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Abstract

In recent years, the Artificial Intelligence (AI) has experienced a significant upswing, more
particularly in the field of Deep Learning (DL). The Variational Auto-Encoder (VAE) is a
deep generative model that maps the features of the input data to a latent prior distribution,
and reconstructs data from latent vectors. To map and reconstruct the data, the model uses
a encoder and decoder Deep Neural Networks (DNN) respectively, and the latent prior is
usually a Gaussian distribution.

Although the VAE is a functional generative model, its training method is conflicting
because its cost function is composed of two values: the reconstruction error and the
Kullback-Leibler (KL) divergence. For this reason, we experimented on this training process
and on different variants of the state of the art of the model that propose improvements on
this aspect.

For the experimentation, a lack of tools to work with the VAE in a simple, agile and
flexible way was observed. For this reason, the creation of a library called tfVAE was
proposed, which offers an ordered, structured and scalable solution to the given problem.
This not only allows the study or experimentation of the model, but also facilitates the
implementation of new variants of it. This library unites concepts from Computer Science
with the use of neural models, and from Software Engineering, such as the use of an
architectural pattern based on Domain Driven Design (DDD).

For the experimentation, preliminary experiments were first carried out using the
MNIST database, which would serve as a reference point for the rest of the experiments,
where the MNIST and Fashion-MNIST databases would be used. The main experiments
were carried out with the model architectures of the preliminary experiments and applied
to the state-of-the-art models. In this stage of the experimentation, only the generative
capability of the models was tested using the Frechet Inception Distance (FID) computed
using our own inception models as a metric. It was mainly observed that the FID obtained
from a custom model can obtain consistent results, that reducing the magnitude of the KL
divergence leads to better generations, and that scaling the latent vectors can lead to better
image generation.
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Laburpena

Azken urtetan, Adimen Artifizialak gorakada handia izan du, Ikaskuntza Sakonaren arloan,
hain zuzen ere. Variational Auto-Encoder-a (VAE) eredu sortzaile sakon bat da, aldez aurretik
ezkutuko banaketa batera sarrera datuen ezaugarriak mapatzen dituena, eta datuak ezku-
tuko bektoreetatik abiatuta berreraikitzen dituena. Datuak mapatzeko eta berreraikitzeko,
ereduak erabiltzen ditu kodetzailea eta deskodetzailea Sare Neuronal Sakonak, hurrenez
hurren, eta a priori banaketa latentea Gaussiana banaketa da normalean.

VAE eredu sortzaile funtzionala den arren, bere entrenamendu-metodoa gatazkatsua
da, kostu-funtzioa bi baliok osatzen baitute: berreraikitze-errorea eta Kullback-Leibler (KL)
dibergentziak. Horregatik, esperimentatu dugu entrenamendu-prozesu horri buruz, eta
ereduaren egoeraren bariante desberdinak esperimentatu nahi izan dira, alderdi horretan
hobekuntzak proposatzen dituztenak.

Esperimentaziorako, VAErekin modu sinple, azkar eta malguan lan egiteko tresnarik ez
zegoela ikusi zen. Horregatik, tfVAE izeneko liburutegia sortzea planteatu zen, emandako
arazoari irtenbide ordenatua, egituratua eta eskalagarria emateko. Horrek, ereduaren
azterketa edo esperimentazioa ahalbidetzeaz gain, haren bariante berrien inplementazioa
ere errazten du. Liburutegi honek Konputazio Zientzien eredu neuronalen eta Software
Ingeniaritzaren kontzeptuak batzen ditu, hala nola Domain Driven Design-en oinarritutako
arkitektura-patroiaren erabilera.

Esperimentaziorako, lehenik eta behin, MNIST datu-basea erabiliz egindako aurretiazko
esperimentu batzuk egin ziren, gainerako esperimentuetarako erreferentzia-puntu gisa
balioko zutenak, non MNIST eta Fashion-MNIST datu-baseak erabiliko ziren. Esperimentu
nagusiak aurretiazko esperimentuen ereduen arkitekturekin egin ziren, artearen egoer-
aren ereduei aplikatuz. Esperimentazio-etapa honetan, modeloen sortze-gaitasuna soilik
egiaztatu zen, Frechet Inception Distance (FID) erabiliz, betiere inception eredu propioen
baldintzapean, metrika gisa. Batez ere ikusi zen eredu pertsonalizatu batetik lortutako
FIDak emaitza sendoak lor ditzakeela, KL dibergentziaren magnitudea murrizteak sorkuntza
hobeak dakartzala, eta ezkutuko bektoreen eskalatzeak irudi-sorkuntza hobea ekar deza-
keela.
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Resumen

En los últimos años, la Inteligencia Artificial ha experimentado un importante repunte, más
concretamente, en el campo del Aprendizaje Profundo. El Variational Auto-Encoder (VAE)
es un modelo generativo profundo que mapea las características de los datos de entrada a
una distribución previa latente, y reconstruye los datos a partir de vectores latentes. Para
mapear y reconstruir los datos, el modelo utiliza una Red Neuronal Profunda codificadora
y otra decodificadora, respectivamente, y la distribución latente a priori suele ser una
distribución Gaussiana.

A pesar de que el VAE es un modelo generativo funcional, su método de entrenamiento
resulta conflictivo debido a que su función de coste se compone de dos valores: el error de
reconstrucción y la divergencia Kullback-Leibler (KL). Por esto mismo, se ha experimentado
sobre este proceso de entrenamiento y sobe distintas variantes del estado del arte del modelo
que proponen mejoras sobre este aspecto.

Para la experimentación, se observó una ausencia de herramientas para trabajar con el
VAE de una manera simple, agil y flexible. Por ello, se planteó la creación de una librería
llamada tfVAE que plantea una solución ordenada, estructurada y escalable al problema
dado. Ésta no solo permite el estudio o la experimentación del modelo, sino que también
facilita la implementación de nuevas variantes del mismo. Esta librería une conceptos de
las Ciencias de la Computación con el uso de modelos neuronales, y de la Ingeniería del
Software, como el uso de un patrón de arquitectura basado en Domain Driven Design.

Para la experimentación, se realizaron primero unos experimentos preliminares hechos
utilizando la base de datos MNIST, y que servirían como punto de referencia para el
resto de experimentos, dónde se utilizarían las bases de datos MNIST y Fashion-MNIST.
Los experimentos principales se realizaron con las arquitecturas de los modelos de los
experimentos preliminares aplicándolas a los modelos del estado del arte. En esta etapa
de experimentación se comprobó únicamente la capacidad generativa de los modelos,
utilizando el Frechet Inception Distance (FID) utilizando modelos inception propios como
métrica. Se observó principalmente que el FID obtenido de un modelo personalizado puede
obtener resultados consistentes, que la reducción de magnitud de la divergencia KL lleva a
mejores generaciones, y que el escalado de los vectores latentes puede desembocar en una
mejor generación de imágenes.

vii





Contents

Contents ix

Glossary xi

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Neural Networks: A Brief Overview 5
2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Multi-layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Transposed Convolutional Layers . . . . . . . . . . . . . . . . . . . 11
2.3.3 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Variational Auto-Encoder 13
3.1 Auto-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Architecture of the VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Reparameterization Trick . . . . . . . . . . . . . . . . . . . . . . . 16

4 State of the Art 19

5 Implementation 23
5.1 Version Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 GitHub Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Code Structure and Organization . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1 Architectural Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



CONTENTS CONTENTS

5.2.2 Structure and Implementation Details . . . . . . . . . . . . . . . . 27

6 Experiments and Results 33
6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.3 Preliminary Experimentation . . . . . . . . . . . . . . . . . . . . . 35
6.1.4 Main experimentation . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Experimentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.1 Preliminary Experimentation Results . . . . . . . . . . . . . . . . . 39
6.2.2 Beta Variational Auto-Encoder . . . . . . . . . . . . . . . . . . . . 40
6.2.3 Stick-Breaking Variational Auto-Encoder . . . . . . . . . . . . . . . 44
6.2.4 Results of Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Future Work 59

8 Project Management 61
8.1 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 67

Appendices 71

A More Generation Examples 73

B Kullback-Leibler Divercence Evolutions 77

C FID Values for the Augmented Sampling 79

x



Glossary

abstract function In the context of software development, an abstract function is a func-
tion that is declared in a class or interface but does not have an implementation.
Instead, the implementation of the function has to be provided by a subclass or
implementing class. 28

activation function In the context of neural networks, it is a mathematical function that
is applied to the output of a neuron to introduce non-linearity into the model. 6–8,
39, 40, 57

architectural pattern In the context of software development, it is a reusable solution or
template that provides a structured approach for designing and organizing software
systems. It offers a high-level blueprint or framework that helps developers address
common design challenges and create robust, scalable, and maintainable applications
. 25, 26

architecture For neural networks, the design and configuration of a model, including
the number and type of layers, the activation functions used, and the connections
between the layers. xv, 3, 6–8, 13–15, 33, 34, 36, 37, 39, 48, 56

backward-propagation Also known as back-propagation, in the context of machine
learning, it is the process of calculating the gradient of the loss function with respect
to the weights of a neural network. 8, 16

bias In a neural network, a parameter that represents the intercept term in a linear equation.
5, 8

convolutional layer A type of layer in a neural network that performs a convolution
operation on the input data. Convolutional layers are commonly used to extract
features from images. 9, 11, 13, 35

dense layer A type of layer in a neural network where all the neurons in one layer are
connected to all the neurons in the previous layer. Also known as a fully connected
layer. 7, 13, 35, 39

differentiable In mathematics and optimization, it refers to a property of a function
that allows it to have well-defined derivatives at every point within its domain.
Differentiable functions are used extensively in optimization algorithms, such as
gradient descent, to train and update the parameters of neural networks . 16, 17
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GLOSSARY GLOSSARY

discriminator In the context of an Generative Adversarial Model, it is the model that
evaluates the generated samples and determines whether they are real or fake. 2

epoch In the context of neural networks, an epoch refers to a complete pass through the
entire training dataset or the current batch during the training of a model. 8, 9, 17,
35–37, 40–43

feature map Output of a convolution between a kernel and the input, which maps the
features of the input to a series of features. 9, 11

forward-propagation The process of feeding input data through a neural network to
produce an output. 8

generative model A model that can generate new data that is similar to the data it was
trained on, by capturing its underlying structure. 1, 2

generator In the context of generative models, a model that generates new data samples
that are similar to the training data. 2

gradient In the context of neural networks, the gradient is a vector that contains the
partial derivatives of a loss function with respect to the weights of a neural network.
The gradient provides information about the direction of steepest ascent of the loss
function, which is used during the optimization process to update the weights of the
network. 9, 16

