. On the one hand Fig. VIII-13a shows the R2 value of the Q-T algorithm against the 

regression variants, whereas Fig. VIII-13b presents a similar figure but for the 

computational time required. 

 

(a) 

 

(b) 

Fig. VIII-13. (a) R2 and (b) computation time of MVLR against Q-T Algorithm in Building 11195 

In this building, as it was previously commented, the regression variants are not capable 

to reach the accuracy of the Q-T algorithm, even introducing the cluster predictor, 

MVLR_2 and MVLR_3. Thus, while the R2 value obtained in Q-T algorithm reached 0.811, 

the maximum R2 obtained with the regression has been 0.791 in the best case. However, 

the computational time is reduced from more than 120 seconds to mean value near 20 

seconds (it is reduced to a sixth part) and 37 seconds in the worst case.  

Following with the study of the computational time in Building 11195, Fig. VIII-14 

presents the time used by all the models in the case of using three clusters as predictor 

variables.  
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Fig. VIII-14. Computational time of the four models for three clusters in Building 11195 

The lowest time is obtained with the simple linear regression named as MVLR_1. The 

time required in this case was 0.341 seconds. However, the accuracy of this models was 

clearly worse than the rest of the models. The variants of the extreme gradient boosting 

achieved low accuracy results, showing 2.07 and 4.40 seconds in XGB_1 and XGB_2, 

respectively. RF needed the longest time for obtaining the prediction with around two 

minutes in the worst case.    

Finally, Table VIII-7 presents the optimal error metrics, RMSE & MAPE, for the three 

models applied to Building 10949.  

Table VIII-8. Minimum error metrics for the three models in Building 11195 

Model RMSE 
Nº 

Clusters 
Model MAPE 

Nº 

Clusters 
Model 

SVR 9.049 3 SVR_2 0.722 3 SVR_2 

RF 11.552 3 RF_2 1.064 3 RF_2 

XGB 8.274 3 XGB_2 0.434 3 XGB_2 

5. Discussion & Conclusions 

This chapter presents the final step of this new methodology for the application in the 

prediction task for heating demands in buildings connected to DH networks. This 

chapter has analyzed different ML algorithms to study the prediction accuracy and 
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evaluate which are the optimal conditions for this forecasting task. The whole 

methodology combines unsupervised and supervised learning steps, finalizing with the 

supervised task of forecasting the demand. While unsupervised learning was used for 

the clustering of daily heat load profiles (Chapter VI), supervised algorithms are used to 

classify the unsupervised clusters (Chapter VII) and to forecast the hourly heat demand 

of the buildings (Chapter VIII).  

For this chapter, four different predictive algorithms have been trained and tested with 

data from the DH of Tartu: 

• Multi-variable Linear regressions or MVLR. 

• Support Vector Machines or SVR. 

• Random Forest or RF. 

• Extreme Gradient Boosting or XGB. 

Different variants have been modelled using different predictor variables and 

classification algorithms.  

Their prediction efficiency is analyzed using three error metrics, and the computational 

time required to train and test the models is also evaluated. The chapter has presented 

some general results for all the models and special focus on four buildings is carried out. 

Thus, the methodology is applied to four buildings connected to a DHN in Tartu (Estonia) 

as a demonstration case. The optimal model is aimed for large-scale application among 

a large number of buildings of varied use. This application will be shown in the following 

chapter of this dissertation, proving that the method can be transferred to other 

buildings with different circumstances and the impact on economic savings will be 

quantified. 

From the results in this chapter, the following conclusions could be drawn: 

• The previous Q-T algorithm used 366 equations to characterize the hourly 

demand, based only on calendar variables. The use of unsupervised learning, by 

means of K-means clustering, drastically reduces the number of equations 
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needed to characterize the heat load profiles, enabling to group daily profiles by 

the shape or patterns of the demand. Thus, the number of equations is reduced 

to the number of clusters generated. In general, all the algorithms evaluated in 

this paper reduce the computational time required. The computation cost of 

MVLR models was around 90% lower than for the Q-T algorithm in all the cases. 

• The methodology using cluster analysis improves the efficiency for prediction in 

building scale compared against Q-T algorithm. In the four buildings in which this 

study was focused, the R2 value was improved and compared with the obtained 

in Q-T algorithm.  

• Computation cost is a key variable for the operation of large DHN, where the 

hourly demand of several buildings is characterized. For high frequency 

predictions, such as hourly or sub-hourly forecasting, the response time of the 

model needs to be as fast as possible, so that the prediction of hundreds or 

thousands of buildings is feasible within the prediction interval. The Q-T algorithm 

enabled to discover the correlation between calendar variables and the instant 

demand, and it achieved remarkable prediction results. However, the large 

computation time of this model made necessary to analyze alternative ML 

models.  

• The use of unsupervised learning before the application of the predictive 

algorithm enables to increase the predictive performance of the ML models in 

most of the cases. This efficiency gain, comparing use or not using clusters, ranges 

between 2% to around 50% (MVLR in Building 10949), always maintaining a 

reasonable computation time.  

• When extending the study to the rest of machine-learning models, the XGB 

method is the one with highest prediction results, regardless the number of 

clusters and classifier model. Moreover, these accurate predictions are obtained 

with the lowest computation time among all the models simulated. XGB is 

followed, in terms of prediction accuracy, by SVR and RF, respectively.   
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• Among the ML models trained and analysed in this paper, the models developed 

using extreme gradient boosting algorithms reach the highest predictive 

performance in the three buildings. Moreover, apart from MVLR_1, XGB models 

(both XGB_1 and XGB_2) required the lowest computation time. Therefore, the 

multistep method presented in this paper using extreme gradient boosting as the 

predictive algorithm becomes a promising alternative to the most common 

operation algorithms used in the current DHN.  

6. Referred Appendix 

All these studies are summarized in the article that will be published by the author in 

ENERGY journal by ELSEVIER. The article was sent on the 11th of November of 2022 and 

it is still under review. The title of this article is: “Advanced Heat-Load Prediction Models 

in Buildings Combining Supervised & Unsupervised Learning”. 
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Chapter IX 

Applicability of the Models 



 

 

 

 

Abstract 

In this chapter, the machine-learning models developed for the district-heating in 

Tartu (Estonia) are transferred and applied to two simulated districts in Bilbao 

(Spain). The objectives of this chapter are to analyze the efficiency of the models in 

softest climates and quantify the economic savings derived from a potential better 

forecasting accuracy. For the simulation of these two districts, DESING BUILDER 

simulations and a simplified model based on heating degree days will be used.   

 

Resumen 

En este capítulo, los modelos de aprendizaje automático desarrollados para la red 

de distrito en Tartu (Estonia) se transfieren y aplican a dos redes de distrito 

simuladas y localizadas en Bilbao (España). Los objetivos de este capítulo son 

analizar la eficiencia de los modelos en los climas más suaves y cuantificar los 

ahorros económicos derivados de una posible mejor precisión en la predicción. Para 

la simulación de estos dos distritos se utilizarán simulaciones de DESING BUILDER y 

un modelo simplificado basado en grados día de calefacción. 
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Chapter IX Applicability of the Models 

1. Introduction 

So far, the developed machine-learning algorithms have been applied to the same data 

retrieved from the real DH network located in Tartu (Estonia). This city is located in a 

humid continental climate with sever winters, classified as Dfb by Köppen-Geiger 

classification [84]. However, the main objective of this chapter is to study the 

applicability of the developed model in other DH networks with other boundary 

conditions. For this purpose, this chapter is going to apply these algorithms to two new 

DH networks located in Bilbao (Spain) with a completely different climate in order to 

study the efficiency of the heat demand prediction algorithms. The advanced algorithm 

including unsupervised and supervised learning developed and explained along Chapter 

VIII will be applied for the management of the energy production in these new networks. 

