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We study the non-linear dynamics of axion inflation, capturing for the first time the inhomogene-
ity and full dynamical range during strong backreaction, till the end of inflation. Accounting for
inhomogeneous e↵ects leads to a number of new relevant results, compared to spatially homogeneous
studies: i) the number of extra efoldings beyond slow roll inflation increases very rapidly with the
coupling, ii) oscillations of the inflaton velocity are attenuated, iii) the tachyonic gauge field helicity
spectrum is smoothed out (i.e. the spectral oscillatory features disappear), broadened, and shifted to
smaller scales, and iv) the non-tachyonic helicity is excited, reducing the chiral asymmetry, now scale
dependent. Our results are expected to impact strongly on the phenomenology and observability of
axion inflation, including gravitational wave generation and primordial black hole production.

Introduction.– As inflationary constructions are very
sensitive to unknown ultraviolet (UV) physics, a promis-
ing candidate for an inflaton is an axion-like particle that
enjoys a shift-symmetry. Possible interactions of such in-
flaton with other species are then very restricted, protect-
ing the inflationary dynamics from unknown UV physics.
While several implementations of axion-driven inflation
scenarios have been proposed [1–7], we will focus on sce-
narios where the lowest dimensional shift-symmetric in-
teraction between an inflaton � and a hidden Abelian
gauge sector, �Fµ⌫ F̃

µ⌫ , is present, with Fµ⌫ the field
strength of a dark photon Aµ, and F̃µ⌫ its dual. These
scenarios are typically referred to as axion inflation.

In axion inflation, an exponential production of one of
the gauge field helicities is expected during the inflation-
ary period [8–14]. The excited helicity can lead to rich
phenomenology such as the production of large density
perturbations [12, 15–20] and chiral tensor modes [13, 15,
21–24]. Such perturbations can be probed by the cos-
mic microwave background (CMB) [12, 21, 25], searches
for primordial black holes (PBHs) [14, 18, 26–32], and
gravitational wave (GW) detection experiments [17, 33–
35]. In addition, fermion production [36–38], thermal
e↵ects [39, 40], magnetogenesis [9, 10, 41, 42], baryon
asymmetry [43–48], and (p)reheating [49–53] mecha-
nisms, can also be e�ciently realized.

Axion inflation dynamics and methodology.– We con-
sider a total action Stot = Sg+Sm, with standard Hilbert-
Einstein gravity Sg ⌘

R
dx
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1
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, where mp is the reduced Planck mass

and 1/⇤ the axion-gauge coupling (↵⇤ ⌘ mp/⇤). Al-
though our methodology can be applied to arbitrary po-
tentials, in order to compare with results in the literature,
we will consider a quadratic potential V (�) = 1

2m
2
�
2,

with m/mp ' 6.16·10�6. The variation of Stot, specializ-
ing the metric to an isotropic and homogeneous spatially

flat expanding background, leads to
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with ˙ ⌘ @/@t, t cosmic time, a(t) the scale factor,
H(t) = ȧ/a, and where we have defined the magnetic
field as ~B ⌘ ~r ⇥ ~A, the electric field (in the temporal
gauge A0 = 0) as ~E ⌘ @t

~A, as well as the electromagnetic
⇢EM ⌘ 1

2a4 ha2 ~E
2+ ~B

2i and inflaton’s kinetic ⇢K ⌘ 1
2 h�̇2i,

potential ⇢V ⌘ hV i, and gradient ⇢G ⌘ 1
2a2 h(~r�)2i

homogeneous energy densities, with h...i denoting vol-
ume averaging. While (4)-(5) are constraint equations,
Eqs. (1)-(3) describe the system dynamics, which can be
studied under successive levels of approximation:
– Linear regime: Deep inside inflation, the impact of

the gauge field on the inflationary dynamics is negligible,
which allows to consistently neglect the spatial inhomo-
geneity of the inflaton. However, as the inflaton slowly
rolls its potential (we take �̇ < 0 without loss of general-
ity), the interaction �̇ ~B in Eq. (2) induces an exponential

growth in the photon helicity A
(+)
i

, while A
(�)
i

remains
in vacuum. Such chiral instability is controlled by

⇠ = � h�̇i
2H⇤

, (6)

so that the gauge field spectrum develops a bump with
exponentially growing amplitude, tracking the Hubble
scale around k

aH
⇠ 1

⇠
, for ⇠ & 1 [11]. The linear regime
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eventually breaks down when the gauge field backreacts
on the system, turning the overall dynamics non-linear.
The larger the value of ↵⇤, the earlier the gauge field
backreacts on the dynamics.