hyperparameter In machine learning, a hyperparameter is a parameter on which the
model is highly dependent, and whose value is set before the learning process begins
. 3, 8, 34, 36

kernel In the context of Convolutional Neural Networks, it is a small matrix that is used
to transform the input to a feature map in the convolutional layers. xv, 9–12

latent representation The latent representation is the representation of an input in a
lower-dimensional space mapped by the model. 13, 14, 16

latent space In the context of generative models, the latent space is typically a lower-
dimensional representation of the data, where similar data samples are mapped to
points close to each other in the space. 3, 13, 19, 39, 56, 57, 59

layer A component of a neural network that performs a specific computation on its input
data. 6–9, 11–13, 36, 57, 59

learning rate The learning rate is a hyperparameter that controls the step size at which
the weights of a neural network are updated during training when using a gradient
descent technique. xv, 8, 9

lint In the context of software development, lint refers to a tool or program that analyzes
source code for potential errors, bugs, and stylistic or formatting issues. Linting is
often performed as a part of a development workflow to ensure code quality and
consistency, catch common errors, and identify potential security vulnerabilities. 24,
25
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GLOSSARY GLOSSARY

loss function A mathematical function that calculates the difference between the pre-
dicted output of a machine learning model and the actual output. 2, 8, 9, 16, 19, 20,
28, 37

multi-objective optimization Process that aims to find a set of optimal solutions that
represents the trade-offs between multiple potentially conflicting objectives. Its best
known approach is the pareto optimization or pareto-based optimization, which aims
to explore the trade-off space and identify a set of solutions that are non-dominated,
meaning that no other solution in the set is better in all objectives. This set of
non-dominated solutions is known as the pareto set . xv, 35, 36

pooling layer A type of layer that downsamples the output of a convolutional layer by
summarizing groups of data in the feature maps into a single value. 12

reinforcement learning A branch of machine learning that deals with how an agent
can learn to make sequential decisions in an environment to maximize a cumulative
reward. It involves an agent interacting with an environment and learning from
feedback in the form of rewards or punishments. 1

stochastic In the context of machine learning and optimization, it refers to a process or
algorithm that involves randomness or probabilistic elements . 16

stride In a convolutional layer, the stride is the step size used to move the receptive field
across the input data during convolution. The stride determines the amount by which
the receptive field is shifted at each convolution operation. xv, 9–11, 39, 40

supervised learning A subcategory of machine learning that uses labeled datasets to
train algorithms to accurately classify data or predict outcomes. 1

trace linear algebra operation In linear algebra, the trace of a square matrix is a scalar
value that represents the sum of the diagonal elements of the matrix . 35

transposed convolutional layer A type of layer in a neural network that is used to
upsample feature maps. Transposed convolutional layers, also known as deconvo-
lutional layers or fractionally-strided convolutions, use a fractionally larger stride
value than the corresponding convolutional layer to perform upsampling. 11, 39

unsupervised learning A subcategory of machine learning where the algorithm learns
patterns and structures from unlabeled data without explicit guidance or labels
provided by a human. 1

weight In a neural network, a parameter that determines the strength of the connection
between two neurons. The value of the weights determines the contribution of the
corresponding input to the output of the neuron. 5, 8, 9
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CHAPTER 1
Introduction

1.1 Motivation and Background

In recent years, Artificial Inteligence (AI) has undergone exponential growth, completely
transforming both the current industry and people’s daily lives. One sub-field of AI,
Machine Learning (ML), is particularly responsible for this popularity increment. This
area encompasses algorithms that mimic the learning from data and make predictions or
decisions in an informed way. This learning can be reinforcement learning, unsupervised
learning, or supervised learning.

In turn, within the ML field, there is a particularly high performing kind of model,
the Neural Networks (NNs), that are traditionally associated with supervised learning
and reinforcement learning. These models are capable of performing what is called Deep
Learning (DL), which takes ML to a whole new level, making it possible to make choices or
forecasts of much higher quality. In the last decade, improved solutions to problems such as
natural language processing (e.g., sentiment analysis [1] or machine translation [2]), image
recognition (e.g., face recognition [3] or image segmentation [4]), speech recognition (e.g.,
spoken language recognition [5] or speech transcription [6]), among others, can be found.

Although it may seem that the field of AI has been extensively explored. The truth is
that this area of research is constantly expanded with new problems that can find their
solution with ML and there are a lot of techniques, and learning models awaiting to be
discovered.

The first important step that would lead to DL, and that, as a consequence, would give
rise to the entire revolution that is being experienced in these times, was the proposal of
the perceptron [7], a little more than half a century ago. The boom of this topic happened
approximately ten years ago along with the uprising of some NN models [8]. This only
means that the potential of ML is huge if we take a look at how advanced it is after these
years. Proof of this is the constant advances in the field, which, moreover, are becoming
more and more frequent. One example could be the OpenAI organization [9], which is
continually advancing the state of the art with brand new models that push the limits of
what is possible to obtain through AI [10, 11].

In this thesis, we will work over generative models to explore the automatic generation
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1. Introduction

of data using Deep Neural Networks (DNNs). Some well-known generative models could
be the Restricted Boltzmann Machine (RBM) [12], that learns a probability distribution over
the input data without any labeled output data; the VAE [13], that encodes the input data
to some latent distributions that are sampled and reconstructed to its original version; and
the Generative Adversarial Network (GAN) [14], where a generator and a discriminator
are confronted pushing each other to learn.

More specifically, we will work over the VAE. This model assumes that there is a prior
latent statistical distribution in the data, and, once trained, it is capable of generating new
data by receiving random samples of the mentioned distribution.

This model has some inherent drawbacks, like tending to generate blurred images
or slow convergence of the gradient, but it can still achieve impressive results and learn
complex distributions, making the model still a good choice of generative model.

The goal is to study the VAE in depth, to develop an environment that facilitates its
study and work, and propose some variations that could ideally lead to some improvements
in its performance.

1.2 Objectives and Scope

Just like mentioned in the previous section, the main objectives of this thesis are to create
an easy-to-use library using TensorFlow [15], Keras [16] and Numpy [17], and experiment
by using it as a tool for applying some variations to several elements of the VAE while
documenting how the performance of the model reacts under these applied changes. The
library would set up a whole environment to work with the model and explore the capabil-
ities of it, making both of the objectives highly linked. This work does not exclusively aim
to be conclusive, but also aspires to contribute with quality tools and lines of research that
can be resumed in future studies.

As the main objectives are so wide, and cannot be completely addressed in a work of
the magnitude of a bachelor’s thesis, we need to establish a clear scope which will help us
to partially accomplish the proposed objectives successfully, and in an orderly way. This
does not mean that the objectives will be left aside, but that they will be studied under
other constraints to make the work feasible.

First of all, we will limit the scope of the VAE. Moreover, we will limit the type of data
that is used to train the model, and, consequently, the type of data that is generated. The
implementation of the VAE will be specifically created to be trained to generate images.
This way, we set a consensus where every time that data is mentioned under the context of
this thesis, it will refer to images. In any case, the implementation will be structured to
leave room for future implementations of the VAE that accept other specific kinds of data
that are not just images, or even a single implementation that accepts any type of data as
input.

The main task under the scope of the thesis will be the study of the role played by the
loss function of the VAE. The loss function of the model is computed through combination
of the Kullback-Leibler (KL) divergence [18] and any metric for measuring the difference
between the input and the output data, such as the Mean-Squared Error (MSE). This loss
function, results in a defective training process. It happens because the KL divergence
and the other function that compounds the loss function usually return values of different
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magnitudes making one of them less relevant over the other, and creating plain spaces that
will obstruct the learning algorithm [19].

Highly related to the point mentioned right above, another research direction will be
trying different distributions for the latent space of the model. Commonly, the normal
distribution is used, but there are other distributions have been proposed, and reported
interesting results [20, 21, 22]. Thus, we will explore different combinations of the different
dependencies of the model.

Finally, as the neural models are known to be highly dependent on their architecture, a
hyperparameter selection will be performed among the different experiments in search of
the optimal configuration for the model. These hyperparameters go from the typically seen
in every problem related to NNs, to the ones that only make sense under the context of the
VAE. This results in a considerable number of decisions to be made when designing a VAE.
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CHAPTER 2
Neural Networks: A Brief Overview

2.1 Perceptron

Artificial NNs find their roots in the percetron. It was introduced in the year 1958 and its
algorithm can be used for binary classification tasks, where the goal is to separate the data
into decision boundaries in a high-dimensional space. An example of a decision boundary
learned by a perceptron on a set of two-dimensional samples can be found in Figure 2.1

Figure 2.1: Decision boundary of a perceptron in a two-dimensional space

A single perceptron consists of a series of weights and a bias. There is always one
single bias per neuron and as many weights as input values the model has. An example
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of this architecture can be seen in the following Figure 2.2. The algorithm for classifying
consists on a weighted sum of the input data plus the bias, and piping that output to an
activation function. Traditionally, the sigmoid function σ(x) = 1

1+e−x is used because it
maps any input value to a value between 0 and 1, which makes it convenient for modeling
binary classification problems. A plot of this function is showed in Figure 2.3.

Figure 2.2: Illustration of a single perceptron

Figure 2.3: Sigmoid function

2.2 Multi-layer Perceptron

The MLP [23] is a type of artificial NN that consists of multiple layers. Every MLP’s layer
has at least one single perceptron. An example of a typical MLP is shown in Figure 2.4.
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Figure 2.4: Architecture of a MLP

The MLP always has at least one hidden layer between the input and output layers.
The hidden layers allow the network to learn much more complex patterns from the input
data, like the one shown in Figure 2.5, through the usage of non-linear transformations
[24]. The most basic layers are the dense layers.

Figure 2.5: Decision boundaries of a MLP in ternary classification

For the output layer, the activation function is dependent on the type of problem that
the MLP is bearing. In some occasions, the output layer of a model does not have an
activation function.

The input and hidden layers, as a common choice, have the same activation function,
the ReLU [25] function, which has been proven to be effective and its cost is extremely low,
allowing the model to be trained rapidly and with high performance.

ReLU(x) = max(0, x)
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The way a MLP works is not very different from the perceptron. It can have different
architectures, but the most common one is making all its layers dense. So, the input data is
passed to all the neurons of the first layer, then, the output of the first layer serves as the
input of the second, and so on until the output layer is reached. So to say, if we call hp, wp

and bp to the p-th layer’s output, weights and bias respectively, for any layer l after the
input layer, hl = σl(wl · hl−1 + bl).

