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There are a number of localic separation axioms which are roughly analogous to the 
T1-axiom from classical topology. For instance, besides the well-known subfitness 
and fitness, there are also Rosický–Šmarda’s T1-locales, totally unordered locales 
and, more categorically, the recently introduced F-separated locales (i.e., those with 
a fitted diagonal) — a property strictly weaker than fitness.
It has recently been shown that the strong Hausdorff property and F-separatedness 
are in a certain sense dual to each other. In this paper, we provide further instances 
of this duality — e.g., we introduce a new first-order separation property which 
is to F-separatedness as the Johnstone–Sun-shu-Hao–Paseka–Šmarda conservative 
Hausdorff axiom is to the strong Hausdorff property, and which can be of 
independent interest. Using this, we tie up the loose ends of the theory by 
establishing all the possible implications between these properties and other T1-type 
axioms occurring in the literature. In particular, we show that the strong Hausdorff 
property does not imply F-separatedness, a question which remained open and 
shows a remarkable difference with its counterpart in the category of topological 
spaces.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let X be a T0-space. It is an elementary fact in general topology that any of the following conditions is 
equivalent to the T1-axiom:

(1) Every open set is a union of closed subspaces;
(2) Every closed set is saturated (i.e., an intersection of open sets);
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(3) The diagonal is saturated in X ×X;
(4) The order in the homset Top(Y, X) is discrete for any space Y (recall that Top(Y, X) is ordered under 

the pointwise specialization order; equivalently f ≤ g iff f−1(U) ⊆ g−1(U) for any open set U of Y );
(5) Every point is closed;
(6) Every point is saturated.

Now, if one represents conditions (1)–(6) by a conceptual analogy in the category of locales, the resulting 
axioms are no longer equivalent to each other and lead to distinct conditions which are roughly analogous 
to the T1-axiom for spaces:

(1’) Every open sublocale of L is a join of closed sublocales;
(2’) Every closed sublocale of L is fitted (i.e., an intersection of open sublocales);
(3’) The diagonal is fitted in L ⊕ L;
(4’) The order in Frm(L, M) is discrete;
(5’) Every one-point sublocale of L is closed;
(6’) Every one-point sublocale of L is fitted.

Conditions (1’) and (2’) are the important and well-known subfitness and fitness, respectively; whereas 
condition (4’) amounts to Isbell’s unorderedness [13] (also called total unorderedness in Johnstone, see 
[14]). Conditions (5’) and (6’) are very point dependent and thus unlikely to be of much use in point-
free topology (but it is important to point out that locales satisfying (5’) were introduced as T1-locales
by Rosický and Šmarda [21], and have some desirable properties categorically; also, both are implied by 
several other genuinely point-free assumptions). Finally, we studied condition (3’) recently under the name 
F-separatedness in [3], where it was shown that it is in a strong structural parallel with Isbell’s strong 
Hausdorff property (see also [2] for details, or Subsection 2.5 below for an overview).

However, in view of the fact that the Hausdorff axiom for spaces implies the T1-property; it is a natural 
question whether it is the case that the strong Hausdorff property also implies F-separatedness for locales; 
this was left as an open question when writing [3] and it is the main goal of this paper to provide a negative 
answer; a consequence of this is that the only implications that hold between Properties (1’)—(6’) are the 
known ones. We also note that this strenghtens the idea (cf. [3]) that the strong Hausdorff property and 
F-separatedness are dual to each other: they are not comparable but there are a number of parallel pairs of 
results for each one; thus showing a remarkable difference with the category of topological spaces. In this 
parallel, total unorderedness seems to play a symmetric role with respect to F-separatedness and the strong 
Hausdorff property (cf. Fig. 2).

In this context, we note that such a counterexample yields a fortiori an example of a strongly Hausdorff 
locale which is not fit, but these are already rather hard to find — with regard to the historical background, 
Isbell first constructed such an example in [12, 2.3 (4’)]; it was later generalized by Banaschewski to the 
class of simple extensions of regular spaces (under some mild conditions) in [4]. However, all such examples 
are F-separated as we proved in [3]; hence they do not serve for our purpose herein.

In this paper, building on a construction due to Juhász et al. [16] we construct strongly Hausdorff 
locales which fail to be F-separated; in particular providing new examples of strongly Hausdorff locales 
which are not fit. The main tool for this purpose is a new first-order separation axiom for locales —called 
Property (F) in what follows— introduced by the author in his PhD thesis [2]. We show that Property (F) is 
the dual counterpart of the conservative Hausdorff axiom due to Johnstone–Sun-shu-Hao–Paseka–Šmarda 
(cf. [15,17,20]).

We then put these new separation axioms into perspective by comparing and relating them with (1’)–(6’)
above, and also with other similar properties which appear in the literature — notably weak subfitness and 
prefitness [19].
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2. Preliminaries

Our notation and terminology regarding the categories of frames and locales will be that of [18]; and for 
topics related to localic separation we refer to [20]. The Heyting operator in a frame L, right adjoint to the 
meet operator, will be denoted by →; for each a ∈ L, a∗ = a → 0 is the pseudocomplement of a.

2.1. Some heyting rules

For the reader’s convenience, we list here some of the properties satisfied by the Heyting operator in a 
frame L. For any a, b, c ∈ L, the following hold:

(H1) 1 → a = a;
(H2) a ≤ b if and only if a → b = 1;
(H3) a ≤ b → a;
(H4) a → b = a → (a ∧ b);
(H5) a ∧ (a → b) = a ∧ b;
(H6) a ∧ b = a ∧ c if and only if a → b = a → c;
(H7) (a ∧ b) → c = a → (b → c) = b → (a → c);
(H8) a = (a ∨ b) ∧ (b → a);
(H9) a ≤ (a → b) → b;
(H10) ((a → b) → b) → b = a → b.

