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Abstract: The surface-response formalism (SRF), where

quantum surface-response corrections are incorporated

into the classical electromagnetic theory via the Feibel-

man parameters, serves to address quantum effects in the

optical response of metallic nanostructures. So far, the

Feibelman parameters have been typically obtained from

many-body calculations performed in the long-wavelength

approximation, which neglects the nonlocality of the optical

response in the direction parallel to the metal–dielectric

interface, thus preventing to address the optical response

of systems with extreme field confinement. To improve this

approach, we introduce a dispersive SRF based on a gen-

eral Feibelman parameter d⊥(𝜔, k‖), which is a function

of both the excitation frequency, 𝜔, and the wavenumber

parallel to the planarmetal surface, k‖. An explicit compari-
son with time-dependent density functional theory (TDDFT)

results shows that the dispersive SRF correctly describes the
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plasmonic response of planar and nonplanar systems fea-

turing extreme field confinement. This work thus signifi-

cantly extends the applicability range of the SRF, contribut-

ing to the development of computationally efficient semi-

classical descriptions of light–matter interaction that cap-

ture quantum effects.

Keywords: Feibelman parameters; nonlocality; plasmonics;

quantum surface effects; surface response; time-dependent

density functional theory

1 Introduction

The excitation of plasmon resonances inmetallic nanostruc-

tures has attracted great interest owing to the capability

of nanoscale plasmonic systems to enhance and squeeze

incident electromagnetic fields at subwavelength regions.

Plasmon resonances have been widely used in a variety of

spectroscopy and microscopy techniques such as surface-

enhanced Raman spectroscopy [1], surface-enhanced fluo-

rescence [2–4], or single-molecule imaging [5, 6], and enable

promising applications in biomedicine [7–9], energy stor-

age [10–12], and nonlinear optics [13, 14], among others.

Miniaturization of plasmonic devices pushes light–matter

interaction to the limit, reaching situations where quantum

many-body phenomena can influence the optical properties

of a system [15–22]. In these extreme situations, classical

descriptions based on local dielectric functions of materials

characterized by abrupt interfaces are no longer valid [23,

24]. Thus, theoretical approaches incorporating nonlocality

[25–30], realistic electron density distribution at the inter-

faces [31–34], and electron tunneling [35, 36] are required

to describe the optical properties of plasmonic structures

with very small characteristic dimensions. In this context,

time-dependent density functional theory (TDDFT) is often

used because it accounts for the quantum nature of the

electron dynamics from first principles [37–41]. However,

because of its computational cost [42, 43], TDDFT is lim-

ited to addressing systems with a relatively low number of

electrons in the relevant dimension(s) of the nanostructure
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(typically a few-nanometers structures). As a consequence,

computationally less-demanding semiclassical approaches

have been developed to capture quantum effects within the

framework of classical electrodynamics [33, 44–55].

Among the semiclassical approaches, the surface-

response formalism (SRF) [23, 56–59] has prompted great

interest in the nanophotonics community over the last

few years. The SRF is based on the theoretical frame-

work proposed by Peter Feibelman in the eighties [60] to

describe the interaction of electromagnetic radiation with

planar metal surfaces. This formalism introduces quantum

surface-response corrections into the classical Maxwell’s

theory [61] through the so-called Feibelman parameters. As

a consequence, quantum effects such as surface-enabled

Landau damping [62–64], spill-out of the induced electron

density [34, 51, 54], and nonlocal dynamical screening [27,

28, 57, 65] are accounted for. The Feibelman parameters,

commonly denoted as d⊥ and d‖, are complex-valued func-
tions characterizing the dynamically induced charges (d⊥)

and the parallel-to-the-surface component of the induced

currents (d‖) at the metal–dielectric interface [32].
In the literature, the practical implementation of the

SRF within the Feibelman theory typically involves two

approximations. First, d‖ is assumed to be zero, which

is a reasonable approach given that d‖ strictly vanishes

for charge-neutral planar interfaces [32, 56, 66]. Second,

the nonlocality of the optical response in the direction

parallel to the metal–dielectric interface is neglected.

Within this long-wavelength approximation, it is consid-

ered that the characteristic wavenumber k‖ parallel to the
metal surface is negligible, so that the Feibelman param-

eter d⊥(𝜔) is exclusively a function of the excitation fre-

quency, 𝜔. Considering the long-wavelength limit with

k‖ = 0 reduces the computational effort in obtaining d⊥(𝜔)

from quantum calculations, and simplifies the implemen-

tation of the SRF in existing numerical tools that solve

Maxwell’s equations in nanophotonics, as employed in a

number of recent studies [59, 67–74]. In what follows, we

refer to d⊥(𝜔) as the nondispersive Feibelman parameter.

Using the nondispersive Feibelman parameter is rea-

sonable when the nonlocality of the optical response in

the direction perpendicular to the metal surface domi-

nates, i.e., when the characteristic length scale of the opti-

cal field variation along the surface is relatively large,

2𝜋∕k‖ ≫ 𝜆F , where 𝜆F is the Fermi wavelength of the

metal. This is the case of e.g. typical individual nanoparticles

subjected to plane-wave illumination. However, for local-

ized probes in proximity of metal nanoparticle surfaces,

where high-order plasmonic modes can be excited, the

long-wavelength approximation to d⊥(𝜔) is compromised

[75]. Indeed, in such situations, multipolar plasmon modes

characterized by localized surface charges that rapidly vary

along the nanoparticle surface are involved. This is anal-

ogous to exciting surface plasmons with large transverse

wavenumber k‖ at planar metal–dielectric interfaces, and
therefore requires going beyond the long-wavelength limit

of d⊥.

