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a b s t r a c t 

The human thalamus is a highly connected brain structure, which is key for the control of numerous functions 

and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on 

the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus 

as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard 

in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from 

each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower 

resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmen- 

tation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with 

likelihood models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemi- 

sphere informed by both modalities. We present an improved probabilistic atlas, incorporating thalamic nuclei 

identified from histology and 45 white matter tracts surrounding the thalamus identified in ultra-high gradi- 

ent strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring 

compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these 

diffusion likelihood models greatly improves identification of nuclear groups versus segmentation based solely 

on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations 

show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of re- 

liability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering 

improved detection of differential thalamic involvement in Alzheimer’s disease (AUROC 81.98%). The probabilis- 

tic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer 

( https://freesurfer.net/fswiki/ThalamicNucleiDTI ). 
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Fig. 1. Thalamic segmentation of a T1-weighted structural MRI overlaid on the 

co-registered T1-weighted image (left) and a co-registered directionally encoded 

colour FA image (right). High contrast between medial and lateral thalamic re- 

gions on structural imaging improves the accuracy of these boundaries (white 

arrows). However, low contrast between the lateral thalamus and white mat- 

ter causes over-segmentation into the internal capsule, which can easily be dis- 

cerned in the colour FA image (red arrows). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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. Introduction 

The thalamus has traditionally been considered a relay station for

nformation in the brain, with extensive connections to both cortical

nd subcortical structures ( Behrens et al., 2003; Schmahmann, 2003 ).

s such, it integrates information processing between cortical regions

 Hwang et al., 2017; Sherman, 2007; 2016 ) and is associated with a

ide range of functions including cognition, memory, sensory and mo-

or functions, regulation of consciousness and spoken language among

thers ( Fama and Sullivan, 2015; Schmahmann, 2003; Sherman and

uillery, 2001 ). Additionally, neurodegenerative pathological processes

n the thalamus have been associated with Alzheimer’s disease ( AD )

 de Jong et al., 2008; Zarei et al., 2010 ), frontotemporal dementia

 Bocchetta et al., 2018; McKenna et al., 2022 ), Huntington’s disease

 Aron et al., 2003; Kassubek et al., 2005 ) and multiple sclerosis ( Minagar

t al., 2013; Planche et al., 2019 ). 

With such wide established connections and functions, the thalamus

s a frequent target in MRI-based neuroimaging studies and a focus for

esearch in relation to both healthy and disordered brain function. This

reates a need for reliable identification of thalamic borders. Therefore,

he thalamus is defined by several structural MRI ( sMRI ) segmentation

ethods, including multi-atlas segmentation ( Heckemann et al., 2006 ),

ayesian segmentation ( Puonti et al., 2016 ) and convolutional neural

etworks ( CNNs ) ( Billot et al., 2020; Henschel et al., 2020; Wachinger

t al., 2018 ). Additionally, the thalamus has been included in popular

mage processing packages, including FreeSurfer’s ( Fischl, 2012 ) recon-

ll stream, which uses a probabilistic atlas of anatomy and MRI intensity

 Fischl et al., 2002 ), and the FMRIB Software Library ( FSL ) ( Smith et al.,

004 ), which includes a model of shape and appearance in its implemen-

ation (FIRST) ( Patenaude et al., 2011 ). 

The methods above segment the thalamus as a single label, however

n reality it is a complex and heterogeneous structure. It is composed

f 14 major nuclei, which may be split further into 50 subnuclei de-

ending on the level of detail in the classification and agreement on

euroanatomical definition. There are multiple such definitions with

arying numbers of subnuclei ( Jones, 2012; Mai and Majtanik, 2019;

orel, 2007 ). These nuclei have distinct patterns of connections with

ther brain regions and subserve different functions, including associa-

ive, sensory, motor, cognitive and limbic ( Schmahmann, 2003 ). For

xample, the ventral lateral posterior nucleus is involved in motor func-

ion through connections with the cerebellum and the motor cortex,

hile the mediodorsal nucleus has connections with the prefrontal cor-

ex and plays a role in cognitive and emotional processes ( Mai and Foru-

an, 2012; Schmahmann, 2003 ). In addition, neuropathological studies

ave demonstrated preferential involvement of certain thalamic nuclei

n several conditions, such as the caudal intralaminar nuclei in Parkin-

ons disease ( Henderson et al., 2000 ), the anterior nuclei in AD ( Braak

nd Braak, 1991a; 1991b ), and the pulvinar in the C9orf72 genetic sub-

ype of frontotemporal dementia ( Vatsavayai et al., 2016 ). These stud-

es provide strong motivation for the design of automated segmentation

lgorithms that accurately define thalamic nuclei in vivo , enabling iden-

ification of reliable and precise biomarkers. 

Different approaches have been used to segment thalamic nuclei.

here are segmentation strategies that attempt to directly register histol-

gy derived labels to MRI. For instance, manually labelled histology can

e used to generate a reference space atlas that may then be applied to

n vivo MRI through registration-based segmentation ( Jakab et al., 2012;

rauth et al., 2010; Sadikot et al., 2011 ). However, such approaches are

imited by the difficulty in registering MR images with different con-

rasts. Other techniques define their label scheme based on information

erived from the imaging data to be segmented. For example, diffu-

ion MRI ( dMRI ) has been used to define thalamic regions by cluster-

ng voxels based on diffusion tensor imaging ( DTI ) indices ( Mang et al.,

012 ) and orientation distribution functions ( Battistella et al., 2017;

emedo et al., 2018 ). Other studies have divided the thalamus into re-

ions based on their cortical connectivity, either through resting-state
2 
unctional MRI time course correlations ( Zhang et al., 2008 ) or dMRI

ractography ( Behrens et al., 2003; Johansen-Berg et al., 2005 ). How-

ver, exactly how thalamic regions defined by functional MRI relate to

eurobiology is not fully understood ( Eickhoff et al., 2015 ) and there is

ome indication that tractography-based segmentations are insensitive

o the internal structure of the thalamus ( Clayden et al., 2019 ). 

The development of advanced MRI acquisitions has also allowed for

tlases to be defined from manual segmentation of in vivo imaging di-

ectly, due to improved resolution and contrast. For example, guided by

istological atlases, it has been possible to manually identify nuclei on

dvanced sMRI acquired at 7T ( Liu et al., 2020; Tourdias et al., 2014 )

nd on dMRI through short-track track density imaging ( Basile et al.,

021 ). In particular, segmentations of 7T white-matter-nulled imaging

ave been used to generate both multi-atlas segmentation ( ”THOMAS ”

u et al. 2019 ) and CNN ( Umapathy et al., 2021 ) segmentation algo-

ithms. However, these segmentations do not have the full level of detail

resent in histological atlases and performance is impacted by changes

n acquired contrast, due to domain gap effects for CNNs and poorer

egistration in multi-atlas segmentation. 

Aiming to provide detailed segmentations of thalamic nuclei that is

obust to changes in MRI acquisition and contrast, we previously con-

tructed a probabilistic atlas of the thalamus and surrounding tissue

rom manually labelled histology ( Iglesias et al., 2018 ). We then com-

ined this atlas with Bayesian inference methods ( Ashburner and Fris-

on, 2005; Pohl et al., 2006; Van Leemput et al., 1999; Wells et al., 1996 )

o allow segmentation of 25 bilateral histological labels from sMRI. This

pproach had the advantage that the intensity model of each label was

earned from the target image, reducing dependence of the resulting

egmentations on the type of sMRI acquisition contrast. However, sMRI

cquisitions can show poor contrast in some areas, leading to errors in

egmentation that become apparent when overlaid on dMRI. For exam-

le, Fig. 1 shows that our previous method can accurately follow the

oundary between groups of medial and lateral nuclei, but the lack of

ontrast between lateral nuclei and white matter can lead to overseg-

entation into the internal capsule. 

The availability of complementary information from dMRI sequences

rovides a possible avenue for minimising such segmentation errors.

n increasing number of large multi-site neuroimaging studies, includ-

ng the Human Connectome Project ( HCP ) ( Van Essen et al., 2013 ),

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) ( Jack et al.,

008 ), and the GENetic Frontotemporal dementia Initiative (GENFI)

 Rohrer et al., 2015 ) are acquiring both structural and diffusion MRI.

dditionally, use of DTI combined with registration-based segmentation

as been proposed for segmentation of the whole thalamus in subjects
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Fig. 2. Graphical model of the proposed framework. Larger circles represent 

random variables with open circles for the hidden variables ( 𝜃, 𝑙), and shaded 

circles for the observed variables ( 𝑠, 𝑑). Smaller solid circles are deterministic 

parameters such as the atlas ( 𝐴 ) and encoded prior information ( 𝛾). Rectangles 

indicate replication across voxels ( 𝑉 ) or classes ( 𝐶). 
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here T1-weighted MRI contrast is very low ( Al-Saady et al., 2022 ).

s can be seen in Fig. 1 , dMRI shows good contrast between the thala-

us and the adjacent white matter, while structural MRI provides better

ontrast between the medial nuclei and cerebrospinal fluid ( CSF ) as well

s higher resolution. Therefore, we look towards creating joint models

f structural and diffusion MRI, incorporating likelihood models of DTI

uch as those used in the modelling of white matter fibres ( Jian and

emuri, 2007 ). 

We present an extension of our structural Bayesian inference segmen-

ation algorithm to incorporate dMRI. We focus on DTI due to the ease

f fitting tensors to diffusion-weighted images, even from legacy data

r in studies with short acquisitions. We explore our recently proposed

iffusion likelihood model, combining the Dimroth-Scheidegger-Watson

 DSW ) and Beta distributions ( Iglesias et al., 2019 ). We compare this

odel to both the Wishart distribution, from fibre modelling literature

 Jian and Vemuri, 2007 ), and the log-Gaussian distribution, influenced

y tensor interpolation methods ( Arsigny et al., 2006 ). Additionally, we

uild on our previous histological atlas of the thalamus by adding 45

abels for white matter tracts passing adjacent to the thalamus, allow-

ng the DTI likelihood models to capture the varying directionality of

bers in white matter without becoming sensitive to non-white-matter

issue. The resulting segmentation method allows constraints to be im-

osed independently on both the structural and diffusion modelling by

ncluding separate shared parameter models, enforcing reflective sym-

etry, incorporating prior distributions on likelihood parameters, and

e-weighting likelihood terms to account for the lower resolution of DTI.

This paper is structured as follows. In Section 2 we outline our

oint segmentation method. This includes explanations of: the general

ayesian inference model; the model fitting and segmentation process;

he three likelihood models; the atlas and its construction; and general

mplementation details. In Section 3 we evaluate our joint segmenta-

ion method on both high and low resolution data. This evaluation in-

ludes: model optimisation and evaluation on a population template

onstructed from both T1-weighted MP-RAGE and DTI images; evalua-

ion of the optimised models on subjects from HCP, providing compari-

on to manual ground truth and test-retest reliability; and test-retest and

ndirect evaluation on conventional quality data. Section 4 concludes

he paper. 

