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A B S T R A C T   

Numerous studies have attempted to detect microplastic litter directly in environmental sediments via spectral 
imaging and powerful classification algorithms. Spectral imaging is attractive largely due to the benefits of 
adding a spatial element to spectral data, the relative measuring speed, and minimal sample processing. Despite 
this promise, important concerns related to the spatial and spectral selectivity must be considered along with the 
appropriateness of classification algorithms. Here we evaluate the performance of near infrared hyperspectral 
imaging (NIR-HSI) and four commonly used classification algorithms on a simple test case in which images of 
individual microplastics of known size on top of sand were collected. The results highlight major weak points of 
NIR-HSI and machine learning as applied to the detection of the microplastics, with a large proportion of false 
positives and negatives in most of the situations studied, and alerts the reader to important concerns about the 
use of this methodology.   

1. Introduction 

Microplastics (MPs) were defined as all plastic particles smaller than 
5 mm in size, based on their potential for ingestion by biota during the 
International Research Workshop on the Occurrence, Effects and Fate of 
Microplastic Marine Debris hosted by NOAA in 2008 [1]. The diameter, 
surface area, and shape of MPs influence their potential for transport and 
bioavailability. This, in turn, influences the fate and transport of 
persistent, bioaccumulative, and toxic substances (PBTs) that may 
adsorb to plastics [2], such as persistent organic pollutants (POPs), 
polycyclic aromatic hydrocarbons (PAHs), or metals [3–6]. The lack of 
standardized analytical and quantification techniques in MP research 
makes comparison of the findings difficult [7]. Analysis to detect MPs in 
sand or sediment tends to follow these steps: 1) extraction from the 
matrix, such as sieving or density separation; 2) isolation and quantifi-
cation; and 3) characterization and identification [8]. However, this 
methodology is time-consuming and can lead to material loss, especially 
for polymers denser than common separation solutions [9]. 

Some analytical techniques allow for quantification of MPs without 
characterization of polymer type. Visual analysis may be employed to 
locate plastic particles as small as 0.25 mm–2 mm, but identification 
varies greatly between observers and is highly subject to error [10]. 

Several destructive techniques may also be used to characterize poly-
mers, including thermogravimetric analysis [11] and pyrolysis-gas- 
chromatography/mass spectrometry [12]. Stereomicroscopy can 
analyze plastic particles in the micron order of magnitude and provide 
physical characteristics and abundance [13]. The most common tech-
niques for characterization of the polymer type are FT-IR (Four-
ier-transform infrared spectroscopy) in attenuated total reflectance 
(ATR) mode [9,14] and Raman spectroscopy [9,15], which are 
non-destructive techniques. 

Due to the numerous analytical techniques available, near-infrared 
hyperspectral imaging (NIR-HSI) has been somewhat overlooked as a 
means of characterizing and quantifying MPs until recently, despite its 
application for plastic sorting in recycling facilities. Near-infrared (NIR) 
spectroscopy is a vibrational spectroscopic technique based on over-
tones and combination bands of molecular vibrations in the electro-
magnetic region between 780 and 2500 nm [16]. This leads to greater 
band overlap between compounds, which starkly contrasts with the 
“spectral fingerprint” and chemical specificity of Raman and FT-IR 
spectroscopy [17]. With NIR-HSI, meanwhile, a NIR spectrum in a full 
wavelength range is collected for each pixel in an image, adding a 
valuable spatial dimension to the spectral data [18]. In contrast with 
FT-IR and Raman spectroscopy, NIR-HSI is relatively faster and does not 
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require extensive sample preparation. 
Given these benefits, NIR-HSI has emerged as a candidate for a fast, 

reliable, non-destructive technique to characterize MP waste, thereby 
expanding the possibilities for pollution monitoring [19–21]. The lack of 
certainty surrounding the detection limit for MP detection with NIR-HSI 
inhibits its widespread implementation. In one study, researchers 
collected MPs with surface-trawling plankton nets (200 μm mesh) and 
located fishing lines, but did not attempt to identify MP fragments 
smaller than 0.5-1 mm [20]. Meanwhile, Zhu et al. (2020) [22] reported 
a limit of detection of 100 μm using a modified NIR-HSI instrument to 
detect 11 polymer types, though they noted the limit of detection using 
the factory settings was 250 μm. In 2022, Piarulli et al. [19] reported a 
limit of detection, the calculation of which was based on pixel size, of 50 
μm for detecting MPs in mussel digestate and filtered seawater. Another 
study developed an automatic detection and classification technique for 
MPs ranging from 150 μm to 5 mm in size directly in sand [21]. 

Because of differences in instrumentation, a single detection limit 
cannot be defined for all NIR-HSI cameras, but it is generally assumed to 
be at least the size of a pixel [21,23]. The difficulty in defining the edge 
of a MP contributes to the uncertainty surrounding the limit of detection 
for NIR-HSI [21]. The same problem was observed with 
micro-Fourier-transform infrared with a focal plane array, another 
hyperspectral imaging technique [24]. Indeed, recent monitoring efforts 
leverage the advantages of NIR-HSI with remote sensing for beached and 
floating marine litter [25,26]. At present, these remote sensing tech-
niques are only valid for plastic litter greater than 25 mm in size, due to 
limitations that arise from the signal-to-noise ratio and concentration of 
plastics [27]. 

