metals moPy

Article

Thermal Diffusivity Measurement of Laser-
Deposited AISI H13 Tool Steel and Impact on
Cooling Performance of Hot Stamping Tools

Jon Ifaki Arrizubieta »*, Magdalena Cortina 1, Arantza Mendioroz 2, Agustin Salazar 2
and Aitzol Lamikiz !

! Department of Mechanical Engineering, University of the Basque Country (UPV/EHU), Plaza Torres
Quevedo 1, 48013 Bilbao, Spain; magdalena.cortina@ehu.eus (M.C.); aitzol.lamikiz@ehu.eus (A.L.)

2 Department of Applied Physics I, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1,
48013 Bilbao, Spain; arantza.mendioroz@ehu.eus (A.M.); agustin.salazar@ehu.eus (A.S.)

* Correspondence: joninaki.arrizubieta@ehu.eus; Tel.: +34-94-601-3932

Received: 19 December 2019; Accepted: 15 January 2020; Published: 20 January 2020

Abstract: Additive manufacturing is a technology that enables the repair and coating of high-added-
value parts. In applications such as hot stamping, the thermal behavior of the material is essential
to ensure the proper operation of the manufactured part. Therefore, the effective thermal diffusivity
of the material needs to be evaluated. In the present work, the thermal diffusivity of laser-deposited
AISI H13 is measured experimentally using flash and lock-in thermography. Because of the fast
cooling rate that characterizes the additive process and the associated grain refinement, the effective
thermal diffusivity of the laser-deposited AISI H13 is approximately 15% lower than the reference
value of the cast AISI H13. Despite the directional nature of the process, the laser-deposited
material’s thermal diffusivity behavior is found to be isotropic. The paper also presents a case study
that illustrates the impact of considering the effective thermal conductivity of the deposited material
on the hot stamping process.

Keywords: DED; laser; additive manufacturing; thermal conductivity; thermal diffusivity; thermal
modeling; hot stamping; AISI H13

1. Introduction

Metal additive manufacturing (AM) technologies are gaining increasing attention from both
academia and industry because of the advantages they offer over conventional metal manufacturing
techniques. These AM technologies enable the manufacture of near net shape complex structures and
functionally graded components, which are impossible to fabricate through conventional methods.

In metal AM, an energy source (e.g., laser, electron beam, or plasma arc) irradiates and melts the
surface of the substrate while filler material is added, building three-dimensional functional parts
layer by layer. The advantages of using laser-based AM compared to conventional metallurgy and
subtractive manufacturing were listed by Yan et al. [1], including a finer grain size, a small heat-
affected zone, the possibility to process difficult-to-machine or refractory materials, as well as to
combine materials, among others. Regarding the mechanical properties, Attar et al. [2] performed a
comparative study of commercially pure titanium manufactured by laser-based AM processes and
obtained comparable or even better mechanical properties than cast material. Much research has been
devoted to deepening the understanding of laser-based metal AM by combining experimentation
and modeling. In such works, the full characterization of the manufactured parts in terms of both
mechanical and thermal properties is highly important.

Numerous investigations have focused on the mechanical properties of AM parts. For instance,
Zhong et al. [3] presented an analysis of the mechanical properties and internal defects encountered
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in AM Inconel 718. Zhang et al. [4] studied the microstructures that developed in different zones of
the substrate and deposited material, and Sun et al. [5] investigated the importance of stress-relieving
treatments of AM AISI 4340 steel.

In addition, several works have modeled laser-based AM processes and studied their heat
transfer characteristics. Roberts et al. [6] reported that the thermal conductivity value depends on
factors such as the porosity of the material. Many models of laser-based powder bed fusion have been
proposed to define the relationship between the thermal conductivities of powder-shaped and solid
metals. All authors agree that the effective thermal conductivity of loose metallic powder is defined
by the gas in the pores. Rombouts et al. [7] studied the effective thermal conductivity of the powder
bed and concluded that its value is almost independent of the material composition and depends
mainly on the size and morphology of the particles and the void fraction. Wei et al. [8] investigated
five metal powders for powder bed additive manufacturing (Inconel 718, 17-4 stainless steel, Inconel
625, Ti-6Al-4V and AISI 316L) and concluded that the pressure and composition of the gas between
the metallic particles have a significant effect on the thermal conductivity of the powder. Cernuschi
et al. [9] calculated the thermal conductivity and density of the porous material using the Maxwell
model.

