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Abstract

We introduce a new variation of the hawk-dove game suggested by an experiment
that studies the behavior of a group of domestic fowls when a subgroup has been marked.
Speci�cally we consider a population formed by two types of individual that fail to recog-
nize their own type but do recognize the other type. In this game we �nd two evolutionar-
ily stable strategies. In each of them, individuals from one type are always attacked more,
whatever proportion of the population they represent. Our theoretical results are consis-
tent with the conclusions drawn from experimental work, where marked fowls received
more pecks than their unmarked counterparts.(JEL C72 )
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1 Introduction

Marking animals arti�cially changes phenotypes, since it manipulates physical appearance.

Quite a few scienti�c experiments using animals are conducted by marking some of them.

However, if this means that the animals under study undergo some sort of alteration in their

behavior, the results of the experiment might be neither accurate nor representative of the

whole group.

In an interesting experiment with domestic fowls, Dennis, Newberry, Cheng and Estevez

(2008) �nd evidence of behavioral changes when di¤erent proportions of a population are

marked on the back of their heads. In this experiment birds do not know whether or not they

themselves are marked, but can see the marks on other birds. The two most salient results

derived from this work are that marked birds su¤er more aggression and have less body mass

than their unmarked pen mates.

In game theory it is usually assumed that players know who they are, but they may or

may not know the type of their opponents. To the best of our knowledge no situations where

individuals lack self-perception but are able to perceive others have ever been modeled1.

Here we consider this feature, which underlies the experimental work of Denis et al. (2008).

More precisely we propose a variation of the classical hawk-dove game where individuals are

unaware of their own type but see their opponent�s type. The concept of �evolutionarily

stable strategy�(Maynard Smith and Price, 1973) is used to solve the game.

The paper starts by recalling the results of the classical hawk-dove game in a �nite

population, which we refer to as the �homogenous game�. Then we divide the population into

two types: marked and unmarked individuals. The novelty of what we call the �heterogeneous

game�is that individuals now meet two types of opponent. Consequently they can play either

the same or di¤erent actions depending on the type of opponent that they face.

Though the modi�cation of a population by marking a proportion of individuals is not

linked to any disparity in capacity, we �nd that it a¤ects the behavior of members. Playing the

strategy that was evolutionarily stable in the homogeneous game against any type of opponent

is not evolutionarily stable in the heterogeneous game. Indeed, no individual strategy that

treats the two types of individual equally will be evolutionarily stable in heterogeneous games.

Interestingly enough, we show that any such game has two evolutionarily stable strategies.

We �nd that in each one, independently of the distribution of the types, one type of individual

is always attacked more than the other. This has led us to refer to the type attacked more

1Two illustrations of this type of situation are a card game called the "Indian poker game" (See
http://en.wikipedia.org/wiki/Blind_man�s_blu¤_poker or a sequence in Tarantino�s movie "Inglourious Bas-
terds" (2009)).
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as aliens, with all the negative connotations of the term, and to the other type as locals.

This result contradicts the intuition that aggressive behavior toward members of a minority

is more probable than aggressive behavior toward members of the majority. In short, tagging

generates real discrimination in which the discriminated type, the alien, is systematically

treated worse. A comparison of the evolutionarily stable strategies for di¤erent proportions

of aliens reveals that the higher the proportion of aliens is, the less likely aggressive behavior

toward them is.

A comparison of individuals�expected payo¤s when the evolutionarily stable strategies

are played is then proposed. Not surprisingly, we �nd that an alien is always worse o¤ than

a local, and that an alien�s expected payo¤ increases as the proportion of aliens within the

population increases. For a local, however, the expected payo¤ increases as the proportion of

aliens increases up to certain point and decreases thereafter. Furthermore for an individual

taken at random the existence of a small proportion of aliens is bene�cial whereas a larger

proportion is detrimental. We are also able to determine the proportion of individuals that

would have to be tagged for a local and a random individual to get their maximal expected

payo¤.

Our theoretical results support the conclusions obtained in the experimental work con-

ducted by Dennis et al. (2008). Considering hawkish behavior as a proxy of the pecking

and threatening between birds observed in the experiment, we �nd that a strategy of more

aggressive behavior toward marked birds than toward unmarked ones can be evolutionarily

stable. Moreover, the fact that in this experiment marked birds have less body mass than

their unmarked pen mates is also supported under the assumption that the body mass of a

bird can be evaluated through the expected payo¤ of an individual in a heterogeneous game.