– Homogeneous backreaction: In this approximation,
the backreaction of the gauge field is considered while
enforcing the inflaton to remain homogeneous. This is
achieved by neglecting the terms / ~r2

�, ~r� ⇥ ~E, and
h(~r�)2i in Eqs. (1), (2) and (5), respectively, while pro-
moting, for consistency, ~E · ~B ! h ~E · ~Bi, in Eq. (1).
Although this regime was originally tackled only ap-
proximately, assuming �̇ as constant, such limitation
was later on surpassed by two methods: i) solving
self-consistently the resulting integro-di↵erential iterative
equations [14, 19, 54–56], and ii) solving the time evolu-
tion of the relevant bilinear electromagnetic functions in a
gradient expansion formalism [57, 58]. The two improved
methods reached similar conclusions: once backreaction
becomes relevant, a resonant enhancement of the helical
gauge field production is observed, resulting in oscilla-
tory features in the inflaton velocity, as well as in the
gauge field spectrum [14, 19, 54–56]. This was later un-
derstood as due to the time delay between the maximum

excitation rate of A
(+)
i

at slightly sub-Hubble scales, and
its backreaction onto the inflaton, dominated by slightly
super-Hubble modes [19, 56].

We remark that in the homogeneous backreaction pic-
ture, the gauge field remains maximally helical (i.e. only

A
(+)
i

is exponentially excited), and inflation is sustained
for a number of extra efoldings �Nbr beyond the would
be end of (inflaton driven) slow-roll inflation.

– Inhomogeneous backreaction: In order to address cor-
rectly the non-linear dynamics, we need to solve Eqs. (1)-
(3) fully maintaining spatial inhomogeneity, restoring all
inflaton gradient terms, and using the local expression
of ~E · ~B for the backreaction. For this, we have im-
plemented in CosmoLattice (CL) [60, 61] a lattice ver-
sion of Eqs. (1)-(5), following the lattice gauge-invariant
and shift-symmetric formalism of Ref. [51, 62] (see also
Ref. [63–65]). We use a 2nd order Runge-Kutta time
integrator to evolve Eqs. (1)-(3), monitoring that the
constraint Eqs. (4)-(5) are always verified to better than
O(10�4). Details on our lattice formulation can be found
in the Supplemental Material and in [66]. For an alterna-
tive non-shift symmetric lattice formulation, see [20, 67].

We start our simulations in the linear regime, with all
comoving modes captured between the infrared (IR) and
UV lattice cuto↵ scales, kIR  k  kUV, well inside the
initial comoving Hubble radius 1/aH. By setting ini-
tially kIR/(aH) ' 10, all gauge field modes of both he-
licities are initialized in a Bunch-Davies (BD) quantum
vacuum state A

(±) ' e
ik/aH

/
p

2k. The initial fluctua-

tions serve as a seed for the tachyonic instability of A
(+)
i

:
as the modes approach the Hubble scale, their ampli-
tude starts growing exponentially. In order to capture

the dynamics correctly, we first solve, in the lattice, the
linear regime of the gauge field, up to a given cut-o↵
k < kBD, with kIR ⌧ kBD ⌧ kUV. We let the most IR
modes grow till they dominate over the BD tail within
the range kIR  k < kBD. Then, we switch to evolve the
non-linear Eqs. (1)-(3), allowing all fields to be excited
in the full lattice range k 2 [kIR, kUV]. After the switch,
the system still remains in the linear regime for a while,
until the backreaction of the gauge field becomes notice-
able on both the inflaton and the expansion dynamics.
From that moment the system dynamics becomes fully
non-linear, entering, for su�ciently large couplings, into
the strong backreaction regime .
Results.– We present our study on the strong back-

reaction regime, which requires ↵⇤ & 15, capturing the
inhomogeneity and full dynamical range of the system,
until the end of inflation. A detailed description of our
procedure and results will be presented in [66].