Foteinopoulos et al. [10] reported an increase in the accuracy of the thermal model by assuming
that the material’s thermal properties, including thermal conductivity, are temperature dependent.
In the same direction, Li et al. [11] found that, by neglecting the temperature dependence of the
material properties, the size and volume of the melt pool were overpredicted. Although both
Foteinopoulos et al. and Li et al. have considered the thermal conductivity reduction in the metallic
powder (where the influence of the porosity is considered), once the material is melted, the tabulated
value of the thermal conductivity of the cast material is used.

To the best of our knowledge, none of the previously published works considered that the
thermal conductivity of AM parts may differ from that of the cast material. However, factors such as
the existence of pores and micro-cracks affect the effective thermal conductivity of the manufactured
part. Furthermore, the high cooling rate of laser processes (10-107 K-s), in comparison with the
much lower rate in casting (1-10 K-s), influences the grain size that develops. In fact, Zhang et al.
[12] reported that the grain size is much finer in parts produced by laser processes than that by
casting, thus impacting the effective thermal conductivity of the AM part.

Therefore, this paper presents a study of the effective thermal conductivity of laser-deposited
AISI H13 tool steel as a function of depth. In this work, the thermal diffusivity of the deposited
material is measured experimentally. The accuracy of the methods employed to measure this thermal
property enables the calculation of thermal conductivity from the diffusivity data. In addition, the
impact of this issue on industrial applications is illustrated by means of a case study of the hot
stamping process.

Hot stamping, also known as press hardening, is a process in which an ultra-high-strength steel
blank is simultaneously formed and quenched. For this purpose, the blank is heated above the
austenitic temperature, approximately 950 °C, and cooled at rates above 27 K-s™! to ensure a complete
martensitic phase transformation.

As stated by Shan et al. [13], the cooling of the blank consumes almost 30% of the total cycle time
required to form and quench the material. According to Chen et al. [14], one approach to reducing
the cycle time is to increase the thermal conductivity of the hot stamping tools, because it ensures
quick heat transfer between the tools and the stamped part. In this direction, Directed Energy
Deposition (DED) has arisen as an alternative to enhance the cooling performance of the tools. On
the one hand, DED enables the manufacture of conformal cooling channels that can follow the surface
of the tools, therefore avoiding hot spots. On the other hand, DED allows the combination of different
materials to produce bimetallic tools. Materials with high thermal conductivity are used in the core
of the tools, and high-resistance tool steel is used as a coating to withstand the high pressures and
temperatures that are reached in the hot stamping process.

In the cooling stage of the hot stamping process, the thermal conductivity of the hot stamping
tools is an important factor in the prediction of the temperature distribution within the blank and the
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cooling rate. This fact was highlighted by Karbasian and Tekkaya [15]. Different software programs
have been developed to model the hot stamping process, such as LS-DYNA, Auto-Form, and
PamStamp; however, all of these require the material data as inputs. Therefore, if DED-manufactured
tools are to be used in hot stamping, their effective thermal properties must be known. Hence,
defining the thermal conductivity of the DED-manufactured material is essential for determining the
cooling capability of the tools. Many authors have developed diverse models of different additive
manufacturing processes. Denlinger et al. [16] developed a thermomechanical model of electron
beam deposition aimed at large parts, while Mukherjee et al. [17] studied the mitigation of thermal
distortion during AM using a numerical heat transfer and fluid flow model. Peyre et al. [18]
developed an analytical and numerical model of laser-aided DED, and Shi et al. [19] proposed a three-
dimensional finite element model to investigate the effects of laser processing parameters on the
thermal behavior and melting/solidification mechanism during selective laser melting. Regardless of
the modeled process, all of them consider that properties such as thermal conductivity and specific
heat are temperature dependent. However, all of them consider the thermal conductivity of only the
cast material, neglecting possible variations caused by the manufacturing process to which the tool
material has been subjected. This omission motivated the selection of the hot stamping process as the
case study presented here.

2. Materials and Methods

2.1. DED Tests

The DED experiments were performed on a 5-axis laser-processing machine, with a work-piece
size capacity of 700 x 360 x 380 mm?. A high-power Yb:YAG fiber laser, Rofin FL010 (ROFIN-SINAR
Laser GmbH, Bergkirchen, Germany), with a maximum power output of 1 kW was employed. In
addition, the powder was fed by means of a Sulzer Metco Twin 10 C powder feeder (Oerlikon Metco,
Pfaffikon, Switzerland), and an in-house designed coaxial nozzle [20], using argon as both the drag
and shielding gasses.