Now let us compare our results with the relevant literature. In the seminal hawk-dove

game only the mixed strategy in which the probability of each individual playing hawk is

equal to the ratio between the value of the resource and the cost of �ghting is evolutionarily

stable. Maynard Smith and Parker (1976) propose a variation in which individuals �ght

for a territory, each player being either the "owner" or the "intruder". They show that the

"bourgeois" strategy, i.e. playing hawk when one is the owner and dove when the intruder,

is evolutionary stable. Going further, Selten (1980) proves that only pure strategies are

evolutionarily stable. However, Binmore and Samuelson (2001a, 2001b) consider the two

roles that an individual may play jointly with payo¤ perturbations, and show that under

certain conditions mixed strategies can also be evolutionarily stable in this game. This last

result goes along with the �ndings obtained in our variation. When individuals lack self-

perception but recognize the type of the others pure as well as mixed strategies may be
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evolutionarily stable, depending on the proportion of aliens in a population.

This work can also be linked to the literature of social dynamics, in particular to the

inspiring work by Axtell, Epstein and Young (1991). These authors consider the divide-one-

dollar game, in which each individual may choose among the following three actions: high

(ask for 70 cents), medium (ask for 50 cents) and low (ask for 30 cents) claims. The dollar is

divided according to claims whenever they are feasible, otherwise players receive nothing. The

dynamics of random bilateral encounters in large populations show that in the long run, any

two players in the population tend to demand a medium claim. However, if the population

is arti�cially divided into two groups then a discriminatory norm emerges in society. An

equilibrium where the members of one group make a high claim and the members of the

other group make a low claim when pairs belonging to di¤erent groups meet may persist for

substantial periods of time, in which there is intra-group dissension. In a completely di¤erent

setting we obtain a similar conclusion: random tagging of individuals within a population

gives rise to true discrimination against one of the types, the aliens, who moreover behave

aggressively among themselves.

The rest of the paper is organized as follows. Section 2 presents the homogeneous game

and its unique evolutionarily stable strategy. Section 3 introduces the heterogeneous game

and derives the evolutionarily stable strategies and expected payo¤s. Section 4 analyzes the

experimental work in light of our game theoretical results. Section 5 concludes.

2 The homogenous game

Consider a population of n identical individuals in which any pair face a contested resource

of value v and may �ght at a cost c. The size of the population n, the value v and the cost

c are considered to be �xed with v < c. Each individual can be either aggressive and behave

as a hawk or passive and behave as a dove. If an individual behaves as a hawk and their

opponent as a dove, the aggressive individual gets the resource v while the passive individual

gets nothing. If both individuals act like hawks, there is a �ght. The winner gets the resource

while the loser faces the cost of the �ght c. Assuming that the two individuals have the same

probability of winning the �ght, the expected payo¤ for each one is half the resource minus

the cost of �ghting. If the two individuals behave like doves one withdraws and the other gets

the resource. Assuming that the two individuals have the same probability of withdrawing

the expected payo¤ for each one is half the resource. This description corresponds to the

classical hawk-dove game played by a population of identical individuals, which we refer to
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as the �homogeneous game�� whose payo¤ matrix may be represented as follows2:

hawk dove
hawk (v�c2 ;

v�c
2 ) (v; 0)

dove (0; v) (v2 ;
v
2 )

(1)

Let � denote the probability of playing hawk so that an individual can choose either a

pure hawk (� = 1) or dove (� = 0) strategy or a mixed strategy (0 < � < 1). Let u(�; �) be

the expected payo¤ of an individual that plays � when their opponent plays �. That is,

u(�; �) = v
2 (1� �) +

c
2(
v
c � �)�: (2)

Since game � is symmetric the opponent�s expected payo¤ is given by u(�; �).

The concept of �evolutionarily stable strategy�introduced by Maynard Smith and Price

(1973) is applied to solve the hawk-dove game. This notion captures the resilience of a given

strategy against any other strategy in the following sense: Consider a population where most

members play an evolutionarily stable strategy while a small fraction of mutants choose a dif-

ferent strategy. In this situation every mutant�s expected payo¤ is smaller than the expected

payo¤ of a "normal" individual, so that the mutants are driven out from the population3.

An evolutionarily stable strategy may be formally determined as follows. Let B(�) denote
the set of an individual�s best responses to an opponent playing strategy �. Recall that a

best response is a strategy that yields the highest payo¤ given the opponent�s strategy. The

two conditions for a strategy �� to be evolutionarily stable are: (i) �� 2 B(��) and (ii) for
any � 6= �� such that � 2 B(��) we have u(��; �) > u(�; �). Condition (i) states that �� has
to be a best response to itself. That is, the pair of strategies (��; ��) is a symmetric Nash

equilibrium (Nash, 1951). Condition (ii) states that if the opponent plays a best response to

�� (other than ��) then the payo¤ of playing �� is strictly greater than the payo¤ of playing

that best response.

For game � the set of an individual�s best responses to an opponent playing � is

B(�) =

8<:
f1g if � < v

c
f� j � 2 [0; 1]g if � = v

c
f0g if � > v

c :

Thus, if the probability of the opponent playing hawk is smaller than the ratio between the

resource and the cost, the unique best response is to play hawk, while if it is greater than

2 If we had v > c then the structure of the game would be equivalent to a prisoner�s dilemma, while if we
had v = c then it would be equivalent to a coordination game.

