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Abstract One relevant aspect in the development of the Semantic Web framework

is the achievement of a real inter-agent communication capability at the semantic

level. Agents should be able to communicate with each other freely using different

communication protocols, constituted by communication acts.

For that scenario, we introduce in this paper an efficient mechanism that presents

the following main features:

– It promotes the description of the communication acts of protocols as classes that

belong to a communication acts ontology, and associates to those acts a social

commitment semantics formalized through predicates in the Event Calculus.

– It is sustained on the idea that different protocols can be compared semantically

by looking to the set of fluents associated to each branch of the protocols. Those

sets are generated using Semantic Web technology rules.

– It discovers the following types of protocol relationships: equivalence, specialization,

restriction, prefix, suffix, infix and complement to infix.
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1 Introduction

In the scenario promoted by the emerging Web, administrators of existing Information

Systems distributed along the Internet are encouraged to provide the functionalities of

those systems through agents that represent them. The underlying idea is to get real

interoperation among those Information Systems in order to enlarge the benefits that

users can get from the Web by increasing machines’ processable tasks.

In general, communication among agents is based on the interchange of messages,

which in this context are also known as communication acts. However, since Information

Systems are developed independently, they incorporate different classes of communi-

cation acts as their Agent Communication Language (acl) to the point that they do

not understand each other. Moreover, protocols play an integral role in agents com-

munication. A protocol specifies the rules of interaction between agents by restricting

the range of allowed follow-up communication acts for each agent at any stage during

a communicative interaction.

The importance of using communication protocols is widely recognized. However,

that does not mean that all the agents should use the same universal protocols. In our

opinion different communication protocols should coexist and every agent should have

the opportunity of selecting the one that better fulfills its needs. Thus, one possible

procedure that the administrators of the Information Systems could follow in order to

implement the agents that will represent their systems is the following: They should first

select, from a repository of standard protocols (more than one repositories may exist),

those protocols that best suit the goals of their agents. Sometimes a single protocol will

be enough, while other times it will be necessary to design a protocol as a composition

of other protocols. Then, the selected protocols may be customized before they are

embedded into the agents. This flexibility at the time of choosing and customizing

communication protocols may have a drawback for a real communication among agents:

it is likely that two protocols that have been designed for the same goal have different

structure. Therefore, a reasoning process over the protocols embedded in the agents will

be necessary to discover relationships –such as equivalence and restriction– between

them.

In this paper we present a mechanism that discovers semantic relationships among

protocols focusing on three main aspects: 1. The semantic representation of the main

elements of the protocols, that is, of communication acts; 2. The semantic representa-

tion of the protocols’ branches using Semantic Web Technology; and 3. The definitions

of a set of semantic relationships between protocols.

Concerning the first point, communication acts that constitute protocols are de-

scribed as classes that belong to a communication acts ontology, which we have de-

veloped, called CommOnt (see more details about the ontology in (Bermúdez et al,

2007)). The use of that ontology favours both the explicit representation of the mean-

ing of the communication acts and the customization of existing standard protocols by

allowing the use of particular communication acts that can be defined as specializations

of existing standard communication acts. We have adopted the so called social approach

(Singh, 1998, 2000) for expressing the intended semantics of those communication acts.

According to the social approach, when agents interact they become involved in social

commitments or obligations to each other.

With respect to the second point, one fundamental step of the mechanism is to

extract the semantics associated to each protocol’s branches. This step is sustained on

the idea that the semantics of each branch is represented by a set of predicates generated
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after the whole branch is analyzed. During this step Semantic Web technology rules

are used.

Finally, a semantically founded set of basic relationships between protocols is de-

fined, which later can be composed to express more complex relationships. Our mech-

anism is able to discover those complex semantic relationships taking into account the

previously mentioned protocol analysis.

In summary, the main contributions of the mechanism presented in this paper are:

– It favours a flexible interoperation among agents of heterogeneous Information Sys-

tems that use different communication protocols and therefore avoids the need for

prior agreement on how the messages are interchanged.

– It facilitates the customization of standard communication protocols by means of

specialized communication acts that belong to specific acl of Information Systems.

The particular communication acts are described in an ontology.

– It provides a basis to reason about protocol relationships founded on the follow-

ing basic relations: equivalence, specialization, restriction, prefix, suffix, infix and

complement to infix. Moreover, notice that our approach allows the comparison

between protocols in terms of the intended semantics of communication acts that

appear in those protocols.

The rest of the paper is organized as follows: Section 2 provides background first on

the communication ontology, which contains terms that correspond to communication

acts that appear in the protocols, and next on the semantics associated to those acts.

Section 3 explains how protocols and their semantics are described in our proposal

and section 4 introduces the mechanism that makes a semantic analysis of protocols.

Section 5 presents the formal definitions of a collection of semantic relationships that

the mechanism can discover. A scenario where the proposed mechanism is applied is

shown in section 6. Section 7 discusses different related works, and the conclusions

appear in the last section.

2 Communication acts: how to represent their definitions and semantics

Among the different models proposed for representing protocols one which stands out

is that of State Transition Systems (STS).

Definition 1 A State Transition System is a tuple (S, s0, L, T , F ), where S is a finite

set of states, s0 ∈ S is the initial state, L is a finite set of labels, T ⊆ S × L × S is a

set of transitions and F ⊆ S is a set of final states.

In our proposal we use STSs where transitions are labeled with communication act

classes described in a communication acts ontology called CommOnt. That is to say,

the set of labels L is a set of class names taken from that ontology. CommOnt is a

OWL-DL ontology, therefore its term descriptions are founded on a Description Logic

(DL). DLs are well designed for expressing conceptual knowledge and representing

static structural knowledge. However, protocols exhibit a dynamic aspect due to the

effect of communication acts. Thus, we have decided to represent the effects of actions

through predicates in the Event Calculus(?).

In a nutshell, the CommOnt ontology describes structural and hierarchical aspects

of communication acts and a knowledge base of Event Calculus predicates specifies
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the effects of those communication acts. Terms that appear in the Event Calculus

predicates come from names of classes and properties in CommOnt.

Reasoning over the effects of communication acts is achieved through an encoding

of Event Calculus predicates and rules into SWRL (Semantic Web Rule Language)(?).

SWRL is an extension of OWL-DL axioms to include Horn-like rules. Therefore, that

encoding provides an executable mechanism that integrates satisfactorily the dual se-

mantic representation of communication acts.

In the following three subsections we present respectively the main features of the

CommOnt ontology, the dynamic semantics associated to communication acts, and an

explanation of how these formalisms interact.

2.1 Main features of the CommOnt ontology

The goal of the CommOnt ontology is to facilitate the interoperation among agents

that belong to different Information Systems. The leading categories of that ontology

are: first, communication acts that are used for interaction by actors and that have

different purposes and deal with different kinds of contents; and second, contents, which

are the sentences included in the communication acts.

The main design criteria adopted for the communication acts category of the Com-

mOnt ontology is to follow the speech acts theory (Austin, 1962), a linguistic theory

that is recognized as the principal source of inspiration for designing the most familiar

standard agent communication languages. Following that theory, every communication

act is the sender’s expression of an attitude toward some possibly complex proposition.

A sender performs a communication act, which is expressed by a coded message, and

is directed to a receiver. Therefore, a communication act has two main components.

First, the attitude of the sender, which is called the illocutionary force (F ), that ex-

presses social interactions such as informing, requesting or promising. And second, the

propositional content (p), which is the subject of the attitude. In CommOnt this F(p)

framework is followed, and different kinds of illocutionary forces and contents leading

to different classes of communication acts are described.

CommOnt is divided into three interrelated layers: upper, standards and appli-

cations, that group communication acts at different levels of abstraction. CommOnt

terminology is described using OWL-DL, the description logic profile of the Web On-

tology Language OWL(OWL, 2008). Therefore, communication acts among agents

that commit to CommOnt have an abstract representation as individuals of classes

that are specializations of a shared universal class of communication acts.

In the upper layer –according to Austin’s speech acts theory– five upper classes of

communication acts corresponding to Assertives, Directives, Commissives, Expressives

and Declaratives are specified. In addition, the top class CommunicationAct1 is defined,

which represents the universal class of communication acts. Every particular commu-

nication act is an individual of this class. Moreover, some properties can be associated

to this class. The most important properties of CommunicationAct are the content and

the actors who send and receive the communication act. We show next the description

of the class CommunicationAct in CommOnt:

CommunicationAct ⊑ =1 hasSender ⊓ ∀hasSender.Actor ⊓ ∀hasReceiver.Actor
⊓∀hasContent.Content

1 This type style refers to terms specified in the ontology.
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There are some other properties related to the context of a communication act such

as the conversation in which it is inserted or a link to the domain ontology that includes

the terms used in the content, but those details are out of the scope of this paper. In

addition to the principal classes Assertive, Directive, Commissive, Expressive and

Declarative, some other interesting subclasses are also defined. For example:

Request ⊑ Directive ⊓ ∃hasContent.Command
Accept ⊑ Declarative

Inquiry ⊑ Directive ⊓ ∃hasContent.ReportAct
Responsive ⊑ Assertive ⊓ ∃inReplyTo.(Request ⊔ Inquiry)

Inform ⊑ Assertive

A standards layer extends the upper layer of the ontology with specific terms that

represent classes of communication acts of general purpose agent communication lan-

guages, like those from KQML(KQM, 1993) or FIPA-ACL(FIPA, 2005). Although

the semantic framework of those agent communication languages may differ from the

semantic framework adopted in CommOnt, in our opinion enough basic concepts and

principles are shared to such an extent that a commitment to ontological relationships

can be undertaken in the context of the interoperation of Information Systems.