. Bayesian segmentation of brain MRI 

.1. Probabilistic model and Bayesian inference 

Here we outline the theory and implementation of our Bayesian seg-

entation algorithm. As in existing Bayesian segmentation literature

 Ashburner and Friston, 2005; Iglesias et al., 2015; Puonti et al., 2016;

an Leemput et al., 1999; Zhang et al., 2001 ), our strategy relies on mod-

lling the voxel-wise data as observable random variables. These follow

 different distribution for each label class in a supplied deformable

robabilistic atlas of the volume encompassing the thalamus ( Iglesias

t al., 2018; Van Leemput, 2009 ). Both the voxel-data distributions and

eformation of the atlas are parameterised by hidden random variables

ependent on the subject and image acquisition. Estimating these hid-

en random variables allows us to generate a voxel-wise probability of

embership in each label class ( Ashburner and Friston, 2005; Van Leem-

ut et al., 1999 ). In the Bayesian approach, this is used to construct the

osterior probability of a labelling (or segmentation) given paired sMRI

nd dMRI data. 

For the purposes of this method we assume that both the sMRI and

MRI have been registered and resampled to the same grid comprised of

oxels indexed by 𝑣 ∈ {1 , … , 𝑉 } . We denote the labelling of these voxels

y 𝑳 = [ 𝑙 1 , … , 𝑙 𝑉 ] , with 𝑙 𝑣 ∈ {1 , … , 𝐶} – where 𝐶 is the number of label

lasses in our model. Similarly, we construct a matrix 𝑺 = [ 𝒔 1 , … , 𝒔 𝑉 ]
olding vectors of sMRI voxel data, 𝒔 𝑣 , and matrix 𝑫 = [ 𝒅 1 , … , 𝒅 𝑉 ] to
old the dMRI voxel data, 𝒅 𝑣 . We explore different representations of

 in later sections. 
𝑣 

3 
Using this notation and applying Bayes’ rule, the posterior probabil-

ty of a specific labelling for a pair of sMRI and dMRI scans of a subject

s: 

 ( 𝑳 |𝑺 , 𝑫 ) ∝ 𝑝 ( 𝑺 , 𝑫 |𝑳 ) 𝑝 ( 𝑳 ) , (1) 

nd the labelling that maximises Eq. (1) is known as the maximum a

osteriori ( MAP ) estimate for the segmentation. To obtain this MAP esti-

ate we need both the likelihood distribution, 𝑝 ( 𝑺 , 𝑫 |𝑳 ) , of our imaging

ata given a segmentation, and a prior distribution, 𝑝 ( 𝑳 ) , generated from

rior anatomical knowledge of the thalamus and its surroundings. As

hese can be used to generate random scans by sampling first from the

rior then from the likelihood, segmentation can be thought of as fitting

 generative probabilistic forward model to our data and “inverting ” it

o obtain the labelling. 

To make the problem in Eq. (1) tractable, we assume: i) that both

he likelihood and prior factorise over voxels and ii) that the sMRI and

MRI are independent of each other given the labels. The exact graphical

odel of our framework is shown in Fig. 2 . At the top of this model we

efine the prior distribution on the labels, beginning with a probabilistic

tlas 𝐴. This atlas is constructed within a reference brain space, meaning

t is likely to match the topology of any segmentation subject, but will

equire deformation to match accurately. The atlas 𝐴 provides, at each

patial location, the prior probability of observing each neuroanatom-

cal label class. We define 𝐴 on a deformable tetrahedral mesh, where

ach vertex has an associated vector of class probabilities, and barycen-

ric interpolation can be used to obtain probabilities at non-vertex lo-

ations ( Van Leemput, 2009 ). We define a set of parameters, 𝜽𝑎 , that

ove the mesh nodes to deform the atlas into the space of the target

RI voxel grid, accommodating the anatomical variability across sub-

ects. These parameters are themselves a sample from a distribution that

s regularised by setting the stiffness 𝜸𝑎 , preventing folding of the atlas

esh and preserving topology. We then assume that our labelling 𝐿 is

ampled from the categorical distribution over classes defined by the de-

ormed atlas, with each voxel location sampled independently allowing

actorisation. 

Given 𝐿 we can define the likelihood model for our observed data.

e assume that the sMRI and dMRI are conditionally independent from

ach other and across voxels given the labelling, with 𝒔 𝑣 and 𝒅 𝑣 mod-

lled as samples from separate distributions parameterised by 𝜽𝑠 
𝑐 

and 𝜽𝑑 
𝑐 

espectively. These hidden parameters are dependent on the correspond-

ng label 𝑙 𝑣 = 𝑐. Any prior knowledge on these parameters is encoded in

rior distributions controlled by hyperparameters 𝜸𝑠 and 𝜸𝑑 . 

𝑐 𝑐 
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Under these assumptions we can define the full joint probability den-

ity function ( PDF ) for Fig. 2 as 

 ( 𝑺 , 𝑫 , 𝑳 , 𝜽|𝐴, 𝜸) 
= 𝑝 ( 𝑺 |𝑳 , 𝜽𝑠 ) 𝑝 ( 𝑫 |𝑳 , 𝜽𝑑 ) 𝑝 ( 𝑳 |𝐴, 𝜽𝑎 ) 𝑝 ( 𝜽|𝜸) 
= 

( 

𝑉 ∏
𝑣 =1 

𝑝 ( 𝒔 𝑣 |𝜽𝑠 𝑙 𝑣 ) 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑙 𝑣 ) 𝑝 ( 𝑙 𝑣 |𝐴, 𝜽𝑎 ) 
) 

( 

𝐶 ∏
𝑐=1 

𝑝 ( 𝜽𝑠 
𝑐 
|𝜸𝑠 

𝑐 
) 𝑝 ( 𝜽𝑑 

𝑐 
|𝜸𝑑 

𝑐 
) 

) 

𝑝 ( 𝜽𝑎 |𝜸𝑎 ) , (2) 

here 𝜽 = { 𝜽𝑠 
𝑐 
, 𝜽𝑑 

𝑐 
, 𝜽𝑎 

𝑐 
} and 𝜸 = { 𝜸𝑠 

𝑐 
, 𝜸𝑑 

𝑐 
, 𝜸𝑎 

𝑐 
} . 

With the model described by Fig. 2 and Eq. (2) we can formulate

he MAP estimate for our segmentation as 

 MAP = arg max 
𝑳 

𝑝 ( 𝑺 , 𝑫 |𝑳 , 𝐴, 𝜸) 𝑝 ( 𝑳 |𝐴, 𝜸) 
= arg max 

𝑳 ∫ 𝑝 ( 𝑺 , 𝑫 |𝑳 , 𝜽, 𝐴 ) 𝑝 ( 𝑳 |𝜽, 𝐴 ) 𝑝 ( 𝜽|𝑺 , 𝑫 , 𝐴, 𝜸) d 𝜽. (3) 

owever, integrating the joint PDF over the full space of possible pa-

ameters 𝜽 is intractable. For this reason we make the standard assump-

ion that the posterior distribution of the hidden parameters is heavily

eaked around the mode, 𝑝 ( 𝜽|𝑆, 𝐷) ≃ 𝛿( 𝜽 − ̂𝜽) . In this way, we can seg-

ent our images by applying Bayes’ rule to Eq. (2) and marginalising

ver the hidden labelling 𝐿 to obtain these optimal hidden parameters

so called ”point estimates ”): 

̂ = arg max {
𝜽𝑎 , 𝜽𝑠 , 𝜽𝑑 

}
[ 

𝑝 ( 𝜽𝑎 |𝜸𝑎 ) 𝑝 ( 𝜽𝑠 |𝜸𝑠 ) 𝑝 ( 𝜽𝑑 |𝜸𝑑 ) 
∑
𝑳 

𝑝 ( 𝑺 , 𝑫 |𝑳 , 𝜽𝑠 , 𝜽𝑑 ) 𝑝 ( 𝑳 |𝜽𝑎 , 𝐴 ) 

] 

, (4) 

nd then optimising 𝐿 to obtain the MAP estimate 

 MAP = arg max 
𝑳 

𝑝 ( 𝑺 , 𝑫 |𝑳 , ̂𝜽, 𝐴 ) 𝑝 ( 𝑳 |�̂�, 𝐴 ) . (5)

.2. Parameter estimation and segmentation 

The first step is to estimate the optimal hidden parameters �̂� from

q. (4) . We begin by formulating the likelihood PDFs for both sMRI and

MRI as mixture models. Each label class in the atlas is described by its

wn mixture model constructed using a selection from 𝐺 structural and

 diffusion component distributions. The likelihoods of 𝒔 𝑣 and 𝒅 𝑣 given

embership of voxel 𝑣 in class 𝑐 are then 

 ( 𝒔 𝑣 |𝜽𝑠 𝑐 ) = 

∑
𝑖 

𝑔 𝑐,𝑖 𝑝 ( 𝒔 𝑣 |𝜽𝑠 𝑖 ) , 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑐 ) = 

∑
𝑗 

𝑤 𝑐,𝑗 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑗 ) . (6)

ere, 𝑔 𝑐,𝑖 ≥ 0 and 𝑤 𝑐,𝑗 ≥ 0 are mixture weights in the model of label class

indicating the contribution of the 𝑖 -th sMRI and 𝑗-th dMRI components

o the appearance of the class in the respective modality. These distri-

utions are parameterised by 𝜽𝑠 
𝑖 

and 𝜽𝑑 
𝑗 
, respectively, with 𝑖 ∈ 1 , … , 𝐺

nd 𝑗 ∈ 1 , … , 𝑊 . In both cases the sum over the component weights for

 given class must be equal to one, 
∑

𝑖 𝑔 𝑐,𝑖 = 1 and 
∑

𝑗 𝑤 𝑐,𝑗 = 1 , ensuring

ll white- and grey-matter class boundaries are informed by both struc-

ural and diffusion contrast. This formulation provides a high degree of

exibility, allowing us to specify a priori combinations of classes that

ay be modelled using the same parameters. 