2.2. Sublocales

A sublocale of a locale L is a subset S ⊆ L closed under arbitrary meets such that

∀a ∈ L, ∀s ∈ S, a → s ∈ S.

These are precisely the subsets of L for which the embedding jS : S ↪→ L is a morphism of locales. Sublocales 
of L are in one-to-one correspondence with the regular subobjects (equivalently, extremal subobjects) of L
in Loc. If νS denotes the associated frame surjection, then for any a ∈ L and s ∈ S one has

νS(a) → s = a → s. (LM)

The system S(L) of all sublocales of L, partially ordered by inclusion, is a coframe [18, Theorem III.3.2.1], 
that is, its dual lattice is a frame. Infima and suprema are given by

∧
i∈I

Si =
⋂
i∈I

Si,
∨
i∈I

Si = {
∧
M | M ⊆

⋃
i∈I

Si }.

The least element is the sublocale O = {1} and the greatest element is the entire locale L. For any a ∈ L, 
the sublocales

cL(a) =↑a = { b ∈ L | b ≥ a } and oL(a) = { a → b | b ∈ L }

are the closed and open sublocales of L, respectively (that we shall denote simply by c(a) and o(a) when 
there is no danger of confusion). For each a ∈ L, c(a) and o(a) are complements of each other in S(L) and 
satisfy the expected identities

⋂
c(ai) = c(

∨
ai), c(a) ∨ c(b) = c(a ∧ b),
i∈I i∈I
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∨
i∈I

o(ai) = o(
∨
i∈I

ai) and o(a) ∩ o(b) = o(a ∧ b).

Given a sublocale S of L, its closure, denoted by S, is the smallest closed sublocale containing it. In this 
context, the formula S = c(

∧
S) holds.

A sublocale is said to be fitted if it is the intersection of all the open sublocales containing it. Hence, it 
constitutes a (non-conservative) point-free extension of the notion of saturated subspace. If S is a sublocale 
of L, the fitting of S is the intersection of the open sublocales containing S, that is, the smallest fitted 
sublocale containing S (cf. [9]).

Finally, if p is a prime element in L, the subset b(p) = { 1, p } is easily seen to be a sublocale, sometimes 
referred to as a one-point sublocale.

2.3. Some standard separation axioms

We now recall some important point-free separation axioms (for a comprehensive account of the topic 
we refer to [20]). A frame L is said to be

• regular if for any a ∈ L, the relation a =
∨
{ b | b ≺ a } holds, where b ≺ a means that b∗ ∨ a = 1.

• fit if for any a, b ∈ L with a � b, there exists a c ∈ L such that a ∨ c = 1 and c → b � b.
• totally unordered (or that it satisfies (TU )) if for any pair of frame homomorphisms h, k : L → M ,

the relation h ≤ k implies h = k. (TU )

• T1 if every prime in L is maximal, that is

if for any prime p ∈ L and any a > p, then a = 1. (T1)

• subfit if for any a, b ∈ L with a � b, there exists a c ∈ L such that a ∨ c = 1 �= b ∨ c.
• weakly subfit if for any a > 0 in L, there exists a c < 1 with a ∨ c = 1.
• prefit if for any a > 0 in L, there exists a c > 0 such that c ≺ a (i.e., a ∨ c∗ = 1).

Although the definitions of subfitness and fitness are given as first-order properties, as mentioned in the 
Introduction they can be characterized geometrically: a locale is fit if and only if each of its closed sublocales 
is fitted (equivalently, iff any sublocale whatsoever is fitted), and a locale is subfit if and only if each open 
sublocale is a join of closed sublocales (cf. [12,18,20]). Furthermore, a locale is T1 if and only if for each 
prime p ∈ L, the sublocale b(p) is closed (cf. [21]).

With regard to the relations between these properties, the implications

Regular =⇒ Fit =⇒ Subfit =⇒ Weakly subfit

are easily seen to hold and are all strict; for the remaining relations we refer to [20] or to Section 5 below.

2.4. Products of locales

We shortly describe a construction of binary coproducts of frames (that is, binary products of locales). 
For more information, we refer to [18, IV 4–5]. Let L1 and L2 be frames and denote by D(L1 × L2) the 
frame of downsets of L1 × L2. A downset D ∈ D(L1 × L2) is said to be a cp-ideal if for all {ai}i∈I ⊆ L, 
a ∈ L, {bj}j∈J ⊆ M and b ∈ M ,
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(ai, b) ∈ D for all i ∈ I =⇒
( ∨
i∈I

ai, b
)
∈ D, and

(a, bj) ∈ D for all j ∈ J =⇒
(
a,

∨
j∈J

bj
)
∈ D.

We note that for any (a, b) ∈ L1 × L2, the set

a⊕ b :=↓(a, b) ∪ { (x, y) | x = 0 or y = 0 }

is the smallest cp-ideal containing (a, b). Since intersections of cp-ideals are cp-ideals, the set

L1 ⊕ L2 := {D ∈ D(L1 × L2) | D is a cp-ideal }

is a complete lattice. In fact, it can be shown that L1 ⊕ L2 is a frame, and together with the frame 
homomorphisms ιi : Li → L1 ⊕ L2 given by

ι1(a) = a⊕ 1, ι2(b) = 1 ⊕ b

the system (L1 ⊕ L2, ι1, ι2) is the coproduct of L1 and L2 in the category of frames. Equivalently, (L1 ⊕
L2, π1, π2) in the product of L1 and L2 in the category of locales; where the localic map πi is the right 
adjoint of ιi for i = 1, 2 — i.e., for any D ∈ L1 ⊕ L2 one has

π1(D) =
∨
{ a ∈ L1 | (a, 1) ∈ D } and π2(D) =

∨
{ b ∈ L2 | (1, b) ∈ D }.