In the experimental tests, AISI 1045 (DIN 1.1191) and AISI H13 (DIN 1.2344) were used as the
base and filler materials, respectively. AISI 1045 is a medium carbon steel commonly used in
structural parts requiring high strength and hardness. AISI H13 is a Cr-Mo-V alloyed tool steel with
a high level of resistance to thermal shock and fatigue and good temperature strength, which makes
this material particularly valuable for tooling. The filler material was supplied by Flame Spray
Technologies (Duiven, The Netherlands) and obtained via gas atomization, consisting of spherical
particles with diameters of 53-150 um. The chemical compositions of the employed materials are
detailed in Table 1.

Table 1. Chemical compositions (wt %) of AISI 1045 [21] and AISI H13 [22].

Material C Si Mn Cr Mo Vv Fe
AISI 1045 0.45 0.24 0.8 0.16 - 0.02 Balance
AISI H13 0.41 0.80 0.25 5.12 1.33 1.13 Balance

First, two specimens of 50 x 50 x 7 mm? and 50 x 50 x 5 mm?, respectively, were manufactured
by adding AISI H13 over an AISI 1045 substrate via DED, employing the process parameters detailed
in Table 2. A zigzag pattern was used to deposit the filler material, alternating longitudinal and
transversal directions for the deposition of successive layers, as shown in Figure 1a. This strategy
reduces the anisotropic behavior inherent to the DED process and allows the manufacture of larger
parts, which enables the transfer of the results obtained to real components. Figure 1b shows a
photograph of the manufactured specimens.



Metals 2020, 10, 154 4 of 13

Table 2. Process parameters employed for the deposition of AISI H13.

Process Parameters Value
Continuous-wave laser power (W) 600
Feed rate (mm-min) 450
Track offset (mm) 1
Overlap (%) 50
Powder flow rate (g-min-1) 3.3

Shielding gas flow rate (L-min) 14
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Figure 1. Schematic of the Directed Energy Deposition (DED) process (a) and (b) photograph of the
manufactured AISI H13 specimens.

2.2. Thermal Diffusivity Measurement

To perform thermal diffusivity measurements, three slabs, each 2 mm thick, were extracted from
the deposited material at different depths, as shown in Figure 2. From the 7-mm-thick specimen, two
plates were cut: (a) the inner plate, Sample 1, contained the deepest and earliest deposition (0 to 2
mm from the substrate); (b) the outer plate, Sample 2, contained the outermost side of the coating (4
to 6 mm from the substrate). Sample 3 was extracted from the specimen with a 3.5 mm deposition
thickness, and the sample spanned the interface between the filler and substrate, from -1 to 1 mm
with respect to the interface, to evaluate the influence of the DED process on the substrate. Moreover,
for comparison, a 2-mm-thick plate made of cast AISI H13 was also prepared. All samples were
extracted by means of wire electrical discharge machining, and the white layer generated on the cut
surfaces was ground to eliminate the heat-affected region.

Heights Specimen 1 (7.0 mm height)
- L. Wire-EDM
[mm] o Filler material /¥ ———— ,/~ Sample2 /
) St o ’. b d
g L,
‘21 1z I /> kA Samplet /
W —
Base material Surface grinding
Heights Specimen 2 (3.5 mm height)
[mm]p .
. / Filler material -
1 L / /»—»I 7o Sample 3 /

A - -—- [~
Base material QSurface grinding

Figure 2. Sample extraction for thermal diffusivity measurements.
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For each plate, the thermal diffusivities were measured at room temperature in two
perpendicular directions: along the surface, the so-called in-plane thermal diffusivity (¢;), and in the
direction perpendicular to the surface, the so-called through-thickness thermal diffusivity («,).