In this work, we demonstrate that considering the non-

locality of the optical response in the direction parallel to the

metal surface significantly improves the performance of the

SRF. While earlier theory addresses the role of nonlocality

by introducing an ad hoc dipole layer [58], we base our

approach on the implementation of a dispersive Feibelman

parameter d⊥(𝜔, k‖) that is a function of 𝜔 and k‖, pro-
viding a direct connection of the theory to the microscopic

quantum aspects of screening. The numerical values of this

parameter are obtained from linear-response frequency-

domain TDDFT calculations using a planar free-electron

metal slab. We then show that the dispersive SRF based

on the same set of d⊥(𝜔, k‖) can be used to describe the

plasmon modes and optical response not only for planar

surfaces, but also for nonplanar geometries. In particular,

the method proposed in this work is relevant for situations

where plasmon resonances with large transverse momenta

(small plasmon wavelength) are excited. We test the valid-

ity of the dispersive SRF by using quantum many-body

TDDFT simulations as a reference for a planarmetal surface

(Figure 1a) as well as for canonical plasmonic nanostruc-

tures such as cylindricalmetallic nanowires, small spherical

metal nanoparticles, and plasmonic gaps as exemplified by

a spherical dimer (Figure 1b). In all the systems studied,

the dispersive SRF reproduces the TDDFT results, demon-

strating its validity to capture the effects linked to nonlo-

cality of dynamical screening along the metal surface. The

theoretical framework proposed here provides significant

conceptual advances toward the implementation of efficient

semiclassical approaches that adequately account for quan-

tum effects in the optical response of plasmonic systems.

2 Methodology

To obtain the dispersive Feibelman parameter, d⊥(𝜔, k‖), we employ
linear-response frequency-domain TDDFT calculations for a planar

metal slab. The adiabatic local-density approximation (ALDA) with

the exchange–correlation potential given by Gunnarsson and Lun-

qvist [76] is used. The metal slab is infinite along the (x, y)-plane

and has a finite thickness L in the z-direction. The metal surface is

located in the (x, y, z = 0) plane, with vacuum at z > 0 (see Figure 1a).

The electronic structure of the slab is described within the jellium

model of free-electronmetals [77–81] using aWigner–Seitz radius rs =
4 a0 that corresponds to sodium (a0 = 0.0529 nm is the Bohr radius).

The bulk plasma frequency is 𝜔p = 5.89 eV, and the nonretarded
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Figure 1: Dispersive surface-response formalism for plasmonic systems. (a) Sketch of the dispersive surface-response formalism (SRF) employed in

this work. The real part of the dispersive Feibelman parameter d⊥(𝜔, k‖) accounts for the position of the centroid of the induced electron density
𝛿n(z, 𝜔, k‖) relative to the geometrical metal surface, and the imaginary part is related to surface-enabled Landau damping. The dispersive Feibelman
parameter d⊥(𝜔, k‖) is a function of the excitation frequency,𝜔, and the wavenumber parallel to the planar metal surface, k‖ = 2𝜋∕𝜆‖ (with 𝜆‖ the
wavelength of the nonretarded surface plasmon). The nondispersive SRF assumes that k‖ = 0 (𝜆‖ →∞), so that d⊥ is a function of𝜔 exclusively. n0(z)

represents the equilibrium electron density. (b) Sketch of nonplanar structures considered in this work. Left: cylindrical metallic nanowire with radius

Rc , infinite along the z-axis, with 𝜑 the azimuth angle. The system possesses rotational and translational symmetry with respect to the z-axis. The

equivalence between k‖ and |m|∕Rc is used to implement the dispersive SRF in the cylindrical nanowire, km‖ = |m|∕Rc (withm the magnetic quantum

number of a particular plasmonic mode). Right: a dimer of two identical spherical metallic nanoparticles of radius a. An effective wavenumber

k𝓁‖ =
√
𝓁(𝓁 + 1)∕a is assigned to implement the dispersive SRF in the spherical nanoparticles (with 𝓁 the angular momentum quantum number of the

plasmonic mode). All the structures are considered to be made of sodium, characterized using a Wigner–Seitz radius rs = 4 a0 (with a0 = 0.0529 nm

the Bohr radius).

surface plasmon frequency for k‖ = 0 is 𝜔SP = 𝜔 p∕
√
2 = 4.16 eV. The

choice of this material allows for a direct comparison between our

results and those obtained in recent works using the nondispersive

SRF [67, 70, 75]. Further details can be found in ref. [32] and in

Section S1 of Supplementary Material. The methodology employed in

this work is well suited for simple free-electron metals. For noble met-

als, interband transitions involving bound d-band electrons contribute

to the screening of the electromagnetic field and thus affect the optical

response. The present approach could be extended to these situations

by mimicking the effect of d-electrons with the inclusion of a polariz-

able background [65, 71, 82].

