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Abstract 

Background:  Unlike diseases, automatic recognition of disabilities has not received 
the same attention in the area of medical NLP. Progress in this direction is hampered 
by obstacles like the lack of annotated corpus. Neural architectures learn to translate 
sequences from spontaneous representations into their corresponding standard repre-
sentations given a set of samples. The aim of this paper is to present the last advances 
in monolingual (Spanish) and crosslingual (from English to Spanish and vice versa) 
automatic disability annotation. The task consists of identifying disability mentions in 
medical texts written in Spanish within a collection of abstracts from journal papers 
related to the biomedical domain.

Results:  In order to carry out the task, we have combined deep learning models that 
use different embedding granularities for sequence to sequence tagging with a simple 
acronym and abbreviation detection module to boost the coverage.

Conclusions:  Our monolingual experiments demonstrate that a good combina-
tion of different word embedding representations provide better results than single 
representations, significantly outperforming the state of the art in disability annotation 
in Spanish. Additionally, we have experimented crosslingual transfer (zero-shot) for 
disability annotation between English and Spanish with interesting results that might 
help overcoming the data scarcity bottleneck, specially significant for the disabilities.

Keywords:  Artificial intelligence, Neural networks, Named entity recognition, Disability 
annotation, Embeddings, Crosslingual learning

Introduction
The International Classification of Functioning, Disability and Health (ICF) defines 
disability as a term which groups together a highly heterogeneous set of impairments, 
activity limitations and participation restrictions. People with disabilities experience 
increased vulnerability to secondary conditions, comorbid conditions, and higher rates 
of premature death, among other things due to the fact that some disabilities also cause 
physical and/or mental illness [1, 2].

According to the World Health Organization (WHO), 15% of the world’s population 
suffer some kind of disability. WHO also claims that lack of information or data col-
lection and analysis on disability, all contribute to health inequities faced by this group, 
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and they are often left out of public health interventions [3]. Additionally, in ontologies 
like UMLS disabilities do not belong to any specific semantic type, they are wide spread 
across different types; some belong to the Findings, some to the Diseases or Syndromes 
and some others to the Mental or Behavioral Dysfunctions. Although having an intersec-
tion with the aforementioned semantic types, they show differential characteristics like 
the use of less formal language, longer entities and negative polarity terms like for exam-
ple loss, dysfunction, or alteration. These facts show the relevance and the challenges dis-
ability identification poses, requiring specific attention and research.

Medical text processing has boomed since the big increase in the availability of tex-
tual information in the form of scientific literature or Electronic Health Records (EHR). 
Together with the wealth of available textual information, Machine Learning and Deep 
Learning approaches have provided new representations and algorithms that have revo-
lutionized the fields of Artificial Intelligence and Natural Language Processing, giving 
amazing improvements on the state of the art. Lately, several word and text represen-
tation models such as word-based, subword-based, character-based, or cross-lingual 
embeddings have emerged, together with corresponding algorithms like Seq2Seq [4] or 
Transformer models [5].

The recognition of Medical Named Entities (MER) is one of the basic yet crucial steps 
for the success of any higher level automatic tool. The goal of Named Entity Recognition 
(NER) is to automatically identify relevant entities in written texts, labelling each token 
with an entity tag. In the clinical domain, the typical entities correspond to symptoms, 
diseases, body parts, and drugs. The majority of the literature focuses on performing 
MER in English [6]. However, in recent years there has been an increasing interest in 
the processing of other languages (see [7] for a review of clinical NLP in languages other 
than English). For example, there have been recent works on the processing of Span-
ish, Swedish or Chinese [8–13]. Working on disabilities and especially in languages 
other than English is a challenging problem due to data scarcity. To our knowledge, the 
DIANN task [14] is the only evaluation task exclusively devoted to the automatic recog-
nition of disability mentions. The task was divided in two sub-tasks, corresponding to 
the detection of disabilities in English and Spanish in a Biomedical corpus.

In this work, we present a set of experiments on the detection of disability mentions in 
Spanish (see Fig. 1). We will experiment with different approaches, thoroughly evaluat-
ing the contribution of different Deep Learning approaches and study the strengths and 
weaknesses of each option. Specifically, we will test the construction of textual represen-
tations like word embeddings, character-, segment- or word-based, which can be a key 
factor. We will also experiment with different Deep Learning algorithms, including the 
Transformer architecture and multilingual and cross-lingual approaches, going beyond 
monolingual systems. This article aims to make a new proposal based on the analysis of 
the distinctive features to draw conclusions about the most influential ones and their 
combination in effective ways.

