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Abstract 

An ac photopyroelectric calorimeter has been used to study the critical behaviour of the 

magnetic transitions in Dy3Co measuring thermal diffusivity, specific heat and thermal 

conductivity, at low temperature. There are two phase transitions, both of which present 

singularities in the three variables. The antiferromagnetic to paramagnetic phase 

transition at ≈ 42 K complies with the short range, isotropic universality class, 3D-

Heisenberg  (αexp = -0.133 for specific heat, bexp = -0.145 for thermal diffusivity, αtheor = 

btheor = -0.13). In the case of the lower transition where there is a rearrangement of the 

antiferromagnetic spin ordering at ≈ 32 K the critical behavior shows a deviation from 

isotropy. These results are linked to magnetic measurements already found in literature. 

Keywords: Critical behavior; R3Co; universality class; Photopyroelectric calorimeter; 

spin-ordering 

1. Introduction

The intermetallic family R3T (R=Gd, Tb, Dy, Ho, Er; T=Co, Ni) is specially 

interesting because of its promising technological applications: in the first place they are 

potential cryocoolers due to the presence of an important magnetocaloric effect; besides, 

they also present giant magnetoresistance as well as relatively high spin-ordering 

temperatures for the rare earths [1]. In order to explore the possible capabilities and 
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applications, a knowledge as deep as possible of the physical properties of the system is 

necessary, including the details of the phase transitions, such as the ordering of the spins, 

the extent of the interaction (short or long range order), etc. 

The spin ordering in rare earths has traditionally been explained by means of the 

RKKY (Ruderman–Kittel–Kasuya–Yosida) interaction, which consists of an indirect 

exchange interaction between 4f-4f electron spins by means of conduction electron spins. 

But this description has been found not to be adequate for rare earth in metals, where it 

presents significant shortcomings [2]. Along the last 30 years a more complete picture 

has been developed to account for the magnetic interactions in rare earth in metals and, 

in particular, in R3Co.  

 Though it could be expected, at first, to have two spin-ordering transitions in R3Co 

(one corresponding to the 3d electron spins for the transition metal Co and another one 

for the 4f spins of the rare earth R), there is no ordering of the Co spins. Several exchange 

interactions take part in the magnetic ordering in rare earth (R)–3d transition metal (T) 

compounds [2-5]. The first process involved is the polarization of 5d spin moments 

parallel to the 4f moments, which takes place in R ions with a non-filled 4f electron shell, 

due to a 4f-5d intra-atomic exchange. This kind of polarization has already been 

experimentally observed in R-T compounds [6]. Furthermore, as it is well known, the 

increase of the rare earth atomic number contracts the 4f shell reducing the overlap 

between this and the 5d shell. This fact implies a decrease on the 4f-5d exchange energy 

for increasing atomic numbers of R. 

A second type of mechanism is caused by the hybridization effects between 5d 

and 3d electrons and their short-range exchange and, as a consequence, 4f and 3d spins 

align themselves in antiparallel orientation, which is known as the f-d exchange 

interaction. 

After presenting these mechanisms, we can go on describing the most accepted 

model for the indirect 4f-4f coupling in pure rare earths, with the aim of understanding 

the RnTm compounds. In the model introduced by Campbell [2] (which is valid for pure R 

compounds), the 4f-4f coupling consists of two steps: an intra-atomic 4f-5d exchange 

followed by an inter-atomic 5d-5d spin interaction between neighbouring R atoms, 

leading to a 4f-5d-5d-4f interaction. This mechanism also arises in RnTm compounds, but 

when these binary elements have a high rare earth content, the previous mechanism comes 

together with a 4f–5d–3d–5d–4f process. Therefore, RnTm compounds show different 

behaviour, regarding their magnetic ordering, depending on the n:m ratio. If this ratio is 
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small, the transition metal ions can have a net moment irrespective of the magnetic state 

of the rare earth sublattice. As the n:m ratio increases there is a decrease in the magnetic 

moment of the transition metals ions due to the filling of the 3d band on T atoms by outer-

shell electrons of R atoms [7-9]. In particular, within the R-Co series, it has been found 

that, if the R atomic concentration is higher than 1/3, the magnetic moment of Co is lost. 

