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Abstract

Pulse fishing may be a global optimal strategy in multicohort fisheries. In this article we compare the pulse

fishing solutions obtained by using global numerical methods with the analytical stationary optimal solution.

This allows us to quantify the potential benefits associated with the use of periodic fishing in the Northern

Stock of hake. Results show that: first, management plans based exclusively on traditional reference targets

as Fmsy may drive fishery economic results far from the optimal; second, global optimal solutions would

imply, in a cyclical manner, the closure of the fishery for some periods and third, second best stationary

policies with stable employment only reduce optimal present value of discounted profit in a 2%.
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1. Introduction

Since Beverton and Holt (1957) target reference points have been one of the main tools used by fishery

managers to make decisions about future catch options. Among the classical target reference points Fmsy

(the fishing mortality rate) stands out. If applied constantly it results in the maximum sustainable yield,

MSY (Caddy and Mahon, 1995).

There are two major shortcomings in this classical reference point approach. First, Fmsy is time inde-

pendent and fishery management strategies are evaluated using time dependent indicators, usually the net

present values of profits. Second, Fmsy is a stationary concept and optimal harvesting in a multi-cohort

model may take the form of periodic fishing (Clark, 1976; Spulber, 1983; McCallum, 1988; Tahvonen, 2009).

In order to overcome these drawbacks, numerical methods have been implemented to find the optimal

fishing mortality trajectory that maximises the net present profits of the fishery using the Beverton-Holt

multi-cohort models (Hannesson, 1975; Horwood, 1987; Björndal et al., 2004a, 2004b and 2006). In all these

cases, the optimal solution of the problem is non stationary but consists of pulse fishing, i.e. periodic cycles

of fishing followed by fallow periods for stock to recover. This means that periodic fishing leads to higher

profits than those implied by fishing at a constant stationary rate. It is worth mentioning that pulse fishing

may be optimal in this context because it mitigates the consequences of imperfect gear selectivity.
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Pulse fishing has some advantages in live product fisheries (Graham, 2001) and it has been applied for

years, under spatial rotation, in location-specific areas with marine invertebrates and sedentary reef fishes

(Caddy, 1993; Botsford et al., 1993; Hart, 2003; Hart and Rago, 2006; Cinner et al., 2006). Nevertheless,

fishery agencies do not consider periodic fishing as a feasible management tool, mainly because if rotation

is not possible its application may imply high financial and social costs. If rotation is not possible, periodic

fishing means the cyclical closure of the fishery for some periods with no alternative use of the fleet. As a

result, most fishery agencies consider that fishery management must be stationary.

Optimal stationary solutions have recently been assessed for different fisheries (Dichmont et al., 2010;

Grafton et al., 2006, 2007, 2010; Kompas et al., 2010; Kulmala et al., 2008; Da Rocha et al., 2010; Da

Rocha and Gutiérrez, 2011). In a seminal paper Grafton et al. (2007) analyse the biomass associated with

yield maximisation and discounted profit maximisation for Western and Central Pacific big eye tuna and

yellowfin tuna, the Australian northern prawn fishery and the Australian orange roughly fishery. They find

that stationary fishing mortality maximising net present profit is a win-win strategy compared to the usual

reference point policy, achieving higher profits and safer biomass. As a result of this study, the Australian

federal government started to manage 26 species based on profit maximisation as from the beginning of 2008

(Black, 2007).

However, we know that the Beverton-Holt multi-cohort models used to assess the stock is not globally

concave, so it is possible that constrained stationary solutions may be locally but not globally optimal. If

this is the case, what is the relative advantage of pulse fishing with respect to optimal stationary fishing

mortalities in a Beverton-Holt multi-cohort model?

In this paper we quantify the potential benefits associated with the use of periodic fishing in the Northern

Stock of hake. In particular, we compare the solutions obtained by using global numerical methods with the

analytical stationary optimal solution. This allows us to measure the potential benefits of periodic fishing

relative to the optimal institutional constrained solution. We find that when periodic fishing is compared

with optimal stationary solutions rather than with time independent classical reference points (Fmsy), the

potential disadvantage of stationary fishing is much lower than shown in previous articles.

2. The model

Age-structured models are the common population structure used in Virtual Population Analysis for fish

stock assessment (Lassen and Medley, 2000). The population structure is applied to a group of fish that has

the same life cycle, similar growth rates and can be considered a single biological unit. This unit stock is

broken down into cohorts, i.e. into groups of fish that have the same age and probably the same size and

weight, and that will mature at the same time.

Assume that the fish stock is broken into A cohorts. That is in each period t there are A− 1 initial old

cohorts and a new cohort is born. Let zat be the mortality rate that affects to the population of fish of the

ath age during the tth period. This mortality rate can be decomposed into fishing mortality, F at , and natural

mortality (non-human predation, disease and old age), ma,

zat = F at +ma.
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While the fishing mortality rate may vary from one periods and one age to another, natural mortality is

constant across all periods. Moreover, it is assumed that the fishing mortality at each age is given by

stationary selection patterns, pa, i.e.

F at = paFt.

Assume that the fish population is continuous and the mortality rate acts on the fish stock continuously

throughout the period. Then the size of a cohort varies according to

Na+1
t+1 = e−z

a
tNa

t , (1)

where Na
t is the number of fish of the a

th age at the beginning of the tth period.

