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ABSTRACT. Machine Learning (ML) algorithms are gaining importance in the processing of 

chemical information and modelling of chemical reactivity problems. In this work, we have 

developed a PTML model combining Perturbation-Theory (PT) and ML algorithms for 

predicting the yield of a given reaction. For this purpose, we have selected Parham cyclization, 

which is a general and powerful tool for the synthesis of heterocyclic and carbocyclic 

compounds. This reaction has both structural (substitution pattern on the substrate, internal 

electrophile, ring size, etc.) and operational variables (organolithium reagent, solvent, 

temperature, time, etc.), so predicting the effect of changes on substrate design (internal 

elelctrophile, halide, etc.) or reaction conditions on the yield is an important task that could help 

to optimize the reaction design. The PTML model developed uses PT operators to account for 
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perturbations in experimental conditions and/or structural variables of all the molecules involved 

in a query reaction compared to a reaction of reference. Thus, a dataset of >100 reactions has 

been collected for different substrates and internal electrophiles, under different reaction 

conditions, with a wide range of yields (0 – 98%). The best PTML model found using General 

Linear Regression (GLR) has R = 0.88 in training and R = 0.83 in external validation series for 

10000 pairs of query and reference reactions. The PTML model has a final R = 0.95 for all 

reactions using multiple reactions of reference. We also report a comparative study of linear vs. 

non-linear PTML models based on Artificial Neural Networks (ANN) algorithms. PTML-ANN 

models (LNN, MLP, RBF) with R ≈ 0.1 - 0.8 do not outperform the first PMTL model. This 

result confirms the validity of the linearity of the model. Next, we carried out an experimental 

and theoretical study of non-reported Parham reactions to illustrate the practical use of the PTML 

model. A 500000-point simulation and a Hammett analysis of the reactivity space of Parham 

reactions are also reported. 

1. INTRODUCTION 

The optimization of chemical reactions is an important goal in organic synthesis towards the 

production of new catalysts, drugs, and materials. A common situation in organic chemistry is 

the existence of non-optimal reactions with a promising but still low reaction yield under a given 

set of experimental conditions. In this context, a large number of reactions formed by 

combinations of solvents, additives, catalysts, temperature, time, and other operational variables 

have to be studied in order to optimize the synthetic procedure. This reaction space is so vast that 

it is very difficult and/or costly to scan with experimental techniques, so computational models 

can be employed to predict the yield of a reaction for related substrates. In a recent work, 

Marcou1 highlighted the importance of expert systems for prediction of chemical reactivity in 
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organic synthesis. Thus, computational methods could be efficiently used to establish a 

relationship between the reagent structure and the required reaction conditions. This would allow 

synthetic chemists to use less time and resources in the optimization of reaction conditions for a 

given transformation.1 Warr has published an important review on computational approaches to 

chemical reactivity.2 In addition, Sigman has demonstrated that computational chemistry models 

relying upon calculation of molecular descriptors are useful in organic synthesis.3-10 However, 

most of the known computational methods do not use at the same time the information about the 

new reaction and the reaction of reference. Therefore, computational modeling of reactivity is 

still a major challenge.  

In this context, Machine Learning (ML) methods may play an important role for the prediction 

of physicochemical properties of organic compounds.11-20 ML methods have been used also to 

predict chemical reactivity.21-31 ML methods infer the reactivity of the new or query molecules 

(mq) using as input structural variables V(mq), known as molecular descriptors. These input 

variables V(mq) may be calculated using Quantum Chemistry and/or other methods.24-26 In fact, 

Skoraczyński et al. discussed very recently the necessity of new classes of descriptors for the 

prediction of chemical reactivity.27 ML methods generally involve three steps. The first step is 

the compilation of a dataset of reactions with known values of output variable and conditions of 

reaction [V(cq)]. The yield of reaction [Yld(%)] is probably the most common output variable 

used in ML predictive studies, but not the only one. The second step is the calculation of the 

molecular descriptors [V(mq)] of all the molecules involved. Sometimes, ML methods consider 

also the numerical values [V(cq)] of the experimental conditions of query reaction [cq] 

(temperature, time, solvent, additives, etc.) as input variables. The third step is the use of a ML 

method to fit a quantitative relationship between the output variable [Yld(%)] and the input 

variables [V(mq) and V(cq)]. Finally, the model can be used to predict the values of the output 
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variable for new sets of reactants/products and/or reaction conditions. The output of a ML model 

is the predicted value of yield [Yld(%)pred], not to be confused with the observed value of yield 

for a query reaction [Yld(%)query]. In fact, Yld(%)pred is an estimation of Yld(%)query and the 

difference between these values Yld(%)res = Yld(%)query - Yld(%)pred is known as the residual 

value. In equation (1), an example of linear ML additive model is shown. 

( ) ( ) ( )1cVbmVaYld(%) 0

rmax

1r
rr

qmax

1q
qqpred e+⋅+⋅= ∑∑

==

 

As has been mentioned, most of the ML models use the previous knowledge (data set of known 

reactions) to fit the coefficients of the model. Nevertheless, they do not include specific 

examples of that previous knowledge as direct input variables of the model.22-31 Conversely, 

experimentalists in organic synthesis commonly use the information of known reactions as a 

starting point to infer the possible result for new but similar reactions. This kind of problem is 

ideal to be approached with a Perturbation Theory (PT) method. PT methods start with a known 

solution to a known problem and seek a solution to a new, but similar, problem by adding 

perturbation terms to the known solution. It means that the yield of a query reaction [Yld(%)query] 

can be inferred beginning with the value of yield of a reaction of reference [Yld(%)ref] and 

adding the effect of structural perturbations and/or perturbations in the experimental conditions. 

In this situation, the values of the reaction of references [Yld(%)ref, V(mq) and V(cr)] are used to 

predict the value of the new product of interest, using a similar reaction with structural variables 

[V(mq)] and conditions [V(cr)]. When a ML method is used to seek the coefficients of the PT 

model, this can be regarded as a PTML model. In this context, our group has formulated a 

general-purpose PTML approach to structure-property problems with perturbations in multiple 

experimental conditions.32 These are perturbations involving changes in both the chemical 

structure of reactants and/or input conditions of reaction (solvent, catalyst, temperature, reaction 
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 5

time, etc.). Thus, we have developed PTML models for a very large set of in-out perturbations in 

the reaction conditions for intra-molecular carbolithiations.33 In recent works, we have also 

developed new PTML models to predict the enantioselectivity in Heck-Heck cascade reactions34 

and intermolecular α-amidoalkylation reactions.35 In these last examples, the enantiomeric excess 

[ee(%)] and not the yield were the output variables.  