The most common training learning algorithm uses Stochastic Gradient Descent (SGD).
It has two different phases: forward-propagation and backward-propagation [26]. Ex-
pressed in mathematical language, an instance is defined as (x, y), where x ∈ Rn is a
n-dimensional vector of features of the instance that we want the model to be able to
correctly classify in the future, and y ∈ {0, 1} is the actual label. We have m instances
for training: {(x1, y1), (x2, y2), ..., (xm, ym)} and we will use X ∈ Rn×m to refer to the
training set, and Y ∈ Rm for the label set.

The forward-propagation is used for all the different phases of a model. Each perceptron
of the model having a set of weightsW ∈ Rn+1 | W = [w0, w1, ..., wn], where w0 is the
value of the bias. For each perceptron of the model, we will perform the scalar vector
multiplication between any input data xt and the weights as: [1, xt,1, xt,2, ..., xt,n]×W = r,
notice that the 1 appended at the beginning of the array is a fixture to match the bias. Once
we have r, we apply the activation function g. The output of g, which in this context is
the considered as the output of the NN, can be taken as the probability that xt belongs to
the class 1. For that reason, the output of g is usually rounded to the closest value to know
the most probable classification of the data, g(r) ≈ 1 ∨ g(r) ≈ 0, making the classification
binary.

The backward-propagation is only used in the training phase and it is the part of the
algorithm that grants the model the capability of learning. Once the forward-propagation
has been performed, and therefore f(xi) = ŷ, which is the prediction of the model over
the feature vector xi, it is measured how far ŷ is form y. For that task, many different loss
functions can be used, for example, for binary classification, the binary cross-entropy is
commonly used:

L(ŷ, y) = −(y log ŷ + (1− y) log(1− ŷ))

After calculating the loss value for all the training samples of one epoch, the mean of
those values is calculated, which is called the average loss. This value is used to update
the weights of the model through the SGD technique [27] after every epochs, expecting to
reduce the error value for the next iteration. Thus, if the average loss is expected to get
smaller through the epoch, the model is expected to learn and fit to the problem at the
same time.

For the learning process, the learning rate hyperparameter (α) is critical because a
small α can make our model to take too long to learn, and a big α can make the network
not to be precise enough to reduce the loss. For this end, different optimizer strategies can
be followed.
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Figure 2.6: Importance of the learning rate

In Figure 2.6, we can see three different gradient descent scenarios with three different
values of α. Where in the x axis we have the value of the loss, and in the y axis we have
the value of the loss function, and that each dot represents a gradient descent step. In the
low α scenario, the learning takes too many epochs making the learning longer and, as a
consequence, much more costly. In the high α scenario what happens is that the learning
rate is so big that, at some point, the error value is increased. But, in the decent α scenario,
the value approaches securely to the lowest point making the process fast and the error
follows a decreasing tendency.

2.3 Convolutional Neural Networks

A CNN [27, 28] is a kind of DNN commonly used in computer vision applications, such as
image recognition, image generation, video recognition; speech recognition; time series.
Due to its most common applications, the input data is usually a set of images that are
represented by a three-dimensional matrix (length × width × channels). The third dimen-
sion of the images comes from the color channels of the image. Images usually have three
channels (RGB) or just one (greyscale).

The CNNs have some special types of layers, convolutional layers, that allow the model
to have a better way of processing data types whose internal features are highly related if
they are in close proximity to each other, such as images. Usually, most of the layers of the
network are convolutional, and at the end of the network, the data is flattened for the last
layers, that are commonly dense, to process the data, and retrieve the desired output from
the network.

2.3.1 Convolutional Layers

The purpose of this type of layer is to extract features from the input data. To perform this
task, the kernels of the convolutional layer are displayed among all the dimensions of the
input data and feature maps are generated.

The kernel contains weights, and strides across the input applying the dot product to
different slices of the input data, reducing its dimensionality and obtaining features from it.
An example of a kernel sliding over a feature map is shown in Figure 2.7.
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Figure 2.7: Kernel performing steps with a stride of 1 over a feature map
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Figure 2.8: 3× 3 kernel convoluting with a 7× 7 input data

In the convolutional layers, the feature maps are expected to have their size reduced. In
Figure 2.8 we can see one feature map being reduced through a kernel of a convolutional
layer.

2.3.2 Transposed Convolutional Layers

The transposed convolutional layers [29] perform the opposite operation of the convolu-
tional layers, the feature maps are expected to have their size incremented. The transposed
convolutional layers take feature maps as input data and transform them to bigger feature
maps or, sometimes, to similar data types, such as images. In essence, they are used for
upsampling the input data to a higher resolution.

This kind of layers work by reversing the forward pass of a common convolutional
layer. A transposed convolutional layer strides a kernel over the output feature map and
computes the dot product between the kernel and the output at each location, as shown in
Figure 2.9.
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Figure 2.9: 2× 2 kernel deconvoluting with a 2× 2 input data

2.3.3 Pooling Layers

The pooling layers [30] are used to reduce the dimensionality of the data and, as a con-
sequence, reduce the computational complexity of the model, making it faster to train
and evaluate. To perform this action, a kernel that applies a simple operation to reduce
dimensionality (average or maximum) is used. The operation is performed among the
different data matrices that serve as input for the layer as depicted Figure 2.10.

Figure 2.10: Average and Max-pooling with a 2× 2 kernel size and a stride of 2
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CHAPTER 3
Variational Auto-Encoder

3.1 Auto-Encoder

The Auto-Encoder (AE) is a model whose architecture is very similar to the VAE. Indeed,
the VAE inherits its name from the AE because of it. For that reason, before talking about
the VAE, it is important to talk about the model from which inherits its name.

3.1.1 Concept

The main parts of the AEs [31] are an encoder, a latent space, and a decoder. These three
parts are the main parts of the AE’s architecture.

The latent space of an AE, which is calculated through the encoder, should ideally meet
more characteristics than only being low-dimensional. A perfect latent space would also
be continuous, disentangled, informative, and robust. This means that small changes in the
latent space should lead to small changes in the output data, the different latent variables
should correspond to different interpretable features of the input data, and the the latent
space should learn a meaningful and continuous representation of the input [28].

The AE can be used for reducing the noise of the input data. Compressing the input
data allows the model to only focus on relevant areas of the input and, when reconstructing
it, the input data is denoised [32].

3.1.2 Architecture

The encoder consists of one or more layers of neurons, which are often dense layers or
convolutional layers, that apply a series of transformations to the input data to obtain a
reduced representation in the latent space.

The decoder is usually a mirror of the encoder, although asymmetric AEs exist [33],
consisting of one or more layers that take the latent representation generated by the decoder
and transform it back to the original input space. The final output is a reconstructed version
of the input data that should be as close as possible to the input data. An example of an AE
is shown in Figure 3.1.
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Figure 3.1: Example of an AE neural network

3.2 Architecture of the VAE

The VAE has an encoder NN that takes the input data and reduces it to a latent representation
which is interpreted as series of means and standard deviations that define a series of
statistical distributions. Once the input data has been transformed to a series of distributions,
commonly just one sample of each is taken as the input of the decoder NN that reconstructs
the input data as the output. We can see the architecture schema in Figure 3.2.

In further detail, given an input x, it is processed by the encoder through a series of
transformations to get µx and σx, which are vectors that contain the means and standard
deviations of the latent representation respectively. Then, z is calculated, which is a sample
of the distributions that those means and deviations represent, z ∼ N(µx, σx). At the end
of the process, z serves as the input for the decoder, resulting on the reconstructed input
x′, which is expected to be as similar as possible to the input, x′ ∼ x.
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Figure 3.2: Architecture of the VAE

As the idea of the VAE is to generate brand new data, it is not only trained to reconstruct
the output as accurately as possible, but it is also trained to generate latent distributions
similar to well-known distributions, such as the Gaussian distribution [34]. This target
distribution is commonly used because it makes the calculation of the KL divergence fairly
simple as a closed version of the KL exists when assuming that one of the distributions is
N (0, 1).

The full architecture of the VAE is only used in the training phase. After the training,
when inferring data, random samples of the target distribution are used as the input of
the decoder, which will generate new data within the distribution of the training set. This
is why the target distribution has to be known, so it is possible to sample it later. In this
phase, that can be seen in Figure 3.3, the encoder is no longer used unless the model starts
a new training phase.

Figure 3.3: Generation of new data through the VAE
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3.3 Training

The basis of the training phase are very similar to other models’ training. A SGD algorithm
is applied, such as Adam [35], a loss function and backward-propagation.

The loss function is always a key for the learning of a NN, but in the case of the VAE, it
is also critical because there are two learning processes happening at the same time, and
one single loss function has to measure both of the errors. These learning processes are,
as mentioned above, learning to recreate the data and learning to encode the input as a
specific distribution.

For the reconstruction, any loss function that measures the difference between two
pieces of data of the same type would fit, for example, the MSE. And, for the distribution,
as defined in [13], the KL divergence is used.

For more detail, if we consider a dataset, as previously defined, X = {xi}Ni=1. And we
have the probabilistic encoder model qϕ(z|xi), that takes any sample of X as input and
transforms it to the latent vector of samples z. In a similar way we have the probabilistic
decoder model pθ(xi|z), that takes z as an input and produces xi. The loss function would
have this form:

L(θ, ϕ, xi) = −DKL(qϕ(z|xi)||pθ(z)) + Eqϕ(z|xi)[log pθ(x
i|z)]

Where DKL(qϕ(z|xi)||pθ(z)) is the function for measuring the difference between
the target distribution that the model should seek pθ(z) and the distribution we obtain
encoding the input data qϕ(z|xi). And, Eqϕ(z|xi)[log pθ(x

i|z)] defines the expectancy that,
from the latent distribution qϕ(z|xi), the model obtains xi completely well reconstructed,
log pθ(x

i|z), so to say, the reconstruction loss value.

3.3.1 Reparameterization Trick

There is a problem with the training of the VAE if the backward-propagation is used within
the training of the model, and it is that, as there is a sampling process in the training process
to obtain the latent representation, there is a stochastic component that makes that section
of the model non-differentiable. This means that it is impossible to train a model like this,
because the gradients cannot be computed.

As a solution to that problem, the stochastic component is isolated in a vector ϵ. So,
instead of directly calculating the samples using the means and standard deviations, the
values of z are obtained using the reparameterization trick: z = ϵ⊙ σ + µ. This way, the
stochastic component can be isolated, allowing the training of the rest of the model.
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Figure 3.4: VAE schema before and after the reparameterization trick

In Figure 3.4, whose left end is a zoom of the latent distribution shown in Figure 3.2, we
can see that the random node is, at first, between the encoder and decoder models. That is
why it is not possible to back-propagate. When the random node is isolated in ϵ, as in the
right end of the figure, we let a differentiable path to back-propagate and update all the
gradients every epoch.
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CHAPTER 4
State of the Art

The VAE was originally proposed in 2013 by Kingma and Weiling. Since that moment, the
model has been used for generating automatically different types of data like music [36] or
images [37] with remarkable outcomes.