It is worth mentioning that by backwards substitution Na
t , can be expressed as a function of the past

mortality rates and initial recruitment,

Na
t = e−z

a−1
t−1 (Ft−1)Na−1

t−1 = e−z
a−1
t−1 (Ft−1)e−z

a−2
t−2 (Ft−2)Na−2

t−2 = .... = Πa−1
i=1 e

−za−it−i (Ft−i)N1
t−(a−1).

Therefore we can express Na
t as

Na
t = φatN

1
t−(a−1), for a = 1, ...A, (2)

where

φat = φ(Ft−1, Ft−2, ...Ft−(a−1)) =

 1 for a = 1,

Πa−1
i=1 e

−za−it−i (Ft−i) for a = 2, .....A,

can be understood as the survival function that shows the probability of a recruit born in period t− (a− 1)

reaching age a > 1 for a given fishing mortality path
{
Ft−1, Ft−2, ...Ft−(a−1)

}
.

The size of a new cohort (recruitment), N1
t+1 , depends on the spawning stock biomass of the previous

year, SSBt,

N1
t+1 = Ψ(SSBt), (3)

where Ψ denotes the stock/recruits (S-R) relationship. Moreover, the spawning stock biomass, SSB, is a

function of the stock weight distribution, ω, and the maturity fraction, µ, of each age,

SSBt =

A∑
a=1

µaωaNa
t . (4)

Let Da
t and Cat denote the number of fish that dye from natural causes and from fishing (catches),

respectively. Then the dynamics of the cohort can be expressed as

Na
t −Na+1

t+1 = Da
t + Cat .

Taking into account equation (1) and the definitions of natural and fishing mortality, Da
t and C

a
t can be

expressed as

Da
t =

ma

zat

(
Na
t −Na+1

t+1

)
=
ma

zat

(
1− e−z

a
t

)
Na
t ,

Cat =
F at
zat

(
Na
t −Na+1

t+1

)
=
F at
zat

(
1− e−z

a
t

)
Na
t . (5)

This last equation is known as the Baranov catch equation (Baranov, 1918).
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3. Optimal Management

The profits of the fishery for any period t are given by the difference between revenues and fishing cost.

That is

πt =

A∑
a=1

praCat (Ft)− TC(Ft), (6)

where pra is the selling price for a unit of fish of age a and TC represents the total fishing cost which depend

on the fishing rate. For the shake of simplicity, prices are assumed to be constant over time and total cost to

be a convex function. In the Discussion in Section 5 we discuss the implications of these assumptions based

on the sensitivity analysis carried out.

Note that πt can be interpreted in several ways from the economic point of view (Da Rocha et al., 2011).

For instance, if the cost is zero πt represents the discounted revenues of the fishery. Alternatively, if the

price is one and the cost is zero, πt represents the discounted yield of the fishery.

Assume that the objective of the fishery manager is to find the fishing mortality that maximises the

present value of the future profits of the fishery. Formally, the present value of future profits is given by

J =
∑∞
t=0 β

tπt. The parameter β ∈ [0, 1] is the discount factor which represents how much the manager is

willing to pay to trade-off the value of fishing today against the benefits of increased profits in the future,

measured by higher biomass and recruitment. Considering β = 1 implies that managers care about future

changes as much as if they occurred in the current year. By contrast, considering β = 0 implies not caring

about the future at all.

Therefore, the objective for the managers of the fishery should be to find the fishing rate trajectory that

maximises the present value of the fishery, J, taking into account that the spawning stock biomass is always

greater than the precautionary level, SSBpa, and the dynamics described by equations (1) to (5). Formally,

the maximisation problem consists of solving

max
{Ft,N1

t+2}∞t=0
J =

∞∑
t=0

βt

{
A∑
a=1

praya(Ft)φ
a
tN

1
t+1−a − TC(Ft)

}
,

s.t.



N1
t+1 = Ψ

(∑A
a=1 µ

aωaφatN
1
t+1−a

)
∀t,

SSBpa ≤
∑A
a=1 µ

aωaφatN
1
t+1−a ∀t,

Na
0 given, ∀a,

(7)

where ya(Ft) = ωa Ft
paFt+m

(
1− e−paFt−ma)

.

In the appendix we show how to find the first order conditions that solve this problem. Formally, the
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optimal paths can be characterised by the following set of dynamic equations

A∑
a=1

pra
∂ya(Ft)

∂Ft
Na
t −

1

Na
t

∂TCt
∂Ft

=

A−1∑
a=1

pa


A−a∑
j=1

βj
[
praya+j(Ft+j) + (Ψ′t+jλt+j + θt+j)µ

a+jωa+j
]
Na+j
t+j

 ,

(8)

A∑
a=1

βapraya(Ft+1+a)φat+1+a = λt+1 − Et
A∑
a=1

βa(Ψ′t+1+aλt+1+a + θt+1+a)µaωaφat+1+a, (9)

Na+1
t+1 = e−z

a(Ft)Na
t , ∀t ∀a = 1, ...A− 1, (10)

N1
t+2 = Ψ

(
A∑
a=1

µaωaNa
t+1

)
, ∀t, (11)

θt+1

[
A∑
a=1

µaωaNa
t+1 − SSBpa

]
= 0, ∀t, (12)

where λt and θt are the Lagrange multipliers associated with the first and second restrictions of the max-

imisation problem (7), respectively.