Combining Eq. (6) with Eqs. (2) and (4) and taking logarithms we

an then obtain an objective function to be optimised with respect to

he distribution parameters, 

𝑂( 𝜽|𝑺 , 𝑫 , 𝐴, 𝜸) 

= log 𝑝 ( 𝜽𝑎 |𝜸𝑎 ) + 

𝐺 ∑
𝑖 

log 𝑝 ( 𝜽𝑠 
𝑖 
|𝜸𝑠 

𝑖 
) + 

𝑊 ∑
𝑗 

log 𝑝 ( 𝜽𝑑 
𝑗 
|𝜸𝑑 

𝑗 
) 
4 
+ 

𝑉 ∑
𝑣 

log 
𝐶 ∑
𝑐 

𝑝 ( 𝑙 𝑐 
𝑣 
|𝐴, 𝜽𝑎 ) [ 

𝐺 ∑
𝑖 

𝑔 𝑐,𝑖 𝑝 ( 𝒔 𝑣 |𝜽𝑠 𝑖 ) 
] [ 

𝑊 ∑
𝑗 

𝑤 𝑐,𝑗 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑗 ) 
] 

. (7) 

o optimise Eq. (7) we adapt the approach proposed by

uonti et al. (2016) . In this approach the atlas deformation pa-

ameters and likelihood parameters are optimised iteratively in a

oordinate ascent scheme, with each being optimised while the other

s fixed. The optimisation of the 𝜽𝑎 is performed using a standard

onjugate gradient operator with the deformation prior 𝑝 ( 𝜽𝑎 |𝜸𝑎 ) taking

he form of the penalty term defined by Ashburner et al. (2000) . The

ikelihood parameters 𝜽𝑠 and 𝜽𝑑 are then optimised using a Generalised

xpectation Maximisation ( GEM ) algorithm ( Dempster et al., 1977;

an Leemput et al., 1999 ), iterating between expectation ( E ) and

aximisation ( M ) steps. 

 step: In the E step, we build a lower bound 𝑄 ( 𝜽) for the objective

unction in Eq. (7) using Jensen’s inequality: 

 ( 𝜽) = log 𝑝 ( 𝜽𝑎 |𝜸𝑎 ) + 

𝐺 ∑
𝑖 

log 𝑝 ( 𝜽𝑠 
𝑖 
|𝜸𝑠 

𝑖 
) + 

𝑊 ∑
𝑗 

log 𝑝 ( 𝜽𝑑 
𝑗 
|𝜸𝑑 

𝑗 
) 

+ 

∑
𝑣,𝑐,𝑖,𝑗 

𝑞 𝑐,𝑖,𝑗 
𝑣 

log 
[
𝑝 ( 𝑙 𝑐 

𝑣 
|𝐴, 𝜽𝑎 ) 𝑝 ( 𝒔 𝑣 |𝜽𝑠 𝑖 ) 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑗 ) ]

− 

∑
𝑣,𝑐,𝑖,𝑗 

𝑞 𝑐,𝑖,𝑗 
𝑣 

[
log 𝑞 𝑐,𝑖,𝑗 

𝑣 
− log 𝑔 𝑐,𝑖 − log 𝑤 𝑐,𝑗 

]
. (8) 

ere 𝑙 𝑐 
𝑣 

indicates the event that the voxel label 𝑙 𝑣 = 𝑐 and 𝑞 
𝑐,𝑖,𝑗 
𝑣 is a soft

egmentation at the current parameter estimates indicating the combi-

ation of class 𝑐, sMRI distribution 𝑖 and dMRI distribution 𝑗: 

 

𝑐,𝑖,𝑗 
𝑣 

= 

𝑔 𝑐,𝑖 𝑤 𝑐,𝑗 𝑝 ( 𝑙 𝑐 𝑣 |𝐴, 𝜽𝑎 ) 𝑝 ( 𝒔 𝑣 |𝜽𝑠 𝑖 ) 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑗 ) ∑
{ 𝑐,𝑖,𝑗} 𝑔 𝑐,𝑖 𝑤 𝑐,𝑗 𝑝 ( 𝑙 𝑐 𝑣 |𝐴, 𝜽𝑎 ) 𝑝 ( 𝒔 𝑣 |𝜽𝑠 𝑖 ) 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑗 ) . (9) 

 step: In the generalised M step we attempt to increase the bound 𝑄 ( 𝜽)
n Eq. (8) . We note that the two sets of distribution parameters 𝜽𝑠 

𝑖 
and 𝜽𝑑 

𝑗 

an be optimised individually, as they make independent contributions

o the bound: 

 𝑠 ( 𝜽𝑠 𝑖 ) = log 𝑝 ( 𝜽𝑠 
𝑖 
|𝜸𝑠 

𝑖 
) + 

𝑉 ∑
𝑣 

[ ∑
𝑐,𝑗 

𝑞 𝑐,𝑖,𝑗 
𝑣 

] 

log 𝑝 ( 𝒔 𝑣 |𝜽𝑠 𝑖 ) , (10)

 𝑑 ( 𝜽𝑑 𝑗 ) = log 𝑝 ( 𝜽𝑑 
𝑗 
|𝜸𝑑 

𝑗 
) + 

𝑉 ∑
𝑣 

[ ∑
𝑐,𝑖 

𝑞 𝑐,𝑖,𝑗 
𝑣 

] 

log 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑗 ) . (11)

hese contributions can then be optimised using either closed form so-

utions or numerical methods, depending on the distribution used as we

ill describe in Section 2.3 . Finally we can calculate the new optimal

eightings as 

 𝑐,𝑖 = 

∑
{ 𝑣,𝑗} 𝑞 

𝑐,𝑖,𝑗 
𝑣 ∑

{ 𝑣,𝑖,𝑗} 𝑞 
𝑐,𝑖,𝑗 
𝑣 

𝑤 𝑐,𝑗 = 

∑
{ 𝑣,𝑖 } 𝑞 

𝑐,𝑖,𝑗 
𝑣 ∑

{ 𝑣,𝑖,𝑗} 𝑞 
𝑐,𝑖,𝑗 
𝑣 

(12)

egmentation: The mesh deformation and likelihood parameter opti-

isation steps are repeated alternately until the objective function in

q. (7) has converged. At this point, we note that the formulation of

he posterior factorises over voxels and the posterior probability of each

lass may be found by summing over the soft segmentations 𝑞 
𝑐,𝑖,𝑗 
𝑣 . Hence

he final MAP estimate segmentation is given by 

̂
 𝑣 = arg max 

𝑐 

𝐺 ∑
𝑖 =1 

𝑊 ∑
𝑗=1 

𝑞 𝑐,𝑖,𝑗 
𝑣 

. (13) 

.3. Likelihoods 

So far, we have outlined the Bayesian framework and segmentation

rocess without specifying the likelihood models used for both sets of
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2

RI data. The steps outlined above are not affected by the choice of dis-

ributions used. Here we provide an overview of the distributions used

o model the sMRI and dMRI data, including the likelihood term and,

here applicable, the prior over its parameters. Detailed equations for

he calculation of PDF values as well as the optimisation of model pa-

ameters, 𝜽, may be found in Section S.1 of the supplement. 

.3.1. Structural MRI model 

To model the sMRI intensities, we follow the Bayesian brain MR seg-

entation literature and use a mixture of Gaussian intensity distribu-

ions ( Ashburner and Friston, 2005; Van Leemput et al., 1999; Zhang

t al., 2001 ). In this model the intensity values for each structural modal-

ty are held in the vector 𝒔 𝑣 and the model parameters 𝜽𝑠 
𝑖 

are the mean

nd covariance, { 𝝁𝑖 , Σ𝑖 } , of the structural mixture component 𝑖 . We

hoose to use the natural conjugate prior, the Normal-Inverse-Wishart

istribution, on these Gaussian parameters. The likelihood and prior dis-

ributions are therefore 

 ( 𝒔 𝑣 |𝜽𝑠 𝑖 ) ∼  ( 𝝁𝑖 , Σ𝑖 ) , 𝑝 ( 𝝁𝑖 , Σ𝑖 |𝜸𝑠 𝑖 ) ∼   ( 𝑴 

𝑠 
𝑖 
, 𝑛 𝑠 

𝑖 
, Ψ𝑠 

𝑖 
, 𝜈𝑠 

𝑖 
) , (14)

here 𝑴 

𝑠 
𝑖 
, 𝑛 𝑠 

𝑖 
, Ψ𝑠 

𝑖 
and 𝜈𝑠 

𝑖 
encode any prior knowledge we may have on the

tructural distribution. Formulations for the structural PDFs and closed

orm solutions to the parameter M step parameter optimisations can be

ound in Section S.1.1 of the supplement. 

.3.2. Diffusion MRI models 

To model the dMRI data, we consider distributions over tensors es-

imated with DTI. Even though higher-order models can be used with

odern dMRI acquisitions, using DTI models ensures that our method is

ompatible with virtually every dMRI dataset, including huge amounts

f legacy data. In this work, we compare two competing models, based

n the Wishart and Gaussian distributions, to our previously-proposed

SW-beta distribution ( Iglesias et al., 2019 ). 

ishart: Following existing white matter fibre modelling literature, we

ook to the Wishart distribution ( Jian and Vemuri, 2007 ). DTI produces

t each voxel a covariance matrix describing the displacements of wa-

er molecules in the voxel. Therefore, the natural conjugate prior for

hese tensors is an Inverse-Wishart distribution. We use this in combi-

ation with a Gamma distribution on the degrees of freedom parameter

 Görür and Rasmussen, 2010 ), with the effect of lowering the degrees

f freedom and increasing the breadth of the resulting Wishart distribu-

ions. In this model, we define 𝒅 𝑣 as the inverse of the diffusion tensor 𝑇 𝑣 .

e then use the Wishart and Gamma distributions to model 𝒅 𝑣 and 𝜽𝑑 
𝑗 
:

 𝑣 ∼ ( 𝑛 𝑑 
𝑗 
, 𝑉 𝑑 

𝑗 
) , ( 𝑛 𝑑 

𝑗 
− 2)∕2 ∼ Γ( 𝛼, 𝛽) , (15)

here 𝛼 and 𝛽 are set to 0.5 and 1.5 respectively to provide a non-

nformative prior. Formulations for the Wishart PDFs and the optimisa-

ion problem in the M step can be found in Section S.1.2 of the supple-

ent. 

og-Gaussian: This model is motivated by literature on the interpolation

f DTI volumes. Direct interpolation of DTI can lead to swelling of the

llipsoids representing the diffusion tensors, but interpolating in the log

omain reduces this effect ( Arsigny et al., 2006; Dryden et al., 2009 ).

or this reason, and noting that the DTI tensors, 𝑇 𝑣 , are symmetric with

nly six independent variables, we define 𝒅 𝑣 as a vector 

 𝑣 = 𝑃 vec ( log 𝑇 𝑣 ) , vec ( log 𝑇 𝑣 ) = 𝑃 ⊤𝒅 𝑣 , (16) 

here 𝑃 is a constant 6 × 9 matrix (values listed in supplement) designed

ith the constraint that 

log ( 𝑇 1 ) − log ( 𝑇 2 ) ‖2  = ‖𝒅 1 − 𝒅 2 ‖2 2 , (17)

nd therefore interpolation of the vectors 𝒅 𝑣 is equivalent to interpo-

ation of the tensors in the log domain. In this formulation the natural
5 
istribution to choose based on the distance metric in Eq. (17) is a

aussian distribution with a scalar variance 

 𝑣 ∼  ( 𝒎 

𝑑 
𝑗 
, 𝜎𝑑 

𝑗 
) . (18)

e then define uniform priors on both 𝒎 

𝑑 
𝑗 

and 𝜎𝑑 
𝑗 

due to the difficulty in

nforming these parameters a priori. Formulations for the log-Gaussian

DFs and the optimisation problem in the M step can be found in Sec-

ion S.1.3 of the supplement. 