In this work we have selected the Parham reaction,36 which consists of the cyclization of an 

aryllithium intermediate (ArLi) generated by halogen/lithium exchange with internal 

electrophiles (IE) to form a cyclic compound (Scheme 1). This is a general reaction, that has 

been widely applied for the formation of both carbocycles and heterocycles, and plays a crucial 

role in natural product synthesis. Different parameters have to be considered in the design of a 

given Parham-type reaction. The structural variables, such as the substitution pattern on the 

aromatic ring, the halide atom, the size of the ring formed, or the internal electrophile employed 

have an important impact in the reaction outcome. Aryllithiums derived from aromatic or 

heteroaromatic precursors (bromides and iodides, X = Br, I) are readily available with variable 

substitution patterns, although the effect on the aromatic ring substitution on the reactivity of the 

aryllithium has not been clearly established. Lithium – halogen exchange reaction (LHE) is very 

fast, so the intermediate aryllithium can be prepared in the presence of different types of internal 

electrophiles, which are reactive enough to participate in a subsequent cyclization reaction. Thus, 

halides, epoxides, ketones, imines, alkenes alkynes, amides, esters or carbamates have been 

efficiently used in this type of reaction.37 
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 6

 

Scheme 1.General scheme for the Parham reaction 

When the internal electrophile is a carboxylic acid derivative, the reaction may be regarded as 

a carbanionic Friedel-Crafts equivalent, lacking the electronic limitations of the classical 

reaction.37 The use of esters as internal electrophiles in Parham cyclizations could have an 

important drawback. In fact, although it is possible to perform a lithium-halogen exchange 

reaction, the intermediate generated by acylation of the aryllithium is not stable in the reaction 

medium. Thus, RLi addition to the generated carbonyl group affording alcohols is an important 

side reaction. This can be avoided using other types of derivatives and, to this end, amides and 

carbamates constitute some of the most effectively used internal electrophiles in Parham 

cyclizations. On the other hand, it is not clear how the substitution pattern of the aromatic ring or 

the size of the ring formed affects the overall process. Apart from the structural parameters, the 

operational reaction parameters, such as the temperatures, solvent, organolithium (RLi) used, etc. 

have a clear impact on the reaction outcome. Thus, the development of a model that considers all 

this variables, both structural and operational, could be helpful for the selection of reaction 

conditions, including the most efficient IE, for the synthesis of a given target compound, 

reducing the experimental screening.  

To this end, in this work, we have focused on Parham reactions that employ carboxylic acid 

derivatives as internal electrophiles. Thus, the general scheme of the reactions studied involves 

the intramolecular cyclization of aryllithium compounds generated by lithium-halogen exchange 
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 7

with different types of carboxylic acid derivatives (amides, esters, carbamates) (Scheme 2), 

considering both structural and operational variables. To cover a wide reaction space, examples 

that use 13 different classes of carboxylic acid derivatives as internal electrophiles for the 

formation of 4 to 8-membered carbo- and heterocycles (Scheme 2) have been selected. Thus, 

reaction of the aryl halide (substrate) with an organolithium reagent (RLi) at a given temperature 

(T1) for a given time (t1) affords an aryllithium intermediate (ArLi). The temperature may or may 

not be changed (T2) for a given time (t2) to afford the cyclized intermediate (CI). The reaction 

outcome depends on the nature of the internal electrophile used, considering both the reactivity 

(electrophilicity of the carbonyl group) and the stability of the intermediate formed after the 

cyclization (CI in Scheme 2). Thus, carboxylic acids and esters would form unstable tetrahedral 

intermediates of type C. On the other hand, amides would form stable tetrahedral intermediates 

(A or B) in the reaction medium, favoring the overall reaction yield. In the case of using Weinreb 

amides (A) or morpholine amides (A’), the presence of an oxygen atom provides additional 

stabilization of the tetrahedral intermediate via coordination and chelate formation, thus favoring 

the reaction.38,39 

In this work, we describe the development of the first PTML model taking into consideration 

the structure of the reactants, products, and intermediates of the reaction as well as the reaction 

conditions for a query reaction and a reaction of reference at the same time. We compared 

different linear and non-linear alternative models using GLR (General Linear Regression) and 

ANN (Artificial Neural Networks) algorithms. In addition, a theoretical and experimental study 

of new Parham reactions has been carried out to illustrate the development of the model and the 

practical applications, including simulations of the space of reaction and Hammett analysis. 
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 8

 

Scheme 2. General types of Parham cyclizations collected in the dataset, with intermediates 

considered (ArLi and CI) 

 

2. MATERIALS AND METHODS 

2.1. Computational Methods.  

Parham reaction dataset. To the best of our knowledge, there are no previous reports of datasets 

of Parham reactions for ML studies. Thus, a large dataset with >100 chemical reactions, carried 

out experimentally by our group and others, was collected from public literature, 38-54  as well as 

new experimental results not reported before. Overall, the dataset includes 117 reactions with 93 

different substrates, including 13 types of internal electrophiles, 3 RLi reagents, and 64 products, 

with a wide range of yields (See Supporting Information for details). These 117 reactions include 

107 reactions (n = 1 – 107) collected from the literature and 10 new reactions (n = 108 – 117) 
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 9

reported here. These reactions have been carried out in many different conditions [cj] including 

different values of c0 = LHE temperature (T1) and c1 = time (t1), c2 = reaction temperature (T2) 

and c3 = time (t2), and c4 = RLi equivalents (equiv). Next, structural and/or physicochemical 

variables V(mq) or molecular descriptors for the substrates, products, and proposed intermediates 

of reaction for LHE and for the cyclization step were calculated. A total of 10 000 pairs of query 

vs. reference reactions were sampled from this dataset. Each member of the pair was selected at 

random. 

 

PTML model. Different schemes (multiplicative, additive) may be used for the construction of 

the functions. In so doing, different initial models (H0 hypothesis) may be selected and tested. In 

this work, we propose an additive hypothesis H0. Thus, we consider that the initial value of 

∆Yld(%) for a new or query reaction is the value of the reaction of reference [Yld(%)ref] (value 

to be perturbed). Next, we can predict the value of the query reaction [Yld(%)new] by adding to 

Yld(%)ref the corrections due to structural perturbations ∆Vk(mq)g and/or operational 

perturbations ∆V(cr) (changes in the experimental conditions). The formula of the PTML model 

used is shown on Equation 2.  