With respect to FIPA-ACL, we can observe that it proposes four primitive com-

municative acts: Confirm, Disconfirm, Inform and Request. The terms FIPA-Confirm,

FIPA-Disconfirm, FIPA-Inform and FIPA-Request are used to represent them as classes

in CommOnt. Furthermore, the rest of the FIPA communicative acts are derived from

these mentioned four primitives. Following some examples of descriptions can be found:

FIPA-Request ⊑ Request

FIPA-Query-If ⊑ Inquiry ⊓ FIPA-Request ⊓ =1 hasContent ⊓
∀hasContent.InformIf

FIPA-Inform ⊑ Inform

Analogously, communication acts fromKQML can be analyzed and the correspond-

ing terms can be specified in CommOnt. It is vital for the interoperability aim to have

the ability to specify ontological relationships among classes of different standards. For

example:

KQML-Ask-If ≡ FIPA-Query-If

KQML-Tell ≡ FIPA-Inform

KQML-Achieve ≡ FIPA-Request ⊓ ∃hasContent.Achieve

Finally, it is often the case that every Information System uses a limited collection

of communication acts that constitutes its particular agent communication language.

The applications layer reflects the terms describing communication acts used in such

particular Information Systems. The applications layer of the CommOnt ontology

provides a framework for the description of the nuances of such communication acts.

Some of these communication acts can be defined as specializations of existing classes

in the standards layer and some others as specializations of upper layer classes. For

example:
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A-MedicineModify ≡ Request ⊓ =1 hasContent ⊓
∀hasContent.(Overwrite ⊓ ∃hasSubject.Medicine)

A-MedicineModify ⊑ FIPA-Request

A-VitalSignInform ⊑ Responsive ⊓ =1 hasContent ⊓
∀hasContent.(Proposition ⊓ ∃hasSubject.VitalSignData) ⊓
=1 inReplyTo ⊓ ∀inReplyTo.VitalSignQuery

A-VitalSignInform ⊑ FIPA-Inform

Interoperation between agents of two systems that use different kinds of communication

acts will proceed through those upper and standard layer classes.

In summary, CommOnt provides a terminology for communication acts and formal

term relationships of equivalence and subsumption that allow to reason for interoper-

ability purposes.

2.2 Dynamic semantics associated to communication acts

Formal semantics based on mental concepts such as beliefs, desires and intentions has

been associated to communication acts. However, that option has been criticized for

the approach (Singh, 1998) as well as for its analytical difficulties (Wooldridge, 2000).

By contrast, we have adopted the so called social approach (Singh, 2000; Venkatraman

and Singh, 1999; Fornara and Colombetti, 2002) to express the dynamic semantics

of communication acts described in the CommOnt ontology. According to the social

approach, when agents interact they become involved in social commitments or obli-

gations to each other. Those commitments are public, and therefore they are suitable

for an objective and verifiable semantics of agent interaction.

Definition 2 A base-level commitment C(x, y, p) is a ternary relation that represents

a commitment made by x (the debtor) to y (the creditor) to bring about a certain

proposition p.

For example, the base-level commitment C(Customer, Merchant, buyGoods) indi-

cates the commitment made by the Customer agent to the Merchant agent to buy some

goods.

Moreover, sometimes an agent accepts a commitment only if a certain condition

holds or, interestingly, only when a certain commitment is made by another agent.

This is called a conditional commitment.

Definition 3 A conditional commitment CC(x, y, p, q) is a quaternary relation that

represents that if the condition p is brought out, x will be committed to y to bring

about the proposition q.

For example, CC(Customer, Merchant, priceGoods(<35$), buyGoods) indicates the

commitment made by the Customer agent to the Merchant agent to buy some goods

if the price of the goods is less than 35$.
The formalism we use for reasoning about commitments is based on the Event

Calculus, which is a logic-based formalism for representing actions and their effects.

The basic ontology of the Event Calculus comprises events, fluents and time points:

events correspond to actions in our context; fluents are predicates whose truth value
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may change over time. Event Calculus includes predicates for saying what happens and

when (Happens), for describing the initial situation (Initially), for describing the effects

of actions (Initiates and Terminates), and for saying what fluents hold at what times

(HoldsAt). See (Shanahan, 1999) for more explanations. In our context, commitments

(base-level and conditional) can be considered fluents, and semantics of communication

acts can be expressed with predicates in the Event Calculus.

We show some predicates that describe the semantics associated to the classes of

communication acts Request, Accept and Responsive, which appear in the upper level

of CommOnt and whose descriptions have been shown in the previous subsection.

– Initiates(Request(s, r, P), CC(r, s, accept(r, s, P), P), t).

A Request from s to r produces the effect of generating a conditional commitment

which expresses that if the receiver r accepts the demand, it will be commited to

the proposition P in the content of the communication act.

– Initiates(Accept(s, r, P), accept(s, r, P), t).

The sending of an Accept produces the effect of generating the accept fluent.

– Terminates(Responsive(s, r, P, RA),C(s, r, RA), t).

Terminates(Responsive(s, r, P, RA),CC(s, r, accept(s, r, RA), RA), t).

Initiates(Responsive(s, r, P, RA), P)

By sending a message of the class Responsive, the commitment (either base-level

or conditional) of the sender s towards the receiver r to bring about proposition

RA ceases to hold, and moreover, the fluent P is initiated.

The semantics is determined by the fluents that are initiated or terminated as a result

of sending a message of that class from a sender to a receiver. In summary, communi-

cation acts have a dual semantic representation: The description in CommOnt of their

structure and of their hierarchical relationships and then some Event Calculus pred-

icates which specify their effects. The set of fluents that hold at a moment describes

the state of the interaction.

Furthermore, some rules are needed to capture the dynamics of commitments.

Commitments are a type of fluent, typically put in force by communication acts, that

become inoperative after the appearance of other fluents. In the following rules, e(x)

represents an event caused by x. The first rule declares that when a debtor of a com-

mitment that is in force causes an event that initiates the committed proposition, the

commitment ceases to hold.

Rule 1: HoldsAt(C(x, y, p), t) ∧ Happens(e(x), t) ∧ Initiates(e(x), p, t) → Ter-

minates(e(x),C(x, y, p), t).

The second rule declares that a conditional commitment that is in force disappears

and generates a base-level commitment when the announced condition is brought out

by the creditor.

Rule 2: HoldsAt(CC(x, y, c, p), t) ∧ Happens(e(y), t) ∧ Initiates(e(y), c, t) →
Initiates(e(y),C(x, y, p), t) ∧ Terminates(e(y),CC(x, y, c, p), t).

2.3 Encoding of the interaction of the dual semantic representation

SWRL is a combination of OWL-DL with the Unary/Binary Datalog RuleML sublan-

guages of the Rule Markup Language(?). We use SWRL as a formalism to integrate the

dual semantic representation of communication acts. CommOnt axioms are expressed
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in OWL-DL and can be therefore managed naturally in SWRL. Moreover, Event Cal-

culus predicates and rules can be sistematically encoded in SWRL using a reification

technique. Foremost, for each type of event and type of fluent, a corresponding ontology

class must be present (in the T-Box). Any particular existence of event or fluent will

be represented as an individual of the corresponding class along with its valued prop-

erty statements (in the A-Box). For example, action Request(s, r, P) is encoded as an

individual x in class Request and with s, r and P as values for its corresponding object

properties: hasSender, hasReceiver and hasContent (specified in CommOnt). Analo-

gously, a fluent accept(r, s, P) may be represented with the following assertions about

individuals: Acceptance(a), hasSignatory(a,r), hasAddressee(a,s), and hasObject(a,P).

Then, two object properties: initiates and terminates, representing the predicates

Initiates and Terminates, respectively, are also specified (in the T-Box) and will be

used to relate an instance of communication act with the fluents it initiates or termi-

nates. Finally, the aforementioned rules –that capture the dynamic aspects– , as well

as effects of the application of communication acts, can be encoded with SWRL rules.

For instance, the predicate Initiates(Request(s, r, P), CC(r, s, accept(r, s, P), P), t)

can be encoded as follows2:

Request(x) ∧ hasSender(x,s) ∧ hasReceiver(x,r) ∧ hasContent(x,p) ∧ hasCom-

mit(x,c) ∧ isConditionedTo(c,a) → initiates(x,c) ∧ hasDebtor(c,r) ∧ hasCreditor(c,s)

∧ hascondition(c,p) ∧ Acceptance(a) ∧ hasSignatory(a,r) ∧ hasAddressee(a,s) ∧ ha-

sObject(a,p)

Several implementations of SWRL are being developed. Pellet(?) is a reasoner

which implements a direct tableau algorithm for a DL-safe rules extension to OWL-

DL. Pellet interprets SWRL using the DL-Safe rules notion, which means that rules

will be only applied to named individuals in the ontology. Fortunately, the desired

interpretation for our rules agrees with the DL-safe rules notion, and therefore Pellet

has been our choice. A different implementation approach could consist on translating

SWRL into First Order Logic and using a First Order theorem prover for reasoning.