SW-beta: This model is a custom combination of two distributions pro-

osed in our prior work ( Iglesias et al., 2019 ). This was motivated by a

esire to lower the dimensionality of 𝒅 𝑣 , leading to a reduction in ex-

reme values of the likelihood that may overwhelm the prior. Here only

he fractional anisotropy ( FA ), 𝑓 𝑣 , and the principal eigenvector, 𝝓𝑣 , of

he tensor 𝑇 𝑣 are modelled so that 𝒅 𝑣 = { 𝑓 𝑣 , 𝝓𝑣 } . In this approach, we

se the two parameter Beta distribution to model the FA as it is able to

odel both the location and dispersion of signals in the range [0,1]. We

hen use the DSW distribution to model 𝝓𝑣 . 

The DSW distribution is defined on the unit sphere and parame-

erised by a mean direction 𝜓 and a concentration 𝜅, giving a PDF of

he form 

 ( 𝝓|𝜓, 𝜅) = [ 𝑍( 𝜅) ] −1 exp 
{ 

𝜅
(
( 𝝍 ) ⊤𝝓

)2 } 

, (19)

here 𝑍( 𝜅) is a normalising constant given by the Kummer func-

ion in 3D ( Mardia et al., 2000 ). As the DSW distribution is antipo-

ally symmetric, it accommodates the directional invariance of dMRI

 Zhang et al., 2012 ). It is also rotationally symmetric around a mean

irection and its opposite { 𝝍 , − 𝝍 ∶ ‖𝝍 ‖ = 1} , with a dispersion around

he mean parameterised by the concentration 𝜅. This 𝜅 allows us to

ncorporate the higher directional dispersion in voxels with lower FA

y multiplying the component specific concentration by the voxel FA

o give an effective concentration for each voxel. The likelihood distri-

ution in this formulation of the dMRI is therefore a joint DSW-beta

istribution 

 𝑣 ∼  ( 𝛼𝑑 
𝑗 
, 𝛽𝑑 

𝑗 
) , 𝝓𝑣 ∼  ( 𝝍 

𝑑 
𝑗 
|𝑓𝜅𝑑 

𝑗 
) . (20)

ormulations for the DSW-beta PDFs and M step can be found in Sec-

ion S.1.4 of the supplement. 

.4. Prior distribution: An improved probabilistic atlas of the thalamus 

In Iglesias et al. (2018) , we presented a highly detailed probabilistic

tlas of the human thalamus built from a combination of in vivo MRI

nd histology. The spatial distribution of the thalamic nuclei was learnt

rom manual delineations drawn on 3D reconstructed histological sec-

ions from 12 specimens ( Fig. 3 a), whereas 39 MRI scans with manual

elineations ( Fischl et al., 2002 ) were used to learn the distribution of

urrounding tissue ( Fig. 3 b). Direct use of this atlas ( Fig. 3 d) in our new

ramework is not ideal, as the cerebral white matter was modelled us-

ng only two classes – one per hemisphere. While such a parsimonious

odel with a single component is adequate for modelling the unimodal

istribution of white mater intensities in sMRI, it is largely insufficient

o model the dMRI orientations. The distribution over white matter vox-

ls is highly multimodal due to the variety of fibre tracts that traverse

his tissue in different orientations. 

In principle we could model such a complex distribution using a

ixture model with many components. However, such an approach is

ikely to fail, as some of these components may end up modelling non-

hite-matter tissue. Instead, we have refined our atlas by subdividing

he white matter surrounding the thalamus into 45 tracts. To achieve

his, we complemented the training data in Iglesias et al. (2018) (12 ex

ivo thalami and 39 in vivo whole brains) with in vivo sMRI/dMRI data

rom 16 additional subjects, that were labelled manually as part of an

pdate ( Maffei et al., 2021 ) to the TRACULA (TRacts Constrained by Un-

erLying Anatomy) package distributed with FreeSurfer ( Yendiki et al.,

011 ). 
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Fig. 3. (a-c) Types of segmentations used to build the atlas. (a) Coronal histolog- 

ical section of the thalamus, with manual delineations of the nuclei. (b) Coronal 

slice of an in vivo T1-weighted MRI scan, with manual delineations for whole 

brain structures. (c) Similar coronal slice of one of the new 16 cases, with the 

white matter subdivided into tracts. (d-e) Corresponding axial slices of the pre- 

vious and updated probabilistic atlases; colours are linear combinations of look 

up table colours weighted by their corresponding probability in each version of 

the atlas. The original atlas (d) was trained with segmentations like the ones in 

(a-b), while the new atlas used (a-c). 
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The TRACULA training set (16 healthy adults from the publicly

vailable MGH-USC HCP; Fan et al. 2016 ) consisted of dMRI data, ac-

uired using 512 directions at a maximum b-value of 10,000 𝑠 ∕ 𝑚𝑚 

2 

ith 1.5 mm isotropic spatial resolution, and sMRI T1-weighted data, ac-

uired with an MPRAGE sequence at 1 mm isotropic resolution. Cortical

arcellations and subcortical segmentations, including the whole tha-

ami and cerebral white matter (left and right), were obtained through

reeSurfer ( Dale et al., 1999; Fischl et al., 2004; 2002; 1999 ). Whole-

rain probabilistic tractograms were generated for each subject us-

ng constrained spherical deconvolution approaches ( Jeurissen et al.,

014; Tax et al., 2014 ) and streamlines used to manually label 42

hite matter tracts through a combination of inclusion and exclu-

ion criteria ( Maffei et al., 2021 ). Resulting tractograms were trans-

ormed to the sMRI of the subject using a boundary-based, affine reg-

stration method ( Greve and Fischl, 2009 ) and converted into visi-

ation maps. These soft segmentations were spatially smoothed with

 Gaussian kernel ( 𝜎 = 2mm). For each white matter voxel in the

reeSurfer subcortical segmentation, we replaced its label by the tract

ith the highest probability (unless such probability was below 5%),

ividing the white matter into 42 tracts and a generic white matter

lass ( Fig. 3 c). 

The three types of segmentations ( Fig. 3 a-c) were used to rebuild the

tlas, using a technique that enables combining labellings with different

evels of detail ( Iglesias et al., 2015 ). As a last adjustment, we manually

xcluded tracts not passing adjacent to the thalamus and subdivided la-

els corresponding to regions with identified heterogeneity of dMRI con-

rast. This subdivision principally affected the anterior commissure and

he tracts comprising the corpus callosum, which were split into their

eft and right hemisphere components to account for reflective symme-

ry. The resulting atlas therefore contains 45 final labels for the white

atter tracts. Each of these subclasses can be modelled either with uni-

odal distributions or mixtures with very few components, effectively

reventing the modelling of non-white-matter tissue. Additionally, the

edial pulvinar nuclei ( PuM ) were also split into lateral and medial

lasses to account for the typically more left-right directionality of their

ateral portion. This is consistent with known connectivity differences

etween the medial and lateral portions of the PuM ( Benarroch, 2015 ).

s this split in our atlas was not derived directly from histological la-
6 
els, we model these two PuM classes separately during optimisation

nd merge them for output. 

Fig. 3 shows a comparison of the new ( Fig. 3 e) and old ( Fig. 3 d) at-

ases. The voxel colours in Fig. 3 (d-e) are a linear combination of the

abel colours, weighted by their corresponding probability in each ver-

ion of the atlas, providing a visual representation of smooth changes

n the atlas for regions at the boundary of multiple labels. The new at-

as is almost identical to the original, with the addition of more specific

abels in the white mater and PuM. However, as with our previous at-

as, the reticular and other classes outside the thalamus are used only

or modelling purposes and are merged into the background for output,

esulting in the segmentation of 50 labels. 

.5. Implementation details 

.5.1. Data preparation 

We assume that the sMRI has been processed with FreeSurfer, which

ields a bias field corrected image and a whole brain segmentation

 aseg.mgz , Fischl et al. 2002 ). The labels in aseg.mgz are used to initialise

oth the atlas deformation ( Iglesias et al., 2015; 2018 ) and hyperparam-

ters in the structural prior in Eq. (14) . In practice the hypermean 𝑴 

𝑠 
𝑖 

s estimated from the median of the relevant label in this initial coarse

egmentation, and 𝑛 𝑠 
𝑖 

relates to the number of voxels used in estimating

 

𝑠 
𝑖 
. However, it is more difficult to robustly inform prior distributions

f the covariance, so we set both Ψ𝑠 
𝑖 

and 𝜈𝑠 
𝑖 

to zero to provide a non-

nformative prior, giving the set of prior parameters 𝜸𝑠 
𝑖 
= { 𝑴 

𝑠 
𝑖 
, 𝑛 𝑠 

𝑖 
} . 

We also assume that the source dMRI has been put through the

reprocessing stages of TRACULA ( Maffei et al., 2021; Yendiki et al.,

011 ). This includes FSL’s eddy current and subject motion correction

 Andersson and Sotiropoulos, 2016 ) before fitting the tensor model. Ad-

itionally, we identify DTI voxels with poor fits as those with tensors

hat have negative eigenvalues or FA outside the range [0,1]. These are

eplaced by a local average tensor constructed by convolution of the log

pace tensors with a 3D Gaussian kernel. These cleaned tensors are con-

erted to the log domain ( Arsigny et al., 2006 ) before interpolation to

he voxel grid of the sMRI. 

.5.2. Mixture model specification 

The assignment of component distributions to label classes is one of

he modelling choices that must be made before segmentation. We as-

ign structural and diffusion components independently for each label

lass, defining what we will call the structural mixture model ( sMM ) and

iffusion mixture model ( dMM ) respectively. In practice, this constrains

ost weights 𝑔 𝑐,𝑖 and 𝑤 𝑐,𝑗 to 0 or 1, with a single component distribu-

ion often shared between groups of labels. However, we do allow for

any-to-many relationships between the label-classes and components.

or example, allowing the structural appearance of the CSF label to be

odelled by two Gaussian components, one for ”clean ” CSF that is also

sed to model ventricle labels and one for ”messy ” CSF that is shared

ith the choroid plexus. 

