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We characterize the Price of Anarchy (PoA) in a single channel under the presence of K competing 
sources. As performance metric we consider the Age of Information, which measures the freshness 
of information in a remote system. In our main results we show that when the service times of all 
sources are equal the PoA is 2 − 1

K , and that otherwise the PoA is unbounded from above. Numerical 
computations show that the PoA increases with the disparity of the service rates.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Queueing games study the decision making of non-cooperating 
agents that interact in a queueing system. The Nash Equilibrium is 
one of the most studied concepts of queueing games (see [2] for 
a recent book on this topic) and it is defined as a set of strategies 
such that no agent gets benefit by changing its strategy unilat-
erally. Such a set of strategies might differ substantially from a 
global optimum strategy, leading to a performance degradation of 
the Nash Equilibrium. This degradation is often analyzed using the 
concept of Price of Anarchy [3], which is defined as the ratio of 
the performance at the Nash Equilibrium over the optimal perfor-
mance [8].

In this article, we consider a system formed by multiple pro-
cesses that need to be observed by a remote monitor. Each process 
has a source that generates status updates and all the sources send 
its status updates to the monitor through the same channel. We 
are interested in achieving the freshest possible information of all 
the sources at the destination. Timely information is a crucial fac-
tor in a wide range of information, communication, and control 
systems. For instance, in autonomous driving systems the state of 
the traffic and the location of the vehicles must be as recent as 
possible. The Age of Information (AoI) is a relatively new metric 
that measures the freshness of the knowledge we have about the 

* Corresponding author.
E-mail address: josu.doncel@ehu.eus (J. Doncel).
https://doi.org/10.1016/j.orl.2023.10.004
0167-6377/© 2023 The Authors. Published by Elsevier B.V. This is an open access article
creativecommons .org /licenses /by-nc -nd /4 .0/).
status of a remote system. More specifically, the AoI of a source is 
defined as the time elapsed since the generation of the last suc-
cessfully received packet containing information about that source. 
As shown in the seminal paper [4], policies that optimize perfor-
mance metrics of interest in queueing theory such as throughput, 
delay or package-loss probability do not necessarily minimize the 
AoI. We refer to [11] for a recent survey on AoI.

We consider that the channel through which status updates are 
sent is a queue operating under the Last-Generated-First-Served 
discipline with preemption in service, which was proven in [1]
to be an optimal policy for a system with a single source. We 
also assume that the sources are charged for sending status up-
dates; namely, each source has to bear an economic expense that 
is proportional to its load. In this context, we formulate a non-
cooperative game in which each source is a player that can choose 
its generation rate of status updates and aims to minimize its cost, 
which is the sum of its Average Age of Information (AAoI) and its 
payment. Our goal is to measure the inefficiency due to the com-
petition between different sources (i.e. the Nash Equilibrium) with 
respect to the minimum total cost that can be achieved.

The status updates are generated according to a Poisson process 
and served at exponential times. We consider two different sce-
narios: first, the homogeneous case in which the service rate is the 
same across sources, and then the heterogeneous case, for which 
we allow the sources to be served at different rates. In the homo-
geneous case we give a closed-form expression for both the Nash 
Equilibrium and the global optimum and conclude that the PoA 
is 2 − 1/K , where K is the number of sources. When the service 
 under the CC BY-NC-ND license (http://
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Fig. 1. The system under study.

rates are heterogeneous, even though we did not manage to char-
acterize neither the Nash Equilibrium nor the global optimum, we 
provide a set of properties that lead to the unboundedness of the 
PoA. In other words, the performance degradation due to the self-
ishness of the sources can be arbitrarily large when the disparity 
of the service rates increases.

Some researchers have analyzed recently non-cooperative
games in AoI-aware networks, but in a different setting such as 
considering an interference channel for which the strategy is the 
power level of the transmitters [6,7] or collision avoidance strate-
gies [9].

A preliminary version of this paper was published as an ex-
tended abstract in [5].

2. Model description

Consider a system formed by K processes whose status is to 
be observed by a remote monitor. Each process has a source that 
generates status updates and sends them immediately through a 
transmission channel to the monitor. We assume that the trans-
mission times from the sources to the channel and from the chan-
nel to the monitor are both negligible. Thus, the generation time 
of updates and the time at which they arrive to the transmission 
channel coincide, and similarly for the time at which updates com-
plete service and the delivery time at the monitor. In addition, we 
consider that updates are served according to a Last-Generated-
First-Served policy with preemption in service (LGFS-PR). Under 
this service discipline, when an update arrives to the queue it 
readily starts being served, preempting the update currently in ser-
vice if any (see Fig. 1).