The paper is organized as follows: the next section will examine relevant related work. 
In subsection Resources we briefly describe the corpora used for training and evaluation, 
including other additional textual data used. Afterwards, subsection Techniques ana-
lyzes and compares the different techniques and algorithms. To conclude, we present the 
main results and discuss the main outcomes involved.
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Related work
The CoNLL 2003 shared task [15] was a milestone concerning general purpose NER that 
led the way to current systems. Since then, several annotated corpora have been devel-
oped in different biomedical domains, specially for English. The entities involved depend 
on each task, and correspond to elements such as gene names, proteins, drugs, proce-
dures and diseases. Regarding other languages, several annotated corpora have been 
used, as the IxaMed-GS corpus [13], conformed by Electronic Health Records (EHR) 
written in Spanish annotated with drugs and diseases. In addition to all these corpora 
and tasks, initiatives focused on specific and less studied types of medical entities, such 
as the corpus used in the DIANN shared task [14] have also emerged.

Looking at the approaches employed for NER, machine learning gave a first signifi-
cant boost to the task, with powerful algorithms such as support vector machines (SVM) 
[16], conditional random fields (CRF) [17] or the Perceptron algorithm [18]. Examples of 
their application to medical NER are [19, 20] for English, [11] for Chinese and [10] for 
Swedish and Spanish.

In the last years, machine learning techniques have experimented a revolution with 
neural networks and deep learning [21, 22]. These algorithms drastically reduce the need 
of feature engineering, as they are able to directly learn the critical features from numeri-
cal representations of the data. There are different variants of neural network algorithms, 
such as recurrent neural networks (RNN) [23], long short-term memories (LSTM) [24], 
convolutional neural networks (CNN) [25] or Transformer Architectures [26]. A distinc-
tive feature of neural approaches is the use of textual embeddings [27], which are vecto-
rial representations that are learned in an unsupervised manner using huge amounts of 
unlabeled text as input. These representations provide distributional information about 
words and they encode relevant linguistic and semantic information. In this way, words 
that have the same meaning share a similar representation, and using simple operations 
like the cosine distance between two vectors can help to group similar concepts together. 
This can significantly improve the generalization ability of models learned on limited 
amounts of data, naturally capturing word meanings. Although the initial algorithm was 
originally devised for words, the use of vector operations also allows to obtain vecto-
rial representations of characters, word pieces (also called subwords), multiword terms, 

Fig. 1  Examples of annotated disabilities (upper part in English and lower part in Spanish)
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sentences or even whole documents. Word2vec [27], Stanford GLOVE [28], and Face-
book FASTTEXT [29] are the best known algorithms for generating word embeddings. 
Several works have successfully made use of these pre-trained embeddings as input to 
improve the performance on different tasks like general or medical NER [8, 9, 11, 30, 
31]. When using pre-trained embeddings, they can be generated from out-of-domain 
corpora, or also from domain related corpora, in our case general medical corpora (jour-
nals or scientific abstracts), or corpora extracted from electronic health records (EHR). 
It is still an unresolved question to decide whether better embeddings can be obtained 
when training using general domain huge amounts of text or smaller in-domain corpora, 
which could in principle be nearer in word meaning and usage. Many times, especially 
in the case of clinical data, in-domain corpora is harder to obtain or simply unavailable. 
Current state-of-the-art methods have made use of distinct embedding types:

•	 Classic word embeddings, like GLOVE or FASTTEXT. These works [27, 28] calcu-
late pre-trained embeddings over very large corpora trying to capture latent syntac-
tic and semantic similarities. They have been very effective in multiple tasks.

•	 Character-level embeddings. Although most works on NLP and neural networks 
have taken the word as the basic processing unit, character-based information is 
attractive because (1) character contexts are less sparse than word contexts, and (2) 
characters can capture details that word-based models can not, as prefixes and suf-
fixes that are helpful to correctly identify out of vocabulary (OOV) or misspelled 
words [30].

•	 Subwords. Using individual words as the basic unit discards meaningful semantic 
structure between words that share substructures. For this reason, apart from char-
acter-based models, byte pair encoding (BPE), a compression algorithm, has been 
used in several applications, like machine translation and text processing [32, 33]. 
Technical domains such as scientific and medical literature compose words from 
subword structures such as prefixes, suffixes, root-words as well as compound words, 
cognates and loan words. For example, neurofibromatosis, a complex term that could 
be otherwise classified as an unknown OOV word, can be given a meaning looking 
at its affixes neuro- and -osis, and classify it as a disease related to neurons, if embed-
dings were calculated taking those subwords as unit.

•	 Multilingual embeddings. They provide a way to transfer and share knowledge across 
different languages, thus porting information from languages with more resources to 
underresourced ones [34]. There are two main approaches:

•	 Simultaneous training of a single language model (LM) using multiple languages, 
allowing to profit of bigger training corpora. This way, cross-lingual learning can 
be applied, where the cross-lingual model is fine-tuned in one of the languages 
and then used in zero-shot scenarios where there is no training data for the other 
languages.