3 Representations of the semantics of protocols

Similarly to the representation of communication acts, presented in the previous sec-

tion, we propose a dual representation for protocols. On the one hand, we define a

structure-based representation, using OWL-DL descriptions; on the other hand, we

define a fluent-based semantics of protocols.

3.1 OWL-DL description of protocols

As we have already mentioned, we use STS as models for representing protocols. More

specifically, in this paper we restrict our work to deterministic STS without cycles.

In order to represent those models using OWL-DL, we have defined four different

classes: Protocol, State, Transition and Fluent, which respectively represent proto-

cols, states, transitions in protocols, and fluents associated to states. With these four

2 We are aware that in the human readable syntax of SWRL, variables are prefixed with a
question mark (e.g. ?x). However, for the sake of visual clarity, the question mark has been
removed from all the SWRL variables in this paper
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classes and some (specialized) subclasses we are able to represent enough structure in

order to fully describe the components of individual instances of our protocols.

We model those class descriptions with the following guidelines. Fluents are asso-

ciated to states where they hold3:

∃hasFluent ⊑ State ; ∃hasFluent− ⊑ Fluent

Transitions get out of states and every transition is labelled with the communication act

that is sent by that event, and it is associated to the state reached by that transition:

∃hasTransition ⊑ State ; ∃hasTransition− ⊑ Transition

Transition ≡ =1 hasCommAct ⊓ =1 hasNextState

∃hasCommAct ⊑ Transition ; ∃hasCommAct− ⊑ CommunicationAct

∃hasNextState ⊑ Transition ; ∃hasNextState− ⊑ State

A protocol is an individual of the class Protocol and it is determined by the properties

of its initial state, due to our conceptual modeling of states and transitions.

Protocol ≡ ∃hasInitialState.State
∃hasInitialState ⊑ Protocol ; ∃hasInitialState− ⊑ State

Some other interesting subclasses are specified in order to describe the elements that

compose our protocols:

FinalState ⊑ State

Commitment ⊑ Fluent ⊓ =1 hasDebtor ⊓ ∀hasDebtor.Actor ⊓ =1 hasCreditor ⊓
∀hasCreditor.Actor ⊓ =1 hasCondition ⊓ ∀hasCondition.Fluent

ConditionalCommitment ⊑ Fluent ⊓ =1 hasDebtor ⊓ ∀hasDebtor.Actor ⊓ =1 hasCreditor ⊓
∀hasCreditor.Actor ⊓ =1 hasCondition ⊓ ∀hasCondition.Fluent ⊓
=1 isConditionedTo ⊓ ∀isConditionedTo.Fluent

We are conscious that alternative descriptions may be considered, but our concep-

tual modeling is disposed to favor the rule encoding of dynamic aspects of a protocol,

as it will be shown in the next subsection.

3.2 Fluent-based semantics of protocols

One of the most common approaches for comparing two protocols involves the discovery

of structural relationships between them. However, we believe that dealing only with

structural relationships is too rigid if a flexible interoperation among agents that use

different standard protocols is to be promoted. For that reason, we propose to obtain

an additional description of protocols, represented by their final states and the fluents

that hold at those final states. In order to do so, we propose to consider the following

definitions.

3 ∃hasFluent⊑ State and ∃hasFluent− ⊑ Fluent mean that the class State and the class
Fluent are respectively the domain and range of the property hasFluent.
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Definition 4 Let WR be the set of SWRL rules that encode Rule 1 and Rule 2

presented in section 3.2. Let G and G′ be sets of fluents; and let (s, l, s′) be a transition

in a STS. G : <(s, l, s′)> ⊢WR G′ is a transition derivation, which means that, in the

context of WR, if G is the set of fluents that hold at state s, when transition (s, l, s′)
happens, G′ is the set of fluents that hold at state s′.

Transition derivations represent the dynamics of a protocol. When a transition is

accomplished some fluents may become true, others may become false, and the rest

remain unchanged.

The encoding of G : <(s, l, s′)> ⊢WR G′ into SWRL rules is done by taking into

account our OWL-DL descriptions of STS presented in the previous subsection. Two

main rules have been defined: On the one hand, the fluent attachment rule attaches to

state s′ the fluents initiated as a result of sending the communication act l:

Transition(t) ∧ hasNextState(t,s’) ∧ hasCommAct(t,l) ∧ initiates(l,f) → hasFlu-

ent(s’,f)

On the other hand, the fluent transmission rule transfers the fluents that hold in

state s and that must also hold in state s′ because the act of sending the communication

act l has no effect on them:

hasFluent(s, f) ∧ hasTransition(s, t) ∧ hasNextState(t, s’) → hasFluent(s’, f)

Definition 5 A branch of a protocol P = (S, s0, L, T, F ) is a sequence of transitions

from T , <(si−1, li, si)>i=1..n, that begins in the initial state s0 and ends in a final

state sn ∈ F . We denote Ω(P ) to the set of branches of protocol P .

Let B = <(si−1, li, si)>i=1..n be a branch, then G0 : B ⊢WR Gn means that the

sets of fluents Gi i = 1..n exist such that Gi−1 : <(si−1, li, si)> ⊢WR Gi

Definition 6 If B is a branch of protocol P (S, s0, L, T , F ), G0 is the set of fluents

that hold in s0 and G0 : B ⊢WR Gn, then Gn is a protocol trace. We denote T (B) to

the final set of fluents generated by B. That is to say, T (B) = Gn.

Notice that protocol traces are defined in terms of the semantics of communication

acts, taking into account the content of the communication and not only the type of

communication. By contrast, many other related works (see section 7) consider only

communication acts as atomic acts without considering their content or their semantics.

From our viewpoint, the semantics of a protocol is determined by the traces of

the protocol. That is to say, from a set-theoretical approach {T (B)| B ∈ Ω(P )} is an

interpretation of protocol P .

4 Steps to discover relationships between protocols

In this section we present the main steps that our proposal follows in order to com-

pare two protocols and determine the semantic relationships between them. Since the

semantics of a protocol is determined by its traces, in order to perform the comparison

we need to deal with the branches of the protocol. We identify three main steps:

1. Separation of each protocol into branches: each protocol is separated into all the

branches that can be generated from the initial state to a final state.

2. Generation of protocol traces: the protocol trace that corresponds to each branch

of each protocol is calculated.
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Fig. 1 Algorithm: Generation of branches

3. Pairing up branches: the branches of one of the protocols are compared to the

branches of the other protocol.

Moreover, once the previous steps have been concluded, it will be discovered whether

any semantic relationship can be established between both protocols . In section 5 a

formal definition of those semantic relationships is presented.

Now we will develop these steps more thoroughly.

4.1 Separation of the protocol into branches

In the first step, the protocol is separated into all the branches that can be generated

from the initial state to a final state.

Algorithm branchGeneration (see Fig. 1) shows how to do that. In line 2, a global

vector (branches) is created, which will be used to store the different branches of a

protocol P after they have been calculated. In line 3 another vector (partialBranches)

is created. This vector will be used as an auxiliary element to store the partial branches

that are generated in the process of calculating the complete branches. This last vector

is initialized, in line 4, with a partial branch that contains only the initial state of the

protocol (s0). Taking into account the transitions of protocol P, this partial branch is

repeatedly modified by adding new states to it (lines 5 to 13). Moreover, once one of

the partial branches is completed (i.e. a final state has been reached), it is added to

the global vector branches (lines 12-13), which will be returned once all the partial

branches have been completed. An example can be found in Fig. 2.

4.2 Generation of protocol traces

Given a branch B, with a simulation of its corresponding G0 : B ⊢WR Gn, the trace

T (B) is calculated. During that simulation the SWRL rules that encode the semantics

of the communication acts (see sections 2.3 and 3.2) that appear in the branch are

applied. Then, the set of fluents that hold at the final state of each branch is the

corresponding trace. That set represents the effects of the protocol branch.
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Fig. 2 Separation of branches

Fig. 3 Protocol diagram

Fig. 4 Protocol fluents

For example, let us take protocol AskTime in Fig. 3. By using this protocol, agent

A intends to get from agent B information about the time. So, in the first transition,

agent A requests about the time. Then, agent B sends a message accepting to give

the information about the time, and finally, in the third transition, agent B sends the

requested information. The descriptions in the CommOnt ontology of the communi-

cation acts that appear in the protocol AskTime are the following:

TimeRequest ≡ Request ⊓ =1 hasContent ⊓ ∀hasContent.TimeReq
TimeAccept ≡ Accept ⊓ =1 hasContent ⊓ ∀hasContent.TimeReq
TimeInform ≡ Responsive ⊓ =1 hasContent ⊓ ∀hasContent.TimeInfo ⊓ =1 inReplyTo ⊓

∀inReplyTo.TimeRequest

In Fig. 4 we show which fluents are associated to the states of the protocol and how

they vary as a consequence of the communication acts that are sent and the rules

described in section 3.2. We depart from a situation where the set of fluents is empty

(F0). The impact the communication acts of the protocol have over the set of fluents

that hold at each moment is explained next:
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TimeRequest: A→B

When the TimeRequestmessage is sent, the conditional commitment CC1 is initiated

(F1), which states that if agent B accepts to give information about the time, then

it will be committed to do so. This happens because according to the definitions in

the CommOnt ontology, TimeRequest is a subclass of Request, and as a result, the

absatract predicate Initiates(Request(s, r, P), CC(r, s, accept(r,s,P), P), t) can be

applied. More precisely, in this case the predicate is instantiated as Initiates(Request(A,

B, TimeReq), CC(B, A, accept(B,A,TimeReq), TimeReq), t1). The following SWRL

rule, which encodes the abstract predicate, can be executed at this moment:

Request(x) ∧ hasSender(x,s) ∧ hasReceiver(x,r) ∧ hasContent(x,p) ∧ hasCom-

mit(x,c) ∧ isConditionedTo(c,a) → initiates(x,c) ∧ hasDebtor(c,r) ∧ hasCreditor(c,s)

∧ hascondition(c,p) ∧ Acceptance(a) ∧ hasSignatory(a,r) ∧ hasAddressee(a,s) ∧ ha-

sObject(a,p)

This rule initiates the aforementioned conditional commitment CC1, and due to the

fluent attatchment rule (section 3.2), CC1 is attached to state S1, and thus it holds in

F1.