Updates of source n arrive to the queue according to a Pois-
son process of rate λn and are served at exponential times of rate 
μn . We denote by μ = (μ1, . . . , μK ) the vector of service rates, by 
λ = (λ1, . . . , λK ) the vector of arrival rates and by λ = ∑

n λn the 
total arrival rate. The AoI of source n at time t is defined as the 
difference between t and the generation time of the last update 
of this source that has been delivered to the monitor. We denote 
by �n(λ, μ) the Average Age of Information (AAoI) of source n. 
In order to dissuade the sources from sending updates continu-
ously, we consider that a system planner penalizes a source for the 
server usage. In fact, it can be shown that the fraction of time that 
updates of source n are served increases with λn and decreases 
with μn . Thus, in this particular model, we assume that sources 
are charged proportionally to the fraction λn/μn , i.e., the payment 
associated to source n is cλn/μn , with c > 0.

We formulate a non-cooperative game in which each source is 
a player whose goal is to find its generation rate to minimize its 
cost function, namely

Cn(λ,μ, c) = �n(λ,μ) + cλn/μn. (1)

A solution of this game is called Nash Equilibrium and we denote 
it by λne = (λne

1 , . . . , λne
K ). A Nash Equilibrium is defined as a set of 

generation rates such that no source gets benefit from a unilateral 
deviation, i.e.

λne
n ∈ arg min Cn(λn,λ

ne−n,μ, c), n = 1, . . . , K (GAME)

λn
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where λne−n is the vector of generation rates at the Nash Equilib-
rium for all the sources except for source n.

In contrast with the aforementioned scenario, we can think of 
a setting in which the sources collaborate looking for the global 
benefit. In this case the mathematical problem consists in finding 
a vector of generation rates such that the overall cost is minimized:

min{λ1,...,λK }

K∑
n=1

Cn(λ,μ, c). (GLOBAL-OPT)

A solution of this problem is called a global optimum and will be 
denoted by λG = (λG

1 , . . . , λG
K ).

The PoA is defined as the worst possible ratio between the cost 
at Nash Equilibrium and the cost at a global optimum, i.e.,

Po A = sup
μ,c

∑K
n=1 Cn(λ

ne,μ, c)∑K
n=1 Cn(λ

G ,μ, c)
. (POA)

By definition Po A ≥ 1, and the closer it is to 1 the smaller is 
the inefficiency on account of the selfish strategies in the non-
cooperative scenario.

3. Homogeneous service rates

We start by considering that the service rate is equal across 
sources, i.e., μn = μ for all n = 1, . . . , K . The AAoI for this case 
[10, Thm 2a)] is

�n(λ,μ) = μ + λ

μλn
, n = 1, . . . , K , (2)

and thus the cost function (1) is given by

Cn(λ,μ, c) = 1

μ

(
μ + λ

λn
+ cλn

)
.

Proposition 1. When μn = μ for all n = 1, . . . , K , there is a unique 
solution of (GAME), which is a symmetric Nash Equilibrium given by

λne
n = (K − 1) + √

(K − 1)2 + 4μc

2c
, n = 1, . . . , K . (3)

Proof. The first order condition of the optimization problem for 
source n can be written as

cλ2
n + λn = μ + λ. (4)

By subtracting this expression for two arbitrary sources n, m it 
results

c(λ2
n − λ2

m) + (λn − λm) = 0,

which is only possible if and only if λn = λm , since c > 0 and λn >

0 for all n. Using this, equation (4) can be rewritten as

cλ2
n − (K − 1)λn − μ = 0,

which is a quadratic equation whose unique positive solution is 
given by (3). �
Proposition 2. When μn = μ for all n = 1, . . . , K , there is a unique and 
symmetric solution of the (GLOBAL-OPT), and it is given by

λG
n =

√
μ

, n = 1, . . . , K . (5)

c
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Proof. The objective function of (GLOBAL-OPT) with homogeneous 
service rates is

K∑
n=1

Cn(λ,μ, c) =
K∑

n=1

1

μ

(
μ + λ

λn
+ cλn

)
. (6)

Setting the derivatives of (6) with respect to λn equal to zero 
and arranging terms we obtain the first order conditions

c +
K∑

j=1

1

λ j
= μ + λ

λ2
n

, n = 1, . . . , K . (7)

Taking the equations (7) of sources n and m and subtracting 
one from another we obtain

μ + λ

λ2
n

= μ + λ

λ2
m

.