Condition (8) shows how the mortality rate, Ft, is selected. The insight is the following. In the optimal

path, an increase in current mortality rate leads to an increase in current fishery profits (left-hand side)

that is offset by a decrease in future profits derived from reductions in future stock (right-hand side). In

particular, the left-hand side represents the effects of changes in fishing mortality on the current profit of

the fishery. However, the right-hand side shows the effect on the future size of the living cohorts, t + 1 to

t+A−1 (first sum) and on the future stock recruitments from periods t+2 to t+A (second sum). This can

also be visualised by looking at age structure in Table 1. The left-hand side represents the effects of Ft on

the structure of the fishery in period t (column t). The first sum on the right-hand side shows the effects of

Ft on the structure of future size of the living cohorts (lower triangle matrix) and the second sum illustrates

the effects of Ft on future stock recruitments (row a = 1). Note that β affects the future net present value

(right side). Note that making β = 1 implies caring about future changes as much as if they occurred in the

current year. By contrast, considering β = 0 implies not caring about the future at all.

[Insert Table 1]

Equation (9) indicates that the optimal path recognises that the effect of an increase in the stock recruit-

ment, N1
t+2, is two-fold. On the one hand, the abundance in periods t + 2 to t + 2 + A − 1 goes up, which

leads to an increase in catches (left-hand side). On the other hand, the SSB for periods t+3 to t+3+A−1

also increases, (right-hand side).

Equations (10) and (11) show the dynamics of the population cohorts. Finally, equation (12) indicates

whether SSB is below the precautionary level, SSBpa. The Lagrange multiplier θt shows the effects on

mortality when the precautionary principle is not binding. If at a period t, the SSB is below the precaution-

ary level, SSBpa, then θt indicates how much the fishing mortality rate should be modified between periods

t−A and t− 1.
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3.1. Optimal Stationary Solution

The optimal trajectories derived from maximization problem (7) are the optimal paths for {Ft}∞t=1,

{λt}∞t=2, and
{
Na
t+2

}∞
t=1

which satisfy the infinity set of equations that characterises the first order conditions

(8) to (12). In this section we focus on solutions that solve the manager maximisation problem leading the

fishery to a stationary situation. Our strategy to find these optimal stationary trajectories follows two steps.

First, we algebraically characterises the stationary solution, i.e. the solution that determines a unique value

for the long-term fishing rate which if applied, will generate a stationary recruitment leading to the maximum

long-term profits of the fishery. Second, the optimal path of fishing mortality that drives the fishery from

the initial conditions to the stationary solution is found using numerical methods.

Assume that the precautionary restriction is not binding, θt = 0. In this context, a stationary solution is

defined as an optimal solution characterised by a vector (Fss, N
1
ss, N

2
ss, ...N

A
ss, λss) such that for any future

period t

Fss = Ft = Ft+1,

Na
ss = Na

t = Na
t+1, ∀a = 1, .., A,

λss = λt = βjλt+j , ∀j = 1, .., A+ 1.

The first order conditions (8)-(11) valued at the stationary solution can be reduced to the following 3−equation

system,

A∑
a=1

pra
∂ya(Fss)

∂Fss
φatN

1
ss −

∂TC

∂Fss
=

A−1∑
a=1

pa


A−a∑
j=1

[
βjpraya+j(Fss) + Ψ′λssµ

a+jωa+j
]
φa+jt N1

ss

 , (13)

A∑
a=1

β1+apraya(Fss)φ
a(Fss) = λss

[
1−Ψ′

A∑
a=1

µaωaφa(Fss)

]
, (14)

N1
ss = Ψ

(
A∑
a=1

µaωaφatN
1
ss

)
, (15)

which can be solved for (Fss, N
1
ss, λss). Once N

1
ss is known the cohort size of any age can be calculated using

the survival function valued in the stationary solution, i.e. Na
ss = φa(Fss)N

1
ss.

Now, to make the computation of the optimal trajectories that drives the fishery from the initial conditions

to the stationary solution described above tractable, we assume that convergence is reached in a finite number

of periods, T . In other words we truncate the first order conditions using that FT = Fss, N1
T+2 = N1

ss, and

λT+1 = λss. Taking this into account, the model is solving by choosing F1,F1, F2, ....., FT = Fss such

that the system of equations implied by the first order condition (8)-(9) is satisfied. This system of (T − 1)

nonlinear equations with (T−1) unknowns can be solved relatively quickly using standard numerical methods

following the algorithm bellow:

1. Collect all the exogenous parameters describing biological and economic characteristics of the fishery.

This includes the biological parameters (ωj , µj , pj ,mj), the initial population distribution (N j
0 ), the

precautionary limit reference point (SSBjpa), the economic parameters (prj , TC) and the discount

factor used to calculate variables in present terms, β.
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2. Using outside information, select the S−R relationship to be used. With this relationship, it is possible

to find the recruitment for any fishing rate from optimal condition (15). Some examples:

• If the S −R relationship is defined as the Shepherd relationship3 (1982),

N1
t =

αSSBt

1 +
(
SSBt

K

)b ,
then recruitment is determined by

N1
t = K

(
α
∑A
a=1 µ

aωaφat − 1
)1/b

∑A
a=1 µ

aωaφat
.

So, α,K and b have to be reported.

• If the S−R relationship is not well defined then recruitment may be considered as a fixed variable

that does not depend on fishing rate, that is N1
t = N1.

3. Assume that the fishery is above the precautionary level. That is SSBt > SSBpa ∀t, and therefore

θt = 0, t = 2, .., T . Compute the stationary solution,
(
Fss, N

1
ss, λss

)
implied by (13)-(15).