•	 Training each language’s embeddings independently and a posterior alignment in 
a common space by means of linear transformations and bilingual dictionaries. 
The main idea is to learn a mapping from the source to the target space using an 
iterative alignment method, giving as a result a multilingual representation
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Regarding the types of software architectures used, we can distinguish the following 
ones:

•	 Sequential architectures [35]. These systems presented a first breakthrough [30] 
on the NER task by means of neural networks applied to sequential tagging, 
using a bidirectional BiLSTM architecture followed by a Conditional Random 
field layer (CRF) that models joint tag dependencies, surpassing the previous 
state of the art by a significant margin. They take pre-trained word embeddings 
as additional input for training, and character embeddings internally for the 
detection of prefixes and suffixes. We can distinguish two main types regarding 
the context they use: (a) Static embeddings. This was the first type of models 
[30, 31] that made use of pre-trained word embeddings. Although the results 
improved the best current systems, one disadvantage is that using this approach 
each word form is assigned a single vector containing its representation inde-
pendent from its context. (b) Contextualized or dynamic embeddings [36–38] 
capture semantics in context to address the polysemous and context-dependent 
nature of words. These dynamic embeddings are calculated taking the context 
into account, that is, the same word can receive different embeddings depending 
on its context.

•	 Transformer-based architectures [26] use the attention mechanism to account 
for the context of each word. In Recurrent Neural Networks or LSTMs, the 
importance of the past elements can vanish with distance. Using transformers, 
instead of sequentially applying the same network, the idea is to connect the cur-
rent token to all the elements, preceding and posterior, where each element has a 
positional embedding concatenated to it. The aim is to incorporate the context in 
the processing of the current word, by a mechanism that weights the relevance of 
each context word with respect to the current one. This technique has produced 
state-of-the-art models while at the same time decreasing training time due to an 
easier parallelization.

The DIANN shared task [14] was dedicated to the detection of disability mentions 
in biomedical research texts in English and Spanish, with the objective of evaluat-
ing the performance of various named entity recognition systems in two different 
languages. In the first position, [39] presented a neural network-based architecture 
system consisting of a bidirectional long short term memory network (BiLSTM) and 
a conditional random field (CRF), using static word embeddings for both languages 
combined with a rule-based acronyms and abbreviation module for the detection 
of disability-related acronyms and abbreviations, obtaining an F-measure of 0.82 
and 0.78 for English and Spanish, respectively. [14] uses a long short-term memory 
architecture for disabilities, improving the state of the art, with an F-measure of 
0.83 and 0.81 for English and Spanish. More recently, [40] present experiments on 
this corpus incorporating negation-based transfer learning to disability annotation. 
Although the use of negation information considerably improves their baseline sys-
tem, it is still below the state of the art (they reach an F-measure of 76.9 and 76.5 for 
English and Spanish).
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Materials and methods
In this section we will explore all the corpus and tools we have used in order to carry out 
the experiments. The first subsection describes the data, which includes annotated data 
and raw text. The next two subsections will present, respectively, the Deep Learning and 
Rule-based approaches that have been implemented, concluding with a description of 
the main experimental settings in the last subsection.

Resources

In this subsection we will first present the DIANN annotated corpus of disabilities, and 
the unannotated additional texts that we have used in our experiments for Spanish and 
English in subsection Embeddings.

The DIANN annotated corpus

The DIANN corpus [14] is a gold standard corpus annotated with disabilities. The cor-
pus includes 500 abstracts from scientific papers corresponding to the biomedical 
domain between the years 2017 and 2018, related to rare diseases. The document com-
pilation was restricted to documents with the abstract in both English and Spanish con-
taining at least a disability in both languages.

Disabilities are commonly expressed either with a specific word, such as blindness, or 
as the limitation or absence of a human function, such as lack of vision. The corpus1 is 
publicly accessible and it will allow to train machine and deep learning systems, thus 
extracting new information about the relations between rare diseases and disabilities. 
Table 1 presents the main characteristics of the corpus.

Some disabilities are mentioned more than 50 times whereas others are mentioned 
only once, with an average of 1.8 mentions for each disease. From them, 72% are 
expressed as the impairment of a human function, while 23% are stated using some 
disability term. In 5% of the cases, the disability corresponds to an acronym. The most 
frequently mentioned disability is ataxia, related to motor skills, followed by deafness, 
dementia (related to problems in cognitive functions), autism and blindness. The most 
frequent physical impairment functions are associated to hearing, sight and motor skills, 
affection of cognitive capacities and related to development.

Although the annotated disabilities have a common intersection with clinical catego-
ries like UMLS diseases or disorders, there are also important differences. For example, 
disabilities are presented in longer sequences (19.79 characters and 2.29 words on aver-
age per disability) compared to diseases (12.39 characters and 1.43 words per disease 

Table 1  General data on the DIANN annotated corpus of disabilities and rare diseases

Documents Tokens Disabilities

Train Test Train Test Train Test

Spanish 400 100 70,919 18,406 1413 243

English 400 100 78,381 20,567 1326 229

1  https://​github.​com/​gildo​fabre​gat/​DIANN-​IBERE​VAL-​2018.

https://github.com/gildofabregat/DIANN-IBEREVAL-2018


Page 7 of 18Goenaga et al. BMC Bioinformatics          (2023) 24:265 	

in the Spanish IxaMed-GS [13] corpus). We did preliminary experiments using a state 
of the art clinical NER system for Spanish [41], and found that it was able to correctly 
detect only 31% of the disabilities. This can be explained by the less specialized language 
used for disabilities compared to current medical NER diseases. For example, disabilities 
like mental disorders, problems in working memory or capacity limitations in phonologi-
cal working memory could not be detected by the standard clinical NER system, which 
otherwise has an f1-score of 90% for diseases.

