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Abstract: The aim of this review is to explore the relationship between melatonin, free radicals, and
non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant
attention in recent years due to its diverse physiological functions and potential therapeutic benefits
by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate
ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage,
melatonin may help slow down the aging process and protect against age-related cognitive decline.
Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties,
including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can
attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding
neurons against damage induced by stroke and aging processes. The intracellular accumulation of
certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes
and thus, the blockade of the amino acid transporters involved in the process could be an alternative
therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals,
specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and
contributes to age-related decline. Recent research suggests a complex interplay between melatonin,
free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of
melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation
of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms
collectively contribute to the preservation of neuronal integrity and functions, making them promising
targets for therapeutic interventions in stroke and age-related disorders.
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1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine secreted from the pineal
gland that plays a crucial role in regulating circadian rhythms and sleep–wake cycles [1,2],
has garnered significant attention in recent years due to its diverse physiological functions
and potential therapeutic benefits. Emerging research suggests that melatonin may have
broader implications beyond its role in sleep [3–15]. In this context, the aim of this review
is to explore the intricate relationship between melatonin, free radicals, and non-excitatory
amino acids, and their role in stroke and aging. By understanding these mechanisms, we
can gain insights into potential interventions for age-related diseases and stroke prevention.
The aim of this review is to explore the potential role of melatonin in stroke and aging,
shedding light on its neuroprotective effects and potential therapeutic applications.

Non-excitatory amino acids, such as glycine and taurine, have been shown to possess
neuroprotective properties in stroke and aging-related conditions [14,16,17]. Glycine acts
as a co-agonist at the N-methyl-D-aspartate (NMDA) receptor, thereby counteracting the
excitotoxicity caused by excessive glutamate release during stroke. Excitotoxicity leads
to neuronal cell death and contributes to the progression of neurodegenerative diseases.
Taurine, on the other hand, exhibits multiple neuroprotective effects, including antioxidant
and anti-inflammatory properties [18]. It can attenuate oxidative stress, modulate calcium
homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced
by stroke and aging processes [19]. Furthermore, the intracellular accumulation of certain
non-excitatory amino acids, which were previously not considered excitotoxic, could promote
harmful effects during hypoxia-ischemia episodes through the activation of NMDAR [20,21].
Therefore, given that NMDAR antagonists have been shown to be ineffective in clinical trials
of ischemic stroke [22], blocking the amino acid transporters involved in the process could be
an alternative therapeutic strategy to reduce ischemic damage.

Studies have shown that melatonin exhibits neuroprotective properties in the context
of stroke [23]. By reducing oxidative stress, inflammation, and apoptosis, melatonin
has been found to mitigate ischemic brain damage caused by stroke [24]. Additionally,
melatonin’s ability to regulate cerebral blood flow and attenuate excitotoxicity further
contributes to its neuroprotective effects [25]. These findings suggest that melatonin may
hold promise as an adjunct therapy for stroke patients.

Over 75% of strokes are caused by a thromboembolic mechanism. Of the remaining
cases, after extended diagnoses, it turns out that half are also caused by this mechanism.
The current treatment for the prevention of the development of thrombi is the use of Direct
Acting Oral Anticoagulants (DOACs) which have a specific mechanism of action that
allows them to interfere with the blood coagulation process directly and more selectively
than anticoagulants, i.e., traditional drugs such as warfarin [26,27]. DOACs act on key
proteins involved in the coagulation cascade, specifically coagulation factors, to prevent
clot formation: (i) they include drugs such as rivaroxaban, apixaban, and edoxaban whose
mechanism of action is based on the inhibition of factor Xa, a central component in the
coagulation cascade necessary to convert prothrombin to thrombin, an enzyme essential in
clot formation; and (ii) drugs such as dabigatran, a direct thrombin inhibitor. Thrombin is
a key enzyme in the coagulation cascade that converts fibrinogen to fibrin, a protein that
forms the main structure of a clot. By inhibiting thrombin, dabigatran reduces the blood’s
ability to form clots. However, it is important to note that these types of drugs can have
interactions with melatonin. Current evidence suggests that melatonin inhibits platelet
aggregation and might affect the coagulation cascade, altering fibrin clot structure and/or
resistance to fibrinolysis [28–31]. The mechanisms behind melatonin-associated reduction
in procoagulant response are not fully known.
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Aging is associated, among other factors, with a decline in melatonin production,
which may contribute to age-related disorders [32]. Melatonin’s antioxidant properties
are particularly relevant in the context of aging, as oxidative stress plays a significant
role in age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s [33].
By scavenging free radicals and reducing oxidative damage, melatonin may help slow
down the aging process and protect against age-related cognitive decline. The impact of
free radicals on aging has been a subject of investigation for many researchers. Several
studies [34–38] revealed that the accumulation of free radicals, specifically mitochondrial
reactive oxygen and nitrogen species (RONS), highly reactive chemicals, accelerates cellular
senescence and contributes to age-related decline.

Furthermore, [39] explored the interplay between free radicals, inflammation, and
aging, highlighting the role of oxidative stress in the aging process.

Oxidative stress arises from an imbalance between the production of RONS and the
body’s ability to neutralize them. Free radicals, such as RONS, can cause cellular damage,
leading to various diseases, including stroke and age-related disorders. Several studies
have demonstrated the involvement of free radicals in the pathophysiology of stroke. Many
reports have focused on how ROS contribute to oxidative stress and neuronal damage
following an ischemic stroke [40–42]. Several comprehensive reviews of the role of free
radicals in stroke have been published [43,44]. In this regard, melatonin has strong antioxi-
dant activity, and it acts as a free radical scavenger by directly neutralizing RONS, thereby
reducing oxidative damage [45]. Additionally, it enhances the activity of antioxidant en-
zymes and upregulates the expression of endogenous antioxidant molecules [45]. These
actions collectively help mitigate the detrimental effects of free radicals and protect cells
from oxidative, stress-induced injury.

Recent research suggests a complex interplay between melatonin, free radicals, and
non-excitatory amino acids in stroke and aging. Melatonin’s antioxidant properties con-
tribute to the reduction of free radicals, including RONS, thereby indirectly influencing
the modulation of non-excitatory amino acids. Furthermore, melatonin has been shown
to enhance the endogenous production of glycine and taurine, potentially amplifying
their neuroprotective effects [46]. The neuroprotective actions of melatonin, glycine, and
taurine converge on multiple pathways, including the regulation of calcium homeostasis,
modulation of apoptosis, and reduction of inflammation. These mechanisms collectively
contribute to the preservation of neuronal integrity and function, making them promising
targets for therapeutic interventions in stroke and age-related disorders.

In summary, melatonin, free radicals, and non-excitatory amino acids play integral
roles in stroke and aging processes. Melatonin’s potent antioxidant properties help mitigate
oxidative stress, while non-excitatory amino acids provide neuroprotection by modulating
excitotoxicity, calcium homeostasis, and inflammation.

Mechanisms Underlying Local Blood Flow

The relationship between local blood flow and aging is a complex and multifaceted
topic [47–52]. As we age, a number of changes occur in the cardiovascular system and
blood vessels that can affect local blood flow in several ways: (i) with aging, arteries tend
to become stiffer due to plaque buildup, atherosclerotic disease, and increased stiffness
of arterial walls. This stiffness can decrease the arteries’ ability to dilate and contract
properly, negatively affecting local blood flow; (ii) over time, capillary density may decrease,
which may reduce the ability to deliver blood and nutrients to tissues efficiently; (iii) the
endothelium is the inner layer of the arteries and plays a crucial role in regulating blood
flow by releasing nitric oxide and other substances, but with age, endothelial function
can deteriorate, which can affect the ability of the blood vessels to dilate and contract
appropriately; (iv) aging is associated with an increase in the production of free radicals
and oxidative stress, which can damage cells and blood vessels, contributing to vascular
dysfunction and impairment of local blood flow; and (v) in some cases, aging can lead to
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reduced blood flow in specific tissues, which can contribute to age-related diseases, such as
cardiovascular disease or Alzheimer’s disease [53–56].

Local blood flow is a fundamental process for the delivery of oxygen and nutrients
to tissues, and the removal of waste products. Local blood flow is regulated by several
mechanisms, including the action of substances such as nitric oxide (NO) and carbon
monoxide (CO) [57–60]. Nitric oxide is a gas molecule produced by the endothelial cells
that line the inside of blood vessels, especially arteries, and acts as a powerful vasodilator,
relaxing the smooth muscles surrounding the arteries, allowing them to widen and increase
local blood flow. This dilation of the vessels is essential to regulate blood flow and blood
pressure in different parts of the body [61]. Although carbon monoxide is primarily known
as a toxic gas when inhaled in large quantities, it is also produced naturally in the body as
a result of the breakdown of hemoglobin [62]. In the context of local blood flow, it has been
found that CO can act as a vasodilator similar to NO under certain circumstances [63–68].
CO can relax the smooth muscles of the arteries and increase local blood flow, although
its role in this regulation is less known and less studied than NO. Both NO and CO play
crucial roles in regulating local blood flow [69]. Its function is complex and is influenced
by numerous factors, including tissue metabolic activity, blood pressure, the presence of
other chemicals, and the health of the vascular endothelium. Dysfunction in the production
or action of these molecules can contribute to vascular disorders [70], neurodegenerative
pathologies [71], and others [72–74].

The guanylate cyclase pathway is related to the production of NO, which, among
other physiological functions, plays an important role in the regulation of blood flow [75].
Melatonin is a hormone that regulates the circadian rhythm and plays a role in sleep and
wakefulness. These two molecules are indirectly related through their effects on the vascular
system. Melatonin can influence the guanylate cyclase pathway and NO production in the
following way: (i) by an indirect route, since melatonin can have indirect effects on the
vascular system through its influence on the autonomic nervous system and the regulation
of vascular tone influencing the production of NO; and (ii) by a direct route, since on the
one hand it has been described that melatonin causes an enhancement of the activity of the
guanylate cyclase-cyclic GMP system [76] and NO interacts with melatonin as a long-range
signaling molecule, and helps regulate oxidative homeostasis [77]; however, on the other
hand it has been reported, and seems to be the most accepted by the scientific community,
that when endogenous melatonin levels are elevated, it results in a significant decrease
in NOS activity [78] via complex formation with calmodulin [79,80], and even melatonin
synthetic analogs such as nitric oxide synthase inhibitors have been developed [81]. In
summary, melatonin is known to modulate cGMP concentration via the MT2 receptor. It
has been found to affect vascular function and blood pressure regulation, which involves
cGMP signaling pathways in blood vessels. In this sense, melatonin regulates coronary
vasomotor tone through the MT2 receptor and stimulation of PDE5, which in turn, increases
degradation of cGMP. However, the relationship between melatonin and guanylate cyclase is
complex and may vary depending on the specific tissues and conditions being studied [82–84].

Vascular smooth muscle contraction plays a relevant role in aging and disease. The
processes that regulate vascular smooth muscle function, and thus, influence the vascular
diameter, involve complex-interacting systems such as the renin–angiotensin–aldosterone
system, sympathetic nervous system, immune activation, and oxidative stress [85–88].
Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium
concentration ([Ca2+]i), promoting actin–myosin cross-bridge formation. This contraction
is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase [89–91],
protein Kinase C [88,92], and mitogen-activated protein kinase signaling [93,94], reactive
oxygen species [95–97], and reorganization of the actin cytoskeleton [98–100]. Perturbations
in vascular smooth muscle cell signaling and altered function influence vascular reactivity
and tone, which are important determinants of vascular resistance and blood flow [101].
The regulation of vascular diameter and consequently vascular resistance depends on the
activation status of the contractile machinery involving actin: myosin interaction in vascular
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smooth muscle cells [102]. Changes in [Ca2+]i, ion fluxes, and membrane potential lead to
calcium–calmodulin-mediated phosphorylation of the regulatory myosin light chains and
actin–myosin cross-bridge cycling with consequent rapid vasoconstriction [103]. Calcium-
independent mechanisms associated with altered calcium sensitization and actin filament
remodeling and increased bioavailability of reactive oxygen species (ROS) (oxidative stress),
also modulate vascular contraction [104].