4. Guess a trajectory for the fishing mortality rate path, {Ft}T−1t=1 , and assume that in period T the steady

state has been reached, i.e. FT = ... = FT+A+1 = Fss.

5. Project the future age cohort structure for periods 1, ..., T + A + 1, {Na
t }

T+A+1
t=1 using the initial age

structure, Na
0 , and the S-R relationship. To do this, we use the cohort dynamic population (1), and

the recruitment relationship, (3) and (4).

6. Compute Ψ′t using the recruitment relationship, (3) and (4), associated with {Na
t }

T+A+1
t=1 .

7. Using λss compute λT from equation (9) valued at t = T − 1,

λT =

A∑
a=1

βapraya(Fss)φ
a
ss(Fss) +

A∑
a=1

Ψ′T+aλssµ
aωaφass(Fss).

Note that Ψ′T+a is a function of N
1
T+a which depends on the guess {Ft}

T+a−2
t=1 .

8. Given λT , compute {λt+1}T−1t=1 backwards recursively using equation (9).

9. Using the values of {λt+1}T−1t=1 , the guess of {Ft}
T−1
t=1 and the cohort projections {Na

t }
T+A+1
t=1 , it is

now possible to compute how far we are from the first order condition (8). Formally the following is

calculated: ∀t = 1, ....T,

ft =

A∑
a=1

pra
∂ya(Ft)

∂Ft
Na
t −

∂TCt
∂Ft

−
A−1∑
a=1

pa


A−a∑
j=1

βj
[
praya+j(Ft+j) + (Ψ′t+jλt+j + θt+j)µ

a+jωa+j
]
Na+j
t+j

 .

Using an appropriate algorithm, a new guess for the mortality rate path is selected.

3Parameter α is the maximum recruitment attainable when the SSB is very low, K > 0 is a threshold of SSB below which

the likelihood of population collapse is increased and b > 0 measures the power of the density-dependent effects.
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10. Repeat the procedure for step 4 to 9 until ft is low enough.

11. Finally check that
{∑A

a=1 µaωaNa
t

}T
t=1

> SSBpa. If the restriction is not satisfied, we should guess

a new set of positives values for 4 {θt}Tt=2.

3.2. Optimal Global Solutions: Pulse Fishing

It is well known that the Beverton-Holt multi-cohort models used to assess the stock are not globally

concave. Therefore the constrained stationary solution described in Section 3.1 may be a local rather than

a global optimum (Tahvonen 2009).

In order to find the global solution, we start by transforming the original dynamic optimisation problem

of infinite dimension, (7), into a low dimension non-linear optimisation problem. This transformation is

carried out using the control vector parameterisation approach (Vassiliadis, 1993; Vassiliadis et al., 1994)

which consists of dividing the considered time horizon into ρ constant (equidistant or not) or variable time

intervals.

In order to implement this, the management problem (7) must first be rewritten in continuous time. Let

n(a, t) be the number of fishes of age a at time t. In age structured models, the conservation law is described

by the following McKendrick-Von Foerster equation (Von Forester, 1959; McKendrick, 1926)

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −[m(a) + p(a)F (t)]n(a, t).

The Stock Recruitment relationship occurs as a boundary condition at age zero.

n(0, t) =
αSSB(t)

1 +
(
SSB(t)
K

)β ,
where, the SSB is given by

SSB(t) =

∫ A

0

µ(a)ω(a)n(a, t)da.

Profits in period t (6) can be written in continuos time as

π(t) =

∫ A

0

[pr(a)C(a, F (t))− TC(F (t))] da,

where C(a, F (t)) = p(a)F (t)
m(a)+p(a)F (t)

(
1− e−m(a)−p(a)F (t)

)
n(a, t). Therefore, the objective function to be max-

imised can be rewritten as

J =

∫ ∞
0

(∫ A

0

[pr(a)C(a, F (t))− TC(F (t))] da

)
e−rtdt,

where r is the instantaneous interest rate and it is related with the discount factor in such a way that

4 In long-run management plans, the stock is usually far from SSBpa. So for those cases the best initial guess is θt = 0.
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β = (1 + r)−1. Therefore, the maximisation problem (7) can be expressed in continuous time as

max
F (t)

J =

∫ ∞
0

([pr(a)C(a, F (t))− TC(F (t))] da) e−rtdt,

s.t.



∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −[m(a) + p(a)F (t)]n(a, t). ∀t, a

n(0, t) =
αSSB(t)

1 +

(
SSB(t)

K

)β ∀t,

n(A, t) = 0 ∀t,

SSBpa ≤
∫ A

0

µ(a)ω(a)n(a, t)da. ∀t,

n(a, 0) given, ∀a,

(16)

Second, the controls are approximated in each interval by using different base functions, generally low

order polynomials (zero order - steps, and order one - ramps, as depicted in Figure ??). The coeffi cients of

the polynomials considered constitute a vector ω (that also includes the lengths of the intervals when these

are variable) so that u = u(ω).

[Insert Figure 1]

This parametrisation transforms the original dynamic optimisation problem of infinite dimension into a

non-linear optimisation problem (NLP) of finite dimension where p=[µ,ω] (time invariant parameters and

control parametrisation coeffi cients, respectively) is the new vector of decision variables. As a consequence,

this new problem can be solved by employing different optimisation algorithms considering that in each

internal iteration the process dynamics need to be integrated in order to evaluate both the objective function

and the constraints.