( ) ( )

( )

( ) ( )[ ]

( ) ( )[ ] 0

r

1r
rrr

q

1q 1
qkqkgq,refpred

00

rmax

1r
rrr

q

1q 1
qkgq,refpred

ec'VcVb

m'VmVaYld(%)Yld(%)

eec',cVb

2',mVaYld(%)Yld(%)

max

max max

max max

+−⋅+

−⋅+=

++∆⋅+

∆⋅+=

∑

∑∑

∑

∑∑

=

= =

=

= =

g

g
g

g

g
gqm

 

The model uses as input the observed values of Yld(%)ref for the reaction of reference and two 

sets of PT operators ∆V(cr, 'cr) and ∆V(mq, 'mq). The PT operators are used to quantify the 

perturbations in the reaction conditions ∆V(cq, 'cr) or in the molecular structure ∆V(mq, mr), 
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 10

respectively. The operators of the type ∆V(cq, 'cr) = [V(cr) – V('cr)] are used to quantify 

perturbations in the reaction condition of query reaction cq compared to the experimental 

conditions of the reaction of reference cr.  

On the other hand, the operators of the type ∆Vk(mq, 'mq)g = [Vk(mq) – Vk('mq)]g quantify 

structural perturbations for five different classes of molecules with different roles in the reaction. 

These classes of molecules are the same for query and reference reactions (q = 'q). The different 

types of molecules are: m0 = Substrate (S), m1 = Product (P), m2 = RLi reagent, m3 = IE, m4 = 

ArLi Intermediate, and m5 = CI. 

The structural variables or molecular descriptors used in this study were the average values of 

electronegativities Vk(mq)g = χk(mq)g for different sets or groups of atoms (g) in the molecule. 

This average value of electronegativity runs over all the atoms in g and all their neighbors placed 

at topological distance d ≤ k (from kmin = 0 to kmax = 5). The groups of atoms considered in this 

study were g1 = Total (all atoms in the molecule), g2 = Heteroatoms, g3 = Halogens, g4 = 

Saturated Carbons, and g5 = Unsaturated Carbons. A detailed explanation of all the input 

variables used in this model is shown in Table 1. These average values of χ(mq)gk were calculated 

using a Markov chain algorithm published by our group in previous works.55 
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 11

Table 1. Definition of variables used as inputs of the model 

Experimental 
conditions (cq) 

 Perturbation operators Type of operator 

HLE Temperature (T1)  ∆V(T1q, T1r) = ∆T1 = T1q - T1r Temperature deviation 

HLE time (t1) ∆V(t1q, t1r) = ∆t1 = t1q - t1r Time deviation 

Cyclization 
Temperature (T2) 

∆V(T2q, T2r) = ∆T2 = T2q - T2r Temperature deviation 

Cyclization time (t2) ∆V(t2q, t2r) = ∆t2 = t2q – t2r Time deviation 

RLi Equivalent 
(RLieq) 

∆V(RLi(eq)) = RLi(eq)q - RLi(eq)r Conc. difference 

Molecules (mq) 
a Perturbation terms Type of operatora 

Substrate (S) ∆χk(Sq, Sr)g = [χk(Sq)g – χk(Sr)]g 

Change of the average 
value of 
Electronegativity χk(mq) 
 in the structure of the 
query 

molecule mq = Sq, Pq,Eq, 

RLiq, ArLiq or CIq  
in regard to average  
value of reference. 

Product (P) ∆χk(Pq, Pr)g = [χk(Pq)g – χk(Pr)]g 

Internal Electrophile 
(E) 

∆χk(Eq, Er)g = [χk(Eq)g – χk(Er)]g 

Organolithium reagent 
(RLi) 

∆χk(RLiq, RLiq)g = [χk(RLiq)g – χk(RLir)]g 

Aryllithium 
Intermediate (ArLi) 

∆χk(ArLiq, ArLir)g = [χk(ArLiq)g – χk(ArLir)]g 

Cyclized Intermediate 
(CI) 

∆χk(CIq, CIr)g = [χk(CIq)g – χk(CIr)]g 

a Change of the average value of Electronegativity χk(mq)g in the structure the query molecule mq = Sq, Pq, Eq, 
RLiq, ArLiq, or CIq with respect  to the average value of Electronegativity χk(mq)g the same molecules in the reaction 
of reference mr = Sr, Pr, Er, RLir, ArLir, or CIr. The values of χk(mq)g or χk(mr)g are the average value of the atomic 
Electronegativities of Pauling (χ) for all the atoms in the group g and all their neighbors atoms placed at a 
topological distance k ≤ 5. 

It should be noted that the model in this form is not adequate for regression studies, as there 

could be many repeated values of Yld(%)pred vs. different values of Yld(%)ref, which may lead to 

distortions in the normal distribution of the data. Thus, the following form of the Equation 3 was 

used for the regression analysis we used. 
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We sought a linear PTML model with this form using a GLR algorithm implemented in the 

software STATISTICA. We also explored other linear and non-linear alternative PTML models 

using ANN algorithms (see last section of results and discussion). The ANN models trained have 

Linear Neural Network (LNN), Multiple Layer Perceptron (MLP), and Radial Basis Function 

(RBF). We used the values of Squared Regression coefficient (R2), Regression coefficient (R), 

Error Mean, Standard Deviation (S.D.), Average (Avg.), Maximum (Max.), and Minimum 

(Min.), and other statistics to study the dataset and compare the models.56 

2.2. Experimental Methods. Typical Procedure for the Parham Cyclization. Synthesis of 

(S)-7,8-dimethoxy-1,2,3,10a-tetrahydropyrrolo[1,2-b]isoquinolin-10(5H)-one (P64) (Table 5, n 

= 111). To a solution of N,N-diethyl-1-(4,5-dimethoxy-o-yodobenzyl)pyrrolidine-2-carboxamide 

(S92) (0.09 g, 0.20 mmol) and TMEDA (0.071 mL, 0.46 mmol) in dry THF (10 mL), n-BuLi 

(0.34 mL of a 1.3 M solution in hexane, 0.44 mmol) was added at -78 ºC, and the resulting 

mixture was stirred at this temperature for 1 h. The reaction was quenched by the addition of sat. 