Given localic maps fi : M → Li for i = 1, 2, the induced map (f, g) : M → L1 ⊕ L2 is readily seen to be 
given by

(f, g)(c) = { (a, b) ∈ L1 × L2 | f∗(a) ∧ g∗(b) ≤ c }.

In particular, if L is a locale, the diagonal localic map (1L, 1L) : L → L ⊕ L is injective and so its image 
defines a sublocale of L, namely

DL := (1L, 1L)[L] ⊆ L⊕ L,

where (1L, 1L)(a) = { (u, v) ∈ L ×L | u ∧v ≤ a }. We refer to DL as the diagonal sublocale (see [18, IV 5.3]). 
In particular, for a D ∈ DL one has

(a, b) ∈ D if and only if (b, a) ∈ D. (Sym)

In this context, we point out that the closure of the diagonal in L ⊕ L is given by DL = c(dL), where

dL =
∨
{ a⊕ b | a ∧ b = 0 } = { (a, b) ∈ L1 × L2 | a ∧ b = 0 }

(see [18, V 2.1] for details).

2.5. Diagonal separation in Loc

Let C be a category equipped with a closure operator c with respect to a proper factorization system 
(E , M) (see [10], cf. also [6–8] and references therein). An object X of C is said to be c-separated if the 
diagonal subobject (1X , 1X) : X ↪→ X ×X is c-closed.
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In C = Top, the category of topological spaces, important examples are c = k (the usual topological 
closure) or c = s (the closure operator sending a subspace to its saturation — i.e., the intersection of all the 
open subspaces containing it). As is well known, the k-separated objects are precisely the Hausdorff spaces, 
and the s-separated objects are precisely the T1-spaces.

In C = Loc, the category of locales, the analogous closure operators are given by c = K (the usual 
localic closure, recall Subsection 2.2) and c = F (the closure operator sending a sublocale to its fitting, see 
Subsection 2.2).

The resulting notions of separation are as follows. On the one hand K-separated locales are precisely the 
strongly Hausdorff locales introduced by Isbell [12] (that is, locales whose diagonal is closed) and, on the 
other hand, the F-separated locales (that is, those whose diagonal is fitted) were studied recently in [3].

We point out that both strongly Hausdorff locales and F-separated locales have an excellent categorical 
behaviour. Indeed, it follows from general results of the theory of closure operators (see e.g. [7, Proposi-
tion 4.2]) that the following properties hold:

Proposition 2.1. The following assertions hold:

(1) If f, g : M → L are localic maps and L is strongly Hausdorff (resp. F-separated), then their equalizer 
equ(f, g) is a closed (resp. fitted) sublocale of M ;

(2) Strongly Hausdorff (resp. F-separated) locales are closed under mono-sources in Loc. In particular, if 
f : M → L is a monomorphism in Loc and L is strongly Hausdorff (resp. F-separated), then so is M ;

(3) Strongly Hausdorff (resp. F-separated) locales are closed under limits in Loc;
(4) Strongly Hausdorff (resp. F-separated) locales are extremally epireflective in Loc.

Remark 2.2. We emphasize that the closure under monomorphisms in Proposition 2.1 (2) is significantly 
more general than closure under sublocales (i.e., regular monomorphisms). Indeed, in the category Loc the 
structure of monomorphisms is fairly wild, and thus this property may be somewhat surprising.

Recall the fitness property from Subsection 2.3. It is well known (cf. [12]) that fitness is closed under 
products. It immediately follows that it implies F-separatedness. The reverse implication does not hold in 
general, as it was proved in [3]:

Theorem 2.3 ([3, Thm. 6.4]). Fitness implies F-separatedness, but the converse does not hold in general.

In [3] (see also [2] for a more detailed account, cf. also Table 1) it was shown that there is a pleasant 
parallel between the strong Hausdorff property and F-separatedness. For instance, both can be characterized 
by a Dowker-Strauss type condition on the combinatorial structure of the frame homomorphisms with a 
given domain (cf. [3, Sect. 4]).

Moreover, both properties can be decomposed as the conjunction of total unorderedness (cf. Subsec-
tion 2.3) and a certain condition involving weakened frame homomorphisms (cf. [5, Sect. 5] for the closed 
case and [3, Sect. 6] for the fitted case). In particular, one has the following:

Theorem 2.4 ([3, Cor. 4.5.1]). F-separatedness implies total unorderedness.

2.6. The conservative Hausdorff property

Since the functor Ω: Top → Loc does not preserve products, there is no reason to assume that the strong 
Hausdorff property is a conservative extension of its classical counterpart. Indeed, if X is a topological space 
and Ω(X) is strongly Hausdorff, then X is Hausdorff; but the converse does not hold in general. In view 
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Table 1
The closed-fitted duality.