For the most general case, the control approximation can be defined by employing Lagrange polynomials

of the form (Vassiliadis, 1993):

u
(i)
j (t) =

Mj∑
k=1

σijkΘ
(Mj)
k (τ (i)),

where j = 1, 2, ..., ν; i = 1, 2, ..., ρ; t ∈ [ti−1, ti] and τ (i) is the normalised time on each interval i, which is

given by the following expression

τ (i) =
t− ti−1
ti − ti−1

=
t− ti−1
qi−1

,

9



and the M-order Lagrande polynomials (Θ(M)
k ) are defined as

Θ
(M)
k (τ) ≡


1 if M = 1,

M∏
k′=1,k 6=1

τ − τk′
τk − τk′

if M ≥ 2.

The parameters σijk of these polynomials are directly related with the vector of new decision variables ω.

For the case of fixed final time problems and one control variable, the approximation of this variable is

given by

u(t) = ωi ∀i ti−1 ≤ t < ti−1 + qi.

So the vector of decision variables is formed by both the value of the steps as well as by the time interval

lengths: ω = [ω1, ..., ωρ, q1, ..., qρ−1] ∈ R2ρ−1. For the same case, but considering ν control variables with

constant time interval lengths, it is verified that ω ∈ R(ν+1)·(ρ−1).

In our application, to transform of the infinite dynamic optimization problem (16) into the NLP of finite

dimension, the time horizon is divided into ρ = 80 constant time intervals and the controls in each interval

are approximated using ramps.

Once the NLP of finite dimension is set, stochastic optimisation algorithms are used to solve it. In

particular two global stochastic optimisation algorithms plus one hybrid strategies are considered to solve

the transformed optimisation problem. We describe briefly the main characteristics of each method:

• DE: Differential Evolution. It is a metaheuristics algorithm for global optimisation of nonlinear and

(possibly) non-differentiable continuous functions presented by Storn and Price (1997). This is a

population-based method which, starting with a randomly generated population, computes new candi-

date solutions by calculating differences between population members. It handles stochastic variables

by means of a direct search method which outperforms other popular global optimisation algorithms,

and it is widely used by the evolutionary computation community.

• eSS-SSm: Enhanced Scatter Search. As presented in Egea et al. (2009), Scatter Search is a population-

based metaheuristic method which combines a global phase with an intensification method (i.e., a local

search). This methodology is very flexible, since each of its elements can be implemented in a variety

of ways and degrees of sophistication. A basic design to implement scatter-search is given on the well-

known “five-method template” (Laguna and Martí, 2003): (1) A Diversification Generation Method

to generate a collection of diverse trial solutions. (2) An Improvement Method to transform a trial

solution into one or more enhanced trial solutions. (3) A Reference Set Update Method to build and

maintain a reference set consisting of the b “best” solutions found, where the value of b is typically

small compared to the population size of other evolutionary algorithms. Solutions gain membership

to the reference set according to their quality or their diversity. (4) A Subset Generation Method to

operate on the reference set, to produce several subsets of its solutions as a basis for creating combined

solutions. (5) A Solution Combination Method to transform a given subset of solutions produced by

the Subset Generation Method into one or more combined solution vectors.
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eSS-SSm is an advanced scatter search method developed by the IIM-CSIC Process Engineering Group

for chemical and bioprocess optimisation problems providing excellent results.

• Hybrid strategies: The key concept of hybrid methods is synergy. A hybrid method tries to exploit

the best properties of different methodologies. They combine global stochastic and local optimisation

algorithms. The global ones cover the whole search space to find the global optimum, but they are

slow in finding the exact location of this global solution. A promising strategy consists of obtaining a

good initial guess with one of these global methods and then fine tuning employing local optimisation.

These strategies take advantage of both the robustness of stochastic solvers and the effi ciency of local

methods when started in the optimum neighbourhoods. In this article, the hybrid strategy considered

is SSm+DHC.

The DHC algorithm (Dynamic Hill Climbind; De la Maza and Yuret, 1994) draws on ideas from

genetic algorithms, hill climbing and conjugate gradient methods. It is a direct search algorithm wich

explores every dimension of the search space using dynamic steps. It is formed by an inner and an

outer loop. The first one contains a very effi cient technique for locating local optima while the outer

loop ensures that the entire search space has been explored. In this work, only the local phase of the

algorithm has been used.

In order to select the algorithm that leads to the best results, it is necessary to perform an effi ciency

analysis. To that purpose, the convergences curves, which show the evolution of the best value obtained

by each solver over the CPU time , are constructed. With these representations, both the robustness (the

capability of the solver to attain consistently good final solutions) and the effi ciency (the speed of convergence

to the final solution) can be evaluated, allowing the user to select an appropriate algorithm to solve a given

optimisation problem.

4. The Northern Stock of Hake

In order to compare the optimal stationary and pulse fishing solutions, we apply the methods described

above to the Northern Stock of Hake (NSH). The NSH is a fishery managed with the advice of the Interna-

tional Council for the Exploitation of the Sea (ICES) and includes all fisheries in subareas VII and VIII and

also some fisheries in Subareas IV and VI (see Figure 2). Hake (merluccius merluccius) is caught throughout

the year, though the peak landings are made in the spring-summer months. It spawns from March to July at

depths of 120-160 m., mainly to the south and west of Ireland and moves to shallower water by September.

The two major nursery areas are the Bay of Biscay and off southern Ireland. As they become mature, the

fish disperse to offshore regions of the Bay of Biscay and Celtic Sea. Male hake mature at 3-4 years old

(27-35 cm) and females at 5-7 years old (50-70 cm).