The efficiency of this advanced algorithm will be compared against the commonly used 

temperature-only management system. This commonly used algorithm will be used as 

the baseline for the quantification of the benefits of applying the advanced algorithm 

using unsupervised and supervised learning and theoretically obtaining better accuracy 

results in the prediction process.  

DH network management is not an easy issue. Usually heat production in real DH 

networks is only based on the temperature prediction for the following hours. For 

example, when the temperature is expected to be reduced in the following hours, the 

demand is expected to reduce as well. It also depends on the heat production system 

and the inertia and flexibility of this plant to increase and decrease the instant heat 

production. For example, the ease to increase the demand in a medium-size gas boiler 

is not the same than the one that needs a large CHP (Combined Heat & Power plant) 

system in which the turbine requires some time to reach a steady and secure status. 
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Another variable to be considered in DH energy management is the size of the network. 

Thus, the energy generated for the network requires some time to reach all the buildings 

connected to the heating grid. A large distance from the production point(s) to the 

buildings increases the heat losses in the distribution pipelines and increases the time 

required for the hot water to reach the buildings (substations). Moreover, the 

distribution pipeline that forms the DH network itself also provides an additional 

thermal inertia that is characterized with the following equation. 

𝐶𝐷𝐻 =  ∑ 𝜌 · 𝐶𝑃 · 𝐿𝑖 ·  𝜋 · 𝐷𝑖
2/4 

𝑁

𝑖=1

  
Eq. (25) 

Where, 𝜌 is the density of the heat carrier fluid (usually, water), 𝐶𝑃 is the specific heat 

of the fluid inside the pipeline, L is the length of the pipeline and D is the diameter of 

the pipeline. Therefore, the thermal inertia of the network could be used to satisfy small 

variations of the demand prediction.  

To sum up, the management of a real network includes the analysis of many variables 

in the system and depends on the specific network to be managed.  

2. Objectives of this Chapter 

The objectives of this chapter are the followings, divided into main objectives and 

secondary objectives: 

1. Prove that the developed methodology also works efficiently in other DH 

networks where the climate is not so extreme. Thus, DH networks in Bilbao 

(Spain) are proposed. The description of the climate in this location is described 

throughout the chapter.  

a. Evaluate the efficiency difference between the DH in Tartu and the DH in 

Bilbao. Note that the models were developed originally with data of 

Tartu´s buildings. It can be understood as another testing case study for 

the models. 
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b. Modelling two different districts, based on two different methods and 

evaluate the differences. Therefore, in this chapter, the models are 

applied against simulated (white-box) data. 

2. Quantify the economic savings of implementing the new model for managing the 

demand in the network against the baseline method that is usually used 

nowadays.   

3. Approach. General Methodology 

The general method followed in this chapter is illustrated in Fig. IX-1 

 

Fig. IX-1. General methodology followed in Chapter IX. 

As it can be observed in that figure, the first step of this chapter will be the simulation 

of two “theoretical” districts, by means of simulating the demand in the buildings that 

conform the demand of the thermal grid. Then, a baseline scenario will be simulated, 

including the energy management of the district using a unique heating plant. The 

baseline scenario will include a common prediction algorithm using only the outdoor 

temperature and this scenario will be compared against different prediction algorithms 

using the same energy management strategy. This way, a comparison between the 

actual and commonly used energy management algorithm and the one using the self-

developed prediction algorithm will be carried out.   
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The rest of the chapter is ordered as follows. First, Section 3.1 describes the buildings 

that will conform the DH networks in Bilbao and will analyze how these demands have 

been calculated. Then, Section 3.2 presents the three forecasting models analyzed, 

including the Baseline scenario and finally, Section 3.3 will outline the algorithm used 

for the management of the heat production in the network. As it will be explained, the 

heat production algorithm strategy will be the same regardless of the forecasting model 

used for the demand.  Section 4 will present the results of this activity, following the 

same structure than Section 3. Finally, Section 5 will summarize the most relevant 

conclusions.  

3.1. DH Networks Description 

To achieve the objectives of this chapter, we will simulate two different networks: 

1. District 1: Formed by 4 Buildings simulated using Design Builder [133]. 

2. District 2: Formed by 100 Buildings using a simplified method [134] for 

calculating the demand for SH + DHW. 

As it has been commented, these two DH networks (District 1 & District 2) are supposed 

to be located in Bilbao, Spain. The location of the city is [43.26, -2.93].  

According to Köppen-Geiger classification [84], this city is classified as Cfb or oceanic 

climate, also known as a marine climate, named as the humid temperate climate sub-

type in Köppen classification, typical of west coasts in higher middle latitudes of 

continents, generally featuring cool summers and mild winters (for their latitude), with 

a relatively narrow annual temperature range and few extremes of temperature.  

A typical climatic year is obtained from [135] with hourly frequency, including hourly 

temperature, solar irradiance and other climatic variables. 

There is a significant difference between the climatic conditions in one city and the 

other. The heating demand in Tartu will be specially based on SH demand, whereas the 

demand for SH in Bilbao is not so relevant against the total demand. This is caused by 
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the cool minimum temperatures in this location. Nevertheless, in most of the winter, 

approximately from October to May, it is usual to have SH demand in Bilbao. 

3.1.1. District 1  

For this first district, we will simulate a small network where only four buildings are 

connected to it. The energy demand of these buildings is simulated using an often-used 

building simulator: Design Builder software [133]. The program works as a modular 

system integrated with a heat balance-based zone simulation with time-steps of less 

than an hour. 

Regarding the use of these buildings, District 1 is formed by two residential buildings 

(Building_1 and Building_2) and two commercial buildings (Building_3 and Building_4) 

and the constructive characteristics used for these simulations are summarized in Table 

IX-1. These four buildings simulate two building typologies that are easy to find in this 

location. Whereas Building 1 and Building 3 are modelled as new buildings (from 2010 

onwards), Building 2 and Building 4 represent construction in 1980s. 

Table IX-1. Constructive Characteristics of the buildings in District 1 

 Building_1 Building_2 Building_3 Building_4 

Heated Surface [m2] 800 432 1440 864 

Windows to Wall 

Ratio 
40 40 60 60 

Uwindow [W/(m2K)] 1.96 2.64 1.96 2.64 

Ubuilding [W/(m2K)] 1.03 2.09 1.30 2.26 

DHW Yes Yes No No 

 

Moreover, in order to define the SH and DHW demand profiles, two different profiles 

are used in function of the final use of the building. Therefore, different demand profiles 

are proposed for residential and commercial buildings. The following figures present 
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their corresponding DHW distribution and occupation during weekdays and weekends. 

Regarding the residential buildings, see Fig. IX-2: 

(a) (b) 

Fig. IX-2. (a) SH and (b) DHW profiles in residential buildings in District 1 

And for the commercial buildings (See Fig. IX-3): 

 

Fig. IX-3. SH profiles in commercial buildings in District 1 

The occupational behavior inside the buildings is shown in the following images in Fig. 

IX-4: 
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(a) (b) 

 

(c) 

Fig. IX-4. Occupation in (a) weekdays in residential buildings; (b) weekends in residential buildings and 
(c) weekdays and Saturdays in commercial buildings. 

There is no occupation on Sundays in the commercial buildings. It is supposed that these 

buildings are going be unoccupied on holidays.  

As there is no information of the size of the network, it has been considered 1km 

pipelines and 15% of heat losses, as it has been used in different references [134]. 

3.1.2. District 2 

District 2 is supposed to be a small-to-medium size DH network, where 100 buildings are 

connected to the heating system. Among these buildings, three different buildings´ uses 

are included so that similarity to reality is provided to the system. Among these 

buildings, 88 buildings are devoted to residential purposes, two of them are educational 
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buildings and the rest of the buildings are commercial buildings7. As there is no 

information of the size of the network, it has been considered 10km pipelines and 15% 

of heat losses, as it has been used in based on previous literature references [134]. 

