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Abstract

Modifying clean speech prior to output in noisy conditions can lead to sub-
stantial intelligibility gains. Most algorithms operate by redistributing energy
across the signal, leaving the timing of the underlying speech sounds intact.
Other techniques do alter the timing of speech relative to the masker. Both
classes of approach – spectral and temporal – lead to a reduction in ener-
getic masking. The current study examines how their combination affects
intelligibility. Arguments can be made for both synergy and redundancy,
and the presence of distortions introduced by both spectral and temporal
approaches might even lead to an antagonistic combination. A cohort of
native Spanish listeners identified keywords in sentences in unmodified form
and following spectral, temporal and spectro-temporal modification, in the
presence of a fluctuating masker. Errors in the spectro-temporal condition
were substantially lower than following spectral or temporal modification
alone, with a three-fold reduction compared to unmodified speech. Spectro-
temporal gains were observed for all phonemes. A glimpse-based model of
energetic masking incorporating speech rate changes predicts intelligibility
(r=.96), and a glimpsing analysis provides further insights into the distinct
mechanisms through which spectral and temporal approaches lead to a re-
lease from energetic masking.
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1. Introduction1

Speech can be altered prior to presentation in noisy environments in such2

a way as to increase its intelligibility compared to unmodified speech [e.g.,3

1, 2, 3, 4]. Speech modification can lead to substantial gains: in an exten-4

sive evaluation of modification techniques known as the Hurricane Challenge5

[5], in which speech level was constrained to be constant pre- and post-6

modification, the most successful approaches produced gains equivalent to7

boosting the level of ‘plain’ unmodified speech by more than 5 dB.8

Many algorithms proposed for speech modification operate by redistribut-9

ing speech energy across the spectrum, either locally or from earlier or later10

portions of the signal. The Spectral Shaping and Dynamic Range Com-11

pression (SSDRC) method proposed by Zorila et al. [6] is an example of12

the energy redistribution approach. SSDRC incorporates a stage of spectral13

shaping reflecting properties of both clear speech [e.g., 7, 8, 9] and Lombard14

speech [e.g., 10, 11, 12], followed by dynamic range compression (DRC) which15

has the effect of transferring energy from more to less energetic epochs.16

In contrast, relatively few modification approaches perform temporal mod-17

ifications on the speech signal. Here, the term ‘temporal modification’ refers18

to retiming, i.e., changes to the temporal distribution of information-bearing19

speech elements. Such changes might involve altering the duration of speech20

segments [e.g., 13], or inserting pauses [e.g., 14] to effect a shift in their lo-21

cation. We have recently demonstrated that speech retiming is beneficial in22

the presence of temporally-modulated maskers, with gains ranging from 923

percentage points for linearly-elongated speech to 16 percentage points for24

non-linearly retimed speech [15]. Note that while the aforementioned DRC25

stage in the SSDRC algorithm has the effect of changing the temporal dis-26

tribution of energy, the timing of the underlying speech segments remains27

unaltered.28

For brevity in what follows, we will use the terms ‘spectral’ and ‘tem-29

poral’ to distinguish those techniques that leave the timing of information30

in the speech signal intact from those that modify the timing. The purpose31

of the current study is to examine whether the already substantial intelligi-32

bility benefits from spectral modification can be further increased via tem-33

poral modification algorithms. We chose the SSDRC and GCRetime [13]34

techniques to represent spectral and temporal modifications respectively due35

to their high level of intelligibility gains in the Hurricane evaluation. The36

current study tested the performance of the two algorithms alone and in37
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combination using a common speech-in-noise task and listener cohort.38

While it is not clear a priori what effect the combination of the two classes39

of modification approach will have on intelligibility, there are some reasons to40

expect additional gains from applying retiming to spectrally-modified speech.41

Spectral and temporal dimensions are to some extent independent in con-42

veying information in speech. Place of articulation variations within each43

manner class are reflected mainly in changes to the speech spectrum, while44

cues to distinct manner classes additionally possess a strong temporal com-45

ponent. Both classes of modification technique aim to augment intelligibility46

by increasing the likelihood that energetically-weaker portions of speech es-47

cape masking, but they achieve this in distinct ways. Spectral approaches48

operate by boosting the energy of weaker signal elements at the expense of49

stronger regions. Temporal techniques do not alter the level of the speech50

itself, but aim to shift weaker regions in time to locations where the masker51

is less intense. In both cases the goal is to increase the signal-to-noise ratio52