In any case, melatonin is capable of interfering with all of these agents. Melatonin
MT1 and MT2 receptors are G-protein-coupled receptors that are expressed in various parts
of the CNS and peripheral organs (blood vessels included). Melatonin receptors mediate a
plethora of intracellular effects depending on the cellular milieu. These effects comprise
changes in intracellular cyclic nucleotides (cAMP and cGMP) and calcium levels and acti-
vation of protein kinase C [105–107]. Melatonin attenuated choroidal neovascularization is
an important characteristic of advanced wet age-related macular degeneration and leads
to severe visual impairment among elderly patients, reduced vascular leakage, and inhib-
ited vascular proliferation via inhibition of the RhoA signaling pathway [108]. Melatonin
treatment restored impaired contractility via the normalization of Ca2+ handling and Ca2+

sensitization pathways [109]. Melatonin exerts a modulation of the mitogen-activated
protein kinases mediating intracellular processes [110,111], and so, leads to a protective
effect during hepatic ischemia-reperfusion injury [112] and attenuates cerebral ischemic
injury [113].

Mastoparan-7, an analog of the peptide mastoparan, which is derived from wasp
venom, is a direct activator of Pertussis toxin-sensitive G-proteins that produce several bio-
logical effects in different cell types [114,115]. Mastoparan-7 activates guanine nucleotide-
binding proteins (G-proteins), increases cytoplasmic calcium concentration, and induces
smooth muscle contraction [116–118]. Considering that the receptors for mastoparan and
melatonin activate Gi, they may share the same pool of inhibitory G-proteins in a similar
way to what happens with opioidergic and purinergic receptors [119,120], or the activa-
tion of both receptors may even have a synergistic effect. In any case, it is necessary to
carry out studies to understand the interaction at the vascular level between these two
molecules. On the other hand, it has been reported that mastoparan induces the production
of ROS [121] via arachidonic cascade [122], an important effect considering that precise
morphogenetic and cellular mechanisms act in endothelial cells to drive angiogenesis
during growth and throughout adulthood, and that ROS and their metabolism are proving
to be crucial participants in the shaping and stabilizing of blood vessels [123]. In fact, ROS
derived from NADPH oxidase as well as mitochondria play an important role in promoting
the angiogenic switch from quiescent endothelial cells [124]; often, the same mechanisms
are responsible for the insurgence of vascular-associated pathologies, the excessive ROS
generation results in the initiation and progression of cardiovascular diseases [125].

The reactivity of small resistance vessels can be influenced by various factors, including
the nature of tissue response, and it is indeed possible for vasoconstrictors to have a direct
effect on these vessels, as well as influence their behavior through the production of free
radicals [126,127]. Small resistance vessels, arterioles, play a crucial role in regulating blood
flow and blood pressure. Their reactivity refers to their ability to constrict or dilate in
response to various physiological and pharmacological stimuli. Vasoconstrictors cause
blood vessels to constrict, leading to an increase in vascular resistance and blood pressure.
Some vasoconstrictors, such as mastoparan-7, can have a direct effect on small resistance
vessels by binding to receptors on the vessel walls and causing them to contract. On the
other hand, free radicals can lead to damage to cells and tissues, including endothelial
cells. Some vasoconstrictors, particularly when present in high concentrations or under
certain conditions, can stimulate the production of free radicals. These free radicals can then
impair the function of endothelial cells and contribute to vasoconstriction. In summary, the
reactivity of small resistance vessels can be influenced by vasoconstrictors both through
their direct action on vessel smooth muscle and through their ability to promote the
production of free radicals, which can have detrimental effects on the vessels’ function.
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This interplay between vasoconstrictors and free radicals can have implications for blood
pressure regulation and overall cardiovascular health.

Thus, the general objective of this review focuses on evaluating the role of melatonin,
free radicals, and non-excitatory amino acids in stroke and aging, focusing on the multiple
properties of melatonin, such as antioxidants, and neuroprotection. provided by non-
excitatory amino acids in the modulation of excitotoxicity and calcium homeostasis, to
understand its therapeutic potential in the prevention and treatment of stroke. From this
general objective, we can define several specific objectives to guide the review: (i) to analyse
the current scientific evidence on the role of melatonin in mitigating oxidative stress in
the context of stroke and aging; (ii) to examine the molecular mechanisms involved in
the antioxidant properties of melatonin and how these may influence the reduction in
brain damage associated with stroke; (iii) to examine the properties of melatonin linked
to inflammatory processes and evaluate its involvement in the damage associated with
stroke; (iv) to investigate the effects of free radicals and oxidative stress on the development
and progression of strokes and how melatonin can counteract these processes; (v) to
review the scientific literature related to non-excitatory amino acids and their ability to
provide neuroprotection by modulating excitotoxicity and calcium homeostasis in the
context of stroke; (vi) to identify possible interaction pathways between melatonin, non-
excitatory amino acids, and other biological systems relevant to the pathogenesis of stroke;
(vii) to evaluate the effectiveness and potential therapeutic benefits of the administration of
melatonin and non-excitatory amino acids in preclinical models and clinical trials related
to stroke; and (viii) to synthesize the findings of the review to provide an overview of
how melatonin and non-excitatory amino acids can be considered as potential therapeutic
strategies in the prevention and treatment of stroke.

2. Stroke and Aging

Stroke is the most common cerebrovascular disease, being the second largest cause
of death and the leading cause of disability worldwide [128,129]. From 1990 to 2019, the
number of strokes worldwide has increased by 70%, with an incidence of around 15 million
new strokes globally [130].

Although there is a small genetic predisposition to suffer from a stroke, the majority of
them are related to other factors [131]. Eighty-seven percent of strokes occur in individuals
aged above 49 years, indicating a relationship between the increase in life expectancy
and the prevalence of strokes. The risk of stroke increases with each passing year of
age [132,133]. Additionally, the prognosis for outcomes after a stroke is worse for elderly
individuals, with women experiencing a higher mortality rate than men [134,135].

Among the modifiable risk factors for stroke are hypertension, hyperlipidemia, dia-
betes mellitus, smoking, physical inactivity, poor diet, and obesity [136]. However, many
risk factors are non-modifiable, with advanced age being the most significant risk factor.
Like other diseases associated with aging, there are different mechanisms that play a role in
developing a stroke, acting additively or synergistically. Some of these mechanisms include
genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregu-
lated nutrient sensing, stem cell exhaustion, altered intercellular communication, cellular
senescence, mitochondrial dysfunction, disabled macroautophagy, chronic inflammation,
and dysbiosis [137,138].

Strokes can be either hemorrhagic or ischemic. The former occurs because of a rupture
of a blood vessel in the brain, causing bleeding. On the other hand, the latter, which is
the most prevalent form, is caused when the blood supply to a certain region of the brain
is reduced due to an obstruction in a blood vessel [139]. This blood supply impairment
leads to a reduction in the delivery of oxygen and glucose, resulting in diminished ener-
getics required to maintain ionic gradients. Consequently, it causes a loss of membrane
potential, depolarization of neurons and glial cells, and an increased release of excita-
tory neurotransmitters (such as glutamate) that ultimately lead to neuronal death [140].
The excessive release of glutamate activates post-synaptic NMDAR and metabotropic
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glutamate-receptors, as well as L-type voltage-gated calcium channels. Their activation
contributes to a Ca2+ overload in the cells, activating intracellular signaling cascades that
ultimately result in an increased generation of RONS [43,129,140].

The aging process also causes structural and functional impairments in the neurovas-
cular unit (NVU), which is composed of neurons, astrocytes, endothelial cells of the blood-
brain barrier (BBB), myocytes, pericytes, and extracellular matrix components [134,141].
The vulnerability of this NVU exacerbates the risk and severity of ischemic stroke by
aggravating its initial phases and reducing the subsequent tissue repair and regeneration
processes [134].

Epigenetic modifications correlate with chronological age, but since they are influenced
by environmental factors, they can accelerate biological aging [142]. This biological age is
the most determinant of the two when it comes to determining the outcome of an ischemic
stroke [143]. Impairment of macroautophagy is directly connected with oxidative stress
and inflammation [144], and dysbiosis is closely related to neuroinflammation and stroke
outcomes [145].

Chronic inflammation associated with aging is a result of cell damage that accumu-
lates with age, senescent cells, dysbiosis, immunosenescence, and the increasing activation
of the coagulation system [146]. In the brain, chronic inflammation leads to an exacer-
bated microglial inflammatory response to stroke, as well as overall inflammation that
persists longer than usual after the disease due to elevated expression of pro-inflammatory
molecules [134,147].

3. Non-Excitatory Amino Acids as an Alternative Therapeutic Strategy to Reduce
Ischemic Damage

The majority of excitatory and inhibitory synapses in the brain utilizes, as neurotrans-
mitters, the amino acids glutamate [148] and GABA [149], respectively. Thus, no wonder
that both amino acids are involved directly or indirectly in the plethora of brain disor-
ders, which, in the case of glutamate, give rise to the hypothesis of “excitotoxicity” [150],
ascribing this neurotransmitter as the main culprit causing cell damage. Experimental
evidences obtained on this topic created an early enthusiasm that was cooled down when
clinical trial evidence came to show the inefficiency of NMDAR antagonists to protect cell
damage developed during ischemia [22]. Nowadays, the neuroprotective strategies against
ischemic excitotoxicity have several targets including extracellular glutamate levels and its
receptors and the downstream activation of cell death pathways [151].

Various brain pathologies are associated with swelling of both neurons and astrocytes,
which activates volume-regulatory mechanisms that involve the efflux of osmolytes includ-
ing AA such as glutamate, aspartate, alanine, glutamine, glycine, and taurine, whose efflux
through volume-regulated anion channels (VRAC) [152–154] try to recover cellular volume
even if the cause of the swelling is still present [152,155]. Furthermore, the loss of plasma
membrane integrity produced during ischemic cell death not only releases glutamate but
many cytoplasmic substances, among them other non-excitatory amino acids not directly
involved in neurotransmission. In this sense, it is important to highlight the observation
showing that the ischemic damage volume was proportional to the amount of amino acids
released during ischemia, and that it was not exclusively neurotoxic [156]. In relation with
this issue, we have identified a group of non-excitatory amino acids, L- and D-alanine, L-
and D-serine, L- and D-threonine, L-glutamine, glycine, L-histidine, and taurine, whose
individual application to rat hippocampal slices at high unphysiological concentrations
(10 mM) produces extracellular space shrinkage, which is probably due to the intracellular
accumulation of the applied amino acids [157]. This was not produced by any amino
acid applied at high concentrations, because a 10 mM concentration of either L-arginine,
L-leucine, L-methionine, L- or D-proline, or L-valine did not induce changes in evoked
field potentials compatible with cell swelling [157] (Figure 1).
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Figure 1. Positive correlation between fEPSP potentiation and amino acid accumulation represented
by the solid straight line of linear regression (R2 = 0.45; p < 0.001). The dashed line indicates the total
amino acid content of control slices. Adapted with permission from ref. [157].