Since the nonlocality of the metal response in the direction

parallel to the surface is important in geometries confining fields

at typical length scales comparable to that of the Fermi wave-

length of electrons [58, 75] (i.e., within the nm range), we use the

nonretarded approximation within the linear-response theory. The

optical response of the metal slab to a time-dependent external

potential Vext(z, r‖, t) = Vext(z, 𝜔, k‖)e
ik‖r‖−i𝜔t oscillating at frequency

𝜔 is determined from the induced electron density 𝛿n(z, r‖, t) =
𝛿n(z, 𝜔, k‖)e

ik‖r‖−i𝜔t , where r‖ is the component of the position vec-

tor parallel to the metal surface, and k‖ is the parallel wavevector

(k‖ = |k‖|).
Within the many-body formalism, 𝛿n(z, 𝜔, k‖) is given by

𝛿n(z, 𝜔, k‖) = −∫ dz′𝜒
(
z, z′, 𝜔, k‖

)
Vext

(
z′, 𝜔, k‖

)
, (1)

where 𝜒
(
z, z′, 𝜔, k‖

)
is the many-body response function (see further

details in Section S1 of Supplementary Material). Here we use the

Fourier component of the external potential given by

Vext(z, 𝜔, k‖) =
2𝜋

k‖
ek‖z, (2)

which exponentially decays within the metal (z < 0). Note that, up to

a multiplying factor, Eq. (2) represents the asymptotic behavior of the

potential created by any charge distribution located in vacuum far from

the surface, since the plane-wave decomposition of such potential can

be obtained from the Green’s function G(r− r
′) corresponding to the

potential of a point charge located at r′:

G(r− r
′) = 1

(2𝜋)2 ∬ d2k‖
2𝜋

k‖
e
ik‖

(
r‖−r′‖

)
−k‖|z−z′|. (3)

In this respect, within the linear-response regime the induced

electron density 𝛿n(z, 𝜔, k‖) given by Eq. (1) is independent of the

specific form of the external potential that excites the system.

The dispersive Feibelman parameter d⊥(𝜔, k‖) obtained from

d⊥(𝜔, k‖) =
∫ dz z 𝛿n(z, 𝜔, k‖)
∫ dz 𝛿n(z, 𝜔, k‖)

(4)

is therefore a characteristic of the surface response inherent to the spe-

cific metal and the surrounding material [32]. In contrast to the nondis-

persive parameter [59, 67, 70–73], the dispersive d⊥(𝜔, k‖) introduced
in Eq. (4) depends on the wavenumber k‖ parallel to the surface, and
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thus explicitly accounts for the nonlocality of the many-body response

and screening in this direction. Other definitions different from Eq. (4)

that express the Feibelman parameter in terms of the electromagnetic

fields and nonlocal dielectric functions have also been used. A discus-

sion on the equivalence between Eq. (4) and other definitions can be

found in refs. [32, 60, 83].

As follows from Eq. (2), the z-extension of the external potential

within the metal slab increases with decreasing k‖. In our calculations
(where k‖ ≠ 0), we use a slab with thickness L = 870a0 (≈ 46 nm),

large enough to avoid the interaction between the charges induced at

the opposite surfaces of the slab. For k‖ = 0 the slab geometry is not

applicable, and we rely for this case on the nondispersive parameter

d⊥(𝜔) calculated by Christensen et al. [67] for the semi-infinite metal

characterized by the same rs as that used here.

3 Results and discussion

3.1 Dispersive Feibelman parameter

Figure 2 shows the real part Re
{
d⊥(𝜔, k‖)

}
(panel a) and

the imaginary part Im
{
d⊥(𝜔, k‖)

}
(panel b) of the disper-

sive Feibelman parameter as a function of the frequency

𝜔 and the parallel-to-the-surface wavenumber k‖. With the

definition given by Eq. (4), the real part of the Feibelman

parameter determines the position of the centroid of the

induced electron density with respect to the geometrical

metal surface (jellium edge) located at z = 0 (see inset in

Figure 1a). The imaginary part of the Feibelman parame-

ter is related to the surface loss function and thus to the

energy absorption by electronic excitations at the surface

[32, 84]. These electronic excitations mainly consist of the

Bennett plasmon [42, 85], characterized by the presence of

induced electron density of opposite sign across a single

metal–vacuum interface (see Figure 2 in ref. [51]), and elec-

tron–hole pair excitations involved in the Landau damping

mechanism of plasmons [62, 86, 87]. A detailed discussion

of the frequency dependence of the Feibelman parameter

within the long-wavelength limit k‖ = 0 can be found in ref.

[32]. Therefore, we only discuss briefly the main features of

d⊥(𝜔, k‖) with particular emphasis on its k‖ dependence.
For small k‖, the TDDFT results in Figure 2 are consis-

tent with earlier findings for k‖ = 0 [67], with d⊥(𝜔, k‖) fea-
turing a complex Lorentzian-like resonance at 𝜔 ∼ 4.6 eV.