Embeddings

Deep learning techniques usually require huge amounts of data. Although manually 
annotated data give the best results, it is very expensive and time consuming. For that 
reason, the idea of acquiring useful information in an unsupervised manner through 
embeddings is very attractive, and efficient and effective methods have been developed. 
This way, a system can have information on the fact that, for example, infarct and stroke 
are similar terms, even when the latter did not appear in the annotated corpus.

With this objective, we made use of several other corpora for adding unsupervised 
knowledge to the system, either directly processing textual corpora to obtain different 
embeddings, or indirectly through the use of pre-calculated embeddings. This allows to 
measure the impact of using general available resources or domain specific ones.

For the latter case, we made use of a EHR corpus (the Spanish EHR corpus henceforth) 
that comprises 300,000 unnanotated EHRs collected over 4 years during the period 
2012–2016 at the regional Hospitals from the Basque Health System, with approximately 
200 million tokens. The corpus consists of deidentified patient records subject to a con-
fidentiality agreement. The EHRs follow the standard SOAP notes method (Subjective, 
Objective, Assessment, Plan) and they are semistructured. In order to experiment with a 
varied number of possibilities, we have tested the following types of embeddings for the 
monolingual setting (training and test on the same language, Spanish in our case):

•	 FASTTEXT pre-trained Embeddings [29], trained on the Spanish Wikipedia (797 M 
tokens) and CommonCrawl (72,000 M tokens).

•	 Wikipedia2Vec pre-trained embeddings [42], of words and entities from Wikipe-
dia. This tool enables users to learn the embeddings giving a Wikipedia dump file as 
argument.

•	 SkipNGram word embeddings [43] trained from the Spanish EHR corpus. In order to 
better model the language contained in our EHRs, we trained our own LM. Although 
this corpus is smaller than the previous ones, it has the advantage of containing in-
domain text, which can be helpful for many tasks.

•	 Flair contextualized character embeddings trained from the Spanish EHR corpus 
[38].

•	 Transformer-based LM [44]. BETO is a BERT [45] model trained on a big general 
Spanish corpus (Wikipedia and news, among others), similar to a BERT-Base in size 
and trained using the Whole Word Masking technique.

For the cross-lingual setting (training on one language and evaluating on the other one) 
we chose the following:
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•	 MUSE [46] is a library designed with the goal of providing state-of-the-art multilin-
gual static word embeddings (FASTTEXT embeddings) aligned in a common space 
by means of large-scale high-quality bilingual dictionaries.

•	 Meta-embeddings [47] integrate multiple word embeddings created from comple-
mentary sources such as text or knowledge bases, projecting word vectors to a com-
mon semantic space using linear transformations and averaging. They combine, for 
English, Word2Vec embeddings from Google News (100 billion words), GloVe and 
FastText from Common Crawl (600 billion words), while for Spanish they use the 
vectors trained on the Spanish Billion Word Corpus (1.4 billion words).

•	 Multilingual BERT (mBERT) provides contextual embedding representations for 104 
languages, which have been applied to many multilingual or cross-lingual tasks [45].

•	 XLM-RoBERTa (XLM-R) [48] is a transformer-based language model, pre-trained 
on general domain texts in 100 languages, based on subword embeddings.

Deep learning: monolingual and multilingual approaches

Based on the resources described in the previous subsection, we have experimented 
with the different options presented using state-of-the-art neural architectures. On the 
one hand, for the evaluation of the contribution of different embedding types in the 
monolingual setting, we have chosen the Flair architecture, built upon contextual char-
acter embeddings. For the crosslingual experiments, we have tested the multilingual 
extensions to Flair and the transformer-based XLM-R architecture (see next subsec-
tion). Figure 2 presents the main architecture we have used, including different types of 
embeddings, character, word and contextual (see left side of the figure), a bidirectional 
LSTM layer (middle) and a final CRF layer that will produce the final output.

Contextualized string embeddings

Akbik et al. [38] propose a contextualized character-level word embedding model, that 
tries to combine the best attributes of different embedding types. Their framework 
allows the testing of different NLP models, such as NER, part-of-speech tagging (PoS), 
and classification on a given text. The system’s most distinguishing features are:
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•	 The texts are modelled as sequences of characters instead of words using a stand-
ard sequential BiLSTM-CRF model. This radical approach will allow to better 
handle OOV and misspelled words as well as substructures such as prefixes and 
suffixes. Even when the system is based on character embeddings, it is able to gen-
erate an embedding for any string of characters [37]. For example, a word can be 
modelled as the concatenation of the output hidden state after the last character 
in the word in the forward LM and the hidden state of the first character in the 
word in the backward LM.