The useful areas of these buildings to be heated are simulated with a random function: 

• Residential buildings will comprise heating areas between 100 and 2000 m2, 

considering individual and multi-storey buildings.  

• Educational Buildings will comprise heating areas between 2000 and 4000 m2. 

• Commercial Buildings will comprise heating areas between 100 and 1000 m2. 

These building could be used as offices, shops, etc. 

As for the thermal transmittance of the buildings, two types of buildings are included: 

(i) Old buildings with high thermal transmittance (4 W/m2K) and (ii) New or refurbished 

building with a low thermal transmittance (1.2 W/ W/m2K).    

Regarding the demand to be covered in the buildings, in general, DH network will cover 

the demand for space-heating and domestic hot water. However, some of the buildings 

are supposed to include additional and independent heat sources to cover the demand 

for DHW: heat pumps or other sources. Moreover, some of the buildings do not have 

DHW demand in summer (from 15th July to 15th September). 

Finally, in function of the type of the building use, a night setback is included from 23pm 

to 5am and from 6am to 8am. All this information is summarized in the following table 

(Table IX-2). 

 

 
7 Note that this distribution is arbitrary. This distribution is based on the buildings´ share of Tartu´s DH 
network. 
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Table IX-2. Buildings characteristics for demand calculation in District 2. 

 Residential Educational Commercial 

Number of Buildings 88 2 10 

Thermal Transmittances 

[W/m2·K] 
1.2 & 4 1.2 & 4 1.2 & 4 

Heated Areas [m2] [100-2000] [2000-4000] [100-1000] 

SH Setbacks 23pm-5am 23pm-5am 23pm-5am 

DHW by the DH network 78/88 1/2 10/10 

DHW Summer 68/88 1/2 7/10 

The SH demand in these buildings is obtained using the heating degree days method 

(HDD method) using the following equations that are obtained from [134]. 

𝑆𝐻𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = 𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 · 𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 · 𝐻𝐷𝐷

=  𝑈𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 · 𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 · (𝑇𝐻𝐷𝐷 − 𝑇𝑂𝑈𝑇) 

Eq. (26) 

𝐷𝐻𝑊𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =  

𝑆𝐻𝑌𝑒𝑎𝑟

1 − 𝐻𝑊𝑌%
 · 𝐷𝐻𝑊𝑌%

ℎ
 

Eq. (27) 

For the calculation of HDD demand in buildings, THDD varies from old building to new or 

refurbished buildings. Whereas for old buildings where the Ubuilding is 4 W/m2K, this 

temperature is set at 15°C, this temperature is set at 10°C for new or refurbished 

buildings. This temperature change simulates the setpoint difference between buildings.  

Finally, and in order to minimize the linearity of the demand in the buildings and increase 

the realism of the simulations, the instant hourly demand obtained from all the steps 

above is multiplied by a random factor from -50% to 50% (PF), following the next 

equation: 

𝑄ℎ𝑜𝑢𝑟 =  𝑄ℎ𝑜𝑢𝑟 + (𝑄ℎ𝑜𝑢𝑟 −  𝑀𝑒𝑎𝑛(𝑄) · (1 +
𝑃𝐹

100
) 

Eq. (28) 
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3.2. Demand Prediction 

Previous paragraphs have shown the two methods for calculating the energy demand in 

buildings, shaping the demand of two districts. Using the calculated demand in these 

districts, part of the data will be used to train the models and the other set of the data 

will be used to study the efficiency of these algorithms. Three different models will be 

tested to predict the demand: 

Model 1: Temperature based algorithm (Baseline) 

Model 2: The Q-T Algorithm explained in Chapter V [2] 

Model 3: The advanced ML model developed in Chapter VIII.  

The temperature-based algorithm (Model 1) is commonly used for the prediction of 

energy demand in districts, and it is based on a simple linear regression against climatic 

variables in the location. Since the demands to be predicted are simulated (not real 

energy demands), the Temperature (Model 1) based algorithm is supposed to perform 

better than with real conditions. Focusing on Model 3, in this chapter the model that 

obtained best prediction results in Chapter VIII will be applied. Therefore, a multi-step 

method combining K-means for identifying patterns, K-NN for classification of the 

patterns and Extreme Gradient Boosting (XGB) for forecasting the demand will be used.   

3.3. Heat Production Management Algorithm 

This final section of the methodology starts with the predicted demand in the buildings 

and embrace the heat production process for the district. The objective of a DH network 

is to supply enough energy to all the buildings every moment. Thus, the predicted 

demand must be supplied from the network to the buildings. In this context and for this 

case study we are going to simulate the simplest case in which the energy is produced 

in a unique generation plant. Thus, it is not necessary to define priorities among 

different generation plants. In cases where there is more than one heat generation 
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plant, we need to define which production mix is the optimal every moment. In those 

cases, we need to consider the following factors: 

- Energy generation type: The size of the plant and the type of technology used 

for heat generation will determine the role of this plan in the generation-mix: 

base production plants, medium production plants and peak production 

systems. Small and flexible generation plans are usually considered as peak 

producers (for example, small solar thermal plants of small gas boilers). On the 

other hand, technologies such as large CHP plants are usually more appropriate 

to fulfill the base demand.  

- Energy production price: The instant heat generation costs will determine which 

of the generation plant(s), among the same type of plants, would supply heat to 

the network. So that the minimal production cost is ensured every moment. 

In the case study presented in this chapter, a unique generation plant has been 

considered so that there is no need to couple the production with other generation 

plants. This task is usually cost-based and does involve market study.  

For our case study, a medium size non-condensing gas boiler has been considered. This 

boiler will be different in District 1 and District 2 since the size of the networks is 

different. The Heating Only Boiler (HOB) in District 1 is sized as a 120 KW condensing 

boiler. In the second one, since the maximum energy demand in one hour is slightly 

above 12 MWh, the power of this gas boiler has been considered to be 13MW with a 

nominal efficiency (ɳnominal) of 98%. In other words, 1MWh of gas energy is converted 

into 0.98MWh of useful heat for the network.  

The nominal efficiency usually decreases when the outlet temperature increases and 

when the inlet temperature decreases.  

This case study is just a theoretical simulation of a network in order to compare the 

efficiency of demand prediction algorithms. So, the gas boiler is supposed to work in 
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partial load almost all the time. Almost all the energy production technologies reduce 

their efficiency when working at partial load, so in terms of efficiency we prefer the 

system to work full load every moment. However, this case will generate an excess heat 

supply to the network that must be disposed or expelled in an energy storage system. It 

is known that the boiler would stop automatically when there is overheating in the 

supply temperature of the DH network and the real economic savings will be lower than 

the resulting from this analysis. 

For the specific case of gas boilers, the evolution of partial load efficiency reduction 

factor (Fthermal) is shown in Fig. IX-5 and the equation that determines the production 

efficiency of this gas boilers is presented in the following equation: 

ɳ
𝑡ℎ𝑒𝑟𝑚𝑎𝑙

=  ɳ
𝑛𝑜𝑚𝑖𝑛𝑎𝑙

· 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 Eq. (29) 

 

 

Fig. IX-5. Efficiency reduction factor of thermal efficiency in gas boilers. 

All the pipelines that form the heating network contributes with a thermal inertia that 

could be used to balance small demand variations. All in all, the DH management 

strategy is based on the following points.  
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In the first hour of the simulated heat production, the energy produced by the gas boiler 

is the same than the demand plus heat losses. The production algorithm used for the 

three predictions algorithms is the same and it is based on the variability concept: 

𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑡) = 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑡 + 1) − 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑡)  Eq. (30) 

Where t refers to a specific hour.  

Thus, the production is governed by the following points: 

• If Variability(t) > 0  The demand for the next hour is supposed to increase. We 

may anticipate that demand increase by increasing the production. 

• If Variability(t) < 0  The demand for the next hour is supposed to decrease. We 

van anticipate that demand decrease by decreasing the instant production. The 

rest of the instant demand is covered by the thermal inertia of the network.  