This resonance is associated with the excitation of the Ben-

nett plasmon at 𝜔 ∼ 0.8𝜔p [42, 85, 88]. With increasing k‖,
the Bennett plasmon resonance broadens, blueshifts, and

gradually disappears. Im
{
d⊥(𝜔, k‖)

}
is then dominated for

large k‖ by electron–hole pair excitations that extend over
the whole frequency range addressed here. At low frequen-

cies, 𝜔 ≲ 1 eV, the optical response of the system is close

to that of an ideal metal, and becomes nearly indepen-

dent of k‖ and 𝜔. In this situation, lim
𝜔→0

[
Re

{
d⊥(𝜔, k‖)

}]
≈

Figure 2: Dispersive Feibelman parameter. (a) Real part of the dispersive

Feibelman parameter, Re
{
d⊥(𝜔, k‖)

}
, calculated here within the

linear-response frequency-domain TDDFT as a function of frequency𝜔,

for selected values of k‖ as indicated in panel b. We also show the

parameter Re{d⊥(𝜔)} obtained in ref. [67] by Christensen et al. under
the long-wavelength approximation (dashed green line). (b) Same as in

(a) but for the imaginary part of the dispersive Feibelman parameter,

Im
{
d⊥(𝜔, k‖)

}
.

1.2 a0 determines the position of the electrostatic image

plane of the free-electron metal with respect to its jellium

edge.

Importantly, in the frequency range𝜔 ∼ 2− 4.5 eV rel-

evant for plasmon excitations in different structures (see

below), the following trends can be observed with increas-

ing k‖:
– Re

{
d⊥(𝜔, k‖)

}
decreases and even changes the

sign from positive to negative. This indicates that the

centroid of the induced electron density shifts inwards

the metal for large k‖.
– Im

{
d⊥(𝜔, k‖)

}
overall increases in this range. This ten-

dency reflects a more efficient decay of the plasmon

into electron–hole pair excitations via surface-enabled

Landau damping [42, 62, 84, 86, 89–91].

In general, the results in Figure 2 demonstrate a strong

dependence of the dispersive Feibelman parameter

d⊥(𝜔, k‖) on k‖ due to nonlocal dynamical screening. Thus,
one can expect that the dispersive and nondispersive SRF

yield very different results in situations that involve a rapid

variation of plasmon-induced charges along the metal–

vacuum interface. In the following sections, we analyze

the limitations of the nondispersive SRF and illustrate

the good performance of the dispersive SRF using the

example of canonical plasmonic nanostructures described
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semiclassically within the SRF and quantum mechanically

within TDDFT. Our results show that the dispersive SRF

correctly captures quantum surface effects within a

computationally efficient semiclassical framework.

3.2 Validation of the dispersive SRF

3.2.1 Nonlocal dynamical screening of a planar metal

surface

As a first application of the SRF, we consider the plasmon

propagating at the interface between a planarmetal surface

and vacuum. The surface plasmon frequency dispersion

𝜔s(k‖) with parallel wavenumber can be obtained within

TDDFT from the surface loss function Im
{
g(𝜔, k‖))

}
, which

reveals the rate at which the electron–hole pair excitations

at a given frequency 𝜔 are produced at the surface (includ-

ing both single-particle and collective excitations) [32, 84].

Here, the so-called surface response function g(𝜔, k‖) is
given by

g(𝜔, k‖) = ∫ dz 𝛿n(z, 𝜔, k‖)e
k‖z, (5)

where the induced electron density 𝛿n(z, 𝜔, k‖) is obtained
within TDDFT considering the slab geometry introduced in

the previous section.

Figure 3a shows the frequency dependence of the sur-

face loss function, Im
{
g(𝜔, k‖)

}
, calculated for a L = 870 a0

thick jellium metal slab. Results are obtained for different

values of the wavenumber k‖ parallel to the surface, as

indicated in the figure. Our findings nicely reproduce the

general behavior of propagating plasmon resonances doc-

umented in detail for simple metal surfaces (here sodium

surface) [32, 84, 85, 92–95]. In particular, with increas-

ing k‖, the frequency of the surface plasmon resonance

(defined from the maximum of Im
{
g(𝜔, k‖)

}
) first red-

shifts at low k‖ and, after reaching a minimum value, it

continuously blueshifts for higher k‖. The width of the

plasmon resonance increases with increasing k‖ because

of the enhancement of surface-enabled Landau damping

[32, 84, 86, 91, 93].

The frequency dispersion 𝜔s(k‖) featured by the plas-
mon resonances in Figure 3a is intimately related to the

k‖-dependence of the position of the centroid of the induced
electron density (given by Re{d⊥(𝜔, k‖)}). Indeed, for low
k‖ the induced electron density is shifted outward from the

geometrical metal surface (Re{d⊥(𝜔, k‖)} > 0 in Figure 2a),

i.e., toward the region of lower electron density, which pro-

duces the redshift of𝜔s(k‖) with respect to𝜔SP = 𝜔 p∕
√
2 =

4.16 eV (see Eq. (6) below) [32]. In contrast, for high k‖,
the plasmon-induced electron density is shifted inward the

Figure 3: Surface plasmon dispersion. (a) Surface loss function,

Im
{
g(𝜔, k‖)

}
, of a L = 870a0 thick jellium metal slab calculated within

the linear-response frequency-domain TDDFT as a function of the

excitation frequency,𝜔. The results obtained for different values of the

wavenumber k‖ parallel to the surface, ranging from k‖ = 0.02 a−1
0
(top)

to k‖ = 0.2 a−1
0
(bottom), are vertically offset for clarity. The blue curves

are labeled with the corresponding value of k‖, and the gray curves
correspond to intermediate values. (b) Dispersion relationship of the

frequency of the surface plasmon,𝜔s, as a function of k‖. Blue solid line:
linear-response frequency-domain TDDFT results (defined as the

frequency at which Im
{
g(𝜔, k‖)