Different studies have been undertaken to study the particulars of the magnetic 

ordering of the rare earth spins in R3Co with R = Gd [10-15], Tb [16-18], Dy [19-22], Ho 

[23], and Er [24-25]. A shared feature among all of them is that there is an 

antiferromagnetic ordering from the paramagnetic phase, with TN lowering as the atomic 

number increases. All of them have an orthorhombic crystal structure of the Fe3C type 

(space group Pnma) where the rare earth occupies two non-equivalent positions: 4c (site 

symmetry m) and 8d (site symmetry I). The low symmetry orthorhombic crystalline 

structure in which R atoms occupy these two nonequivalent sites leads to an increase in 

crystal field effects. According to neutron diffraction studies [26], the magnetic structure 

of Tb3Ni is non-coplanar owing to the competition between the influence of the low 

symmetry crystal electric field and the RKKY-exchange interaction described above. 

This complicated arrangement has been confirmed for Gd3Co [11], Tb3Co [18], Dy3Co 

[19], Er3Co [25], and Ho3Co [23] with particularities depending on the rare earth atom. 

In the particular case of Dy3Co, after the antiferromagnetic phase transition at about 42 

K, there is a reorientation of the antiferromagnetic structure at about 32 K whose period 

has been suggested to be doubled along the a- and c- axes [19]. Another interesting feature 

in Dy3Co is that it is suggested that there might exist a survival of short-range magnetic 

correlations in the paramagnetic state [20], as well as it happens in some other R3(Co;Ni) 

compounds [27]. 

 The aim of this paper is to study in detail the critical behavior of the two magnetic 

transitions in Dy3Co associated with changes in spin orderings. Critical behavior theory 

assesses that a certain number of physical variables present anomalies in the near vicinity 

of the critical temperature TC of a continuous phase transition, governed by a series of 

critical exponents, whose values are grouped in universality classes [28]. For example, 

the anomalies in specific heat and spontaneous magnetization can be written in that 

region, as a function of the reduced temperature t = (T−TC)/TC, as: 

  cp (T)      ~  A± |t|-α (A- for  T < TC,  A+ for T > TC)  (1) 

  MS (T)    ~  |t|β  (T < TC),     (2) 
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where α, β , A+, A-  are the critical exponents and coefficients, whose values have been 

theorized by renormalization group theory for each universality class, on the basis of a 

particular Hamiltonian used as a starting point, which takes into account particular 

mechanisms and interactions to describe the phase transition. The exponents are universal 

in the sense that magnetic phase transitions in materials which are very different will be 

described by the same set of critical exponents, thus belonging to the same universality 

class. Table 1 shows the values of these exponents and coefficients for the most common 

magnetic universality classes [29-33]. This kind of study gives a clear insight in the 

underlying physics of a phase transition. 

 We will focus this work on the study of the critical behavior of the magnetic 

transitions in Dy3Co using thermal variables: specific heat, thermal diffusivity and 

thermal conductivity. The main advantage of the thermal variables is that the critical 

exponents for the different universality classes are much more different among them (with 

even changes in sign) than what happens in the case of the magnetic exponents, where 

the differences are smaller (see Table 1). 

 

2. Samples and experimental techniques 

Dy3Co polycrystalline samples were prepared by arc melting in a helium 

atmosphere using Dy and Co of 99.9% and 99.99% purity, respectively. The single crystal 

sample with dimensions of approximately 4 × 4 × 5 mm3 was grown by remelting the 

ingots at temperatures just above the peritecticpoint in a resistance furnace with a high 

temperature gradient, followed by annealing at 900 K for 3 days. The quality of the as-

grown single crystal sample was characterized by the back reflection Laue method 

measuring x-ray diffraction patterns from different surfaces of the sample. No extra 

reflections from other grains were detected. Then the single crystal sample was cut  into 

the plane-parallel slabs that are parallel to the (010) crystallographic plane.  Those 

surfaces had been well polished and additionally checked by the back Laue method. The 

thicknesses of the slabs was about 600 µm. 

A high-resolution ac photopyroelectric calorimetry in the back detection 

configuration has been used in this work to extract thermal diffusivity D, specific heat cp 

and thermal conductivity K. This technique is particularly fitted to study phase transitions 
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in detail as a small temperature gradient in the sample gives rise to a high signal-to-noise 

ratio in the detector, obtaining the precise shape of the transitions in the close vicinity of 

the critical temperature with great resolution and a small uncertainty [34]. This technique 

has been extensively used to this end both with solid materials (to study magnetic as well 

as ferroelectric transitions) [35-41] and liquid crystals [42, 43]. 