The VAE tries to maximize the lower bound of the log-likelihood of the data, resulting
in a loss of detail of the generated data. The latent space of the VAE, most of the times,
is not directly interpretable, which makes it difficult to understand the features that are
being mapped to the latent space. At the same time, the original model produced blurry
images because it models a probabilistic encoding of the data instead of directly modeling
the data distribution. Because of this, the loss function is a composition of two different
loss functions with two completely different magnitudes.

To improve this aspect of the original model, variations of it have been proposed over
time in search of improving its performance. Most of these variations consist of changes
on how the latent space is modeled, which is an essential part of the VAE. Some changes
suggest the usage of different prior distributions for the model or adding extra features to
the model.

Eric Nailsnick and Padhraic Smyth, in 2017, described how to use the VAE’s learning
algorithm for posterior inference for the weights of stick-breaking processes. As the Beta
distribution, which would be the normal choice for an approximate posterior, does not have
the features that the learning algorithm requires, the Kumaraswamy distribution [38] was
used. Using the Kumaraswamy as an approximate posterior, the Stick-Breaking Variational
Auto-Encoder (SB-VAE) [21] was proposed, which is a Bayesian non-parametric version of
the original VAE.

The SB-VAE draws the latent variables form a GEM distribution, making the hidden
representation an infinite sequence of stick-breaking weights. The generative process of
the model is very similar to the process of the original VAE. In mathematical terms, where
πi is the vector of stick-breaking weights and α0 is the concentration parameter of the
GEM distribution from where the latent variables are drawn.

πi GEM(α0)

19



4. State of the Art

The inference process of the SB-VAE requires modification from the standard VAE’s in
order to sample for the stick-breaking reconstruction. An inference network computes the
parameters ofK fraction distributions and samples values vi,k according to one parameter-
ization. Next, an operation composes the stick segments from the sampled fractions.

πi = (πi,1, πi,2, ..., πi,K) =

vi,1, vi,2(1− vi,1), ...,
K−1∏
j=1

(1− vi,j)


The optimization of the SB-VAE is the same as the one of the original model. The KL

divergence term can be closely approximated for the Kumaraswamy distribution.
In the paper where the SB-VAE was proposed, the ability of the model for recreating

the data and preserving the class structure was tested and compared to other models. For
the experimentation, the original VAE had a twenty-five dimensional latent distribution,
so, the SB-VAE had set its truncation level to the same number,K = 25.

After the experimentation with the SB-VAE, some conclusions were obtained. Firstly,
that the only extra computational cost of the proposed model compared to the previous
ones resides in assembling the stick segments, which is a linear operation on the order of
K . And finally, that although the original VAE converges to a better likelihood, the SB-VAE
outperforms the original model making its latent space capture the class structure.

The same year the SB-VAE was proposed, another important variant for the original
model was proposed. The motivation for this new variant was to find a model capable of
learning a disentangled posterior distribution over the underlying generative factors of
sensory data without a prior knowledge of the nature of these factors. Under this context,
the β-VAE [22] was proposed.

The way this disentangling task is achieved is by adding a single hyperparameter β
to the model. This new hyperparameter modulates the model’s learning constraints that
impose a limit on the capacity of the latent information channel and control the emphasis
on learning independent latent factors. β is applied to the β-VAE’s loss function being
multiplied to the KL divergence.

L(θ, ϕ;β, x, z) = −βDKL(qϕ(z|xi)||pθ(z)) + Eqϕ(z|xi)[log pθ(x
i|z)]

The β-VAE with β = 1 would match with the original VAE model. With β > 1,
according to the paper where the β-VAEis proposed, the model is pushed to learn a more
efficient latent representation, which is disentangled if the underlying structure of the data
allows it.

To measure the disentanglement and interpret the results, a new measure is proposed
in the paper. This new metric measures the independence and interpretability of the latent
spaces. To apply it, inference of a number of data examples is run by fixing the value
of the data generative factor while randomly generating all others. If the independence
and interpretability properties hold for the inferred representations, there will be less
variance in the inferred latents that correspond to the fixed generative factor. Then, a
low capacity linear classifier is used to identify this factor and its accuracy is taken as the
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disentanglement metric score. A linear classifier is used to ensure that this model is not
able to learn non-linear disentangling by itself.

The experimentation of this new variation using the self-created metric showed that,
overall, β-VAE tends to consistently and robustly discover more latent factors and learn
cleaner disentangled representations than the other models the β-VAE was compared with.
Another good point of the β-VAE compared to other generative models is that, as it was
shown, the β-VAE requires no assumptions about the data, and is very stable to train.

The β-VAE, when compared to the original VAE, is able to consistently learn signif-
icantly more disentangled latent representations. Also, it was observed that increasing
β often leads to better disentanglement, but its cost is to get blurrier reconstruction and
losing representations for some factors, particularly those that correspond to minor details
of the data.

More recently, in 2019, the Dirichlet Variational Auto-Encoder (DirVAE) [20] was
introduced. This approach uses a Dirichlet [39] prior distribution. The DirVAE is able to
model the multi-modal distribution that was not possible with other approaches.

The Dirichlet distribution is a composition of the Gamma [40] random variables, so the
DirVAE approximates the Gamma cumulative distribution function with the asymptotic
approximation.

The DirVAE is a result of the investigation of the component collapsing of the VAE.
This issue was already palliated by the SB-VAE, but this model has a latent value collapsing
issue due to many resulting near-zero values on its latent representation. The proposed
DirVAE shows neither the component collapsing nor the latent value collapsing issues.
This happens because of the multi-modal prior of the DirVAE.

The model proved to have interpretable latent dimensions in most of the cases, and
not suffering of any of the previously mentioned collapsing issues. The DirVAE showed to
utilize the full spectrum of latent dimensions, having a really good capability of learning in
the decoder network.

The examples of improvement proposals given above are not the only ones that have
been registered since 2013, but some examples of how the state-of-the-art related to the
VAE has evolved through the time. Other good examples of improved VAE’s variations
could be [41] or [42]. Besides, during its existence, the VAE has not only had improvement
proposals, but also has been proposed for improving other models. For example, using it as
the generator NN for a GAN model [43].

All of the research behind the VAE and its usages until this date, show how much
potential this variational model has. One of the most impressive recent usages for it, has
been utilizing a variation of the VAE to research the transformation of mice neural waves
to videos that represent what the animals were seeing by that moment [44].

As it can be noticed among the different variations, the prior distribution of the model
is one of the most-frequently chosen variations for the original approach. This is nothing
else but a reason to develop a coding library to work over these variations and to provide
tools to enhance the creation of more variations and expand the idea of the model.
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CHAPTER 5
Implementation

Any formal project that requires an implementation, should follow a well-defined structure
and some development rules that promote good programming practices. Although the
addressed problem in this project is not strictly a development problem but an investigation
about the VAE, a quality code-development makes the workmore accessible to everyone and
leaves the door wide open to future contributions to the project from external researchers
or developers.

A code development only focused on being functional is a widely scattered practice
in the world of ML research. This type of code is not easily scalable and, usually, is not
very useful for future investigations due to the lack of flexibility that that type of code
provides. It is a fact that quality code takes more time to be developed, and many times
that extra amount of time is not well-received by researchers that make the decision of
developing code that just works, which is better by short-term means and will only benefit
their current research, instead of taking time to develop code that not only works, but is
also well-built and could be helpful for future researches.

It might be a way too ambitious objective, but, what this structured and exhaustive
development aims to become a library that is used in future researches or for educational
purposes about the VAE in the future, and not to become another forgotten development
of a ML research project.

5.1 Version Control System

Version control systems are a very powerful tool for developing any programming project.
It allows the developers to produce code in an ordered way, making the task of group-
programming much more agile, and to easily deploy open-source libraries. One of the most
used version control systems is Git [45]. It is also highly recommended to use these kind
of systems even if the development is individual because they allow a very ordered and
documented development that is always helpful in any project.

In Git, each developer has a local copy of the repository they are working on, and all
the changes that they perform can be committed and pushed to a remote repository. This
technology uses snapshots of the code called commits to track changes and create a history
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of the project. Branches can be used to work on separate features or versions of the project,
and merging allows developers to incorporate those features or versions from one branch
to another. Git also allows developers to collaborate easily to request merging the changes
from one branch into another branch, with what are called Pull Requests (PRs) and with
code reviews.

For the development of the code related to this bachelor’s thesis, GitHub 1 has been
used. It is a web-based platform for projects that use Git version control system.

5.1.1 GitHub Setup

For ensuring the quality of the developed code, any GitHub repository needs a suitable
setup. The most basic part of the setup process is adding a readme file to grant some
documentation and a license to the repository to define how the project can be used by
third parties. This project has been granted with an MIT license, which is defined in
Table 5.1.

Permissions Limitations Conditions
Commercial use Liability License and copyright notice
Modification Warranty -
Distribution - -
Private use - -

Table 5.1: MIT License features

After the creation of the repository, the main branch, also called master, was protected
by the usage of basic rules. Those rules state that for merging into master, it is necessary
to create a PR from another branch. Also a dependabot was activated to inform of any
dependency issue.

For ensuring a unique formatting of the code, a GitHub workflow was created that
is executed on every pull request to check if the code follows the Black [46] formatting.
This lint check is executed as a GitHub action on every pull request and works as a format
checker. If the lint fails, the corrections should be pushed before merging the branch of the
PR.

5.1.2 Workflow

Every new feature for the project should follow a strict process before being incorporated
into master. This way, the task of programming different features in parallel becomes
structured and ordered, allowing the project to reach the scoped objectives with ease and
making it highly scalable.

For incorporating any feature, one or several branches are created with descriptive
names. These branches usually are created from master, unless the branch is creating a
sub-feature for some other branch. After the implementation of the features, one PR per
branch is created to merge the changes into, eventually, master. Once a PR is created, the
lint checker previously mentioned is run. If it fails, the Black formatting must be passed

1Link to the GitHub repository of the implementation
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through the files that do not follow the formatting. After having a successful lint run, for
the lack of more developers, a self-review of the code must be performed before merging
the changes. This strict process helps to minimize the errors of the code and adds an extra
layer of reflection to the implementation that is highly helpful for complex projects.