}
is maximum). Red dashed line:

dispersive SRF results. Green dotted line: nondispersive SRF results. For

the dispersive and nondispersive SRF results Eq. (6) is used. The

frequency𝜔m of the localized multipolar plasmon of orderm sustained

by a cylindrical metallic nanowire of radius Rc = 150a0 (filled circles) and

Rc = 100a0 (hollow circles) are shown as a function of the effective

wavenumber km‖ = |m|∕Rc .

geometrical surface (Re{d⊥(𝜔, k‖)} < 0), thus producing a

blueshift of 𝜔s(k‖) relative to 𝜔SP.

We continue the quantitative analysis of the plasmon

dispersion in Figure 3b, where we show the resonant plas-

mon frequency 𝜔s(k‖) obtained from TDDFT calculations

(blue solid line) and compare it with dispersive (red dashed

line) and nondispersive (green dotted line) SRF results. To

find the𝜔s(k‖) dispersion using the SRF based on the Feibel-
man parameters, we describe the dielectric function of the

metal with a Drude model, and self-consistently solve the
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following transcendental equation [32, 60, 65, 84, 96–98],

𝜔s(k‖) = 𝜔SP

(
1− k‖

2
Re{d⊥(𝜔s, k‖)}

)
, (6)

where 𝜔SP = 𝜔 p∕
√
2 = 4.16 eV, and |k‖Re{d⊥(𝜔s, k‖)}|

≪ 1 is assumed (see details in Section S6 of

Supplementary Material). Throughout this work, we

use Re{d⊥(𝜔, k‖)} as obtained from the TDDFT results

reported in Figure 2a for the dispersive SRF, while for

the nondispersive model we use d⊥(𝜔) as calculated by

Christensen et al. [67].

Figure 3b shows that the dispersive SRF and TDDFT

results are in good agreement within the broad range of

k‖ values considered here. The dispersive SRF reproduces

the redshift followed by blueshift of 𝜔s(k‖) with increasing
k‖ as predicted by TDDFT. For high k‖ values, the quanti-
tative agreement between the two sets of results worsens.

This may be attributed to the short lifetime of plasmon

modes at high k‖. The resonant structures in the surface

loss function become broad and asymmetric so that the

resonant frequencies are ill defined. Additionally, higher-

order terms of the induced electron density near the sur-

face beyond the leading dipolar contribution accounted

for with d⊥(𝜔, k‖) may gain in importance in such situ-

ations. In sheer contrast, the nondispersive SRF fails to

describe the entire 𝜔s(k‖) dependence, since it predicts a
continuous redshift of𝜔s(k‖) with increasing k‖. Therefore,
the nondispersive SRF is only accurate for small values of

k‖ ≲ 0.06 a−1
0
, where the long-wavelength approximation

is well justified. Figure 3b thus demonstrates that using

the dispersive Feibelman parameter d⊥(𝜔, k‖) within the

SRF allows us to correctly capture the main nonlocal effect

associated with the dependence of the dynamical screening

on k‖.

3.2.2 Localized multipolar plasmon resonances

in a cylindrical nanowire

We study next the applicability of the dispersive SRF to

address nonlocal effects in the optical response and plas-

mon resonances of nonplanar plasmonic nanostructures

used in a variety of applications in nanophotonics. To

this end, we first consider localized multipolar plasmons

(LMP) sustained by cylindrical metallic nanowires of radii

Rc = 75− 150 a0 (≈ 4− 8 nm), infinite along the z-axis (see

Figure 1b). The nanowire is described within the same jel-

lium model as that used for the metal slab. The reference

quantum calculations are performed using real-time ALDA-

TDDFT as implemented in prior works [27, 28, 99–102] (see

Section S2 of Supplementary Material for further details).

The excitation of LMPs evolving in the (x, y)-plane deter-

mines the optical response of the nanowire for an inci-

dent electromagnetic wave polarized such that its electric

field is perpendicular to the nanowire z-axis. The system

is translationally invariant along the z-axis, and under the

illumination conditions considered here, the wavevector

describing the plasmon propagation along the nanowire is

kz = 0 (see Supplementary Material). Consistent with the

symmetry, the LMPs can be characterized by theirmultipole

order m related to the eim𝜑 dependence on the azimuth

angle 𝜑 of the potentials, electric near fields, and induced

charges.

To analyze the spectral properties of the LMPs of order

m, we show in Figure 4a the TDDFT results of the imaginary

part of the multipolar polarizability 𝛼m(𝜔) per unit length

along the z-axis of a cylindrical nanowire of radius Rc =
150 a0 (see Section S4 in Supplementary Material). Results

are presented as a function of frequency for different val-

ues of m ranging from m = 1 (top) to m = 30 (bottom). The

resonances in Im{𝛼m(𝜔)} are associated with the excitation
of the corresponding LMP of order m. Interestingly, their

general behavior with m is similar to that of the propagat-

ing surface plasmon with k‖ (see Figure 3a). Indeed, the

resonant frequency 𝜔m first redshifts starting with m = 1,

and, after reaching a minimum value at m ≈ 10, it continu-

ously blueshifts. Moreover, similarly to the situation of the

planar surface, the width of the LMP resonances increases

with increasing m because of the enhancement of Landau

damping.