•	 The ability to pre-train on large unlabeled corpora. This way, we can either make 
use of pre-trained LM embeddings calculated over huge volumes of text (such as 
BERT embeddings [45], ELMo embeddings [36], FASTEXT embeddings [29], or 
Flair embeddings [37]) or otherwise generate a new LM based on each user’s own 
unannotated data. These general pre-trained LMs, also known as stacked embed-
dings, can be fine-tuned to specific tasks by a second round of training on the final 
objective with successful results.

•	 As the embeddings are contextual, they capture word meaning in context, produc-
ing different embeddings for polysemous words depending on their usage.

Multilingual transformers

XLM-RoBERTa (XLM-R) [48] makes use of a transformer-based multilingual masked 
language model, pre-trained on text in 100 languages, that obtains state-of-the-art 
performance on several NLP tasks, including sequence labeling. Contrary to the alter-
native used in Flair, the LM used by this system has been simultaneously trained on 
text from all the languages.

The unit used for processing is the subword (also called word piece), which allows 
to decompose a word into smaller components, ideal for generalizations, OOVs, mis-
spellings and crosslingual processing. Different languages can share subvocabularies, 
either literally or by means of local transformations, and this is more usual for spe-
cialized subdomains such as medicine (Table 2).

Acronym and abbreviation detection module

In order to detect some disabilities represented by acronyms that deep learning tech-
niques are not able to identify, we have created a rule-based acronym and abbre-
viation detection module. This module is responsible of detecting the acronyms of 
disabilities that are close to the disabilities (maximum one word distance) identified 
by the neural network. To be detected as an acronym, the acronym must be in paren-
theses and have only capital letters (more than one capital letter). Once the acronyms 
are detected the module labels them as disabilities in the entire text. Table 3 shows an 
example of the application of the rules. In the first case, the deep learning methods 
fail to capture the acronym (CP). In the second case (low part of the table) the addi-
tion of rules allows to detect two instances of the CP disability.
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Experimental settings

Table  2 presents the different types of systems that will be compared in this paper. 
On the monolingual part (upper side of Table  2) we describe a set of experiments 
that use the Spanish DIANN corpus for training, development and test. The first two 
systems correspond to the best published results until the moment, which are both 
based on using static word embeddings and a BiLSTM-CRF architecture for training, 

Table 2  Overview of the different approaches used for automatic disability annotation, tested on 
Spanish data

The upper table presents the experiments with monolingual approaches (training with Spanish data) and the lower table 
the ones using crosslingual approaches (from English to Spanish and vice versa)

Main architecture System Stacked external 
embeddings

Level of granularity Train/dev

Monolingual approaches

BiLSTM-CRF 2018 Shared task
Best system [49]

W2V static word
+ character features
(EHR)

Static word DIANN Spa

Best published
Result [14]

GLOVE static word
+ character features
(general texts)

FLAIRFT  [37] FASTTEXT
Static word & subword
(general texts)

Contextual character

FLAIRWiki2V [37] Wikipedia2Vec
Static word

FLAIRSkipNG_EHR
[43]

SkipNG
Static word (EHR)

FLAIRLM_EHR

[37]
FLAIR contextual
Character (EHR)

Transformer BETO [44] Spanish
contextual
subword

Spanish
contextual
subword

Crosslingual approaches

BiLSTM-CRF FLAIRMUSE [46] Bilingual static subword Contextual character DIANN Spa/Eng

FLAIRME [47] Static word

FLAIRmBERT  [45] Contextual subword

Transformer XLM− R [48] Multilingual
contextual
subword

Multilingual
contextual
subword

Table 3  Example of disability identification using deep learning (above) and using the acronym and 
abbreviation detection module (below). Identified disabilities are shown in bold

Disability Identification (Deep Learning)

There are many instruments designed to evaluate motor function in children with cerebral palsy (CP)... motor 
function over time in children with CP

Disability Identification (Deep Learning + Rules)
There are many instruments designed to evaluate motor function in children with cerebral palsy (CP)... motor 
function over time in children with CP
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representing the current state of the art. The next systems use the Flair framework 
of contextualized character embeddings taking different external embedding sources: 
FASTTEXT ( FLAIRFT  ), Wikipedia2Vec ( FLAIRWiki2V  ), FLAIR’s Wikipedia-based pre-
trained embeddings ( FLAIRLM_Wiki ), SkipNGram static word embeddings pre-trained 
on our own Spanish EHR corpus ( FLAIRSkipNG_EHR ), and FLAIR contextual charac-
ter EHR embeddings ( FLAIRLM_EHR ). For the sake of comparison with a transformer 
model, we have also added BETO [44].

As the best performing systems [14, 49] have used a combination of a Deep Learn-
ing base system and an acronym and abbreviation module inspired in ours to improve 
the results, in the next section (see Results) we will also present the results with and 
without this module, for the sake of comparison. Additionally, we have also tested 
the usage of several combinations of external (or pre-trained) embeddings to train 
new sequence labeling and text classification models, thus trying to incorporate com-
plementary types of knowledge into the system. We experimented with the two and 
three best performing embedding types (B2/B3 for best two/three embedding types, 
presented in the lower part of Table 4).