3See Maynard Smith (1982), Chapter 2, and Weibull (1995), Chapter 2, for a detailed explanation of this
notion. A good introduction can be found in Osborne (2004), Chapter 13.
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that ratio the unique best response is to play dove. If the probability of the opponent playing

hawk is equal to that ratio then any strategy is a best response. For this game strategy v
c is

the only evolutionarily stable strategy. It is the only strategy that is a best response to itself,
v
c 2 B(

v
c ), and it satis�es Condition (ii): u(

v
c ; �)� u(�; �) =

c
2(
v
c � �)

2 > 0 for � 6= v
c .

3 The heterogenous game

3.1 The model

Consider that a proportion x (0 < x < 1) of a population of n individuals is arti�cially

marked. Then there are two types of individual: the marked (M), and the unmarked (U).

Assume that a pair of individuals is selected at random. This is equivalent to assuming that

an individual is selected at random from a group of n individuals, and then the opponent is

selected at random from the remaining n � 1 individuals. Thus, at any bilateral encounter
between two individuals four cases are possible: both individuals are unmarked (U;U); the

�rst individual is unmarked and the second is marked (U;M); the �rst is marked and the

second is unmarked (M;U); or both are marked (M;M). The probabilities of these four

possible encounters, which we denote respectively by p(U;U), p(U;M), p(M;U) and p(M;M),

are given by

p(M;M) =
x(nx� 1)
n� 1 , p(U;U) =

(1� x)(n� nx� 1)
n� 1 and p(U;M) = p(M;U) =

x(1� x)n
n� 1 :

(3)

Since marks are made at random, they do not re�ect genetic di¤erences between indi-

viduals. Consequently the probability of winning or losing a �ght is not determined by the

presence or absence of marks. Hence the same hawk-dove game, whose payo¤ matrix given

by (1), is played in each state of nature.

The key feature of this model is that individuals fail to recognize their own type but do

recognize their opponent�s type. This implies that the �rst individual does not distinguish

between states (U;U) and (M;U) or between states (U;M) and (M;M) while the second

individual does not distinguish between states (U;U) and (U;M) or between states (M;U)

and (M;M).

What is a strategy in this context? Obviously individuals �nd themselves in a position of

choosing a probability of playing hawk for each type of opponent, marked or unmarked. A

strategy can thus be represented by � =(�U ; �M ) where �U gives the probability of behaving

as a hawk to an unmarked individual and �M gives the probability of behaving as a hawk to

a marked one. Of course any strategy � played by an individual in a homogeneous game can
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be played against either type of opponent in a heterogeneous one, i.e. �U = �M = �. Such

a strategy is referred to here as homogeneous by contrast to a heterogeneous strategy where

�U 6= �M . Thus there are two pure homogeneous strategies, which we represent as follows:
hawk against either type of opponent (1; 1), and dove against either type of opponent (0; 0);

and two pure heterogeneous strategies: (0; 1) playing dove against unmarked individuals and

hawk against marked ones, and (1; 0) playing hawk against unmarked individuals and dove

against marked ones.

The expected payo¤ of an individual playing � =(�U ; �M ) while the opponent plays

� = (�U ; �M ) is the sum of the expected payo¤s she would obtain in every distinct en-

counter weighted by its probability of occurrence. For instance, in the encounter (U;M)

the �rst individual recognizes her opponent as marked and plays hawk with probability �M
while the later recognizes the former as an unmarked and plays hawk with probability �U ,

being u(�M ; �U ) the individual�s expected payo¤ derived from such bilateral encounter. This

expected payo¤ is multiplied by p(U;M). The expected payo¤s in the remaining encounters

are de�ned analogously. Therefore the expected payo¤ of an individual playing � against an

opponent playing � is given by U(�;�). That is,

U(�;�) = p(U;U)u(�U ; �U )+p(U;M)u(�M ; �U )+p(M;U)u(�U ; �M )+p(M;M)u(�M ; �M ).

Using (2) and (3) we rewrite U(�;�) as

U(�;�) = v
2 [1� (1� x)�U � x�M ]

+ c
2(n�1)(1� x)

�
(n� 1)vc � (n� nx� 1)�U � nx�M

�
�U

+ c
2(n�1)x

�
(n� 1)vc � (n� nx)�U � (nx� 1)�M

�
�M . (4)

In addition, the individual�s expected payo¤can be decomposed into an unmarked individual�s

expected payo¤ (UU (�;�)) multiplied by the probability of being unmarked (1 � x) and a
marked individual�s expected payo¤(UM (�;�)) multiplied by the probability of being marked

(x). That is, U(�;�) can be written as

U(�;�) = (1� x)UU (�;�) + xUM (�;�)

where

UU (�;�) = v
2 (1� �U ) +

c
2(
v
c � �U )

n�nx�1
n�1 �U +

c
2(
v
c � �U )

nx
n�1�M ,

UM (�;�) = v
2 (1� �M ) +

c
2(
v
c � �M )

n�nx
n�1 �U +

c
2(
v
c � �M )

nx�1
n�1 �M . (5)

Note the similarity between (2) and (5).
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We have modeled a population formed by two types of individual who play a hawk-

dove game. The main characteristic is that individuals fail to perceive their own type but

recognize the type of their opponents. The probabilities of the di¤erent types of encounter,

the strategies and expected payo¤s are de�ned. Thus, we have all the ingredients of a game,

hereafter referred to as a heterogeneous game and denoted by �x, where 0 < x < 1 is the

proportion of marked individuals, which is the key parameter in this paper.