• If Variability(t) = 0  The demand for the next is the same. We continue to 

produce using the same strategy than this hour. 

This variability concept enables the production system to anticipate the trend of the 

demand and supply the exact energy in the correct moment. If the heat source would 

have been a CHP (or another big installation), the variability should have been calculated 

with more than one hour frequency. Gas boilers can change their working regime 

varying the operating frequency.   

4. Results 

This section will follow the same structure than methodology section, so that the 

tracking of the results is connected to the explained methods. Therefore, this section 

will firstly present the demand of the buildings obtained for the two calculation 

methods. Then, the predictive accuracy of the forecasting models will be analyzed to 

finalize with the economic benefit/assessment of each district using the management 

algorithm explained in Section 3.3. 
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4.1. Districts´ Description 

4.1.1. District 1 

For the calculation of the demand in the four buildings, Design Builder was used with 

the parameters defined in Section 3.1.1. The setpoint temperature for the SH demand 

was defined at 20°C in all the buildings. The following images (Fig. IX-6) show the general 

dimension of the building accompanied by the total demand in that building. The 

heating demand corresponds with the total energy requirements against the outdoor 

temperature.  
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Fig. IX-6. From top to the bottom: Energy Demand (SH+DHW) of Building_1, Building_2, Building_3 
and Building_4 of District_1 

As it can be observed from Fig. IX-6, while Building_1 and Building_2 (residential 

dwellings) do present demand for DHW and SH, commercial buildings only require SH 

demand. This is why in moment with high outdoor temperature, the total demand in 

those building is zero.  

4.1.2. District 2 

On the other hand, District_2 is formed by 100 buildings and consequently it is not 

possible to present the results in all the buildings. As there are different building 
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typologies (see Table IX-2), this chapter will present results for some of the different 

typologies. 

- Building A: Residential Building that is built under old CTE specifications (U = 4 

W/m2K) with no DHW demand from the network. See Fig. IX-7a. 

- Building B: New or refurbished Building (U = 1.2 W/m2K). See Fig. IX-7b. 

- Building C: Educational Building. See Fig. IX-7c. 
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(a) (b) 

 

(c) 

Fig. IX-7. Heating demand against outdoor temperature for (a) Building A: Old Residential; (b) Building 

B: New Building and (c) Building C: School  

Fig. IX-7 shows the difference between the heating demands in the three buildings 

selected for the study. While Building B is modelled with a low total transmittance 

(UBUILDING_B = 1.2 W/m2K), Building A and Building C are modelled with a higher 

transmittance. Thus, the heating demand density (kWh/m2) in Building B is lower than 

the rest of the buildings. The same would happen with the cooling demand, however, 

this is not part of the study since the network is only supposed to cover heating 
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demands: space heating and domestic hot water. Building A does not present DHW 

demand as it is observed on the right side of Fig. IX-7a. This is caused because the 

building may have another heat source only for DHW demand. For every building is 

observed that SH demand presents, at least, two curves corresponding to night setback 

and “normal” heating. Finally, comparing Building B and Building C, the DHW demand in 

Building C is higher than Building B. The reason for that phenomenon is that this demand 

is simulated as a percentage of the SH demand. Thus, when increasing the total SH 

demand, DHW is also increased in the percentage.   

Additionally, the total energy demand in District 2 is shown in Fig. IX-8. 

 

Fig. IX-8. Total hourly demand against outdoor temperature in District 2 

4.2. Demand Forecasting Results 

The next step in this chapter is to analyze the prediction accuracy of the energy 

forecasting models. In this chapter, the forecasting results for the different models are 

compared against the Baseline Scenario using error metrics. Then, Section 4.3 will 

translate this prediction accuracy difference to economic benefits for implementing the 

advanced model or Model 3 in this chapter.  
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The aim of this chapter is to develop and use the ML model to manage a DH network. 

Consequently, we need some data to train the model and the other part of the data to 

test the results. In this case, we used 75% of the data to train the model and the 25% for 

testing. Since the data follows a time-based structure, we used the first 274 days of the 

data (75% of 365) for training the models and the rest of the days in the year to test the 

efficiency of the model. 

4.2.1. District 1 

This district is supposed to be composed by four buildings described in 3.1.1. The first 

step for the energy management of a district is to obtain the demand forecasting for the 

following hours, so that the heat production can match the expected demand in the 

district every moment. In this paragraph we are going to present the forecasting results 

obtained with three models for the four buildings independently.  

Fig. IX-9 shows the real demand (green points) and the prediction results for Model 1, 

Model 2 and Model 3 against the outdoor temperature. It is shown for the four buildings 

in the network. 

(a) (b) 
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(c) 

 

(d) 

Fig. IX-9. Heating demand Forecasting results against TOUT in (a) Building_1, (b) Building_2, (c) 
Building_3 and (d) Building_4. 

From Fig. IX-9 is observed that Q-T algorithm (or Model 2 in this section) only obtains 

accurate predictions for Building_2 and Building_4, while the errors in the other 

buildings are very relevant. Due to the very low linearity of the demand resulting from 

the simulations in Design Builder, the Model 1 is not capable of accurately characterizing 

the demand and the unique model that is able to characterize the demand is our Model 

3.   

Additionally, the MAPE values obtained in each building are summarized in Table IX-3. 

The results shown in this table confirms that Model 3 is the best among these models.  

Table IX-3. MAPE values [%] for the predictions in the four buildings of District 1. 

MAPE [%] Building_1 Building_2 Building_3 Building_4 

Model 1 2.969 2.901 NA NA 

Model 2 5.694 0.897 NA NA 

Model 3 0.361 0.734 NA NA 

 



  

Chapter IX  276 

  

Model 2 (or the Q-T algorithm) presents problems when the buildings have low 

transmittance values and consequently low SH demand. This model is built in order to 

identify the difference between SH and DHW demand. When the demand for SH is 

relatively low and usually matches the DHW demand, the model is not able to differently 

characterize three two demands and consequently, results on horizontal (QREF) results 

even in moments with SH demand.  

4.2.2. District 2 

On the other hand, this network connects 100 buildings previously described in Table 

IX-2. As it not viable to show the prediction results for all the buildings, this section will 

only be focused on the three buildings analyzed in the previous chapter, so that the 

demand of all the district will be analyzed in the paragraph for the economic assessment. 

Therefore, the following figure (Fig. IX-10) shows the demand (green points) and the 

prediction results for Model 1, Model 2 and Model 3 against the outdoor temperature. 

This figure shows the results for the three particular buildings previously analyzed. 

(a) 

  

(b) 
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(c) 

Fig. IX-10. Predictions and real demand against outdoor temperature for (a) Building A, (b) Building B 
and (c) Building C. 

Q-T algorithm´s accuracy in Building B is very low and does not allow to analyze the 

efficiency of the rest of the models. Consequently, Fig. IX-11 shows the same predictions 

but removing the results obtained with this model (Model 2). 

 

Fig. IX-11. Predictions and real demand against outdoor temperature without Q-T algorithm (Model 2) 
in Building B 
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Once the heating profiles are characterized, Fig. IX-12 presents the results for the 

demand prediction in building scale. The figures show two images for each building. The 

predictions obtained from Q-T algorithm present large errors, and it does not allow to 

evaluate the efficiency of the Advanced Model. This is why that in each building, the 

figure of the right presents the three models and the figure on the right only show the 

results for the temperature-based model and the advanced model.  

Fig. IX-12 shows the predictions profiles for two types of day: 

• Weekend: This day corresponds with the 15th of December, Sunday and not 

business day. 

• Weekday: This day corresponds with the 17th of December, that in this case 

corresponds with a Tuesday and business day. 