(SNR) of fainter speech segments.53

However, there are also reasons to question the hypothesis that spec-54

tral and temporal modifications will combine synergistically. The notion55

that spectral and temporal features in speech act in an orthogonal manner56

in cueing phoneme judgements is an oversimplification. It has long been57

known that spectral and temporal cues interact in determining the identity58

of speech segments [e.g., 16, 17]. There is also the possibility that the mod-59

ifications produced by each technique, even though arrived at by different60

means, end up boosting the same weak signal elements, leading to a redun-61

dant combination. In support of this hypothesis, the gains observed for the62

best-performing spectral and temporal entries to the aforementioned Hurri-63

cane Challenge were very similar in the modulated masker condition, at 1664

and 18 percentage points respectively.65

Logically, a third possibility is that spectral and temporal modifications66

will combine antagonistically. Both classes of technique introduce distor-67

tions to the natural speech signal which are clearly evident when modified68

speech is presented in the absence of a masker. For example, informal listen-69

ing to SSDRC-modified speech gives the impression that weak fricatives are70

overly-prominent, while for GCRetime the stretched or contracted segment71

durations can sound less than natural. Indeed, segment duration is explicitly72

contrastive in some languages, and can convey cues to adjacent phonemes73

in other languages where duration is not overtly contrastive (for example,74

the length of a vowel preceding an obstruent influences the perception of the75
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consonant’s phonological voicing status in English). In such cases, speech76

with artificially-modified segment durations might be less intelligible than77

unmodified speech.78

In fact, there is evidence from formal listening tests that both SSDRC and79

GCRetime introduce distortions than can lead to a reduction in intelligibility80

and/or naturalness. SSDRC leads to lower quality ratings in quiet than81

unmodified speech, and only part of the reduction is due to the DRC element82

[18]. In a separate study, when SSDRC-modified speech was presented in83

noise-free conditions to non-native listeners (for whom scores are well below84

ceiling levels), keyword scores in sentences dropped relative to an unmodified85

speech condition [19]. Similarly, GCRetimed speech presented in stationary86

speech-shaped noise was substantially less intelligible than unmodified speech87

[15], indicating that when taken out of context – in this case the modulated88

masker being replaced by a stationary masker – local changes to the duration89

of speech segments have a negative effect on intelligibility. It is possible90

that the dual distortions expected to be present when spectral and temporal91

modifications are combined will lead to a net reduction in intelligibility.92

The current study was carried out to determine which of the three pos-93

sibilities raised above hold. Listeners identified unmodified sentences and94

sentences that had undergone spectral modification (SSDRC), temporal al-95

teration (GCRetime) or spectro-temporal modification (SSDRC followed by96

GCRetime). Sentences were presented mixed at two SNRs with a temporally-97

fluctuating competing speech masker. Section 2 describes the listening ex-98

periment, whose results are presented in section 3.1. Additional analyses99

of segmental errors and a quantification of energetic masking are given in100

sections 3.2 and 4 respectively.101

2. Experiment: perception of unmodified and modified sentences102

in a fluctuating masker103

2.1. Speech and masker materials104

Speech material came from the Sharvard corpus [20], a collection of Span-105

ish sentences equivalent to the English language Harvard corpus [21]. Shar-106

vard sentences are moderately predictable and contain five keywords used for107

estimating intelligibility. The first sentence of the corpus is “Coge las hojas108

y las quemas todas en el fuego” [“Collect the leaves and burn them all in the109

fire”] (keywords underlined). The Sharvard corpus consists of 700 sentences110

spoken by one male and one female talker. Sentences have 31 phonemes on111
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average (range: 20–43, std. dev. = 4). Sentences are grouped into lists of112