5.2 Code Structure and Organization

5.2.1 Architectural Pattern

Any high quality coding project should follow an architectural pattern. Following a good
software architectural pattern helps to define the performance, quality, scalability, main-
tainability, manageability and usability of one project. This way, the software is flexible,
extensible and can evolve as needed.

Although this thesis is not strictly about the development of quality code, it is still a
essential part of the project. All the experimentation is built over the foundations of the code
implemented. If that code is not well-structured and clean, it will cause the experiments
to be more difficult to replicate. Also, if anyone wants to take this work as a basis for
future development, developing quality code that follows design patterns and architectural
patterns, would facilitate that task, contributing to the success of future investigations with
a higher level of complexity.

There is precedent for data science projects that have developed quality code that has
served as basis for further investigations. One very good example is Keras [16], which is at
the same time, built over TensorFlow [15]. This project is going to add another layer to this
schema, and be built over Keras and TensorFlow, going a bit further on the development of
VAEs.

As the development work for this bachelor’s thesis has been a library, which will be
used for creating the experiments, it is not needed a really complex or strict architectural
pattern because there will not be external factors like developing endpoints, accessing
databases, etc. Thus, the chosen architectural pattern has been the Domain Driven Design
(DDD) [47] but slightly adapted to the task that is being faced.

The DDD is a software development approach that focuses the development on pro-
gramming a domain model that has a rich understanding of the processes and rules of a
domain. In software development, domains refers to business and is related to business
logic. As shown in Figure 5.1, the DDD architectural pattern has three main layers: domain,
application and infrastructure.
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Figure 5.1: Layers of the DDD

The domain represents all the programming concepts, information and rules. The
domain should be planned in a way that it persists different changes to the implementations.
It should define the relationship between domain entities and the operations that are
performed. Includes aggregates, entities, value objects, services and interfaces.

The application is responsible for interacting with the user or other applications. It is
the gateway of any project. Every interaction with an application should be made through
the application layer.

Finally, the infrastructure is the layer responsible of persisting the data, if needed. It
also includes the implementation of the interfaces of the domain.

The reasoning behind separating an application in these three layers is to make them
relatively independent of each other. The domain defines all the classes and relations
of the project, as well as the operations that are possible from each domain object. The
domain should not import anything from external projects, the application or the infras-
tructure, basically, should not import anything that defines the implementation. Then, the
infrastructure should be the layer importing from external projects, to define a precise
implementation, and from domain, to either use the resources defined in the domain or to
implement the interfaces. Finally, the application cannot implement anything related to
the logic of the project, it should only use the code inside the domain and infrastructure to
allow the communication of the application with external actors.

For this project, the DDD has been taken as the basis, but it has not been strictly
applied. The DDD architectural pattern has been properly adapted and customized to the
particularities of the project. As the project’s scope is reduced to a TensorFlow and Keras
implementation, references to both of those projects can be found in the domain layer,
which, according to a pure DDD architectural pattern should not appear. Also, the domain
is limited to exceptions and interfaces, and following the same logic, the infrastructure is
limited just to implementations of the domain’s interfaces. The application layer, due to
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the nature of the project, is not needed in most of the cases, because the project does not
aim to implement a functionality that can be used on user level.

5.2.2 Structure and Implementation Details

The code has been implemented using Python 3.9 [48] with typing. Typing has been added
to the project to add clarity and order to the implementation. In Python, the typing is
not strong because of the interpreted nature of the language. It is only used to help in
big or scalable projects to keep type-coherency, if some variable is incorrectly typed, the
Integrated Development Environment (IDE) will show a warning.

The whole programming project, according to DDD, has two different applications:
Project and Utils. In DDD we call application to a set of domain, infrastructure and
application. The application called Project is the core of the project itself, that is the reason
of such an imperative name, inside this application the domain and infrastructure of the
different VAE model implementations can be found.

Each utility implemented in the Utils application has its own sub-application itself. The
sub-applications inside Utils are three: Batches, Epsilons and Losses.

The Batches sub-application is a single application for the batch managing of a model.
A batch is a sample of training examples utilized in one iteration. The different batch
strategy implementations can be seen in the class diagram of Figure 5.2.

The common batch divides the whole dataset in different slices of the same size but the
last one, which is a remainder, just like the random batch. The strict batch does the same
but discards the remainder, the same happens with the strict random batch. The difference
between these batches and their random versions is the way the slices are selected. The
common and strict batches return the corresponding slices in order until they run out and
then, they stop. The random and random strict batches always give a random slice and
never stop. Then, the cyclic batch calculates the slice when it is queried. To do that, it
transforms the dataset to a circular array, so there will always be a next slice, making it
never stop returning slices.

The Epsilons sub-application is where the epsilon for a VAE model is generated. A
VAE needs to generate an epsilon in order to perform the reparameterization trick, and
this epsilon can follow different strategies for being generated. Each of these strategies
are expected to affect to the training process of the model. As it is visible in the class
diagram of Figure 5.3, six different strategies have been implemented, and we can see a
clear definition in Table 5.2, where the name of the class is given within a brief definition
of the strategy and a flag that marks if a fixed random seed is used in the strategy or not.
Using a random seed means that, among different executions, the strategy will always have
the same "random" results.
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Name Definition Uses
random
seed

AllRandomEachTime-
EpsilonGenerator

Every epsilon applied to every sample of the
batch will be random each time the epsilon
set for the batch is retrieved.

No.

AlwaysSameEpsilon-
Generator

It will generate an epsilon set with the same
epsilon in each row for each batch sample.
This epsilon is always the same when re-
trieved.

Yes.

AlwaysSameEpsilonSet-
Generator

It will generate an epsilon set where each ep-
silon for each batch sample is random, but it
will always retrieve the same set.

Yes.

OneEachTimeEpsilon-
Generator

It will return an epsilon set with the same
epsilon for each batch sample, but each time
the set is retrieved, the epsilon is different.

No.

SameEpsilonGenerator It will generate an epsilon set with the same
epsilon in each row for each batch sample.
This epsilon is the same every time it is re-
trieved.

No.

SameEpsilonSetGenerator It will generate an epsilon set where each ep-
silon for each batch sample is random, but it
will retrieve the same set every time.

No.

Table 5.2: Different epsilon strategies

To end with the Utils application, we have the Losses sub-application, which is a very
small sub-application that has neither domain nor infrastructure, it just has an application
package where the ImageLossFunctionSelector is located. As the loss functions do not need
any kind of domain, they can just be implemented in the code of the selector itself.

By implementing new loss functions in the Losses sub-application, and adding the to
the ImageLossFunctionSelector, new loss functions are completely added and integrated
to the application. This way, new learning strategies or new models can be implemented
efficiently and without any changes anywhere else in the code.

The Project application has all the models implemented. This application only has the
domain and infrastructure packages because the application package of DDD is not needed.
In the domain, the VAEModel is implemented with most of its functions being abstract
functions and only a few extremely generic ones are implemented. Then, in the infrastruc-
ture package, the implementation of the ImageVAE can be found. This implementation
is a middle point between the implementation of the functional VAE models for images
and a generic interface. This is not a decision based on the DDD, but on the principle of
not repeating code and generalization. The two main functional implementations are the
common VAE, implemented with MLPs; and the Convolutional Variational Auto-Encoder
(CVAE), implemented with CNNs. The Stick-Breaking Convolutional Variational Auto-
Encoder (SB-CVAE) and SB-VAE inherit directly from the previously mentioned main
functional implementations and add some restrictions to the original models in order to
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easily implement these new ones. The class diagram of this application in Figure 5.4 gives
a full overview of how it is structured.

As it is visible in the diagram, every parameter of each model can be accessed via a
getter method. This pattern will allow to analyze to the maximum the characteristics of
the models by not compromising the integrity of the parameters. Also, all the parameters
are protected. This is because, from the design point of view, it is a very good practice that
allows a model to be scalable and use it freely while making other models inherit from it.
At the same time, this practice does not allow to freely modify the parameters of the model
outside it, granting some security to the implementation.
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5. Implementation

Figure 5.4: Class diagram of the Project application

32



CHAPTER 6
Experiments and Results

6.1 Experiments

As we have observed in the state of the art, the training method of the VAE is certainly
conflicting, so it would be ideal to find a way of making it simpler. The next logical step to
reach that goal is to make experiments over the model for a better understanding of it, and
its variations. To enable us to conduct the experiments successfully and without further
complications, the usage of a library that could enable us to work easily and with flexibility
with the model would be ideal. For the lack of libraries with the mentioned features, tfVAE
was created within this bachelor’s thesis and used for the experiments 1.

6.1.1 Methodology

The model has two main variations: the VAE (uses MLPs) and the CVAE (uses CNNs), and
every experiment detailed in this section has been performed symmetrically for both main
variations. Due to the limitations of the work, each experiment was executed once.

We know that any NN model is highly dependent of its architecture, and so is the
case of the VAE. To discover one architecture for each variation of the model that works
correctly and has certain guarantees, some preliminary experiments have been carried out.

These preliminary experiments were performed using the Modified National Institute of
Standards and Technology (MNIST) dataset [49]. This dataset consists of 60, 000 greyscale
images of dimension 28× 28 that represent handwritten digits (ten different categories),
as depicted in Figure 6.1. It is widely used in for training image processing systems due to
its size, allowing to quickly check and prototype models.

1Link to the experiments in GitHub
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6. Experiments and Results

Figure 6.1: MNIST dataset preview

After the preliminary experiments, from which we selected two different architectures
for the MLP and CNN variations. Two main experiments have been conducted for each
variation. The first experiment consisted of adding the β hyperparameter (β-VAE and
β-CVAE) to the models, and the second experiment consisted of using the stick-breaking
processes to draw the latent variables (SB-VAE and SB-CVAE).

To test the generalization capabilities of the selected architectures, themain experiments
after the preliminary ones will not only be performed over the MNIST, but also the Fashion-
MNIST dataset [50]. It is a database that follows the same structure of the original MNIST
(28× 28 greyscale images with ten categories), some instances are shown in Figure 6.2. It
represents different articles of clothing, and was initially designed to be a direct drop-in
replacement for the original MNIST.