 

(a) 

 

(b) 
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(c) 

Fig. IX-12. Heating demand profiles and predictions for (a) Building A: Old Residential; (b) Building B: 
New Building and (c) Building C: School  

In general, the results from the predictions in the building scale show that the Advanced 

Model (Model 3) is the one with highest prediction accuracy. Q-T algorithms show bad 

results, especially for high temperature hours. On the other hand, the temperature-

based algorithm is able to follow the trend of the demand, but it shows two main 

problems: (i) it is no able to model the peak demands of the morning and (ii) it 

overpredicts when the demand is low in the mid-afternoon hours.   

4.3. Economic Assessment 

Finally, this section will translate the forecasting results to the energy management task 

and consequently, we will analyze the effect of increasing or reducing energy forecasting 

accuracy on the economic assessment of the overall system. Therefore, we will use the 

Model 1 as the baseline for all the calculations and the economic savings resulting from 

a more accurate energy forecasting will be presented. The energy management 

algorithm used is the method explained in Section 3.3. Following the same structure 

than the other sections of the chapter, we will divide the results by the two districts 

modelled for this purpose. 
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4.3.1. District 1 

Despite being a small DH network, the total energy demand is a key factor for sizing the 

heat production unit and for the calculations of the energy management. For this 

reason, Fig. IX-13 presents the predictions results and the real demand of the four 

building that form the district against the outdoor temperature. 

 

Fig. IX-13. Total demand prediction against outdoor temperature in District 1. 

From previous figure is observed that Model 3 is the most accurate one. When showing 

the sum of the demand of the district, the inaccuracies shown by the Q-T algorithm (or 

Model 2 in this chapter) are “hidden”, although it presents low accuracy for low demand 

zone. The baseline is only capable to predict low-demand moments with certain 

accuracy and big differences can be observed between real peak demands and the 

energy forecasted by the Model 1.   

For the management of the network and to ensure the thermal comfort inside the 

buildings, it is important to analyze the hourly matching between the demand and the 

energy that is transferred to the buildings. Therefore, Fig. IX-14a analyzes the number 

of hours when the energy forecasting of the district is above and under the real demand, 
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while Fig. IX-14b presents the same results but translated to energy units. Therefore, 

Fig. IX-14b quantifies the energy overproduction and the underproduction moments.   

(a) (b) 

Fig. IX-14. (a) Number of hours deviations and (b) energy deviation in District 1 

When observing Fig. IX-14a, there are few differences between Model 1 and Model 3, 

while Model 2 overpredicts more than the other models. Comparing the Baseline 

(Model 1) with our advanced model, Model 3 shows some more time with 

overprediction and less time under the real demand. This difference is not noticeable in 

energy units. Thus, Model 3 presents better results in all the cases. Whereas it enables 

to reduce the overproduced energy, it is also capable to reduce the underproduction 

moments. This is positive for energy management, since there is no necessity to include 

additional heating sources (or additional storage) to reach peak demands and this 

energy difference could be satisfied by the thermal inertia of the network. 

Finally, the energy production costs of the network are shown in Fig. IX-15.       
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Fig. IX-15. Cost Comparison between forecasting Models in District 1 

Before analyzing the results in Fig. IX-15, it is important to remind that the algorithm 

used for energy management in the production unit is the same for all the models. The 

costs that are shown in Fig. IX-15 and the way they are calculated are explained in 

section 3.3 and consists in the natural gas costs for fueling the boiler. The costs for 

maintenance or initial investment are not included since they will be very similar in all 

the cases. Undoubtedly, the results must be interpreted quantitatively, since the 

algorithm used for energy management is a simplified version of real methods. 

The biggest difference is observed between Q-T algorithm (Model 2) and the ML model 

(Model 3). While the costs for the 25% of the year in Model 2 reach 23612.80 euros, 

Model 3 is capable to reduce these costs below 10000 euros. Moreover, the difference 

between Baseline (Model 1) and Model 3 is around 5000 euros.  

4.3.2. District 2 

On the other hand, the district simulated by the simplified method explained before is 

much bigger than District 1 and it is expected that the difference in the results will also 

be large. First, and following same results´ structure in both networks, Fig. IX-16 

presents the prediction results for all the district. 

https://www.linguee.es/ingles-espanol/traduccion/undoubtedly.html
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(a) (b) 

Fig. IX-16. Total demand prediction against outdoor temperature in District 2. 

Previous figure is divided into results with and without Model 2, due to its low accuracy 

in some moments. This low accuracy of Q-T algorithm is caused by the high variability 

included in the demand simulation and the difficulty to calculate the QREF of the model 

in such cases. Thus, Fig. IX-16b presents the same demand predictions but removing the 

predictions from the Q-T algorithm. This figure enables to visualize the real demand 

(simulation) in green and the predictions of Model 1 (temperature-based) in red and 

Model 3 (advanced) in blue. Since the Baseline algorithm is a multi-section linear 

regression, the model cannot follow the great variability included in the demand, 

especially in cold moments (high SH demand). As it was expected, the best prediction 

accuracy is obtained using the advance model (Model 3), combining supervised and 

unsupervised learning techniques. 

Besides, Fig. IX-17 presents the dispersion of the predictions against the real demand. 

Therefore, Fig. IX-17a shows the number of hours in which the forecasting results are 

above and under the real demand, while Fig. IX-17a quantifies the overestimated and 

the underestimated energy.  
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(a) 

 

(b) 

Fig. IX-17. (a) Number of hours deviations and (b) energy deviation in District 2. 

In this district, Q-T algorithm (Model 2) is the model with lowest number of prediction 

hours under the real demand and the model with lowest energy under real demand. 

However, the opposite occurs for energy above the real demand, and it becomes the 

model with the highest number of hours and energy over the real demand. Thus, it can 

be concluded that Q-T algorithm (or Model 2) has an overestimation trend in most cases. 

Regarding Model 3, this model is capable to reduce both, the number of hours below 

and above the real demand, resulting in the highest accuracy of the energy forecasting 

in the district. 

These forecasting results are then transferred to an economic study of the costs 

regarding the energy production in function of the estimations made by the three 

models. In this line, Fig. IX-18 shows a comparison between the total costs associated to 

District 2. Note that these costs only represent the 25% of the year since the model is 

tested against 25% of the days.  
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Fig. IX-18. Cost Comparison between forecasting Models in District 2. 

District 2 presents similar trend than in the analogous figure for District 1 regarding 

energy costs. Since the size of the network is much bigger than District 1, the total costs 

associated to the network will also increase. Nevertheless, Model 2 requires the 

maximum costs since it is the model with highest overprediction. In this case the energy 

productions costs reach 3.9·106 €. On the other side, Model 3 requires 1.09·106 € and 

Model 1 requires 1.22·106 €. Thus, Model 3 reaches an economic savings of 11% 

compared with Baseline Scenario, which is a very significant value, regarding that the 

unique difference between the scenarios is the forecasting accuracy of the models used 

for this purpose.  

5. Discussion & Conclusions 

This report is focused on analyzing the results from the application of the self-developed 

algorithm for the management of the demand in a whole district-heating network. The 

so-called Model 3 throughout this chapter. The rest of the chapters were focused on 

analyzing and developing the optimal solution for each of the steps in the algorithm. The 

developed algorithm was optimized using real data from a DH network in Tartu. In these 
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chapters it was confirmed that the developed model was able to obtain high prediction 

accuracy, with R2 values above 0.9 in certain buildings in hourly frequency predictions.  

In this chapter two new districts have been modelled using firstly a district modelled 

using DESING BUILDER and secondly, using a simplified method based on Heating 

Degree Days theory. The simulated districts are conformed by 4 and 100 different 

buildings, respectively, including residential, commercial, and educational buildings. The 

districts are now located in Bilbao (Spain), which corresponds with a CfB classification 

(oceanic climate) in the Köppen-Geiger [84] climatic classification. Consequently, the 

climatic severity of the location is also changed in order to study this effect on the 

models, since the unique predictors used predictive purposes are climatic and calendar-

based variables.   