Closedness Fittedness

Dowker-Strauss-type 
characterization

Strong Hausdorff ≡ no distinct 
homomorphisms respect disjoint pairs

F-separated ≡ no distinct 
homomorphisms respect covers

Relaxed morphisms Weak homomorphisms:
(1) Morphism in Sup
(2) Preserve �
(3) Preserve disjoint pairs

Almost homomorphisms:
(1) Morphism in PreFrm
(2) Preserve ⊥
(3) Preserve covers

Every relaxed morphism is a 
frame homomorphism

Property (W) Property (A)

Sufficient condition Hereditary normality implies 
property (W)

Hereditary extremal disconnectedness 
implies property (A)

Downset frames Dwn(X) is hereditarily normal iff it 
satisfies (W)

Dwn(X) is hereditarily extremally 
disconnected iff it satisfies (A)

Characterization by relaxed 
morphisms

Strong Hausdorff ≡ (TU ) + (W) F-separated ≡ (TU ) + (A)

Associated first order property Property (H) Property (F)

of this situation, several groups of authors investigated possible point-free conservative extensions of the 
Hausdorff axiom. From very differently motivated approaches, Paseka and Šmarda [17] and Johnstone and 
Sun-shu-Hao [15] obtained a solution for this problem (for a detailed historical account of the subject see 
also [20, III.1]).

A frame is said to be Hausdorff (or that it satisfies Property (H)) if

1 �= a � b =⇒ ∃u, v ∈ L such that u � a, v � b and u ∧ v = 0. (H)

Proposition 2.5. Every strongly Hausdorff locale is Hausdorff.

Moreover, Property (H) is a conservative extension of the homonymous topological axiom — i.e., a 
T0-topological space X is Hausdorff if and only if the locale Ω(X) is Hausdorff (the importance of conser-
vativeness should not be overestimated, though: it is the strong Hausdorff property, and not Property (H), 
that in the presence of compactness behaves as expected, see [20]).

3. A dual to the conservative Hausdorff property — the property (F)

If we refer to the structural parallel between the strong Hausdorff property and F-separatedness (cf. 
Subsection 2.5), it is a natural question whether the conservative Hausdorff axiom (cf. Subsection 2.6) has a 
natural dual counterpart for F-separatedness — i.e., whether there is a first-order separation-type property 
which is to F-separatedness as property (H) is to the strong Hausdorff property. In this section we show 
that the Property (F), introduced by the author in his PhD thesis [2] provides an affirmative answer to this 
question.

Theorem 3.1. For a frame L, the following conditions are equivalent and are all implied by F-separatedness:

(i) For every a, b ∈ L such that 1 �= a � b, there exist u, v ∈ L such that u � a, v � b and 
(u → a) ∨ (v → b) = 1;

(ii) For every a, b ∈ L such that 1 �= a � b, there exist u, v ∈ L such that a < u, b < v and 
(u → a) ∨ (v → b) = 1;

(iii) For every a, b ∈ L such that 1 �= a � b, there exist u, v ∈ L such that v ≤ a < u, v � b and 
(u → a) ∨ (v → b) = 1;
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(iv) For every a, b ∈ L such that 1 �= a � b, there exist u, v ∈ L such that u → a �= a, v → b �= b and 
u ∨ v = 1;

(v) For every a, b ∈ L such that 1 �= a � b, there exist u, v ∈ L such that a ≤ u, b ≤ v, u → a �= a, 
v → b �= b and u ∨ v = 1;

(vi) For every a, b ∈ L such that 1 �= a � b, there exist u, v ∈ L such that a ≤ u, u → a �= a, a ∧ (v → b) � b

and u ∨ v = 1.

Proof. Let us start by showing that F-separatedness implies (i). Let 1 �= a � b. Then

a` b = { (x, y) ∈ L× L | x ≤ a or y ≤ b }

is clearly a cp-ideal, and since (a, 1) ∈ a ` b and (1, a) /∈ a ` b, it follows from (Sym) that a ` b /∈ DL. 
Hence a ` b /∈ DL =

⋂
DL⊆o(U) o(U) because L is F-separated and so there exists a U ∈ L ⊕ L such 

that DL ⊆ o(U) and a ` b /∈ o(U) — i.e., 
⋂

(x,y)∈U ((x ⊕ y) → a ` b) � a ` b. Therefore, there is a pair 
(u, v) ∈ L × L such that for all (x, y) ∈ U , one has (u, v) ∈ (x ⊕ y) → a ` b but (u, v) /∈ a ` b. The latter 
means u � a and v � b; while the former means that for all (x, y) ∈ U one has (u ∧ x) ⊕ (v ∧ y) ⊆ a ̀ b, or 
equivalently (u ∧ x, v ∧ y) ∈ a ̀ b. Hence, for each (x, y) ∈ U , one has either u ∧ x ≤ a or v ∧ y ≤ b and so 
x ∧ y ≤ (u → a) ∨ (v → b). Since DL ⊆ o(U), the system Û = { x ∧ y | (x, y) ∈ U } is easily seen to be a 
cover of L, hence (u → a) ∨ (v → b) = 1.

We now check that all the conditions are equivalent:

(i) =⇒ (ii): Let 1 �= a � b. Then there are u, v ∈ L with u � a, v � b and (u → a) ∨ (v → b) = 1. Set 
u′ := u ∨ a and v′ := v ∨ b. Then a < u′, b < v′ and (u′ → a) ∨ (v′ → b) = (u → a) ∨ (v → b) = 1.

(ii) =⇒ (iii): Let 1 �= a � b. Then one has 1 �= a � a → b and hence there exist u, v ∈ L such that a < u, 
a → b < v and (u → a) ∨ (v → (a → b)) = 1. Let v′ := v ∧ a. Since v � a → b, one has v′ � b (and v′ ≤ a). 
Moreover, by (H7), it follows that v → (a → b) = (v ∧ a) → b = v′ → b. Hence the pair u, v′ satisfies the 
required conditions.