To measure a,, a flash method was used, which was developed by Parker et al. [23]. In this
technique, the front surface of the plate was illuminated homogeneously by the brief pulse of a flash
lamp (3 kJ energy pulse, 3 ms duration) while the temperature evolution of the back-surface was
recorded by a mid-infrared video camera (3-5 pm wavelength) operating at a rate of 950 frames-s.
The thermal diffusivity was obtained by measuring the time required to reach half of the maximum
temperature rise (ti2), which was related to the thermal diffusivity through Equation (1), where L is
the plate thickness:

12
ty; = 0.1388—. (1)
ay

In order to enhance both the absorption to the flashlight and the infrared emissivity, the sample
surfaces were covered by a very thin graphite layer (=3 um thick). According to Maillet et al. [24], the
influence of this layer on the accuracy of the thermal diffusivity values is less than 1% provided the
sample is much thicker than the graphite layer (in the present case, 2 mm against 6 pm).

To measure «;, a lock-in thermography setup with laser spot excitation was used, which was
first used by Heath and Winfree [25] and enables measurements of the thermal diffusivities of the
materials with high accuracy. This technology has been widely used for similar applications, for
example, Nolte et al. [26] determined the thermal diffusivity of sheets of brass, stainless, and
structural steel. The sample is illuminated by an intensity-modulated laser beam, tightly focused on
the surface, and the oscillating component of the temperature rise is detected by an infrared video
camera connected to a lock-in module. By analyzing the radial dependence of the temperature phase,
the in-plane thermal diffusivity can be retrieved with ease, based on the linear relationship between
the phase of the temperature and the lateral distance to the heating spot, the slope of which (m) is
given by Equation (2), where fis the modulation frequency:

TXf
a

(2)

m=—

2.3. Thermal Modeling of the Tool Cooling

In order to quantify the influence of the effective thermal conductivity of the laser-deposited
AISI H13 on a bimetallic hot stamping tool, two different cases were simulated using the same
geometry, shown in Figure 3. The aim of the simulation was to quantify the impact of considering
the real DED AISI H13 thermal conductivity or the data from the bibliography. Therefore, no
optimization of the geometry of the cooling channels was performed and the cooling channels’
position and geometry were maintained. The geometry has a 300 x 170 x 150 mm? bounding box and
the cooling channels have an 8 mm diameter and are positioned at a 12 mm distance from the contact
face with the blank. The tool has an AISI 1045 core, which was coated with a 3-mm-thick DED AISI
H13. In Case 1, the thermal conductivity value of the cast AISI H13 was used as a reference, whereas
in Case 2, the effective thermal conductivity value of the deposited AISI H13 was considered. In both
cases, the stamped blank was made of USIBOR 1500 steel (22MnB5), a boron alloyed steel that is well-
suited for the entire range of automotive structural parts, which require high resistance to anti-
intrusion during impact.
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Figure 3. Simulated geometry of the bimetallic hot stamping tool.

The simulation was carried out using the thermal transient module of the FEM software ANSYS
Workbench 19.2 (Ansys Inc., Canonsburg, PA, U.S.). The employed mesh consists of over 1 million
first-order tetrahedral elements, with an average skewness of 0.246 and a maximum of 0.846. The
initial temperature of the tools, as well as the reference temperature for the water-cooling convection,
was set at 20 °C, whereas the temperature of the blank after the loading operation was 810 °C [27].
The blank was 1.85 mm thick, which is a typical thickness for an automotive sheet metal structural
body part [28]. The geometric parameters of the tools are detailed in Table 3, and the thermal
properties of the employed materials are shown in Table 4. The model simulated a 20 s cooling time,
which is a typical value for hot stamping already used by other authors [27,29].

Table 3. Geometric parameters of the simulated tools.

Parameter Cases 1 and 2
Diameter of the cooling ducts 8 mm
Length of the cooling ducts 170-280 mm
Distance between cooling ducts 15-20 mm
Distance from cooling duct center to surface 12 mm
Number of ducts in the upper/lower tools 12/10
Coating thickness 3 mm

Table 4. Thermal properties of AISI H13, AISI 1045, and USIBOR 1500, data obtained from [21,22,30].