NH4Cl (5 mL). The organic layer was separated, and the aqueous phase was extracted with 

AcOEt (3 × 5 mL). The combined organic extracts were dried (Na2SO4) and concentrated in 

vacuo. Flash column chromatography (silica gel, 50% AcOEt:MeOH) afforded 

pyrroloisoquinolone P64 as white powder (0.02 g, 49%): mp (AcOEt/MeOH) 163-165 oC; [α 

]D
20 = – 14.1 (c = 1, CH2Cl2); IR (KBr) 1673 cm-1; 1H NMR (CDCl3) 1.81-1.90 (m, 2H), 2.04-

2.23 (m, 2H), 2.50 (q, J = 8.6 Hz, 1H), 2.93 (td, J = 8.6, 1.8 Hz, 1H), 3.17-3.24 (m, 1H), 3.69 

(dd, J = 15.0, 1.3 Hz, 1H), 3.92 (s, 3H), 3.93 (s, 3H), 4.13 (d, J = 15.0 Hz, 1H), 6.67 (s, 1H), 7.51 

(s, 1H); 13C NMR (CDCl3) 21.4, 25.0, 54.0, 54.3, 56.0, 56.1, 69.0, 108.1, 124.4, 137.2, 148.2, 
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153.5, 195.0. MS (CI) m/z (rel intensity) 248 (MH+, 100), 247 (34), 246 (12), 231 (7), 219 (11), 

178 (12), 151 (6). HRMS (CI-TOF) Calcd. for C14H18NO3 [MH]+ 248.1287; found: 248.1293. Anal. 

Calcd. for C14H17NO3: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.34; H, 6.75; N, 5.75. 

 

3. RESULTS AND DISCUSSION  

3.1. Description of the dataset. As has been stated, many factors affect the yield of Parham 

reactions. Therefore, the goal was to develop predictive computational model useful to search for 

optimal reaction conditions taking into consideration all the experimental variables involved. 

These reactions may have been carried out under different experimental conditions (see Table 2). 

Thus, the number of perturbations that could be carried out experimentally for reactions in our 

dataset can be easily calculated using Equation 4.  

( )4
)Step(c

)Min(c)Max(c
NN

5r

1r r

rr
productsmax ∏

=

=







 −
⋅=  

In this equation, Nmax stands for the maximum number of reactions, Nproducts is the number of 

different products of reactions in the dataset, Max(cr) and Min(cr) are the maximum and 

minimum values of the experimental conditions of reaction [T1, t1, T2, t2, and RLi(eq)]. The 

Step(cr) are the minimal variations allowed for the different experimental conditions of reaction 

cr. A very simple calculation according to the previous equation give a total of number of 

reactions Nmax = 100 421 685 changing the input parameters of the reactions in our dataset. We 

used values of Step(cr) = 5 – 10 to be conservative. Thus, it is unpractical to verify in the 

laboratory, an important reason to support the development of computational models of chemical 

reactivity for Parham reaction, or for many other reactions in organic synthesis. The values of 

Max., Min., Avg., and S.D. for the data set are reported in Table 2. These values were calculated 
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 14

for the observed yield of reaction [Yld(%)obs] and the experimental parameters (cr) of all the 

reactions in the dataset. 

Table 2. Summary of basic statistics for reactions in the dataset 

Stat. a Operational conditions of reaction for experimental design in simulation (cr) 
b 

  c1 = T1(°C) 
rc2 = t1(min) c3 = T2(°C) c4 = t2(min) c5 = RLi(eq) Yld(%)obs 

Min. -105 1 -105 1 1 0 

Max. -60 180 20 960 3 98 

Avg. -82.2 68.4 -57.7 101.8 2 69 

S.D. 8.9 69.3 43,5 166.9 0.5 21.7 

Nobserved 8 14 9 17 13 95 

Stat. c Calculation of Max. number of reactions after changing the conditions (cr) 

Step 5 2 5 10 0.5 - 

Max - Min 45 179 125 959 2 98 

Nmax 9 90 25 96 4 733850775 

aStat. = Statistical parameters for the input parameters (conditions of operation) of all the Parham reactions 
present in our dataset: Min. = minimum value, Max. = maximum value, Avg. = average value, S.D. = Standard 
deviation, Ntotal = Number of reactions present in our dataset. b Experimental parameters (see Scheme 2): c1 = 
T1(°C): Temperature for the lithium-halogen exchange reaction (LHE), c2 = t1(min) = reaction time for the LHE, c3 
= T2(°C) = Temperature of cyclization reaction step, c4 = t2(min) = reaction time cyclization step, c5 = RLi(eq) = 
amount of the organolithium reagent (RLi) expressed in equivalents. (See Supporting Information for the details of 
all reactions in the dataset). c Step = integer number to express the minimal change allowed in one experimental 
condition, Nmax = Maximum number of reactions experimentally reachable if all the experimentally possible 
variations for the reactions in our dataset were carried out. 

 

3.2. PTML model for Parham reactions. Next, a general PTML model for Parham reactions 

was developed. The overall p-level of the model is p < 0.05 and all the variables of the model, 

but one, are statistically significant according to student test (see values of t and p-level in Table 

3). The equation of this linear PTML model is shown in Equation 5.  

Page 14 of 44

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15
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The first five variables express the contribution of the non-structural variables to the change in 

yield ∆Yld(%). The other variables express the contribution of changes in the molecular 

structure of the different components of the reaction S, IE, P, ArLi, and RLi. The variables used 

to account for changes in the structure of the cyclized intermediates CI were not significant for 

the prediction of ∆Yld(%) according to this model. This could be because the information of the 

variable ∆χ2(CI) Het is redundant with respect to the variable ∆χ2(P)Het. Pareto’s diagram for the 

variables (result not presented) shows that almost all the variables are important to the model. 

The variable T1 is the only one with a p-level higher than 0.05. We do not show the Pareto’s 

diagram of the model because it can be easily constructed with the absolute values of the t-values 

presented in Table 3.56 Notably, the present PTML model is able to predict correctly a very high 

number of perturbations both in training and in external validation series n = 10000. In fact, the 

model has values of R2 = 0.78 in training series. The correlation coefficient of the training series 

was R = 0.88. 

In addition, the correlation coefficient of the external validation series was R = 0.83. The 

values of ∆Yld(%)obs vs. ∆Yld(%)pred for 10000 pairs of reactions; training (blue) and validation 

(red) are depicted in Figure 1. It is important to point out that the residuals of this model have a 

normal distribution (Figure 2) and an average value = 0.56 (near to 0). Consequently, the model 

fulfills these two important parametric assumptions of the linear regression analysis.56  
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Table 3. Results of the PTML regression model 

Coefficient Inputa ∆Yld(%)b S.E.c t c p-level d 

a1 ∆χ0 (S)I/Br 11.970 0.42174 28.3819 0.000000 

a2 ∆χ2(IE)Het 22.405 0.66544 33.6701 0.000000 

a3 ∆χ2(P)Het 7.697 0.60475 12.7275 0.000000 

a4 ∆χ2(S)Het -29.302 0.63461 -46.1736 0.000000 

a5 ∆χ2(ArLi)Het 18.841 0.51208 36.7928 0.000000 

a6 ∆χ0(RLi)Tot -210.756 13.31498 -15.8285 0.000000 

b0 ∆T1 0.011 0.01729 0.6570 0.511176 

b1 ∆t1 -0.085 0.00295 -28.6763 0.000000 

b2 ∆T2 -0.056 0.00429 -12.9644 0.000000 

b3 ∆t2 -0.016 0.00091 -17.1393 0.000000 

b4 ∆RLi(eq) -6.846 0.23898 -28.6483 0.000000 

e0 Independent term 0.472 0.14232 3.3146 0.000923 

a Input variables of the model. b Coefficients of the variables in the model. c Standard error of the coefficients. d 
Student t-value. e p-level of error. 