[Insert Figure 2]

Hake has been the main species supporting trawling fleets off the Atlantic coasts of France and Spain since

the 1930s. The three main gear types used by vessels fishing for hake as a target species are lines (Spain),
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fixed-nets and other trawls (all countries). Landings in 2008 were 47, 800 tonnes, below the regulated TAC

of 54, 000 tonnes. Spain accounts for most of the landings with 53% of the total captures. France takes

30% of the total, the UK 7%, Denmark 3%, Ireland 3% and other countries (Norway, Belgium, Netherlands,

Germany, and Sweden) take smaller amounts (ICES 2009). Tables 2 and 3 display the main characteristics

of the Spanish and French fleets according to the European Data Collection Regulation, respectively.

[Insert Table 2]

[Insert Table 3]

After the collapse of spawning SSB in the 1990s, an emergency plan was implemented for the NSH in

2001 and 2002 (EC 1162/2001, EC 2602/2001 and EC 494/2002). After this emergency plan, a recovery

plan was implemented in 2004 (EC 811/2004). Its aim was to achieve a SSB of 140, 000 tonnes (Bpa) by

limiting fishing mortality to 0.25 and by allowing a maximum change in harvest between consecutive years

of 15%. The recovery plan was to be replaced by a management plan when the target level for the stock

had been reached in two consecutive years,. This objective was achieved in 2004, 2005 and 2006. So in 2007,

an Expert Working Group from the Scientific, Technical and Economic Committee for Fisheries (STECF,

2008a) was convened in Lisbon from 18-22 June to evaluate the potential biological consequences of the long

term management plan. The working group proposed as objective of this plan a shift from the current fishing

rate Fsq = 0.25 to Fmsy = 0.17 assuming gradual changes to avoid drastic season closures.

In order to calibrate the age structured model for this fishery two data sources are used. First, the infor-

mation regarding the biological parameters of the fishery comes from the Expert Working Group (STECF,

2008a). Most of the parameters result from the summary of Extended Survivor Analysis (XSA) results

from the 2006 update (ICES, 2007). Secondly, economic data on the fishery come from expert working

group meeting on Northern Hake Long-Term Management Plan Impact Assessment (STECF, 2008b) held

in Brussels on December 3-6 2007.

Table 4 shows, for each age, the number of fishes at the initial conditions, the parameters of the population

dynamics (selection pattern, weight and maturity) and the prices.5

[Insert Table 4]

As the S-R relationship we use the Shepherd relationship (1982) described by

N1 =
αSSB

1 +
(
SSB
K

)b . (17)

To calibrate this recruitment function and SSB data for the period 1978-2006 are used. Since parameter α

represents the slope of the S-R relationship at the origin, it is calibrated as the maximum value of N1
t /SSBt.

This calibration implies α = 2.4879, K = 168, 270 and b = 1.7602. The upper left panel in Figure 3 shows

this calibration and the data. We also use the values of the STECF groups for SSBpa = 140, 000 tonnes.

For calibrating the costs, we use data on the cost structure and the degree of dependency of hake for the

different FUs for the Spanish fleet in 2004 and for the French fleet in 2006 (See Table 5).

5To calculate prices as a function of ages we use data on 2007 daily sales for the Galician trawl, gill nets and long lines fleets.
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[Insert Table 5]

In the numerical simulations we assume that the cost of effort is proportional to the mortality rate,

TC = cF, where c = TC/F represents the average and the marginal cost. Once the total costs are known,

c is calibrated as this amount divided by the current mortality rate, F = 0.25.

In order to calibrate the total costs, we start by determining the running costs per day. First we calculate

fuel costs, other costs, depreciation and interest divided by the days at sea of each segment (see Table 6).

Second, the average costs weighted by the sea days for each segment are calculated (last column in Table

6). Third, the fuel costs are adjusted taking into account the increase suffered by the fuel price during 2007.

Since fuel prices rose from 0.346 Euros in late 2006 to 0.52 in early 2008, fuel costs have been multiplied by

1.5. These calculations imply a cost of the fishery of 1, 919.14 Euros per day. Since the hake dependency of

the fleet is 0.28, the costs per day imputed to hake are 542.50 Euros per day.

[Insert Table 6]

We assume that 543.17 Euros per day and 135, 635 days at sea are good proxies for the marginal cost and

total effort, respectively, so the total cost can be considered as C(F ) = 543.17 × 135, 635 = 73.57 millions

Euros.

We define three different scenarios for the problem proposed:

• Scenario 1: The smooth trajectory that drives the fishery from the initial conditions to Fmsy using a

constant annual reduction in fishing mortality of 15%.6

• Scenario 2: The trajectory that drives the fishery smoothly from the initial conditions to the optimal

stationary solution.

• Scenario 3: The trajectory that drives the fishery from the initial conditions to the global optimal

solution.

Scenario 1 is simulated calculating Fmsy as the fishing rate that maximises the stationary yield. For

the NSH this results in Fmsy = 0.172. In Scenario 2 the optimal stationary trajectory is obtained using the

algorithm described in Section 3.1. As a result for the NSH we obtain Fss = 0.119.