We list our run parameters in Table I, where N is
the number of lattice sites per dimension, L̃ = mL the
comoving lattice length, UV = kUV/m the lattice UV
scale, BD the BD cut-o↵ scale (set by trial and error),
Nstart the number of efolds before the end of slow-roll in-
flation (marked as N = 0) when we start our simulation,
and Nswitch the moment when all inhomogeneous terms
are activated. For convenience we set a = 1 at N = 0.

N L̃ UV BD Nstart Nswitch

↵⇤ = 15 640 32.524 106.981 46 -4.5 -1.1

↵⇤ = 18 1600 32.524 267.594 10 -4.5 -1.8

↵⇤ = 20 2340 50.971 170.746 9 -5 -2.4

TABLE I. Parameters used in the simulations.

Our results are summarized by a series of figures, where
we compare the outcome of our simulations for the linear,
homogeneous backreaction, and inhomogeneous backre-
action regimes. In the top panel of Fig. 1, we plot the evo-
lution of the electromagnetic and inflaton’s kinetic, gradi-
ent and potential homogeneous energy densities (normal-
ized by the total energy density), whereas in the bottom
panel, we show the evolution of ⇠. In both panels we
show, for each coupling considered, the system evolution
as a function of the number of efoldings N , from the ini-
tial moment of the simulation in the linear regime, till
the end of inflation in the strong backreaction regime.
While N = 0 signals the end of slow-roll inflation, the
dashed and solid vertical lines indicate the end of infla-
tion, identified as ✏H ⌘ �Ḣ/H

2 = 1, according to the
homogeneous and inhomogeneous backreaction regimes,
respectively. Whenever possible, we compare with the
outcome from the gradient expansion formalism [58, 59]
and from the iterative method [19]. Incidentally, our code
reproduces accurately the linear and homogeneous back-
reaction regimes in their corresponding limits, confirming
the validity of the code.
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FIG. 1. Top: Evolution of the electromagnetic (purple) and inflaton potential (black), kinetic (red) and gradient (blue) energy
densities, all normalized to the total energy density of the system, for ↵⇤ = 15, 18, 20. Solid (dashed) lines correspond to
lattice simulations with inhomogeneous (homogeneous) backreaction. Bottom: Evolution of ⇠ for the same coupling constants,
corresponding to simulations with inhomogeneous (black solid) and homogeneous (black dashed) backreaction, and to gradient
expansion [58, 59] (green solid) and iterative method [19] (magenta dashed, only for ↵⇤ = 20 ). Solid and dashed vertical lines
signal the end of inflation in each case. Evolution in the linear regime (black dash-dotted) is also shown for completeness.

We define the power spectrum of the gauge field as

�(�)
A

(k, t) ⌘ k
3

2⇡2 P(�)
A

(k, t), where h ~A
(�)(~k, t) ~A

(�0)⇤(~k0
, t)i

⌘ (2⇡)3P(�)
A

(k, t)���0�D(~k � ~k
0) represents an ensemble

average. In Fig. 2 we plot various power spectra for a
fiducial value ↵⇤ = 18, and compare the outcome of our
inhomogeneous treatment against the solutions of the ho-
mogeneous backreaction and linear regimes. In Fig. 3 we
also show the helicity imbalance measured through a nor-

malized spectral helicity observable defined as

H(k, t) ⌘ �(+)
A

� �(�)
A

�(+)
A

+ �(�)
A

. (7)

The inhomogeneous terms bring considerable novelties
into the dynamics:

1.- The gauge energy ⇢EM grows exponentially fast
during the linear regime, until it reaches a few % of ⇢K.
The latter, that had been previously slowly growing on a
slow-roll trajectory, starts then decreasing, signaling the
onset of backreaction. In the homogeneous case, ⇢EM and
⇢K may perform some large oscillations [19, 56], almost in
opposite phase. Such oscillations are however damped in
the inhomogeneous dynamics, where the gradient energy
⇢G is also significantly excited, with its contribution po-

tentially comparable or even higher than ⇢K. This could
never be captured in the homogeneous regime, where by
construction ⇢G = 0. In the homogeneous case, for some
couplings (e.g. ↵⇤ = 15) the first and largest oscillation
leads h�̇i to even flip its sign, with ⇠ crossing zero back
and forth (depicted in the figure by dotted lines), signal-
ing that the inflaton climbs its own potential. This, how-
ever, never happens in the inhomogeneous case, where
the growth of ⇢G damps the oscillation amplitude, and
prevents ⇠ from becoming negative.

2.- For all couplings considered, inflation ends when
⇢EM becomes comparable to ⇢V, resulting in a reheated
Universe at that moment, which is actually consistent
with previous preheating studies for ↵⇤ . 15 [49–53]. In
the homogeneous case, the number of extra efoldings is
�Nbr ⇡ 3 for all couplings considered. In contrast, in
the inhomogeneous dynamics, the number of extra efold-
ings grows strongly and monotonically with ↵⇤, from
�Nbr ⇡ 2 for ↵⇤ = 15 to �Nbr ⇡ 8 for ↵⇤ = 20.
The larger the coupling, the earlier backreaction happens
(i.e. ⇢EM surpassing ⇢K), roughly at the same time in
both approaches. In the inhomogeneous case, the earlier
the crossover happens, the longer inflation is prolonged
in a quasi-de Sitter regime dominated by ⇢V and ⇢EM.
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FIG. 2. Evolution of the gauge field power spectra for
↵⇤ = 18. Top: �(+)

A (k, t) spectra from simulations in the lin-
ear regime (gray dash-dotted lines), and with homogeneous
(dashed lines) and inhomogeneous (solid lines) backreaction.
Vertical lines represent the comoving Hubble scale at the end
of inflation in each case. Bottom: Di↵erent gauge polarization
power spectra from a simulation with inhomogeneous backre-
action: �(+)

A (k, t) (solid lines), �(�)
A (k, t) (dash-dotted lines)

and �(L)
A (k, t) (dashed lines). In all panels, lines are separated

by �N = 0.5 from earlier times to later ones, from colder to
hotter, except in the linear regime. The reddest color corre-
sponds to the end of inflation for each case.

3.- In the linear regime, the power spectrum of the un-

stable helicity �(+)
A

(k, t) develops an exponentially grow-
ing peak, tracking the Hubble scale at k/a ⇠ H/⇠. How-
ever, as the top panel of Fig. 2 shows, the shape of the
power spectra changes considerably when backreaction is
considered. In the homogeneous case (dashed), the spec-
trum peak grows resonantly in amplitude once backreac-
tion starts, but shifts mildly its (slightly) super-horizon
position reached at the onset of backreaction. The spec-
trum also develops an oscillatory pattern at scales around
the Hubble radius in its UV tail. In the inhomogeneous
case (solid), on the contrary, oscillatory features are never
imprinted in the spectrum, which now spreads power into
UV scales, shifting gradually its peak to smaller (slightly
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FIG. 3. Non-linear evolution of the normalized spectral he-

licity as defined in Eq. (7) vs. k/(aH) for ↵⇤ = 18. Colour
coding goes from earliest (colder) to latest (hotter) times in
the simulation. We start plotting from Nswitch onward and
the separation between di↵erent lines is �N = 0.05 efold-
ings.

sub-horizon) scales, as inflation carries on. As a result,
the spectrum becomes smoother and wider. The homoge-
neous and inhomogeneous spectra demonstrate that the
two approaches capture very di↵erent physics.