TimeAccept: B→A

Then, agent B agrees to respond by sending the TimeAccept message. Due to the

predicate Initiates(Accept(s,r,P), accept(s,r,P), t) – instantiated in this case as Initi-

ates(Accept(B,A,TimeReq), accept(B,A,TimeReq), t2)– and the fact that TimeAccept

is a subclass of Accept, the rule

Accept(x) ∧ hasSender(x,s) ∧ hasReceiver(x,r) ∧ hasContent(x,p) ∧ hasCommit(x,c)

→ initiates(x,c) ∧ Acceptance(c) ∧ hasSignatory(c,s) ∧ hasAddressee(c,r) ∧ hasOb-

ject(a,p)

is executed and consequently, the fluent accept(B, A, TimeReq) is initiated. At this

point, Rule 2 (see section 2.2) can be applied because accept(B,A,TimeReq) is the

condition of the conditional commitment CC1. As a consequence, CC1 is terminated and

the base commitment C1 is initiated and attached to state S2 due to the aforementioned

fluent attachment rule (F2). We would like to remark that, since SWRL does not offer

any primitive for retraction, the deletion of the fluent CC1 is performed using the

methods of the OWL-API(?) that allow the manipulation of the ABox.

TimeInform: B→A

Finally, agent B sends the TimeInform message. Since TimeInform is a subclass

of Responsive and because of the predicate Initiates(Responsive(s,r,P, RA), P, t), –

instantiated as Initiates(Responsive(B,A,TimeInfo, TimeReq), TimeInfo, t4)– the flu-

ent TimeInfo, is initiated. Moreover, C1 is terminated due to the predicate Termi-

nates(Responsive(s,r,P, RA), C(s,r,RA), t), instantiated as Terminates(Responsive(B,

A, TimeInfo, TimeReq), C(B,A,TimeReq), t4). In our environment, these predicates

have been encoded with the rule:

Responsive(x) ∧ hasContent(x,p) ∧ inReplyTo(x,irt) ∧ initiates(irt, f) → termi-

nates(x,f) ∧ initiates(x, p)

In addition, due to the fluent transmission rule, the fluent accept(B, A, TimeReq)

is transferred from state S2 to state S3. So, at this point (F3) we can say that the

fluents that hold at the final state of the protocol are (accept(B, A, TimeReq), t2) and

(TimeInfo, t4) and so, the protocol trace [(accept(B, A, TimeReq), t2), (TimeInfo, t4)]

is generated for the branch. As our proposal does not make use of the time parameter,

it will be omitted in the following analysis.
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4.3 Pairing up branches from two different protocols

Once protocol traces have been generated, it is necessary to establish relationships

between branches of the two protocols P1 and P2 being compared. In order to compare

two branches, we compare their protocol traces, and thus, their fluents. To do so, our

mechanism first evaluates the cartesian product of branches Ω(P1) × Ω(P2), taking

into account the following considerations:

Given B1 ∈ Ω(P1) and B2 ∈ Ω(P2), four separate cases may occur when compar-

ing two fluents t1 ∈ T (B1) and t2 ∈ T (B2) :

(eq) t1 and t2 are equivalent : msc(t1) ≡ msc(t2), being msc(t) the most specific con-

cept of a fluent t in regard to an ontology of fluents. In this case we could see those

fluents as clones, their names being their sole difference.

(g1 ) t1 is more general than t2: msc(t2) ⊑ msc(t1) and msc(t2) ̸≡ msc(t1).

(g2 ) t2 is more general than t1: msc(t1) ⊑ msc(t2) and msc(t1) ̸≡ msc(t2).

(in) t1 and t2 are incomparable: msc(t1) ̸⊑ msc(t2) and msc(t2) ̸⊑ msc(t1) (They

have no subsumption relation between each other).

We are aware that due to the heterogeneity of the protocols, it may happen that the

fluents to be compared come from different ontologies. In that case, ontology mediation

techniques should be applied, but this aspect is out of the scope of this paper and it

has been thoroughly studied in the specialized literature (??).

It may happen that a fluent exists in T (B1) which is incomparable with any fluent

in T (B2), and a fluent in T (B2) which is incomparable with any fluent in T (B1); then,

we say that the pairing up of B1 and B2 is not feasible. This means that B1 generates

some fluent that is not generated by B2 and viceversa.

Definition 7 (B1, B2) ∈ Ω(P1)×Ω(P2) is a feasible pair iff [∀t1 ∈ B1. ∃t2 ∈ B2. t1

and t2 satisfy (eq), (g1) or (g2)] ∨ [∀t2 ∈ B2. ∃t1 ∈ B1. t1 and t2 satisfy (eq), (g1) or

(g2)]

We are not interested in unfeasible pairs of branches because, as it will be shown

in section 5, the relationships we are interested in are those where all the fluents in

at least one of the traces are related to some fluent in the other. We look for a total

mapping of one trace into the other. The intuition behind this idea is that we try to

find cases where a sort of substitution of protocols is admissible due to its semantic

coincidence.

Each feasible pair (Bi,Bj) ∈ Ω(P1) × Ω(P2) receives a 4-place tuple valuation

(xij0 ,xij1 ,xij2 ,xij3 ) where:

– xij0 is the number of pairs of fluents that fulfill case (eq).

– xij1 is the number of pairs of fluents that fulfill case (g1).

– xij2 is the number of pairs of fluents that fulfill case (g2).

– xij3 is the exceeding number of fluents: xij3 =|#T (B1) −#T (B2)|, where #T (B1)

and #T (B2) are the number of fluents of T (B1) and T (B2) respectively.

Then, we have defined a metric by means of the following function, which yields a

value in [0, 1] for every 4-place tuple:
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f(x0, x1, x2, x3) =
x0 +max(x1, x2)∑3

i=0 xi

Our interest is to quantify as many related fluents as possible within a pair of

branches, regardless of whether their relationship is of equivalence or subsumption

(that is why x0 is given the same weight as max(x1, x2) in the formula). Division by∑3
i=0 xi assures the function value does not go beyond 1.

Definition 8 Given two sets of branches Ω(P1) and Ω(P2), a matching π is a subset

of feasible pairs from Ω(P1)×Ω(P2) such that every branch from the smallest set is

paired up with a different branch from the greatest set. (π is the graph of an injective

map).

Our aim is to obtain the matching that maximizes the sum of the metric applied

to the valuation of its pairs. Formally, we look for the matching π that

maximizes
∑

(Bi,Bj)∈π

f(xij0 , x
ij
1 , x

ij
2 , x

ij
3 )

In the case that two or more matchings πk(k ∈ 1 . . . n) that maximize the sum above

exist, we priorize the equivalence relationships between fluents over the subsumption

relationships. Then, the best matching is any of the set {πk : (k ∈ 1 . . . n)} such that

maximizes
∑

(Bi,Bj)∈πk

g(xij0 , x
ij
1 , x

ij
2 , x

ij
3 ), with g(x0, x1, x2, x3) =

x0∑3
i=0 xi

In Fig. 5 we present an example of the process of pairing up branches. On the one

hand, in protocol P1 agent A requests and later receives information about the time

(branch 1.1) or about the temperature (branch 1.2). Three transitions are necessary in

each of the branches to reach the final state of the protocol. On the other hand protocol

P2 is composed of three branches: Branch 2.1 has the same semantics as branch 1.2

but in this case only two transitions are needed, since with the TempAccept&Inform

communication act, agent B both accepts and responds to the request. In branch 2.2,

agent A requests for information about the date and the time and gets the respective

responses (two transitions for each of the parameters). Finally, information about the

time is requested in branch 2.3, also in two steps. The table in Fig. 5 registers the

valuation and metric value of the feasible pairs from Ω(P1)× Ω(P2). When a pair is

not feasible we represent it with an X in the corresponding cell.

5 Protocol relationships

Once the mechanism described in the previous section has finished the analysis of

branches of protocols, the next step consists on discovering the semantic relationships

between those protocols. This section presents the collection of semantic relationships

we are considering.