In relation to the Scenario 3, the three global methods described in Section 3.2 are applied to the NSH

considering a time horizon of 80 periods for the transformed problem. Several runs (n = 5) have been

performed on a Intel Core2 Quad 2.40 GHz. for the algorithms considered to solve the NLP problem

associated with the maximisation problem (3) to attain an average function J . The maximum CPUtime

was set to 8 hours. The effi ciency analysis of the results for three global methods leads to the selection of

the hybrid strategy. This method converges to high quality solutions faster than the other global stochastic

optimization algorithms considered. With this hybrid strategy, the global optimal solution for the NSH

6This scenario is similar to the management strategy proposed by the Expert Working Group in the Long Term Plan for

this fishery (STECF/SGBRE-07-03).
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consists of fishing every four years applying a fishing rate of Fperiodic = 0.489 in the harvesting years and

three consecutive fallow years.

Figure 3 shows the changes over time in F , SSB and the yield under the three scenarios. Notice that

even for the optimal pulse trajectory the SSB levels implied are safe over the time (higher than 140,000

kgT). However, the SSB cycle is not in the rank of the historical data. The maximum SSB recorded is lower

than the 354,760 kgT implied by the four-year period predicted by the model, because the optimal pulse

that maximises the present value of profits would imply, in a cyclical manner, the closure of the fishery for

three years and then allowing harvesting once the stock has recovered. This policy would require alternative

employment for the fleet for the three fallow years of the cycle; otherwise the costs associated with this

management rule would be very high from the social point of view.

[Insert Figure 3]

Table 7 summarises the quantitative results for the three trajectories. The long run values for each

scenario are shown for F , SSB, yield and the net present value of profits. The net present value of the

profits associated with each trajectory is calculated using for β = 0.95.

[Insert Table 7]

It is worth comparing how far in terms of present value of profits the pulse fishing solution (Scenario 3)

is from the optimal stationary solution (Scenario 2). We observe that the stationary trajectory represents

2% less present value of profits than the optimal periodic pulse trajectory. Furthermore, the stationary

trajectory implies a higher net present profit and higher SSB in the long term than the Fmsy trajectory.

In particular, for the NSH the stationary trajectory represents 19% more present value of profits than the

Fmsy trajectory. This result is along in the same lines as that of Grafton et al. (2007).

The analysis has been repeated without considering costs in the objective function to be maximised. We

draw two conclusions. First, the optimal stationary fishing mortality is almost the same as that the reference

target set in the long term management plan for this fishery, Fmsy. This implies similar a present value of

profits associated with the both smooth trajectories. Second, when costs are not considered the potential

benefit from a periodic trajectory is lower.

[Insert Table 8]

5. Discussion and policy recommendation

In this study we have shown how the advantages of pulse fishing are lower when compared to stationary

trajectories than to reference points. The results of numerical simulations show that pulse fishing entails far

lower benefits than indicated previously in the relevant literature.

These results were obtained using constant prices and linear costs in fishing mortality. These assumptions

are very similar to those in Hanneson (1975). However, the advantages of pulse fishing are closely related to

them.
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Is it reasonable to assume that hake prices will remain constant over time? When it is possible to alternate

between different stocks of hake and/or to freeze catches from one year for the next, it can be assumed that

pulse fishing solutions can be implemented while maintaining a constant supply over time. In this case, the

constant price assumption seems reasonable.

But the NSH is a fresh fishery. Vessels may be at sea for 10-15 days, and the prices of their landings

— which depend on size — are higher than those of frozen hake imported from other fisheries (Namibia,

Argentina).

Price changes could be introduced into the model in two ways. If it is assumed that there are no

differences in the price per kg of fish of different sizes, it suffi ces to assume that prices are isoelastic functions

of quantities, . In this case, revenues can be written as[
A∑
a=1

pya(Ft)N
a
t

](1−ε)
.

This assumption is used to assess the economic impact of management plans. The value considered for this

assessment was ε = 0.2.

If it is assumed that the price per kg varies for fish of different sizes, price elasticities can be introduced

via age in a way very similar to the above case. If pra = pa Y a−ε, then revenues can be written as

A∑
a=1

[paya(Ft)N
a
t ]
(1−εa)

.

Another assumption used in our work is that fishing mortality costs are linear. This results from the

assumption of closely homogenous fleets, which enables a linear relationship to be established (the catchability

coeffi cient) between fishing days and fishing mortality. This is the most neutral assumption in regard to the

assessment of the advantages of pulse fishing over stationary solutions. However, other cost configurations

are also possible.

For instance it is well known that if fisheries showed increasing yields then costs would not be convex

and the benefits from pulse fishing would be greater. Hake as a species does not appear suitable for school

fishing along the lines of North Sea Herring.

However it is possible to assume that yields are decreasing, and that fishing costs are convex. For example

van Oostenbrugge et al. (2008) show that when the number of days on which fleets may fish is limited, as is

the case here, a more than proportional reduction in days is required to reduce fishing mortality, i.e. fishing

mortality costs are convex.

What would be the implications for our model of abandoning the assumption of constant fishing mortality

unit costs and prices? Under this new assumption the analytical solution could be characterised and the

numerical solution found. Figure 4 shows the results of seeking the numerical solution using control vector

parameterisation if the following is used as the objective function

A∑
a=1

[paya(Ft)N
a
t ]
(1−εa) − cFα.

[Insert Figure 4]
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When ε = 0, the solution is similar to that for constant prices. If ε > 0, the price function introduces a

mechanism that reduces the advantages of pulse fishing solutions: the more sensitive prices are to variations

in catches, the more desirable stationary solutions become. Cost convexity also has a considerable impact.

When α = 1.5, the stationary solution is optimal even with constant prices.