10, and each list has a phoneme frequency distribution equivalent to that of113

spoken Spanish. For the current experiment the first 24 lists (240 sentences)114

spoken by the male talker formed the basis for the target speech material.115

The masker was competing speech spoken by a single female talker read-116

ing material from the Albayzin Spanish sentence corpus [22] from which117

between-sentence pauses had been removed. The use of a masking talker118

with different gender from that of the target talker minimised informational119

masking effects, enabling a focus on a reduction in energetic masking that120

the speech modification algorithms were designed to promote.121

Speech and noise stimuli were downsampled to 16 kHz prior to presenta-122

tion.123

2.2. Unmodified and modified speech conditions124

In addition to an unmodified speech condition, denoted Plain, listeners125

heard sentences processed by four speech modification algorithms, Spect,126

Temp, Temp* and Spect+Temp whose characteristics are described be-127

low.128

2.2.1. Spect129

The class of spectral modification algorithms is represented by the SS-130

DRC algorithm [6]. This algorithm applies multi-stage spectral modification131

followed by dynamic range compression [23]. The first spectral stage consists132

of formant enhancement whose degree is adaptive and depends on an esti-133

mate of the probability of voicing. The second stage applies preemphasis,134

again adaptively. A third non-adaptive spectral weighting is also used to135

prevent attenuation of high frequencies. The result of spectral shaping forms136

the input to two stages of compression. The first ‘dynamic’ stage involves137

signal envelope compression with a 2 ms release time constant and almost138

instantaneous attack time constant. This is followed by static amplitude139

compression with the 0 dB reference level set to 0.3 times the peak of the140

signal envelope. SSDRC requires no knowledge of the masker, nor does it141

modify speech duration overall or locally.142

2.2.2. Temp143

Temporal modifications were carried out by the GCRetime algorithm144

[13, 15]. GCRetime finds the optimal sequence of local expansions and con-145

tractions of the target speech signal that jointly maximise an objective func-146

tion in the presence of a fluctuating masker. In GCRetime, the objective147
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function minimises energetic masking, estimated using glimpse proportion148

[24] while simultaneously maximising a measure of speech information as149

provided by the cochlear-scaled entropy metric [CSE; 25]. The objective150

function is maximised using dynamic programming, and the subsequent du-151

rational modifications are carried out using the WSOLA algorithm [26]. The152

Appendix of [15] provides a detailed description of the GCRetime algorithm.153

Note that GCRetime in normal operation is not a general-purpose speech154

modification approach since it exploits knowledge of the instantaneous masker155

spectrum in a local time window centred on the current sample of the incom-156

ing speech signal. In practice this limits its applicability to scenarios such157

as retiming of remote multi-party conversations where a short delay can be158

imposed on both the output speech and masker. In spite of this limitation159

we chose GCRetime in order to estimate the best-case potential for combined160

spectro-temporal retiming relative to the chosen objective metric.161

2.2.3. Temp*162

A simpler form of temporal modification was also tested. Temp* is equiv-163

alent to Temp but with the omission of the cochlear-scaled entropy com-164

ponent i.e. temporal modification via retiming is based solely on minimising165

energetic masking. Temp* measures the effect of a pure temporal mod-166

ification without the additional factor of retiming based on maximing the167

audibility of high-information regions of the signal.168

2.2.4. Spect+Temp169

The Spect+Temp algorithm combines Spect with Temp. Specifically,170

sentences from the Spect condition were subsequently processed by the171

Temp algorithm. This order of operation was chosen because of the require-172

ment to estimate glimpses as part of the GCRetime algorithm. If SSDRC173

were to be applied in a stage subsequent to GCRetime, the glimpses which174

contributed to retiming would be likely to be quite different from those fol-175

lowing application of the SSDRC algorithm.176

Figure 1 shows spectrograms for an example sentence from Sharvard in177

unmodified form (Plain) and after processing by each of the four modi-178

fication algorithms, along with the competing speech masker used for this179

specific speech-in-noise stimulus. Some of the aforementioned characteris-180

tics of the spectral and temporal manipulation algorithms are evident in this181

figure. Spectrally-modified speech (Spect, Spect+Temp) shows increased182
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PLAIN