Notice that the exploitation of those relationships increases the possibilities of

achieving successful communications among agents in open and dynamic environments

where heterogeneity issues can appear at different levels. For instance, communication

between two agents that use distinct protocols is nowadays impossible unless a priory
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Fig. 5 Pairing up branches of different protocols

agreement is considered. However, if an equivalence relationship among subparts of

those protocols were discovered, those agents could at least have a chance to commu-

nicate partially (they would only take into account the related subparts), because the

semantics associated to those subparts would be the same and therefore the agents

would be prepared to reply to the same kind of requirements. Firstly, we present the

definitions of relationships between two protocol branches, followed by the definitions

of relationships between protocols.

5.1 Relationships between branches

Let A, B be two protocol branches, and T (A), T (B) be the protocol traces generated

by branches A and B respectively.

Definition 9 Branch A is a equivalent to branch B (A=bB) if there exists a bijective

function ϕ : T (A) → T (B) such that ∀t ∈ T (A). msc(t) ≡ msc(ϕ(t)).

Definition 10 Branch A is a specialization of branch B (A≪bB) if there exists a

bijective function ϕ : T (A) → T (B) such that ∀t ∈ T (A). msc(t) ⊑ msc(ϕ(t)).

We denote Prune[B/sk] to the branch that results from pruning branch B from

state sk onwards. Given a branch B =< (si−1, li, si) >i=1..n, and 1 ≤ k ≤ n,

Prune[B/sk]= < (si−1, li, si) >i=1..k.
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Definition 11 Branch A is a prefix of branch B (A=preB) if there exists a state sk
in B such that A=bPrune[B/sk].

Branch A is a specialized-prefix of branch B (A≪preB) if there exists a state sk in

B such that A≪bPrune[B/sk].

Let sk(1 ≤ k < n) a state in the definition of branch B. We denote ChangeInit [B/sk]

to the new branch that results from modifying the definition of branch B in such a

way that sk becomes the initial state of the new branch: ChangeInit[B/sk]=<(si−1,

li, si)>i=k+1..n

Definition 12 Branch A is a suffix of branch B (A=sufB) if there exists a state sk
in B such that A=bChangeInit [B/sk].

Branch A is a specialized-suffix of branch B (A≪sufB) if there exists a state sk in

B such that A≪bChangeInit [B/sk].

Definition 13 Branch A is an infix of branch B (A=infB) if there exists a state sk
in B such that A=preChangeInit [B/sk] (i.e. A is a prefix of a suffix of B).

Branch A is an specialized-infix of branch B (A≪infB) if there exists a state sk
in B such that A≪preChangeInit [B/sk].

Definition 14 Branch A is an complement to infix of branch B (A=cB) if there exists

a state sk in A such that Prune[A/sk]=preB and ChangeInit [A/sk]=sufB.

Branch A is an specialized-complement to infix of branch B (A≪cB) if there exists

a state sk in A such that Prune[A/sk]≪preB and ChangeInit [A/sk]≪sufB.

Taking into account the previous definitions we have developed a reasoning service

that decides if a branch is a prefix, a suffix, an infix or a complement to infix of another

branch, either in an equivalent or specialization sense.

5.2 Relationships between protocols

Protocols are constituted by branches, and therefore we use the definitions in the

previous subsection to define the relationships between protocols.

Definition 15 Protocol P is equivalent to protocolQ (P [E ]Q) if there exists a bijective

function ϕ : Ω(P ) → Ω(Q) such that ∀A ∈ Ω(P ). A=bϕ(A).

Definition 16 Protocol P is a specialization of protocol Q (P [Z]Q) if there exists a

bijective function ϕ : Ω(P ) → Ω(Q) such that ∀A ∈ Ω(P ). A≪b ϕ(A).

Sometimes, a protocol is defined by restrictions on the allowable communication

acts at some states of a general protocol.

Definition 17 Let Ω′(Q) a proper subset of Ω(Q) (Ω′(Q) ⊂ Ω(Q)). Protocol P is a

restriction of protocol Q (P [R]Q) if there exists a bijective function ϕ : Ω(P ) → Ω′(Q)

such that ∀A ∈ Ω(P ). A=bϕ(A).

Definition 18 Protocol P is a prefix of protocol Q (P [P]Q) if there exists a bijective

function ϕ : Ω(P ) → Ω(Q) such that ∀A ∈ Ω(P ). A=preϕ(A).

Definition 19 Protocol P is a suffix of protocol Q (P [S]Q) if there exists a bijective

function ϕ : Ω(P ) → Ω(Q) such that ∀A ∈ Ω(P ). A=sufϕ(A).
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Definition 20 Protocol P is an infix of protocol Q (P [I]Q) if there exists a bijective

function ϕ : Ω(P ) → Ω(Q) such that ∀A ∈ Ω(P ). A=infϕ(A).

Definition 21 Protocol P is a complement to infix of protocol Q (P [C]Q) if there

exists a bijective function ϕ : Ω(P ) → Ω(Q) such that ∀A ∈ Ω(P ). A=cϕ(A).

We denote the composition of relations by sequencing the names of the relations.

For instance, the relationship P [ZRP]Q means that protocol P is a specialization of

a restriction of a prefix of protocol Q.

Following, we present first a list of relevant properties regarding the previous rela-

tionships and then some proofs of those properties.

5.2.1 Properties of the protocol relationships

Let P and Q be two protocols. Then, the following properties can be highlighted:

1. P, S, I, C, Z and E are reflexive.

2. R is irreflexive.

3. P, S, I, C, Z, E and R are transitive.

4. ∀X ∈ {P,S, I, C, E ,Z}. [XR] = [RX ].

5. ∀X ∈ {P,S, I, C}. ∀Y ∈ {E ,Z}. [YX ] ⇒ [XY] but [XY] ⇏ [YX ].

6. ∀X ∈ {P,S, I}. ∀Y ∈ {P,S, I}. (X ≠ Y → (P [XY]Q⇔ P [I]Q)).

5.2.2 Proofs

Next, we provide proofs for some of the properties listed above. Remaining proofs can

be figured out accordingly.

Property 1 : P, S, I, C, Z and E are reflexive.

– P is reflexive.

Proof: We need to prove that P [P]P .

It suffices to define ϕ as the identity function, and obviously, ∀A ∈ Ω(P ). A =pre A,

because A =b Prune[A/sn], where sn is the final state of A.

– Z is reflexive.

Proof: We need to prove that P [Z]P .

It suffices to define ϕ as the identity function, and obviously ∀A ∈ Ω(P ), A ≪b

A, because for the identity function id : T (A) → T (A), ∀t ∈ T (A). msc(t) ⊑
msc(id(t)).

Property 2 : R is irreflexive.

– Proof: We need to prove that P [R]P is false. The set Ω(P ) is finite, therefore it

is impossible to define a bijective function from Ω(P ) to a proper subset Ω′(P ) ⊂
Ω(P ).

Property 3 : P, S, I, C, Z, E and R are transitive.
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– Z is transitive.

Proof: We need to prove that P [ZZ]Q ⇒ P [Z]Q.

P [ZZ]Q means that there exists a protocol M such that P [Z]M and M [Z]Q.

Looking at the definition of Z, M [Z]Q means that there exists a bijective func-

tion ϕ : Ω(M) → Ω(Q) such that ∀A ∈ Ω(M). A ≪b ϕ(A). Moreover, P [Z]M

means that there exists a bijective function ϕ′ : Ω(P ) → Ω(M) such that ∀A ∈
Ω(P ). A≪b ϕ

′(A). Then, the bijective function ϕ ◦ϕ′ : Ω(P ) → Ω(Q) satisfies the

needed properties since ∀A ∈ Ω(P ) A≪b ϕ
′(A) ≪b ϕ ◦ϕ′(A) and ≪b is transitive.

– P is transitive.

Proof: We need to prove that P [PP]Q ⇒ P [P]Q.

P [PP]Q means that there exists a protocol M such that P [P]M and M [P]Q.

Looking at the definition of P, M [P]Q means that there exists a bijective function

ϕ : Ω(M) → Ω(Q) such that ∀A ∈ Ω(M). ∃sqi ∈ Q. A=bPrune[ϕ(A)/sqi]. More-

over, P [P]M means that there exists a bijective function ϕ′ : Ω(P ) → Ω(M) such

that ∀B ∈ Ω(P ). ∃smi ∈ M. B=bPrune[ϕ
′(B)/smi]. We ask for a small abuse of

notation, denoting ϕ(smi) to the state in Q corresponding to smi after applying ϕ

to branch ϕ′(B). Then, the bijective function ϕ ◦ ϕ′ : Ω(P ) → Ω(Q) is such that

∀B ∈ Ω(P ). ∃ϕ(smi) ∈ Q. B=bPrune[ϕ ◦ ϕ′(B)/ϕ(smi)].

– R is transitive.

Proof: We need to prove that P [RR]Q ⇒ P [R]Q.

P [RR]Q means that there exists a protocol M such that P [R]M and M [R]Q.