Figure 6.2: Fashion-MNIST dataset preview
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6.1.2 Evaluation

The different models in the preliminary experiments were evaluated using two different
metrics. The first one used was the Total Variation Distance (TVD) [51]. This metric is a
fundamental notion of distance between probability distributions. It is the highest difference
between the probabilities that two probability distributions that are being compared can
assign to the same event. Explained in mathematical terms, we have a dataset W with ten
different categoriesD ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and a dataset V generated from training
a generative model with the previous one, so its category group can also be taken as D.
The probability measures for both datasets are P andQ respectively. Then, the TVD would
be the following:

TV D(P,Q) = max
E∈D

∥P (E)−Q(E)∥

The second metric used was the Frechet Inception Distance (FID) [52]. This metric is
a metric typically used to assess the quality of images created by a generative model. It
measures the distance between the feature vectors calculated for images from the dataset
and generated images. The feature vectors of an image are calculated by intercepting the
values of the neurons of a hidden layer of the inception v3 model for image classification
[53] when the image has been given as the input. Once that the feature vectors have been
extracted, for example, from all the images of the previously mentioned datasets, µW , µV ,
CW andCV are calculated from the feature vectors of the datasets, that are the feature-wise
mean and covariance matrix of both sets. Knowing that the operation Tr(M) refers to the
trace linear algebra operation over the matrixM , the FID is calculated as follows:

FID(P,Q) = ∥µW − µV ∥2 + Tr(CW + CV − 2 ·
√
CW · CV )

Deciding the best-performing model with two different metrics is not a trivial task. For
that, a multi-objective optimization methodology was used as a first approach. After that,
one of the metrics was discriminated because of the superiority of the other in consistency
terms between the training epochs and the reduction of the value of the metric. During all
the experimentation process, greater value has been placed on the generative capability of
the model than on the hypothetical quality of the latent distribution.

Nevertheless, due to the high computational cost of the inception v3 model for image
classification and its difficult integration with the used datasets, the FID metric was imple-
mented extracting smaller feature vectors from a custom inception-like classification CNN
of lower complexity. This model was trained over the dataset the metric was going to be
applied on, so when the metric was calculated for images generated from the MNIST, the
inception-like model was created and trained only to classify images from this dataset. The
same logic was applied with the Fashion-MNIST. The model was also always intercepted
in the same point during all the experiments, the layer number six, which is the first dense
layer after flattening the output of the last convolutional layer of the model.

6.1.3 Preliminary Experimentation

In this section, we will present the preliminary experimentation. To reproduce the whole
process, the following steps are given:
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1. Train over the MNIST an inception-like model to compute the FID.

2. Conduct a grid search for the model. The grid search is performed over the config-
uration of the neurons in the layers, because adding more hyperparameters to the
grid search leads to an increase of the possible models that is not feasible for the
magnitude of this work. During the grid search, compute the TVD and FID of the
models, and store the models and architectures with the metrics.

3. Build a Pareto front [54] with the trained models during the grid search. The models
inside the Pareto set are in red and the ones outside it are blue. See an example in
Figure 6.3.

4. Perform another training but only over the models inside the Pareto set and compute
the TVD and FID during the training epochs to observe their evolution.

5. To take the decision of which metric should be used to define the fitness of a model,
create a graphic with one x-axis which represents the number of different training
periods performed and two distinct y-axes, one colored in red for the TVD and the
other colored in blue for the FID.
If one metric shows consistency over the training periods and the other does not,
the consistent one will be used; if both metrics show consistency, no metric will be
discarded; and, if none of the metrics show consistency, the average loss value will
be used. See an example of comparison graphic in Figure 6.4.

6. Once decided what kind of metric will be used for now on, train the models in the
Pareto set for a very wide number of iterations and store the selected fitness metric
or metrics.

7. In case only one metric is being used at this point, select the architecture of the best
model as the one that will be used from now on. If both metrics are still being used,
select the architecture of the model or models inside the new Pareto set to be used
from now on.

Figure 6.3: Example of result of the multi-objective optimization methodology in the preliminary
experiment over the CVAE
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Figure 6.4: Example of result of the metric comparison of consistency of both metrics over training
periods

6.1.4 Main experimentation

During our preliminary experimentation, the FID showed a better performance and consis-
tency than the TVD. For this reason, the FID was selected as the metric for evaluating the
models. So the steps followed in the experimentation will be conditioned by that election.

1. Prepare the configurations that will be used for each model of the experiment 2.

2. Train the inception-like model with the current dataset to calculate the FID.

3. Train all the models of the experiment over the dataset using the architectures chosen
from the preliminary experimentation results. Compute the value of the FID and
extract the loss function values (total, MSE and KL divergence) along the training
epochs.

4. After the training of each model, plot the different extracted metrics during the
training. See an examples for the FID, loss function, MSE, and KL divergence in
Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8 respectively.

5. In case the experiment has more than one model being trained at the same time over
the same dataset, compare all the models over the FID and loss values. Take as the
best model the one with the lowest FID.

2From now on, all the steps will have to be done for each dataset (MNIST and Fashion-MNIST).
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Figure 6.5: Example of progress over the iterations of the FID of a model

Figure 6.6: Example of progress over the iterations of the loss of a model
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Figure 6.7: Example of progress over the iterations of the MSE loss of a mode

Figure 6.8: Example of progress over the iterations of the KL divergence loss of a mode

6.2 Experimentation Results

6.2.1 Preliminary Experimentation Results

The architecture for the MLP models will consist of an encoder with seven dense layers with
175, 150, 125, 100, 75, 50 and 25 neurons respectively, a latent space of five dimensions
and a decoder that is the inverse of the encoder. Every layer of the model has a ReLU
activation function, except the output layer of the decoder, which has a sigmoid activation
function. For training, the learning rate is 0.0001.

The CNN models follow a different architecture. The encoder has three layers with 16,
32 and 63 filters respectively. All the filters of the encoder have 3 × 3 size, and a stride
of two except for the filters of the first layer, that only have a stride of one. The latent
space consist of five dimensions. The decoder has four layers with 60, 48, 32 and 16 filters
respectively, and an initial reshape of the input of the initial transposed convolutional layers
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of the (28, 28, 32) shape. All the filters of the decoder are of 3× 3 size and have a stride
of one. The following aspects are the same as the MLP models, every layer has a ReLU
activation function except for the output layer, that employs sigmoid; and the learning rate
is 0.0001.

6.2.2 Beta Variational Auto-Encoder

In this experiment, four different models were analyzed at the same time. Two of them with
β > 1, more precisely β = 2∧β = 5, and the remaining two with β < 1, β = 0.5∧β = 0.2.
To refer to these kind of models, the β can be replaced in the name, e.g. 2-VAE. The β = 1
models were excluded of this experiment because that value of β stands for the common
versions of the VAE that were used for the perliminary experiments.

After every sub-experiment, one model among the four displayed will be tagged as the
best-performing one, which, in this context, it is a synonym of telling which model has a
lower FID at the end of its training process.

6.2.2.1 Multi-Layer Perceptron Models

When trained over the MNIST, all the models showed a constant decrease of their loss
values and FID across their training process. In all the models, the loss value decreased
considerably in the first five-hundred epochs. After that drop, the MSE of all the models
would still tend to a moderated reduction after the epochs, while the KL divergence value
tends to be constant for all the models with no exception. It is important to remark that
the KL divergence starts with such a low value and in the first epochs it raises dramatically,
and then is when it starts its lowering tendency.

The FID behaves differently, though. This metric also tends to decrease across the
training process but more consistently over time. The metric, in the case of the 2-VAE and
the 0.2-VAE follows almost a linear decreasing, while the 5-VAE and the 0.5-VAE follow a
decreasing pattern that is stair-shaped, as depicted in Figure 6.9.
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Figure 6.9: The FID value across the the training for the models conducted by the β-VAE experiment
over the MNIST dataset.

When comparing the metrics of the different model we can see in Table 6.1 that the
model with the best performance is the 0.2-VAE, and that no model with β > 1 has the
lowest value in any of the metrics.

Metric Lowest value Model
Loss 33.9284 0.2-VAE
KL divergence 0.1469 0.5-VAE
MSE 33.7476 0.2-VAE
FID 141.7186 0.2-VAE

Table 6.1: Results of the β-VAE experiment with the MNIST dataset

For the Fashion-MNIST, the behavior of the results of the loss values across the training
did not change in a remarkable way. The values show almost the same evolution through
the training process.

For the FID, the scenario is completely different. First of all, the values are lower
as a baseline, with no exception. The other observation is that, for this dataset, all the
models follow the same decreasing tendency, and it is different compared to the tendencies
observed when the MNIST dataset was used for training. The FID decreasing starts being
very fast and tends to slow down across the epochs, drawing a curve. This behavior can be
observed in Figure 6.10
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Figure 6.10: The FID value across the the training for the models conducted by the β-VAE experi-
ment over the Fashion-MNIST dataset.

This time, when comparing the metrics of the different models we can see in Table 6.2
that some models with β > 1 appear to have the lowest value in some metrics. As a matter
of fact, the model with the best performance according to our metric, the FID, is the 2-VAE.

Metric Lowest value Model
Loss 21.8268 0.2-VAE
KL divergence 0.2041 5-VAE
MSE 21.5517 0.2-VAE
FID 54.5181 2-VAE

Table 6.2: Results of the β-VAE experiment with the Fashion-MNIST dataset

6.2.2.2 Convolutional Models

Trained with the MNIST, all the models showed a constant decrease of their loss values and
FID, like with the MLP models. In this experiment, the loss values are lower on average
compared to the ones of the previous experiment.

The loss values follow the same behavior across the training process compared to the
loss values of the MLP models, with the exception of the KL divergence. In this case, the
value of the KL divergence does not get very high at first, and takes more epochs to reach a
constant range of values. The evolution of the KL divergence during the training can be
seen in Appendix B.

Regarding the FID of the models, this metric behaves the same way as it did with the
MLP models trained with the Fashion-MNIST dataset, see Figure 6.11.
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Figure 6.11: The FID value across the the training for the models conducted by the β-CVAE
experiment over the MNIST dataset.

Among all the models, the 0.2-CVAE showed to be the best-performing model obtaining
the best results when trained with the MNIST dataset. The model obtained the lower score
for all the metrics, as it can be seen in Table 6.3.

Metric Lowest value Model
Loss 25.4636 0.2-VAE
KL divergence 0.1980 0.2-VAE
MSE 25.2656 0.2-VAE
FID 73.3358 0.2-VAE

Table 6.3: Results of the β-CVAE experiment with the MNIST dataset

The results of the models trained with the Fashion-MNIST have been slightly different
from the others. The loss value andMSE start with a pronounced descent of their magnitude,
but, in both metrics, the pronounced descent becomes more moderated for some epochs.
After few epochs, the decreasing retakes the original rhythm until reaching a range of
values that keeps constant for the rest of the training process. The described case can be
applied to all the models.

The KL divergence behaves similarly as with the MNIST dataset. The difference is that
this time, at the beginning of the training, the value gets higher than with the other dataset,
but not as high as with the MLP models.