For class likelihoods composed of multiple distributions, the non-

ero weights are set to be equal for the first E step and initial component

arameters are obtained by use of k-means clustering. Details of this

lustering for each likelihood formulation can be found in Section S.3

f the supplement, while optimisation of the default sMM and dMM

efinitions is performed in Section 3.2 . 

.5.3. Reflective symmetry 

A common regularising constraint applied in structural Bayesian seg-

entation algorithms is to use a single distribution to model structures

resent in both hemispheres, even if they are subsequently given sepa-

ate labels denoting their hemisphere. Such constraints have a similar

ffect to increasing the sample size in fitting the distribution, reducing

he effect of outliers from initialisation errors or local intensity varia-

ions on the resulting segmentation. Hence we enforce this constraint in

ur sMRI modelling as well as a similar constraint on the dMRI models.
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Due to the directionality of dMRI data we cannot enforce a single

istribution to model two contralateral structures as in sMRI. Instead

e make the assumption that there is a reflectional symmetry between

he distributions on either side of the midline. This can be visualised as

eflecting the average ellipsoids described by each distribution in some

lane such as the medial plane. However, in practice such a plane of

eflective symmetry is unlikely to be aligned perfectly with the scan-

er coordinate system. For this reason we obtain the plane of reflection

rom the dMRI data itself, optimising a vector normal to the plane of

eflection, 𝒓 , initially assumed to be parallel to the left-right axis of the

oxel grid. 

Prior to each M step, we substitute reflected distribution parameters

o the bound in Eq. (8) and formulate the contribution of 𝒓 , producing

n optimisation that can be written in the form 

 = arg max 
𝒓 ∶ ‖𝒓 ‖=1 

𝑊 ∑
𝑗=1 

𝑓 

(
𝜽𝑑 
𝑗 

) 𝑉 ∑
𝑣 =1 

ℎ 

(
𝑞 𝑗 
𝑣 
, 𝜽𝑑 

𝑗 
, 𝒅 𝑣 , 𝒓 

)
. (21)

ere, ℎ ( ⋅) is a function of the location statistics (e.g. mean vectors for

og-Gaussian and DSW-beta), the dMRI voxel data and the diffusion com-

onent posteriors, ensuring contributions to the objective are weighted

y their certainty. Similarly, 𝑓 ( ⋅) is a function of the dispersion statis-

ics (e.g. precision, concentration or degrees of freedom) which ensures

he contributions of each component distribution are weighted more

trongly when more heavily peaked. 

Detailed formulations for the reflection optimisation and joint distri-

ution fitting can be found in Section S.1 of the supplement. In each case

he objective is a fourth order polynomial in 𝒓 with closed form first and

econd derivatives and can be optimised using an interior-point method.

e can then jointly fit parameters for corresponding component distri-

utions in the left and right hemispheres. 

.5.4. Likelihood adjustment 

Our model assumes that the resolutions of the dMRI and sMRI are

dentical. While datasets such as the HCP deviate from this assumption

o a lesser degree, conventional quality datasets have much lower reso-

ution for the dMRI in particular, for example T1-weighted images are

ypically acquired with each voxel dimension at approximately 1 mm

hile dMRI voxel dimensions can approach 2.5 mm in each direction.

s we resample to the resolution of the sMRI, more dMRI voxels are used

n likelihood parameter estimation than are available from the source

maging, which leads to overfitting of the dMRI. In practice, we coun-

eract this effect by raising the contribution of the dMRI likelihood in

q. (7) to a fractional power 𝜖, thereby downplaying the weight of the

MRI voxels in the objective. 

To choose the value of 𝜖 we then examine the effect of this change

n the M step bound in Eq. (11) , which becomes 

 𝑑 ( 𝜽𝑑 𝑗 ) = log 𝑝 ( 𝜽𝑑 
𝑗 
|𝜸𝑑 

𝑗 
) + 𝜖

𝑉 ∑
𝑣 

[ ∑
𝑐,𝑖 

𝑞 𝑐,𝑖,𝑗 
𝑣 

] 

log 𝑝 ( 𝒅 𝑣 |𝜽𝑑 𝑗 ) . (22)

ere we see that optimisation of the diffusion parameters is performed

ith contributions from a total of 𝑉 voxels which have been obtained by

nterpolation from a smaller number of voxels 𝑉 𝑑 . By setting 𝜖 equal to

he ratio of voxel sizes between dMRI and sMRI, the sum in Eq. (22) be-

omes approximately equal to the sum over 𝑉 𝑑 voxels, where the con-

ribution of each source voxel is a weighted mean of the surrounding

nterpolated voxel contributions. Further details can be found in Sec-

ion S.2 of the supplement. 

. Experiments and results 

To quantitatively evaluate our method and compare between the

hree likelihood formulations we performed experiments using co-

egistered sMRI and dMRI from three datasets. In Section 3.1 we gen-

rate a population template from HCP subjects, and use it to identify

anually segmentable labels corresponding to groups of labels from our
7 
istological atlas. In Section 3.2 we use this template to tune our method

n a process of model selection. In Section 3.3 we evaluate application

f our method to high resolution dMRI on subjects from HCP, including

omparisons to manual segmentations and test-retest reliability. Finally,

n Section 3.4 we evaluate application of our method to conventional

uality dMRI. This includes test-retest reliability on images acquired lo-

ally at the University College London Dementia Research Centre ( UCL

RC ) and indirect evaluation on subjects with underlying pathologies

y testing our method’s ability to distinguish between healthy controls

nd subjects with AD from the ADNI dataset. 

In the following experiments, when comparing regions of interest

ROIs) corresponding to the same label in two separate segmentations

e use the Dice Similarity Coefficient ( DSC ) and 95 th percentile of Haus-

orff distance ( 95HD ). For two ROIs 𝑋 and 𝑌 these are defined as 

SC ( 𝑋, 𝑌 ) = 

2 ‖𝑋 ∩ 𝑌 ‖‖𝑋‖ + ‖𝑌 ‖ , (23)

5HD ( 𝑋, 𝑌 ) = max (d 95 ( 𝑋, 𝑌 ) , d 95 ( 𝑌 , 𝑋)) , (24)

here ‖ ⋅ ‖ indicates the volume of the ROI and d 95 ( 𝑋, 𝑌 ) is the 95 th 

ercentile of the set of distances between points on the ROI boundaries,

 𝑑 𝑥 = min 𝑦 ∈𝑆 𝑌 |𝑥 − 𝑦 |} 𝑥 ∈𝑆 𝑋 
Additionally, when comparing to segmentations performed using our

revious structural-only method ( Iglesias et al., 2018 ), we show results

roduced using the code distributed as part of FreeSurfer 7.2. However,

n an attempt to ensure fair quantitative comparisons, the default mesh

tiffness parameter of this structural implementation was increased to

atch the joint model that had been developed on the HCP dataset. This

mproved both the DSC and 95HD structural results compared to the

efault FreeSurfer distribution. Visual comparisons of these structural

egmentations with and without mesh stiffness tuning can be found in

ection S.6 of the supplement. 

.1. Population template and manual labels 

When evaluating segmentation methods for medical images, it is

ommon practice to compare the resulting label maps to a gold standard,

sually obtained from manual delineation by a trained rater. However,

anual delineation of 50 histological labels on in vivo MRI is infeasible,

s many of the boundaries between are invisible at ∼1mm resolution.

anual segmentation protocols for larger groups of thalamic regions

with fewer labels) exist in the literature ( Tourdias et al., 2014 ), but

heir anatomical definitions are incompatible with those of our histo-

ogical labels, introducing bias and preventing direct and fair compar-

son. In this study, our goal is to compare the performance of our tool

ith a gold standard that is based on our 50 histological labels and in-

ormed by both sMRI and dMRI contrast. For this reason, we adapted

hese labels to define our own manual segmentation criteria for thala-

ic labels that can be accurately visualised and segmented on a com-

ination of T1-weighted MPRAGE and directionally-encoded colour FA

 DEC-FA ); when labels of smaller thalamic nuclei were not identifiable

rom the intensity and contrast of the MRIs, these labels were combined

nd grouped together, so that the boundaries of the original 50 histo-

ogical atlas labels can be easily matched and compared. 

The first step in defining these criteria was to create a high reso-

ution template using 500 subjects from the WashU-UMN HCP dataset

 Van Essen et al., 2013 ) and an unbiased template construction method

 Joshi et al., 2004 ). We used three channels in the registration: T1-

eighted intensity, T2-weighted intensity, and FA. In order to include

irectional information in the template, we used the final set of regis-

rations to align and average the DTI tensors in the log domain. The

esolution of the template is equal to the resolution of the HCP sMRI

ata, i.e., 0.7mm isotropic. Slices from the template are shown in Fig. 4 .

As a second step to define the gold standard for comparison, we reg-

stered the histological atlas to the template, producing a preliminary

egmentation of 50 separate thalamic labels. This preliminary segmen-

ation was then manually refined by an anatomy expert (JA, assisted
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Fig. 4. Representative axial view of the 10 label manual segmentation over- 

laid on the T1-weighted (left) and DEC-FA (right) population templates of the 

thalamus. Additional views are shown in Section S.8 of the supplement. Man- 

ually segmented label colour maps are given in Table 1 as are groupings for 

quantitative analysis. 

Table 1 

Summary of the label merging operations used to generate the manually seg- 

mented labels from histological atlas nuclei, and groupings of manual labels used 

for evaluation. Displayed colours follow the convention used in figures through- 

out this manuscript. Abbreviation definitions are listed in Section S.4 of the sup- 

plement. Visual comparisons of these three protocols are shown in Section S.8 

of the supplement. 
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Fig. 5. TOPSIS fitness plot for combinations of structural (horizontal axis) and 

diffusion (vertical axis) grouping models in the DSW-beta likelihood framework. 

Higher values indicate the combination of models produced Dice scores and 

boundary distances closer on average to the best value for each label. A mapping 

from model numbers to parameter groupings is provided as a spreadsheet in the 

supplementary material. 
y MB), to correct any anatomical errors from registration, and to com-

ine those thalamic regions which were not reliably identifiable from

he multi-modal template into labels which represent larger thalamic

roups. This resulted in a set of 10 bilateral labels that were manually

dentifiable from the template. 

The labeled template is used in Section 3.2 to aid in tuning our

ethod. Additionally, features identified from this template segmen-

ation are used as criteria in Section 3.3 to manually generate gold

tandard segmentations for comparison. These subject segmentations

re performed without the aid of an automated preliminary segmen-

ation. However, on application to individual HCP subjects, the reduced

ontrast and resolution resulted in increased ambiguity for some bound-

ries. Therefore we further combine the set of 10 manual in vivo labels

enerated for each subject into a final set of 5 coarser groupings, en-

bling evaluation without biasing results. Manual labels for the template

an be seen in Fig. 4 and the correspondences between the evaluation

roupings, manually segmented labels and original histological atlas la-

els can be seen in Table 1 , with the exception of the Reticular, which

s grouped with white matter as in our previous work ( Iglesias et al.,

018 ). 