In a later study, we observed that the application of a mixture of L-alanine, L-glutamine,
glycine, L-histidine, L-serine, taurine, and L-threonine at their plasmatic concentrations also
induced the intracellular accumulation of these amino acids, accompanied by an increase
in the slice electrical resistance, which indicates the occurrence of cellular swelling [20]
(Figure 2). This phenomenon was not associated with changes in the basic electrical prop-
erties of recording neurons, and it was resistant to the presence of an NMDA receptor
antagonist, suggesting that this AA mixture does not activate ionotropic glutamate recep-
tors. Extracellular increments of these non-excitatory amino acids at such concentration
ranges have been detected in experimental models of ischemia [158–160] and in patients
with head injury [161], subarachnoid hemorrhage [161–163], and acute focal ischemia [164].
The impact of these amino acids on the evolution of ischemic-induced damage is unknown.
Recent experiments carried out by our group have shed light on this question.
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Figure 2. Amino acid content of control slices (white boxes) and after the application of AGHQSTU
(alanine, glutamine, glycine, histidine, serine, taurine, and threonine; grey boxes). The total amino
acid content has been determined as the sum of all amino acids quantified and reflected in this figure,
including tyrosine. * p < 0.05; ** p < 0.01; and *** p < 0.001. One-way ANOVA, followed by Tukey’s
test for multiple comparisons of parametric data and Kruskal–Wallis test followed by Dunn’s test for
multiple comparisons of nonparametric data. The numbers in parentheses indicate the number of
slices. Adapted with permission from ref. [165].
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In rat hippocampal slices, we observed that the induction of 40 min of hypoxia
caused the full loss of synaptic responses, evidenced by the disappearance of field EPSPs,
which recovered completely after reoxygenation, as previously demonstrated by many
groups [166,167]. In contrast, the presence of the seven-AA mixture during the hypoxia
period made both the synaptic silencing [20] and the loss of membrane potential irre-
versible [165] (Figure 3), indicating that neurons have suffered irreversible damage. Lately,
we showed that all the seven amino acids were not required to induce this detrimental
effect, because with a mixture of just four AA (alanine, glutamine, glycine, and serine)
the hypoxia effect was irreversible [21,165]. We also found that the presence of glutamine
in this mixture was necessary but not sufficient (i.e., neither the application of alanine,
glycine plus serine without glutamine, nor the individual application of glutamine during
hypoxia induced permanent synaptic silencing). These results are remarkable given that
L-glutamine is the most concentrated AA in the mixture and it is a substrate for the syn-
thesis of glutamate and GABA [21]. Nevertheless, equimolar substitution of glutamine by
histidine or threonine (a mixture of alanine, glycine and serine, plus histidine or threonine
at 733 µM concentration) also produced detrimental effects of synaptic transmission [165].
Moreover, the individual application of each of the seven AA at a final concentration such
as that of the whole AA mixture (2.1 mM) showed that serine, glycine, and histidine are
the most potent AA, causing the irreversible loss of synaptic transmission during hypoxia,
while alanine and glutamine, or taurine and threonine, allowed partial or total recovery of
synaptic potentials, respectively [165]. This suggests that both the identity and quantity of
each AA in a mixture determine the magnitude of hypoxic-induced synaptic transmission
deterioration.

Antioxidants 2023, 12, x FOR PEER REVIEW 9 of 46 
 

acid content has been determined as the sum of all amino acids quantified and reflected in this fig-
ure, including tyrosine. * p < 0.05; ** p < 0.01; and *** p < 0.001. One-way ANOVA, followed by Tukey�s 
test for multiple comparisons of parametric data and Kruskal–Wallis test followed by Dunn�s test 
for multiple comparisons of nonparametric data. The numbers in parentheses indicate the number 
of slices. Adapted with permission from ref. [165]. 

In rat hippocampal slices, we observed that the induction of 40 min of hypoxia caused 
the full loss of synaptic responses, evidenced by the disappearance of field EPSPs, which 
recovered completely after reoxygenation, as previously demonstrated by many groups 
[166,167]. In contrast, the presence of the seven-AA mixture during the hypoxia period 
made both the synaptic silencing [20] and the loss of membrane potential irreversible [165] 
(Figure 3), indicating that neurons have suffered irreversible damage. Lately, we showed 
that all the seven amino acids were not required to induce this detrimental effect, because 
with a mixture of just four AA (alanine, glutamine, glycine, and serine) the hypoxia effect 
was irreversible [21,165]. We also found that the presence of glutamine in this mixture was 
necessary but not sufficient (i.e., neither the application of alanine, glycine plus serine 
without glutamine, nor the individual application of glutamine during hypoxia induced 
permanent synaptic silencing). These results are remarkable given that L-glutamine is the 
most concentrated AA in the mixture and it is a substrate for the synthesis of glutamate 
and GABA [21]. Nevertheless, equimolar substitution of glutamine by histidine or threo-
nine (a mixture of alanine, glycine and serine, plus histidine or threonine at 733 µM con-
centration) also produced detrimental effects of synaptic transmission [165]. Moreover, 
the individual application of each of the seven AA at a final concentration such as that of 
the whole AA mixture (2.1 mM) showed that serine, glycine, and histidine are the most 
potent AA, causing the irreversible loss of synaptic transmission during hypoxia, while 
alanine and glutamine, or taurine and threonine, allowed partial or total recovery of syn-
aptic potentials, respectively [165]. This suggests that both the identity and quantity of 
each AA in a mixture determine the magnitude of hypoxic-induced synaptic transmission 
deterioration. 

 
Figure 3. The hypoxia-induced depression of synaptic potentials becomes irreversible in the pres-
ence of AGHQSTU (alanine, glutamine, glycine, histidine, serine, taurine, and threonine; black sym-
bols). Time course of changes in fEPSP (left panel) and FV (right panel) elicited by a 40 min period 
of hypoxia (indicated by the horizontal bar). LCRA: artificial cerebrospinal fluid. Adapted with per-
mission from ref. [165]. 

Recent studies, in which images of neurons and astrocytes in hippocampal slices 
were obtained with a multiphoton system, have clearly shown that the permanent synap-
tic loss induced by hypoxia in the presence of alanine, glutamine, glycine, and serine, was 
accompanied by the swelling of both neurons and astrocytes [21]. In the case of astrocytes, 
it was observed that they also swell in normoxic conditions with the mere presence of the 

0
Figure 3. The hypoxia-induced depression of synaptic potentials becomes irreversible in the presence
of AGHQSTU (alanine, glutamine, glycine, histidine, serine, taurine, and threonine; black symbols).
Time course of changes in fEPSP (left panel) and FV (right panel) elicited by a 40 min period
of hypoxia (indicated by the horizontal bar). LCRA: artificial cerebrospinal fluid. Adapted with
permission from ref. [165].

Recent studies, in which images of neurons and astrocytes in hippocampal slices were
obtained with a multiphoton system, have clearly shown that the permanent synaptic
loss induced by hypoxia in the presence of alanine, glutamine, glycine, and serine, was
accompanied by the swelling of both neurons and astrocytes [21]. In the case of astrocytes,
it was observed that they also swell in normoxic conditions with the mere presence of
the AA mixture. Additionally, this work revealed the existence of irreversible dendritic
beading and mitochondrial swelling, which demonstrates the acute damage caused under
these experimental conditions.
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Some of the detrimental effects caused by these non-excitatory amino acids during
hypoxia, such as permanent synaptic silence, neuronal swelling and dendritic beading
are attributable to the activation of NMDA receptors, because they were prevented by an
NMDA antagonist [20,21]. However, this NMDA antagonist does not inhibit the astroglial
swelling induced by the AA mixture and hypoxia [21], indicating that neuronal swelling
and damage is secondary to the swelling occurring in astrocytes, which direct- or indirectly
could favour the neurotoxic processes mediated by glutamate underlying ischemic damage.
Glial swelling may “passively” increase extracellular glutamate concentrations, and those of
other interstitial substances, just by the reduction of extracellular volume as a consequence
cellular edema. Furthermore, glial swelling activates volume-regulated anion channels
(VRAC) which operate as a glutamate efflux pathway [168,169]. The use of a VRAC
antagonist has revealed that these channels seem to participate in most of the detrimental
effects induced by the AA mixture during hypoxia, including synaptic silencing, neuronal
and astroglial swelling, and dendritic beading [21].

The astrocytic swelling, that was observed when the AA mixture was applied either in
normoxic or hypoxic conditions, as pointed out above, was resistant to the presence of an
NMDA antagonist [21]. We initially hypothesized that the intracellular accumulation of the
applied amino acids, driven by specific amino acid transporters, creates the osmotic con-
ditions promoting astroglial swelling. Several systems of neutral amino acid transporters
with a substantial brain expression, have the amino acids composing our AA mixtures
as substrates. Among these transporters, we examine the participation of the sodium-
dependent systems, A, L, N, and ASCT2 [170,171], in the deleterious effects provoked by
the non-excitatory amino acid that we are describing. Based on substrate specificity of these
transporters and the use of specific transporter inhibitors (MeAIB against system A [172],
and BCH against system L [173,174]) we considered the participation of system A [20] and
system L [165] in the deleterious effect of non-excitatory amino acid on synaptic recovery
unlikely. In contrast, we have compelling evidence that system ASC was involved in this
phenomenon. ASC transporters are sodium-dependent AA exchangers, primarily located
in astrocytes and neurons [175,176]. The following evidence supports the contribution of
the variant ASCT2 of this transport system in the harmful effects of AAs during hypoxia: (i)
L-threonine is one of the preferred substrates of ASCT2, along with L-alanine, L-serine, and
L-glutamine [171]; (ii) when L- or D-threonine replaces L-glutamine in the four-AA mixture,
synaptic silencing occurs after hypoxia; and (iii) GPNA, an inhibitor of ASCT2 [177,178],
affects the irreversible silencing of synaptic potentials [21,165] and neuronal and astroglial
swelling [21] caused by alanine, glycine, glutamine, and serine in hypoxia. Another feature
of ASCT2 relevant to our study is that it can release D-serine in exchange for L-alanine and
L-glutamine [179]. This opens an alternative possibility where, during hypoxia, the AA
mixture stimulates the release of D-serine from neuronal ASCT2 which would participate
in the coactivation NMDAR involved in neuronal soma swelling and dendritic beading.

Because glutamine, alanine, serine, and histidine also activate system N [180,181],
the question remains as to whether this transport system is involved in the deleterious
process described here. When histidine replaces glutamine in the AA mixture also contain-
ing alanine, glycine, and serine, there was a permanent loss of synaptic potentials upon
reoxygenation, and histidine was greatly accumulated in the slice [165], suggesting the
involvement of system N in the detrimental effect of these amino acids.

Another aspect to consider is that the reduction of ATP levels induced by hypoxia [182]
could decrease the activity of Na+/K+-ATPase, thereby reducing the driving force necessary
for the active transport of AA. However, there is evidence showing that concentrative
AA transporters continue to function during short or mild periods of ischemia [183,184],
indicating that even under hypoxic conditions, some transporters can still accumulate AA.

In summary, the intracellular accumulation of certain AA, which are not considered
excitotoxic, could promote harmful effects during hypoxia-ischemia episodes through
the activation of NMDAR. These non-excitatory amino acids at plasma concentrations
provoke cellular swelling during hypoxia [20,21], which can increase extracellular gluta-
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mate concentration in two ways: (i) releasing glutamate through volume-regulated anion
channels (VRAC) activated by astroglial swelling, which was induced by carrier-mediated
amino acid accumulation, and (ii) the reduction of interstitial volume consequent to cellu-
lar swelling would increase the concentration of extracellular molecules, including some
neurotoxins such as glutamate and D-serine. Therefore, given that NMDAR antagonists
have been shown to be ineffective in clinical trials of ischemic stroke [22], blocking the AA
transporters involved in the process described here could be an alternative or adjuvant
therapeutic strategy to reduce ischemic damage (see Figure 4).
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Figure 4. Graphical representation of the proposed model. (1) During hypoxia, adenosine release
inhibits glutamatergic transmission via its A1 receptors. (2) Uptake of non-excitatory amino acids
by glial cells (via transporters such as those of the N-system and ASCT2) leads to an increase in cell
volume. The activation of volume-regulated anion channels (VRAC) releases excitotoxins (such as
glutamate, aspartate, and D-serine) into the already reduced extracellular space. This glutamate is in
addition to glutamate released by other pathways during ischemia (synaptic glutamate, reversal of
its transporters, etc.). (3) Glutamate and D-serine released into the reduced interstitial space leads
to a progressive increase in their extracellular concentration and the activation of NMDA receptors,
triggering excitotoxicity phenomena that result in increased cell volume and dendritic beading.
Glu: glutamate, Gln: glutamine, D-Ser: D-serine, AA: other amino acids. Image designed with
BioRender.com.