We proceed to solve the heterogeneous game �x by applying the concept of evolutionarily

stable strategy as for game �. Let Bx(�) be the set of an individual�s best responses to an
opponent playing �. Strategy �� is evolutionarily stable if and only if (i) �� 2 Bx(��), and
(ii) for any � 2Bx(�) such that � 6= �� we have U(��;�) > U(�;�).

3.2 Best responses

First, we determine the set of an individual�s best responses given their opponent�s strategy.

If her opponent plays strategy � = (�U ; �M ) the best response of an individual is to choose

� = (�U ; �M ) such that U(�;�) is maximized. This best choice appears more clearly if we

rewrite (4) as follows

U(�;�) = f0(�) + fU (�) �U + fM (�) �M

where

f0(�) = v
2 [1� (1� x)�U � x�M ]

fU (�) = c
2(n�1)(1� x)nx

�
n�1
nx

v
c �

n�nx�1
nx �U � �M

�
(6)

fM (�) = c
2(n�1)x(nx� 1)

h
n�1
nx�1

v
c �

n�nx
nx�1�U � �M

i
. (7)

The best choice of an individual is �U = 1 whenever fU (�) > 0, �U = 0 whenever fU (�) < 0

and any �U whenever fU (�) = 0. Similarly the choice of �M depends on the sign of fM (�).

Thus Bx(�), the set of an individual�s best responses to an opponent playing �, is given by

Bx(�) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

f(�U ; �M ) j �U ; �M 2 [0; 1]g if [fU (�) = 0 and fM (�) = 0]
f(�U ; 1) j �U 2 [0; 1]g if [fU (�) = 0 and fM (�) > 0]
f(0; 1)g if [fU (�) < 0 and fM (�) > 0]
f(0; �M ) j �M 2 [0; 1]g if [fU (�) < 0 and fM (�) = 0]
f(1; 
M ) j 
M 2 [0; 1]g if [fU (�) > 0 and fM (�) = 0]
f(1; 0)g if [fU (�) > 0 and fM (�) < 0]
f(
U ; 0) j 
U 2 [0; 1]g if [fU (�) = 0 and fM (�) < 0]
f(1; 1)g if [fU (�) > 0 and fM (�) > 0]
f(0; 0)g if [fU (�) < 0 and fM (�) < 0] .

(8)
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Second, we determine the strategies that are best responses to themselves. As will be proven

in the next theorem only three strategies satisfy this property. The �rst one is independent of

the proportion of marked individuals (x), while for the other two the probability of behaving

as a hawk depends on x. We denote them by v
c , �

�
x and 


�
x, respectively. They are given by

v
c = (vc ;

v
c )

��x =

8<:
(vc � (1�

v
c )

nx
n�nx�1 ; 1) if x � w

(0; 1) if w < x < w
(0; n�1nx�1

v
c ) if x � w

(9)


�x =

8><>:
( n�1
n(1�x)�1

v
c ; 0) if x � 1� w

(1; 0) if 1� w < x < 1� w
(1; vc � (1�

v
c )

n(1�x)
n�n(1�x)�1) if x � 1� w.

(10)

where w = v
c (1�

1
n) and w =

v
c (1�

1
n) +

1
n .

We can now state and prove the following result:

Theorem 1 In any heterogeneous game �x, only strategies vc , �
�
x and 


�
x are best responses

to themselves.

Proof. Using (7) and (8) we check that these three strategies satisfy � 2 Bx(�) and that no
other strategy does.

1. We have that vc 2 Bx(
v
c ) since fU ((�U ; �M )) = fM ((�U ; �M )) = 0 i¤ �U = �M = v

c .

2. For strategy ��x, we �rst check that fU ((�U ; 1)) = 0 i¤ �U =
v
c � (1�

v
c )

nx
n�nx�1 , jointly

with v
c � (1 �

v
c )

nx
n�nx�1 � 0 for x � w, and fM ((

v
c � (1 �

v
c )

nx
n�nx�1 ; 1)) > 0. Second,

we have fU ((0; 1)) < 0 if x > w and fM ((0; 1)) > 0 if x < w. Third, fM ((0; �M )) = 0

i¤ �M = n�1
nx�1

v
c , jointly with

n�1
nx�1

v
c � 1 if x � w and fU ((0; n�1nx�1

v
c )) < 0. Hence

��x 2 Bx(�
�
x).