.2. Model selection 

Practical implementation of the proposed framework requires deci-

ions on how to share the sMM and dMM parameters ( Section 2.5.2 ),

hich amounts to a model selection problem. In principle, our gener-

tive models enables the computation of the so-called model evidence,

hich enables comparison of models with different number of parame-

ers. While theoretically appealing, computing this evidence requires
8 
arginalisation over all parameters, which leads to intractable inte-

rals that require approximations. Instead, we selected the sMM/dMM

roupings with a combination of prior knowledge and a systematic ap-

roach called “Technique for Order Preference by Similarity to Ideal So-

ution ” (TOPSIS), which is a standard technique in operations research

 Behzadian et al., 2012; Hwang and Yoon, 1981 ). 

tructural groupings. In our previous work, we used two Gaussian compo-

ents to model the contrast difference between medial and lateral classes

 Iglesias et al., 2018 ). Here, we added a third Gaussian modelling the

edial portion of the PuM, which has a structural appearance closer to

rey matter compared with the lateral portion of the PuM. We then com-

ared the atlas prior and histograms of the template volumes to identify

3 possible sMMs grouping nuclei into three component distributions,

hich were considered by TOPSIS (detailed below). 

iffusion groupings. In Section 3.1 we defined 10 labels for each thala-

us that are manually identifiable from combined sMRI and DEC-FA.

owever, inspection of the dMRI tensors within these regions found

reater heterogeneity in some regions than in others. As additional bor-

ers within these labels could not be confidently matched with bound-

ries in the histological atlas, we examined multiple options for com-

ining histological nuclei into larger structures to be fit with a compo-

ent distribution. Including these additional boundaries, and allowing

or the possibility of bimodal histograms for some labels, we arrived at

1 possible dMMs, grouping nuclei into between 11 and 13 component

istributions. 

OPSIS. To optimise the choice of sMMs and dMMs in a systematic fash-

on, we tested each possible combination of sMM and dMM parameter

roupings on the population template. We calculated Dice scores and

5HD for the whole thalamus as well as the ”grouping ” and ”manual la-

el ” regions listed in Table 1 . These Dice scores and distances were then

sed as measurement channels in the calculation of a single, normalised

tness score for each combination of shared parameters using TOPSIS. 

TOPSIS operates by first setting vectors of positive and negative ideal

olutions for each measurement channel. For example, the positive ideal

ould be a vector containing the maximum Dice score achieved in each

abel as well as the minimum 95HD across all experiments. Each chan-

el is then normalised and the 𝐿 

2 -norm distance is calculated giving
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Fig. 6. Comparison of representative axial 

slices from thalamic segmentations generated 

by FreeSurfer’s recon-all ( aseg.mgz ), structural 

and joint (DSW-beta) Bayesian segmentation on 

two HCP subjects. Coloured outlines correspond 

to the histological atlas labels listed in Table 1 . 

These labels are grouped for further quantitative 

analysis. Comparisons of coronal and sagittal 

slices are shown in Section S.6. of the supplement. 
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calar distance measures for each experiment from both the positive and

egative ideal. These distances are then combined into a single similar-

ty measure between 0 and 1 for each experiment, with 0 indicating

he candidate achieves the worst performance in every Dice and 95HD

easurement and 1 indicating the candidate achieves the best in each.

hese scores provide an effective fitness measure balancing the desire

o achieve high precision measures of differing types for multiple labels

hile penalising poor performance in other measurements. The result-

ng scores for the DSW-beta model is shown in Fig. 5 ; equivalent plots for

he Wishart and DSW-beta models may be found in section S.5 of the

upplement. The chosen models are provided in a spreadsheet in the

upplementary material as well as descriptions of all candidate models.

.3. Application to high resolution dMRI 

Having individually tuned the mixture models and defined a man-

al protocol corresponding to our histological labels, the obvious next

tep is to assess the performance of our joint segmentation method on

CP quality data. A comparison of our joint segmentation to both the

reeSurfer whole thalamus segmentation ( aseg.mgz ) and our previous

tructural-only method are shown in Fig. 6 . This figure shows each seg-

entation overlaid on both the T1-weighted sMRI and the DEC-FA for

wo healthy subjects. 1 

In both subjects the whole thalamus aseg segmentation, used as an

nitialisation for both Bayesian methods, shows obvious errors when

verlaid on the DEC-FA, with more extreme over-segmentation for sub-

ect 2. In subject 1 the structural-only segmentation appears to com-

ensate for these errors and provides an improved exterior boundary.

owever, our joint method shows marked improvement in the agree-

ent of internal boundaries with colours displayed in the dMRI as well

s a smaller improvement in the exterior boundary. This effect is much

ore pronounced in subject 2, where the initial over-segmentation of

he thalamus propagates to the structural-only method but is corrected

y the joint method. 

Such observations provide compelling qualitative evidence for the

fficacy of our new method. However, to fully evaluate its usefulness

e must quantitatively assess both accuracy and repeatability. 
1 The joint segmentation shown here uses our DSW-beta likelihood model and 

he structural method has been optimised for the HCP dataset by tuning of the 

tiffness parameter. For a visual comparison of all likelihood models and the 

efault structural segmentation please see the Section S.6 of the supplement. 

m  

s  

a  

m

 

l  

9 
.3.1. Direct evaluation with manual ground truth 

To provide a quantitative measure of segmentation quality, our

natomy expert (JA, assisted by MB) manually segmented images for 10

andomly selected subjects from the WashU-UMN HCP dataset ( Van Es-

en et al., 2013 ) using criteria developed from the population template

s described in Section 3.1 . The manual segmentations were performed

sing a combination of T1-weighted and DEC-FA at a 1.25 mm isotropic

esolution, corresponding to the native resolution of the diffusion data

n HCP. We generated segmentations for these subjects using each of

he three joint likelihood implementations from Section 2.3 as well as

ur previously published structural-only implementation ( Iglesias et al.,

018 ). These automated segmentations, which have the resolution of

he structural scans (0.7 mm), were resampled to 1.25 mm isotropic

esolution and compared with the ground truth using DSC and 95HD.

ice scores and 95HD for the five groupings (in column one of Table 1 )

nd the whole thalamus are shown in Fig. 7 . We highlight the model

chieving the best median value for each measurement as well as sta-

istically significant differences between models (Wilcoxon signed-rank

est). 

All three joint segmentation methods show distinct improvements in

oth DSC and 95HD across multiple labels and smaller improvements in

he whole thalamus exterior. Here, the structural-only, Wishart and Log-

aussian implementations achieve median DSCs of 0.88 with a small

ncrease to 0.89 for DSW-beta implementation. While this increase does

chieve significance compared to the other three, it is countered by a

mall increase of 0.12 mm in median 95HD compared to the Wishart and

og-Gaussian implementations. Even so, the 95HD for all methods was

etween 2.3 and 2.5 mm, equivalent to approximately 2 voxel widths

n the manual segmentations. 

A joint segmentation method obtained the best 95HD in each of the

ve label groups with particularly large improvements in the antero-

ateral and lateral-caudal groups. Similarly, the joint methods outper-

orm structural-only DSC in four of the five groups with lateral-caudal

lass showing an improvement of 10 Dice points. The only label class

here the structural method outperforms the joint implementations is

he medial class. This is expected as the medial-lateral contrast change

s the only explicitly modelled interior boundary in the structural-only

ethod. However, the 95HD measurement for the medial thalamus

hows no significant differences between the structural implementation

nd the Wishart implementation, which performs best in this measure-

ent. 

There is comparatively little difference between the three diffusion

ikelihood implementations. The Wishart and Log-Gaussian implemen-
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Fig. 7. Dice score (top) and 95HD (bottom) comparison of automated thala- 

mic segmentations to manual delineations of 10 HCP subjects. Scores are stated 

for our previous structural only method as well as the three likelihood imple- 

mentations of our joint method. Asterisks denote significance level on Wilcoxon 

signed-rank test. 
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Fig. 8. Dice score evaluation of test-retest reliability on 110 HCP subjects. For 

each subject, we performed two segmentations using DTI images obtained by 

fitting the tensor to the data from b = 1000 𝑠 ∕ 𝑚𝑚 

2 and b = 2000 𝑠 ∕ 𝑚𝑚 

2 shells 

separately and computed Dice scores for groups of labels in the two resulting 

segmentations. Asterisks denote significance level on Wilcoxon signed-rank test. 

D  

s  

m  

i  

i  

g

 

t  

I  

b  

t  

r  

t  

D  

T  

t  

f  

s

 

s  

v  

s  

i  

D  

t  

w  

h  

u  

f  

w  

P  

a  

o

3

 

a  

e  

t  
ations show the most similar results, while in the DSW-beta imple-

entation small decreases in accuracy of the intralaminar and poste-

ior classes are offset by improvements in the antero-lateral classes and

hole thalamus exterior. 

.3.2. Test-retest reliability analysis 

In order to assess the test-retest reliability of the method (a cru-

ial feature in large scale, multi-centre studies), we segmented images

rom 110 HCP subjects using two different sets of DTI images for each

ubject – one based on the b = 1000 𝑠 ∕ 𝑚𝑚 

2 shell and one based on the

 = 2000 𝑠 ∕ 𝑚𝑚 

2 shell – and compared the outputs. While the results of

uch an experiment are optimistic when compared to experiments in

hich images are acquired with multiple scanners, it does enable thor-

ugh comparison within the same dataset; test-retest experiments with

ultiple acquisitions are described in Section 3.4.1 below. 

First we examine the effect of such an acquisition change on the

roupings evaluated in Section 3.3.1 . Dice scores for these groupings

an be seen in Fig. 8 . These results generally show that all three models

re reasonably robust to such an acquisition change in HCP quality data,

ith a median Dice score of 0.85 or greater in each grouped label across

ll models and greater than 0.95 for the whole thalamus. However, the
10 
SW-beta implementation does appear to be more robust. This model

hows improved Dice scores with high significance in the whole thala-

us, antero-lateral, medial and posterior groupings. Conversely, there

s a slight but significant drop in the lateral-caudal grouping and there

s no significant difference between the three models in the intralaminar

rouping. 