4.- The bottom panel of Fig. 2 features another new
result. As the inflaton gradients are developed, the terms
/ ~r� ⇥ ~E in Eq. (2) drive the excitation of the longitu-

dinal mode A
(L)
i

, as well as of the other circular polar-

ization A
(�)
i

, which had previously remained in vacuum.

Furthermore, the term / �̇ ~B also contributes to stim-

ulate A
(�)
i

, thanks to the inhomogeneity of �̇. When
we switch our simulations to an evolution with Eqs. (1)-

(3), A
(L)
i

and A
(�)
i

start with a non-vanishing amplitude

much smaller than A
(+)
i

. However, towards the end of

inflation, once strong backreaction is at play, A
(�)
i

and

A
(L)
i

become comparable to (when not larger than) A
(+)
i

,
depending on the scale. To quantify this result, we plot
in Fig. 3 the spectral helicity [c.f. Eq. (7)] for a fiducial
↵⇤ = 18. Whereas in the homogeneous case the gauge
field excitation is maximally chiral (H(k, t) = 1), this
is no longer the case when inhomogeneities are allowed.
For instance, Fig. 3 shows that at the end of inflation,

�(+)
A

⇡ 3�(�)
A

(i.e. H(k, t) ⇡ 1/2) at slightly super-
Hubble scales. Remarkably, the evolution around N ⇠ 0

shows that A
(�)
i

dominates over A
(+)
i

at k/a ⇠ 10H, with
H(k, t) & �1/2. We shall discuss further the excitation

mechanism of A
(L)
i

and A
(�)
i

in [66]. We note that analo-
gous helicity restoration e↵ects at sub-horizon scales have
also been reported in preheating studies [41, 49], for the
milder coupling regime 9 . ↵⇤ . 14.

Discussion.– Observable CMB scales leave the Hubble
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radius during inflation, when the gauge dynamics is well
described by the linear regime, and backreation is negli-
gible. Backreaction becomes typically important towards
the end of inflation, when large tensor [13, 15, 21–24, 33–
35] and scalar [12, 15–18, 20, 26–32] perturbations can
be generated. These can lead to potentially observable
quantities, such as a population of PBHs and a stochas-
tic background of GWs, both crucial predictions to probe
axion inflation scenarios. Therefore, it is of the utmost
importance to describe correctly the system dynamics
when backreaction cannot be neglected.

In this Letter we report the results of using a gauge-
invariant and shift-symmetric lattice formalism, captur-
ing for the first time the inhomogeneity and full dynami-
cal range during strong backreaction, till the end of infla-
tion. We explore the parameter space ↵⇤ & 15, which has
never been studied during the whole inflationary period
while incorporating inhomogeneous e↵ects. Such large
coupling regime is crucial to understand the generation of
scalar perturbations during inflation, which later on lead
to PBH formation. While GW production during pre-
heating constrains the coupling down to ↵⇤ . 15 [52, 53],
this depends on the details of the last stages of inflation
and of a potential early PBH dominated phase ensued
after inflation [19]. As the strong backreaction inflation-
ary phenomenology uncovered in our work is (likely) ex-
pected to a↵ect this limit, the exploration of couplings
beyond current preheating bounds becomes well justified
and crucial to understand observational constraints of
axion inflation.

One of the most relevant aspects of our results is the
observed ‘exponential UV sensitivity’ of the dynamics to
small coupling increments. As longer inflationary periods
emerge for larger couplings, successively smaller scales
need to be resolved. Our simulation data show that when
UV scales are not properly resolved, neither the width
nor the peak location of the gauge spectra are well ob-
tained (a detailed IR/UV lattice study to highlight this
aspect will be presented in [66]). A simultaneous capture
of IR and UV scales is required: this is why we limited
our current study to ↵⇤  20, as ↵⇤ = 20 already re-
quired N > 2300 sites/dimension to capture correctly all
IR/UV scales. Our results show that a correct descrip-
tion of the dynamics can only be provided if inhomo-
geneities are completely resolved at all scales of interest.
In this respect, we notice that the study of the strong
backreaction regime for ↵⇤ = 25 by Ref. [20], given the
lattice sizes reported, cannot capture the full dynamical
range required to characterize the non-linear dynamics
till the end of inflation.