 

 

Figure 1. Observed vs. predicted ∆Yld(%) for 10000 pairs of reactions; training (blue) and 

external validation series (red). 
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Figure 2. Histogram of observed values of ∆Yld(%)obs 

 

3.3. PTML predictions with one reaction of reference. As has been shown, the PTML 

model is able to predict the change in yield ∆Yld(%)pred for a query reaction with respect to 

different reactions of reference (one by one). However, the prediction of ∆Yld(%) for different 

pairs of reactions is not the final objective of this model. The main interest of the synthetic 

chemist is the prediction of the yield of reaction Yld(%)pred of a new reaction using the yield of a 

known reaction as reaction of reference. In order to do these predictions (use of the model in 

practice), the model according to Equation 6 was used. 
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In this sense, case Yld(%)pred = Yld(%)calc is equal to the yield calculated with the model for 

one reaction of reference (see next section). It should be remembered that ∆Yld(%) = Yld(%)pred 

- Yld(%)ref to predict the Yld(%)pred using as input the value of yield Yld(%)ref for one reaction of 

reference and the values of the difference operators ∆V(ck, 'ck) and ∆V(mq, 'mq) for this pair of 

reactions (see details in Table 1). The reaction of reference in many problems is a reaction with a 
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low experimental value of yield [Yld(%)obs] to be optimized. In this situation changes are 

required on the values of experimental conditions, ∆V(ck, 'ck) operators, in order to increase the 

value of Yld(%)pred for the query reaction. The chemical structure of the reactants, ∆V(mq, 'mq) 

operators, can also be changed. In these cases, it is recommendable to change only the value of 

one experimental condition or only one reactant each time and keep all other values constant, ck 

= 'ck and mq = 'mq. This strategy may help to keep the perturbations as small as possible and 

increase the accuracy of the predictions.  

3.4. PTML for predictions with multiple reactions of reference. The model was built using 

10000 different pairs of reactions selected at random from all possible pairs in our dataset of n = 

117 reactions. In this sense, for a single reaction Yld(%)pred = Yld(%)calc or yield calculated with 

the model when we use only one reaction of reference. However, we can calculate multiple 

values of yield Yld(%)calc for a single reaction if we use the n different reactions of reference in 

the dataset. In many cases, the selection of the reaction of reference is clear (See previous 

section). However, when the selection of the reaction of reference is not clear a method to work 

with multiple reactions of reference is required. In this work, we have calculated the yield 

predicted Yld(%)pred  = Avg(Yld(%)calc) as the average of all the values of yield calculated 

[Yld(%)calc] with the model using all reactions in our dataset as reference (n = 117). The 

statistical analysis is summarized in Table 4. 
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Table 4. Results obtained with multiple references 

Model Ba S.E. t p-level 

a0 -10.43 2.40 -4.35 < 0.05 

Yld(%)pred 1.13 0.03 33.94 < 0.05 

Parameters R F p-level SEE 

Values 0.95 1152.15 < 0.05 6.856 

a B = Coefficients of the linear equation, S.E. = Standard Error, t = Student test parameter, p-level = level of error, 
Avg.Res. = Average of Residuals, R = Regression coefficient, F = Fisher ratio, SEE = Standard Error of Estimates.  

 

Notably, the coefficient of regression obtained for predictions with multiple references is 

statistically significant with p-values < 0.05 and regression coefficients R = 0.95. This means 

that the model has R2 = 0.9025, and explains >90% of variance. In addition, the predictions 

showed a value of r2
m = 0.64, higher than 0.5, which indicates that the model is acceptable. The 

index r2
m, reported by Roy et al.,57 penalizes other indices such as the classical q2, which should 

be used with caution according to Golbraikh and Tropsha.58 The average value of residuals for 

this method is Avg. Res. = - 1.0. A graphical representation of observed vs. predicted values of 

yield for 117 Parham reactions using multiple reactions of reference are shown in Figure 3. 
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Figure 3. Observed vs. Predicted values of yield (%) using multiple reactions of reference  

 

3.5. Theoretical and experimental study of new reactions. Once the PTML model was 

established, we decided to illustrate the practical use of the model with a real case. To this end, 

we carried out both the experimental and theoretical study of Parham reactions that had not been 

previously reported. The model would allow predicting the effect of changes (perturbations) in 

the input experimental conditions (changes in the substitution pattern of the substrate, the 

halogen, the internal electrophile and experimental conditions cr) for a high number of reactions 

with low cost of time. In fact, we carried out a 500000-points simulation to illustrate the use of 

the model.  

Parham cyclization of S91-S93. We have previously shown that aryllithiums generated from 

metalation of N,N-diethyl-[N-(o-halobenzyl)]pyrrole-2-carboxamides undergo intramolecular 

cyclization to give pyrrolo[1,2-b]isoquinolines.38-40,59 For this work, we decided to study the 

application of this metalation-cyclization sequence for the synthesis of tetrahydropyrrolo[1,2-

b]isoquinolines. This is a structural framework present in natural products such as the lycorine 

class of Amaryllidaceae alkaloids and the phenanthroindolizidine alkaloids.60 In this case, the 

corresponding N-(o-halobenzyl)]pyrrolidine derivatives S91-S93 were selected as substrates (see 
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Supporting information for the preparation), in order to study the effect of using a pyrrolidine 

ring instead of a pyrrole on the reactivity. We selected a methyl ester (S91), N,N-diethylamide 

(S92) and Weinreb amide (S93) as internal electrophiles (Scheme 3). This procedure would 

allow the synthesis of enantiomericaly pure tetrahydropyrrolosioquinoline P64 starting from a 

compound from the chiral pool, such as L-proline. 