For the energy management of these networks and with the objective of simplifying the 

energy production process, a centralized energy production system has been modelled 

in which all the energy for the district is produced by a single heating only boiler (HOB). 

It is true that the centralized model opposes the philosophy of modern district-heating 

network in which the energy is produced in small, decentralized and low-grade energy 

sources, such as ST energy or waste heat streams. However, for the comparison of the 

predictive efficiency of the self-developed model and the currently used prediction 

models, the energy production system is not relevant.  

To avoid lengthening this chapter, the following points will summarize the most 

important conclusions from the application of the self-developed algorithm to manage 

the energy production in a district-heating network: 

• Buildings modelled by DESING BUILDER software (District 1) turn out to lower 

demands than buildings modelled by the simplified method. This demand 

reduction is caused because the software includes the solar gains and other 

thermal gains inside the buildings, while the simplified method only models the 

demand using climatic conditions (HDD).  
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• Contrastingly to the first point, the dispersion of the demand by DESING BUILDER 

are higher than in District 2, even though including the 𝑃𝐹 factor for increasing 

the randomness of the demand.  

• In general, predictions in individual buildings obtain better accuracy results in 

District 2 than in District 1, caused by the higher linearity and lower dispersion 

of the demands.  

• Q-T algorithm overpredicts in every building and it is not capable to get accurate 

predictive results. Thus, this model is not considered for the comparison with the 

self-developed algorithm that combined supervised and unsupervised machine-

learning models.  

• In comparison with the results obtained in the DH in Tartu, both models, Model 

2 (or Q-T algorithm) and Model 3, obtain lower accuracy in the district located in 

Bilbao. The milder climate with cooler temperatures impacts on the SH demand 

and reduced the correlation between the climatic conditions and the real 

demand.    

• Model 3 is able to reduce the hours in which the model overpredicts the real 

demand compared with the Baseline in District 1. Nevertheless, the opposite 

trend is observed in District 2.  

• In terms of energy, the advanced model presents less energy over-produced and 

less energy underproduced in comparison with the temperature-based model. 

This means that the prediction accuracy of this models is better. This happens in 

both districts. 

• A better prediction accuracy results in economic savings in the energy 

production process. In this case, the economic savings reach the 10% in 

comparison with the baseline. The energy production mix and the type of energy 

produced in the system will determine the exact savings in each district-heating, 

but a better predictive accuracy of the demand will always ensure better 

economic performance in the network. Some energy sources (such as solar 

thermal energy or other process-based heats streams) produce energy 
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continuously and regardless of the current demand in the district. In these cases, 

it is necessary to design a dynamic heat storage system that controls the energy 

flows. The better the demand is predicted; the better optimization of the heat 

storage size can be obtained. In this type of districts, it will be necessary to 

include an additional peak energy plant that fulfills the demand not covered by 

the renewable sources.   

• The boiler control system will not produce more heat than the one is supplied to 

the buildings plus the losses. Otherwise, the DH grid would be overheated until 

evaporation of the water would occur and the grid would be broken. Imagine we 

introduce to the grid all the energy of Model 2. Consumption + losses consume 

what Model 3 says. The difference of the heat injected to the grid would be used 

to overheat the water within the tubes of the grid until it would be evaporated. 

The boiler will not allow it. 
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Abstract 

This last chapter gathers the main conclusion and contributions of the PhD Thesis. 

Additionally, it presents the potential future research lines that derive from this 

dissertation and summarizes the dissemination activities, including international 

journals or conferences, carried out for diffusion of the results.   

 

Resumen 

Este último capítulo recoge las principales conclusiones y aportaciones de la Tesis 

Doctoral. Además, presenta las posibles líneas de investigación futuras que se 

derivan de esta tesis y resume las actividades de divulgación, incluidas revistas o 

congresos internacionales, realizadas para la difusión de los resultados. 
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Chapter X Conclusions, Contributions and 

Future Work 

This final chapter of the dissertation presents a brief summary of the contributions that 

these studies have made, showing the overall conclusions of the work and analyzing the 

potential directions of the works that the dissertation has led.  

Therefore, this chapter contains the following sections: 

• Main Contributions & General Conclusions: Main Contributions of the works 

concerning the current state of the art. 

• Dissemination/Diffusion of the Results: Including conferences, journal articles 

and other dissemination activities. 

• Future Directions. 
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1. Main Contributions & General Conclusions 

The main goal of this thesis has been to explore the usability of Machine-Learning 

algorithms in a DH context for different purposes in a building-scale and evaluate the 

efficiency of these black-box models for the energy management in a district-scale. It 

can be concluded that this PhD Thesis validates the possibility of using ML models in this 

context and that the performance metrics obtained by these models overperforms the 

metrics of current networks.  

Each of the chapters have presented the partial conclusions related to the analysis 

carried out in each section of the Thesis. Therefore, the main contributions and 

conclusion of this Thesis can be summarized in the following bullet points: 

• The Thesis gathers the most recent literature review on: 

o Unsupervised learning applied to energy demand in buildings. 

o Supervised learning applied to real energy demand data from buildings 

connected to DH networks. 

Regarding the real case of the DH in Tartu: 

• It presents a novel data-driven model, the so-called Q-T algorithm for energy 

predictions of buildings. This model is based on a multi-variable regression model 

divided by a previous Decision-Tree analysis. Similar studies have always divided 

the demand data by a specific outdoor temperature, but this way, there is part 

of the data that is never well characterized. As the heating demand is function 

of the external climatic variables and the calendar attributes, there are moments 

that the demand does not follow only climatic-dependence. It is demonstrated 

that dividing data by a specific demand, QREF in Q-T algorithm, works better and 

the model is more widely applicable to all type of buildings.  

• The Thesis study a wide range of unsupervised algorithms for the identification 

of heating demand patterns in buildings. This study concluded that K-means 

algorithm is the one with highest performance metrics. For this purpose, several 
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CVIs have been used to analyze the “quality” of clusters or heating patterns in all 

the buildings of the case study.  

• The Dissertation identifies several heat demand patterns for the different 

buildings using K-means algorithm. The final use of the buildings, e.g., residential 

buildings, commercial, etc. completely determines the heating patterns in the 

buildings. Synergies between buildings have been found.  

• Other heating demand patterns have been identified by the supervised Decision-

Trees based on calendar variables (these demand patterns can be found in some 

of the buildings only): 

o Night Setback. It can be used by the DH operator to reduce energy 

production in periods when a low heat load is expected, regardless of the 

climate conditions. A reduction of the heat load is identified between 

3AM to 5AM in some of the buildings. 

o Weekday-Weekend Patterns. The lower or non-occupancy of the 

buildings in weekend days cause that the heat demand at the these days 

is lower than on weekdays in some of the buildings. This behavior is 

independent from the climatic conditions. 

o Seasonal Patterns. Despite being relatively low external temperatures at 

some moments of the summer, the monitored heat energy demand does 

not correspond to expectations for similar climatic conditions outside this 

season. This divergence could be motivated by a reduction of the heat 

load by the DH operator in this period. The methodology developed for 

the identification of this period is explained in Chapter XI. 

• CART models enabled the qualitative characterization of the clusters/heat 

demand patterns. This study demonstrated that this algorithm is effective for 

cluster prediction. We can conclude that CART model without hourly 

temperatures used as predictors is the optimal CART for this purpose. Therefore, 

simple models are the most appropriate to avoid bias in testing. Besides, among 

the predictor variables, seasonality (summer and rest of the year), day of the 
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week and mean temperature are the variables that most affect the clustering 

process.  

• As a further conclusion derived from the previous point, the classification model 

with highest accuracy results to be k-NN algorithm. Even though this model does 

not enable the authors to visualize the variables that are determining the 

clusters, better accuracy results than CARTs have been obtained. K-NN was used 

for developing the second step in the forecasting analysis.    