Advanced machine learning methodologies must be applied to glean 
meaningful results from the enormous quantities of data produced by 
NIR-HSI devices and allow the user to detect, quantify, and classify the 
elements in the scanned surface [28]. Classification is the most common 
chemometric strategy used for automatic detection and characterization 
of MPs [24]. Classification refers to various supervised multivariate 
analytical methods designed to sort samples into classes based on a se-
ries of measurements or theoretical values [29,30]. Validation evaluates 
the reliability of a model using training and validation sets comprised of 
objects for which the class is known and measurements or theoretical 
values have been defined. 

Classification techniques fall into one of two primary categories: 
pure classification (discriminant) and class-modelling [29]. Pure clas-
sification techniques focus on differences between samples of different 
classes. All classes need to be defined with a corresponding set of stan-
dard spectra assigned unequivocally to a specific class. Three of the most 
commonly used pure classification methods are Partial Least 
Squares-Discriminant Analysis (PLS-DA), support vector machines 
(SVM), and Artificial Neural Networks (ANN). However, many polymer 
types may be present in a real sample, and each polymer class requires a 
corresponding spectral definition. As such, large databases are normally 
used to create a multiclass model to address this issue. Recent NIR 
spectroscopy and NIR-HSI studies have characterized MPs using PLS-DA 
[20,24,31], SVM [32–34], and convolutional neural networks [35]. Two 
recent studies claimed that convolutional neural networks were able to 
determine the presence of PP, polyethylene, and polyvinyl chloride in 
farmland soil using visible-NIR HSI [36,37], although there was no 
attempt to locate individual MPs within the soil. Class-modelling tech-
niques partly overcome the aforementioned issues, since they are based 
on similarities among samples of the same class [30]. This allows the 
construction of models for individual classes [38]. Among these 
methods, Soft Independent Modelling by Class Analogy (SIMCA) stands 
out for its simplicity [39]. As a result, SIMCA is one of the most popular 
class-modelling techniques and was recently implemented to charac-
terize MPs by polymer type [21]. 

Classification methods are pixel-based predictive models. That is, 
each pixel is predicted as belonging to a specific class without consid-
ering the adjacent pixels. That means each pixel is classified based only 

upon its spectrum and similarity to the spectra used to build the clas-
sification models. This is an important issue, as we will discuss further, 
since measuring pixels surrounded by environmental media may dras-
tically affect the quality of the collected spectra due to light scattering 
and other morphological effects. Important analytical concerns must be 
investigated to understand the implications of using a non-selective 
spectroscopic technique—i.e. NIR-HSI—to find trace elements—i.e. 
MPs—in a complex environmental matrix. Addressing these concerns 
requires a deep understanding of the interactions between spectral ra-
diation, MPs, environmental matrices, and the machine learning clas-
sification techniques. 

This manuscript addresses the aforementioned concerns and sets a 
basis for understanding the extent to which NIR-HSI and machine 
learning can be used to detect MPs in complex matrices. The interest is 
centered on the growing trend of using NIR-HSI to detect and classify 
MPs directly in marine sediments like sand. However, most of the 
findings can be extrapolated to any detection protocol involving spec-
troscopy and machine learning. This manuscript hypothesizes that NIR- 
HSI, together with the proper classification method, is a viable tech-
nique to identify MPs and measure their size directly in sand, thereby 
avoiding time-consuming separation techniques. We present a simple 
case study to highlight some of the concerns regarding NIR-HSI as a 
technique for the detection and characterization of MPs. These concerns 
include the uncertain limit of detection, the difficulty in determining the 
edges of particles, and the inability to detect black particles. To this end, 
a simple case was tested. Standardized MPs of known polymeric identity 
were placed in standardized sand and NIR-HSI images were collected. 
This was done to assess the reliability of classification chemometric 
techniques of different complexity. The four classification methods 
evaluated were Partial Least Squares-Discriminant Analysis (PLS-DA), 
Soft Independent Modelling by Class Analogy (SIMCA), feed-forward 
artificial neural networks (ANN), and support vector machines (SVM). 

2. Materials and methods 

2.1. Polymers 

Four different polymers were used: white acrylonitrile butadiene 
styrene (ABS), transparent polystyrene (PS), transparent polypropylene 
(PP), and black polybutylene terephthalate (PBT). These plastics were 
chosen from the list of polymers produced in the greatest quantities in 
Europe [40]. The plastics used in this study were kindly provided by the 
INNOSORT consortium (http://innosort.teknologisk.dk/) (further in-
formation in the following reference [41]). These polymers were in the 
form of pellets approximately 5 mm in diameter. The pellets contained 
no additives. MPs ranging from 200 μm to 1 mm in major axis length 
were manually cut from the pellets using a scalpel. 

The size and Raman spectra of the MPs were measured with a DMLM 
Leica microscope (Renishaw, Gloucestershire, UK) coupled to an InVia 
confocal Raman spectrometer. The Raman spectra of the MPs (Fig. 1) 
were measured using a 785 nm excitation laser 10 accumulations of 5 s 
with 15 mW laser power to confirm polymer identity. Still images of 
each MP were collected with 20x magnification (Fig. 1). The area and 
the major axis length of the MPs were calculated by selecting three 
different thresholds and calculating the mean and the standard devia-
tion (Table 1). 