 

Scheme 3. Parham cyclization of S91-S93 

When a methyl ester was used as internal electrophile (S91), it was necessary to use a bulky 

and non-nucleophilic reagent as MesLi as metalating agent in order to avoid the direct addition 

of the RLi to the carbonyl group (Table 5, entries 108-110. The numbering of the compounds 

and entries on Table 5 corresponds to the numbering on the reaction dataset in the Supporting 

Information). Under these conditions, the reaction was very fast (5 min) at low temperature, even 

using 1 equivalent of the metalating agent (Table 5, entry 109), but only moderate yields of P64 

were obtained. When diethtylamide S92 was used, the reaction could be carried out with n-BuLi, 

but a longer reaction time was required (entry 111). The best result was obtained with Weinreb 

amide S93, as could be expected (entries 112-117). The metalation reactions could be carried out 
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efficiently with n-BuLi and t-BuLi, and no significant difference in the yield of P64 was 

observed with the use of TMEDA as additive (entry 113 vs. 114).  

Table 5. Parham cyclization of S91-S93 

n Subs. RLi RLi 
(equiv) 

T 
(oC) 

 t 
(min) 

Yld  
(%)a 

108 S91 MesLi  (2) -105 5 40 

109 S91 MesLi  (1.5) -105 5 51 

110 S91 MesLi  (1) -105 5 42 

111 S92 n-BuLi  (2.2)b
 -78 60 49 

112 S93 n-BuLi  (2.2)b
 -78 60 62 

113 S93 n-BuLi  (2.2) -78 60 67 

114 S93 t-BuLi  (2.2)b -78 60 61 

115 S93 t-BuLi  (2.2)b -78 30 62 

116 S93 t-BuLi  (2.2)b -78 15 70 

117 S93 t-BuLi  (2.2)c -78 15 62 
a Yld (%)obs is the yield of isolated pure product P64. b TMEDA (2.3 equiv) was used as additive. c TMEDA (2.1 

equiv) was used as additive 

 

On the other hand, shorter reaction times led to higher yields (entry 115 vs. 116). 

Tetrahydropyrroloisoquinoline P64 was obtained without racemization, as a single enantiomer of 

S configuration, starting from the enantiomerically pure pyrrolidines S91-S93.The absolute 

configuration (S) was confirmed by single-crystal X-ray analysis of P64 (CCDC1560347 

contains the supplementary crystallographic data for P64; see Supporting Information). These 

results seem to indicate that there is a significant difference in the reactivity between the 

pyrrolidines and pyrrole substrates, with the same internal electrophile. Thus, while the 

corresponding pyrroles required longer reaction times (3 h) or an increase of the temperature to 

room temperature after the LHE step to obtain the cyclized products,38 cyclization of pyrrolidines 

took place at low temperature and in shorter reaction times (15 to 60 min) (see database in 

Supporting Information). It is clear that changes in the structure of the substrates require further 
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optimization of the reaction conditions. Consequently, we carried out the predictive study with 

our new PTML model. We selected the entry 116 (Table 5) as reaction of reference for a large-

scale numerical simulation study.  

PTML prediction of new reactions using multiple references. We applied the PTML model to 

carry out a prediction of the yield [Yld(%)pred] for these new Parham reactions. The experimental 

conditions reported in Table 5 were used as reaction input. The results are shown in Table 6. 

Results for the 117 reactions in the dataset are included in Supporting Information. 

Table 6. Predictive study of reactions 108 to 117. 

Reactions Yld(%) b 

n Subsa Obs. Expt. Pred. Res. 

108 S91 40 44.3 39.2 0.8 

109 S91 51 44.3 42.6 8.4 

110 S91 42 44.3 46.0 -4.0 

111 S92 49 64.0 53.6 -4.6 

112 S93 62 64.0 75.7 -13.7 

113 S93 67 64.0 75.7 -8.7 

114 S93 61 59.9 75.7 -14.7 

115 S93 62 59.9 77.2 -15.2 

116 S93 70 59.9 77.2 -7.2 

117 S93 62 59.9 79.3 -17.3 

aSubs = Substrate. b Yield Obs. (Yld(%)obs) is the yield of reaction observed experimentally (Table 5). Yield Expt. 
is the expected value of Yld(%) calculated as Yld(%)expt= Avg(Yld(%)obs) the average observed values of Yld(%)obs 

only for all the reactions carried out with the same RLi and solvent. Yield Pred. Yld(%)pred = Avg(Yld(%)calc) is the 
value of yield calculated with the PTML model using the 117 reactions of reference. Yield Res. Yld(%)res = 
Yld(%)pred - Yld(%)obs is the residual value.  

In general, all the reactions reported here have an observed experimental value of yield in the 

range 40-70%. The model predicts very well the observed values with values in a similar range 

39-79 %. The values predicted here for reactions 108-117 were never used to train the model. 
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Table 6 shows the results obtained for the reactions studied experimentally (Table 5, entries 108-

117).  

PTML simulation of Parham reaction space. Next, we applied the PTML model to carry out a 

large-scale simulation. In this simulation, we measured the effect of perturbations in 

experimental conditions ∆V(ck) over the value of yield  for new Parham reactions [Yld(%)pred]. 

To this end, we carried out the prediction of all the reactions in the dataset changing the values of 

the different kinetic (time) and thermodynamic (temperature) factors V(ck). In order to generate a 

large set of perturbations ∆V(ck) = V(ck) - V(′ck), new sets of experimental conditions V(ck) have 

to be generated compared to the values of the reactions of reference V(′ck). We generated 500000 

different sets of experimental conditions V(ck) for hypothetic reactions using a random 

interpolation procedure. After that, those values were used to calculate the values of 500000 sets 

of perturbations ∆V(ck) = V(ck) - V(′ck) in the experimental conditions. Next, we substituted all 

these 500000 sets of values ∆V(ck) into the PTML model. As a result, we obtained the new 

values of yield [Yld%)pred] for 500000 query reactions. Table 7 summarizes the results found in 

this numeric simulation experiment, grouped according to the different types of internal 

electrophiles (IE) collected in the data set, and shown in Figure 4, with gradient color, which is 

related to higher (green) or lower (red) Yield (%), in order to obtain the best visual result. 