4. Neuroprotective Effects of Melatonin in Ischemic Stroke
4.1. Melatonin’s Effects on Cerebral Edema

One of the features of ischemic stroke is the disruption of the BBB, which is caused
by the degradation of tight junctions between cells and enhanced transport of endothelial
vesicles. As a result, vasogenic edema appears and worsens the patient’s prognosis [185],
contributing to the high mortality rate associated with ischemic stroke [186]. Unfortunately,
there is currently no effective treatment available [187].
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Due to its high lipophilicity and ability to cross the BBB and enter the brain parenchyma
easily, melatonin has been the focus of numerous studies aiming to better understand its
mechanism of action and test its potential use as a treatment for stroke-induced brain
edema [188,189]. In a study conducted by Kondoh et al., rats were subjected to one hour
of middle cerebral artery occlusion (MCAO) followed by reperfusion. The effects of oral
administration of melatonin (6.0 mg/kg) prior to MCAO and one day after were tested, and
it was observed that the total volume of cerebral edema was reduced by over 40% in the
melatonin-treated animals compared to the control group [190]. This could be explained by
the ability of melatonin to reduce the increase in BBB permeability when administered at
the time of reperfusion [191].

Furthermore, melatonin has been shown to reduce the upregulated expression of
aquaporin-4 in astrocytes, which occurs during ischemic stroke-induced hypoxia. This
reduction helps decrease water uptake by astrocytes and the formation of brain edema [192].
In melatonin-treated rats after cerebral ischemia, the BBB was better preserved compared
to control rats, likely due to the restoration of downregulated Na+/K+/ATPase activity,
which is necessary to maintain cell membrane integrity [193].

Moreover, melatonin can reduce the increase in vascular permeability by acting on
endothelial cells [194] and lowering the concentrations of vascular endothelial growth
factor (VEGF) and nitric oxide (NO), two factors that are elevated during edema [195]. In
addition to these factors, melatonin can also decrease the levels of matrix metalloproteinase
9 (MMP-9), a protein secreted by pericytes and induced by interleukin-1β (IL-1β), which
contributes to BBB damage. Therefore, melatonin plays a protective role in maintaining
BBB integrity [196].

4.2. Melatonin’s Effects on the Post-Stroke Inflammatory Response

In response to the necrotic cells that appear within the infarct area after an ischemic
stroke, and because of an increase in oxidative stress, an inflammatory cascade is acti-
vated, in which danger-associated molecular pattern molecules (DAMPs) released from the
necrotic cells and other immune molecules interact with TLR4 and other toll-like receptors,
activating the microglia. This activation leads to increased cytokine production, damaging
the BBB and promoting the migration of leukocytes to the ischemic injury. It also deregu-
lates the expression of many adhesion molecules, such as integrins and selectins [197,198].
In this regard, melatonin has been shown to ameliorate inflammation in different tissues
by downregulating the expression of NF-κB, a transcription factor that encodes various
proinflammatory cytokines, through its action on different pathways (Figure 5) [199–201].
Additionally, it can modulate the activation of astrocytes and microglial cells, reducing both
their apoptotic and inflammatory actions through multiple pathways [202–205]. Melatonin
can also preserve adhesion molecules involved in tight junctions, which are necessary to
maintain BBB integrity, by reducing the levels and activity of MMP-9 [196,206,207]. This
action prevents the infiltration of leukocytes into the brain [208]. Lastly, by interacting with
TLR4 and TLR2 and disrupting their binding to DAMPs, melatonin interferes with the
activation of the inflammatory cascade (Figure 5), thereby downregulating all inflammatory
signals in the post-ischemic brain tissue [4].

4.3. Melatonin’s Effects on Oxidative Stress

The production of RONS, which are incredibly damaging to cells due to their ability
to activate inflammatory mechanisms and damage proteins and DNA, is increased during
both the ischemic and reperfusion phases of an ischemic stroke. This increase is a result
of mitochondrial damage caused by the aforementioned overload of Ca2+ inside the cells,
the expression of cyclooxygenase-2 (COX-2), and the activation of nitric oxide synthases
(NOS) [44,129,209–212].

Melatonin has been proven to act as a direct scavenger of free radicals, superoxide
anion radicals (O2

•), hydrogen peroxide (H2O2), hydroxyl radicals (•OH), nitric oxide
(NO•), and peroxynitrite anions (ONOO−), in cells and tissues. It acts through the modula-
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tion of several signaling cascades [205,213–215] (Figure 5). Additionally, it acts indirectly
by suppressing pro-oxidative enzymes such as COX-2 [216] and activating antioxidative
enzymes [45]. Melatonin also inhibits the release of cytochrome C (an apoptotic protein)
from damaged mitochondria into the cytosol [217].
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Figure 5. Schematic view showing melatonin-mediated actions in stroke. In neuronal cells, glutamate
(GLU) interacts with the NMDA receptor (NMDAR), boosting a high intracellular Ca2+ and NO•

levels by activating nitric oxide synthase (NOS), which causes a reactive oxygen and nitrogen
species (RONS) flux overflow within the cell. Subsequently, melatonin’s ability to easily diffuse
allows it to enter neuronal cells, where it binds to calmodulin with high affinity inhibiting CaMKII
(Ca2+/calmodulin dependent protein kinase-II), a major mediator of neuronal cell death involved in
pathological glutamate signaling, thereby mitigating excitotoxicity damage. Furthermore, radicals
are generated as a result of electron leakage from the inner mitochondrial membrane’s electron
transport chain; the rogue electrons chemically convert adjacent oxygen molecules to produce the
superoxide anion radical (O2

•). This reactant either combines with nitric oxide to form the highly
oxidizing peroxynitrite anion (ONOO−) or is immediately dismutated by superoxide dismutase 2 (SOD2)
to hydrogen peroxide (H2O2). Both the Fenton reaction and the kinetically sluggish Haber–Weiss reaction
require a transition metal, such as ferrous iron (Fe2+), to convert H2O2 to the hydroxyl radical (•OH). The
•OH damages molecules along with other oxidants, which promotes neuronal cell death. In this regard,
melatonin acts as a direct radical scavenger (directly neutralizes •OH and the ONOO−), regulating RONS
overload, as well as an indirect agent, boosting antioxidant enzymes such as glutathione peroxidase (GPx)
and SOD2, preserving mitochondrial homeostasis and, as a result, enhancing cellular energy efficiency.
In addition, melatonin attenuates oxidative stress by stimulating Nuclear erythroid-related factor 2
(Nrf2), the principal transcription factor that regulates antioxidant response element (ARE)-mediated
expression of phase II detoxifying antioxidant enzymes. Under normal conditions, Nrf2 is sequestered in
the cytoplasm by an actin-binding (Kelch-like) protein (Keap1); on exposure of cells to oxidative stress,
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Nrf2 dissociates from Keap1, translocates into the nucleus, binds to ARE, and transactivates phase II
detoxifying and antioxidant genes. Among the spectrum of antioxidant genes controlled by Nrf2
are catalase, SOD, hemoxigenase-1 (HO-1), and GPx. Melatonin increases Nrf2 gene expression.
Melatonin also functions as an anti-inflammatory. Thus, DAMPs, released from damaged or dying
cells, promote pathological inflammatory response through toll-like receptors (TLR2/4). In this
context, TNF-α acts by binding to its receptor TNFR (TNF receptor), which recruits TRADD (TNF
Receptor-Associated Death Domain). This protein binds to TRAF2 (TNF Receptor-Associated Factor-
2) to phosphorylate and activate the IKK (I-KappaB-Alpha kinase complex). Then, the IKK complex
phosphorylates IKBα, resulting in the translocation of NF-κβ (Nuclear Factor-κβ) to the nucleus where
it targets many coding genes for mediators of inflammatory responses. Subsequently, in response to
cytokine receptor stimulation STAT3 (Signal Transducers and Activators of Transcription) following
tyrosine and JAK2 (Janus-family tyrosine kinases) phosphorylation, dimerize and translocate to the
nucleus. In addition, melatonin reverts these pro-inflammatory effects by inhibiting the JAK2/STAT3
signaling pathway and NF-κβ translocation. Additionally, melatonin-mediated signaling through
MT1 receptors promotes PI3K/Akt phosphorylation. Akt coactivator-1-α (PGC-1α) complex dimerize
and translocate to the nucleus where estrogen-related receptor-α (ERRα) codes to sirtuin 3 (SIRT3)
gene, upregulating the expression and activity of SOD2. In this regard, melatonin is able to activate the
multifaceted regulator SIRT1, which enhances the stress response by repressing p53 and promoting
DNA repair. Stimulation (blue colored) or inhibition (red colored) by melatonin are also shown.

4.4. Exploring the Neuroprotective Potential of Melatonin in Stroke: Insights into Signaling Pathways

In stroke, the excessive release of glutamate leads to the activation of NMDA, AMPA,
and kainate receptors, resulting in a detrimental influx of Ca2+ into the cells (Figure 5).
This influx ultimately triggers apoptotic cell death [218]. Melatonin acts as an inhibitor of
NMDA receptors in the brain, and when combined with memantine (an NMDA receptor
inhibitor), it can significantly reduce the infarct volume in an MCAO model [219].

Additionally, melatonin exerts its neuroprotective effect by modulating different
signaling pathways. The heme oxygenase-1 (HO-1)/CREB signaling pathway is involved
not only in the development of depression-like behaviors that can be developed after
an ischemic episode, but also in the transformation of astrocytes into a neurotoxic and
inflammatory type cell. Melatonin interacts with HO-1/CREB, inducing an anti-depression
effect [220].

The protein kinase B (Akt) is a molecule resistant to oxidative stress in the brain,
whereas sirtuin 3 (SIRT3) activates superoxide dismutase 2 (SOD2, which converts H2O2
radicals into non-toxic molecules) and modulates mitochondrial oxidative stress, thus
maintaining ROS homeostasis [221]. In fact, SIRT3 expression is downregulated after an
ischemic episode, which contributes to the oxidative stress that appears after it [204]. The
activation of the Akt-SIRT3-SOD2 pathway by melatonin as well as the increase in SIRT3
expression alone by it are mechanisms by which melatonin can decrease infarct volume
and apoptotic rate after an ischemic stroke [204,222].

One way to alleviate mitochondrial damage after an ischemic episode is by targeting
mitochondrial fission. Excessive mitochondrial fission causes an increased RONS produc-
tion and the liberation of pro-apoptotic factors. By stimulating the Yap–Hippo pathway
(decreased in ischemia-reperfusion injuries), melatonin can promote mitochondrial fusion
by enhancing the activity of optic atrophy 1 (OPA-1). This makes fragmented mitochondria
interact with each other, allowing mitochondrial recovery and, in the end, decreasing the
brain reperfusion stress [223].

STAT3 is one of the many transcription factors that modulate the microglia/macrophage
response to tissue damage. This damage in the tissue promotes the activation of STAT3,
which promotes the pro-inflammatory activation of microglial cells. Melatonin induces an
anti-inflammatory effect by promoting the STAT3 phosphorylation (Figure 5), thus shifting
the pro-inflammatory phenotype of microglia to an anti-inflammatory one and reducing
the ischemic stroke-induced brain damage [204].
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A predominant NMDA receptor 2 (NR2a) stimulation at the synaptic level promotes
pro-survival signaling via activation of pro-survival proteins such as Akt, ERK, and CREB,
while NR2b at extra-synaptic areas favors excitotoxic death. During ischemic conditions,
NR2a levels decrease, but melatonin may exert its protective effects by attenuating the
NR2a cleavage and, additionally, by increasing the γ-enolase/PI3K/AKT/CRMP2 survival
pathways [224].

The antioxidant activity of melatonin involves the modulation of several signaling
pathways described in detail in the next section.