2.2. Sample preparation 

The sand used in this study was collected from the surface layer of 
sand (2 cm. approx.) at a local beach in Plentzia, Spain (43◦24′40″N 
2◦56′46″W). The sand was rinsed with tap water and floating debris was 
removed. The sand was then dried overnight at 100 ◦C. To remove any 
remaining traces of organic material or plausible MPs present, the sand 
was heat treated in an oven at 450 ◦C for 1 h. The sand was stored in a 
glass container. Petri dishes were filled with sand to a depth of 0.5 cm. 
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After measuring the Raman spectrum and microscopic image of each 
MP, they were carefully placed on the surface of the sand, such that each 
Petri dish contained sand and one MP (red circle in Fig. 2). Reference 
pellets of the four polymers were placed alongside the Petri dishes on the 
bench-top setup to provide reference spectra for the training sets of 
classification models. 

2.3. Near-infrared hyperspectral imaging 

NIR-HSI images were collected using a HySpex NIR hyperspectral 
camera (Model: SWIR 384 S/N 3129, Oslo, Norway) with a 930 - 2500 
nm spectral range. The lens had a focal distance of 30 cm and the 
conveyor belt moved at a rate of 1.00 cm/s. The spatial resolution was 
set to 200 μm. The light source was aimed at the sample at a 45◦ angle. 
Calibration was performed by taking a 0% reflectance measurement 
with the objective closed and 100% reflectance measurement with a 
white reference (a Spectralon plate). Using these two references, 
hyperspectral images were converted to reflectance with the following 
Equation (1): 

Fig. 1. a), b), c) and d) Microscopic still images of studied MPs. The scale bar is 200 μm for reference. e) Raman spectra of MPs of each polymer type confirms the 
identity of each sample, according to the peaks observed [42]. 

Table 1 
Mean sizes and standard deviations of individual MPs seen in Fig. 1.  

MP Area 
±standard 
deviation 
(μm2) 

Major Axis 
±standard 
deviation 
(μm) 

MP Area 
±standard 
deviation 
(μm2) 

Major Axis 
±standard 
deviation 
(μm) 

ABS01 160923 ±
2354 

869 ± 5 PP01 114618 ±
1623 

754 ± 3 

ABS02 178743 ±
2923 

747 ± 6 PP02 71880 ±
1172 

656 ± 4 

ABS03 103505 ±
1398 

577 ± 2 PP03 98031 ±
1233 

648 ± 4 

ABS04 37328 ±
571 

392 ± 2 PP04 55005 ±
1053 

536 ± 3 

PBT01 67718 ±
1464 

712 ± 7 PS01 90214 ±
828 

604 ± 2 

PBT02 76235 ±
1580 

542 ± 4 PS02 118367 ±
2211 

594 ± 6 

PBT03 90098 ±
1774 

542 ± 4 PS03 46213 ±
1525 

509 ± 6 

PBT04 177028 ±
2477 

879 ± 5 PS04 56000 ±
862 

470 ± 3  
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R(i,λ) =
C(i,λ) − D(i,λ)

W(i,λ) − D(i,λ)
Equation 1  

for each pixel, i, and at each wavelength, λ, where R(i,λ) is the calculated 
reflectance; C(i,λ) is the intensity measured by the camera; D(i,λ) is the 
dark reference measurement representing background noise; W(i,λ) is the 
maximum reflectance intensity based on the measurement of the Spec-
tralon plate. Each of these intensity values was collected for pixel i at λ 
wavelengths [43]. 

2.4. Calibration sets 

As previously mentioned, each hyperspectral image was measured 
with a pellet of the corresponding pure polymer next to the Petri dish 
(Fig. 2) in order to use their spectra as a calibration set and avoid 
problems with variability (light conditions, focal distance or spatial 
accuracy of the camera). To create the training sets, around 100 spectra 
from sand and 50 spectra from the reference pellet of each polymer type 
were extracted to form a final spectral library of 150 spectra. All models 
were validated using random-subsets cross-validation and external 
validation (75% of the spectra for training and cross-validation, and 
25% for external validation). The datasets for training and external 
validation were randomly split. 

As sand is a heterogeneous multicomponent solid matrix, the 
selected spectra are not necessarily representative. Nevertheless, no 
trace organic matter remained due to the heat treatment performed in 
the sand. As such, any interference from the sand would likely arise from 
silicates, carbonates, or any of the other plausible components that 
might be found in a complex multicomponent matrix like sand. 

Various pre-processing techniques were applied to the spectra (e.g. 
Standard Normal Variate, Extended Multiplicative Scatter correction, 
Savitzky-Golay first and second derivatives, and combinations of these). 
Because all models returned similar results, the simplest pre-processing 
method was selected—Standard Normal Variate. Mean centering was 
then applied to the pre-processed spectra prior to classification. 

2.5. Classification models and classification assessment 

2.5.1. Classification models 
This manuscript compares the predictive ability of four well-known 

classification techniques: Soft Independent Modelling by Class Anal-
ogy (SIMCA), Partial Least Squares-Discriminant Analysis (PLS-DA), 
Support Vector Machines (SVM), and Artificial Neural Networks (ANN). 

The theoretical background of the classification models is well-known 
and has been widely published elsewhere [24,29,39,44–48]. The main 
details concerning their implementation and validation are provided 
here, but the interested reader is encouraged to consult the provided 
references for more detailed theoretical information. 