The close correspondence between the m-dependence

of the frequency of the LMPs of the nanowire and the

k‖-dispersion of the surface plasmon resonances at the

planar metal–vacuum interface can be understood as fol-

lows. By introducing the coordinate r‖ along the circum-

ference of the cylinder, r‖ = Rc𝜑, the angular dependence

of the induced electric fields and surface electron densities

of the LMPs transforms to exp(im𝜑)→ exp
(
i m
Rc

r‖
)
. Thus,

the LMPs of the nanowire can be considered as surface

plasmons confined around the cylinder circumference and

characterized by a quantized wavenumber km‖ = |m|
Rc

[103]

(see inset in Figure 4a). Also note that, when solving Laplace

equation for the induced potential, m2∕R2
c
at the nanowire

and k2‖ in the slab geometry both are related to the variation
of the quantities in the direction tangential to the metal

surface.

To support the equivalence between k‖ and |m|∕Rc, we
show in Figure 3b the plasmon frequency 𝜔m of cylinders

with different radii as a function of km‖ = |m|∕Rc. The results
obtained for Rc = 150 a0 (blue filled circles) and Rc = 100 a0
(blue hollow circles) fall on a universal curve very close
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Figure 4: Imaginary part of the multipololar polarizability of order m,

Im{𝛼m(𝜔)}, of a Na nanowire of radius Rc = 150 a0 (≈ 8 nm). Results are

shown as a function of the frequency of the excitation,𝜔, for different

values of the magnetic quantum numberm. Each spectrum of

Im{𝛼m(𝜔)} is normalized to 1 at its maximum, and vertically offset for
clarity. (a) Real-time TDDFT results withm ranging fromm = 1 (top) to

m = 30 (bottom). The blue curves are labeled with the corresponding

value ofm, and the gray curves correspond to intermediate values. (b, c)

Nondispersive SRF (b, green filled curves), dispersive SRF (c, red filled

curves) and real-time TDDFT (blue lines) results withm ranging from

m = 1 (bottom) tom = 25 (top). The dispersive and nondispersive SRF

results are obtained from Eq. (7).

to the plasmon dispersion relationship of the planar metal

surface (blue solid line), thus confirming that an effective

wavenumber km‖ = |m|∕Rc determines the optical response

of the nanowire. Further results corroborating this finding

are provided in Supplementary Material.

Owing to the equivalence km‖ = |m|∕Rc, the disper-

sive SRF can be straightforwardly applied to describe the

nonlocal optical response of the cylindrical nanowire. The

nonretarded multipolar polarizability 𝛼m(𝜔) of a cylin-

drical nanowire per unit length along the z-axis can be

obtained within the SRF from (see Section S4 in Supplemen-

tary Material)

𝛼m(𝜔) ∝
(
𝜀(𝜔)− 1

)(
1+ |m|

Rc
d⊥

(
𝜔, k‖ = km‖

))

𝜀(𝜔)+ 1− [𝜀(𝜔)− 1] |m|
Rc
d⊥

(
𝜔, k‖ = km‖

) , (7)

where 𝜀(𝜔) is the dielectric function of the metal described

here with a Drude model (bulk plasma frequency 𝜔p =
5.89 eV and intrinsic damping parameter 𝛾 p = 0.1 eV [75]).

In Eq. (7), d⊥

(
𝜔, k‖ = km‖

)
is the dispersive Feibelman

parameter calculated in this work for a planar metal sur-

face (Figure 2). For the sake of comparison, we also calcu-

late 𝛼m(𝜔) using the nondispersive SRF where d⊥(𝜔, k‖)→
d⊥(𝜔). Note that the LMP resonance frequencies within the

SRF can be obtained from the poles of Eq. (7), which are

exactly given by Eq. (6) using k‖ = km‖ = |m|∕Rc.
Figure 4b and c show the result of Im{𝛼m(𝜔)} for a

Na nanowire, as obtained from Eq. (7) using the nondis-

persive SRF and the dispersive SRF, respectively. Again,

the nondispersive SRF (panel b, green filled curves) erro-

neously predicts a continuous redshift of the localized mul-

tipolar plasmon of order m in the nanowire with increas-

ing m. On the other hand, the dispersive SRF (panel c,

red filled curves) correctly reproduces the general behav-

ior of plasmon resonances when compared to the TDDFT

results (redshift with increasing m for low m, and blueshift

for larger m). The results shown in Figure 4 thus confirm

that the dispersive SRF can be used to model the nonlocal

optical response of a cylindrical nanowire of small radius

where the field localization and oscillation in space can be

extreme.