Temperature (°C)

Material Th 1P ti
atenia ermal Troperties 20 200 400 600 800 1000
1f1 . -1.K-1 - -
AISI H13 Specific hea’F (] kg1-K1) 461 475 519 592
Thermal conductivity (W-m"-K1) 249 274 291 285 - -
11 . -1.K-1 - -
AISI 1045 Specific heat. (]. kg1-K7) 475 495 565 700
Thermal conductivity (W-m=1-K7) 476 404 362 320 - -
1f1 . -1.K-1
USIBOR® 1500 Specific heat (J-kg™-K™1) 444 520 561 581 590 603

Thermal conductivity (W-m-K1) ~ 30.7 30.0 21.7 23.6 25.6 27.6

The tools are cooled by the convection of the water that is forced through the cooling channels,
a parameter referred to as the convective heat transfer coefficient (CHTC). For cooling channels
manufactured via drilling, Coldwell et al. measured the inner roughness between 0.14 and 0.48 um
[31]. Thus, an intermediate Ra value of 0.31 um was considered in the present case. According to
Arrizubieta et al. [32], for mechanically drilled 8-mm-diameter ducts with a 0.31 um Ra value and a
20 °C cooling water, the CHTC is 4736.7 W-m=2-K-1.

The heat transfer between the hot blank and the tools needs to be established as an input
parameter in the model. This parameter is referred to as the interfacial heat transfer coefficient
(IHTC). In the present study, the correlation proposed by Hu et al. [33] was taken as a reference.
Considering a 15 MPa contact pressure, a value which was already considered by Cortina et al. [34],
the IHTC was estimated to be approximately 3000 W-m2K-, based on the aforementioned
approximation.
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To compare the cooling performance of the tools using either the effective thermal conductivity
of DED AISI H13 or the reference thermal conductivity, the time point at which the martensitic
transformation was complete (280 °C) was calculated. In addition, the time at which the blank was
cooled to below 70 °C was determined to define the total cycle time before the tools were opened.

3. Results and Discussion

3.1. Quality of the Deposited Material

Defects such as pores and cracks generate discontinuities within the material, lowering its
density and possibly decreasing thermal conductivity. Therefore, the quality of the deposited
material must be analyzed to evaluate defects and their impact on thermal properties. Therefore,
three details of the cross-section of the DED AISI H13 were evaluated. The cross-sections were
polished and etched using Murakami and Marble reagents. The samples are shown in Figure 4.

Figure 4. Cross-section of the DED AISI H13 and details of the microstructure.

As can be seen from the figure, clads free of cracks were attained, and this microstructure would
be expected to ensure the continuity of the heat transfer within the deposited material. In addition,
no defects were found at the interface between the DED AISI H13 and substrate AISI 1045 materials.

3.2. Effective Thermal Diffusivity and Conductivity Values

The results of the measurements of the through-thickness thermal diffusivity, a, , are
summarized in the third column of Table 5. The statistical uncertainty was obtained by repeating
each measurement five times and the uncertainty was thus found to be less than 3%.

Table 5. Thermal diffusivity results.

Sample Distance from the Interface (mm) «a;, (mm?>s?) a; (mm?s7) Material
1 0 5.72+0.15 5.66+0.16 DED AISI H13
1 2 5.72+0.17 5.88+0.17 DED AISIH13
2 4 6.03+0.16 6.10+0.18 DED AISI H13
2 6 6.03+0.18 6.02+0.17 DED AISIH13
3 -1 - 125+0.4  Base AISI 1045
3 1 - 573+0.16 DED AISIH13

Reference - 6.75+0.20 6.42 +0.19 Cast AISI H13
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As shown in the table, the thermal diffusivity of the laser-deposited AISI H13 was always
smaller than that of the cast sample. The thermal diffusivity of each plate was measured in two
directions, i.e., from both the front (illuminated) surface and the rear (measured) surface, and the
thermal diffusivities thus retrieved were the same. This homogeneity is obtained because the flash
method measures the effective (or average) a,. Because Sample 3 included two different materials,
a; was not measured in that sample.

As for the in-plane thermal diffusivity measurements, a;, Figure 5 shows the amplitude and
phase thermograms of Sample 1, at the surface 0 mm from the substrate, with f =7 Hz. For each
specimen, the thermal diffusivity on both sides was measured. The round shape of the isophases and
isotherms in Figure 5 is representative of all the cases analyzed and indicates in-plane thermal
isotropy. The in-plane thermal diffusivity was obtained considering the vertical profiles of the phase
thermograms (the white vertical line in Figure 5b) since they are free from diffraction effects, like
those observed in the horizontal profile in Figure 5b. From the slope of the vertical phase profile, the
in-plane thermal diffusivity was obtained, using Equation (2). In order to average local
heterogeneities, the measurement was repeated at five different zones at the sample surface. The
thermal diffusivities obtained using this method together with the uncertainty (=3%) are summarized
in the fourth column of Table 5. The uncertainty takes into account the standard deviation in the slope
of the phase profile and the standard deviation of the five repetitions.