Looking at the definition of R, M [R]Q means that there exists a bijective func-

tion ϕ : Ω(M) → Ω′(Q) such that ∀A ∈ Ω(M). A =b ϕ(A). Moreover, P [R]M

means that there exists a bijective function ϕ′ : Ω(P ) → Ω′(M) such that ∀B ∈
Ω(P ) B =b ϕ

′(B). Then, the bijective function ϕ ◦ ϕ′ : Ω(P ) → Ω′′(Q) ⊂ Ω(Q),

where Ω′′(Q) = ϕ ◦ ϕ′(Ω(P )) = ϕ(Ω′(M)), is such that ∀A ∈ Ω(P ). A=bϕ ◦ ϕ′(A).

Property 4 : ∀X ∈ {P,S, I, C, E ,Z}. [XR] = [RX ].

– [PR] = [RP].

Proof: First, we prove P [PR]Q ⇒ P [RP]Q.

Because of P [PR]Q, there exists a protocol M such that P [P]M and M [R]Q.

According to definitions of P and R, ∃ϕ : Ω(P ) → Ω(M) bijective, such that

∀A ∈ Ω(P ). A =pre ϕ(A) and ∃ϕ′ : Ω(M) → Ω′(Q) ⊂ Ω(Q) bijective, such that

∀A ∈ Ω(M). A =b ϕ
′(A).

We must prove that there exists a protocol M ′ such that P [R]M ′ and M ′[P]Q.

Let us define Ω(M) as the set of branches of protocol Q that do not have a corre-

sponding branch in M (Ω(M) = Ω(Q)−Ω′(Q), notice that Ω(M) ̸= ∅). Then, M ′

is a protocol with Ω(M ′) = Ω(P ) ∪Ω(M).

In order to prove M ′[P]Q we define the bijective function ψ : Ω(M ′) → Ω(Q)

– if A ∈ Ω(P ) then ψ(A) = ϕ′(ϕ(A)).
– if A /∈ Ω(P ) then ψ(A) = A.

Then, ∀A ∈ Ω(M ′). A =pre ψ(A), since A =pre ϕ(A) =b ϕ
′(ϕ(A)) implies A =pre

ϕ′(ϕ(A)).
To prove P [R]M ′, we use the identity function id : Ω(P ) → Ω(P ) ⊂ Ω(M ′) so

that ∀A ∈ Ω(P ). A =b id(A).

Second, we prove P [RP]Q ⇒ P [PR]Q.
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Because of P [RP]Q, there exists a protocol M such that P [R]M and M [P]Q.

According to definitions of R and P, ∃ϕ′ : Ω(P ) → Ω′(M) ⊂ Ω(M) bijective,

such that ∀A ∈ Ω(P ). A =b ϕ
′(A) and ∃ϕ : Ω(M) → Ω(Q) bijective, such that

∀A ∈ Ω(M). A =pre ϕ(A).

We must prove that there exists a protocol M ′ such that P [P]M ′ and M ′[R]Q.

We build a protocol M ′ in such a way that Ω(M ′) = {ϕ(ϕ′(A)) ∈ Ω(Q) | A ∈
Ω(P )}. In order to prove P [P]M ′, we define the function ψ : Ω(P ) → Ω(M ′)
such that ψ(A) = ϕ(ϕ′(A). Then, ψ is bijective and ∀A ∈ Ω(P ). A =b ϕ

′(A) =pre

ϕ(ϕ′(A), and consequently A =pre ψ(A).

Moreover, the identity function id : Ω(M ′) → Ω(M ′) ⊂ Ω(Q) is bijective and

satisfies the condition for M ′[R]Q, by construction of Ω(M ′).

– [ZR] = [RZ].

Proof: First, we prove P [ZR]Q ⇒ P [RZ]Q.

Because of P [ZR]Q, there exists a protocol M such that P [Z]M and M [R]Q.

According to definitions of Z and R, ∃ϕ : Ω(P ) → Ω(M) bijective, such that

∀A ∈ Ω(P ). A ≪b ϕ(A) and ∃ϕ′ : Ω(M) → Ω′(Q) ⊂ Ω(Q) bijective, such that

∀A ∈ Ω(M). A =b ϕ
′(A).

We must prove that there exists a protocol M ′ such that P [R]M ′ and M ′[Z]Q.

Let us define Ω(M) as the set of branches of protocol Q that do not have a cor-

responding branch in M (Ω(M) = Ω(Q) − Ω′(Q)). Then, M ′ is a protocol with

Ω(M ′) = Ω(P ) ∪Ω(M).

In order to prove M ′[Z]Q we define the bijective function ψ : Ω(M ′) → Ω(Q)

– if A ∈ Ω(P ) then ψ(A) = ϕ′(ϕ(A)).
– if A /∈ Ω(P ) then ψ(A) = A.

Then, ∀A ∈ Ω(M ′). A ≪b ψ(A), since A ≪b ϕ(A) =b ϕ
′(ϕ(A)) implies A ≪b

ϕ′(ϕ(A)).
Moreover, P [R]M ′ because the identity function id : Ω(P ) → Ω(P ) ⊂ Ω(M ′) is

bijective and satisfies the needed properties, by construction of Ω(M ′).
Second, we prove P [RZ]Q ⇒ P [ZR]Q.

Because of P [RZ]Q, there exists a protocol M such that P [R]M and M [Z]Q.

According to definitions of R and Z, ∃ϕ : Ω(P ) → Ω′(M) ⊂ Ω(M) bijective,

such that ∀A ∈ Ω(P ). A =b ϕ(A) and ∃ϕ′ : Ω(M) → Ω(Q) bijective, such that

∀A ∈ Ω(M). A≪b ϕ
′(A).

We must prove that there exists a protocol M ′ such that P [Z]M ′ and M ′[R]Q.

Then we build a protocol M ′ with the branches of Q that have a corresponding

branch in Ω(M) due to ϕ′ (Ω(M ′) = ϕ′(Ω′(M))).

In order to prove P [Z]M ′ we define the bijective function ψ : Ω(P ) → Ω(M ′) with
ψ(A) = ϕ′(ϕ(A)). Then, ∀A ∈ Ω(P ). A ≪b ψ(A), since A =b ϕ(A) ≪b ϕ

′(ϕ(A))
implies A≪b ϕ

′(ϕ(A)).
Finally, M ′[R]Q because the identity function id : Ω(M ′) → Ω(M ′) ⊂ Ω(Q) is

bijective and satisfies the needed properties, by construction of Ω(M ′).

Property 5 : ∀X ∈ {P,S, I, C}. ∀Y ∈ {E ,Z}. [YX ] ⇒ [XY] but [XY] ⇏ [YX ].

– P [ZP]Q ⇒ P [PZ]Q.

Proof: Because of P [ZP]Q, there exists a protocolM such that P [Z]M andM [P]Q.

According to the definitions of Z and P, ∃ϕ : Ω(P ) → Ω(M) bijective, such

that ∀A ∈ Ω(P ). A ≪b ϕ(A) and ∃ϕ′ : Ω(M) → Ω(Q) bijective, such that

∀B ∈ Ω(M). B =pre ϕ′(B), which implies that ∀B ∈ Ω(M). ∃sϕ′(B). B =b
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Fig. 6 Counter-example: PZ ⇏ ZP

Prune[ϕ′(B)/sϕ′(B)] and exists Suff (ϕ′(B))=ChangeInit [ϕ′(B)|sϕ′(B)] (In other

words, each branch of Q can be seen as a concatenation of two subbranches:

B·Suff (ϕ′(B))). Let us define Ω(M) = {Suff(ϕ′(B))|B ∈ Ω(M)}.
We must prove that there exists a protocol M ′ such that P [P]M ′ and M ′[Z]Q.

Then we build a protocolM ′ with the branches formed by the concatenation of each

branch in Ω(P ) with its corresponding branch in Ω(M) (Ω(M ′) = {A · Suff(ϕ′ ◦
ϕ(A))|A ∈ Ω(P )}).
In order to prove P [P]M ′ we define the bijective function ψ : Ω(P ) → Ω(M ′) with
ψ(A) = A · Suff(ϕ′ ◦ ϕ(A)), which satisfies A =pre ψ(A) by construction.

In order to prove M ′[Z]Q, notice that every B ∈ Ω(M ′) is of the form A ·
Suff(ϕ′ ◦ ϕ(A)) for some A ∈ Ω(P ); then we define the bijective function ψ :

Ω(M ′) → Ω(Q) with ψ(A · Suff(ϕ′ ◦ϕ(A))) = ϕ(A) · Suff(ϕ′ ◦ϕ(A)), which satisfies

A · Suff(ϕ′ ◦ ϕ(A)) ≪b ϕ(A) · Suff(ϕ′ ◦ ϕ(A)) by definition of ϕ.

– P [PZ]Q ⇏ P [ZP]Q.

We show a counter-example.

Because of P [PZ]Q, there exists a protocol M such that P [P]M and M [Z]Q.

Looking at Fig. 6, let us suppose that msc(fbb) ⊑ msc(fb), msc(faa) ⊑ msc(fa)

and no other relationship exists between fluents, so Q′ in the picture fulfills the

requirements.

We must prove that there does not exist a protocol M ′ such that P [Z]M ′ and

M ′[P]Q. Notice that any protocol M ′ such that M ′[P]Q, should satisfy M ′[E ]Q or

M ′[E ]Q′; but it is obvious that not P [Z]Q neither P [Z]Q′.

Property 6 : ∀X ∈ {P,S, I}. ∀Y ∈ {P,S, I}. (X ≠ Y → (P [XY]Q⇔ P [I]Q)).