Since the generation rates are strictly positive, this equality is 
possible if and only if λn = λm , which proves the symmetry. Using 
this in (7) and simplifying yields cλ2

n − μ = 0, for which (5) is the 
only positive solution. �
Remark 1. We note that the second order condition in problems 
(GAME) and (GLOBAL-OPT) is 2(μ+λ−n)

μλ3
n

> 0, where λ−n = λ − λn , 
ensuring that both solutions are indeed a minimum. We also note 
that both λne

n and λG
n tend to infinity as c → 0 and tend to zero as 

c → ∞, i.e., when the payment is very high the optimal generation 
rates are very small, whereas when the payment is very low the 
generation rates are very large.

Remark 2. We can easily show that the cooperation between 
sources (or the presence of a centralized planner) leads to a lower 
generation rate, that is, λne

n > λG
n . To see this, note that since K ≥ 2, 

it follows

λne
n = (K − 1) + √

(K − 1)2 + 4μc

2c

>

√
4μc

2c
=

√
μ

c
= λG

n .

From the first order conditions of (GAME), the optimal rate at 
Nash Equilibrium satisfies c

(
λne

n

)2 = (K −1)λne
n +μ. Using also that 

λne = Kλne
n , it results for the Nash Equilibrium that

Cn(λ
ne,μ, c) = (μ + λne) + μ + (K − 1)λne

n

μλne
n

= 2

λne
n

+ 2K − 1

μ

= 4c

(K − 1) + √
(K − 1)2 + 4μc

+ 2K − 1

μ

= K + √
(K − 1)2 + 4μc

μ
,

and therefore

K∑
n=1

Cn(λ
ne,μ, c) = K (K + √

(K − 1)2 + 4μc)

μ
. (8)

On the other hand, from the first order condition of the 
(GLOBAL-OPT) we have c(λG

n )2 = μ, and thus

K∑
n=1

Cn(λ
G ,μ, c) = K

(μ + λG) + μ

μλG
n

= K (K + √
4μc)

μ
. (9)
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Let γ = μc. With (8) and (9) the expression (POA) for this 
model yields

Po A = sup
γ

∑K
n=1 Cn(λ

ne, γ )∑K
n=1 Cn(λ

G , γ )
= sup

γ

K + √
(K − 1)2 + 4γ

K + √
4γ

(10)

We note that the ratio above is a decreasing function of γ . To 
see that, compute its derivative with respect to γ and simplify it 
to obtain the expression

−2K
(√

(K − 1)2 + 4γ − √
4γ

)
− 2(K − 1)2√

4γ
√

(K − 1)2 + 4γ (K + √
4γ )2

< 0.

Hence, the PoA is achieved when γ → 0 and the next result 
follows.

Proposition 3. When μn = μ for all n = 1, . . . , K ,

Po A = 2 − 1

K
.

4. Heterogeneous service rates

Suppose now a system with arbitrary service rates. We first 
provide an explicit expression of the AAoI for heterogeneous ser-
vice rates (which generalizes the result of Theorem 2a) in [10]) in 
the following result:

Theorem 1. When the service rates are heterogeneous,

�n(λ,μ) = μn + λ

μnλn
. (11)

Proof. See Appendix A. �
Remark 3. Notice that, as a consequence of the preemption in ser-
vice, the AAoI of source n does not depend on the service rate of 
the updates from other sources.

Unlike in the homogeneous case, we have not succeeded in de-
riving a closed-form expression for the optimal generation rates 
with an arbitrary number of sources neither in the Nash Equilib-
rium nor in the global optimum. However, we can derive several 
properties of both strategies that allow us to analyze the PoA of 
this case. In the following result, we provide an ordering of the 
generation rates at the Nash Equilibrium.

Proposition 4. When the service rates are heterogeneous

μn > μm ⇐⇒ λne
n > λne

m .