(iii) =⇒ (iv): Let 1 �= a � b. Then there exist u, v ∈ L such that v ≤ a < u, v � b and (u → a) ∨(v → b) = 1. 
Let u′ := u → a and v′ := v → b. Then u′ ∨ v′ = 1. Moreover, if u′ → a ≤ a, then u ≤ (u → a) → a ≤ a by 
(H9), a contradiction. Hence u′ → a �= a and similarly, v′ → b �= b.

(iv) =⇒ (v) follows easily because u → a = (u ∨ a) → a and v → b = (v ∨ b) → b; thus we may replace u
(resp. v) by u ∨ a (resp. v ∨ b).

(v) =⇒ (vi): Let 1 �= a � b. Then 1 �= a � a → b and hence there exist u, v ∈ L such that a ≤ u, 
a → b ≤ v, u → a �= a, v → (a → b) �= a → b and u ∨ v = 1. By (H5) and (H7) one has a ∧ (v → b) =
a ∧ (a → (v → b)) = a ∧ (v → (a → b)) �≤ b.

(vi) =⇒ (i): Let 1 �= a � b. Then there exist u, v ∈ L such that a ≤ u, u → a �= a, a ∧ (v → b) � b and 
u ∨ v = 1. Let u′ := u → a and v′ := v → b. Then u′ � a, v′ � b and (u′ → a) ∨ (v′ → b) ≥ u ∨ v = 1 by 
(H9). �

A frame satisfying one (and hence all) of the equivalent conditions above will be said to satisfy Prop-
erty (F), that is, L satisfies Property (F) if

1 �= a � b =⇒ ∃u, v ∈ L such that u → a �= a, v → b �= b and u ∨ v = 1. (F)

Corollary 3.2. Fitness implies Property (F)

Remark 3.3. We point out here that the implication (F-sep) =⇒ (F) cannot be reversed. Such a coun-
terexample can be given already in the context of singly generated frame extensions [4]. Indeed, let τ be the 
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topology on the real line given by open sets of the form U ∪(V ∩Q) where U, V ∈ τus, where τus denotes the 
usual topology on the real line. It is known that τ is not totally unordered (cf. [14, Example III 1.5]); so in 
particular it is not F-separated (recall Theorem 2.4). On the other hand, τ satisfies Property (F). Indeed, 
let U, V ∈ τ with R �= U � V . Select an x ∈ U with x /∈ V and a y /∈ U . Since x �= y and (R, τus) is regular, 
there are open sets U1, U2 ∈ τus with x ∈ U1, y ∈ U2 and whose closures U1 and U2 in (R, τus) are disjoint. 
Let U ′ = R − U2 and V ′ = R − U1. Then U ′, V ′ ∈ τ because τus ⊆ τ . Clearly, U ′ ∪ V ′ = R. Moreover, 
if int(U ∪ U2) = U ′ → U ⊆ U , then since y ∈ U2 ⊆ int(U ∪ U2), we would have y ∈ U , a contradiction. 
Similarly, one verifies that V ′ → V � V .

Recall that a locale is T1 if every prime is maximal (cf. Subsection 2.3). In this context, we have the 
following:

Proposition 3.4. Property (F) implies Property (T1).

Proof. Let L be a frame and let p ∈ L be a prime. Assume by contradiction that p is not maximal, i.e., 
p ≤ a ≤ 1 with a � p and a �= 1. By hypothesis there exist u, v ∈ L such that u → a �= a, v → p �= p and 
u ∨ v = 1. Now, since p is prime, v → p �= p implies v ≤ p and so it follows that u ∨ p = 1. In particular, 
u ∨ a = 1, and so u → a = (u ∨ a) → a = 1 → a = a, which yields a contradiction. �

In what follows, we investigate the categorical behaviour of Property (F).

Proposition 3.5. Property (F) is hereditary.

Proof. Let L be a frame which has Property (F) and let S ⊆ L be a sublocale with corresponding surjection 
νS : L � S. We denote by ∨S (resp. ∨) the join in S (resp. L). Let a, b ∈ S such that 1 �= a � b. Since L
satisfies Property (F), there exist u, v ∈ L such that u → a �= a, v → b �= b and u ∨ v = 1. Let u′ = νS(u)
and v′ = νS(v). Then u′ ∨S v′ = νS(u ∨ v) = 1. Moreover, by (LM) one readily checks that u′ → a �= a and 
v′ → b �= b, hence u′, v′ ∈ S yield the required elements for Property (F) in S. �
Proposition 3.6. Arbitrary products of locales with Property (F) also have Property (F).

Proof. The first part of the proof follows the same lines of that of [17, Lemma 1.9], cf. also [20, p. 45]. Let 
{Li}i∈I be a family of frames satisfying Property (F). Let 1 �= V � W in 

⊕
i∈I Li. Pick aaa = (ai)i∈I ∈ V −W . 

Let { i1, . . . , in } be the set of indices such that aij �= 1 for all j = 1, . . . , n. Let aaa(0) := aaa and for each 
j = 1, . . . , n, let aaa(j) be the element aaa but with all the entries in i1, . . . , ij replaced by 1. Since aaa(0) = aaa ∈ V

and aaa(n) = (1)i∈I /∈ V , there is an j0 ∈ { 1, . . . , n } such that aaa(j0−1) ∈ V but aaa(j0) /∈ V .
For each x ∈ Lij0

let xxx be aaa(j0) but with the 1 in position ij0 replaced by x. Further, let

v :=
∨
{x ∈ Lij0

| xxx ∈ V } and w :=
∨
{x ∈ Lij0

| xxx ∈ W }.