5. Melatonin as an Antioxidant and Free Radical Scavenger in Stroke: Mechanisms
and Therapeutic Implications

The generation of free radicals in stroke has significant implications for neuronal dam-
age and the progression of ischemic injury. In this regard, the ischemic cascade triggered
by stroke results in a sequence of molecular and cellular events, including the generation
of RONS [225]. Thus, several mechanisms contribute to the generation of free radicals
in stroke, among them (i) oxidative stress, characterized by an imbalance between the
production of ROS, including O2

•, H2O2, and •OH, and the ability of endogenous antioxi-
dants to neutralize them, leads to lipid peroxidation, protein oxidation, and DNA damage,
which disrupt cellular function and contribute to neuronal injury and cell death [225];
(ii) mitochondrial dysfunction, leads to electron leakage from the electron transport chain,
resulting in the generation of O2

• (Figure 5). Additionally, the release of mitochondrial
pro-apoptotic factors during stroke contributes to the generation of ROS [226] and; (iii) the
inflammatory response that occurs in stroke, is a double-edged sword, despite the fact
that it plays a role in clearing debris and initiating tissue repair processes, excessive in-
flammation can exacerbate brain damage by promoting the release of pro-inflammatory
cytokines and attracting more immune cells, such as microglia and infiltrating neutrophils,
which produce RONS through the activation of NADPH oxidase and inducible nitric oxide
synthase (iNOS), respectively [227]. In this context, ROS-induced oxidative stress compro-
mises the integrity of the BBB, promoting the infiltration of immune cells and inflammatory
mediators into the brain, and therefore, exacerbating neuronal damage [228].

Given all the above information, stroke is a complex condition involving multiple
pathophysiological processes and molecular targets. Therefore, the exploration of novel
therapeutic approaches focussing on multitarget modulation, would be a good starting
point for identifying and targeting multiple critical mechanisms involved in stroke, such as
inflammation and oxidative stress, among others [229]. In this regard, melatonin holds great
promise in stroke management [23,230]. It is able to cross the BBB efficiently [231], ensuring
effective delivery to the site of injury, and this, combined with its ability to modulate various
neuroprotective pathways [232] (Figure 5), makes it an attractive therapeutic strategy.
Additionally, melatonin exhibits indirect antioxidant effects by enhancing the activity of
endogenous antioxidant defense systems [33]. It upregulates the expression and activity
of various antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), and heme oxygenase-1 (HO-1) [45,233]. These enzymes play
critical roles in neutralizing RONS and detoxifying oxidative products (Figure 5). Therefore,
melatonin’s ability to enhance antioxidant enzyme activity helps to restore redox balance
and mitigate oxidative stress in stroke.

The antioxidant activity of melatonin against stroke involves the modulation of sev-
eral signaling pathways [234]. In this context, melatonin activates the master regulator
of cellular antioxidant defense mechanisms, the Nuclear Factor Erythroid 2-Related Fac-
tor 2 (Nrf2) Pathway [233], where Nrf2 translocates to the nucleus upon activation and
binds to antioxidant response elements (ARE) in the DNA, leading to the upregulation of
genes encoding antioxidant enzymes, such as SOD, CAT, and GPx. Activation of the Nrf2
pathway by melatonin enhances the cellular antioxidant capacity, reducing oxidative stress
and protecting against stroke-induced damage [233,235] (Figure 5). Likewise, melatonin
can also modulate the Kelch-like ECH-Associated Protein 1 (Keap1) pathway [236], which
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regulates the stability and activity of Nrf2; melatonin interacts with Keap1, preventing its
inhibitory effect on Nrf2. This interaction leads to the stabilization and nuclear transloca-
tion of Nrf2, thereby increasing the expression of antioxidant enzymes and enhancing the
antioxidant defenses against stroke-induced oxidative stress. Another important pathway
that contributes to the neuroprotective effects of melatonin against stroke concerns protein
kinase C (PKC) [237,238], which is involved in cell signaling and oxidative stress regula-
tion. PKC activation by melatonin triggers downstream signaling events that promote
antioxidant effects, such as the upregulation of antioxidant enzymes and the inhibition
of pro-oxidant enzymes. PKC-mediated melatonin signaling in the Mitogen-Activated
Protein Kinase (MAPK) pathway, including extracellular signal-regulated kinase (ERK),
c-Jun N-terminal kinase (JNK), and p38, is involved in cellular responses to oxidative
stress [239–242]. Activation of ERK and other MAPKs by melatonin [242] leads to the
phosphorylation and activation of transcription factors that regulate antioxidant enzyme
expression, such as activator protein 1 (AP-1) and cAMP response element-binding protein
(CREB) [243]. Therefore, by modulating MAPK signaling, melatonin enhances antioxidant
defenses and protects against oxidative damage in stroke. The phosphoinositide 3-kinase
(PI3K)/Akt pathway, known for its role in cell survival and protection against ischemic
injury, also contributes to melatonin’s antioxidant effects. Activation of the PI3K/Akt
pathway by melatonin [244] leads to the phosphorylation and activation of Akt, which in
turn phosphorylates and inhibits pro-apoptotic proteins and transcription factors involved
in oxidative stress-induced cell death (Figure 5). By promoting cell survival and inhibit-
ing oxidative stress-induced apoptosis, melatonin’s activation of the PI3K/Akt pathway
contributes to its antioxidant effects in stroke [244,245]. Moreover, the silent information
regulator 1 (SIRT1) pathway, is a NAD+-dependent protein deacetylase involved in cellular
stress responses and longevity. Melatonin can activate SIRT1, which regulates various path-
ways involved in neuroprotection, including antioxidant defense, mitochondrial function,
and anti-apoptotic processes [222] (Figure 5).

As a whole, these signaling pathways interact and crosstalk with each other, form-
ing a complex network of antioxidant mechanisms that mediate the protective effects of
melatonin against oxidative stress in stroke. Further research is needed to fully understand
the intricate interplay and downstream effects of these pathways to optimize the use of
melatonin as an antioxidant therapeutic strategy in stroke management.

Melatonin’s capability to scavenge free radicals is attributed to its unique chemical
structure, containing electron-donating functional groups, such as indole and methoxy
groups, which facilitate electron transfer and RONS quenching, which reduces oxidative
(H2O2, •OH, and O2

•) and nitrosative (inhibiting the formation of ONOO−, a highly
reactive and cytotoxic molecule formed from the reaction between nitric oxide and super-
oxide) stress [33,246]. Furthermore, the scavenger action of melatonin also involves the
preservation of mitochondrial function in stroke; enhancing mitochondrial respiration,
ATP production, electron transport chain efficiency, preventing mitochondrial permeability
transition pore opening, and reducing ROS generation [24,247,248]. On the basis of this
complex background, inflammation plays a key role in stroke pathogenesis and exacerbates
oxidative stress [249,250]. Relative to this, melatonin indirectly reduces RONS produc-
tion and scavenges free radicals in stroke by modulation of the inflammatory response
(Figure 5), regulating the production of pro-inflammatory cytokines, such as tumor necrosis
factor-alpha (TNF-α), IL-1β, and IL-6 as well as inhibiting the activation of NF-κB [251,252].

Overall, while melatonin’s direct antioxidant effects have been extensively stud-
ied [253–256], emerging research has shed light on the importance of its metabolites in
mediating its antioxidative actions [256–259]. In this sense, after melatonin is metabolized
in the body, it undergoes various enzymatic reactions, leading to the formation of several
metabolites that act as free radical scavengers. The free radical scavenging properties
exhibited by melatonin metabolites are attributed to their ability to directly interact with
and neutralize RONS. Melatonin metabolites act as potent antioxidants by donating elec-
trons or hydrogen atoms to RONS, thereby stabilizing, and neutralizing them. One of the
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primary metabolites of melatonin, 6-Hydroxymelatonin (6-OHM), is formed through the
action of cytochrome P450 enzymes and exhibits potent antioxidative activity. It acts as a
direct free radical scavenger, neutralizing a variety of RONS, including H2O2, •OH, and
ONOO− and reducing oxidative stress [256]. Furthermore, 6-OHM can also stimulate the
activity of various antioxidant enzymes, and inhibits lipid peroxidation, thereby reducing
oxidative damage to brain cells. N1-Acetyl-N2-formyl-5-methoxykynuramine (AFMK) is
another important melatonin metabolite generated through the action of cytochrome P450
enzymes, myelo- or heme peroxidases, or formed from the reaction between melatonin and
free radicals, particularly RONS. AFMK possesses strong antioxidant properties and can
efficiently scavenge a wide range of free radicals, including •OH, ONOO−, and peroxyl
radicals (ROO•) [260]. AFMK also exhibits anti-inflammatory effects, further contributing
to its neuroprotective potential in stroke. N1-Acetyl-5-methoxykynuramine (AMK) is
another metabolite formed through the enzymatic conversion of melatonin by indoleamine
2,3-dioxygenase (IDO) and is an active metabolite with antioxidant properties. AMK acts
as a free radical scavenger, specifically targeting ROO• [261].

These melatonin metabolites possess inherent free radical scavenging properties and
contribute to the overall antioxidant effects of melatonin. They can directly neutralize a
wide range of RONS, thereby reducing oxidative stress and protecting against oxidative
damage in stroke and other oxidative stress-related conditions. However, further research is
needed to fully elucidate the specific roles and mechanisms of these melatonin metabolites
in neuroprotection and stroke therapy.

Several preclinical studies have investigated the potential neuroprotective effects of
melatonin in stroke models [222,244,262–264]. These studies have consistently demon-
strated the ability of melatonin to reduce infarct size, improve neurological outcomes, and
attenuate oxidative stress-related markers. Furthermore, melatonin has shown the potential
to enhance cerebral blood flow [265] and protect against reperfusion injury [266,267], a
critical component of stroke pathogenesis. However, although the preclinical data are
promising, clinical trials exploring the efficacy of melatonin in stroke are relatively lim-
ited. Some early-phase clinical studies have reported positive outcomes [268], including
improved functional recovery and reduced markers of oxidative stress in patients treated
with melatonin following ischemia and reperfusion injury [269]. However, larger ran-
domized controlled trials are needed to further validate these findings and determine the
optimal dosing, timing, and long-term benefits of melatonin treatment in stroke patients. If
proven successful, melatonin could revolutionize stroke treatment by providing a novel
and cost-effective approach to reduce neuronal damage and improve functional outcomes.

6. Melatonin Improved Cognitive and Behavioral Performance

The circadian rhythm of endogenous melatonin is thought to be important in maintain-
ing the normal sleep–wake rhythm [270,271]. The sleep–wake rhythm plays an important
role in the development and maintenance of cognitive functions such as memory consoli-
dation and learning. Similarly, sleep disturbances in mild to moderate Alzheimer’s disease
(AD) are associated with increased memory and cognitive impairments [272]. Melatonin
secretion by the pineal gland gradually decreases with age, in circadian disorders, but
especially in stress-related pathologies that trigger degenerative diseases. Degenerative
diseases are the result of a continuous process of dysfunction of cells affecting tissues or
organs that progressively deteriorate over time. These diseases include neurodegenerative
diseases such as Parkinson’s and Alzheimer’s disease, cardiovascular diseases, metabolic
syndromes such as type 2 diabetes, and neoplastic pathologies such as cancer [273]. In
addition, clinical trials of melatonin have been reported for all the disorders previously
mentioned [274].

The role of melatonin on cognitive function has been evaluated in different situations;
for example, increased sleep efficiency and total sleep time was successfully improved,
without any effect on cognitive function in breast cancer patients [275], and cognitive
deficits induced by benzodiazepine treatment does not seem affected by melatonin in
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patients with severe mental illness [276]. Prolonged release of melatonin has positive
effects on cognitive functioning and sleep maintenance in AD patients, particularly in those
with insomnia comorbidity, suggesting a causal link between poor sleep and cognitive
decline [277].