Proof. With formula (11), the first order condition of the non-
cooperative optimization problem for source n is

cλ2
n + λn = μn + λ. (12)

By subtracting equations (12) for two arbitrary sources we 
obtain (λn − λm) (1 + c(λn + λm)) = μn − μm , and the result fol-
lows. �

Let us note that (GLOBAL-OPT) in the heterogeneous case is

K∑
n=1

1

μn

(
μn + λ

λn
+ cλn

)
,

and the first order conditions can be written as
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1

μn

(
μn + λ

λ2
n

− c

)
=

K∑
m=1

1

μmλm
, n = 1, . . . , K . (13)

Let csym = K
(∑K

m=1 1/μm

)
. This particular cost value allows us 

to characterize the solution at the global optimum. Further, since 
our focus is on the PoA, this choice does not reduce the applica-
bility of our results.

Proposition 5. When the service rates are heterogeneous,

c = csym ⇐⇒ λG
n =

(
K∑

m=1

1/μm

)−1

, ∀n = 1, . . . , K . (14)

Proof. See Appendix B. �
Remark 4. We note that, when c=csym and μ =K

(∑K
m=11/μm

)−1
, 

the harmonic mean of the service rates, the optimal rate given in 
(5) coincides with (14):

λG
n =

√
μ

csym
=

√√√√√√ K
(∑K

m=1 1/μm

)−1

K
(∑K

m=1 1/μm

) =
(

K∑
m=1

1/μm

)−1

.

In the remaining we will assume without loss of generality that 
sources are labeled such that μ1 > . . . > μK > 0, and will denote 
μ̃ = ∑K

n=1 1/μn .

Proposition 6. When the service rates are heterogeneous,∑K
n=1 Cn(λ

ne,μ, csym)∑K
n=1 Cn(λ

G ,μ, csym)
>

2λne
K

3μK
.

Proof. From conditions (13) we have that

cλG
n +

K∑
j=1

μnλ
G
n

μ jλ
G
j

= μn + λG

λG
n

,

and the objective function of (GLOBAL-OPT) can be written as

K∑
n=1

Cn(λ
G ,μ, c) =

K∑
n=1

1

μn

(
μn + λG

λG
n

+ cλG
n

)

=
K∑

n=1

1

μn

⎛
⎝cλG

n +
K∑

j=1

μnλ
G
n

μ jλ
G
j

+ cλG
n

⎞
⎠

=
K∑

n=1

1

μn

(
2cλG

n + λG

λG
n

)
. (15)

Similarly, from conditions (12)

cλne
n + 1 = μn + λne

λne
n

,

and therefore

K∑
n=1

Cn(λ
ne,μ, c) =

K∑
n=1

1

μn

(
μn + λne

λne
n

+ cλne
n

)

=
K∑

n=1

1

μn

(
2cλne

n + 1
)
.
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Setting c = csym = K μ̃, from Proposition 5 we know that λG
n =

μ̃−1 ∀n, and thus (15) reduces to

K∑
n=1

(
2csymλG

n + λG/λG
n

)
/μn =

K∑
n=1

(2K + K )/μn = 3K μ̃.

Moreover, from Proposition 4 and the ordering μ1 > . . . > μK

it follows that λne
n > λne

K , ∀n ≤ K − 1, and hence

∑K
n=1 Cn(λ

ne,μ, csym)∑K
n=1 Cn(λ

G ,μ, csym)
=

∑K
n=1

(
2csymλne

n + 1
)
/μn

3K μ̃

>

(
2csymλne

K + 1
)∑K

n=1 1/μn

3K μ̃

= 2K μ̃λne
K + 1

3K

>
2λne

K

3μK
. �

In the next result we state that the ratio λne
K /μK is unbounded 

from above when c = csym .

Proposition 7. When the service rates are heterogeneous, for any given 
θ ∈ R+ there exists a set of service rates {μn}K

n=1 such that if c = csym

then λne
K /μK > θ .

Proof. Consider the set of service rates

μn =
(

M − 2n

K − 1

)2

, n = 1,2, . . . , K − 1, μK = 1

and the cost c = csym = K μ̃. For this service rates

μ̃ = 1

μ1
+ 1

μ2
+ · · · + 1

μK−1
+ 1

μK

= 1 + K
K−1∑
n=1

1(
M − 2n

K − 1

)2
.

Notice that whenever M > 3 this set of service rates preserves 
the ordering μ1 > · · · > μK and also that 1 < μ̃ < K , and thus 
K < csym < K 2. Recall that λ−n = λ − λn . From (12) it follows that

csym(λne
n )2 = μn + λne−n ⇐⇒

λne
n =

√
μn + λne−n

csym
>

√
μn

csym
.