The FID behaves completely different if it is compared with any other case. This time,
as shown in Figure 6.12, this value tends to get higher across the training. It gets higher in
almost a linear way in all cases but one. The 0.2-CVAE has a FID value during the training
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that can be taken as constant due to its low variation.

Figure 6.12: The FID value across the the training for the models conducted by the β-CVAE
experiment over the Fashion-MNIST dataset.

The same way as with the MNIST, the 0.2-CVAE is the best-performing model. It has
had the lowest score among all the models, as registered in Table 6.4

Metric Lowest value Model
Loss 17.7361 0.2-VAE
KL divergence 0.1987 0.2-VAE
MSE 17.5374 0.2-VAE
FID 41.0419 0.2-VAE

Table 6.4: Results of the β-CVAE experiment with the Fashion-MNIST dataset

6.2.3 Stick-Breaking Variational Auto-Encoder

In this experiment only one model is analyzed at a time, the stick-breaking version for each
version of the VAE (SB-VAE and SB-CVAE).

6.2.3.1 Multi-Layer Perceptron Model

For the MNIST dataset, the loss function and MSE values fall dramatically in the very
beginning of the training process, and then stay in a constant range for the rest of the
process. The KL divergence for the stick-breaking process remains strictly constant during
the whole training process.

The FID gets increased at the beginning, but tends to decrease for the rest of the
training process. Although, the range of this metric is so narrow that its value can be seen
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as constant through the training. See all the metrics evolution through the training process
in Figure 6.13, and their final value in Table 6.5

Figure 6.13: The values of the metrics across the the training for the models conducted by the
SB-VAE experiment over the MNIST dataset.

Metric Value
Loss 62.9052

KL divergence 10.1346

MSE 52.7706

FID 340.6806

Table 6.5: Results of the SB-VAE experiment with the MNIST dataset

The behavior of the loss values when training the model with the Fashion-MNIST is
the same as with the MNIST. In this case, the FID shows a downward trend even though
there are some parts where it gets increased. But, as in the case of the MNIST dataset, the
value of the metric can be considered as constant. See the described behavior in Figure 6.14,
and the final value of the metrics of the model in Table 6.6
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Figure 6.14: The values of the metrics across the the training for the models conducted by the
SB-VAE experiment over the Fashion-MNIST dataset.

Metric Value
Loss 76.6647

KL divergence 10.1346

MSE 66.5301

FID 60.4460

Table 6.6: Results of the SB-VAE experiment with the Fashion-MNIST dataset

6.2.3.2 Convolutional Model

When the SB-CVAE is trained with the MNIST, the results are almost the same as with the
SB-VAE. The only difference is that the FID follows a shape similar to a parabola through
the training, but the range of the values is still very narrow, see Figure 6.15 to observe
the behavior of the metrics, and Table 6.7 for the values of the metrics at the end of the
training.
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Figure 6.15: The values of the metrics across the the training for the models conducted by the
SB-CVAE experiment over the MNIST dataset.

Metric Value
Loss 62.7951

KL divergence 10.1346

MSE 52.6605

FID 282.8331

Table 6.7: Results of the SB-CVAE experiment with the MNIST dataset

When training the model with the Fashion-MNIST dataset, the results of evolution
of the loss values are the same, and the FID is increased at first, and later on follows a
decreasing trend, but the difference among the lowest and highest FID across the training
is less than 0.1. See the behavior of the metrics through the training in Figure 6.16 and
their final values in Table 6.8.

47



6. Experiments and Results

Figure 6.16: The values of the metrics across the the training for the models conducted by the
SB-CVAE experiment over the Fashion-MNIST dataset.

Metric Value
Loss 76.6795

KL divergence 10.1346

MSE 66.5449

FID 54.8477

Table 6.8: Results of the SB-CVAE experiment with the Fashion-MNIST dataset

6.2.4 Results of Generation

To visualize the generation capacity of the models, manifolds have been created using the
models. To create the manifolds, the latent dimensions were reduced to two, and the models
were trained from scratch, so the latent value combinations could be computed in just two
dimensions, making it possible to plot the generations of those combinations. Nevertheless,
the latent dimension reduction could lead to a loss of quality of the models because two
latent dimensions are too few, and also the architectures of the models were optimized
assuming a latent space of five dimensions. Anyway, it is still a good way to have an idea
of what a model can generate. Some generation examples with the models with five latent
dimensions can be depicted in Appendix A.

For the MLP models, eight manifolds have been created, two for each model, one per
dataset. For the models, it was decided that, as minimum, three different models should
create a manifold. One with β < 1, another one with β = 1 (the common VAE), and the
last one with β > 1; so the models 0.2-VAE, VAE, and 2-VAE were selected. Finally, to
visualize the odd results of the SB-VAE, a manifold is generated by this model as well.
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The case of the CNN models is exactly the same. The convolutional models with the
same values of β were selected and for both datasets too. Then, the SB-CVAE was selected
to generate a manifold to be able to visualize its generations.

Every manifold that was created has its own alternate version, where the values of the
latent distribution that would serve as input for the decoder are multiplied by one-hundred.
This anomalous generation task was performed because the generations with the sampling
input multiplied by a big number returned interesting results.

The resulting sixteen manifolds have been grouped in four different groups. The first
one stands for all the MLP models trained with the MNIST, see Figure 6.17. The second one
stands for the same models as in the first group, but trained with the Fashion-MNIST, as
depicted in 6.18. The third and fourth groups follow the same logic but applied to the CNN
models, where the third one stands for the models trained with the MNIST, ilustrated in
Figure 6.19, and the fourth one for the models trained with the Fashion-MNIST, as shown
in Figure 6.20

Taking into account that the distribution learned by the models is not exactly the
normal distribution because there is always some error, we tried to generate the manifolds
adding or subtracting constant numeric values to see how the generation behaved. With
this method, by trial and error with different constant values, we saw that for some models,
the manifold would improve by adding two as a constant. This resulted in less blurred and
more varied images, see Figure 6.21 and Figure 6.22.
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Figure 6.17: Manifolds generated with the MLP models trained using the MNIST where each
column represents the way the manifolds were generated.
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Figure 6.18: Manifolds generated with the MLP models trained using the Fashion-MNIST where
each column represents the way the manifolds were generated.
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Figure 6.19: Manifolds generated with the CNN models trained using the MNIST where each
column represents the way the manifolds were generated.
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Figure 6.20: Manifolds generated with the MLP models trained using the Fashion-MNIST where
each column represents the way the manifolds were generated.
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Figure 6.21: Manifolds generated by adding two as a constant to the input samples with the models
trained using the MNIST.
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Figure 6.22: Manifolds generated by adding two as a constant to the input samples with the models
trained using the Fashion-MNIST.

6.3 Conclusions

In this bachelor’s thesis, we have performed an analysis over the different variations of the
VAE (using MLPs and using CNNs) from some models from the state of the art. To that
end, we have developed the tfVAE library that has allowed us to experiment with the VAE
in a simple and flexible way.

To begin with, we can state that the FID computed with a custom model instead of
a inception v3 model, works as expected. It was also visible that the magnitude of the
FID depends not only on the generative model that is being used, also on the accuracy
of the trained model. In our case, the custom model showed to have a 99% accuracy
for the MNIST, and a 90% for the Fashion-MNIST. For this reason, during the whole
experimentation process we were able to compare the performance of different models
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trained with the same dataset with the FID, but it was impossible, only by looking at the
FID, to compare the models trained with different datasets.

At the same time, the FID appeared to work better for the MNIST than for the Fashion-
MNIST because of some strange behavior of the metric during the training process (Figure
6.12). But we have to take into account that it could be happening because the models do
not learn properly the structure of the Fashion-MNIST, which could be caused because
the architecture used was found performing a grid search using the MNIST, which is a
less complex-to-learn dataset. Also, the MNIST does not use the whole spectrum of the
greyscale, and is limited to just black and white. The Fashion-MNIST uses a bigger stake of
the greyscale spectrum, which could be an explanation of why the FID is lower for this
dataset, because the noise is not as penalized as in the MNIST. The models appear to create
clothing-shaped images but only using black and white, which could explain that the FID
gets higher during the training in some cases.

Now, we will proceed to discuss about the generative capability of the β models. Before
jumping into any conclusion, we should take into account that the grid search was only
focused on the structure of the NNs, and not on every hyperparameter of the models
because a search like that would have taken much more time and computing power than
we had. When observing the generated manifolds we should also take into account that
they were created with less powerful models than the ones used for experimenting because
the dimensionality of the latent space was reduced from five to two.

By analyzing the results, we can conclude that the β < 1 models tend to have a lower
FID and to generate less blurry images. Also, when applying the sum of the constant to the
manifold, the 0.2-CVAE shows the most diverse generations for both datasets.

At the same time, the β > 1 and β = 1 models are not so different in generative terms.
The β = 2 model shows a slightly better generative performance, and lower FID values.
The blurriness of the generated images is not greater than the blurriness of the generated
images of the common model. Although, that can also be conditioned to the fact that
the value of β is not big enough to generate images clearly blurry compared to the ones
generated by the original model.

To conclude with the analysis of the β models, we can say that, although as observed
in [22],the β-VAE, when β > 1, presents a more disentangled latent representation of
the features of the data, it does not grant a better generative capability. Meanwhile, even
though we do not know if the latent representation of the features of the data is more or
less disentangled, the β < 1 models show a better performance generating new data, and
therefore, generate images with a very good quality. Besides, a poor performance can also
be due to the fact that the sampling is based on the supposition that a model has learned in
the same magnitude how to decode to the prior distribution and to reconstruct, which is not
always true. After training any VAE or CVAE model, it would be highly recommendable to
perform a post-processing exercise to learn how to approximate the distributions that are
mapped to the latent space. This way, the sampling could be made over the approximated
distributions instead of the prior distribution, allowing the model use its full generative
potential.

Another interesting observation regarding the experiments is the fact that when mul-
tiplying the samples by a big number like one-hundred, the generations would improve
its quality in some cases. This is an odd behavior because it was not intuitive that by
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augmenting the deviation of the samples, some generated images would look with more
contrast. These augmented samples, showed to be very helpful with the blurriness, by
minimizing it even though it would not always favor the generated image.

A possible explanation to this phenomenon would be that the high variance in the
input of the decoder, would lead to a high variance in the values of the output image,
discovering the underlying shape of the original sample. This event could be enhanced by
the models we have trained in the experiments, models with the ReLU activation function
across the whole model but in the last layer, where the sigmoid function was used, By
exaggerating the features inside a latent vector, we could unconsciously make the model
decide what shape to generate more categorically. The opposite of having samples with
very low variance making the model struggle to find a proper reconstruction although it
was initially trained to do so with input data with similar features.