3. For strategy 
�x, we �rst check that fU ((
U ; 0)) = 0 i¤ 
U =
n�1

n(1�x)�1
v
c , jointly with

n�1
n(1�x)�1

v
c � 1 if x � 1� w, and fM ((

n�1
n(1�x)�1

v
c ; 0)) < 0. Second, we have fU ((1; 0)) >

0 if x > 1 � w while fM ((1; 0)) < 0 if x < 1 � w. Third, fM ((1; 
M )) = 0 i¤ 
M =
v
c � (1 �

v
c )

n(1�x)
n�n(1�x)�1 , jointly with

v
c � (1 �

v
c )

n(1�x)
n�n(1�x)�1 � 0 for x � 1 � w and

fU ((0;
v
c � (1�

v
c )

n(1�x)
n�n(1�x)�1)) > 0. Hence 


�
x 2 Bx(


�
x).

4. It remains to show that no other strategy can be a best response to itself, which is done

by checking that fU ((1; 1)) < 0, and fU ((0; 0)) > 0.
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Thus, we have one homogeneous and two heterogeneous strategies that are best responses

to themselves. That is, we have three symmetric Nash equilibria. The homogeneous strategy
v
c corresponds to the evolutionarily strategy

v
c in the homogeneous game. The other two

strategies are heterogeneous strategies. Note that the strategy is adopted by all individuals

(unmarked and marked). Obviously it could not be otherwise since in our game individuals

do not know their own type.

3.3 Evolutionarily stable strategies

The next question is whether the strategies that are best responses to themselves are evolu-

tionarily stable. As the following result shows, strategy v
c (where individuals have a proba-

bility of playing hawk against any type of opponent of vc ) does not satisfy this property.

Theorem 2 In any heterogeneous game �x, strategy v
c is not evolutionarily stable.

Proof. It is immediately apparent that fU (vc ) = fM (
v
c ) = 0, and by (8) any strategy is a

best response to strategy v
c . To show that

v
c is not evolutionarily stable, choose a strategy

� such that the di¤erence U(vc ;�) � U(�;�) is negative. Using (4) this di¤erence can be
written as

U(vc ;�)� U(�;�)) =
c

2(n�1)
�
(vc � �U )

2(n� nx� 1)(1� x)+

2(vc � �U )(
v
c � �M )n(1� x)x+ (

v
c � �M )

2(nx� 1)x
�
.

(i) If x = n�1
n the di¤erence above is reduced to

U(vc ;�)� U(�;�) =
c
2n(

v
c � �M )

�
2(vc � �U ) + (

v
c � �M )(n� 2)

�
which turns out to be negative if strategy � is chosen such that

0 < �M < v
c and

v
c < �U < 1 so that �U �

v
c >

n�2
2 (

v
c � �M ). (11)

(ii) If x 6= n�1
n , denote Z =

v
c��U
�M�

v
c
. In this case the di¤erence is a quadratic equation in Z:

U(vc ;�)�U(�;�) =
c

2(n�1)(�M�
v
c )
2
�
(n� nx� 1)(1� x)Z2 � 2n(1� x)xZ + (nx� 1)x

�
whose discriminant is � = 4(1�x)x(n�1) > 0. Thus, the di¤erence under study is negative
for any Z such that 2n(1�x)x�

p
�

2(n�nx�1)(1�x) < Z < 2n(1�x)x+
p
�

2(n�nx�1)(1�x) and, in particular, for a strategy

� =(�U ; �M ) such that the following equality is satis�ed:
v
c��U
�M�

v
c
= nx

n�nx�1 : (12)

10



Thus, while probability v
c of playing hawk is evolutionarily stable in the homogeneous

game, playing this strategy against any type of opponent is not evolutionarily stable in the

heterogeneous game. At �rst sight, this result may appear surprising as the di¤erentiation

introduced within the members of the population is merely arti�cial. But from the proof

of Theorem 2 it can be easily understood why strategy v
c is not evolutionarily stable. The

strategies � that satisfy (11) or (12) perform better against vc than strategy
v
c does against

itself. These strategies are such that the probability of aggressive behavior toward one type

is higher than v
c while the probability of aggressive behavior toward the other type is smaller

than v
c .

By contrast, the other two strategies, ��x and 

�
x, which are best responses to themselves,

are evolutionarily stable strategies. This is the main result of the paper.

Theorem 3 In any heterogeneous game �x, only strategies ��x and 

�
x are evolutionarily

stable.

Proof. By Theorem 1 we know that the only strategies that are best responses to themselves

are ��x, 

�
x and

v
c . By Theorem 2 it is known that vc is not evolutionarily stable. Hence, it

remains only to analyze strategies ��x and 

�
x.