 

Figure 4. Classes of internal electrophiles included in the simulation (Table 7) 
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Table 7. Exploration of the 500000-points space for t-BuLi mediated reactions 

LHE t-BuLi 1 1 1 1 1 >1 >1 >1 >1 >1 

step (equiv). 

 temperature (T1)
a cold cold cold cold cold cold cold cold cold cold 

 time (t1)
 a fast fast fast slow slow fast fast fast slow slow 

CI Temperature (T2)
 a cold warm cold cold warm cold warm cold cold warm 

step time (t2)
a fast fast slow fast fast fast fast slow fast fast 

IEb IE1  63 60.4 60 53 50.6 57 51.8 52 46 45.4 
IE2 77 75.1 79 69 67.5 75 71.5 72 65 64 
IE3  76 75.3 77 69 67.4 74 72.5 73 66 64.7 
IE4  78 75.7 81 69 68.6 78 72.5 73 67 66.2 
IE5 57 54.1 60 48 46.8 54 50.9 51 45 42.8 
IE6 74 72.6 77 67 66.3 74 69.4 69 64 63.1 
IE7 84 82.8 86 76 75.4 82 79.3 79 73 71.9 
IE8  67 65.8 70 58 57 65 61.2 61 55 53.2 
IE9 73 71.6 75 63 61.9 70 67.9 68 60 58.2 
IE10 70 68.6 72 64 62.2 69 65.3 65 60 58.3 
IE11 44 41.7 47 37 35.1 43 39.8 40 33 31 
IE12 67 65.5 69 58 56.6 65 61.6 62 54 53.3 

 
IE13 61 59.9 64 54 53.1 61 56.9 57 51 49.3 

aCold/warm or fast/slow cut-offs are the average values of reaction temperature and time for the two steps of 
reaction. These values are T1≤ -82.2 ºC (cold), t1 ≤ 68.4 min (fast); T2 ≤ -57.7 ºC (cold), t2≤ 101.8 min (fast). b IE: 
Internal Electrophile: see Figure 4. See Supporting information for the complete structures. 

 

The simulation confirms the general trend expected for this type of reactions. Under all 

experimental conditions studied, the best results were obtained with carbamates as internal 

electrophiles, (IE7, Table 7, Figure 4), followed by amides. This could be explained assuming 

that, in these cases, metalation would be favored by a Complex Induced Proximity Effect 

(CIPE),61,62 stabilizing the aryllithium intermediate. Among the amides, Weinreb or 

morpholinoamides (IE2, IE3) give consistently better results than simple amides (IE1, IE8, 

IE9), possibly due to the extra stabilization by chelation.37 Regarding the reaction conditions, 

some useful trends can be observed. The amount (equivalents) of t-BuLi has not a relevant 

effect, although better results are generally predicted with the use of a stoichiometric amount, 
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compared to an excess. These predicted values also indicate that use of a short LHE time (t1 

short) is beneficial. On the other hand, better results are predicted when the time for the 

cyclization is extended (t2 long), rather than increasing the reaction temperature (T2 warm).  

PTML Hammett analysis of the effect of substituents on the aromatic ring and the electrophile. 

The PMTL model can also be used to carry out a Hammett analysis, which is a well-known 

method to correlate the effect over reactivity of structural changes in reactants.63 The method 

uses Hammett constants (σ)64 or similar parameters to quantify the effect on reactivity of the 

introduction of chemical substituents in a given chemical system (ρ). The method has been 

applied recently to important studies in computer-aided organic synthesis by Sigman et al.65-69 

The Hammett equation used in this study is Yld(%)pred =  σ·ρ + a0. In this equation, Yld(%)pred 

are the values predicted with the PTML model. The reaction with the highest experimental value 

of yield in our experimental study (Table 5, entry116) was used as reference reaction in the 

PTML model. For this study, we selected the general reaction for the formation of 

pyrroloisoquinolines indicated in Scheme 4.  
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Scheme 4. General reaction and structural modifications for the Hammett analysis (Table 8) 

 

In total, eight different series (S1-8) of compounds were studied, according to the general 

structures shown on Scheme 4. First, 13 different substituents (Nsbr = 13), both electron donating 

and electron withdrawing, on positions 4 or 5 of the aromatic ring (R1) (Nbrp = 2) were selected 

using Weinreb amide as internal electrophile, with two different halogen atoms (X = Br, I) (Nthd 

= 2), and with a saturated (pyrrole) or unsaturated (pyrrolidine) ring (Nrie = 2) (substrates type 

S1-8, Scheme 4, Table 8). This makes 104 different compounds for this series.  
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Table 8. Hammett analysis of structural perturbations  

Structural 
Patterna 

Hammett Analysis (statistics)b 

 n R F p SEE σ ρ 

S1 13 0.62 6.73 0.03 6.12 σI -27.4 
      a0 85.6 
S2 13 0.50 3.72 0.08 3.16 σp -4.2 
      a0 75.5 

S3 13 0.57 5.39 0.04 6.91 σI -27.7 

      a0 83.3 

S4 13 0.46 2.95 0.11 3.41 σm -7.3 

      a0 76.2 
S5 13 0.69 10.04 0.01 5.57 σI -30.5 

      a0 87.3 

S6 13 0.58 5.63 0.04 3.07 σp -5.0 
      a0 76.2 
S7 13 0.64 7.46 0.02 6.52 σI -30.8 

      a0 85.0 

S8 13 0.58 5.47 0.04 3.08 σm -8.9 
      a0 77.3 
aSee Scheme 4 for series of compounds. See also Supporting Information. bn = number of cases (substituents), R = 

Regression coefficient, F = Fisher ratio, SEE = Standard Error of Estimates, p = p-level, significant p-values are < 
0.05 

 

To carry out this study, the SMILE codes of each compound were generated, and the 

molecular descriptors ∆χk were calculated and introduced into the PTML model to predict the 

new yield values [Yld(%)pred]. Last, a simple linear regression analysis of the Yld(%)pred vs. 

different constants of the substituents was carried out. Specifically, we used the Hammett 

parameters σm and σp to measure overall electron-donating or electron-withdrawing effects of 

substituents. We also used the constants σI and σR to measure inductive or resonance effects 

separately. These values were obtained from an excellent review of these methods reported by 

Hansch et al.
64 The values of the coefficients ρ for the σ-like constants of substituents are 
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depicted in Table 8 for the different series of compounds (see also Supporting Information). We 

investigated inductive effects for the substitution at the meta position with respect to the halogen 

atom (S1, S3, S5, S7), and resonance effects for the substitution at the meta position with respect 

to the halogen atom (S2, S4, S6, S8).  

In general, the correlations are stronger in above 10% for compounds with substituent R1 in m 

position (S1, S3, S5, S7) than for those p-substituted (S2, S4, S6, S8). The Yld(%)pred for 

compounds substituted in m position showed significant (p-level < 0.05) and stronger 

correlations R = 0.6 – 0.7 with the inductive effect constant σI and more negative values of ρ in 

the range ρ = -27 to ρ = -31. Compounds substituted in p position showed weaker (R < 0.6) 

and/or non-significant correlations (p-level > 0.05). Table 9 shows the values of yield predicted 

with the PTML model [Yld(%)pred]. 