3.2.3 Individual spherical nanoparticles

and nanoparticle dimers

We finally show that the dispersive SRF employed in this

work can also be used to account for quantum surface

effects and nonlocality in the optical response of plasmonic

nanostructures with finite extension along the three spatial

dimensions. As a first canonical plasmonic nanostructure,

we consider a spherical Na metal nanoparticle (MNP) of

radius a = 65.83 a0 (≈ 3.5 nm). On the one hand, this MNP

size is sufficiently small so that we can perform TDDFT
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calculations as a reference and, on the other hand; it is

large enough to ensurewell-developed plasmonmodes [104,

105]. Due to the small size of the nanoparticle, quantum

effects and, in particular, nonlocality is expected to clearly

affect the optical response [23, 30, 70, 75, 106]. Individual

spherical MNPs support LMP resonances characterized by

the angularmomentum𝓁. The ratio𝓁(𝓁 + 1)∕a2 in spherical
MNPswhen solving Laplace equation for the induced poten-

tial plays a similar role as m2∕R2
c
in cylindrical nanowires

and k2‖ in the slab geometry. Thus, we assign the effective

wavenumber k𝓁‖ =
√
𝓁(𝓁 + 1)∕a along the transverse direc-

tion for spherical MNPs.

The spectrum of LMPs in spherical MNPS is determined

by the nonretarded multipolar polarizability 𝛼𝓁(𝜔), which

is given within the SRF by [56, 70]

𝛼𝓁(𝜔) ∝
(
𝜀(𝜔)− 1

)(
1+ 𝓁

a
d⊥

(
𝜔, k‖ = k𝓁‖

))

𝜀(𝜔)+ 𝓁+1
𝓁

− (𝜀(𝜔)− 1)
𝓁+1
a
d⊥

(
𝜔, k‖ = k𝓁‖

) . (8)

We compare in Figure 5a the imaginary part of 𝛼𝓁(𝜔),

Im{𝛼𝓁(𝜔)}, obtained for different values of 𝓁 from TDDFT

(blue lines), nondispersive SRF (left, green filled curves)

and dispersive SRF (right, red filled curves). Details on

the TDDFT calculations are given in ref. [75]. The LMPs of

order 𝓁 appear as resonances in Im{𝛼𝓁} associated with an
increased absorption.

The TDDFT results of Im{𝛼𝓁(𝜔)} in Figure 5a show that

the LMP of order 𝓁 continuously blueshifts with increas-

ing 𝓁 in the considered range 𝓁 = 1− 10. The resonance

broadens as 𝓁 increases due to the enhancement of surface-
enabled Landau damping. In this situation, the coupling of

the plasmon to electron–hole pair excitations and quan-

tum finite-size effects lead to the emergence of discrete

spectral features [42, 62] (notice that these features merge

into a smooth resonant profile in the metallic nanowires

studied above because of their larger radius). As already

stated in ref. [75], the nondispersive SRF accurately repro-

duces the TDDFT results for low values of 𝓁 ∼ 1− 4, but

it cannot describe the correct behavior for larger angu-

lar momenta. Indeed, within the nondispersive SRF the

plasmon resonances start to redshift with increasing 𝓁 for

𝓁 ≥ 5 (left-hand side panel in Figure 5a). On the other

hand, when accounting for the dependence of the Feibel-

man parameter d⊥ on the effective wavenumber k𝓁‖ =√
𝓁(𝓁 + 1)∕a, the dispersive SRF correctly captures the fre-

quency blueshift of LMP resonances in Im{𝛼𝓁(𝜔)} (right-

hand side panel in Figure 5a). Although slight quantita-

tive differences are present for large multipolar order 𝓁 =
7− 10 (partially linked to the non-Lorentzian shape of

Im{𝛼𝓁(𝜔)}within TDDFT due to finite-size effects), qualita-
tively there is a good agreement between TDDFT and the dis-

persive SRF results over the entire range of 𝓁-s considered
here, and the improvement over the nondispersive SFR is

evident.

Finally, we address another canonical plasmonic sys-

tem: a dimer of spherical MNPs forming a plasmonic gap.

Specifically, we study the case of a point-dipole emitter

located at the center of the gap of size D formed by two

identical spherical MNPs of radius a = 65.83 a0 (≈ 3.5 nm).

The emitter is oriented along the axis of the MNPs dimer

(z-axis). The gap separation distance, D, is in the nanometer

scale, and thus a strong impact of the nonlocality on the

optical response of the system is expected. We obtain the

decay-rate enhancement (Purcell factor) and the change

of the resonant frequency (Lamb shift) of the emitter due

to its interaction with the MNPs dimer by calculating the

imaginary and real parts of the electric field in the mid-

dle of the gap in response to the excitation of the point-

dipole emitter [107]. The TDDFT results are obtained from

the time evolution of the electron density in response to

an impulsive potential created by a point dipole. The SRF

results are obtained from the solution of Laplace’s equation

by considering the electromagnetic coupling between dif-

ferent multipoles of the two individual MNPs. For the dis-

persive model we assign again k𝓁‖ =
√
𝓁(𝓁 + 1)∕a. Further

details on the TDDFT and SRF calculations are provided

in ref. [75]. The Lamb shift is calculated considering a

transition dipole moment 𝜇 = 0.1 e nm (with e the electron

charge).

Figure 5b shows the Lamb shift Δ𝜔0 (left) and Pur-

cell factor FP (right) obtained for a gap separation D =
2.33 nm, as calculated within the three models tested here

(TDDFT, dispersive SRF, and nondispersive SRF). The three

approximations show qualitatively good agreement. For

this relatively large gap, the excitation of low-𝓁 LMP res-

onances dominates the response of the MNPs dimer [75],

validating the long-wavelength approximation behind the

nondispersive SRF results for D = 2.33 nm. Note, nonethe-

less, that the results obtained within the dispersive SRF are

more accurate when comparing to those obtained within

TDDFT.