The four algorithms were selected for their different approaches to 
developing classification models. Soft Independent Modelling by Class 
Analogy (SIMCA) [39] was performed by creating two independent 
classes for sand and the polymer. This class-modelling algorithm has the 
versatility of constructing independent sub-models for each class, 
exclusively using variance to construct boundaries between classes that 
allow projection of new samples in each sub-space. As such each sample 
is assessed for belonging to each class independently [30,48]. 

Unlike SIMCA, the other three classification methods are based on 
maximizing the differences between classes while minimizing the dis-
tances within each class. Partial Least Squares-Discriminant Analysis 
(PLS-DA) is the workhorse of linear classification methods [29,49,50]. 
Using PLS-DA, the properties of Linear Discriminant Analysis are com-
bined with projection methods like Partial Least Squares. In this 
manuscript, PLS-DA models were optimized by selecting the lowest 
number of Latent Variables that gave the minimal classification error in 
external validation (test set). 

Support Vector Machines (SVM) is often considered a non-linear 
algorithm [44,45]. Nevertheless, the classification is performed line-
arly in a sample hyperspace that has been rotated in a non-linear manner 
using kernel functions suited to specific problems. Two parameters are 
essential to optimize when choosing the support vectors: the margins 
between the two classes and the cost in the classification. The best model 
configuration obtained here was using PCA as data compression and 
Radial Basis Functions as the kernel option. 

A classical but effective neural network approach has been used in 
this manuscript. Feed-forward backpropagation neural networks (ANN) 
are composed of an input, hidden, and output layer with the classifica-
tion outcome [47,51]. The input layer contained the data compressed by 
a previous PCA model. The hidden layer was composed of two nodes. 
The transfer function between the nodes in the different layers was a 
sigmoidal logistic function. 

2.5.2. Assessment of the classification power. Validation 
All models were optimized using random sub-sets cross-validation 

and external test set validation. To construct the external validation set, 
25% of the calibration data was left out. The validation parameters used 
in a classification model are Sensitivity, Specificity and Error Rate, all of 

Fig. 2. (Left) Petri dish of sand doped with one ABS MP, circled in red, along with reference plastic pellet (white pellet on the top). (Right) NIR-HSI hyper-
spectral camera. 
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which are generally expressed in percentages. These parameters are 
based the number of True Positives (TP), False Positives (FP), True 
Negatives (TN), and False Negatives (FN) during the internal cross- 
validation or external validation step [29]. Sensitivity refers to the 
ability of the model to confirm that a sample belongs to the class to 
which it has been assigned, and specificity is the ability of the model to 
confirm that a sample does not belong to the classes to which it has not 
been assigned [41]. 

One of the main features of classification models is their ability to 
calculate the probability of belonging to a given class for each pixel 
projected on the calibration model. For models like PLS-DA, SVM, and 
ANN, this probability is calculated in a binary problem as the distance of 
a specific sample to the center of a specific class divided by the sum of 
the distances of that sample to the center of the other classes: 

P(A|y)=
P(y|A)

P(y|A) + P(y|B)
Equation 2 

This implies that the sum of the probabilities for both classes is equal 
to one (100%). Nevertheless, this is not the case for SIMCA, where in-
dependent class boundaries are created for each class and the proba-
bilities are calculated independently for each class [48]. 

2.6. Data analysis and software 

The hyperspectral images were pre-processed in MATLAB (Math-
Works, Natick, MA, USA) using HYPER-Tools [52] (freely available at 
www.hypertools.org – last visited April 2023). SIMCA, PLS-DA, SVM, 
and ANN were applied using the PLS_Toolbox (Eigenvector Research, 
Inc., Manson, WA, USA). 

3. Results and discussion 

3.1. Spectral characteristics of polymers and sand 

The NIR spectra of the pure plastics and a subset of spectra for the 
sand are shown in Fig. 3. Appreciable differences in the absorption 
bands and principal peaks are visible in the spectra, allowing these 
polymers to be differentiated. The spectral shape of ABS, PS, and PP can 
also be differentiated from the sand. ABS and PS share a number of 
absorption bands because styrene is a component of ABS. 

It is important to highlight that PBT does not exhibit bands or 
spectral shapes that can aid in its identification, even though PBT has a 

well-known composition. The PBT pellets are black, and black plastics 
absorb NIR radiation at all of the wavelengths measured, making them 
notoriously difficult to measure. 

As previously mentioned, sand is a multicomponent system 
comprised of carbonates, silicates, and other inorganic matter. Fifteen 
randomly selected spectra of sand are shown in Fig. 3. All of the spectra 
look very similar, with only minor differences in some bands and the 
baseline drift characteristic of a scattering effect. 

3.2. Training, cross-validation, and external validation 

The results obtained for the calibration stage (CAL), together with 
cross-validation (CV) and external test set (TEST) indicated that perfect 
classification results, even in test sets, are achieved. Sensitivities and 
specificities of 100%, and classification errors of 0% were obtained for 
all the plastics and all the models tested. Despite this encouraging result, 
this might also indicate that the spectra used for the standard plastics 
span a very narrow variable space, since they all come from the same 
bulk of samples. This is a common practice in laboratories, since finding 
standard plastics of the same polymer with substantial differences in the 
spectra is a very difficult task. 