A

SPECT

B C

TEMP

TEMP*

SPECT+TEMP

MASKER

Figure 1: Spectrograms of unmodified (Plain) and modified speech for the utterance “Coge
las hojas y las quemas todas en el fuego”. The masker used in this example is shown at
the base of the figure. The frequency range is 0-8 kHz and the duration of the masker is
3.44s. Events at locations A-C are described in the text.

energy at mid and high frequencies compared to the Plain and Temp meth-183

ods. This is particularly apparent for the fricative /x/ in the word ‘hojas’184
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(location A in figure 1). For Spect there is no change in duration, while185

the methods involving retiming (Temp, Temp*, Spect+Temp) all result186

in a similar modest expansion in the time domain. The two retiming-only187

approaches show very clear differences, indicating that the presence or ab-188

sence of CSE in the objective function which underlies retiming does have189

a significant effect on the modified speech. For example, the entire middle190

portion of the sentence (from location B to C in figure 1) follows a different191

retiming path for Temp and Temp*.192

2.3. Speech-in-noise mixtures193

Stimuli for the experiment consisted of plain and modified utterances194

mixed with the competing speech masker at one of two SNRs (-14 and -19195

dB) chosen in pilot tests to produce mean keyword identification rates of196

around 70 % and 35 % respectively in the Plain condition. These SNRs are197

denoted ‘moderate’ and ‘adverse’. The adverse SNR was chosen due to the198

possibility of ceiling effects arising from the modified speech in the moderate199

SNR condition. Sentences were centrally-embedded in the masker and the200

SNR computed over the region of overlap. For the Plain and Spect condi-201

tions, the lead and lag time of the masker was 0.5 s. For the three remaining202

conditions which involved retiming where some overall durational modifica-203

tion was permitted, the speech-masker overlap time was increased. For these204

conditions the masker led the speech by 0.2 s, and the lag time varied, depen-205

dent upon the overall retiming expansion. The speech-plus-noise waveform206

duration was identical in all conditions with a mean value of 3.35 s (std. dev.207

0.28 s). The complete set of 240 utterances was processed by each of the208

four modification algorithms at both SNRs, leading to a total of 2400 stimuli209

(240 × 5 conditions × 2 SNRs). Each listener heard a 240-member subset210

of these stimuli (see section 2.5 for details of stimulus and condition order211

balancing).212

2.4. Participants213

Twenty-two listeners (18 female; mean age 20.7, std. dev. 4.1) partici-214

pated in the experiment. All were either monolingual in Spanish or bilingual215

in Spanish and Basque. All listeners received hearing screening via an In-216

teracoustics AS608 audiometer; all had normal hearing thresholds i.e. less217

than 20 dB hearing level over the range 125-8000 Hz. Listeners were paid for218

taking part. Ethics permission for the experiment was obtained under the219

University of the Basque Country Ethics Procedure.220
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2.5. Procedure221

Stimuli were divided into two blocks, one for each SNR. Block order222

was balanced across participants. Within each block listeners heard 120223

sentences, 24 for each of the 5 experimental conditions. Sentence presentation224

order was randomised within each block. Sentences and conditions were225

balanced across listeners to ensure that no listener heard the same sentence226

more than once in any condition and each sentence/condition pair was heard227

by a similar number of listeners (either 2 or 3, mean 2.2). Listeners were told228