The lower part of Table  2 presents the crosslingual experiments, where a system 
takes as input a multilingual representation that includes both English and Spanish 
mapped into a single embedding space together with the English DIANN annotated 
corpus and applied to the Spanish DIANN test set. These experiments can show to 
what degree a system can be derived to a target language (Spanish) with no anno-
tated data in that language, using a source language (English) with more annotated 
resources.

In the results we will provide the average and standard deviation of several evalu-
ation rounds with different initialization seeds, to give an estimation about the vari-
ability that can be found when replicating the experiments, as pointed out in [50]. 

Table 4  Monolingual experiments

Results of the different approaches used for automatic disability annotation in Spanish (the best results are presented 
in bold). A−: without Acronym and abbreviation module. A+: with the Acronym and abbreviation module. The upper 
part of the table shows the results using a single source of pre-trained embeddings, while the lower part presents the 
combinations of the best two (B2) and three (B3) embedding types

System Precision Recall F-measure

A− A+ A− A+ A− A+ (stdev)

2018 Shared task best system [49] 75.00 81.00 71.46 78.60

Best published result [14] 79.00 83.00 69.00 79.00 74.00 81.00

BETO 77.73 78.41 66.57 74.22 71.64 75.98 (±2.15)

FLAIRSkipNG_EHR 83.23 83.05 73.07 80.64 77.82 81.82 (±1.51)

FLAIRFT 84.90 83.67 71.18 81.22 77.43 82.43 (±1.28)

FLAIRWiki2V 85.63 84.27 76.27 80.78 80.67 82.64 (±0.37)

FLAIRLM_EHR 84.53 85.66 72.20 83.26 77.87 84.43 (±0.93)

Combined approaches

FLAIRB2 ( FLAIRLM_EHR

   + FLAIRWiki2V)
87.61 87.68 76.13 85.88 81.47 86.77 (±0.50)

FLAIRB3 ( FLAIRLM_EHR

   + FLAIRWiki2V

   + FLAIRFT)

87.67 87.66 73.51 82.83 79.96 85.16 (±1.59)
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A cumulative of 133  h of computation was performed on hardware of type Titan 
V (TDP of 250W) with 12 GB of RAM. Total emissions are estimated to be 14.36 
kgCO2 of which 0 percents were directly offset. Estimations were conducted using the 
MachineLearning Impact calculator.2

Results
The upper part of Table 4 presents the results for the monolingual approaches using dif-
ferent pre-trained embeddings and training and test being performed on the Spanish 
DIANN corpus. The first two lines give the best reported results in the literature [14, 
49]. The best system at the 2018 DIANN shared task used a BiLSTM-CRF with gen-
eral domain static word embeddings and obtained an F-measure of 78.60 [49], while 
[14] improved this basic architecture by adding character embeddings and a casing 
embedding vector, reaching an F-measure of 81.00. The table shows how using a trans-
former base general domain Language Model (BETO) do not surpass even the shared 
task best results. Using pre-trained static word embeddings based on in-domain EHRs 
( FLAIRSkipNG_EHR ) the results are better than the best reported systems. The FAST-
TEXT ( FLAIRFT ) and Wikipedia2Vec ( FLAIRWiki2V  ) embeddings give a slight increase 
in the results. In the last line, we see that the addition of pre-trained contextualized 
character embeddings based on EHRs ( FLAIRLM_EHR ) gives a final significant improve-
ment (F-measure of 84.43) over the previous results, with a noticeable increase in all the 
measures.

The lower part of Table 4 presents the combination of the two and three best ( FLAIRB2 
and FLAIRB3 ) embedding types, which give an additional boost in both precision and 
recall and obtain the best result (86.77 F-measure). We must note that the combina-
tion does not require the independent training of different systems, and instead a single 
training phase providing the different embedding types is necessary.

Table 5 shows the results for the crosslingual approaches in a zero-shot setting where 
there is no annotated data in the target language (Spanish or English) and the system 
relies on multilingual aligned embeddings and training on the source language. The 
FLAIRME system gets the best balanced compromise between precision and recall, with 

Table 5  Crosslingual experiments (zero shot)

Results of the different approaches used for automatic disability annotation in Spanish trained on English data. A−: without 
Acronym and abbreviation module. A+: with the Acronym and abbreviation module

System Precision Recall F-measure

A− A+ A− A+ A− A+ (stdev)

FLAIRMUSE 70.51 76.11 23.72 27.94 35.43 42.58 (±4.40)

Train ENG FLAIRME 54.65 61.24 28.67 37.70 37.31 46.31 (±2.31)

Test SPA FLAIRmBERT 35.04 38.85 10.04 12.66 13.98 17.12 (±9.67)

XLM− R 48.09 58.04 2.57 28.61 29.49 37.51 (±9.35)

FLAIRMUSE 57.08 59.41 23.32 35.01 32.89 43.71 (±2.87)

Train SPA FLAIRME 64.71 69.95 28.40 41.84 39.45 52.34 (±1.44)

Test ENG FLAIRmBERT 17.53 22.70 13.03 19.76 14.49 20.45 (±13.21)

XLM− R 18.93 28.26 6.16 10.49 8.71 14.28 (±4.82)

2  https://​mlco2.​github.​io/​impac​t/#​home.

https://mlco2.github.io/impact/#home
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an F-measure of 46.31 and 52.34 for Spanish and English, respectively. The multilingual 
BERT and XML-R systems, however, are far from the other two systems.