In the next sections, the results for detecting ABS, PS, and PP will be 
carefully explained model by model (sections 3.3, 3.4, and 3.5), always 
referring to the supplied table and figures (in the manuscript and in the 
supplementary material). Nevertheless, the results for PBT with SIMCA 
(Fig. S09) and the rest of the model strategies will be treated in greater 
detail in section 3.6. 

3.3. Prediction using SIMCA 

Using SIMCA, objects—pixels, in this case—are assigned a proba-
bility of belonging to each of the classes in the model. The user may 
choose to look at the data through the lens of an individual class—e.g. 
the probability that a pixel contains the polymer of interest—or through 
the assignment of the most probable class, in which an object is assigned 
to the class it is most similar to, although objects may not be assigned to 
any class and remain “unassigned.” Of the four classification models 
evaluated, SIMCA yielded the greatest number of true positive identifi-
cations of the MPs while minimizing the number of false positives. The 
SIMCA model located three of the four ABS MPs (Fig. 4, Fig. S01, 
Fig. S05 and Fig. S09). 

We describe pixels as “positively identified” as belonging to a poly-
mer class when there is a non-zero probability of class belonging, 
because the selection of thresholds is an open question. In this case, the 
threshold is the minimum probability of class belonging required to 
assign a pixel to a given polymer class. Setting too high of a threshold 
may cause pixels containing a MPs to be excluded and lead to under-
estimating the size. In contrast, setting the threshold too low may lead to 
false positives or overestimates of the size. 

To further our discussion of probability thresholds, the size of MPs 
was calculated based on the pixels designated as having non-zero 
probability of containing polymers. In the cases of ABS01 and ABS02, 
the number of pixels characterized as ABS changes depending on where 
one sets the threshold for minimum probability of class belonging. 
ABS02, which has a major axis length of 747 ± 6 μm, will be used as an 
example. Five pixels with a non-zero probability of class belonging for 
the ABS class have been found (Fig. 4). The probabilities of class 
belonging are, in descending order: 0.4, 0.1, 0.08, 0.03, and 0.01. Each 
pixel is approximately 250 μm × 250 μm. All five pixels would be 
included if a threshold of 0.01 were applied, leading to a major axis 
length estimate of 750 μm. Vidal and Pasquini (2021) [21] applied a 
threshold of 0.01 for inclusion of pixels using a SIMCA model. In 
contrast, a threshold of 0.1 would include two pixels and exclude three 
pixels, leading to a major axis length estimate of 500 μm. Such decisions 
play an important role in estimating the size of MPs. In the case of 
ABS04, the SIMCA model located one pixel with a probability of class 

Fig. 3. Average NIR spectra of reference pellets of ABS, PBT, PP, and PS, as well 
as 15 spectra of sand from an area known not to contain plastic. 

R. Goyetche et al.                                                                                                                                                                                                                               

http://www.hypertools.org


Trends in Analytical Chemistry 166 (2023) 117221

6

belonging of 0.03 for ABS. In this case, the selection of a threshold for 
the minimum probability of class belonging can mark the difference 
between the measured presence and absence of MPs. 

Although the major axis length and area of ABS03 were greater than 
those of ABS04 as measured via microscopy, SIMCA identified pixels of 
ABS04 but did not locate ABS03. Due to the surface roughness and the 
reflective nature of the sand, the ABS03 may have been oriented such 
that not all of the radiation that interacted with the MP was reflected to 
the camera sensor. This would be consistent with the light scattering and 
morphological effects that are known concerns in NIR-HSI. Similarly, 
PP02 was not located although it was not the smallest MP of PP by area 
or by major axis. 

SIMCA located the MPs of PS in all four instances, but false positives 
were present in three of four cases (Fig. S01). For PS01, PS03, and PS04, 
multiple groups of pixels had non-zero probabilities of class belonging, 
indicating false positives. These pixels had probabilities of class 
belonging ranging from 0.04 to 0.6. In the case of PS03, there was one 
false positive, which was a pixel misclassified as PS with a probability of 
class belonging of 0.01. This further highlights the challenges of 
selecting a threshold for class inclusion and exclusion. 

Regarding PP, the SIMCA model located the microplastics MPs in 
three of four PP cases: PP01, PP03, and PP04 (Fig. S05). There were no 
false positives. PP01, which has a major axis length of 754 ± 3 μm, is 
another example of a microplastic MP with a size estimate that depends 
on the selection of the minimum probability threshold for class 
belonging. SIMCA located five pixels with non-zero probability of class 
belonging for PP01 (Fig. S05): 0.7, 0.3, 0.1, 0.06, and 0.01. As such, a 
threshold of 0.1, for example, would lead to an estimate of major axis 
length of 500 μm instead of including all pixels, which would lead to an 
estimate of 750 μm. In the cases of PP03 and PP04, pixels were located 
with a non-zero chance of belonging to the PP class, although all had a 
probability of class belonging less than 0.03. 

Using probabilities and selecting a threshold of class belonging is a 
normal practice when models like SIMCA are developed. Nevertheless, 
there is a probability for each pixel to belong to the category of sand, and 
special consideration should be given to the fact that even though the 
probabilities found for the pixels to belong to the polymer class (Fig. 4, 

Fig. S01 and Fig. S05), there might be the possibility of having a high 
probability of those pixels to be sand. This point is further discussed in 
section 3.7. The most probable plots clearly show that when the prob-
ability of belonging to the sand class is higher than the probability of 
belonging to the polymer class, a high number of false positives are 
found in all the cases studied (Fig. 4, Fig. S01 and Fig. S05). 