that they would hear a mixture of a female voice and a less intensive male229

voice, and were instructed to type all the words they understood spoken230

by the male talker. Listeners were familiarised with the task via a short231

practice session consisting of 7 utterances drawn from the unused part of the232

Sharvard corpus. Listeners were seated in a sound-attenuating studio in the233

Phonetics Laboratory at the University of the Basque Country. Stimuli were234

presented at a level in the range 71-72 dB(A) through Sennheiser HD 380 pro235

headphones. Participants typed their responses into an onscreen text box in236

a custom-built Matlab application. Each of the two blocks required just over237

21 minutes to complete on average.238

2.6. Postprocessing239

Listeners’ text responses were processed prior to keyword scoring. First,240

diacritics indicating vowel stress were removed (e.g., á was replaced by a)241

since not all participants keyed in the stress symbol in all cases. Second,242

all non-alphabetic characters (e.g., punctuation symbols) were removed. Fi-243

nally, words not present in the Spanish phonetic dictionary HAPLO [27] were244

removed.245

3. Results246

3.1. Keyword identification scores247

Intelligibility is expressed as the percentage of keywords identified cor-248

rectly across all sentences in each condition. Per-listener mean scores were249

computed from the 120 keywords (5 per sentence) heard by listeners in each of250

the 10 combinations of SNR and speech modification condition. Percentages251

were converted into rationalised arcsine units [RAU; 28] for statistical anal-252

ysis. However, since all statistical outcomes were identical for RAU scores253

and percentages, the latter are used for ease of exposition in the following254

section.255
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Figure 2: Upper: Percentage of keywords recognised correctly as a function of modification
technique and SNR. Lower: Gains in percentage points over unmodified speech. Error bars
represent 95% confidence intervals.

Figure 2 shows keyword scores (upper panel) and gains over the Plain base-256

line (lower). The pattern of scores for each SNR is similar, with larger gains257
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at the more adverse SNR. Focusing on the adverse SNR, from a baseline of258

around 38% in the Plain condition, spectral modification alone produced259

a gain of nearly 27 percentage points (p.p.), while both temporal modifica-260

tion techniques led to gains of nearly 21 p.p. The combination of spectral261

and temporal modifications resulted in a gain of 41 p.p., corresponding to262

a keyword score of 79%, a near three-fold reduction in error rate over the263

Plain baseline (62% errors vs. 21% errors). The moderate SNR led to a 21264

p.p. gain from spectro-temporal modification, corresponding to an error rate265

reduction factor of 3.3. Spectral modifications were generally more successful266

than temporal modification. Both temporal modification algorithms led to267

similar gains.268

A repeated-measures ANOVA on gains with factors of SNR and mod-269

ification condition confirms clear effects of both SNR [F (1, 21) = 46, p <270

0.001, η2 = 0.44], modification [F (3, 63) = 75, p < 0.001, η2 = 0.40], to-271

gether with a small but significant interaction between the two [F (3, 63) =272

11.4, p < 0.001, η2 = 0.07] due to the more limited potential for gains from273

the Spect+Temp modification approach at the moderate SNR. Based on274

a Fisher’s Least Significant Difference of 2.9 p.p., spectro-temporal gains ex-275

ceeded those seen in all other processing conditions. Gains in the Spect con-276

dition were greater than the two temporal conditions at the adverse SNR.277

However, Spect and Temp* produced equivalent gains in the moderate278

SNR condition.279

The two temporal modification conditions produced statistically-equivalent280

gains. The lack of a significant benefit in using a component motivated by281

cochlear-scaled entropy [25] in retiming, demonstrated by the equivalence of282

scores in the Temp and Temp* conditions, is consistent with recent findings283

reported in [29] and [30], where it was observed that the ‘entropy’ element of284

cochlear-scaled entropy is not the main determinant of which speech regions285

are important for intelligibility.286

3.2. Phoneme scores287

In order to determine whether individual consonants or vowels benefit-288

ted preferentially from spectral or temporal modification, a phoneme-level289

analysis of listener responses to the sentence stimuli was carried out. In all,290