Although the thermal diffusivity of each surface increased with the surface’s height above the
substrate, at all heights, the thermal diffusivity of the sample remained below the diffusivity of the
reference cast material. Comparing the values of a,and «;, the DED process did not introduce any

thermal anisotropy.
179.997
14339349
107.9380

20.3303
18.43205
71.99574

1663375
1478545
1293747 35 qa8ag
11.08917 ‘ 000345
-35.0003(
7200264

924087 sk bh
Ca R
; 144001
179.99]

7.39257
[ 0

554459
369629
184799
0.00000
pe—
10
T

Figure 5. (a) Amplitude and (b) phase thermograms of Sample 1 at the surface 0 mm from the
substrate, with a modulation frequency of 7 Hz. The white vertical line corresponds to the phase
profile used for thermal diffusivity measurements. The scale of the amplitude is in °C and the phase
is in degrees.

Thermal diffusivity, @, and conductivity, k, are related to Equation (3), where p and ¢, are the
density and specific heat of the material, respectively:

_k
a= pxc, 3)

Equation (3) was used to calculate the thermal conductivity of DED AISI H13, cast AISI H13,
and AISI 1045, and the results are shown in Table 6. The perpendicular thermal diffusivity values
shown in Table 5 were used because the flash technique is generally acknowledged to be the most
reliable method and is covered by standards, such as ASTM International [35], the British Standards
Institution [36], and the Japanese Standards Association [37]. The density and specific heat were taken
from the material specifications. In the case of DED AISI H13, the heat capacity was calculated using
the rule of mixtures given in Equation (4) and considering this material as a mixture of AISI H13 and
air.

(p x Cp)DED atsiHiz U1 % (p X CP)castAlsn-ns Tz X (p x C?’)air' 4)



Metals 2020, 10, 154 9 of 13

In Equation (4), v1 and vz are the volume fractions of cast AISIH13 and air, respectively. Because
v1 > 0.995, the same heat capacity was used for the cast reference and DED AISI H13. This result is
consistent with the fact that the heat capacity, unlike the thermal transport properties (a and k),
depends only on the composition of the sample, not the microstructure. Therefore, because the DED
process does not affect the sample composition, the same heat capacity is expected for AISI H13
regardless of the production process.

Table 6. Thermal conductivities.

Material Measured Thermal Effective Thermal Reference Value from
ateria Diffusivity (mm?>s?)  Conductivity (W-m1-K) Bibliography (W-m"-K™)
DED AISI H13
(Sample 1) 572 20.7 249 [22]
Cast AISI H13 6.75 244
Base AISI 1045 12.5 46.7 47.6 [21]

In the cast AISI H13 and the base AISI 1045, the measured effective thermal diffusivities
presented almost no differences compared to the reference values encountered in the literature
[21,22], demonstrating the accuracy of the measurements acquired in this study. In the case of DED
AISI H13, the effective thermal conductivity was 15.3% lower than that of cast AISI H13. This is
because the thermal conductivity of alloys depends not only on the sample composition but also on
the microstructure (grain size, micro-cracks, pores, etc.). Because the micrographs shown in Figure 4
do not indicate the presence of cracks or pores, the thermal conductivity reduction was attributed
primarily to the smaller sizes of the grains produced by the fast cooling rate in DED in comparison
with conventional manufacturing processes. According to Berman [38], the larger number of
interfaces compared to the cast material reduces the electron mean free path and consequently the
thermal conductivity. This effect is especially noticeable in the first layers, where the cooling rate is
maximum and therefore, the microstructure is finer. As the number of deposited layers increases, the
heat dissipation is slowed down, which leads to slower cooling rates and coarser grain sizes.
Consequently, the thermal conductivity variation within the deposited material is attributed to the
differences in the grain size, thus leading to lower values in the first deposited layers.

Focusing on the variation of thermal conductivity in relation to temperature, Zhang et al. [39]
studied the thermal conductivity change of multi-stacked silicon steel sheets under different pressure
and temperature conditions. Their results showed that although the thermal conductivity changed
under different compressive stresses, the conductivity maintained the same rate of variation in
response to temperature change. Therefore, in this study, the thermal conductivity reduction
measured at 20 °C was assumed to affect the material in proportion to the temperature, and this result
was extended to the whole temperature range, as shown in Table 7, and applied to the case study
model described in the next section.