3.4. Prediction using PLS-DA 

The PLS-DA prediction model located three of the four ABS MPs 
(Fig. 5). However, the prediction model also yielded multiple false 
positives in all four cases. 

In contrast, PLS-DA was only able to locate two of the four MPs of PS. 
False positives were observed in all the cases, even though there are 
fewer false positives than were obtained with SIMCA using most prob-
able class assignation (Fig. S02). In the PP cases, PLS-DA was prone to 
false positives as well, although there were more false positives pre-
dicted with PLS-DA compared to SIMCA using most probable class 
assignation. (Fig. S06). The predictions erroneously identified various 
groups of pixels as corresponding to the class PP. Even so, PLS-DA did 
correctly locate the MPs of PP in all four instances. 

3.5. Prediction using SVM 

SVM was capable of correctly locating pixels with some probability 
of class belonging for all four MPs of each ABS, PP, and PS. Despite this 
initially encouraging outcome, there appear to be some drawbacks to the 
use of SVM prediction models. For example, more than 15 false positives 
(contiguous groups of pixels labeled as containing the polymer of in-
terest) based on most probable class are observed in the images of all 
four MPs of ABS (Fig. 6). 

The threshold selected for minimum probability of class belonging 
determines the number of MPs located by the SVM models. Deeper study 
is required to select a non-arbitrary threshold. To illustrate this point, 
the cases of PP, PS, and ABS will be compared. For PP and PS, the 
greatest probabilities of class belonging for any given pixel were 0.67 
and 0.61, respectively (Figs. S03 and S07). If a 0.6 were selected as the 

Fig. 4. SIMCA Most probable assignation (a, b, c, d) and Probability (e, f, g, h) for ABS.  
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minimum probability threshold, only one of four PP MPs and one of four 
PS MPs would be characterized as MPs. Meanwhile, using the same 0.6 
threshold for ABS, upwards of ten groups of pixels would be labeled 
MPs, resulting in false positives (Fig. 6). 

In all twelve plates of sand containing one MP each, SVM appears to 
classify the sand as having some probability of class belonging to the 
polymer classes. The SVM predictions appear to have a visual “texture” 
similar to that of sand, indicating that the models may be susceptible to 
mischaracterizing the scattering of the uneven surface of the sand. 

3.6. Prediction using ANN 

ANN models appear to fall short as a technique to locate MPs in sand. 
The ANN models correctly located two of the four ABS MPs (Fig. 7). 
However, in all four instances of ABS characterization, at least three 
false positives were identified as having non-zero probability of con-
taining ABS. ANN correctly located two of the four MPs of ABS—ABS01 
and ABS02 (Fig. 7). However, both particles are estimated to have a 
major axis length of two pixels, or approximately 500 μm. This is an 

Fig. 5. PLS-DA Most probable assignation (a, b, c, d) and Probability (e, f, g, h) for ABS.  

Fig. 6. SVM Most probable assignation (a, b, c, d) and Probability (e, f, g, h) for ABS.  
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underestimate, as ABS01 has a major axis length of 869 ± 5 μm and 
ABS02 has a major axis length of 747 ± 6 μm. 

The ANN predictions for PS correctly identify the location of PS01 
and PS02 with no false positives and the location of PS03 with one false 
positive (Fig. S04). 

ANN locates one of the four PP MPs, PP01. No pixels are highlighted 
as containing PP for PP02 and PP04. In the case of PP03, ANN does not 
locate the MP. Instead, it locates a false positive. Curiously, the false 
positive is in the same location as the false positive for PP3 highlighted 
using SVM (Fig. S08). 

3.7. Black PBT as a special case 

As mentioned beforehand, there are no problems with the molecular 
structure of PBT (Fig. 1). Nevertheless, the main issue with this plastic is 
its black color. NIR spectroscopy is a photonic-based molecular tech-
nique. The black color causes most of the photons to be absorbed and 
transformed into energy, instead of being reflected. Therefore, the 
spectral signal is normally very poor quality. The results obtained by 
SIMCA (Fig. S09) show that the PBT MPs were not located under any 
circumstances. As such, whether or not PLS-DA, SVM or ANN correctly 
identified the location of the MP is unknown (Figure S10, S11 and S12). 
Regardless, it is clear that the models show optimistic results, as up-
wards of twenty connected groups of pixels were classified as PBT, even 
though only one particle of PBT was placed in the sand. The false pos-
itives may correspond to black or dark-colored grains of sand. 

3.8. On spectra and probability 

All cases presented in this manuscript (16 MPs of 4 polymers clas-
sified by 4 models) have presented, in general, difficulties in finding a 
unique classification of the MPs. Most cases, if not all, presented an 
elevated number of false positive pixels. One could ascribe this issue to 
the models themselves. Nevertheless, a deeper view of the spectra must 
be given in order to understand the root of the problem. NIR radiation 
working in diffuse reflectance may behave in a peculiar manner. It may 
penetrate thin MPs, be subject to influence from the scattering promoted 

by the background pixels, or even disappear in the shape of absorption 
as in the case of PBT. All these peculiarities make the spectra of the MP 
quite different from the ones in our databases, adversely affecting the 
likelihood of correct classification. 