Discussion
In the following, the first subsection (Analysis) will comment the main features of the 
results presented in Tables 4 and 5. Next, we will try to inspect the results and under-
stand the main errors, differences and improvements obtained in different models.

Analysis of the results

The results in Table  4 show how choosing the right representation and pre-trained 
embedding types has a significant effect on the results. In the upper part of the table, 
describing the monolingual experiments, we see that a fine tuned Spanish transformer 
Language Model (BETO) does not reach the performance of the systems using BILSTM-
CRF character-based LM (FLAIR) for this task. This is relevant because currently many 
implemented systems use transformers where other architectures like BI-LSTM should 
not necessarily be abandoned. This goes in the line of the experiments in [51] where 
the authors conclude that general-purpose transformer-based models are not always 
necessarily better than simpler approaches. Adding domain specific static embeddings, 
in this case based on EHRs ( FLAIRSkipNG_EHR ), although it gives an improvement over 
the state of the art, the obtained score is slightly lower than that of systems pretrained 
on larger general corpora like FLAIRFT and FLAIRWiki2V  . This seems to show that the 
inclusion of domain specific knowledge contributes unequally depending on the nature 
of the knowledge; contextualized character-based embeddings generalize better as many 
other authors concluded already. In-domain medical EHR embeddings ( FLAIRLM_EHR ) 
improves substantially (more than 3 points) the best published result (81.00), while static 
in-domain embeddings ( FLAIRSkipNG_EHR ) do not reach a significant improvement.

The lower part of Table 4 presents the results when several embedding types are com-
bined, using the best two ( FLAIRB2 ) or three ( FLAIRB3 ) types of embeddings (with an 
score of 86.28 and 87.05, respectively). We must note that the combined systems are not 
the result of training different systems, but they use a single training phase taking differ-
ent types of embeddings as input.

Regarding the crosslingual experiments (see Table 5) the MUSE-based system obtains 
the highest precision for Spanish at the cost of a lower recall. The mBERT-based and the 
XLM-R systems suffer from a low recall, while the Meta-embeddings-based system gives 
the best F-measure. Although the results are still far from being useful in any application, 
they present a promising avenue of research. These results show that giving good quality 
crosslingual embeddings trained on huge amounts of text in an unsupervised manner 
can be useful to port annotated knowledge from one language to another without the 
need of annotating the target language. It seems that the potential of models trained on 
one language to generalize to other languages depends on factors like language proxim-
ity, because the relatively good results obtained in our case contrast to other works [52] 
that showed much poorer results in Russian-English transfer on EHRs (3.07 F-score for 
diseases in EN → RU and 0.97 for RU → EN).
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Error analysis

We have inspected the results of the different systems trying to elucidate the varied 
types of information managed by each approach. Table 6 presents different instances of 
disabilities that are captured by each model.

The first row in the table presents an example where the weaker models are unable 
to correctly detect the entity, while the more powerful model ( FLAIRLM_EHR ) and the 
combined model can identify it. In the second and third rows we see how more pow-
erful models in general can improve the results of the less powerful ones, although in 
some cases there are divergences, as in rows 4 and 5 where the FLAIRWiki2V  model out-
performs the FLAIRSkipNG_EHR one. Rows 6, 7 and 8 present several examples of entities 
that are detected using the models based on EHRs. Finally, the last two lines of the table 
present examples where the combined knowledge contained in the different individual 
models can be leveraged to obtain a correct analysis.

Table 7 presents examples correctly and incorrectly identified entities in the crosslin-
gual setting using the best approaches of Meta-embeddings ( FLAIRME ) and MUSE 
( FLAIRMUSE ). Examples 1–3 show how a system trained in a different language (English) 
can still be useful when applied to a different language (Spanish). One of the main rea-
sons is that using subword elements such as characters or word pieces can be specially 
helpful in specialized domains such as medicine, where many terms and words share 
prefixes, suffixes and infixes (-neuro, sensorial, fronto-, -temporal, bilateral,...) that help 
to bridge the gap between the two languages. In general, FLAIRMUSE gives a high preci-
sion although with a low recall, while FLAIRME obtains a better balance between preci-
sion and recall. Rows 6 and 7 present examples where both systems fail, and we can see 
how in these examples the difference between the English and Spanish terms is bigger, 
which can be the cause of failure.