Because V and W are cp-ideals, one has vvv ∈ V and www ∈ W . If v = 1, then aaa(j0) = vvv ∈ V , a contradiction. 
Thus v �= 1. Assume v ≤ w. Now, since aij0aij0aij0 = aaa(j0−1) ∈ V , it follows that aij0 ≤ v ≤ w, and so aaa ≤ www ∈ W . 
Since W is a downset, it follows that aaa ∈ W , a contradiction. Hence 1 �= v � w.

Since Lij0
satisfies Property (F) there are x, y ∈ Lij0

, with x → v � v, y → w � w and x ∨ y = 1.
Let xi = 1 = yi ∈ Li for each i �= ij0 and let xij0

= x, yij0 = y. Then obviously (⊕ixi) ∨ (⊕iyi) = 1.
We claim that (⊕ixi) → V �= V . Assume otherwise, by contradiction. Since x → v � v, there is a c ∈ Lij0

such that c ≤ x → v (i.e., c ∧ x ≤ v) and c � v. One obviously has ccc ∧ (xi)i = c ∧ xc ∧ xc ∧ x ≤ vvv ∈ V and since V
is a downset, we deduce that ccc ∧ (xi)i ∈ V . It follows that ccc ∈ (⊕ixi) → V = V . But if ccc ∈ V , one has by 
definition of v that c ≤ v, a contradiction. The fact that (⊕yi) → W �= W may be shown similarly. We have 
thus verified that 

⊕
Li satisfies Property (F). �
i∈I
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By a standard category theory result (see e.g. [1, Theorem 16.8]), Propositions 3.5 and 3.6 imply the 
following:

Corollary 3.7. Locales satisfying Property (F) are epireflective in the category of locales.

Hence, Property (F) is a separation property which is well-behaved categorically, which lies between 
Property (T1) and F-separatedness, and it can be described by a first-order formula. Hence it seems to 
deserve some further investigation, and this is what we do in the subsequent subsection.

3.1. Closed points, fitted points and properties (H), (F), and (TU )

Recall from Proposition 3.4 that Property (F) implies Property (T1). On the other hand, it is well known 
that Properties (H) or (TU ) also imply Property (T1) (see [20, IV.3.3.2] and [20, IV.1.3] respectively). In 
this context, it is also natural to consider a “dual” of (T1) as follows:

Definition 3.8. A frame has fitted points (briefly, it satisfies (pt-fit)) if for any prime p ∈ L, the sublocale 
b(p) is fitted — i.e., if

for any prime p ∈ L, b(p) =
⋂
{ o(a) | p ∈ o(a) }. (pt-fit)

Remarks 3.9.

(i) We recall here that a topological space is T1 if and only if each singleton is saturated. In this sense, 
(pt-fit) is also an axiom of T1-type, which plays the role of the counterpart of the localic Property (T1)
in the closed-fitted duality.

(ii) For topological spaces, all the singletons being closed is equivalent to all the singletons being saturated. 
However, in the localic setting it turns out that (pt-fit) and (T1) are not comparable. To see this, let 
L be a pointless locale and denote by L∗ (resp. L∗) the locale obtained by adjoining a new bottom 
(resp. top) element to L. It is then readily verified that L∗ satisfies (pt-fit) but not (T1); and similarly 
L∗ satisfies (T1) but not (pt-fit).

The following result indicates that Properties (H), (F) and (TU ) have a similar behaviour w.r.t. T1-locales 
and w.r.t. locales with fitted points:

Proposition 3.10. Each of the Properties (H), (F) and (TU ) implies Property (pt-fit).

Proof. Let us first assume that L satisfies (TU ). Let p be a prime, set S :=
⋂

p∈o(a) o(a), and denote by f
be the composite localic map

S b(p) L

where the first map is the unique surjection onto the terminal locale — i.e., f is given by f(a) = p for all 
a < 1 and f(1) = 1. Moreover, let j be the embedding of S in L. We have j ≤ f . Indeed, if a < 1 in S, we 
have to check that a ≤ p. By contradiction, if a � p, then we have a ∈ S ⊆ o(a), which implies a = 1, a 
contradiction. Hence j ≤ f , and so by Property (TU ) it follows that j = f , which in turn implies S = b(p).

Assume now that L satisfies Property (F). Let p be a prime. We need to show that 
⋂

p∈o(a) o(a) ⊆ b(p). 
Hence let b �= 1 such that b ∈ o(a) whenever p ∈ o(a) — i.e., such that a → b ≤ b whenever a � p. We 
need to show that b = p. Note that b ≤ p (if b � p, then 1 = b → b ≤ b, a contradiction). Now, if p � b, by 
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Property (F), there are u, v ∈ L such that u → p �= p, v → b �= b and u ∨ v = 1. Now, u → p �= p means 
u ≤ p and so p ∨ v = 1. In particular v � p. It follows that v → b ≤ b, a contradiction.

The fact that Property (H) implies (pt-fit) can be dealt with similarly. �

Fig. 1. Relations between properties discussed in this subsection.

3.2. Property (F) is not comparable with other weakenings of fitness

Since Property (F) is weaker than fitness, one may wonder whether it is comparable with any of the other 
relaxations of fitness that appear in the literature — notably, subfitness, weak subfitness and prefitness [19]
(see also Subsection 2.3). It is not, as the following observations show:

• Property (F) does not imply any of subfitness, weak subfitness and prefitness. Indeed, Property (F) is 
hereditary and since hereditary subfitness, weak subfitness and prefitness are all equivalent to fitness 
(see [19, Prop. 6], [19, Cor. 1] and [19, Prop. 9] respectively); we would have that Property (F) implies 
fitness — but even F-separatedness does not imply fitness (recall Theorem 2.3).