Melatonin exerts biological processes via activation of two G-protein-coupled recep-
tors, and non-receptors mediated pathways [278]. Two receptors named MT1 and MT2 are
preferentially coupled to Gi proteins. MT1, and most likely MT2, is also coupled to Gq/11
proteins [279,280]. The third type of receptor MT3 is an enzyme quinone reductase 2 [281]
and one nuclear receptor [282]. Some of the non-receptor activities highlight the property
as a free radical scavenger [283,284], with special activity in mitochondria [248] and pre-
serving the membrane fluidity, protecting against free radicals [285], and also attenuating
the laser radiation-induced mutation and deletion of mitochondrial DNA [286]. Other
activity includes a direct protein interaction inhibiting the calcium-calmodulin-dependent
kinase II (CaMKII) activity [287].

The rhythmic release of melatonin from the pineal gland is coordinated with the local
release of melatonin in the retina and suprachiasmatic nucleus via the activation of two G
protein-coupled receptors, MT1 and MT2 [288]. Melatonin concentrations in cerebrospinal
fluid (CSF) is higher compared to peripheral blood, and melatonin in CSF exhibits a
concentration gradient in sheep [289,290] and humans [291]. The highest concentration
is measured in the third ventricle near the gland pineal recess. Thereafter, melatonin
concentrations gradually decrease in CSF sampled from the middle of the third ventricle,
the aqueduct, the fourth ventricle, and the lumbar subarachnoid space [292].

Different animal models with different pathologies show cognitive impairment, and
several behavior protocols are used to evaluate the role of melatonin in improving this
function. The Morris water maze (MWM) is a robust and reliable spatial learning and
memory test and is correlated with hippocampal synaptic plasticity and NMDA receptor
function [293]. The novel object recognition test (NORT) is another behavioral paradigm
to evaluate recognition memory [294], and the Y-maze protocol is used to evaluate spatial
working and reference memory [295]. The MWM was widely used to evaluate cognitive
function, and melatonin shows an improvement in learning and memory in this behavioral
test in a cognitive impairment induced by liver fibrosis in rats [296], obese mice model [297],
type 2 diabetic mice model [298], cortical compact impact model [299], and repeated mild
traumatic brain injury if melatonin is administered during early pathological stages but not
in late (chronic) stages [300]. Induced cognitive impairment shows learning and memory
improvement by melatonin in MWM, NORT, and the Y-maze behavioral tests. In contrast,
intact rats show learning and memory impairment induced by melatonin treatment in the
MWM test [301].

The evidence of melatonin receptors in the hippocampus [302,303] suggests the role of
melatonin in the modulation of learning and memory processes. Electrophysiological stud-
ies have demonstrated the role of melatonin in modulating synaptic transmission [302–304]
and regulation of the short-term plasticity evaluated by the paired-pulse stimulation
paradigm [305]. Results exploring the excitability indicate a regulation of the firing in hip-
pocampal neurons [302,306] through the activation of melatonin receptors. Nevertheless,
melatonin reduces the long-term potentiation (LTP) in the hippocampus CA1 [307], and
this LTP inhibition correlates with an impairment in cognitive behavior [301]. In agreement
with behavioral data, inhibition of the LTP induction by melatonin and cognitive impair-
ment was observed in intact subjects; whereas, the early administration of melatonin in
the traumatic brain injury (TBI) model shows an increase in the frequency of spontaneous
excitatory and inhibitory postsynaptic currents without affecting the frequency of the
miniature postsynaptic currents in the prefrontal cortex and hippocampus. These changes
in synaptic transmission were associated with an improvement of the learning and memory
in the MWM behavioral test. In summary, melatonin shows beneficial effects, improving
cognitive functions associated with pathological processes such as oxidative stress, neuroin-



Antioxidants 2023, 12, 1844 19 of 44

flammation, excitotoxicity, or scavenging free radicals as part of the mechanisms involved
in neurodegeneration, traumatic brain injury, and vascular or metabolic diseases.

7. Suppressing Inflammatory Response by Melatonin: Effects on the Inflammasome

As previously mentioned, the pathophysiology of ischemic brain damage involves the
activation of many deleterious signaling cascades, including ionic imbalances, excessive
release of glutamate [308], inflammation, and free radical-induced oxidative and nitrosative
stress [309]. Oxidative stress induces the release of DAMPs that trigger an inflammatory
response, resulting in microglial activation, and increased BBB permeability that leads
to peripheral immune cell infiltration [310,311]. Accumulating evidence suggests that
post-ischemic inflammation is responsible for the secondary progression of brain injury
and that stroke severity depends on the magnitude of this inflammatory response [312,313].
One of the most potent pro-inflammatory cytokines is IL-1β, which plays an important
role in ischemic stroke through the following mechanisms: (i) increased microvascular
permeability, BBB dysfunction and vasogenic cerebral edema [314]; (ii) exacerbation of
the inflammatory response leading to secondary brain damage by secreting and releasing
various neurotoxic substances, such as IL-1β, IL-6, TNF-α, and promoting the activation of
iNOS [315]; and (iii) promoting apoptosis of injured cells by activating apoptotic molecular
machinery, gradually transforming the original ischemic perimeter into the cerebral infarct
area, ultimately exacerbating brain injury [316].

NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the
most widely characterized inflammasome that activates caspase-1 which contributes to
the maturation and secretion of the cytokines IL-18 and IL-1β and induces pyroptosis cell
death [317]. NLRP3 inflammasome is a key step in the innate immune response. Recently,
the NLRP3 inflammasome was shown to play an important role in renal, myocardial,
hepatic, and cerebral ischemic stroke [318]. Inhibition of NLRP3 inflammasome activation
has been proposed as a promising new therapeutic target for inflammation-related diseases.
Canonical activation of the NLRP3 inflammasome requires two sequential signals, priming
and activation. The priming signal is initiated through the TLR4 receptors by DAMPs
or pathogen-associated molecular patterns (PAMPs) such as LPS, leading to transcrip-
tion of NLRP3 inflammatory components via NF-κB activation and nuclear translocation.
Activation signals are stimulations of NLRP3 by various recognized factors, leading to
procaspase-1 cleavage [319]. Active caspase-1 cleaves the pro-inflammatory cytokines
IL-1β, IL-18, and the protein gasdermin D into their mature forms. Finally, mature gas-
dermin D forms pores in the cell membrane, causing pyroptotic cell death and cytokine
release [320]. IL-1β and IL-18 enhance inflammation and promote immune cell infiltration.

Melatonin has been shown to inhibit NLRP3 inflammasome activation by modu-
lating multiple proteins and signaling pathways. First, as mentioned above, RONS are
key triggers for the activation of the NLRP3 inflammasome. Thioredoxin-interacting pro-
tein (TXNIP) is one of the most important redox regulators. By inhibiting thioredoxins,
TXNIP regulates the intracellular redox balance. In a model of LPS-induced endometritis,
melatonin downregulates TXNIP-mediated activation of NLRP3 inflammasome [321]. Fur-
thermore, melatonin reduces TXNIP levels in cadmium-treated primary hepatocytes and
suppresses RONS production and NLRP3 activity [322]. Another signaling pathway that
melatonin can regulate is Nrf2. Under oxidative stress conditions, Nrf2 translocates to the
nucleus and plays a role in protecting cells from oxidative damage, leading to increased
expression of antioxidant and detoxifying enzymes, thus reducing oxidative stress [323]. It
has been shown that melatonin provides protection against NLRP3 inflammasome activity
through the removal and clearance of Nrf2-mediated RONS [203,233].

Autophagy is known to be a negative regulator of NLRP3 activation. Mitophagy is
a subtype of autophagy that helps clear dysfunctional mitochondria, and in this sense,
it has been shown that melatonin increased the expression of the autophagy markers
Atg 5 and LC3-II/LC3-I and the mitophagy markers PINK-1 and Parkin and suppresses
NLRP3 inflammasome activation in a model of subarachnoid hemorrhage [324]. More-
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over, LPS-induced inflammation leads to an increase in NLRP3 inflammasome protein
due to an autophagic flux impairment, and melatonin has a potent anti-inflammatory
effect by restoring the LPS-induced autophagic flux blockage, hence reducing NLRP3 in-
flammasome components expression and decrease in ROS production [325]. Furthermore,
melatonin may inhibit multiple transcription factors associated with the priming step of
NLRP3 inflammasome activation. Thus, melatonin inhibits NF-κB signaling through silent
information regulator 1 (SIRT1)-dependent deacetylation of NF-κB and retinoid orphan
receptor α (RORα), thereby blocking septic responses induced by cecal ligation and punc-
ture [326]. SIRT1 is an NAD+-dependent deacetylase and a potent regulator of intracellular
inflammatory, metabolic, and oxidative stressors. Therefore, it has been shown that SIRT1
reduces NLRP3 inflammasome activation by deacetylating NLRP3 protein, and melatonin
may increase SIRT1 activity and thus inhibit NLRP3 inflammasome activation in different
inflammatory models [327,328]. Finally, the regulatory function of melatonin on NLRP3
inflammasome also occurs through post-transcriptional modifications since melatonin is
able to inhibit the formation of NLRP3 inflammasome complex by altering the expression
of various miRNAs [327]. These are, therefore, the main mechanisms by which melatonin
reduces NLRP3 inflammasome activation.

8. Melatonin, iNOS, and Calcium/Calmodulin

As previously mentioned, melatonin is considered a multitasking molecule, but some
physiological roles have yet to be established. Melatonin is a highly lipophilic molecule
that crosses easily through cellular membranes and produces its cellular functions through
diverse mechanisms: first, by its interaction with specific G-protein coupled receptors
identified as the MT1 and MT2 leading down-stream second messengers, activation of
signaling pathways, and gene transcription [246,329–331]; second, by acting as a free
radical scavenger detoxifying RONS [246,254]; or third, through its binding to nuclear
proteins [332–334] and intracellular proteins such as calmodulin (CaM), regulating intra-
cellular Ca2+ signaling pathways because CaM is an essential mediator of Ca2+ signaling
within cells [335–338] (Figure 5).

CaM has been defined as one melatonin-binding protein with considerable physio-
logical significance depending on its affinity. In 1993, Benitez-King et al. described that
melatonin binds to a single site on the CaM molecule with high affinity, in a saturable,
reversible, Ca2+-dependent, and ligand-selective manner (Kd of 188 pM and a total binding
capacity Bmax of 35 pM/µ of CaM) [336]. However, other investigations indicated a much
lower affinity between melatonin and CaM [339]. The controversy remains open whether
melatonin effects related to CaM are direct or because of indirect intracellular signaling
mechanisms. Melatonin cascades may be sometimes crosslinked, therefore protein kinase
or a transcription factor may be activated by several mechanisms. The precise intercon-
nections between melatonin and CaM widely remain to be clarified [340]. It has been
reported that melatonin increased the total cellular level and synthesis of CaM [335,337].
Additionally, melatonin directly binds to antagonize CaM [335,336,341]. Activated CaM
acts both directly by interaction with key target enzymes, and structural proteins, and
indirectly via specific protein kinases such as CaMKII [337].

CaMKII is a family of protein kinases encoded by four genes (α, β, γ, and δ) that
mediates different physiological responses triggered by increased [Ca2+]i, by its autophos-
phorylation, and by the binding of Ca2+/CaM complex on its target proteins producing
phosphorylation of serine and threonine residues [246,342]. CaMKII has a dumbbell shape
connected by seven-turn alpha helixes and two hydrophobic clefts with four Ca2+-binding
domains with typical EF-hand conformation [343]. Each isoform of CaMKII is composed of
three domains: (i) the association domain located at the C-terminal region, (ii) the catalytic
domain located at the N-terminal region, and (iii) the regulatory domain located between
association and catalytic domains [342]. The Ca2+/CaM complex binds to the 293–310
AA sequence in the regulatory domain to disrupt the interaction between the regulatory
and the catalytic domain [344]. After its activation, the enzyme undergoes autophospho-
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rylation at the threonine-286 residue, changing its activity to a Ca2+/CaM-independent
manner [345,346]. Therefore, the activated Ca2+/CaM complex can interact with other
targets such as NOS [345].