• The prediction methodology that includes unsupervised cluster analysis 

improves the efficiency for prediction in building scale compared against Q-T 

algorithm or other regression models. In the four buildings where this study was 

focused, the R2 value was improved, somehow, compared with the obtained 

with the Q-T algorithm. This efficiency gain, comparing use or not using clusters, 

ranges between 2% to around 50% (MVLR in Building 10949), always maintaining 

a reasonable computation time.  

• Computation cost is a key variable for the operation of large DHN, where the 

hourly demand of several buildings is characterized. For high frequency 

predictions, such as hourly or sub-hourly forecasting, the response time of the 

model needs to be as fast as possible, so that the prediction of hundreds or 

thousands of buildings is feasible within the prediction interval. The Q-T 

algorithm enabled to discover the correlation between calendar variables and 

the instant demand, and it achieved remarkable prediction results. However, the 

large computation time of this model made necessary to analyze alternative ML 

models.  

• Regarding other forecasting models developed along the Thesis, XGB-based 

method is the one with best prediction results, regardless the number of clusters 

and the classification model. Moreover, these accurate predictions are obtained 

with the lowest computation time among all the models simulated. XGB is 

followed, in terms of prediction accuracy, by SVR and RF, respectively.  

Therefore, the multistep method presented in this paper using extreme gradient 
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boosting as the predictive algorithm becomes a promising alternative to the 

most common operation algorithms used in the current DHN.  

As for the case-study of the DH in Bilbao: 

• When the models developed for the DH in Tartu are transferred to other 

networks in warmer climates (Bilbao, Spain), the forecasting results show lower 

accuracy than in the building located in Tartu (Estonia).  

• Buildings modelled by DESING BUILDER software turn out to present lower 

demands than buildings modelled by other simplified methods. This demand 

reduction is caused because the software includes the solar gains and other 

thermal gains inside the buildings, while the simplified method only models the 

demand using climatic conditions (HDD). Contrastingly to the first point, the 

dispersion of the demand by DESING BUILDER are higher than other, even 

though including the 𝑃𝐹 factor for increasing the randomness of the demand.  

• Predictions in individual buildings obtain better accuracy results when higher 

linearity of the demand is higher, and the dispersion of the demand is lower.  

• Q-T algorithm overpredicts in every building and it is not capable to get accurate 

predictive results in warm climates. The milder climate with cooler temperatures 

impacts on the SH demand and reduced the correlation between the climatic 

conditions and the real demand.    

• The model using a combination of unsupervised and supervised analysis is able 

to reduce the hours in which the model overpredicts the real demand compared 

with other models. In terms of energy, this model presents less energy over-

produced and less energy underproduced in comparison with the temperature-

based model. This means that the prediction accuracy of this models is better.  

• A better prediction accuracy of the demand in a DH network results in economic 

savings in the energy production process. In the case analyzed in the last chapter 

of the Thesis, the economic savings reach the 10% in comparison with the 

baseline. The energy production mix and the type of energy produced in the 
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system will determine the exact savings in each district-heating, but a better 

predictive accuracy of the demand will always ensure better economic 

performance of the energy network. Some energy sources (such as solar thermal 

energy or other process-based heats streams) produce energy continuously 

regardless of the current demand in the district. In these cases, it is necessary to 

design a dynamic heat storage system that controls these energy flows from the 

production source to the final users. The better the demand is predicted; the 

better optimization of the heat storage size can be obtained. In this type of 

districts, it will be necessary to include an additional peak energy plant that 

fulfills the demand not covered by RES.   

2. Future Directions 

Although the PhD Thesis finishes here, the research work will still continue. Two main 

directions have been identified: 

1. Application of Deep-Learning (Neural Networks) algorithms for modelling the 

heating demand of buildings. 

2. Industrialization of the models developed in the dissertation. 

Each of the work lines are described in the following paragraphs.   

2.1. Application of Deep-Learning 

This dissertation has been limited to the application of machine learning algorithm for 

various applications regarding heating energy demand in buildings connected to DH 

networks. The reason for the application of ML models (and not Deep-Learning) is the 

proximity of these models to physical models, such as traditional white-box models. 

The results of this Thesis conclude that ML models could be successfully used for the 

management of real DH networks, obtaining in most cases, better results than the 

current models. However, there is still room for improvement in all directions: 

performance metrics, speed of training the models, etc. Thus, an option could be the 

artificial neural networks.  
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Deep-Learning algorithms, and in particular, neural networks are computing systems 

inspired by the biological neural networks that constitute animal brains. Artificial neural 

networks (ANNs) are comprised of a node layers, containing an input layer, one or more 

hidden layers, and an output layer. Each node, or artificial neuron, connects to another 

and has an associated weight and threshold. If the output of any individual node is above 

the specified threshold value, that node is activated, sending data to the next layer of 

the network. Otherwise, no data is passed along to the next layer of the network. 

Regarding the investigation lines that we are proposing as future directions of data-

driven models are the following: 

• Self-Organizing Maps (also known as Kohonen Maps) (SOM) for Anomaly 

Detection or Fault Identification [142]. Self-Organizing Maps or Kohonen’s map 

is a type of artificial neural networks introduced by Teuvo Kohonen in the 1980s. 

The goal of the technique is to reduce dimensions and detect features. The maps 

help to visualize high-dimensional data. It represents the multidimensional data 

in a two- dimensional space using the self-organizing neural networks. The 

technique is used for data mining, face recognition, pattern recognition, speech 

analysis, industrial and medical diagnostics, anomalies detection.  

SOMs have been traditionally used in other fields such as bank faults detection 

or medical diagnostics. This model could be applied to energy demand anomaly 

identification, fault detection in the network or energy profile pattern 

recognition. An example of this type of network is shown in Fig. X-1. 
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Fig. X-1. Example of SOM network. Developed by Mikel Lumbreras 

• Long-Short-Term Memory (LSTM) for energy prediction [143]. In Chapter VIII we 

have studied the use of several ML models for energy prediction. Another option 

is the use of LSTM. The LSTM model is a special form of the recurrent neural 

network (RNN). This model conserves long-term memory by using memory units 

that can update the previous hidden state. It provides feedback at each neuron. 

We may compare the efficiency metrics and the time required for this optimized 

model and compare against the results in Chapter VIII. 

• Use of other Neural Networks for energy prediction: Recurrent Neural Networks, 

Multilayer perceptron, Restricted Boltzmann machines, etc. The application 

method is the same than the analyzed in the previous point.     
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2.2. Industrialization of the Models 

Finally, the other research line resulting from this Thesis is the industrialization or the 

production process of the models developed within this dissertation. Therefore, it is 

known that development time required in ML projects is small compared against the 

total time required for the real implementation of these algorithms. Chapter IX has 

studied the theoretical applicability of the models in different networks´ conditions. 

However, the research carried out in this Thesis only reaches the deployment in 

simulated cases. It would be interesting to advance to a real application demonstration 

of the models. For this purpose, it is necessary: 

• Define and I&T structure for data storage and access. 

• Define the Pre-processing activities for the data storage. 

• Define the requirements for a Cloud or On-Premise infrastructure for the 

models.  

3. Dissemination/Diffusion of the Results 

Throughout the dissertation, we have already presented some of the diffusion ways in 

terms of articles published in international journals. In addition, at the time of writing 

these lines, another article is under the process of being published.  

At the time of writing these lines, the following contributions to the dissemination of 

the results have been carried out, divided by international journals and conferences. 

3.1. International Journals 

The following articles are directly related to specific studied explained in the 

dissertation: 

• M. Lumbreras et al., “Data driven model for heat load prediction in buildings 

connected to District Heating by using smart heat meters,” Energy, vol. 239, p. 