Table 6  Error analysis, monolingual experiments

Examples of different instances of disabilities and the result of the different models. 1. deficits in primary executive function, 
2. alterations of cognitive functions, 3. memory impairment, 4. impairment of executive and visual-spatial functions and 
praxia, 5. visual deficiency, 6. overall developmental delay, 7. sudden loss of vision, 8. movement disorders, 9. sensorimotor 
dysfunction, 10. psychiatric pathologies

Entity (gold) FLAIR FLAIR FLAIR FLAIR FLAIR
FT Wiki2V SkipNG_EHR LM_EHR B2

1 Déficits en la función
Ejecutiva primaria

✕ ✕ ✕ ✓ ✓

2 Alteraciones de las
Funciones cognitivas

✕ ✓ ✓ ✓ ✓

3 Afectación de la memoria ✕ ✓ ✓ ✓ ✓
4 Afectación de las funciones

ejecutiva y visuoespacial y
de las praxias

✕ ✓ ✕ ✓ ✓
(partial
match)

5 Deficiencia visual ✕ ✓ ✕ ✓ ✓
6 Retraso global del

desarrollo
✕ ✕ ✓ ✓ ✓

7 Pérdida brusca de visión ✕ ✕ ✓ ✓ ✓
8 Trastornos del movimiento ✕ ✕ ✓ ✓ ✓
9 Disfunción sensoriomotora ✓ ✓ ✕ ✕ ✓
10 Patologías psiquiátricas ✓ ✓ ✕ ✕ ✓
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Apart from looking at the detection of correct terms presented in Table  7, we have 
also examined the entities that were incorrectly detected by the FLAIRME system (False 
Positives):

•	 patologías auditivas (auditory pathologies)
•	 posibles déficits cognitivos (possible cognitive deficits)
•	 peor funcionamiento cognitivo (worse cognitive functioning)
•	 parálisis supranuclear progresiva (progressive supranuclear palsy)
•	 trastorno bipolar (bipolar disorder)

We can see how, even when these entities do not exactly correspond to disabilities, they 
are instances of diseases, which can be semantically situated near disabilities, and show 
how the crosslingual embeddings convey the meaning associated to illnesses in some 
sense. In other cases, however, the system incorrectly marks some entities as disabili-
ties when they correspond to a non-negative quality, like in potential disabilities “posi-
bles deficits cognitivos” or in tests and measurements (“Se evaluó el funcionamiento 
cognitivo)”.

Conclusion
In this work we have tested the effect of different types of embedding granularities 
like static word embeddings, subword embeddings and contextual character embed-
dings for Named Entity Recognition of disability mentions in medical texts written 
in Spanish. This presents a low resource scenario regarding to both the language 

Table 7  Error analysis, crosslingual experiments (in the case of a partial matching, the overlapping 
span appears in bold)

Entity (gold) FLAIRME FLAIRMUSE

1 Sordera neurosensorial
(neurosensorial deafness)

✓ ✓

2 Demencia frontotemporal
(frontotemporal dementia)

✓ ✓

3 Sordera bilateral
neurosensorial congénita
Y pérdida progresiva
de visión
(bilateral sensorineural
deafness and visual
impairment)

✓
(partial)

✓
(partial)

4 Trastorno neuropsiquiátrico
(neuropsychiatric disorders)

✓ ✕

5 Pérdida total o parcial de
la visión
(partial or complete
vision loss)

✓
(partial)

✕

6 Alteraciones del movimiento
(movement disorders)

✕ ✕

7 Trastornos psiquiátricos
(psychiatric disorders)

✕ ✕
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(Spanish with respect to English) and also the subdomain (disabilities compared to 
diseases or medications). We have thoroughly evaluated the contribution of different 
Deep Learning approaches and study the strengths and weaknesses of each option. 
Specifically, we show that the construction of word embeddings, character-, segment- 
or word-based, is a key factor for the improvements.

In the monolingual setting, our system significantly outperforms the state of the 
art in disability annotation in Spanish, using contextual character embeddings trained 
on a corpus of the clinical domain (EHRs), with an F-measure of 84.43 comparing to 
a best reported result of 81.00. Our experiments have shown that a fine tuned Span-
ish transformer Language Model (BETO) is not necesarilly better than a BILSTM-
CRF character-based LM (FLAIR) for this task. Although domain specific knowledge 
improves the results, its inclusion contributes unequally depending on the nature of 
the knowledge; contextualized character-based embeddings generalize better, while 
static in-domain embeddings are far from obtaining similar results.

We show that dynamic contextual character-based embeddings give the best perfor-
mance. Additionally, we also study combinations of different embedding types forming 
ensembles, studying whether they convey complementary or redundant information 
(F-measure of 86.77). In this case more does not mean better, as the ensemble of the three 
best embeddings obtains worst results than the combination of just the two best ones.

We have also experimented the feasibility of crosslingual transfer (zero-shot) for 
disability annotation between English and Spanish, with promising results. One of the 
aims of this work was to explore to which extent cross-lingual knowledge might help 
transferring medical information across typologically distant languages to overcome 
data scarcity in one of the languages, Spanish in this case, showing that this can be a 
good starting point when there is no annotated data in the target language.
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