Let us take, as an example, the results obtained for the ABS01MP. Re- 
visualizing the results obtained for that particular MP (Fig. 8), a closer 
detail can be given to the spectra associated with the pixels being clas-
sified as MP (red spectra in Fig. 8i) and the ones in the surroundings 
(green spectra in Fig. 8i). When compared with the standard reference 
spectra for ABS (thick red spectrum) and the mean spectrum of sand 
(thick green spectrum), it is evident that both groups of spectra share 
peaks belonging to ABS (e.g. the region between 1600 and 1900 nm) and 
baseline drifts belonging to the sand (e.g. the region between 1000 and 
1200 nm). The models struggled to find those pixels whose spectra are a 
mixture of signals belonging to the plastic and the surroundings. For 
example, the blue spectrum belongs to the pixel classified as plastic by 
SVM only and not the other models. SVM found that the probability of 
that particular pixel to be either of the classes in 0.5, making its classi-
fication in one of the classes a mere question of mathematical compu-
tation precision rather than sound chemical criterion. 

One might argue that feature selection could have helped improve 
the results in this case. Certainly, having all the available spectral in-
formation beforehand could help construct a more reliable model. 
Nevertheless, this is not possible for systems where the MPs are in 
environmental substrates like sand or even when the chemical structure 
of the polymer differs from the standard structures that we normally 
have in databases (presence of additives and colorants, action of 
weathering, biofouling, etc.). The presence or absence of different bands 
from the standard cannot be a priori predicted. Besides, it is important to 
remember that the classification results were of high quality (see 
Table 2). Therefore, there are no parameters left to optimize since the 
classification model is as optimal as possible as it is. 

4. Conclusions 

The detection of MPs in environmental substrates using chemical 
imaging and machine learning is increasing the interest of the scientific 

Fig. 7. ANN Most probable assignation (a, b, c, d) and Probability (e, f, g, h) for ABS.  
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community. Nevertheless, it is not exempt from strong issues as 
demonstrated in this manuscript even with the simplest case that can be 
studied, since the MPs used here have the exact same composition as the 
pellets used for constructing the classification models. In this simple 
case, SIMCA was the most successful of the four machine learning 
techniques based on its ability to locate pixels containing the ABS, PS, 
and PP MPs while minimizing false positives, although some false pos-
itives were still observed. Within the discriminant analysis techniques, 
PLS-DA classification outperformed SVM and ANN, which both failed to 
locate the MPs in a greater number of cases. In the case of SVM, a notably 
higher number of false positives were observed. 

The four classification techniques used are all supervised, pixel- 
based predictive models. SIMCA, a class-modelling technique, funda-
mentally differs from the other three classification techniques evaluated. 
Using SIMCA, pixels are evaluated for their similarity to a set number of 
principal components from a training set or spectral library on a pixel- 
by-pixel basis. This allows the construction of one-class models, and 
the addition of more classes without recalculating the entire model. In 
contrast, PLS-DA, SVM, and ANN are pure classification, or discrimi-
nant, techniques. With pure classification techniques, objects are sorted 
into classes based on the differences between classes present in the 
spectral library. 

Fig. 8. A closer look at the results obtained for ABS01 with the four models. (a - d) the most probable class. (e - h) probability of belonging to the ABS class. In these 
cases, the actual probability calculated by the models for being ABS (red) and sand (green) is also displayed. i) Spectral profiles obtained for the pixels classified as 
ABS (red) and for the pixels surrounding them (green). The pixel classified as ABS by SVM that has not been classified as ABS by the other models has been drawn in 
blue. The pure spectrum for ABS is drawn with a thick red line, while an average spectrum for pure sand is drawn with a thick green line. 
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Researchers must be aware of the potential pitfalls associated with 
classification based on libraries containing the spectra of pure polymers, 
which may create class boundaries too narrow to locate MPs effectively. 
This is particularly evident in this study, in which the MPs were not 
always located by the models, despite the fact that the MPs were 
chemically identical to the polymers in the spectral library. As such, 
weathering processes in the environment, chemical additives such as 
flame retardants, and the presence and formation of biofilm on plastics 
may be expected to negatively impact classification model performance. 
In the case of biofilms, the plastic signal is likely to be detectable because 
NIR radiation is known to penetrate samples. However, biofilm, like 
chemical additives, are likely to have NIR signal, in which case there 
would be a high likelihood of spectral interference that could impede 
correct classification. To address these concerns, other authors have 
noted the necessity of including weathered, commercial, primary, and 
secondary plastics with varying textures and densities in spectral li-
braries [25, 53], and our work supports this recommendation. 

Also known to affect detection with NIR radiation are the spectral 
artifacts that arise from physical characteristics of MPs and sand. These 
physical influences include light scattering and morphological effects 

resulting from rough surfaces. In two instances, MPs were not located by 
SIMCA, despite not being the smallest MPs by area or diameter in each 
polymer class. As such, it is likely that the angle of incident radiation, 
the orientation of the MP, and the scattering from the rough surface of 
the sand may have interacted in such a way that the reflected radiation 
did not reach the camera sensor. Further, these results highlight the 
imprecise relationship between pixel size and detection limit for NIR- 
HSI. To this end, researchers must be careful when selecting thresh-
olds of probability for class belonging. Default settings in classification 
tools allow the researcher to feel like they are avoiding making choices 
that may bias a model. However, not making a choice is also a choice, 
and may have ramifications such as over- or underestimates. 