sentences contained some 163 960 phonemes, enabling robust estimation of291

hit rates for individual phonemes. The distribution of phonemes of the Shar-292

vard sentences can be found in [20]. Responses were matched at the phoneme293

level to transcriptions of Sharvard sentences using a dynamic programming294

11



alignment algorithm. In each case the entire response rather than the key-295

words alone was used for matching, in order to allow for alternative word296

segmentations.297

Average phoneme hit rates (not shown) follow the same pattern as the298

keyword scores presented in section 3.1 but from a higher baseline, rang-299

ing from 47% for Plain speech in the low SNR condition to 95% for the300

Spect+Temp modification in the moderate SNR condition. Figure 3 de-301

picts per-phoneme recognition rates for consonants (upper panels) and vowels302

(lower panels). While baseline scores in the Plain condition differ across303

individual consonants and vowels, the striking feature of this figure is the304

near-uniform ranking of temporal, spectral and spectro-temporal modifica-305

tion methods across phonemes. At the more adverse SNR, spectral modifica-306

tion is more beneficial than temporal modification for nearly all consonants.307

Likewise, the combination of spectral and temporal modification clearly out-308

performs spectral modification for each individual consonant. The picture309

is similar for vowels at both SNRs. At the moderate SNR there is less of a310

clear separation between the spectral and temporal techniques with respect311

to consonant scores, but the proximity of scores to ceiling levels precludes312

deeper analysis.313

We also examined changes in segment durations relative to the Plain base-314

line in the retimed condition Temp as well as the Spect condition. Dura-315

tions were obtained by aligning sentences to their phoneme transcriptions316

using the Montreal Forced Aligner [31] which uses triphone-based hidden317

Markov models (HMMs). To avoid any bias from aligning modified speech318

using models trained on Plain speech, a separate set of HMMs was trained319

for each modification using all sentences for that condition.320

Changes in consonant and vowel durations as a result of retiming, along-321

side those from the Spect condition, are shown in Figure 4, expressed as322

percentage increases relative to the Plain baseline. As expected, changes in323

the Spect condition are small; any variations from the 0% baseline (i.e., no324

increase in duration) stem from the fact that a separate set of HMMs was325

trained in each condition, leading to slight phoneme alignment differences. In326

contrast, individual consonants show significant changes in the Temp condi-327

tion, the majority falling in the range of 20-40% expansion. No clear pattern328

linked to manner or place of articulation is evident. However, the voice-329

less plosives /p, t, k/ and the affricate /tS/ show least expansion. These330

are the only phonemes in Spanish with significant silent intervals (note that331

Spanish voiced plosives, when not realised as approximants, have at most a332
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Figure 3: Identification rates (percentage correct) for individual consonants (top) and
vowels (bottom).

brief period of occlusion [32]). It seems likely that the expansion of sounds333

consisting largely of near-silence is not favoured by the criterion of maxim-334

ing glimpsing opportunities embodied in the GCRetime algorithm. Overall,335

vowel durations increase proportionally less than those of consonants, proba-336

bly because their higher energy produces less of a need for masker-avoidance337

via retiming. Durational changes were not correlated with intelligibility gains338

at either SNR [adverse SNR: Pearson r = −0.01, p = .97; moderate SNR:339

r = −0.31, p = .17].340
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Spect conditions. The Spect condition is included as a reference to indicate the scale of
variations due to the forced alignment procedure (see text).

3.3. Independent gains?341

While spectral and temporal modification methods combine synergisti-342

cally, the gains fall short of those that would be produced if the two methods343

reduced error rates independently. An assumption of independence of errors344

requires scores given by345

ScoreSpect+Temp = 1 − (1 − ScoreTemp)(1 − ScoreSpect)
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This leads to predictions of 86% for the adverse condition (actual: 79%)346

and 97% at the moderate SNR (actual: 91%). An analysis at the level347

of phoneme hit rates rather than keywords produces similar results (91%348

predicted versus 85% actual for the adverse SNR, 98% predicted versus 94%349

actual for the moderate SNR).350

4. Energetic masking351

To explore the basis for intelligibility improvements, an analysis of ener-352

getic masking was carried out using a glimpsing metric. Glimpsing measures353

the degree to which a target signal exceeds the masker in time and frequency,354

computed using an auditorily-inspired signal representation. Glimpse pro-355

portion (GP) is the output of the initial stage of the glimpsing model of356

speech perception [24] and has been used as proxy for energetic masking357

in objective intelligibility metrics in applications involving speech synthesis358