This increased stability of the DSW-beta implementation compared

o the other models is also reflected in the individual label Dice scores.

n the left-right averaged Dice scores for 25 labels we find that the DSW-

eta achieves the highest median scores in 17 labels and differences from

he winning model in a further 3 labels do not reach significance. Of the

emaining 5 labels DSW-beta still achieves scores greater than 0.85 in

he VPL and CM nuclei and greater than 0.75 for the MV(Re). The lowest

ice scores for all three methods are present in the VM, Pc and Pt nuclei.

hese are small nuclei, in the region of 2 − 5 𝑚𝑚 

3 , and consist of fewer

han ten voxels in each hemisphere. Dice scores for individual nuclei

rom the DSW-beta implementation can be found in section S.7 of the

upplement. 

To account for these small classes, we also examine the volume mea-

urements of each label. These volumes are calculated as the sum across

oxels of the posterior probability of each label multiplied by the voxel

ize to account for voxels with multiple non-zero posteriors. Examin-

ng the intra-class correlation coefficients ( ICC ) for these volumes in the

SW-beta implementation shows the volumes are extremely stable be-

ween acquisition types. Looking at the left and right labels separately

e find that 27 of the labels have ICCs above 0.9 with a further 20

aving values above 0.8, indicating high correlation between the vol-

me measurements generated by each acquisition type. In fact the ICCs

or the remaining labels are also all above 0.75 apart from the right Pc

ith a value of 0.69, indicating that the volumes for the VM, Pc and

t may still be used for volumetric analysis. The median label volumes

nd ICCs for the DSW-beta implementation can be found in section S.7

f the supplement. 

.4. Applications to conventional quality dMRI 

While our method assumes that the resolution of the diffusion MRI

pproaches 1 mm isotropic (which is the case for many modern datasets,

.g., following the HCP protocol), it is of high interest to segment the

halamic nuclei in lower resolution scans for two reasons. First, be-
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Fig. 9. Dice score evaluation of test-retest reliability on conventional-quality 

data from 21 subjects acquired at the UCL Dementia Research Centre. For each 

subject, we performed two segmentations using dMRI data acquired in the same 

session using the same acquisition parameters and computed Dice scores for 

groups of labels. Asterisks denote significance level on Wilcoxon signed-rank 

test. 
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ause large amounts of legacy data were acquired at lower resolution.

nd second, because many current studies (e.g., ADNI, GENFI) still

se those acquisitions, either in order not to deviate from the proto-

ol used to acquire images earlier in the project or to accommodate

cquisition constraints such as available scanner time. As explained in

ection 2.3 above, compatibility with conventional quality data is actu-

lly the reason why we chose to model the diffusion tensor in our likeli-

ood term, rather than using a more sophisticated, higher order model.

herefore, to assess our method on conventional quality scans, we per-

orm both reliability analysis and indirect evaluation using two conven-

ional quality datasets. In the first experiment we use a locally acquired

ataset at the UCL DRC, which provides T1-weighted MPRAGEs and

wo dMRI scans for 21 healthy controls. In the second experiment we

se both healthy controls and subjects with AD from the ADNI dataset. 2 

The resolution of the dMRI scans provided by these two datasets is

eavily reduced from that of the HCP data. The voxels in the UCL DRC

mages encompass 8 times the volume of those in the HCP images, while

he ADNI image voxels are 2.5 times larger than HCP, with double the

lice thickness. This decrease in the resolution of such scans, compared

o HCP, make manual delineation infeasible using the joint structural

nd DEC-FA criteria from Section 3.1 . The large volumes of these voxels

ncrease partial volume effects within the dMRI, obscuring boundaries,

hile the increased slice thickness makes it difficult to trace the first and

ast slices of every group. Instead, in Section 3.4.1 we perform test-retest

eliability analysis and in Section 3.4.2 we perform indirect validation,

sing the ability to discriminate between subjects with AD and healthy

ontrols as a proxy for segmentation accuracy. 

.4.1. Test-retest reliability analysis 

In order to assess the test-retest reliability of the method on lower

esolution dMRI, we used a separate dataset, comprising 21 healthy vol-

nteers (9 male, 12 female, aged 53 – 80 years) acquired at the UCL DRC.

hree MRI sequences were performed for each subject in a single ses-

ion: one T1-weighted MPRAGE 1.1 mm isotropic resolution; and two

iffusion weighted acquisitions each consisting of 64 gradient directions

t a b-value of 1,000 𝑠 ∕ 𝑚𝑚 

2 and a 2.5 mm isotropic resolution. Using the

wo dMRI acquisitions as separate tests, segmentations were performed

t a 1 mm isotropic resolution in the native orientation of the individual

MRI volumes before being resampled to the native space of the struc-

ural volume for calculation of test-retest Dice scores. Groupwise Dice

cores for this experiment are shown in Fig. 9 . 

As expected from the increased voxel size and reduced quality of the

ata, the Dice scores in Fig. 9 are lower than those in Fig. 8 , although

edian scores are still above 0.9 for whole thalamus and 0.8 for four

f the five grouped labels. However, it is clearer from this plot that the

SW-beta implementation is the most robust to differences in dMRI,
2 The ADNI was launched in 2003 by the National Institute on Ageing, the 

ational Institute of Biomedical Imaging and Bioengineering, the Food and 

rug Administration, private pharmaceutical companies and non-profit organ- 

sations, as a $60 million, 5-year public-private partnership. The main goal of 

DNI is to test whether MRI, positron emission tomography (PET), other biolog- 

cal markers, and clinical and neuropsychological assessment can be combined 

o analyse the progression of MCI and early AD. Markers of early AD progression 

an aid researchers and clinicians to develop new treatments and monitor their 

ffectiveness, as well as decrease the time and cost of clinical trials. The Principal 

nvestigator of this initiative is Michael W. Weiner, MD, VA Medical Center and 

niversity of California San Francisco. ADNI is a joint effort by co-investigators 

rom industry and academia. Subjects have been recruited from over 50 sites 

cross the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects 

ut ADNI has been followed by ADNI-GO and ADNI-2. These three protocols 

ave recruited over 1500 adults (ages 5590) to participate in the study, consist- 

ng of cognitively normal older individuals, people with early or late MCI, and 

eople with early AD. The follow up duration of each group is specified in the 

orresponding protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally 

ecruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. 

or up-to-date information, see http://www.adni-info.org . 
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11 
ith the highest median Dice score in each category. This may be due

he increased dimensionality of the Wishart and log-Gaussian models,

eaning imprecise fitting of the tensor model caused by partial volume

ffects has a greater impact than for the more robust FA and principle

irection model used by the DSW-beta likelihood. 

As with the previous test-retest experiment, this increased stability

f the DSW-beta is also reflected in the individual label Dice scores.

n this case DSW-beta achieves the highest median scores in 21 labels

nd differences from the winning model in a further 2 labels do not

each significance when looking at left-right averaged Dice scores. Of

he remaining labels, DSW-beta still achieves scores greater than 0.80

n the VLp, while the LD is a small nucleus in the region of 19 𝑚𝑚 

3 and

till achieves ICCs above 0.95 in both hemispheres. In fact, of all the

uclei, 20 show ICCs above 0.9, with a further 18 having values above

.8 and all but 5 above 0.7, including for some small nuclei under 50 𝑚𝑚 

3 

here Dice scores are reduced. The median label volumes, Dice scores

nd ICCs for the DSW-beta implementation can be found in section S.7

f the supplement. 

.4.2. Alzheimer’s disease study 

So far we have performed experiments to evaluate both reliability

nd accuracy measures for the three joint models. While all three mod-

ls show similar differences in accuracy compared to structural only

egmentation on HCP quality data, generation of ground truth manual

egmentations on conventional quality data was infeasible using the pro-

ocol from Section 3.1 , due to the reduced resolution of the dMRI. To

ompensate for this we repeat an indirect evaluation experiment from

ur previous work ( Iglesias et al., 2018; 2019 ) in which we evaluate

he utility of our segmentations in a scenario more closely resembling a

lassical group study. 

Specifically, we examine the ability to discriminate between healthy

ontrols and subjects with AD from the ADNI dataset using the volume

easurements derived from the DSW-beta implementation as compared

o the structural only and FreeSurfer whole thalamus segmentations.

hile the thalamus is less strongly affected in AD than other structures

e.g., the hippocampus), it is still expected to see bilateral atrophy of

round 12%, with local shrinkage in the anterodorsal, centromedial, in-

ralaminar and pulvinar nuclei ( Pini et al., 2016 ). Despite this, volume

easurements of whole thalamus segmentations can show poor discrim-

http://www.adni-info.org
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Fig. 10. Comparison of thalamic segmentations of a subject from the ADNI 

dataset using equal (a) and reduced (b) dMRI likelihood weighting. Weighting 

the dMRI likelihood by the ratio of voxel volumes between sMRI and dMRI re- 

sults in more accurate estimation of boundaries with heavy partial voluming in 

the diffusion channel, e.g., the CSF/posterior-thalamus boundary (red arrows). 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 2 

AUC, accuracy at elbow, and p-value for improved AUC values as given by a 

DeLong test. 

FreeSurfer Structural Diffusion 

(whole) (nuclei) (nuclei) 

AUC 62.02% 72.30% 81.98% 

Acc. at elbow 62.22% 68.89% 75.56% 

p-value vs FreeSurfer 0.150 0.004 

p-value vs Structural 0.049 
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Table 3 

Thalamic nuclei showing statistically significant differences between 

Alzheimer’s and controls for the joint segmentations, sorted by increasing 

p-value (Wilcoxon rank-sum). 

Structure AUC Cohen’s d p-value 

PuM-medial 71.60% 0.7850 0.0004 

MDm 66.77% 0.5827 0.0062 

MDl 62.96% 0.3005 0.0345 

Table 4 

Thalamic nuclei showing statistically significant differences between 

Alzheimer’s and controls for the structural segmentations, sorted by increasing 

p-value (Wilcoxon rank-sum). 

Structure AUC Cohen’s d p-value 

MDm 68.20% 0.7478 0.0030 

MDl 68.05% 0.4868 0.0032 

AV 67.31% 0.5432 0.0047 

VA 66.12% 0.5626 0.0085 

PuA 63.85% 0.4631 0.0239 
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native ability, making improved discriminative ability from nuclei mea-

ures indicative of improved segmentation quality. The decision to fo-

us on the DSW-beta implementation was taken due to the significantly

mproved reliability of the DSW-beta labels compared to both Wishart

nd log-Gaussian models in HCP quality and conventional quality scans,

hile accuracy on HCP quality scans remains comparable. 