The details of the experimental setup, measurement procedure, and the theory 

which explains how to retrieve thermal diffusivity, specific heat and thermal conductivity 

from the photopyroelectric signal can be found elsewhere [34, 40]. The slowest cooling 

and heating rates used for the high-resolution runs close to the transition temperatures 

have been about 20 mK/min. 

       

3. Experimental Results  

Fig. 1a presents the thermal diffusivity as a function of temperature in the region 

of interest. It is worth mentioning that at room temperature, the thermal diffusivity is 2.65 

mm2/s and it decreases with temperature till it reaches the value of 1.16 mm2/s at 100 K, 

a behaviour quite typical of intermetallic materials due to the added contribution of the 

electronic and phononic part of the thermal diffusivity; below 100 K the phonon 

contribution starts to dominate, making the thermal diffusivity increase till 1.21 mm2/s  at 

50K. From then on, the thermal diffusivity background quickly increases as the phonon 

mean free path is severely reduced and the magnetic transitions are superimposed on this 

background as two dips, as it has been found in many other materials [35-37, 40-41]. In 

this particular case, the dips are located at 32.07 K and 41.57 K. 

 Fig. 1b shows the specific heat in the same temperature range as Fig. 1a while 

Fig. 1c shows the thermal conductivity. Specific heat and thermal conductivity are always 

noisier than thermal diffusivity using this technique, as the latter is obtained only using 

the phase of the photopyroelectric signal while for the former two both amplitude and 

phase are needed. The position of the specific heat peaks (32.26 K and 41.82 K.) are 

similar to those found in literature [19], where it is firmly established that the transition 

at higher temperature corresponds to an antiferromagnetic ordering of the rare earth spins 
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from a  paramagnetic state while the one at lower temperature is due to a reordering of 

those spins into another antiferromagnetic distribution. The thermal conductivity also 

presents singularities at both transitions; this magnitude has not been measured before in 

this intermetallic family. It is not usual to find anomalies in the form of peaks at magnetic 

transitions but it has been found for several magnetic transitions in materials such as Gd 

[35], FeF2 [36],  RbMnF3 [37], and KMnF3 [44]. The decreasing background in thermal 

conductivity with decreasing temperature is also another feature common to many 

intermetallic families [45-47]. 

 
 

4. Fitting procedure and discussion 

The equation used to fit the experimental specific heat curves is: 

 

( )5.01 tEtACtBc p
±−± +++= α    ,                            (3) 

 

where ( ) NN TTTt /−= is the reduced temperature, TN the critical temperature, and α, A±, 

B, C and E± are adjustable parameters. Superscripts + and - stand for T > TN and T < TN 

respectively. The linear term represents the background contribution to the specific heat, 

while the last term is the anomalous contribution to the specific heat. The factor under 

parenthesis is the correction to scaling that represents a singular contribution to the 

leading power as known from experiments and theory [48, 49]. A simultaneous fit to both 

branches (T > TN and T < TN) has been undertaken using a non-linear least square routine 

using a Levenberg-Marquardt method. The details of the fitting procedure can be found 

elsewhere [40]. 

Concerning thermal diffusivity, a similar equation to Eq. (3), used for specific 

heat, with its own critical parameters, is written as 

 

( )5.01 tFtUWtVD b ±−± +++=       (4) 

and an equivalent procedure to the one carried out with cp has been followed. 
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The relations between the critical parameters of specific heat and thermal 

diffusivity are already studied for the most common magnetic universality classes: 3D-

Heisenberg (isotropic distribution of spins), 3D-XY (easy plane anisotropy) and 3D-Ising 

(uniaxial anisotropy) [36, 37, 44, 50, 51]. In particular, in the Heisenberg case, the 

following relations can be written among the critical parameters [51] 

b ≈ α,           (5a) 

U+/U- ≈ A+/A-         (5b) 
 

In the case of thermal conductivity, the fitting is performed using its inverse, because all 

the thermal resistances associated to the various heat conduction mechanisms in the 

sample are in series: 

 

( )5.01/1/1/1 tHtNMtLKKK g
magnonmag

±−± +++=+=                                         (6) 

 

so that the singular term in Eq. (6) can be related to the magnetic contribution to the heat 

conduction processes. Knonmag has to do with phonon-phonon scattering, umklapp, 

scattering with impurities, etc., while Kmag refers to the spin-phonon scattering 

mechanisms. The magnetic resistive term originates from the spin-lattice interaction and, 

close to TN, from an additional term that accounts for phonon scattering by critical 

fluctuations of the order parameter.  