Another interesting feature regarding this phenomenon is that the model in where
this helps the generation the most is the 0.2-VAE and 0.2-CVAE. If the hypothesis that by
increasing the variance of the data, we get the underlying shape of the original sample
happens to be true, it would set the β < 1 models as the ones with the richest latent space,
disentangled or not. The FID of this generation technique compared to the FID of the
common one can be seen in Appendix C.

Regarding to the stick-breaking models, as said in [20], these models tend to collapse
in the latent space. This would explain the null learning of the decoder of the model.

The model needs a very specific setup to work properly and not collapse, and, as shown,
does not work under some conditions. The conclusion over this model is that it was so
useful to expand the state of the art of the VAE, but it is not a reliable model.

To finish, the usefulness of tfVAE has been shown through the whole experimentation
process. It granted all the necessary tools for creating and training the models easily and
with flexibility. The library gave a whole abstraction layer to the VAE that not only helped
testing with the model, but to implement new variations easily, quickly and in a structured
way.
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CHAPTER 7
Future Work

As the scope of a bachelor’s thesis is limited, many tasks could not be introduced in this
work. The future work sets ideas and research lines to follow the work that has been
already done. Among those lines we can find the following:

• Perform a wider grid search not only searching through few possibilities of layer dis-
tribution, but to search through every possible hyperparameter with proper pruning
techniques to avoid exploring pointless configurations.

• Perform several executions of the same experiments with different random seeds
and document their results to make the experimentation sounder.

• As the β < 1 models showed a better performance, see what would happen with a
0-VAE, or with β ≃ 0. It could lead to a very bad latent space, but in exchange, to
generations with better quality.

• Measure the disentanglement of the latent space of the models in the experiments
with the metric mentioned in the state of the art, which was originally used for the
β-VAE.

• Related to the previous line, modeling the latent space after the training to adapt the
generation of samples to the latent space. We could integrate different distribution
estimation models, such as copulas to the latent space, which are also differentiable.

• Research more exhaustively about the phenomenon of multiplying the samples by a
big number like one-hundred. Try to find a model that exploits that phenomenon.

• Search for a way to fix the collapse of the latent space of the SB-VAE keeping
the essence of the model. If the model gets to work properly, try to add the β
hyperparameter to it.

• Expand the library to more implementations and kind of neural networks like the
Recurrent Variational Auto-Encoder (RVAE) implemented with Recurrent Neural
Networks (RNNs)
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• Expand the library to support models for mode data types, and not only images (e.g.
videos, audios...).

• Expand the library to grant support for a hybrid VAE that can contain any kind of
layer in the same model. Also see if a hybrid model performs better than a pure one
like VAE or CVAE.

• Lead the library to the next level and integrate it to the Python package-management
system, so it can be easily installed by any user from any device.
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CHAPTER 8
Project Management

Before the start of an engineering project, some tasks need to be identified and added to a
list of tasks required to support a larger strategic plan, which is commonly called backlog,
in order to complete the project.

At the same time, the risks that threat the successful accomplishment of the engineering
project need to be identified. As a consequence, some actions will be taken to avoid the
identified risks or alternative plans should be drawn in order to cope with these situations.

8.1 Plan

This section will cover the planning followed during the development of the project related
to this bachelor’s thesis. This is based on an initial planning that may suffer some changes
during the development of this project.

Every task under this project defines an independent action that will grant additional
individual value to the project. The tasks are usually divided in two groups: optional
and mandatory. The mandatory tasks are those ones that are strictly needed to reach the
Minimum Viable Product (MVP), and, accordingly, the optional tasks are those ones that
are not needed to reach the MVP but can boost the quality of the project and should be
done if there is time. If a task is optional but does not boost the quality of the project, it
should be removed from the backlog.

A very good practice to organize a project is organizing it by phases. The phases are a
group of tasks that serve a specific context inside the project, they can be developed either
sequentially or in parallel depending of their nature. Following the same logic as with
tasks, the phases can also be optional or mandatory. A phase is mandatory if some tasks
that compose it are mandatory, and to accomplish this phase we have to finish, at least,
all the mandatory tasks inside it. Then, a phase is optional if and only if all the tasks that
make it up are optional, and to accomplish this kind of phases it is needed to specify which
optional tasks from it would be essential to be done in order to reach the goal specified by
the optional phase.

The development of this bachelor’s thesis has been taken as a project itself. So, before
starting any kind of work, some phases and tasks have been planned and set in the own
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backlog of the project:

■ Phase 0: Research.

• P0-T0: Investigate about MultiLayer Perceptrons (MLPs) and Convolutional
Neural Networks (CNNs)

• P0-T1: Investigate about the Variational Auto-Encoder (VAE)

■ Phase 1: Development of the library.

• P1-T0: Set up the developing environment

• P1-T1: Structure the programming project

• P1-T2: Implement the functionalities and models of the library

◦ P1-T3: Create a documentation for the library

■ Phase 2: Development of the memory.

• P2-T0: Create an index and structure it

• P2-T1: Write a detailed memory

■ Phase 3: Experimentation.

• P3-T0: Plan the experiments

• P3-T1: Implement the experiments using the library

• P3-T2: Analyze the results and draw conclusions

• P3-T3: Propose the future research lines

◦ P3-T4: Upload the experiments in collab notebooks so that they can be repro-
duced by anyone

In the plan specification above, the bullet points represent the mandatory tasks, and
the circles are the optional tasks. As it can be seen, the four phases are mandatory for the
development of the project and there are just two phases with optional tasks, one optional
task per phase. As it was explained above, we can see how these optional tasks do not
affect the development of this project until its completion, but they are able to add great
value to it.

In Figure 8.1 we can see a network diagram that explains how the phases are developed.
Since the kick-off of the project, the research phase has to be finished in order to start with
the phases of the development of the library and the memory, which are started at the same
time in parallel. Once the development of the library is finished, the experiments phase are
started and keep being developed in parallel within the memory. Once the experiments
and the memory are finished, the project is considered as officially finished.
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Figure 8.1: Network diagram of the project phases

To finish with the planning of the project, a Gantt chart has been created to estimate
the times for the project’s tasks and phases and set some a priory deadlines . This chart can
be found in Figure 8.2, the time unit is weeks because the project follows weekly sprints
in where each Tuesday the state of the project is evaluated and discussed with the thesis
advisor.

The phase number three has been estimated to take less time than normal thanks to
the development of the library. One of the strong points of creating code libraries is that it
speeds up some processes, allowing the projects to be developed in less time. It is therefore
expected that the library created in the second phase boosts the experiments of the third
phase.

The two optional tasks of this project start when the status of the project allows so, and
they are up to be done until the end of the project. They do not have a deadline because of
their optional nature, so they inherit the deadline of the project itself.

8.2 Risks

During the development of any project there are risks that threat its success. The best way
to mitigate these risks is to identify them beforehand and make a plan for them.

In this project, the risk management task was performed at the start of it. Identifying
the main risks and defining some strategies to either cope with or prevent them. Table 8.1
registers all the identified risks, and how to avoid or cope with them if possible.
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Risk Explanation How to avoid/cope with
Lack of time During the development of the

project I will be working full
time as a software developer.
This situation can threat the
project because I will have less
time. Also, unexpected events
could happen that would take
time from me.

Schedule how I will distribute
my free time to develop the
project. If the scheduling is not
enough. The project will be de-
ferred to gain some extra time.

Electronic failure The experiments, memory or
code can be digitally lost if
stored locally and the electronic
devices used for the develop-
ment of the project fail in some
way. Also, the failure of the elec-
tronic devices used for the de-
velopment of the project could
block the progress of it

Use different cloud platforms
like GitHub and overleaf for the
data loss, and keep a good main-
tenance of the electronic devices
to lower their possibilities to
fail.

Table 8.1: Risks that could threat the project
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APPENDIX A
More Generation Examples

During the experiments of the β-VAE and β-CVAE, after training each model for each
dataset, some random generations were made, as depicted in Figure A.3, Figure A.2, Figure
A.3 and Figure A.4. Each model generated two sets of random images: One with normal
sampling and the other with augmented sampling.

Figure A.1: Random generations of the β-VAE models with the MNIST dataset after the training.
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A. More Generation Examples

Figure A.2: Random generations of the β-VAE models with the Fashion-MNIST dataset after the
training.
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Figure A.3: Random generations of the β-CVAE models with the MNIST dataset after the training.
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A. More Generation Examples

Figure A.4: Random generations of the β-CVAE models with the Fashion-MNIST dataset after the
training.
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APPENDIX B
Kullback-Leibler Divercence

Evolutions

In Figure B.1 and Figure B.2 we can observe how the KL divergence value evolved through
the training of each model of the experiments of the β-VAE and β-CVAE for both used
datasets.

Figure B.1: KL divergence values through the training of the models with the MNIST dataset.
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B. Kullback-Leibler Divercence Evolutions

Figure B.2: KL divergence values through the training of the models with the Fashion-MNIST
dataset.
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APPENDIX C
FID Values for the Augmented

Sampling

The FID of the so called augmented sampling generation has been caculated for each model
in the experiments of the β-VAE and β-CVAE, and has been compared with the values with
the normal sampling, see Table C.1.

79



C. FID Values for the Augmented Sampling

Model Dataset Augmented Sampling Normal Sampling
2-VAE MNIST 123.9771 168.8981

5-VAE MNIST 137.6824 178.9140

0.5-VAE MNIST 91.6738 165.7083

0.2-VAE MNIST 91.7873 212.6919

2-VAE Fashion-
MNIST

37.1376 91.6461

5-VAE Fashion-
MNIST

62.2354 114.8022

0.5-VAE Fashion-
MNIST

21.9546 43.5730

0.2-VAE Fashion-
MNIST

26.0234 86.9979

2-CVAE MNIST 116.2057 85.1756

5-CVAE MNIST 153.2155 123.6261

0.5-CVAE MNIST 87.9924 101.0071

0.2-CVAE MNIST 67.2741 73.3358

2-CVAE Fashion-
MNIST

63.7893 81.2080

5-CVAE Fashion-
MNIST

98.1643 100.1480

0.5-CVAE Fashion-
MNIST

78.0636 67.5634

0.2-CVAE Fashion-
MNIST

37.3632 41.0419

Table C.1: Comparison of the FID value using two different sampling methods over the exact same
model and dataset.

It can be noticed that for the MLP models, the FID is lower for the generations with
augmented sample, but the trend changes for the CNN models.
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