Using (8) the set of an individual�s best responses to an opponent playing ��x is

Bx(��x) =

8<:
f(�U ; 1) j �U 2 [0; 1]g if x � w
f(0; 1)g if w < x < w
f(0; �M ) j �M 2 [0; 1]g if w � x:

For w < x < w we have that ��x = (0; 1) is the only best response to itself, hence Condition

(ii) of the evolutionarily stable strategy de�nition does not need to be checked. For the other

values of x, however, we must check whether that the di¤erence U(��x;�)�U(�;�) is strictly
positive for any � 2Bx(��x), with � 6= ��x. Using (4) we obtain that

U(��x;�)� U(�;�) =
(

c
2
(1�x)(n�nx�1)

n�1 (vc � (1�
v
c )

nx
n�nx�1 � �U )

2 if x � w
c
2
x(nx�1)
n�1 ( n�1nx�1

v
c � �M )

2 if w � x

This di¤erence is strictly positive if � 6= ��x: Therefore strategy ��x is evolutionarily stable.
The proof that strategy 
�x is evolutionarily stable is omitted because it is similar to the

previous one.

So in general the evolutionarily stable strategies are mixed strategies, although they may

be pure strategies for some speci�c proportions of marked individuals. This is the case when

the proportion of marked individuals x is equal to v
c , i.e. for game �v=c. In this case an

11



interesting comparison between v
c , the evolutionarily stable strategy in game �, and (0; 1);

the evolutionarily stable strategy in game �v=c, can be made. In game �v=c an individual

who plays strategy (0; 1) behaves as a hawk whenever her opponent is marked which occurs

with frequency v
c . Therefore strategies

v
c in � and (0; 1) in �v=c are similar in the sense that

a probability in game � is substituted by a frequency in game �v=c. Furthermore strategy

(0; 1) is also evolutionarily stable in game �x for values of x close to v
c , i.e. w < x < w.

Note, however, that for values of x smaller than w, an individual that plays strategy (0; 1)

plays dove so often that their opponent is better o¤ playing hawk at probabilities greater

than v
c while the opposite occurs for values of x higher than w. Analogously an individual

who plays strategy (1; 0) in game �1�v=c plays hawk with a frequency of 1 � x = v=c. The
same comparison can be made between v

c in game �, and strategy (1; 0) in game �1�v=c.

Now let us move on to the expected payo¤s for the evolutionarily stable strategies. Let

us start with ��x. Given game �x, plugging (9) into (4) we obtain

U(��x;�
�
x) =

8><>:
v
2 (1�

v
c ) +

c2�v2
2c

x
n�nx�1 if x � w

v
2 �

nx�1
n�1

cx
2 if w < x < w

v
2 (1�

v
c )�

v2

2c
1�x
nx�1 if x � w.

Observe that the payo¤ of an individual is larger for smaller proportions of marked indi-

viduals than for large proportions of individuals. In the next section we come back to this

result and explain why this is so.

If we decompose the payo¤ according to the type of individuals we have that (5) yields

to

UU (�
�
x;�

�
x) =

8><>:
v
2 (1�

v
c ) +

c�v
c

vnx
n�nx�1 if x � w

v
2 (1�

v
c ) +

v
2c
v(n�1)+cnx

n�1 if w < x < w
v
2 (1�

v
c ) +

v2

2c
2nx�1
nx�1 if x � w,

and

UM (�
�
x;�

�
x) =

8><>:
v
2 (1�

v
c )�

c�v
2c

2nv(1�x)�c�v
n�nx�1 if x � w

v
2 (1�

v
c )�

c�v
2c

(n�1)v+(nx�1)c
n�1 if w < x < w

v
2 (1�

v
c )�

v
c
n(1�x)v
nx�1 if x � w.

Clearly an unmarked individual always obtains a larger payo¤ than a marked individual.

The reverse holds in the second evolutionarily stable strategy. Moreover, by plugging (10)

into (4) and (5) we can check that the following relations hold:
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U(
�x;

�
x) = U(��1�x;�

�
1�x) (13)

UU (

�
x;


�
x) = UM (�

�
1�x;�

�
1�x) (14)

UM (

�
x;


�
x) = UU (�

�
1�x;�

�
1�x). (15)

3.4 Interpretation of the results in terms of aliens and locals

The two evolutionarily stable strategies, ��x and 

�
x, are the two faces of a single coin, the

only di¤erence being the norm that determines the type of individual treated worse.

Let us start by examining strategy��x, given by (9). Note that, whatever x, the probability

of aggression toward marked individuals is always greater than toward unmarked ones. The

reverse holds for strategy 
�x given by (10). So in each strategy one type is treated worse

than the other: the marked individuals in strategy ��x and the unmarked individuals in

strategy 
�x. Let us refer to the worse-treated individuals as aliens and to the better-treated

individuals as locals. A closer look at (9) and (10) reveals that the probabilities of aggression

toward aliens/locals are identical in both strategies if those probabilities are expressed as a

function of the proportion of aliens.