Concave and convex costs can be considered as reduced forms of more complex relationships that can be

incorporated into the model. For instance Da Rocha, Cerviño and Gutiérrez (2010) show that it is possible

to introduce fleet dynamics into an age-structured model, with forward-looking firms that make decisions

discounting the sum of future profits. Another possible extension of the model would be to consider that

the catchability coeffi cient is not constant but dependent on time, horsepower and tonnage (see Da Rocha

and Gutiérrez, 2011). Of course, these changes might influence the results. And our guess is that in a richer

environment, periodic solutions would prove inferior to stationary ones.

As mentioned in the Introduction, there are cases of fisheries which are exploited on a pulse basis.

However, in general the fact that stocks are exploited jointly by several countries, the non malleable nature

of capital and employment, the impossibility of storing catches and the possibility of losing market access all

make it inadvisable to use pulse solutions that would entail the closure of fisheries for some seasons. In other

words stationary solutions are implemented because there are numerous effects not considered explicitly in

the model that make pulse fishing inadvisable.

This study should be seen as measuring the institutional constraints faced by regulators. A comparison

of the stationary and pulse solutions reveals a shadow price of all the implicit constraints not included in

the model (non linear prices, convex costs, fleet dynamics, effort indices, etc). The numerical simulation run

shows that when all these effects are ignored the stationary solution gives results only 2% below those of

the pulse solution. This gives a measure in terms of discounted present value of all the factors not included

in the model. If regulators, resorting to their experience and expertise, consider that reducing the sum

total of discounted benefits by 2% is a low price to pay for keeping the fleet at work continuously, then out

simulations show that the stationary solution is optimal.
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Table 1: Age Structure and the Intertemporal Maximization Problem

t t+1 t+2 ... t+A-2 t+A-1 t+A t+A+1

a=1 N1
t N1

t+2 ...

a=2 N2
t N2

t+1 ... N2
t+A−2

... ... ... ... ... ... ... ...

a=A-1 NA−1
t NA−1

t+1 NA−1
t+2 ... NA−1

t+A−2 NA−1
t+A

a=A NA
t NA

t+1 NA
t+2 ... NA

t+A−2 NA
t+A−1 NA

t+A+1

Table 2: Characteristics of the Spanish Fleet (2004)

Segment Fleet Length Class Number of vessels Total employment Gross Value Added (m€)

Demersal Trawlers 24-40m 93 1,023 56.8

Pair Demersal Trawlers 24-40m 20 239 9.6

Longliners 24-40m 84 1,176 59.8

Total 197 2,438 126.2

Source: STECF, 2008b. Tables 6.1.5, 6.1.6, 6.1.8 y 6.1.9
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Table 3: Characteristics of the French Fleet (2006)

Segment Fleet Length Class Number of vessels Total employment Gross Value Added (me)

DTS-Targeted Nephrops 12-24m 204 759 45.4

DTS-Targeted Fish 12-24m 106 490 35.9

DTS 24-40m 55 389 28.9

Hook 24-40m 5 62 2.3

Netters 12-24m 60 351 22.2

Netters 24-40m 18 223 11.3

Others - 210 803 -

Total 658 3,077 -

Source: STECF, 2008b. Tables 6.2.5, 6.2.8-6.2.13

Table 4: Parameters by age

Initial conditions

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10

Na (1) 186, 213 152, 458 123, 457 100, 213 67, 409 35, 551 19, 674 10, 206 9, 147 4, 078 1, 819

Population dynamics

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10

pa 0.00 0.06 0.54 1.15 1.03 1.52 2.09 2.43 2.43 2.43 2.43

ωa (2) 0.06 0.13 0.22 0.34 0.60 0.98 1.44 1.83 2.68 2.68 2.68

µa 0.00 0.00 0.00 0.23 0.60 0.90 1.00 1.00 1.00 1.00 1.00

Prices

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10

pra (3) 2.36 2.93 3.42 3.85 4.55 5.22 5.81 6.22 6.92 6.92 6.92

Source: Meeting on Northern Hake Long-Term Management Plans (STECF/SGBRE-07-03) and ICES (2007)

(1) Thousand;(2) kg ; (3) Euros/kg
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Table 7: Comparison of the three scenarios with positive costs

Long Run Values Net Present Profits

F SSB Yield J ∆J

Scenario 1: Fmsy 0.172 1.9807e+ 005 3.395e+ 005 3.5752e+ 006 100.00

Scenario 2: Fss 0.119 2.5414e+ 005 3.314e+ 005 4.2736e+ 006 119.53

Scenario 3: Fperiodic 4.3562e+ 006 121.85

year 1 0 1.6719e+005 0

year 2 0 2.1240e+005 0

year 3 0 2.6985e+005 0

year 4 0.489 3.5476e+ 005 13.500e+ 005

Table 8: Comparison of the three scenarios with zero costs

Long Run Net Present Profits

F J ∆J

scenario 1: Fmsy 0.172 6.2946e+ 006 100.00

scenario 2: Fss 0.172 6.3363e+ 006 100.66

scenario 3: Fperiodic 0.170 6.3906e+ 006 101.53

Figure 1: Control Vector Parametrization (CVP) scheme
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Figure 2: ICES Fishing Areas
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Figure 3: Trajectories under the three scenarios: optimal (Fperiodic), the stationary solution (Fss) and smooth driven to the

reference point (Fmsy). Stock recruitment relationship (upper left panel); SSB (upper right panel); fishing mortality (lower

left panel) and yield (lower right panel)
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