Since μn =
(

M − 2n

K − 1

)2

for n ≤ K − 1 we have that

λne
n >

1

c1/2
sym

(
M − 2n

K − 1

)
, n = 1, . . . , K − 1,

and thus

λne−K =
K−1∑
n=1

λne
n >

1

c1/2
sym

K−1∑
n=1

(
M − 2n

K − 1

)
= (K − 1)M − K

c1/2
sym

.

We complete the proof showing that, for any given θ ∈R+ , by 
choosing M such that M > K 3θ2/(K − 1) we ensure the desired 
result. Indeed, from (12) with n = K , and keeping in mind that 
μK = 1 and csym < K 2, we obtain
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Fig. 2. Ratio
∑K

n=1 Cn(λne ,μ,csym)∑K
n=1 Cn(λG ,μ,csym)

for Configuration 1 (left) and Configuration 2 (right).

(
λne

K /μK
)2 = μK + λne−K

csym
>

1

csym
+ (K − 1)M − K

c3/2
sym

>
1

K 2
+ K 3θ2 − K

K 3
= θ2. �

From Propositions 6 and 7 it follows the main result of this 
section.

Proposition 8. In the heterogeneous service rates model the PoA is un-
bounded from above.

5. Numerical experiments

This section is intended to illustrate numerically the results 
stated in Propositions 7 and 8. We define two different set of 
parameters for which μ1 > · · · > μK : in Configuration 1 we take 
μK = 1 and

μn = M − n + 1, n = 1, . . . , K − 1,

and in Configuration 2 we let the service rates be equally spaced 
along the interval [1, M], that is,

μn = M − (M − 1)(n − 1)

K − 1
, n = 1, . . . , K .

Note that in both configurations M − 1 = μ1 − μK . The cost is 
c = csym .

For both configurations, using a fixed-point algorithm we com-
pute numerically the optimal generation rates and then evaluate 
the objective functions. As stated in Proposition 7, we observe that 
for any value of θ there is M∗(θ) such that for all M ≥ M∗(θ), 
λne

K /μK > θ , and furthermore, that M∗(θ) is non-decreasing in θ . 
This seems to indicate that as the range of the service rates grows, 
i.e. M , the ratio 

∑K
n=1 Cn(λne,μ,csym)∑K
n=1 Cn(λG ,μ,csym)

increases.

We illustrate this in Fig. 2 where we depict the ratio∑K
n=1 Cn(λne,μ,csym)∑K
n=1 Cn(λG ,μ,csym)

for different values of K when M varies from 

100 to 106. Fig. 2 (left) corresponds to Configuration 1, and Fig. 2
(right) to Configuration 2. In both cases we observe that, regardless 
of K , the ratio between the total costs increases with M.
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Fig. 3. The Markov chain under consideration.

Appendix A. Proof of Theorem 1

We use the Stochastic Hybrid System (SHS) technique to obtain 
an analytical expression of the AAoI of the M/M/1 queue with pre-
emption in service and heterogeneous service rates. We first briefly 
describe this methodology, which has been introduced in [10], and 
we then show how to apply it in the proof of Theorem 1.

A.1. Stochastic hybrid system

A Stochastic Hybrid System is a continuous-time Markov Chain 
with a mixture of discrete and continuous states. The set of dis-
crete states Q is finite and describes the state of the system, 
whereas the continuous state x(t) tracks the time evolution of a 
process of interest, the age process in our case. This process flows 
according to x′(t) = bk(t) when the system is in state k. We denote 
respectively by Lk and L′

k the sets of outgoing and ingoing links 
of state k ∈ Q.

Let l be a transition from state k to state m and r(l) the rate at 
which this transition occurs. Right after the transition a transfor-
mation matrix Al is applied to the continuous state x to indicate 
how the age process changes due to this transition. Remarkably, for 
any pair of states k, m ∈ Q (not necessarily different, so that self-
transitions are included) there may exist several transitions that 
occur at different rates or that have a different effect on the con-
tinuous state.

Finally, we assume that the Markov Chain is ergodic and denote 
by πk the stationary probability of discrete state k.

For this proof we make use of a convenient trick: each time an 
update is delivered to the monitor we will suppose that an exact 
copy of it enters service. This fake update is simply waiting to be 
preempted, so that it will have no effect on the age process.