That is, the two strategies are identical but refer to di¤erent norms that de�ne who are

the aliens and who are the locals. Strategy ��x corresponds to the norm that de�nes aliens as

marked individuals, in proportion x, while strategy 
�x corresponds to the norm that de�nes

aliens as unmarked individuals, in proportion 1� x.
More precisely let y denote the proportion of aliens and let gA(y) be the probability of

aggression toward aliens and gL(y) be the probability of aggression toward locals. If we de�ne

gL(y) =

� v
c � (1�

v
c )

ny
n�ny�1 if y � w

0 otherwise

gA(y) =

�
1 if y < w
n�1
ny�1

v
c otherwise, (16)

we can rewrite (9) and (10) as ��x = (gL(x); gA(x)) and 

�
x = (gA(1 � x); gL(1 � x)) clearly

showing that the two strategies are basically identical. We can speak of gA(y) as the probabil-

ity of hawkish behavior toward an alien, and of gL(y) as the probability of hawkish behavior

toward a local if one evolutionarily stable strategy is played by all individuals. In Figure 1

we plot gA(y) and gL(y) for n = 10 and v=c = 1=3.
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Figure 1: Probabilities of a hawk behavior toward a local ( gL) and

toward an alien ( gA) as a function of the proportion of aliens ( y)

The following comments can be made on the trend in the probability of aggression. The

probability of aggression toward aliens is 1 for any proportion of aliens smaller than w, and

then it decreases toward v
c . The probability of aggression toward locals, however, decreases

from v
c to 0 for a proportion of aliens smaller than w and remains at 0 thereafter. Furthermore,

aggression toward aliens is always greater than the aggression su¤ered by individuals in a

homogeneous game (gA(y) > v
c ) while the reverse holds for locals (gL(y) <

v
c ).

Similarly we may wonder what happens to the trend in payo¤s assuming that all individ-

uals play an evolutionarily stable strategy. Since the equality (13) holds we can speak of the

payo¤ as a function of the proportion of aliens y. We denote it by U�(y), and de�ne it as

U�(y) = U(��y;�
�
y). To facilitate the interpretation of the trend in U

�(y) we take as refer-

ence the payo¤ obtained in the homogeneous game � if all individuals play the evolutionarily

stable strategy. We denote this by �U�. From (2) we determine �U� = u(vc ;
v
c ) =

v
2 (1�

v
c ). In

Figure 2 we represent U�(y) and �U� graphically for n = 10, v=c = 1=3.

Figure 2: Payo¤ in the homogeneous game ( �U�) and payo¤ of a random individual

in the heterogeneous game (U�(y)) as a function of the proportion of aliens ( y)

This �gure shows that introducing aliens is bene�cial for individuals as long as their

proportion is smaller than w. For proportions of aliens greater than w the contrary e¤ect

arises. The maximal payo¤ is obtained for a proportion of aliens for a proportion of w.

We can also study the trend in the payo¤ of marked and unmarked individuals. Once

more, since the equality (14) holds we can speak of the payo¤s of a local, U�L(y), given as a

function of the proportion of aliens y. De�ne this as U�L(y) = UU (�
�
y;�

�
y). Similarly equality

(15) allows us to de�ne U�A(y) = UM (�
�
y;�

�
y) as being the payo¤ of an alien. In Figure 3 we

plot U�L(y) and �U
� while in Figure 4 we plot U�A(y) and �U

� for n = 10 and v=c = 1=3.

Figure 3: Payo¤ in the homogeneous game ( �U�) and payo¤ of a local in the

heterogeneous game (U�L(y)) as a function of the proportion of aliens ( y)

Figure 4: Payo¤ in the homogeneous game ( �U�) and payo¤ of an alien in the

heterogeneous game (U�A(y)) as a function of the proportion of aliens ( y)
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At �rst glance these �gures immediately reveal that the situation is as expected: aliens are

worse o¤ than individuals in a homogeneous game, while locals are better o¤. The maximal

payo¤ for a local is obtained for a proportion of aliens of w.

A closer analysis enables the trend in these payo¤s according to the proportion of aliens

to be explained. Two e¤ects are involved: su¤ering more or less aggression and, in case of

constant aggression, the response to the level of aggression su¤ered.

The less aggression su¤ered, the greater the well-being. This property partially explains

the trend in the payo¤s. Figure 1 shows that gL(y) decreases for values of y smaller than w

and gA(y) decreases for values of y larger than w. Consequently for values of y smaller than

w a local�s payo¤ increases, and for values of y larger than w an alien�s payo¤ also increases

(see Figures 3 and 4). This increase in payo¤s for the same intervals is also observed for a

random individual (see Figure 2).