[e.g., 33], speech broadcasting [34], and estimation of binaural speech intelligi-359

bility [35]. The starting point for GP computation is an auditory ratemap, a360

time-frequency-energy representation of the speech and masker signals. The361

ratemap is computed by passing the signal through a 55-channel gammatone362

filterbank with filter centre frequencies arranged on an ERB-rate scale from363

50 Hz to 8000 Hz. The instantaneous (Hilbert) envelope at the output of each364

filter is smoothed with leaky integrator with time constant of 8 ms, downsam-365

pled to 100 Hz and log-compressed. Ratemaps are produced independently366

for speech and masker, and the proportion of time-frequency regions of the367

ratemap for speech exceeding that of the masker by a local SNR threshold368

(here set at 0 dB) defines the raw glimpse proportion.369

The mean GP in each of the current set of 10 experimental conditions370

(5 modifications including Plain × 2 SNRs) predicts intelligibility quite371

well, with a Pearson correlation coefficient of 0.89 [p < .001]. However, we372

recently demonstrated that for a speech signal whose duration changes with373

respect to a reference speech signal (in this case the Plain speech), better374

predictions are possible using the extended GP metric, GPext [36]. Amongst375

other features, GPext takes speech rate changes into account by weighting376

glimpse proportion by a factor corresponding to the ratio of the modified377

speech duration to the unmodified speech duration. For the conditions of378

the current experiment, GPext is highly-correlated with intelligibility [ρ =379

.96, p < .001], as shown in Figure 5. This outcome suggests that listeners’380

performance in the task is dominated by peripheral energetic masking rather381
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Figure 5: Keyword scores plotted against intelligibility predictions from the extended
glimpse proportion metric for the conditions of the experiment. Darker symbols come
from the moderate SNR conditions.

than informational masking from the competing talker. Indeed, given both382

the target-masker gender difference and the relatively adverse SNRs of the383

current experiment, there seems little possibility that listeners were confusing384

or misallocating speech material from the target and masker.385

Continuing with the glimpse-based characterisation of the target-masker386

relationship, the upper panel of Figure 6 presents marginal distributions387

of raw (i.e., GP rather than GPext) glimpse likelihoods as a function of388

auditorily-scaled frequency for the adverse SNR condition (the pattern for389

the moderate SNR is very similar). These ‘GP spectra’ are per-frequency-390

channel means of GP measured across the entire corpus, for each modification391

technique. The two temporal modification techniques (Temp and Temp*)392

produced very similar results; for clarity only Temp is shown.393

GP spectra reveal some clear differences between those modifications in-394
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Figure 6: Mean glimpse proportion (upper panel) and mean glimpse count (lower panel)
in each frequency channel for the adverse SNR condition.

volving spectral changes (Spect and Spect+Temp) and the Temp mod-395

ification approach. For the frequency region from 700 Hz upwards, spectral396

techniques achieve a glimpse proportion of nearly double that of the tem-397

poral modification, which in turn shows only a small advantage over the398
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Plain baseline. However, the inverse pattern is seen below 500 Hz, with399

substantially fewer glimpses available as a result of spectral modification.400

These patterns suggest that much of the advantage of SSDRC stems from401

the transfer of energy from low frequencies (the first formant region and be-402

low) to mid and high frequencies (F2/F3 region and above). The fact that403

temporal modification produces only a modest gain over the unmodified base-404

line in terms of raw GP suggests that the intelligibility gains stemming from405

Temp and Temp* are not due to spectrally-based increases in glimpsing406

opportunities. Instead, gains presumably come from durational changes, as407

indicated in the duration-sensitive GPext metric. The mean GP curves for408

Spect+Temp reflect an almost identical modest gain over Spect as those409

seen for Temp over Plain, supporting the idea that temporal processes em-410

bodied in the GCRetime algorithm act to a large degree independently of411

spectral changes in SSDRC.412

The lower panel of Figure 6 shows mean glimpse counts per channel.413

With this duration-sensitive measure, Temp now shows a clear advantage414

over the Plain baseline throughout the entire frequency range. However,415

it is of interest to note that in spite of the augmented glimpse count for416

Temp due to durational expansion, Spect still produces a larger absolute417

glimpse count in the frequency region above 800 Hz.418

In spite of the explanatory power of the glimpsing model in the current419

experiment, generalisation to other temporal modification algorithms needs420

to be tested, since a glimpsing metric (albeit GP and not GPext) was one421

component, along with cochlear-scaled entropy, of the GCRetime algorithm422

used to produce the temporal modification path.423

5. Discussion424

The main finding of the current study is that the application of a temporal425

modification technique to spectrally-modified speech leads to substantial ad-426

ditional gains over and above the sizeable improvements produced by spectral427

modification alone. The fact that intelligibility scores are very well predicted428