• Prefit does not imply Property (F): by Proposition 3.4 we would have that prefitness implies (T1), 
but this is not true by [19, Example 5.2].

• Subfitness (and so weak subfitness) does not imply Property (F): If subfitness implies Property (F), 
then by Proposition 3.4 it also implies Property (T1), but it is well known this does not hold in general.

4. The strong Hausdorff property does not imply property (F)

We begin by a generalization of a result due to Banaschewski (cf. [4, Prop. A.6]) to a context not restricted 
to simple extensions:

Proposition 4.1. Let X be a topological space, U an open subspace and F its closed complement. Suppose 
that

• X is Hausdorff,
• The subspace topology on U is strongly Hausdorff,
• The subspace topology on F is a spatial multiplier — i.e., Ω(F ) ⊕Ω(Z) ∼= Ω(F ×Z) for any space Z.

Then the topology of X is strongly Hausdorff.

Proof. Given a frame L and a ∈ L we recall [4, Lemma A.5] that the maps

α1 : L⊕ L →↓a⊕ ↓a, α1(b⊕ c) = (b ∧ a) ⊕ (c ∧ a),
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α2 : L⊕ L →↑a⊕ ↓a, α2(b⊕ c) = (b ∨ a) ⊕ (c ∧ a),

α3 : L⊕ L →↓a⊕ ↑a, α3(b⊕ c) = (b ∧ a) ⊕ (c ∨ a),

α4 : L⊕ L →↑a⊕ ↑a, α4(b⊕ c) = (b ∨ a) ⊕ (c ∨ a)

are jointly monic. Hence, if we set L = Ω(X) and a = U , we will prove that X is strongly Hausdorff by 
showing that for any V ∈ Ω(X) the equality αi(dΩ(X) ∨ X ⊕ V ) = αi(dΩ(X) ∨ V ⊕ X) (see [20, Theo-
rem III.5.3.3 (b)]) for all i = 1, 2, 3, 4, where

dΩ(X) =
∨
{U1 ⊕ U2 | U1, U2 ∈ Ω(X), U1 ∩ U2 = ∅ }.

For that purpose, we first compute αi(dΩ(X)) for i = 1, 2, 3, 4:

• We have α1(dΩ(X)) =
∨
{ (U1 ∩U) ⊕ (U2 ∩U) | U1, U2 ∈ Ω(X), U1 ∩U2 = ∅ } = dΩ(U) where the last 

equality holds because U is open.
• The map β : ↑U⊕ ↓U → Ω(F ) ⊕ Ω(U) given by β(U1 ⊕ U2) = (F ∩ U1) ⊕ U2 is an isomorphism, and 

the map γ : Ω(F ) ⊕Ω(U) → Ω(F ×U) given by γ(U1 ⊕U2) = U1 ×U2 is also an isomorphism because 
F is a spatial multiplier. Accordingly we see that

γβα2(dΩ(X)) =
⋃
{ (U1 ∩ F ) × U2 | U1, U2 ∈ Ω(X), U1 ∩ U2 = ∅ }.

Now, let x ∈ F and y ∈ U . Then, since x �= y and X is Hausdorff, there are U1, U2 ∈ Ω(X) with x ∈ U1, 
y ∈ U2 and U1∩U2 = ∅. Hence (x, y) ∈ γβα2(dΩ(X)). It follows that γβα2(dΩ(X)) = F×U = 1Ω(F×X), 
and so α2(dΩ(X)) = 1.

• Symmetrically we see that α3(dΩ(X)) = 1.
• Similarly, we see that the map β : ↑U⊕ ↑U → Ω(F × F ) given by β(U1 ⊕U2) = (U1 ∩ F ) × (U2 ∩ F )

is an isomorphism. Hence, βα4(dΩ(X)) =
⋃
{ (U1 × F ) × (U2 ∩ F ) | U1, U2 ∈ Ω(X), U1 ∩ U2 = ∅ }. 

Since X is Hausdorff it follows readily that βα4(dΩ(X)) = F ×F −DF where DF = { (x, x) | x ∈ F }.

It is now clear from this description that αi(dΩ(X) ∨X ⊕ V ) = αi(dΩ(X) ∨ V ⊕X) for any i = 1, 2, 3, 4 (in 
the first case because U is strongly Hausdorff, the second and third case trivially, and the last case by a 
direct computation). �
Construction 4.2. (cf. Juhász, Soukup and Szentmiklóssy [16, Lemma 2.1]). Let (X, τX) be a Hausdorff 
topological space, {Kn}n∈N a pairwise disjoint family of nonempty compact subsets of X and let Y :=
X −

⋃
n∈N Kn.

In the disjoint union Z := Y �N, the family

β = {U ∩ Y | U ∈ τX} ∪ {(U ∩ Y ) ∪ {n} | U ∈ τX , Kn ⊆ U } (1)

is clearly closed under binary intersections — hence β constitutes a base of a topology τZ in Z. We note 
that

(i) Y is open in (Z, τZ),
(ii) the subspace topologies of Y in (X, τX) and (Z, τZ) agree, and
(iii) the subspace topology of N in (Z, τZ) is discrete.

Now it is easily verified that (Z, τZ) is Hausdorff (for instance, if n �= m in N, since Kn ∩ Km = ∅ and 
disjoint compact sets in a Hausdorff space can be separated by disjoint open sets, there exist U, V ∈ τX with 
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U ∩ V = ∅, Kn ⊆ U and Km ⊆ V . Then U ′ = {n} ∪ (U ∩ Y ) and V ′ = {m} ∪ (V ∩ Y ) are the desired 
disjoint open sets in (Z, τZ) separating n and m. The remaining cases are similar).