122318, Jan. 2022, doi: 10.1016/J.ENERGY.2021.122318.  
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• M. Lumbreras, G. Diarce, K. Martin, R. Garay-Martinez, and B. Arregi, 

“Unsupervised recognition and prediction of daily patterns in heating loads in 

buildings,” Journal of Building Engineering, vol. 65, p. 105732, Apr. 2023, doi: 

10.1016/J.JOBE.2022.105732. 

The following article is under process of publication: 

• Advanced Heat-Load Prediction Models in Buildings Combining Supervised & 

Unsupervised Learning.  

Other articles published in the field of DH networks: 

• M. Lumbreras and R. Garay, “Energy & economic assessment of façade-

integrated solar thermal systems combined with ultra-low temperature district-

heating,” Renew Energy, vol. 159, pp. 1000–1014, Oct. 2020, doi: 

10.1016/J.RENENE.2020.06.019. 

• M. Lumbreras, G. Diarce, K. Martin-Escudero, A. Campos-Celador, and P. 

Larrinaga, “Design of district heating networks in built environments using GIS: 

A case study in Vitoria-Gasteiz, Spain,” J Clean Prod, vol. 349, p. 131491, May 

2022, doi: 10.1016/J.JCLEPRO.2022.131491. 

The first page of all these publications is shown in Appendix.  

3.2. International Conferences   

SPLITECH, CISBAT, NSB, DECARBONIATION, RELATED (Roma) 

• M. Lumbreras, R. Garay, and A. G. Marijuan, “Energy meters in District-Heating 

Substations for Heat Demand Characterization and Prediction Using Machine-

Learning Techniques,” IOP Conf Ser Earth Environ Sci, vol. 588, no. 3, p. 032007, 

Nov. 2020, doi: 10.1088/1755-1315/588/3/032007. [136] 

• A. G. Marijuan, R. Garay, M. Lumbreras, L. Vladic, and R. Savić, “District Heating 

De-Carbonisation in Belgrade. Multi-Year transition plan,” IOP Conf Ser Earth 

Environ Sci, vol. 588, no. 5, p. 052034, Nov. 2020, doi: 10.1088/1755-

1315/588/5/052034. [137] 
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• M. Lumbreras, K. Martin-Escudero, G. Diarce, R. Garay-Martinez, and R. Mulero, 

“Unsupervised Clustering for Pattern Recognition of Heating Energy Demand in 

Buildings Connected to District-Heating Network,” 2021 6th International 

Conference on Smart and Sustainable Technologies (SpliTech), pp. 1–5, 2021, doi: 

10.23919/SpliTech52315.2021.9566420. [138] 

• R. Garay-Martinez, B. Arregi, M. Lumbreras, B. Zurro, J. M. Gonzalez, and J. L. 

Hernandez, “Data driven process for the energy assessment of building envelope 

retrofits,” E3S Web of Conferences, vol. 172, p. 25001, Jun. 2020, doi: 

10.1051/e3sconf/202017225001. [139] 

• A. G. Marijuan, R. Garay, M. Lumbreras, V. Sánchez, O. Macias, and J. P. S. de 

Rozas, “RELaTED Project: New Developments on Ultra-Low Temperature District 

Heating Networks,” in The 8th Annual International Sustainable Places 

Conference (SP2020) Proceedings, Dec. 2020, p. 8. doi: 

10.3390/proceedings2020065008. [140] 

3.3. National Conferences 

• EESAP 2021 (Bilbao). Mikel Lumbreras, Koldobika Martin-Escudero, Gonzalo 

Diarce, Roberto Garay-Martinez, “Data-Driven Analysis of Heating Demand in 

Buildings Connected to District-Heating: Pattern Recognition and Demand 

Prediction”. [141] 
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Chapter XI Appendix 

1. Publications` First Page 

This section presents the different publications related with this dissertation and where 

the author is the corresponding author of the article:  
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Mikel Lumbreras, Roberto Garay, Energy & economic assessment of façade-

integrated solar thermal systems combined with ultra-low temperature district-

heating, Renewable Energy, Volume 159, 2020, Pages 1000-1014, ISSN 0960-1481 

DOI: https://doi.org/10.1016/j.renene.2020.06.019. 
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Mikel Lumbreras, Gonzalo Diarce, Koldobika Martin-Escudero, Alvaro Campos-

Celador, Pello Larrinaga, Design of district heating networks in built environments 

using GIS: A case study in Vitoria-Gasteiz, Spain, Journal of Cleaner Production, 

Volume 349, 2022, 131491, ISSN 0959-6526, 

DOI: https://doi.org/10.1016/j.jclepro.2022.131491.  
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Mikel Lumbreras, Roberto Garay-Martinez, Beñat Arregi, Koldobika Martin-Escudero, 

Gonzalo Diarce, Margus Raud, Indrek Hagu, Data driven model for heat load 

prediction in buildings connected to District Heating by using smart heat meters, 

Energy, Volume 239, Part D, 2022, 122318, ISSN 0360-5442, 

DOI: https://doi.org/10.1016/j.energy.2021.122318.  
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Mikel Lumbreras, Gonzalo Diarce, Koldobika Martin, Roberto Garay-Martinez, Beñat 

Arregi, Unsupervised recognition and prediction of daily patterns in heating loads in 

buildings, Journal of Building Engineering, Volume 65, 2023, 105732, ISSN 2352-7102 

DOI: https://doi.org/10.1016/j.jobe.2022.105732.  
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2. Buildings´ Demand Profiles 

The following figures´ group present the total demand of all the buildings under study. 
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3. Summer Period Identification Methodology 

Buildings under study show two different heating demand profiles in function of the 

season of the year: SUMMER and REST (these days does not correspond with the exact 

days of the summer, but it is way to differentiate the two periods). In the summer 

period, the heating demand does not respond only to climatic conditions, remaining 

relatively constant over different periods. On the other side, energetic demand in days 

classified as REST (of the year) is completely dependent mainly in the climatic variables 

of the moment. 

As a result of an exhaust study of the profiles of raw demand data, it is found that 

standard deviation of the heating demand in winter time is much higher than the 

deviation in summer time. Different strategies have been tried to identify these two 

periods: moving average of the errors, variaiblity of the errors etc. However, the strategy 

that better reaches the objective of this identification is the use of Standar Deviation 

(SD) of the demand.  

Thus, with a daily frequency, from n=1 to N (n = days), days have been gruped by 15 

consecutive days. For n = 1, a first group of days is composed by n = [1,16] days. For n = 

2, this group is composed by n = [2,17] and so on. For each of this group, SD is calculated, 

resulting a value that represents the varibility of the demand in that period. If this 

methodology is applied to the whole year, the resulting curve is shown in the following 

figure. 
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As it can be observed in previous figure, it is possible to identify the summer period as 

the period in which the standard deviation is constant and minimal. In the building of 

the left image, the minimal standard deviation is not equal to zero in summer, because 

there is DHW demand. In contrast, the building on the right figure shows no standard 

deviation in summer, since all the demand in this period is equal to cero.    

The following equations show the algorithm used for this summer/winter pattern: 

 

Where: 
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• Deviation Coefficient is a vector from 1.2 up to 4 by 0.1, used in the iterative 

process.   

Therefore, all the values of the SD vector are compared against the minimum value of 

the SD vector. It is known that the demand in summer period is relatively constant 

compared with the demand in the winter. This difference is shown in SD vector, and it 

is used for saving as a TRUE/FALSE command. With each of the values of the Deviation 

Coefficient a new prediction is made, recalculating then the R2 of the prediction and 

compared with the previous value. The maximum R2 for value the corresponding 

summer/winter days will determine the final classification. 

So, in the following images, the evolution of the algorithm by means of the different 

deviation coefficients used and how the model fits automatically and adapts to the best 

modelling of the summer/winter periods is shown. 

  

The days that best divide summer and winter time are shown on the right image. This 

process is replicable for all the buildings in the district. Moreover, some buildings do not 

have the differentiation between summer and winter. In these cases, all the days are 

considered as REST.   
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