Table 7. Effective thermal conductivity of the DED AIS H13 considered in the thermal model.

Temperature (°C)
20 200 400 600 800 1000
Specific heat (J-kg-K1) 461 475 519 592 592 592
Thermal conductivity (W-m*-K) 20.7 22.8 242 237 237 237

Material Thermal Properties

DED AISI H13

3.3. Thermal Modeling and Cycle-Time Reduction

The influence of the thermal conductivity differences between the cast and DED AISI H13 tool
steels was evaluated by means of thermal simulation of the upper part of an automotive structural
body part with a B-pillar type geometry.

Based on the effective thermal conductivity of the laser-deposited AISI H13 tool steel, the cycle
times required to lower the blank temperature below 280 and 70 °C were calculated, respectively.
Figure 6 shows the evolution of the maximum temperature of the blank. The lower thermal
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conductivity of the laser-deposited AISI H13 can be seen to reduce heat extraction from the blank,
and this case thus requires a longer cooling time to achieve an equivalent thermal field. Table 8
presents the results of the simulated case study, as well as the error produced if the effective thermal
conductivity of the laser-deposited AISI H13 is not considered in the model.

o 200 {300 ;
£ 800 /1050 | 280°C
w 7
S 700 - —— Reference AISIH13
© /200 1 —— DEDAISIH13
g 600 1 /
/0 |150
£ 500 1 /
£ 400 1 / 100 -
> ’l
E 300 1 4 50
& 200 | \'\24 6 8 10 12 14
£ .
£ 100 1 =
3 0 : . : ,
0 5 10 15 20

Time [s]
Figure 6. Blank maximum temperature evolution during the hot stamping process.

Table 8. Results of the simulated case study.

Blank Maximum Time Point (s)
Temperature Reference AISI H13 DED AISIH13 Difference (%)
280 °C 5.50 5.59 1.64
70 °C 12.10 12.89 6.53

The errors generated when calculating the thermal fields were relatively low in comparison with
the differences in thermal conductivity values. This is because the coating thickness was only 3 mm,
and such low thickness values are commonly employed in bimetallic tools. Nevertheless, if fully
DED-manufactured structures are employed, much higher errors could be generated in the
simulation. Figure 7 shows the thermal field of the blank at 12.89 s in the case where the effective
thermal conductivity of the DED AISI H13 coating is considered.

)
70 Max
67.3
' 64.6
“ 61.8
| 59.1
56.4
" 537
50.9
48.2 Z

455 Min TL‘;
-/ %

00  0.1[m]

Temperature ['C]

Figure 7. Temperature field of the blank at 12.89 s time instant, considering the effective thermal
conductivity of the DED AISI H13 coating.
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4. Conclusions

This work investigated the effective thermal diffusivity of laser-deposited AISI H13 tool steel,
and the following conclusions were drawn:

(1) The effective thermal diffusivity of the laser-deposited AISI H13 tool steel is lower than that
of the reference value of the cast material, which is critical for applications where the heat transfer is
a key parameter.

(2) Despite the directional nature of the DED process, the resulting thermal properties presented
no anisotropy and heat was conducted equally in all directions.

(3) Various cross-sections of the laser-deposited AISI H13 tool steel were studied and no porosity
was found. Therefore, the thermal diffusivity reduction could not be attributed to the existence of
internal voids. The reduction of the effective thermal diffusivity was due to the microstructure that
developed during the fast cooling of the deposited material, in which the fine grain size reduced the
heat transfer through the material.

(4) The microstructure that developed within the deposited material was directly related to the
cooling rate, which was higher at the beginning of the DED process. This is why the effective thermal
diffusivity of Sample 1 (situated at 0-2 mm from the interface) was lower than that of Sample 2 (at 4-
6 mm from the interface).

(5) The effect of the DED process on the substrate was minimal and did not affect the thermal
diffusivity of the base material.

(6) If the effective thermal conductivity is not considered the cooling capability of the DED-
manufactured tools is overestimated.

This work extends current knowledge on the thermal properties of DED materials, and the
thermal diffusivity and conductivity differences encountered may also affect other AM processes.
Therefore, further research is necessary to fully characterize AM parts.
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