The significant improvement introduced by the dis-

persive SRF to describe the emitter–dimer electromagnetic

interaction is more evident when considering a smaller

gap, where field localization and thus higher multipolar

activation occurs. Figure 5c shows the Lamb shift and Pur-

cell factor obtained for a gap separation D = 1.06 nm. In

this situation, because of the larger spatial confinement

of the charges induced at the metallic surfaces across the
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Figure 5: Comparison between the TDDFT (blue), dispersive SRF (red), and nondispersive SRF (green) results of the optical properties of individual

spherical MNPs and dimers. (a) Imaginary part of the first ten multipolar polarizabilities 𝛼𝓁 (𝜔) (𝓁 = 1− 10) of an individual spherical MNP. The

left-hand side panel shows the comparison between TDDFT (blue lines) and nondispersive SRF (green filled curves) results, whereas the right-hand

side panel shows the comparison between TDDFT and dispersive SRF (red filled curves) results. Each spectrum of Im{𝛼𝓁 (𝜔)} is normalized to 1 at its
maximum, and vertically offset for clarity. (b, c) Lamb shiftΔ𝜔0 (left-hand side panels) and Purcell factor FP (right-hand side panels) obtained for a

point-dipole emitter located at the center of a dimer of spherical MNPs of radius a = 65.83 a0 (≈ 3.5 nm). The dipole is oriented along the dimer axis,

and its transition dipole moment is 𝜇 = 0.1 e nm (with e the electron charge). In (b), the gap separation is D = 2.33 nm. In (c), D = 1.06 nm.

gap, plasmon modes with high multipolar order 𝓁 become

important. These high-𝓁 modes show overlapping resonant

frequencies and thus contribute to a single broad peak

(referred to as pseudomode [108, 109]) at 𝜔 ∼ 3.4 eV as

revealed by the TDDFT calculations (blue lines). Since the

nondispersive model does not describe accurately high-𝓁
multipolar modes for the individual MNP (Figure 5a), it

clearly fails to reproduce the frequency and the width of

the plasmon pseudomode obtained within TDDFT. As a con-

sequence, the nondispersive SRF strongly overestimates the

overlap between the pseudomode and the bonding dipolar

plasmon resonance at 𝜔 ∼ 2.75− 3 eV (green dotted lines),

as observed in the Purcell factor and the Lamb shift. On the

other hand, the dispersive SRF (red dashed lines) provides

accurate results even for this small gap separation, further

illustrating its ability to account for nonlocality in situations

where plasmon-induced charges characterized by a rapid

variation in the direction parallel to the metal surface are

excited.

4 Summary and conclusions

We have introduced a dispersive surface-response formal-

ism (SRF) that incorporates quantum surface effects and

nonlocality into the optical response of plasmonic nanos-

tructures via the so-called Feibelman parameters. While the

nondispersive SRF typically implemented in the literature is

based on the Feibelman parameter d⊥(𝜔) obtained within

the long-wavelength limit (k‖ = 0), the dispersive SRF pro-

posed here is based on a dispersive Feibelman parame-

ter d⊥(𝜔, k‖) that explicitly depends on the wavenumber

parallel to the metal surface, k‖. We obtain the values

of d⊥(𝜔, k‖) from quantum many-body calculations for a

planar metal–vacuum interface, and use a recent formu-

lation of the electromagnetic boundary conditions [59] to

account for the nonlocality of the dynamical screening

in the direction parallel to the metal surface in various

nanostructures.
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Using TDDFT calculations as a reference, we have

demonstrated that the dispersive SRF is significantly

more accurate than the nondispersive SRF in describing

plasmonic systems characterized by extremely confined

induced fields. We have first shown that the dispersive

SRF correctly describes the nonlocal dynamical screening

of a planar metal surface and provides with the correct

surface plasmon frequency dispersion with k‖. Further,
we have demonstrated that the Feibelman parameter

d⊥(𝜔, k‖) calculated in this work using a planar metal

surface can also be used to address the nonlocal optical

response of nonplanar nanostructures relevant in

plasmonics. As examples, we have considered infinite

cylindrical nanowires, spherical metallic nanoparticles,

and nanoparticle dimers forming gaps described within

the free-electron metal approximation. The symmetry

of these nanostructures allowed us to introduce

geometry-dependent effective parallel wavenumbers,

km‖ and k𝓁‖ , in order to efficiently implement the dispersive

SRF.

In all these systems, the dispersive SRF reproduces the

TDDFT results that naturally incorporate quantum effects

such as nonlocal dynamical screening, surface-enabled Lan-

dau damping, and the finite spatial extension of the induced

electron density at the metal surface. This work thus estab-

lishes a milestone for the development of a theoretical

model that captures quantum surface effects and nonlocal-

ity in extreme situations of field localization, while keeping

the numerical efficiency and easy implementation of clas-

sical (local) electromagnetic theories [59, 110, 111]. Among

others, our findings can be important for describing the

optical response ofmetallic nanostructures interactingwith

fast electrons, nanoantennas coupled to molecules in close

proximity, metallic nanoparticles with geometrical features

characterized by small radii of curvature (such as pico-

cavities), or nanoparticle ensembles with narrow gaps, all

of them relevant situations in practical configurations of

nowadays Nanophotonics.
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