From Proposition 4.1, the fact that the strong Hausdorff property is hereditary, and the previous com-
ments (i)—(iii) we immediately have (recall that a discrete topology is a spatial multiplier):

Corollary 4.3. Let (Z, τZ) be as in Construction 4.2 and suppose additionally that the topology of (X, τX) is 
strongly Hausdorff. Then the topology of (Z, τZ) is also strongly Hausdorff.

A space is said to be anti-Urysohn [16] if for any open sets U, V �= ∅, one has U ∩ V �= ∅. The following 
is proved more generally in [16]:

Proposition 4.4. (cf. [16, Lemma 2.1]) Let (Z, τZ) be as in Construction 4.2. Suppose additionally that 
Y = X −

⋃
n∈N Kn is dense in (X, τX) and that for every infinite A ⊆ N the union 

⋃
n∈A Kn is also dense 

in (X, τX). Then for every ∅ �= U ∈ τZ there is an nU ∈ N such that ↑nU ⊆ U
Z . In particular, (Z, τZ) is 

anti-Urysohn.

Proof. We refer to (1) and note that it clearly suffices to show the statement for an open of the form 
U ∩ Y �= ∅ with U ∈ τX . Let A = { n ∈ N | U ∩ Kn �= ∅ }. Then there must be an nU ∈ N such that 
↑nU ⊆ A (for otherwise, for each n ∈ N there is an mn ≥ n with U ∩Kmn

= ∅. The set {mn | n ∈ N} is 
clearly infinite and this contradicts the density of 

⋃
n∈N Kmn

). Now, fix n ∈ A and let W ∈ τX such that 
Kn ⊆ W . Then W ∩U �= ∅ and since Y is dense, Y ∩W ∩U �= ∅. It follows that n ∈ U

Z , as required. �
Example 4.5. (cf. [16, Thm. 2.2]) Let {0, 1} denote the two-element discrete space and consider the product 
topology on X = {0, 1}N (i.e., the Cantor cube). Set

Kn = {(am)m∈N ∈ X | an = 1, am = 0 ∀m > n}.

Clearly, {Kn}n∈N is a pairwise disjoint family of nonempty closed (hence compact subsets) of X, and it 
is readily seen that they satisfy the conditions of Proposition 4.4. Hence by Proposition 4.4, the resulting 
(Z, τZ) is Hausdorff and anti-Urysohn. Actually, because the space X is regular (and in particular strongly 
Hausdorff), one deduces from Corollary 4.3 that (Z, τZ) is strongly Hausdorff.

We conservatively extend the terminology from [16] as follows:

Definition 4.6. A locale L will be said to be anti-Urysohn if for any a, b ∈ L with a, b �= 0, one has a∗∨b∗ �= 1.

We recall that a locale is irreducible if BL = {0, 1}, where BL denotes the Booleanization of L — i.e., 
BL = { a∗ | a ∈ L } = { a ∈ L | a = a∗∗ } (see [11]). Before we proceed, we need the following lemma:

Lemma 4.7. A non-trivial locale with Property (F) cannot be irreducible.

Proof. Let L be a non-trivial irreducible locale with Property (F). Since L is non-trivial, pick an a �= 0, 1 in 
L. By Property (F) there are u, v ∈ L with u ∨ v = 1, u → a � a and v∗ �= 0. By irreducibility, necessarily 
we have v∗ = 1 — i.e., v = 0. But then u = 1, and so a = u → a � a, a contradiction. �

Finally, the following result explains the failure of anti-Urysohn locales to have Property (F).

Proposition 4.8. A non-trivial anti-Urysohn locale cannot have Property (F).
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Proof. Let L be a non-trivial anti-Urysohn locale and suppose it has Property (F). By Lemma 4.7, it is not 
irreducible. Hence, select an a ∈ BL with 0 < a < 1. Since 1 �= a � a∗, by an application of Property (F)
there are u, v ∈ L with (u → a) ∨(v → a∗) = 1, u � a and v � a∗. Now, one has u → a = u → a∗∗ = (u ∧a∗)∗
and v → a∗ = (v ∧ a)∗. Since u � a and v � a∗, we have u ∧ a∗ �= 0 and v ∧ a �= 0, this clearly contradicts 
the anti-Urysohn property. �

In this situation, from Corollary 4.3, Proposition 4.4 and Proposition 4.8 we deduce the following.

Proposition 4.9. Let (Z, τZ) be as in Construction 4.2 and suppose that the conditions in Proposition 4.4
are satisfied. Assume moreover that (X, τX) is strongly Hausdorff. Then (Z, τZ) is strongly Hausdorff and 
does not satisfy Property (F).

In particular, with regard to Example 4.5, we have the following

Corollary 4.10. There exist strongly Hausdorff spatial locales which do not have Property (F). In particular, 
they are not F-separated, and so they are neither fit.

5. A summary of the implications

In this final section we summarize our results in the context of standard localic T1-type and T2-type 
separation properties. The following diagram comprises our new separation axioms together with the usual 
ones, and the relations between them.

Fig. 2. Summarizing localic separation.

All the implications are strict, and the only implications that hold among the properties above are 
those which follow from concatenating the implications depicted in the diagram (this follows easily by [3, 
Thm. 6.4], Fig. 1, Subsection 3.2, Remark 3.3 and Corollary 4.10, together with several facts already known 
— see [19,20]).

The duality between the strong Hausdorff property and F-separatedness is apparent in this diagram. 
Within this parallel, total unorderedness appears to play a symmetric role with respect to both facets of 
the duality.
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