The combination of adequate machine learning classification models 
and NIR-HSI applied under appropriate circumstances has the potential 
to be a valuable addition to microplastic monitoring protocols, given its 
adaptability, potential to collect data for large areas in a short time, and 
low sample preparation requirements. However, for this to be the case, 
considerations about spectral libraries, spectral artifacts arising from 
physical characteristics, and threshold selection must be taken into 
account. 

Table 2 
Classification results. *For PBT, the results must be checked and understood with the supplied figures (S09 – S12) due to the extremely high number of false positives.  

Particle known MP 
in-class 

SIMCA PLS-DA 

Area (μm2) in- 
class object 

Max Prob 
pixel* 

Major Axis 
Length (μm) 

False 
Positives? 

known MP 
in-class 

Area (μm2) in- 
class object 

Max Prob 
pixel* 

Major Axis 
Length (μm) 

False 
Positives? 

ABS01 yes 250000 0.3 750 yes yes 187500 1 500 yes 
ABS02 yes 312500 0.4 750 yes yes 312500 1 750 yes 
ABS03 no - 0 - yes yes 312500 0.8 750 yes 
ABS04 no - 0.03 - yes no - 0 - yes  

PS01 yes 375000 0.5 750 yes yes 250000 0.9 750 yes 
PS02 yes 375000 0.6 750 no yes 250000 1 500 yes 
PS03 yes 62500 0.03 250 yes no - 0 - yes 
PS04 yes 125000 0.04 500 yes no - 0 - yes  

PP01 yes 312500 0.7 750 no yes 437500 1 750 yes 
PP02 no - 0 - no yes 187500 1 500 yes 
PP03 yes 125000 0.03 500 no yes 125000 1 500 yes 
PP04 yes 62500 0.01 250 no yes 125000 1 500 yes  

PBT01 yes* -  - yes yes* -  - yes 
PBT02 yes* -  - yes yes* -  - yes 
PBT03 yes* -  - yes yes* -  - yes 
PBT04 yes* -  - yes yes* -  - yes  

ABS01 yes 1000000 0.9 1000 yes yes 187500 1 500 yes 
ABS02 yes 1062500 0.8 1250 yes yes 250000 1 500 yes 
ABS03 yes 750000 0.6 1000 yes no - 0 - yes 
ABS04 no - 0.4 - yes no - 0 - yes  

PS01 no - 0.4 - yes no - 0 - yes 
PS02 yes 687500 0.6 250 yes yes 250000 1 500 yes 
PS03 no - 0.2 - yes no - 0 - yes 
PS04 no - 0.4 - yes no - 0 - yes  

PP01 yes 1187500 0.6 1250 yes yes 125000 1 500 yes 
PP02 no - 0.3 - yes no - 0 - yes 
PP03 no - 0.4 - yes no - 0 - yes 
PP04 no - 0.25 - yes no - 0 - yes  

PBT01 yes 187500 1 500 no yes 187500 1 500 no 
PBT02 yes 687500 0.9 250 no yes 187500 1 500 no 
PBT03 no - 0.4 - no no - 0 - no 
PBT04 no - 0.4 - no no - 0 - no  
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litter from oceans by an innovative approach based on hyperspectral imaging, 
Waste Manag. 76 (2018) 117–125, https://doi.org/10.1016/j. 
wasman.2018.03.003. 

[21] C. Vidal, C. Pasquini, A comprehensive and fast microplastics identification based 
on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics, Environ. 
Pollut. 285 (2021), 117251, https://doi.org/10.1016/j.envpol.2021.117251. 

[22] C. Zhu, Y. Kanaya, R. Nakajima, M. Tsuchiya, H. Nomaki, T. Kitahashi, K. Fujikura, 
Characterization of microplastics on filter substrates based on hyperspectral 
imaging: laboratory assessments, Environ. Pollut. 263 (2020), 114296, https://doi. 
org/10.1016/j.envpol.2020.114296. 

[23] A. Hueni, S. Bertschi, Detection of sub-pixel plastic abundance on water surfaces 
using airborne imaging spectroscopy, in: IGARSS 2020 - 2020 IEEE Int. Geosci, 
Remote Sens. Symp., 2020, pp. 6325–6328, https://doi.org/10.1109/ 
IGARSS39084.2020.9323556. 

[24] V.H. da Silva, F. Murphy, J.M. Amigo, C. Stedmon, J. Strand, Classification and 
quantification of microplastics (<100 μm) using a focal plane array–fourier 
transform infrared imaging system and machine learning, Anal. Chem. 92 (2020) 
13724–13733, https://doi.org/10.1021/acs.analchem.0c01324. 

[25] L. Biermann, D. Clewley, V. Martinez-Vicente, K. Topouzelis, Finding plastic 
patches in coastal waters using optical satellite data, Sci. Rep. 10 (2020) 5364, 
https://doi.org/10.1038/s41598-020-62298-z. 

[26] O. Garcia-Garin, T. Monleón-Getino, P. López-Brosa, A. Borrell, A. Aguilar, 
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