by the extended glimpse proportion model [36] that takes durational changes429

into account suggests that gains are largely due to energetic masking release430

rather than changes that reduce informational masking, since the glimpsing431

metric is based on identifying spectro-temporal regions that survive masking432

in the auditory periphery. With respect to energetic masking release, SSDRC433

exhibits a clear transfer of energy from the frequency region below 500 Hz to434
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the mid and high frequency part of the spectrum. The loss of low frequency435

energy can be expected to reduce the salience of voicing cues conveyed by436

resolved harmonics. However, the impact of such a loss might have been437

relatively minor here since the contrastive role of voicing in Spanish is not438

great compared to languages such as English [32].439

The current experiment provides no evidence that specific groups of sounds440

benefit from the spectral, temporal or spectro-temporal modification algo-441

rithms under test. Gains, while not uniform, were observed for all con-442

sonants and vowels, with a ranking that closely mirrors across-consonant443

mean intelligibility scores. One possible explanation arises from the nature444

of fluctating maskers, where the main determiner of intelligibility is the local445

temporal relationship between target and masker. Compared to a stationary446

masker, where high-energy phonemes are likely to escape masking most of447

the time while weaker sounds are more consistently masked, in the presence448

of a nonstationary masker with sufficient modulation depth (as is the case for449

competing speech) more intense sounds will suffer masking at least some of450

the time; similarly, fainter sounds will escape masking some of the time. An451

alternative and perhaps complementary reason as to why gains are spread452

across all phonemes comes from the fact that the task required listeners to453

identify words in sentences, thereby imposing morphological, lexical, syn-454

tactic and to a limited extent semantic constraints on their responses. In455

support of this notion, almost all errors at the phoneme level were deletions:456

the ratio of deletions to combined insertions + substitutions rose from 3.4457

for Spect+Temp at the moderate SNR level to 9.4 for Plain speech at458

the adverse SNR. Listeners clearly preferred to delete entire words than to459

hypothesise alternative candidates.460

The notion of high-level constraints on phoneme hit rates can also be461

invoked to explain the lack of a significant correlation between durational462

increases and score increases at the segmental level. Additionally, as men-463

tioned in the introduction, changes to segment durations might have had a464

negative impact, but since we observe the net benefits of modification it is465

entirely possible that some of the positive effects of energetic masking release466

were counteracted by distortions to canonical forms.467

Finally, we note that SSDRC and GCRetime were chosen to represent468

spectral and temporal modification approaches respectively, but other choices469

merit investigation. We recently demonstrated that uniform elongation of470

speech (i.e. a uniform reduction in speech rate) is also an effective strategy471

for intelligibility enhancement in fluctuating maskers [15], producing similar472
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gains to GCRetime in a modulated noise condition. Uniform time-stretching473

was applied to SSDRC as part of the ‘uwSSDRCt’ technique reported in474

[37], but this combination did not increase intelligibility over SSDRC in a475

competing talker condition. However, uwSSDRCt also contained components476

to expand the vowel space and enhance transients, and it is possible that these477

interacted negatively with time-scale expansion. Future studies are needed to478

clarify whether imposing a slower speech rate on spectrally-modified speech479

leads to additional benefits.480

6. Conclusions481

In the current study, spectral and temporal modification techniques com-482

bined synergistically to boost the intelligibility of sentences in the presence of483

a fluctuating competing speech masker. While gains from spectral and tem-484

poral modification were not independent, increases in keyword scores were485

substantial, corresponding to a 3-fold reduction in error rates over unmodified486

speech. Intelligibility rates are well-predicted by a glimpse-based energetic487

masking metric which incorporates speech rate changes.488
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