In rat hippocampal neurons, it has been shown that CaMKII activates and translocates
from the cytoplasm to the presynaptic active zone [345,347] where it regulates neuro-
transmitter synthesis and release through phosphorylation of different targets such as K+

channels [348] or synaptotagmin and synapsin I [347]; additionally, CaMKII translocates
to the post-synaptic density [345,349] during neuronal activation where nNOS is mainly
located, therefore an interaction between both molecules occurs [345].

It has been stated that the regulation of CaMKII activity depends on its relative con-
centration and the concentration of its activator Ca2+/CaM complex [345,350]. Importantly,
melatonin upregulates CaM synthesis; therefore, an increase in the activation of CaMKII
is associated with melatonin. A direct effect of melatonin on PKC or its activation by
diacylglycerol phosphorylates is the augmented CaM, activating CaMKII which autophos-
phorylates to maintain its activity-inducing dendrite growth and arborization, essential
for synaptogenesis to reestablish the synaptic connectivity lost in aging neuropsychiatric
disorders [338], indicating that melatonin can be used to prevent neuronal dysfunction.

As previously indicated, melatonin synthesis is upregulated under circumstances
where free-radical generation is exaggerated [246,340], because it has protective
actions against free-radical species acting through anti-oxidative and pro-oxidative
enzymes [246,351,352] including eosinophil peroxidase, myeloperoxidase (MPO), and
NOS [351,353–355].

It is well known that in aging the progressive accumulation of oxidative debris pro-
motes the functional inefficiency of cellular processes inducing free-radical generation,
the oxidative damage provokes apoptosis, and this loss of cells contributes to age-related
deterioration. Additionally, the increased age leads to a gradually diminished melatonin
production such that, in the elderly, the nocturnal melatonin rise in the circulation is greatly
attenuated; this situation can have health consequences [246]. Moreover, the maintenance
and progression of several diseases (neurodegenerative, cardiovascular, skin deterioration,
cancer, metabolic syndrome, among others) where oxidative stress has a great role, can
be accelerated by reduced production of melatonin during aging [246], supporting that
melatonin is an important molecule to prevent age-related deterioration. In this sense, as
reported in the previous sections, the antioxidant effect of melatonin occurs because of
its ability to scavenge ROS such as hypochlorous acid (HOCl), H2O2, •OH, ONOO−, and
O2

• [353,356,357]. This occurs due to the effect on NOS activity. The link between heme
destruction and disturbance of the zinc-tetrathiolate center of inducible NOS (iNOS) was
described recently by Camp, leading to iNOS monomerization, protein unfolding, and
accumulation of toxic free iron that occurs in many inflammatory diseases. Importantly,
these events can be prevented in the presence of melatonin [353]. In this regard, iNOS
expressed by immunoactive cytokines generated in tissues at sites of inflammation or in
response to viral infection produces NO that is connected with essential functions for the
pathogenesis of several diseases including diabetes, multiple sclerosis, and cancer, among
others [358,359]. In animals, iNOS from cytokine-stimulated macrophage cell lines is a
zinc homodimeric enzyme consisting of two identical subunits, containing a reductase and
an oxygenase domain [353,359–361]. The reductase domain, C-terminus, binds NADPH,
flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD), at various sites and
importantly, contains a CaM binding linker peptide that tightly binds CaM [359]. The
oxygenase domain (N-terminal portion) binds the iron protoporphyrin IX (heme) prosthetic
group, the substrate L-arginine (L-Arg), the cofactor tetrahydrobiopterin (H4B), and a zinc
atom [359]. The zinc atom is coordinated symmetrically by two cysteine residues from
each subunit in a tetrahedral arrangement at the bottom of the dimer complex [361]. This
complex plays an important role in maintaining the dimeric iNOS stability and preventing
its monomerization [353].
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The Ca2+/CaM binding events allow cross-subunit electron transfer from the FMN to
the heme and is the essential electron transfer step because it enables O2 to bind to the NOS
and thus start the process of NO biosynthesis [362,363]. In the brain, NO participates in
numerous functions, including neurotransmission, development, and neuroprotection [364].
However, NO reacts with O2

• to form ONOO−, a more powerful oxidant that acts as a
toxicant molecule [365] that causes lipid peroxidation, protein nitration and direct DNA
damage leading to cell death [345,366]. NO is a small molecule synthesized by NOS
named neuronal NOS (nNOS) and endothelial (eNOS), which are constitutive isoforms,
and the iNOS that is negligible in resting cells but is induced by inflammatory cytokines and
LPS [358,359,362,367,368]. LPS binds to the TLR4 on the surface of macrophage membranes,
leading to the activation of MAPK or NF-κB signaling pathways and further iNOS gene
expression [369] to produce NO. Additionally, microglia can exhibit a pro-inflammatory
phenotype by LPS contributing to the activation of iNOS. Thus, during infection, which is
more related to aging, microbial LPS can induce a prolonged low-grade inflammatory state
where macrophage and microglial iNOS is upregulated [370,371].

Increased vulnerability to infection and the development of inflammatory diseases is
more frequent during aging, and the onset and progression of some diseases such as neu-
rodegeneration, cancer, metabolic syndrome, multiple sclerosis, septic shock, and adjuvant
arthritis [360,372] are strongly associated with changes in the immune system function,
and the loss of immune responses has been associated with resistance to bacterial infec-
tion [370]. Within the immune system the release of cytokines and chemokines is regulated
by circadian phases [371,373] to maintain homeostasis through a well-organized sequence
of immune defensive responses against pathogens. The decline of diurnally rhythmic
immune responses related to aging amplifies disease-causing inflammation [370]. This
situation could be associated with the reduced circadian production of melatonin during
aging [246]. The principal biological modulators of the mammalian immune response are
the macrophages population, which is heterogeneous but predominantly composed of
mononuclear leukocytes [367]. Macrophages are classified as classically-activated M1 or
alternatively-activated M2 [374]. M1 macrophages are pro-inflammatory cells responsible
for the initiation of the immune response, while M2 macrophages are anti-inflammatory
cells. M1 macrophages are activated by the microbial LPS to induce the release of pro-
inflammatory interleukins IL1β, Il-6, IL-12, IL-23, and TNF-α, chemokines, hydrolyzed
proteases interferons, and ROS that are released downstream in the innate immunity
response [375]; this activation promotes the increase in NO-mediated by iNOS activation.

On the other hand, microglia are cells involved in regulatory processes critical for
development, maintenance of the neural environment, response to injury and subsequent
repair, and sense pathological events in the CNS to orchestrate innate immune responses.
They are regulated by the CNS microenvironment and are the first line of defense against
invading microbes and via interactions with neurons can be the first to detect critical
changes in neuronal activity and health [376]. With aging, a decrease in synaptic plastic-
ity is accompanied by the ability of microglia to express pro-inflammatory cytokines to
contribute to mild chronic inflammatory conditions, also accompanied by a decrease in
anti-inflammatory cytokines [376] and an increase in NO synthesis. In this sense, melatonin
increased the amount of CaM and phosphorylation of CaMKII prompting dendritogene-
sis in rat hippocampal slices suggesting that melatonin could repair the loss of synaptic
connectivity in aging neuropsychiatric disorders [338]. Additionally, melatonin has been as-
sociated with neurogenesis stimulation and neuronal survival [377,378], this adds evidence
for its potential use as an adjuvant in neurodegenerative diseases

The effects of melatonin in immunoregulation have been well-described [367,379,380].
Melatonin shows an inhibitory effect against the LPS effects only if melatonin is admin-
istered before LPS in J774.2 macrophages. This effect occurs because melatonin reduces
iNOS steady-state mRNA levels and iNOS protein expression, and it was associated with
inhibition of the NFκ-B. Inhibition of iNOS-derived NO production contributes to the
anti-inflammatory effect produced by melatonin [356]. Additionally, the inhibitory effect of
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melatonin on iNOS is due to an interaction with CaM [79], and iNOS is associated with CaM
in a tightly bound form [358]. In the immunostimulated macrophages, prolonged exposure
to melatonin during the induction of iNOS and its association with CaM increases the
inhibitory effect on iNOS activity [356]. Melatonin exerts a potent anti-inflammatory effect
and reduces NO production in murine models of carrageenan-induced inflammation [381].
Protection by melatonin in shock and inflammation is due to the inhibition of iNOS expres-
sion [246,356]. However as described previously, the reduced melatonin production by
aging could be a factor that contributes to low-grade inflammatory conditions.

On another hand, visfatin an adipokine highly expressed in adipocytes and
macrophages [382] exerts an inflammatory activity through the expression of pro-
inflammatory cytokines (TNF-α, IL-6, and IL-1β) in different cell types [382–384]. In RAW
264.7 macrophages, melatonin reduces the visfatin-induced iNOS expression through the
suppression of NF-κB in a similar way as LPS-induced iNOS expression. Visfatin may
contribute to the enhancement of obesity-associated inflammation via the release from
macrophages. Interestingly visfatin has been found to increase in human dental pulps with
age [385], contributing to senescence, and is highly expressed in inflammatory diseases and
some cancers [384]; however, the functional role of visfatin in aging has not yet been well
established, but the protective melatonin effect against visfatin-induced inflammation through
iNOS activation, strongly supports its use to treat the low-grade inflammatory condition.

9. Melatonin in Microglial and Astrocyte Cell Activation

The beneficial effects of melatonin have been shown in pre-clinical and/or clinical
studies for several neurodegenerative conditions caused by insults such as infections,
hypoxia/ischemia, trauma, or toxins as well as for neurodegenerative diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), and amy-
otrophic lateral sclerosis (ALS) [12,221,258,386–393]. A shared feature among these patholo-
gies is neuroinflammation, a complex process mediated primarily by microglia and as-
trocytes. In this regard, recent studies have revealed the potential use of melatonin as a
neuroprotective agent, especially in the context of glial cell activation.

9.1. Melatonin in Astrocyte Activation

Astrocytes, the most abundant non-neuronal cells in the brain, were classically consid-
ered to serve passive structural and support roles in the brain. They are now considered
full-fledged participants in brain circuitry and processing, with a wide range of functions
at the cellular level. These functions include the formation, maturation, and elimination
of synapses, maintaining the integrity of the BBB and ionic homeostasis, clearing neuro-
transmitters, regulating the volume of the extracellular space, and modulating synaptic
activity and plasticity [394–396]. Moreover, astrocytes play an essential role in the initiation,
execution, and regulation of immune responses in the CNS [397–399].

Astrocytes undergo morphological, molecular, and functional remodeling, known as
astrocyte activation, in response to various pathological stimuli, including inflammation,
tumors, trauma, ischemia, epilepsy, and neurodegeneration [400–402]. Astrocyte activation
leads to the loss of their normal homeostatic functions and the acquisition of protective or
detrimental roles, including proliferation, scar-border formation, immune cell recruitment,
and neurotoxicity [400,403–405]. Just as the M1/M2 activation axis has been described
for microglia, there has been a proposal for astrocyte A1/A2 phenotypic polarization.
According to this model, A1 denotes reactive cells that have lost their neurosupportive
functions and have become toxic toward neurons, while A2 refers to inflammation-resolving
astrocytes [406,407]. However, this simplistic binary classification statement to characterize
the reactive states of astrocytes is under debate [400].

Following an ischemic stroke, the peri-infarct region is commonly divided into two
parts: an inner region adjacent to the lesion with a high density of monocytes/macrophages
and an outer region rich in astrocytes [408]. Reactive astrocytes in the outer region secrete
various pro-inflammatory cytokines, chemokines, and matrix metalloproteinases, which
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disrupt the BBB and attract peripheral leukocytes, exerting deleterious effects on the brain
after ischemia [408,409]. Additionally, astrocytes in this region display elongated and
polarized processes with an increased GFAP expression and expression of factors involved
in extracellular matrix remodeling and clustering of reactive astrocytes [410]. After ischemia
and reperfusion injury, melatonin has been shown to attenuate reactive astrogliosis and glial
scar formation, reduce the infarct volume, and, consequently, enhance axonal regeneration
and promote neurobehavioral recovery in adult rats [411,412]. These effects of melatonin
are related to a reduction in the activity of glycogen synthase kinase-3 beta (GSK-3β)
and receptor-interacting serine/threonine-protein 1 kinase (RIP1K), proteins involved in
astrocyte responses, after the treatment [412]. Furthermore, melatonin pretreatment has
been shown to reduce the increased expression of Nox2 and Nox4 in astrocyte neurons and
endothelial cells, reduce RONS levels, and inhibit cell apoptosis [413].