To summarize, we stress that the e↵ect of the inho-
mogeneity is highly non-trivial and requires a dedicated
study for each coupling. In general, the excitation and
backreaction of the gauge field is no longer controlled
by a homogeneous ⇠ parameter, and resonant oscillatory
backreaction features reported by previous homogeneous

analyses [19, 56, 58], are quite attenuated. The result-
ing gauge field spectra during inhomogeneous backreac-
tion become smoother than in the homogeneous case, as
no spectral oscillatory features are developed. Further-
more, gauge spectra become wider, spreading power into
shorter scales, as the peak spectrum trails the Hubble
scale during the �Nbr extra efoldings, which grows very
strongly with the coupling.

We conclude that the novelties of consistently tak-
ing into account the inhomogeneity of the system dur-
ing strong backreaction will inevitably have an im-
pact on the properties of the scalar and tensor pertur-
bations derived considering homogeneous backreaction,
e.g. [19, 23, 24]. Furthermore, the completely new fea-
ture of scale-dependent gauge chirality makes the possi-
bility of probing these scenarios through their observa-
tional windows even more interesting. The observability
and phenomenology of axion inflation scenarios will re-
quire a complete revision of the state-of-the-art predic-
tions, which we plan to address in future work.
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[47] D. Jiménez, K. Kamada, K. Schmitz, and X.-J. Xu,
Baryon asymmetry and gravitational waves from pseu-
doscalar inflation, JCAP 12, 011, arXiv:1707.07943 [hep-
ph].

[48] Y. Cado and M. Quirós, Baryogenesis from combined
Higgs–scalar field inflation, Phys. Rev. D 106, 055018
(2022), arXiv:2201.06422 [hep-ph].

[49] P. Adshead, J. T. Giblin, T. R. Scully, and E. I.
Sfakianakis, Gauge-preheating and the end of axion in-
flation, JCAP 12, 034, arXiv:1502.06506 [astro-ph.CO].

[50] P. Adshead, J. T. Giblin, and Z. J. Weiner, Gravitational
waves from gauge preheating, Phys. Rev. D 98, 043525
(2018), arXiv:1805.04550 [astro-ph.CO].

[51] J. R. C. Cuissa and D. G. Figueroa, Lattice formulation
of axion inflation. Application to preheating, JCAP 06,
002, arXiv:1812.03132 [astro-ph.CO].

[52] P. Adshead, J. T. Giblin, M. Pieroni, and Z. J. Weiner,
Constraining Axion Inflation with Gravitational Waves
across 29 Decades in Frequency, Phys. Rev. Lett. 124,
171301 (2020), arXiv:1909.12843 [astro-ph.CO].

[53] P. Adshead, J. T. Giblin, M. Pieroni, and Z. J. Weiner,
Constraining axion inflation with gravitational waves
from preheating, Phys. Rev. D 101, 083534 (2020),
arXiv:1909.12842 [astro-ph.CO].

[54] A. Notari and K. Tywoniuk, Dissipative Axial Inflation,

JCAP 12, 038, arXiv:1608.06223 [hep-th].
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SUPPLEMENTAL MATERIAL: LATTICE DISCRETISATION

The lattice discretisation of the axion inflation model has been done following the prescription of [51, 62] for
the spatial discretisation, which is a formalism that preserves gauge-invariance and shift-symmetry exactly on the
lattice. We assume that the scalar field � lives at lattice sites n, whereas gauge fields Ai live at the links between
lattice sites, at n + ı̂/2. The spatial and temporal derivatives are the usual forward/backward lattice derivatives:
�±

µ
' ⌘ ±1

dxµ ('±µ̂ � '), with dx
µ a derivative step, and ±µ̂ subscripts a unitary displacements in the direction µ̂.