Fig. 2 shows the fittings for the three magnitudes: thermal diffusivity, specific 

heat and the inverse of the thermal conductivity, for the paramagnetic to 

antiferromagnetic phase transition in the near vicinity of the Néel temperature as a 

function of the reduced temperature t=(T-TN)/TN, where the dots correspond to the 

experimental and the continuous lines to the best fitting to Eqs. (3), (4) and (6).  The 

figure also contains the deviation plots of each fitting with respect to the experimental 

curves, assessing the quality of the fittings . Table 2 contains the values of the critical 

parameters together with the root mean square value (R2 = 1 means a perfect fitting).  If 

attention is focused on the results for specific heat, the critical parameters agree quite well 

with the isotropic 3D-Heisenberg model (αexp = -0.133±0.014, A+/A-
exp = 1.64, αtheor = -

0.134 [31], A+/A-
exp = 1.52 [33]). We would like to point out that the theoretical value for 

the critical parameter α in the 3D-Heisenberg universality class mainly used in literature 
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is -0.115 but the most recent calculations performed by Campostrini et al. [31] have 

increased this value to -0.134, which is precisely the value we have obtained in this 

transition. 

The slight deviation between the experimental and the theoretical value of the 

critical ratio A+/A-  might be attributed to a lack of complete isotropy, as manifested in the 

ac susceptibility measurements along the three axes [19], which shows some differences.  

Our results confirm that both the critical exponent and the ratio of the critical 

coefficients for the thermal diffusivity nearly match those for specific heat, where b = -

0.145±0.020, U+/U- = 1.41. Both parameters can be considered to fulfill the approximate 

Eqs. (5a) and (5b), confirming the adscription to the Heisenberg class. Finally, the inverse 

of the thermal conductivity also gives a close value of its critical exponent g to the 

Heisenberg model (-0.101) while the ratio of the critical coefficients N+/N-  gets away 

from the theoretical value (0.94). This behavior for the inverse of thermal conductivity is 

very similar to the one found for other isotropic magnets such as RbMnF3 (g = -0.08, 

N+/N- =1.1) [37] and KMnF3 (g = -0.10, N+/N- =1.15) [44], although further studies are 

necessary in order to fully understand its meaning. 

Another interesting conclusion is that, indeed, our results declare that short range 

order interactions are responsible for this magnetic transition and not long range ones (for 

which the proper universality class would have been the mean field model). This is in 

agreement with the studies which have pointed out that even in the paramagnetic phase 

there is a survival of short range order interactions [20], as it also happens in some other 

R3(Co,Ni) [27]. 

Now we will turn our attention to the lower temperature transition, where the 

ordering changes from one antiferromagnetic structure to another one. Fig. 3 shows the 

equivalent to Fig. 2 for this transition and Table 3 displays the equivalent information to 

Table 2. The critical exponent for specific heat does not really comply with any 

universality class (αexp = -0.168±0.009, A+/A-
exp = 1.18); there is a stronger deviation from 

the 3D-Heisenberg class but without reaching neither the 3D-XY (αtheor = -0.014, A+/A-

exp =1.06) nor the 3D-Ising (αtheor = 0.11, A+/A-
exp = 0.53). Our interpretation is that the 

isotropy is being smoothed somehow, in agreement with Baranov et al [21] who showed 

that there is a smaller projection of the magnetic moment along the b-axis than along the 

a- and c- axes (4.5 µB, 6.0 µB  and 6.3 µB, respectively) [19,21], giving rise to what is 

labeled as “a highly anisotropic non-collinear magnetic structure” [21] but without the 
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presence of an easy plane or an easy axis. Magnetic susceptibility measurements have 

also assessed an important difference in the spin ordering in the two transitions: In the 

higher temperature one there is an anomaly in χ when applying magnetic field along the 

three axes a, b and c while in the lower temperature one the anomaly is only visible when 

applying the field along the b-axis [19, 22]. 

This deviation from an isotropic magnet is further confirmed with the fittings for 

thermal diffusivity (b = -0.139±0.020, U+/U- = 0.85) and the inverse of the thermal 

conductivity (g = -0.096, N+/N- = 0.98). The deviations in the fulfillment of Eqs. (5a) and 

(5b) are now strong, supporting that the Heisenberg class is no longer of application. 