Traumatic brain injury (TBI) also induces reactive astrogliosis accompanied by an
increased expression in intermediate filaments such as glial fibrillary acidic protein (GFAP)
and vimentin, along with astrocyte hypertrophy and functional alterations as glutamate
and potassium clearance changes [414]. Melatonin has been shown to partially reverse
TBI-induced anxiety-like behavior in rats and decrease the number of activated astrocytes
and neuronal apoptosis in the amygdala induced by TBI [415]. Melatonin also has been
demonstrated to decrease the number of A1-type astrocytes in the NAc after TBI and
mitigate TBI-induced depression by activating of HO-1/CREB signaling [220]. Similar
results have been obtained in the hippocampus, dentate gyrus [300], and cortex [300,416]
where melatonin reduces activated astrocytes and cytokine production and promotes cell
survival and cognitive function after TBI induction. Furthermore, melatonin treatment
suppresses the accumulation and the proliferation of microglia and astrocytes, down-
regulates caspase-3, Bax and GFAP expressions, and the pro-inflammatory markers iNOS,
IL-1β, and TNF-α expressions in a spinal cord injury model [417].

Astrocytes play a crucial role in the development of neurological and neurodegen-
erative diseases, primarily due to the disruption of normal homeostatic function and the
acquisition of toxic functions [418]. Additionally, the accumulation of certain protein aggre-
gates such as alpha-synuclein (SNCA), Aβ, and Tau in astrocytic cytoplasm can contribute
to the pathology of these diseases [419], representing a significant characteristic in various
neurodegenerative conditions. Furthermore, astrocytes can undergo various detrimental
transformations, resulting in either atrophy and loss of function or reactive astrogliosis
with hypertrophy [420]. Although melatonin has been shown to have a beneficial role
in different neurodegenerative diseases such as AD [421,422], PD [389,423], MS [424], or
ALS [425], less is known of its effects on astrocyte activation. In the rat hippocampus, mela-
tonin has been shown to attenuate synaptic dysfunction and reduce astrogliosis improving
the Aβ1–42-induced impairment in spatial learning and memory [426]. On the other hand,
in results obtained by Andrade et al., melatonin reduces Aβ levels but does not reduce
GFAP levels in rats receiving ICV-STZ (intracerebroventricular streptozotocin STZ) [427]. In
an MS model induced by cuprizone, melatonin also reduces astrocyte activation in young
and aging mice due to the antiapoptotic, antioxidant, anti-inflammatory, and neurotrophic
effects [428]. Melatonin has also been demonstrated to prevent the development of neuro-
pathic pain in the cuneate nucleus in a lysophosphatidylcholine (LPC)-induced median
nerve demyelination neuropathy model. Here, melatonin reduces astrogliosis and through
MT2 receptors inhibits the activation of astrocytic MAPKs, production of pro-inflammatory
cytokines, and development of demyelination-induced neuropathic pain behavior.

Some neurotoxins and drugs also produce neuroinflammation and neuronal cell death.
Melatonin also has been demonstrated to be effective in decreasing astrogliosis and the
production of pro-inflammatory cytokines in these situations. In trimethyltin chloride-
treated mice, melatonin reduces the expression of C3, Gbp2, and Serping1, indicating the
suppression of A1 reactive astrocytes in the brain [429]. Furthermore, melatonin has in-
hibitory effects on caspase-3 and GFAP up-regulation induced by the plasticizer Diisononyl
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phthalate [430]. Additionally, melatonin reduced reactive astrocytes associated with the
activation of the TLR4/MyD88/NFκB signaling pathway by methamphetamine [384,431].

9.2. Melatonin in Microglia Activation

The diverse functions of microglia play a crucial role in the onset, progression, and
resolution of inflammation within the CNS. These processes also involve communication
and interaction between microglia and various other cell types, particularly astrocytes
and neurons, although it is not limited to them. Classically, phenotyping macrophages
and microglia (cells that are functionally and developmentally related) into M1 (resting)
and M2 (activated) based on the expression of markers related to these categories, was
used to indirectly assume a detrimental M1 or beneficial M2 microglial role. In this classic
description, M1 microglia releases inflammatory mediators and induce inflammation and
neurotoxicity, while M2 microglia release anti-inflammatory mediators and induce anti-
inflammatory and neuroprotection. However, this dualistic classification of good or bad
microglia is very controversial and is inconsistent with the wide repertoire of microglial
states and functions in development, plasticity, aging, and diseases that were elucidated in
recent years (see [432] for more information).

As previously mentioned, melatonin can suppress proinflammatory signals and has
been extensively documented. Notably, research has focused on its impact on iNOS and
COX-2, as well as its ability to inhibit inflammasome activation, particularly NLRP3. More-
over, it also activates processes in an anti-inflammatory network, in which SIRT1 activation,
upregulation of Nrf2, downregulation of NF-κB, and release of the anti-inflammatory
cytokines IL-4 and IL-10 are involved [258,433,434]. However, these findings often did not
specifically focus on microglia.

Microglia and infiltrated macrophages initially polarize toward a neuroprotective
anti-inflammatory phenotype after stroke, but gradually transform into a detrimental
pro-inflammatory phenotype [435,436]. Melatonin treatment ameliorates brain damage after
ischemic stroke at least partially through shifting microglia phenotype from pro-inflammatory
to anti-inflammatory polarity [204,411,437–439]. This M2 phenotype promoting effect by
melatonin is via signal transducer and activator of transcription 1/6 and 3 (STAT1/6 and 3)
and neuronal melatonin type 1 receptor activation [204,411,439]. After TBI, melatonin also
suppresses microglial activation and the production of proinflammatory cytokines reducing
mTOR pathway phosphorylation [440,441]. Similar effects of melatonin have been shown
in the spinal cord injury (SCI) model. Melatonin decreases the expression levels of M1
microglia phenotypic markers (CD16, iNOS, and TNF-α) and increases M2 markers (Arg1,
CD206, and TGF-β) also reducing the levels of pro-inflammatory cytokines (TNF-α, IL-6,
and IL-1β) in the SCI mice and rats, facilitating functional recovery [417,442].

Both M1 and M2 microglial phenotypes are involved in the pathogenesis of neu-
rodegenerative diseases [443], and promoting microglia polarization shift from M1 to M2
phenotype may be a prospective strategy in the therapy of neurodegenerative diseases
such as AD, PD, ALS, and MS [444]. Melatonin has been shown to ameliorate neuroinflam-
mation by inhibiting STAT-related pro-inflammatory (M1-like) polarization of microglia
in a cellular PD model [445]. Moreover, melatonin attenuates microglial activation by
negatively regulating NLRP3 inflammasome activation via a sirtuin 1 (SIRT1)-dependent
pathway in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine PD
models [446]. Regarding AD, melatonin has been shown to promote anti-inflammatory
microglial activation rescuing SIRT1 and BDNF expression/release following β-amyloid
(Aβ42)-induced microglial activation [447] and remediates the cytokine profile of Tau-
exposed microglia [448]. In other neurological diseases, such as epilepsy, melatonin can
also promote the polarization status of microglia from an M1 to M2 phenotype. In this case,
Li et al. [445] have demonstrated that melatonin plays an antiepileptic role in KA-induced
temporal lobe epilepsy, reducing the frequency and severity of seizures and changing
microglia polarization status by regulating the RhoA/ROCK signaling pathway.
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10. Post-Stroke Melatonin Treatment

Currently, the only treatment for ischemic stroke, which is limited and ineffective
in a large number of patients, is thrombolysis when administered within 4 h of its on-
set [449]. However, it is very common for stroke patients to experience multiple complica-
tions such as depression, movement disorders, epilepsy, fatigue, dysphagia, or vascular
dementia [450–455]. Due to its beneficial properties and lack of toxicity even at high concen-
trations, melatonin could be proposed as a potential treatment for alleviating post-stroke
complications, although research on this topic is limited and more research is required to
determine the correct doses and timing at which melatonin may be most effective.

Central post-stroke pain (CPSP) is another issue that can arise because of a stroke.
It is a neuropathic pain syndrome characterized by pain and sensory abnormalities in
the body parts corresponding to the injured brain territory [456]. A study found that
CPSP-model rats showed improved performance in several pain tests when treated with
intraperitoneal melatonin, in a dose-dependent manner. This suggests a neuromodulatory
effect of melatonin in the treatment of CPSP [263,457].

Considering melatonin’s anti-inflammatory and antioxidant properties, it could be
administered as a post-stroke treatment to alleviate the sequelae caused by increased in-
flammation and RONS. In an aged MCAO rat model, Rancan et al. [458] demonstrated that
oral melatonin administration after surgery can inhibit the upregulation of pro-apoptotic
markers associated with ischemic stroke, suggesting a reduction in neuronal damage. Mela-
tonin administration after ischemic injury can also significantly decrease the activity of
mitochondrial enzymes responsible for oxidative stress, such as NOS and COX-2, thereby
reducing the infarct area [459]. Additionally, in a rat model of ischemia/reperfusion injury,
another study found that intranasal administration of melatonin loaded in lipidic nanocap-
sules post-stroke can increase the number of surviving neurons in the hippocampal CA1
region and improve oxidative stress and inflammatory marker levels in the hippocam-
pus. These effects were even more pronounced than those observed with oral melatonin
administration [460].

Additionally, although melatonin does not possess direct antiviral capacity, supple-
mental melatonin has shown favorable effects, eliminating the pathogenicity of highly
deadly viruses [461–465]. This has been extensively documented in various case reports,
with the prevention of hemorrhagic shock syndrome from Ebola virus infection being
particularly promising [466]. Given melatonin’s pharmacological profile, which highlights
its potent abilities to moderate inflammation, mitigate oxidative stress, and regulate im-
mune response, this indoleamine should be considered a preferred candidate for testing in
the context of attenuating hyper-inflammation in COVID-19 patients and enhancing the
success of their clinical management.

11. Conclusions

The conclusions that can be drawn from this review are the following:
Melatonin as a Promising Neuroprotective Agent: Melatonin shows considerable

potential beyond its role in regulating sleep–wake cycles. Its neuroprotective properties
position it as a promising candidate for stroke therapy, offering protection against ischemic
brain damage.

Powerful Antioxidant and Possible Anti-Aging Agent: Melatonin exhibits antioxidant
effects, making it a potential anti-aging agent by mitigating oxidative stress, which is
implicated in age-related neurodegenerative diseases.

Implications of Free Radicals in Stroke and Aging: Free radicals, highly reactive
molecules, are of great interest in medical research due to their involvement in multiple
pathologies. Free radicals play a crucial role in oxidative stress and cellular damage, which
has significant implications for understanding complex biological processes such as stroke
and aging.

Interaction of Melatonin, Free Radicals, and Non-Exciting Amino Acids: Both mela-
tonin and non-excitatory amino acids play integral roles in the stroke and aging processes,
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with melatonin acting as an antioxidant and non-excitatory amino acids providing neuro-
protection through modulation of several key factors.

Potential of Therapeutic Strategies: Understanding the interaction between melatonin,
free radicals, and non-excitatory amino acids opens opportunities for therapeutic strate-
gies in age-related diseases and stroke prevention/treatment. We highlight the need for
additional research to fully understand these mechanisms and explore their therapeutic
applications in future clinical trials.

Future Perspectives and Improvement of Quality of Life: Deepening our understand-
ing of these mechanisms brings us closer to developing specific interventions that can
improve neuronal resilience and quality of life in people affected by stroke and age-related
neurodegenerative disorders.
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