We have used the following lattice definitions of the electric and magnetic fields

Ei(n + ı̂/2) ⌘ �+
0 Ai , Bi(n + ı̂/2 + |̂/2) ⌘

X

j,k

✏ijk�
+
j
Ak , (8)

and improved versions,

E
(2)
i

(n) ⌘ 1

2
(Ei + Ei,�ı̂) , B

(4)
i

(n) ⌘ 1

4

⇣
Bi + Bi,�|̂ + B

i,�k̂
+ B

i,�|̂�k̂

⌘
, (9)

for which we explicitly indicate where they live in the lattice.
We use the number of efoldings of the scale factor as the natural time variable. The change of variables from the

cosmic time reads

dN = Hdt , (10)

promoting the Hubble rate H as a dynamical variable, while the scale factor is given by a = aie
N�Ni , with ai the

scale factor at some reference time Ni. We choose ai = 1 at Ni = 0.
We operate in the following set of dimensionless spacetime and field variables called program variables, which are

defined in terms of the axion mass m as

dx̃
µ = mdx

µ
, �̃ =

�

m
, Ãµ =

Aµ

m
, H̃ =

H

m
. (11)

The lattice version of the equations of motion (1)-(3) can then be written as

�̃
00 = �3�̃

0 +
1

H̃

 
1

a2

X

i

�̃�
i

�̃+
i
�̃ � �̃ +

↵⇤

2a3

m

mp

X

i

Ẽ
(2)
i

B̃
(4)
i

!
, (12)

Ẽ
0
i
= �Ẽi +

1

H̃

0

@� 1

a2

X

j,k

✏ijk�̃
�
j

B̃k � ↵⇤

2a

m

mp

⇣
�̃
0
B̃

(4)
i

+ �̃
0
+ı̂

B̃
(4)
i,+ı̂

⌘

+
↵⇤

4a

m

mp

X

±

X

j,k

✏ijk

⇢h
(�̃±

j
�̃)Ẽ(2)

k,±|̂

i

+ı̂

+
h
(�̃±

j
�̃)Ẽ(2)

k,±|̂

i�
1

A , (13)

H̃
0 = � 1

3m2
p
H̃

�
3⇢̃

L

K + ⇢̃
L

G + 2⇢̃
L

EM

�
, (14)

while the constraint Eqs. (4)-(5) read

X

i

�̃�
i

Ẽi = �↵⇤

2a

m

mp

X

±

X

i

⇣
�̃±

i
�̃

⌘
B̃

(4)
i,±ı̂

, (15)

H̃
2 =

1

3m2
p

(⇢̃LK + ⇢̃
L

G + Ṽ
L + ⇢̃

L

EM) , (16)

where we have used that 0 ⌘ d/dN . The lattice version of the homogeneous energy density components is

⇢̃
L

K =
H̃

2

D
�̃
02
E

L

, ⇢̃
L

G =
1

2a2

*
X

i

(�̃+
i
�̃)2
+

L

, Ṽ
L =

1

2

D
�̃
2
E

L

, ⇢EM =
1

2a4

*
X

i

(a2
E

2
i

+ B
2
i
)

+

L

, (17)

with h...iL ⌘ 1
N3

P
n(...) representing lattice volume averaging.
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In order to check the level at which the lattice constraints of Eqs.(15)-(16) are obeyed, we propose a couple of
dimensionless observables. For the energy conservation of Eq. (16) we use the following definition,

�H =
|LHS � RHS|p
LHS2 + RHS2

, (18)

whereas for the Gauss constraint Eq. (15), we use

�G =
h|LHS � RHS|i

LDp
(LHS1)2 + (LHS2)2 + (LHS3)2 + RHS2

E

L

. (19)

In both cases LHS and RHS refer to the left- and right-hand sides of the corresponding equation, and LHSi = �̃�
i

Ẽi

(considering no sum over repeated indices).
In Fig. S1 we show the evolution of both constraints for ↵⇤ = 15, 18 and 20.

�4 �3 �2 �1 0 1 2
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FIG. S1. Energy conservation (brown lines) and Gauss constraint conservation (blue lines) levels as measured by Eqs. (18)
and (19) for ↵⇤ = 15 (left), 18 (central) and 20 (right).