First we consider 45 subjects with AD and 45 controls (73.7 ± 18.0

ears; 44 females total) from the ADNI. These subjects were initially

rocessed for a study on connectivity differences in dementia ( Frau-

ascual et al., 2019 ) and used for a classification experiment in our

revious work ( Iglesias et al., 2019 ). The data consisted of T1-weighted

cans, with a resolution of 1.211 mm (sagittal), and dMRI with a

esolution of 1.351.352.7 mm (axial). We fit the DTI model to the

 = 1000 𝑠 ∕ 𝑚𝑚 

2 shell (41 directions), combined with 5 volumes at b = 0.

e then segmented each subject using the FreeSurfer recon-all stream

s well as our previous structural only method and DSW-beta model

oint implementation. However, initial examination of these subjects re-

ealed some cases where the inclusion of the dMRI shifts boundaries in

he segmentation due to the lower resolution of the dMRI data (and thus

ncreased partial volume effects). An example is the over-segmentation

f the thalamus into the CSF in Fig. 10 a. We addressed this by al-

owing the contribution of the dMRI likelihood term to be reduced in

roportion to the ratio between voxel volumes in the sMRI and dMRI

olumes ( Fig. 10 b) as outlined in Section 2.5 and Section S.2 of the

upplement. 

As in Iglesias et al. 2019 , we computed receiver operating charac-

eristic ( ROC ) curves for discrimination of subjects into the two classes

sing five approaches: three based on thresholding the volume of the

hole thalamus (as given by the FreeSurfer recon-all stream, the struc-

ural segmentation, and the joint segmentation); and two based on

hresholding the likelihood ratio given by a linear discriminant analysis

LDA, Fisher 1936 ) on the volumes of the histological nuclei (as given

y the structural and joint segmentation). The resulting ROC curves are

hown in Fig. 11 (a) with the area under the curve ( AUC ), accuracy at

he elbow and p-values for comparison of AUC values shown in Table 2 .

From these curves we can see that all three methods relying on the

otal volume of the thalamus have poor discriminative ability, with little
12 
ifference between using FreeSurfer, structural or joint segmentations.

his contrasts to the nuclei specific methods, which both show marked

mprovements. Structural segmentation shows an increase of 10% AUC

ver FreeSufer’s whole thalamus and joint segmentation an increase of

0%. However, only the improvements of the joint method show statis-

ical significance with 𝑝 = . 004 vs. FreeSurfer and 𝑝 = . 049 vs structural

uclei segmentation. 

Tables 3 and 4 compare AUC values and Cohen’s d scores for the

uclei showing statistically significant differences between Alzheimer’s

nd controls ( 𝑝 < . 05 ) in the joint and structural segmentation methods

espectively. The most significant atrophy detected by the joint segmen-

ation method was present in the medial portion of the PuM that was

dded to the atlas to model heterogeneity in the pulvinar. While the

maller sample size in the current study (N = 90 vs N = 374) resulted in

owered significance for some atrophy measurements and contributes to

educed AUC overall for the structural method compared to the experi-

ent in ( Iglesias et al., 2018 ), the medial PuM still reaches significance

n joint segmentation after Bonferroni-correction for 26 multiple com-

arisons ( 𝑝 < . 0019 ). Comparing these to the structural measurements,

ore structural labels reach significance at 𝑝 < . 05 but not after cor-

ection for multiple comparisons. The joint segmentation differentiates

ore between nuclei, while the structural volumes are more correlated,

ossibly due to the two component model used in the structural likeli-

ood model. We note that unlike our previous work the LGN and MGN

o not contribute significantly to atrophy in either method, this is likely

ue to modification of these labels in the latest version of the atlas avail-

ble in FreeSurfer 7.2. 

Given the improved discriminative ability of the jointly segmented

uclei for AD vs control’s, we applied the DSW-beta segmentation

ethod to 84 additional subjects from ADNI. These consisted of 52

ubjects (73.7Ø18.5, 11 females) with early mild cognitive impairment

 EMCI ) and 32 subjects (73.2Ø16.7, 19 females) with late mild cognitive

mpairment ( LMCI ). The corresponding ROC curves for discrimination

etween these groups and controls in Fig. 11 (b) show a smooth, pro-

ressive transition across the four stages of the disease. This highlights

he ability of our method to pick up on more subtle volume differences

rom LMCI (AUC 62.57%, Acc. at elbow 66.23%) although not from

MCI (AUC 50.56%, Acc. at elbow 57.73%). 

. Discussion and conclusion 

In this article, we have presented and tested a novel segmenta-

ion method for thalamic subregions from structural and diffusion MRI.

uilding on the Bayesian segmentation literature, we propose an algo-
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Fig. 11. ROC curves for classification of subjects within the ADNI dataset based on thalamic volumes. a) Compares classification between AD and controls using 5 

methods. b) Compares classification of subjects with AD, early and late MCI from healthy controls using the nuclei volumes from diffusion. 
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ithm to incorporate likelihood models of both structural and diffusion

RI into a single joint segmentation. By combining this with novel likeli-

ood models of dMRI, we obtain accurate identification of the main tha-

amic regions. Through this method the information in structural MRI

nables placement of boundaries in regions with strong contrast (e.g.

he medial boundary with the ventricles) with high precision, attributed

o its higher resolution; the diffusion information enables the accurate

egmentation of boundaries that are invisible in typical structural MRI

equences. Furthermore, we have presented an improved version of our

revious histological atlas, which enables more accurate modelling of

iffusion MRI in the cerebral white matter. The proposed method will

e distributed with FreeSurfer and is widely applicable because the like-

ihood: (i) relies on a simple DTI model, which makes it compatible with

irtually every diffusion dataset; (ii) adjusts to different resolutions by

orrecting for voxel sizes; and (iii) relies on an unsupervised model that

s robust against changes in MR contrast. 

We have conducted extensive experiments with manual segmenta-

ions, test-retest acquisition, and group studies – including datasets with

ifferent resolutions. The results have shown that the joint model ex-

loiting the diffusion information improves accuracy over structural-

nly segmentation. Moreover, we have also found that the varying res-

lution gap between structural and diffusion MRI may be accommo-

ated by weighting the diffusion likelihood term to account for voxel

ize differences, thus bypassing the need to explicitly model partial vo-

uming – which quickly becomes intractable, particularly in multi-modal

mages defined on different voxel grids. While both our proposed like-

ihood model (DSW-beta) and the two competing alternatives showed

imilar levels of improved accuracy over structural-only segmentation

hen compared with manual delineations, we found the DSW-beta dis-

ribution to have the highest test-retest reliability and to be the most

obust at lowered dMRI resolution. 

Our proposed method has a large number of design choices, particu-

arly linked to the specification of shared parameters across classes in the

tructural and diffusion mixture models. We set these parameters with

he combination of expert prior knowledge, a labelled template, and

 well-known approach from the decision making literature (TOPSIS).

hile this approach is suboptimal (our prior knowledge is imperfect; a

ingle template is biased towards a certain population, contrast, and res-

lution; and TOPSIS’s criteria may not necessarily be ideal), it yielded

roupings that worked well in practice for different datasets with differ-
nt resolution. g  

13 
This work has a number of limitations. In particular, there are as-

ects of our modelling which could be further improved, or which re-

uire additional investigation. For example, we do not explicitly model

he partial volume effect; while accounting for the voxel size ratio mit-

gated this problem in our experiments, it is possible that it does not

uffice for more extreme ratios. This could be addressed with further

xperimentation on datasets with varying dMRI resolution or solutions

ased on CNNs. 

Another modelling decision that could be investigated further is the

eflective symmetry constraint we impose on dMRI distributions for con-

ralateral structures. Our approach attempts to protect against abnormal

tructural asymmetry by deriving the plane of reflection from the re-

ected dMRI likelihood distributions rather than anatomical markers.

e expect that asymmetries uniformly affecting a hemisphere would

ause the estimated reflective plane to be rotated from the midline,

ut that segmentation accuracy would remain unaffected. More focal

athologies that cause asymmetrical directionality are likely to result

n less heavily peaked likelihood distributions for the affected labels,

quivalent to an increased variance for a Gaussian model. This could po-

entially impact segmentation accuracy for affected contralateral struc-

ures, though the impact is expected to be mitigated by the contribution

f the prior and structural likelihoods, and their contribution to the re-

ection objective would be reduced limiting their effect on other labels.

athologies with a larger impact on brain anatomy, such as lesions and

umours, are likely to affect segmentation accuracy for the additional

eason that they are not explicitly modelled by our atlas, as is the case

ith many methods. Determining the effect of such asymmetries, and

esting the performance of our methods with and without reflection, re-

uire further work and validation, so that the method can be reliably

pplied to a wider range of conditions. 

There are also opportunities to improve the validation of our method,

.g. by assessing the quality of the manual labels through intra- and

nter-rater variability or investigating other methods to generate ground

ruth segmentations. We designed our manual segmentation protocol to

llow comparison of regions discernible from a combination of 3T T1-

eighted MPRAGE images and HCP quality DEC-FA. This resulted in

he segmentation of ten thalamic regions, which were further combined

nto five groupings for evaluation, limiting the detail of our ground truth

omparisons. Improved accuracy for such groups of nuclei is a posi-

ive step towards validation of the separate labels, and registration of

rouped boundaries in a hierarchical approach has been shown to im-
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rove segmentation accuracy ( Liu et al., 2020 ). However, full validation

f our nuclei level labels remains to be done and will require datasets

hat pair standard sMRI/dMRI with advanced imaging in which nuclei

evel structures are manually identifiable. 

Advanced 7T MRI sequences can show improved contrast for tha-

amic nuclei, with manual segmentations having been generated from

oth white-matter-nulled (WMn) MPRAGE sequences ( Su et al., 2019 )

nd susceptibility weighted imaging ( Liu et al., 2020 ) to validate tha-

amic segmentation algorithms. For example, Liu et al. (2020) demon-

trate Dice scores of between 0.53 (habenula) and 0.9 (whole pulvinar)

hen applying their semi-automated method to 3T T1-weighted images

or which an accurate exterior thalamic boundary has been provided as

n input. Similarly Su et al. (2019) demonstrate Dices scores between

.64 (ventral lateral anterior) and 0.89 (mediodorsal) using multi-atlas

egmentation on their 7T WMn-MPRAGE images. Additionally, while

MRI clustering methods ( Battistella et al., 2017 ) have shown limited

ualitative alignment to histological labellings, advanced dMRI in the

orm of short-track tract density imaging has been used to manually

dentify 13 histologically guided nuclei ( Basile et al., 2021 ). Currently

here are no standard guidelines when it comes to neuroimaging of the

halamus; harmonisation of competing thalamic label definitions is a fo-

us in the thalamic segmentation community, with ongoing efforts from

he international ThAlamic nuclei Neuroimaging GrOup ( TANGO ), mir-

oring a similar effort for hippocampal subfields ( Wisse et al., 2017 ). 

The presented method will be publicly available in FreeSurfer as an

xtension of our current structural-only code. As high-resolution diffu-

ion data become increasingly accessible, algorithms that can exploit

hem to produce accurate segmentations – particularly for boundaries

hat are invisible in structural MRI – have the potential to greatly en-

ance neuroimaging studies. 
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