When the probability of an aggression is constant, the trend in the payo¤may be explained

by the response to the level of aggression. Figure 1 shows that function gL(y) is 0 for values of

y greater than w, meaning that locals receive no aggression. In that case their best response

is to play hawk. But for y greater than w they play hawk less often (gA(y) decreases and

gL(y) = 0)). Therefore in this interval the payo¤ of locals decreases. Analogously function

gA(y) is 1 for values of y smaller than w, meaning that aliens receive maximum aggression. In

that case their best response is to play dove. For y smaller than w they play hawk less often

(gL(y) decreases and gA(y) = 1). Therefore in this interval the payo¤ of aliens increases.

It remains to explain the trend in the payo¤s for values of y lying between w and w where

locals receive no aggression and aliens receive maximum aggression. The best response for a

local is to play hawk and for an alien it is to play dove. As the proportion of aliens increases

in this interval, hawkish behavior increases, which turns out to be bene�cial for locals and

harmful for aliens. For a random individual the overall e¤ect is negative.

The following proposition summarizes the main features that are observed in the foregoing

�gures. The proof is omitted because of its simplicity.

Proposition 1 For any proportion of aliens 0 < y < 1 we have that:

(i) U�A(y) < �U� < U�L(y), (17)

(ii) U�(y) > �U� if y < w and U�(y) < �U� if y > w,

(iii) U�L(y) is maximal for y = w and U�(y) is maximal for y = w.
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4 The experiment

Dennis et al. (2008) have conducted several experiments with groups of domestic fowls.

They consider group sizes of 10 and 50 birds in which di¤erent proportions (20%, 50% and

100% respectively) are marked. They study the birds�aggressive behavior measured by the

number of pecks and threats in the encounters between them. The most signi�cant results

of this experiment are: (i) Marked domestic fowls receive more pecks than their unmarked

pen mates. (ii) Marked domestic fowls in the 20% group receive signi�cantly more threats

than domestic fowls in the 100% marked group. (iii) There is no signi�cant di¤erence in the

aggression received by marked fowls in the 20 and 50% marked groups. (iv) Aggressiveness

toward marked fowls in populations with 100% of marked birds is lower than in any mixed

population. (v) Marked fowls have a lower body mass than their unmarked pen mates.

To evaluate these experimental results in light of our model we assume that behaving

as a hawk is a good proxy for the pecking and threatening between birds observed in the

experiment. We also assume that the strategy played by the population is the evolutionarily

stable strategy ��x = (gL(x); gA(x)). It seems reasonable to assume that the norm is for

the aliens to be the marked fowls. In addition we consider that the expected payo¤ of an

individual can be used as a proxy for a bird�s body mass. With these assumptions we �nd

that some of our theoretical results are consistent with the experimental ones:

(i) Marked domestic fowls receive more pecks than their unmarked pen mates. By (16)

we have gL(x) < gA(x):

(ii) Marked domestic fowls in the 20% group receive signi�cantly more threats than do-

mestic fowls in the 100% marked group. By (16) we have gA(0:2) = 5
(n�1)
n�5

v
c >

v
c .

(iii) There is no signi�cant di¤erence in the aggression received by marked birds in the 20

and 50% marked groups. By (16) we have gA(0:5) = gA(0:2) = 1 if 0:5 � v
c (1�

1
n).

Therefore this empirical result is supported by our theoretical �ndings under the assump-

tion that the value of the resource v is basically greater than half the cost c.

(iv) Aggressiveness toward marked birds in populations with 100% of marked birds is lower

than any other mixed population. By (16) we have that for any 0 < x < 1, gA(x) > v
c .

(v) Marked birds have a lower body mass than their unmarked pen mates. By (17) we

have UM (��x;�
�
x) < UU (�

�
x;�

�
x).

When we determine the body masses of the two types of bird with their corresponding

equilibrium payo¤s we indeed obtain that the payo¤ of a marked bird is smaller than the

payo¤ of an unmarked one.
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5 Concluding comments

The contribution of this study can be summarized as follows: We introduce a variation of the

hawk-dove game in which there is a population formed by two types of individual who do not

perceive their own type but do recognize the type of their opponent. Although the di¤erence

between the two types is "arti�cial" it is not innocuous. Our game has two evolutionarily

stable strategies in which the probability of being aggressive toward one type of individual

is always higher than the probability of being aggressive toward the other type. It is worth

stressing that the type of individual treated worse may not be the minority group. This

contradicts the intuition according to which the type which constitutes the minority of the

population seems likely to be discriminated against. The probability of aggression toward

aliens does however decrease with the proportion of aliens. Increasing the proportion of aliens

also decreases the probability of aggressive behavior toward locals. For a random individual

the e¤ect is positive for small proportion of aliens, and negative for large proportions.

Finally, we would like to point out that although our research was inspired by a biological

experiment, the approach might also serve to explain other social situations. In particular, it

should be emphasized that our results are similar to those obtained in the paper by Axtell et

al. (1991) in which an arti�cial division of a group of individuals into two subgroups generates

real discrimination.
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