Table 9. Results of Hammett analysis for S5-8 series 

R1 
Yld(%)pred 

(meta) 

Yld(%)pred 

(para) 
Hammett constants 

 
S5 S7 S6 S8 σp σm σI σR 

Me 79.6 74.3 73.2 73.0 -0.17 -0.07 0.01 -0.18 

NMe2 81.8 80.3 78.6 78.4 -0.83 -0.16 0.15 -0.98 

OiPr 78.8 77.0 73.8 73.6 -0.45 0.1 0.34 -0.79 

OPh 79.0 77.1 72.8 72.7 -0.03 0.25 0.37 -0.4 

Ph 89.4 89.7 71.4 71.2 -0.01 0.06 0.12 -0.13 

F 68.5 65.6 78.8 77.0 0.06 0.34 0.45 -0.39 

I 77.8 72.5 77.6 76.0 0.18 0.35 0.42 -0.24 

Cl 74.7 70.2 78.9 77.1 0.23 0.37 0.42 -0.19 

Br 75.9 71.1 79.4 77.6 0.23 0.39 0.45 -0.22 

CO2Et 70.4 69.3 77.7 76.1 0.45 0.37 0.34 0.11 

CF3 86.7 87.0 75.7 76.0 0.54 0.43 0.38 0.16 

OCOMe 71.9 70.8 78.4 78.7 0.31 0.39 0.42 -0.11 
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NO2 62.1 60.4 67.8 65.7 0.78 0.71 0.65 0.13 

 

Table 9 also shows the respective values of the constants σm, σp, σI and σR for different 

substituents introduced in brominated systems (S5-S8). A detailed table of results for all the 

experiments is included in Supporting Information. This analysis, shows that slightly higher 

yields are predicted for the pyrrolidine systems compared to the pyrrole system (S5 vs. S7 and S6 

vs. S8). Regarding the substitution, although electron-withdrawing groups (i.e.: NO2, CO2Et) 

generally disfavor the cyclization, the overall effect of the substituents in the aromatic ring is 

quite moderate, and in some cases no correlation can be seen (i.e.: CF3). These results would be 

in agreement with computational studies carried out for related reactions, and suggest that 

different factors, and not only electronic effects, affect the course of the reaction.70 

 

PTML linear vs. non-linear models. Finally, a comparative study of our linear model with non-

linear models obtained using ANN algorithms was carried out. The ANN module of the software 

STATISTICA was used to process our dataset. In order to train the ANN models, we used the 

same variables previously selected by GLR stepwise methods. The use of the same variables 

allows us to compare the models in terms of performance, error, etc., without introducing a bias 

error due to the variable selection strategy. Results are shown in Table 10.  

In fact, the LNN model has the same variables and regression coefficient R = 0.88 that our 

previous PTML linear regression model. In addition, we tested other non-linear ANN topologies 

like MLP and RBF. The MLP models trained may have one or two hidden layers of neurons. As 

can be seen, none of the ANN models tested outperforms the PTML linear models. For instance, 

the MLP models give similar results with R ≈ 0.8 in training and external validation series. In 

addition, the RBF topology has a notably lower R ≈ 0.1 (see Table 10). These results confirm 
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that the linear hypothesis used to seek the PTML model seems to be stronger for the present 

dataset.56 

Table 10. PTML-ANN models 

PTML-ANN a Model parameters  

ANN Model ANN Data R b Error  SD  SD  

profile Topology set  Mean Error Ratio 

LNN 12:12-1:1 

 

 
 

training 0.88 0.01 11.37 0.47 

test 0.83 2.60 14.40 0.56 

MLP 12:12-13-1:1 

 

 
 

training 0.88 -3.45 11.46 0.47 

 
test 0.83 -0.67 14.47 0.56 

MLP 12:12-13-13-1:1 

 

 
 

training 0.86 1.26 12.54 0.52 

test 0.79 6.01 15.82 0.62 

RBF 12:12-1-1:1 
 

 
 

training 0.08 0.00 24.22 1.00 

test -0.05 4.84 25.96 1.01 

a PTML-ANN model profiles indicates: Niv:Ni-Nh1-Nh2-No:Nov, Niv = Number of Input Variables, Ni = Number of 
Input neurons, Nh1 = Number of neurons in first hidden layer, Nh2 = Number of neurons in second hidden layer, No = 
Number of output neurons, Nov = Number of output variables. b R = Regression coefficient for 10000 pairs of query 
vs. reference reactions. 

 

4. CONCLUSION 
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In this work, we have shown that PTML models are useful for predicting the reactivity in 

Parham reactions. In fact, combining PT operators and ML algorithms resulted useful to account 

for changes in experimental conditions and/or the structural variables of all the molecules 

involved in the query reaction as compared to a reaction of reference. The predictions made with 

the model are statistically significant in terms of correlation with respect to the values from the 

literature and new experimental values reported here by the first time. Non-linear PTML models 

based on ANN do not outperformed PMTL linear models. This result confirms the linearity of 

the model. On the other hand, Hammett analysis showed that the effect of the substitution on the 

aromatic ring on the reactivity (yield predicted) is only moderate. Experimental chemists could 

use the model described for the selection of optimal conditions of reaction (T, t, etc.) out of a 

chemical space of more than 108 possible combinations. The model could also be used for the 

selection of the most efficient structures, specially the IE, for the application of this type of 

reaction as a key step in the synthesis of a target compound, reducing the experimental 

screening. In this area, Density Functional Theory (DFT) is one of the most used methods to 

study chemical reactivity.71 However, these calculations are difficult when complex reaction 

networks with intermediates interconnected by different Transition States (TS) are studied. In 

this sense, computational automated protocols such as Nudged Elastic Band (NEB),72 Growing 

string methods and linear synchronous transit,73 or Global Reaction Route Mapping (GRRM),74 

have been tested. Compared to those methods, the main advantage of PTML models would be 

the posisibility of predicting reactivity without relying upon the analysis of TS. Thus, they are 

useful to carry out large simulations without the need of high computing capacities. In fact, we 

report here a simulation of the reactivity space of Parham reactions (500000-point or more). This 

result also opens a new gateway to apply PTML methodology to other types of organic reactions 

with the consequent save of time, human and material resources.  
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Learning; Yld(%)obs, Yield of reaction observed (experimental); Yld(%)ref, Yield of a reaction of 
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