 

5. Conclusions 

The critical behaviour of the two magnetic transitions that Dy3Co presents at low 

temperature has been studied on the singularities that thermal diffusivity, specific heat 

and thermal conductivity show. The antiferromagnetic to paramagnetic phase transition 

at about 42 K is governed by short range interactions and belongs to the 3D-Heisenberg 

universality class, proved not only by the critical exponents for specific heat (α = -0.133) 

and thermal diffusivity (b = -0.145) but also by the relations between the parameters 

obtained in the fittings. In the case of the lower transition at about 32 K (change of 

antiferromagnetic ordering) there is a clear deviation from this isotropic class.  
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Table 1. Most common magnetic universality classes in three dimensions and the corresponding critical parameters. α and A+/A- are for specific 

heat, β for spontaneous magnetization, γ for isothermal susceptibility [29-33]. 

 

Universality class Interaction 

Range 

Spin symmetry α β γ A+/A- 

3D-Ising  Short range Uniaxial anisotropy 0.11 0.33 1.24 0.52 

3D-XY Short range Easy plane anisotropy -0.014 0.34 1.30 1.06 

3D-Heisenberg Short range Isotropic -0.13 0.36 1.39 1.52 

Mean Field Model Long range   0 0.5 1 -- 
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Table 2. Critical parameters and quality of the fittings (given by the root mean square value) for the antiferromagnetic to paramagnetic transition 

in Dy3Co 

 
 α A+/A- TN(K) A+ (Jkg-1K-1) B (Jkg-1K-1) C (Jkg-1K-1) E+ (Jkg-1K-1) E- (Jkg-1K-1) R2 

cP (Jkg-1K-1) -0.133±0.014 1.64 42.24 -160±3 208±7 331±9 -0.48±0.09 -0.56±0.02 0.99852 
 b U+/U- TN(K) U+ (mm2/s) V (mm2/s) W (mm2/s) F+ (mm2/s) F- (mm2/s) R2 

D (mm2/s) -0.145±0.020 1.41 41.96 0.95±0.01 0.83±0.05 -2.08±0.07 -0.16±0.10 -
0.999±0.078 0.99103 

 g N+/N- TN(K) N+ (Km/W) L (Km/W) M (Km/W) H+ (Km/W) H- (Km/W) R2 
1/K (Km/W) -0.101±0.009 0.94 42.14 0.54±0.03 0.31±0.03 -2.23±0.05 0.71±0.08 -1.9±0.2 0.99504 

 
 

Table 3. Critical parameters and quality of the fittings (given by the root mean square value) for the antiferromagnetic to antiferromagnetic transition 

in Dy3Co 
 
 

 α A+/A- TN(K) A+ (Jkg-1K-1) B (Jkg-1K-1) C (Jkg-1K-1) E+ (Jkg-1K-1) E- (Jkg-1K-1) R2 

cP (Jkg-1K-1) -0.168±0.009 1.18 32.38 -204±2 183±4 458±7 -0.24±0.03 -1.49±0.07 0.99622 
 b U+/U- TN(K) U+ (mm2/s) V (mm2/s) W (mm2/s) F+ (mm2/s) F- (mm2/s) R2 

D (mm2/s) -0.139±0.033 0.85 32.10 2.1±0.2 0.3±0.3 -8.9±0.7 1.1±0.3 -2.3±0.5 0.99652 
 g N+/N- TN(K) N+ (Km/W) L (Km/W) M (Km/W) H+ (Km/W) H- (Km/W) R2 

1/K (Km/W) -0.096±0.020 0.99 32.44 1.03±0.12 0.1±0.1 -2.78±0.09 0.21±0.05 -1.3±0.2 0.99807 
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Figure Captions 
 

 

Fig. 1. Thermal diffusivity (D), specific heat (cp) and thermal conductivity (K) as a 

function of temperature for Dy3Co. 

 

Fig. 2. Experimental (dots) and fitted curves (continuous lines) of the specific heat (a), 

thermal diffusivity (c) and inverse of thermal conductivity (e) as a function of the reduced 

temperature for the antiferromagnetic to paramagnetic transition in Dy3Co. (b), (d), and 

(f) present the corresponding deviation plots. Open circles are for T < TN and crosses for 

T > TN.  

 

Fig. 3. Experimental (dots) and fitted curves (continuous lines) of the specific heat (a), 

thermal diffusivity (c) and inverse of thermal conductivity (e) as a function of the reduced 

temperature for the antiferromagnetic to antiferromagnetic transition in Dy3Co. (b), (d), 

and (f) present the corresponding deviation plots. Open circles are for T < TN and crosses 

for T > TN.  
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Fig. 1 
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Fig. 2 
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