– P [PS]Q ⇔ P [I]Q. (A prefix of a suffix is an infix, and viceversa).

Proof : First we prove [PS] ⇒ [I].
Because of P [PS]Q, there exists a protocol M such that P [P]M and M [S]Q.

According to the definitions of P and S, ∃ϕ : Ω(P ) → Ω(M) bijective, such

that ∀A ∈ Ω(P ). A =pre ϕ(A) and ∃ϕ′ : Ω(M) → Ω(Q) bijective, such that

∀B ∈ Ω(M). B =suf ϕ
′(B).

Then, the bijective function ψ : Ω(P ) → Ω(Q) with ψ(A) = ϕ′(ϕ(A)) satisfies

A =inf ψ(A), since ∀A ∈ Ω(P ). A =pre ϕ(A) =suf ϕ′(ϕ(A)), and due to def-

inition of =suf , there exists a state sa in ϕ′(ϕ(A)) such that A =pre ϕ(A) =b

ChangeInit[ϕ′(ϕ(A))/sa], which implies thatA =pre ChangeInit[ϕ′(ϕ(A))/sa], which
is the definition for P [I]Q.

Next we prove [I] ⇒ [PS].
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Fig. 7 One scenario of the proposed mechanism.

Because of P [I]Q, ∃ϕ : Ω(P ) → Ω(Q) bijective, such that ∀A ∈ Ω(P ). A =inf

ϕ(A), which means that ∀A ∈ Ω(P ) there exists a state sϕ(A) in ϕ(A) such that

A=preChangeInit [ϕ(A)/sϕ(A)] =suf ϕ(A). We must prove that there exists a proto-

colM such that P [P]M andM [S]Q. We define Ω(M) = {ChangeInit[ϕ(A)/sϕ(A)] |
A ∈ Ω(P )}. Then, the functions ψ : Ω(P ) → Ω(M) with ψ(A) = ChangeInit[ϕ(A)/

sϕ(A)] and ψ
′ : Ω(M) → Ω(Q) with ψ′(ChangeInit[ϕ(A)/sϕ(A)]) = ϕ(A) are bijec-

tive and justify P [P]M and M [S]Q.

To conclude this section, we want to point out that our implemented mechanism

discovers complex composition relationships, like those presented in this section, be-

tween two given protocols. The following section presents an example.

6 One scenario of the proposed mechanism at work

The aim of this section is to show one scenario that illustrates the different steps

that the proposed mechanism follows in order to discover the relationship between two

different protocols that could be activated in case of a road accident. In both cases,

the actors that interact are a nurse from the ambulance that covers the emergency and

a doctor from the emergency staff from a hospital. Those actors are represented by

software agents that belong to different Information Systems. Notice that those agents

use protocols constituted by communication acts that are specific to each Information

System, and which are a specialization of general communication act classes defined in

the upper level of the CommOnt ontology.

On the one hand, protocol P1 in Fig. 7 illustrates the interaction with a public

hospital. The protocol is initiated by a nurse from the ambulance, who sends a request

(IdentifiedHelpReq) for help identifying herself within the message. Depending on

the situation, the hospital staff can either reject (HelpReject) or accept the request

and ask information about the accident (HelpAcceptance). In the latter case, then
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Fig. 8 Description of the communication acts

the nurse requests a helicopter to take the injured to the hospital (HelicopterReq)

and sends a message with the information about the accident (AccidentInform). Fi-

nally, the hospital staff responds whether it is possible or not to send a helicoper

(HelicopterInform).

On the other hand, protocol P2 shows the interaction with a private hospital, where

patients are required to have an insurance policy. In the first step, the nurse sends a

request for help (HelpReq) followed by a message of self-identification (Identify). The

hospital staff may either reject the request (HelpRefusal) or ask the nurse about

the patient’s insurance details (InsuranceReq), in which case the nurse informs about

those details (InsuranceInform). After checking those details, the hospital staff decides

whether the patient is eligible for help (HelpAgreement) or not (HelpRefusal). In the

former case, then the nurse sends a message in which she gives information about the

accident and requests a helicopter (AccidentManagement). Finally, the hospital staff

responds whether it is possible or not to send a helicoper (HelicopterResponse).

It can be noticed that both protocols are quite different. In Fig. 8 the description

and explanations of the communication acts that appear in the protocols are provided.

Next, the different steps presented in the previous sections (4.1, 4.2 and 4.3) are

illustrated for the scenario under consideration.

Separation into branches: There are two different branches in protocol P1 and three

different branches in protocol P2. For brevity, we represent a branch with the sequence

of its states. Then, protocol P1 is separated into the branches B1.1=[A,B,C] and

B1.2=[A,B,D,E,F,G] and protocol P2 into B2.1=[A,B,C,D], B2.2=[A,B,C,E,F,G] and

B2.3=[A,B,C,E,F,H,I,J].
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Fig. 9 Fluents generated by the branches

Generation of fluents: In Fig. 9 the fluents generated by each branch are shown.

The fluents generated by protocol P1 and the instances of communication acts in that

protocol are prefixed by u (public), while those generated by protocol P2 are prefixed

by r (private). Below a detailed description of the generation process of the fluents

in branch B1.1 is provided. The generation process of the remaining branches can be

found in appendix A.

Branch B1.1

< (A, uIdentifiedHelpReq,B) >: Nurse n sends the message uIdentifiedHelpReq

to

hospital h.

Due to the following knowledge:

uIdentifiedHelpReq ∈ IdentifiedHelpReq
IdentifiedHelpReq ⊑ Request

Initiates(Request(s,r,P), CC(r, s, accept(r,s,P), P), t)

the fluent u01.1 =CC(h, n, accept(h,n,uHelpGive), uHelpGive) is initiated.

Moreover, due to:

uIdentifiedHelpReq ∈ IdentifiedHelpReq
IdentifiedHelpReq ⊑ Inform ⊑ Assertive

Initiates(Assertive(s,r,P), P, t)

the fluent u02.1 =uIDInfo is initiated. Both fluents are attached to state B due to the

fluent attachment rule.

< (B, uHelpReject, C) >: Hospital h sends the message uHelpReject to nurse n.

Due to the following knowledge:

uHelpReject ∈ HelpReject
HelpReject ⊑ Reject

Initiates(Reject(s,r,P), reject(s,r,P), t)
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Fig. 10 Branches comparison table

the fluent u03.1 =reject(h, n, uHelpGive) is generated and attached to state C due

to the fluent attachment rule. Moreover, fluents u01.1 and u02.1 are transmitted from

state B to state C due to the fluent transmission rule.

Comparison of branches: For the sake of the example, we have labelled the gener-

ated fluents with a code in the format pX.Y, where p ∈ {u,r} refers to the protocol

that generates the fluent, X ∈ {01,...,n} is a key number for identifying fluents and Y

∈ {1,2,3} is a number for distinguising fluents from different branches. In our coding,

number X identifies a fluent, that is to say r02.1 is related to u02.1 via an (eq) relation-

ship (see section 4.3). Taking the previous considerations into account, the branches

comparison table displays the results in Fig. 10.

Remember that the tuple (4,0,0,1) indicates that four fluents in the trace of B2.3

and four fluents in the trace of B1.2 can be paired up through an equivalence re-

lationship, none of the remaining fluents can be paired up through a generalization

relationship and there is one exceeding fluent (due to the fact that the trace of B2.3

has five fluents and the trace of B1.2 has only four fluents).

Moreover, there are four unfeasible pairs: (B1.2, B2.1), (B1.1, B2.2), (B1.2, B2.2)

and (B1.1, B2.3). For example, (B1.1, B2.2) is not feasible because in the trace of

B1.1 there are some fluents (u01.1 and u03.1) which are incomparable with any other

in the trace of B2.2, and in turn, in the trace of B2.2 there are other fluents (r10.2

and r11.2) which are incomparable with any other in the trace of B1.1.

The best pairing can be obtained pairing up branch B1.1 with branch B2.1 and

branch B1.2 with B2.3 (π = {(B1.1, B2.1), (B1.2, B2.3)}). In addition, since all the

fluents in B1.1 have been related through an equivalence relationship (eq) with those in

B2.1 ((3,0,0,0) in the table) it can be said that those branches are equivalent (B1.1 =b

B2.1). Furthermore, due to the (4,0,0,1) valuation given to (B1.2, B2.3), it can be seen

that B1.2 is somehow included in B2.3. Since the fluent that has not been paired up

(r10.3) is generated in an inner state of B2.3, it results that B1.2 =c B2.3.

In summary, two of the three branches of P2 can be related with those in P1 (notion

of restriction R), those branches are related via the complement to infix relationship

C and the relationship between the compared fluents is the one of equivalence E , so we

can say that P1[ECR]P2.
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Therefore, our mechanism has discovered a semantic relationship between those

two protocols and this is an important first step in order to deal with alternatives of

successful communication of the considered agents.