Using this device, we consider a set of discrete states Q = {0}, 
meaning that the system is always busy, either with a real or a 
fake update. Of course, the stationary probability is π0 = 1. Fig. 3
depicts the Markov Chain of this model, with one single discrete 
state and 2K self-transitions, with K being the number of sources. 
The continuous state is x(t) = [x0(t) x1(t)], where the first com-
ponent tracks the age of the source of interest and the second 
component is what the age would become if the package in ser-
vice is delivered. Since both components grow linearly with time 
b0 = [1 1]. For completeness we recall this result from [10] that 
will be needed in our proof.

Theorem 2 ([10, Thm. 4]). Let ql be the state from which the system 
jumps to state q after transition l ∈ L′

q. For all discrete state q, if vq =
[vq,0, vq,1, . . . , vq,n] is a non-negative solution of the system

vq

∑
l∈Lq

r(l) = bqπq +
∑

l′∈L′
q

r(l′)vql′ Al′ , (A.1)

then the Average Age of Information is given by 
∑

q vq,0 .

A.2. Computation of the AAoI

Without loss of generality, we consider source 1 as our source 
of interest and compute its AAoI using the SHS method. In Ta-
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Table A.1
The transitions of the Stochastic Hybrid System model.

l k → m r(l) Al Alx Al vk

1 0 → 0 λ1

[
1 0
0 0

]
[x0 0]T [v00 0]T

2 0 → 0 μ1

[
0 1
0 1

]
[x1 x1]T [v01 v01]T

3 0 → 0 λ2

[
1 0
1 0

]
[x0 x0]T [v00 v00]T

4 0 → 0 λ3

[
1 0
1 0

]
[x0 x0]T [v00 v00]T

.

.

.

.

.

.

.

.

.

.

.

.

K+1 0 → 0 λK

[
1 0
1 0

]
[x0 x0]T [v00 v00]T

K+2 0 → 0 μ2

[
1 0
0 1

]
[x0 x1]T [v00 v01]T

.

.

.

.

.

.

.

.

.

.

.

.

2K 0 → 0 μK

[
1 0
0 1

]
[x0 x1]T [v00 v01]T

ble A.1 we present the transitions of this SHS model (the values in 
the last column will be used to apply Theorem 2).

We now explain each of the transitions:

• l = 1. An incoming update of source 1 arrives and starts ser-
vice. The value of [x0 x1] changes to [x0 0], i.e., x0 is not 
modified since the age of the monitor does not change when 
an update of source 1 arrives but x1 is reset to 0 since a fresh 
packet of the source of interest arrived.

• l = 2. An update of source 1 ends service and is delivered to 
the monitor. In this case, [x0 x1] changes to [x1 x1], which 
means that the age at the monitor is updated to the generation 
time of the packet that ended service. When this occurs, we 
put a fake update in service with the same generation time as 
the update delivered at the monitor that will be preempted by 
the next arrival.

• l = 3. An incoming update of source 2 arrives and starts being 
served. The value of [x0 x1] changes to [x0 x0], i.e., the value 
of x0 is not modified since the age of the monitor does not 
change when an update of source 2 arrives and the value of 
x1 is set to the age of the monitor to indicate that the delivery 
of this update will not affect the current age of source 1.

In regard to the age process transitions l = 4, . . . , K + 1 are identi-
cal to transition l = 3.

• l = K + 2. An update of source 2 ends service and is deliv-
ered to the monitor. In this case the value of [x0 x1] does not 
change, and a fake update starts service with the same gener-
ation time as that of the update delivered at the monitor.

Transitions l = K + 3, . . . , 2K are again identical to transition l =
K + 2.

Applying (A.1) to our case and we get

[
v00
v01

](
λ + μ1 +

K∑
i=2

μi

)
=

1

[
1
1

]
+ λ1

[
v00
0

]
+

K∑
i=2

λi

[
v00
v00

]
+ μ1

[
v01
v01

]
+

K∑
i=2

μi

[
v00
v01

]
,

or equivalently(
λ + μ1 +

K∑
μi

)
v00 = 1 +

(
λ +

K∑
μi

)
v00 + μ1 v01
i=2 i=2

610
(
λ + μ1 +

K∑
i=2

μi

)
v01 = 1 +

K∑
i=2

λi v00 +
(
μ1 +

K∑
i=2

μi

)
v01

Simplifying, we get that

μ1 v00 = 1 + μ1 v01

λv01 = 1 + (λ − λ1)v00.

From the first equation v00 − v01 = 1/μ1, and substitution into the 
second equation yields

(λ − λ1)v00 − λv01 = −1

⇐⇒ (λ − λ1)(v00 − v01) − λ1 v01 = −1

⇐⇒ (λ − λ1)/μ1 − λ1 v01 = −1

⇐⇒ v01 = 1

λ1
+ λ − λ1

μ1λ1
,

which is positive and, as a result, so is v00 = v01 +1/μ1. Therefore, 
a non negative solution of (A.1) exists and from Theorem 2 we 
conclude that the AAoI of source 1 is equal to:∑

q

vq,0 = v00 = 1

μ1
+ v01 = 1

μ1
+ 1

λ1
+ λ − λ1

μ1λ1
= μ1 + λ

μ1λ1
.

Appendix B. Proof of Proposition 5

Proof. Note that if two sources n, m have the same service rate we 
can argue as in the homogeneous case to conclude that λG

n = λG
m

regardless of the cost c, so we will assume without loss of general-
ity that all the service rates are different. Now, let μ̃ = ∑K

n=1 1/μn

and suppose that the solution of the problem is symmetric. In this 
case, we denote by λG

n = λsym ∀n. Subtracting equations (13) of 
sources n, m, we obtain

μm

(
μn + Kλsym

λ2
sym

− c

)
− μn

(
μm + Kλsym

λ2
sym

− c

)
= 0.

After simplifying we obtain that(
K/λsym − c

)
(μm − μn) = 0,

which implies that c = K/λsym . Inserting this expression back into 
equation for source n yields

1

μn

(
−(μn + Kλsym)

λ2
sym

+ K

λsym

)
+ 1

λsym

K∑
j=1

1

μ j
= 0

After simplifying we obtain − 1

λ2
sym

+ μ̃

λsym
= 0, which gives λsym =

1/μ̃ and c = K μ̃.
We now suppose that c = K μ̃. Let m be the index of the source 

with the lowest generation rate at the global optimum, that is, 
λG

m ≤ λG
n ∀n 
= m. We know from Lemma 1 (see below) that

c
K∑

n=1

λG
n

μn
=

K∑
n=1

1

λG
n

.

When we focus on the term 1/λG
m in the right hand side of the 

above equality, we observe that one and only one of the following 
can be true:

i)
1

λG
m

= c

K

K∑
n=1

λG
n

μn
, which in turn implies that λG

n = λG
m ∀n 
= m, 

or
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ii)
1

λG
m

>
c

K

K∑
n=1

λG
n

μn
, which means that ∃ j 
= m such that 

1

λG
j

<

c

K

K∑
n=1

λG
n

μn
.

We complete the proof showing that the second option is not pos-
sible when c = K μ̃. Notice that from ii) we can set a simple upper 
bound for λG

m:

1 > λG
m

c

K

(
K∑

n=1

λG
n /μn

)
≥ λG

mμ̃

(
K∑

n=1

λG
m/μn

)
= (λG

mμ̃)2.

This implies that λG
m < 1/μ̃, and this inequality means that 

μm/λG
m > μmμ̃, whereas both λG/λG

m > K and λG
m/λG

n ≤ 1 ∀n 
= m
follow from the fact that m is the source with the minimum ar-
rival rate. Further, if we arrange the first-order equation (13) of the 
m-th source and write it as

μm/λG
m + λG/λG

m = cλG
m + μm

K∑
n=1

(1/μn)(λ
G
m/λG

n ),

we can combine these inequalities as follows

μmμ̃ + K < μm/λG
m + λG/λG

m

= cλG
m + μm

K∑
n=1

(1/μn)(λ
G
m/λG

n )

≤ cλG
m + μm

K∑
n=1

(1/μn)

= cλG
m + μmμ̃,

to finally obtain that λG
m > 1/μ̃, which is a contradiction with the 

previous upper bound for λG
m . �

Lemma 1. When the service rates are heterogeneous,

c
K∑

n=1

λG
n

μn
=

K∑
n=1

1

λG
n

. (B.1)

Proof. We can rearrange the equations in the first order conditions 
(13) as

c
λn

μn
= 1

λn
+ λ

μnλn
− λn

K∑
j=1

1

μ jλ j
, n = 1,2, . . . , K .

The result follows from the summation of all equations. �
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