For instance, assume that the ambulance service is ascribed to a private hospital

organization and, therefore, the nurse software agent is initially adapted to use the

P2 protocol. Moreover, the accident location recommends to ask for help to a public

hospital, whose doctor software agent will be initially adapted to the P1 protocol. In

particular, in our scenario, the nurse and doctor software agents (using P2 and P1

protocols, respectively) need some help to interoperate. The relationship discovered

by our mechanism allows the system to recognize a chance of interoperability. The

confrontation of both protocols has proved that the nurse agent could adopt protocol

P1 to communicate with the doctor agent because P1 does not oblige the nurse agent

to do any action against the goals of its default protocol P2. Moreover, the doctor agent

would be unaware of such adaptation and could continue using its regular protocol P1.

7 Related Works

Different criteria can be considered for a classification of related works that can be

found in the specialized literature. One significant criterion, with respect to protocol

definitions, is that which distinguishes among those works that prevail in a semantic

approach in contrast with others that only consider a structural one. Another interest-

ing criterion is the consideration or not of formal relationships between protocols. A

third criterion is if the works consider a notion of protocol composition.

We will firstly review the first criterion that is, works which introduce semantic

considerations when defining protocols.

The closer work is (Mallya and Singh, 2007), where protocols are represented as

transition systems where transitions are formalized as operations on commitments.

Subsumption and equivalence of protocols are defined with respect to three state sim-

ilarity funtions. We share some goals with that work, but in that paper there are no

references to how protocol relationships are computed. In contrast, according to our

proposal, protocol relationships can be computed by straightforward algorithms. It is

worth mentioning that protocol relationships considered in that paper deserve study

within our framework. Another work that consider protocol relationships is (Desai et al,

2005), where protocols are represented with a set of rules with terms obtained from an

ontology. In particular they formalize protocols into the π-calculus; then, equivalence

through bisimulation is the only relationship considered.

Among other works that also consider semantic aspects but do not consider the

study of relationships between protocols, the works (Yolum and Singh, 2002), (Fornara

and Colombetti, 2003) and (Kagal and Finin, 2007) can be mentioned. The first two

are quite similar one to another. Both capture the semantics of communication acts

through agents’ commitments and represent communication protocols using a set of

rules that operate on these commitments. Moreover, those rule sets can be compiled

as Finite State Machines. In (Kagal and Finin, 2007), protocols are defined as a set

of permissions and obligations of agents participating in the communication. They use

an OWL ontology for defining the terms of the specification language, but their basic

reasoning is made with an ad hoc reasoning engine. We share with the previous works

their main goal of defining protocols in a general framework that allows them to be

re-used.
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One work that focuses on the problem of protocol composition is (Yolum and Singh,

2007). It introduces considerations of rationality on the enactment of protocols. Our

proposal could be complemented with the ideas presented in that work.

We review secondly works that deal solely with structural aspects of protocols.

Notice that we advocate for a more flexible approach dealing with semantics.

The work presented in (Montes-Rendón et al, 2006) describes a methodology that

facilitates communication among heterogeneous negotiation agents based on the align-

ment of communication primitives. Finite State Machines are used as a model to rep-

resent negotiation protocols and as a base for aligning primitives. This is quite a rigid

approach because communication will only be possible if protocols have such a similar

structure that their communication primitives can be aligned two by two.

(d’Inverno et al, 1998) and (Mazouzi et al, 2002) use Finite State Machines and

Petri nets, respectively, to represent protocols but without taking into account the

meaning of the communication acts interchanged or considering relationships between

protocols. The work of (Ryu et al, 2007) has an interesting approach to manage changes

in business protocols. More precisely, it presents an extensive study on how to translate

active instances from an old protocol to a new one, without violating several types of

constraints. In order to do so, it compares the old protocol with the new one but only

examines structural differences between them, which results in a more rigid approach

that the one allowed by our mechanism, which considers semantic representation of

protocols.

For the third criterion we issue the problem of determining if an agent’s policy

conforms to a protocol. This is a very relevant problem but not one which we are

examining in this paper. Nevertheless, the topic is closely related to ours and it is

worth mentioning here. In (Endriss et al, 2003), deterministic Finite State Machines

are the abstract models for protocols, which are described by simple logic-based pro-

grams. Three levels of conformance are defined: weak, exhaustive and robust. They

consider communication acts as atomic actions, in contrast to our semantic view. In

(Baldoni et al, 2006) a nondeterministic Finite State Automata is used to support a

notion of conformance that guarantees interoperability among agents which conform

to a protocol. Their conformance notion considers the branching structure of policies

and protocols and applies a simulation-based test. Communication acts are considered

atomic actions, without considering their semantics. In (Chopra and Singh, 2006), a no-

tion of conformance is defined and, moreover, it is proved orthogonal to their proposed

notions of coverage and interoperability.

Apart from the previous classification, in the context of Web Services, state tran-

sition systems are used in (Bordeaux et al, 2004) for representing dynamic behaviour

of services and defining some notions of compatibility and substitutability of services

that can be easily translated to the context of compatibility of protocols. Relationships

between their compatibility relations and our defined relationships deserve study. Fi-

nally, although agent technology and Web Services technology have been developed

in separate ways, there exists a work (Greenwood and M.Lyell, 2007) which tries to

consolidate their approaches into a common specification describing how to seamlessly

interconnect FIPA compliant agent systems (FIPA, 2005) with W3C compliant Web

Services. The purpose of specifying an infrastructure for integrating these two technolo-

gies is to provide a common means of allowing each to discover and invoke instances

of the other.
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8 Conclusions

In this paper we have explained a mechanism for discovering semantic relationships

among agent communication protocols. The mechanism is based on the idea that dif-

ferent protocols can be compared semantically by looking to the set of fluents associated

to the branches of protocols. That assumption favours a much more flexible compari-

son of protocols than the more traditional one based on comparing protocol structures.

Through the paper we have shown first, one ontology that represents concepts related

to communication acts that agents use to communicate with each other and which take

part of the protocols. Secondly, we have concentrated on showing: how protocols are

modelled, in our case using OWL-DL language, and the features of the mechanism that

analyses each protocol by decomposing it into different branches, and by generating the

semantic information associated to each branch. Thirdly, we have presented different

relationship definitions that are managed by the mechanism which permit the identifi-

cation of protocol relationships. Moreover, some properties of those relationships and

proofs for them have been included. Finally, with an example we have illustrated the

feasibility of the proposed mechanism which has been implemented using Java as a

programming language and Pellet as a description logic reasoner. As a future work we

are studying how to extend the mechanism presented in this paper so that protocols

with cycles can be treated. Since our mechanism divides the protocol into its different

branches (one for each of the possible runs) and the number of those possible differ-

ent runs in a protocol that contains cycles is infinite, an exhaustive study of how to

simplify the cases must be done. We are working currently towards an approach that

analyzes the behaviour of the fluents that hold in the exit states of cycles (that is to

say, how those fluents are affected by the fact of being in a cycle), with the purpose

of establishing a pattern about that behaviour. Another future work studies the inter-

est of adapting the proposed mechanism to contexts where Information Systems are

represented through Web Services.
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A Generation of fluents

Most important facts in the Knowledge Base:

(k1) uIdentifiedHelpReq ∈ IdentifiedHelpReq ⊑ Request

(k2) uIdentifiedHelpReq ∈ IdentifiedHelpReq ⊑ Inform ⊑ Assertive

(k3) uHelpReject ∈ HelpReject ⊑ Reject

(k4) uHelpAcceptance ∈ HelpAcceptance ⊑ Responsive

(k5) uHelpAcceptance ∈ HelpAcceptance ⊑ Inquiry

(k6) uHelicopterReq ∈ HelicopterReq ⊑ Request

(k7) uAccidentInform ∈ AccidentInform ⊑ Responsive

(k8) uHelicopterInform ∈ HelicopterInform ⊑ Responsive

(k9) rHelpReq ∈ HelpReq ⊑ Request

(k10) rIdentify ∈ Identify ⊑ Inform ⊑ Assertive

(k11) rHelpRefusal ∈ HelpRefusal ⊑ Reject

(k12) rInsuranceReq ∈ InsuranceReq ⊑ Request

(k13) rInsuranceInform ∈ InsuranceInform ⊑ Responsive

(k14) rHelpRefusal ∈ HelpRefusal ⊑ Reject

(k15) rHelpAgreement ∈ HelpAgreement ⊑ Responsive

(k16) rHelpAgreement ∈ HelpAgreement ⊑ Inquiry

(k17) rAccidentManagement ∈ AccidentManagement ⊑ Responsive

(k18) rAccidentManagement ∈ AccidentManagement ⊑ Request

(k19) rHelicopterResponse ∈ HelicopterResponse ⊑ Responsive

Predicates that describe the semantics associated to the communication acts of the exam-
ple:

(p1) Initiates(Request(s, r, P), CC(r, s, accept(r, s, P), P), t).

(p2) Initiates(Inquiry(s, r, P), CC(r, s, accept(r, s, P), P), t).

(p3) Terminates(Responsive(s, r, P, RA),CC(s, r, accept(s, r, RA), RA), t).

(p4) Initiates(Responsive(s, r, P, RA), P)

(p5) Initiates(Reject(s, r, P), reject(s, r, P))

(p6) Initiates(Assertive(s, r, P), P)

Next, a detailed description of the generation process of the trace of each branch is shown.
Moreover, the knowledge that has been applied at each stage of the interaction is indicated.
The fluent attachment and fluent transmission rules do not appear explicitly in this analysis
but have been applied when necessary.
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