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ABSTRACT

By means of massive (more than 1.2 ⋅ 106 molecules) molecular dynamics simulations at 300 K we have disentangled self- and cross-dipolar
contributions to the dielectric relaxation of liquid water that cannot be experimentally resolved. We have demonstrated that cross dipolar
correlations are of paramount importance. They amount for almost a 60% of the total dielectric amplitude. The corresponding relaxation
function is a one-step Debye-like function with a characteristic time, τcross, of the order of the phenomenological Debye time, τD. In contrast,
the relaxation function corresponding to the self-contribution is rather complex and contains a fast decay related to dipolar librations and a
second relaxation step that can be well described by two exponentials: a low-amplitude fast process (τ0 = 0.31 ps) and a main slow process
(τself = 5.4 ps) that fully randomizes the dipolar orientation. In addition to dipolar relaxation functions, we have also calculated scattering-like
magnitudes characterizing translation and rotation of water molecules. Although these processes can be considered as “jump” processes in
the short time range, at the time scale of about τD–τcross, at which the cross-dipolar correlations decay to zero, the observed behavior cannot
be distinguished from that corresponding to uncoupled Brownian translational and rotational diffusion. We propose that this is the reason
why the Debye model, which does not consider intermolecular dipolar interactions, seems to work at time t ≳ τD.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0168588

I. INTRODUCTION

Nowadays there is no doubt that water is a very complex
liquid that plays a prominent role in nature. In particular, water
dynamics is of paramount importance to understand many biologi-
cal and physicochemical processes. Due to the high dipolar strength
of water, one of the most popular techniques used to investigate
water dynamics in many different systems is broad band dielectric
spectroscopy (BDS).1

Dielectric relaxation measurements in liquids and glass-
forming systems are usually carried out in the frequency domain.
The measured magnitude is the frequency-dependent complex

dielectric permittivity, ε∗(ω) = ε′(ω) − iε′′(ω), which can also be
expressed as:

Φ∗(ω) = ε∗(ω) − ε∞
εs − ε∞

= ∫
∞

0
[−dφ(t)

dt
exp (−iωt)]dt (1)

Here, ε∞ is the high frequency limit value of the permittivity
and εs its static value. In this expression, φ(t) corresponds to the
autocorrelation function of the total dielectric polarization, M⃗(t),
i.e., φ(t) = ⟨M⃗(0)M⃗(t)⟩/⟨∣M⃗ (0)∣2⟩, where the average is over an
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equilibrium ensemble. By means of a phenomenological analysis
of Φ∗(ω) or φ(t) we can obtain two types of parameters. If we
are dealing with only one process: (i) a relaxation time, τ, charac-
terizing the time scale of the dielectric relaxation process; and (ii)
some shape parameters, which characterize the functional form of
Φ∗(ω) or φ(t). The simplest case is to consider for φ(t) a sin-
gle exponential function φ(t) = exp (−t/τD) which in the frequency
domain corresponds to Φ∗(ω) = 1/(1 + iωτD). This set of equa-
tions is known as Debye’s model and τD as the Debye relaxation
time. Debye arrived to this simple model in 19292 by consider-
ing a thermal ensemble of non-interacting rigid dipoles (molecules)
subjected to an applied electric field and assuming Brownian rota-
tional motions for the dipoles once the electric field is turned off.
Debye also noticed that τD can be expressed as τD = ξ/2kBT where
ξ is the rotational friction constant and kB the Boltzmann con-
stant. Moreover, according to Stokes law, for a spherical particle of
radius aR, rotating in a medium with viscosity η, ξ = 8πηa3

R. Then,
assuming spherical dipoles (molecules): τD = 4πηa3

R/kBT. On the
other hand, according to the Stokes-Einstein relationship, the trans-
lational self-diffusion coefficient for such molecules can be expressed
as D = kBT/6πηaT where aT is the molecular hydrodynamic radius
for translation. Then, we obtain that DτD = 2a3

R/3aT . This means
that for spherical dipoles (molecules) following rotational and
translational isotropic diffusion, DτD ≈ constant independently of
temperature.

In the case of water, although nowadays we know that at high
frequencies ε′′(ω) deviates from a simple Debye-like behavior, the
overwhelming contribution to ε′′(ω) is a peak that can be rather
well described by the Debye expression (see, e.g., Ref. 3). Accord-
ingly, the dielectric relaxation time determined in the usual way
(ωmaxτD = 1) –where ωmax is the frequency corresponding to the
maximum of ε′′(ω) at a given temperature– is called Debye time.
At 300 K τD ∼ 8–9 ps. Interestingly enough, the values of τD(T)
obtained from the dielectric experiments can be rather well approx-
imated by the values obtained from the Stokes-Einstein relationship
by using the water viscosity, η(T) and a rotational hydrodynamic
radius aR ≈ 1.4Å.4,5 On the other hand, it has been reported6 that
the experimental values of both, τD(T) and D(T), agree with DτD
= constant from 255 to 305 K. Moreover, recent data7 show that
DτD = 1.92 ± 0.05Å 2 in a wider temperature range (270–330 K).
We note, however, that if we assume that the hydrodynamic radius
for rotation and translation diffusion are the same (aR ≈ aT ≈ a)
the above value for DτD would imply a hydrodynamic radius
a ≈ 1.7Å. Thus, according to these results, one should be tempted
to say that the Debye’s model works rather well for the dielectric
relaxation of liquid water. In other words, that water molecules
approximately follow rotational and translational isotropic diffu-
sion at t ∼ τD. This is the reason why, from the times of Debye,
several authors have tried to construct models for the dielectric
relaxation of water based on single-molecule dynamics without
considering dipolar interactions (see Ref. 8 for a critical review).
However, nowadays we know that in spite of the apparently simple
chemical structure of a single water molecule (H2O), liquid water is
an extremely complex condensed matter system composed of net-
works of water molecules that are linked by hydrogen bonds (HBs),
breaking and forming continuously. The structure and dynamics of
such networks determine in some way the collective properties of
water.9,10

For a dipolar system in general, M⃗(t) can be written as M⃗(t)
= ∑N

i=1μ⃗i(t) with μ⃗i(t) the dipole moment of the ith molecule and N
the number of molecules in the system. Then

φ(t) =
⟨M⃗(0)M⃗(t)⟩
⟨∣M⃗ (0)∣2⟩

= 1

⟨∣M⃗ (0)∣2⟩
∑N

i=1⟨μ⃗i(0)μ⃗i(t)⟩

+ 1

⟨∣M⃗ (0)∣2⟩
∑N

i=1∑
N−1
j=1
j≠i
⟨μ⃗i(0)μ⃗j(t)⟩

= φself (t) + φcross(t) (2)

The amplitude of φself (t) is just φself (0) = 1/Gk where Gk is
the finite system Kirkwood correlation factor defined as Gk

= ⟨∣M⃗ (0)∣2⟩/Nμ2. Accordingly, the amplitude of φcross(t) is
φcross(0) = 1 − 1/Gk. Because of the long-range nature of dipolar
interactions, not only self-dipolar correlations, ⟨μ⃗i(0)μ⃗i(t)⟩, but also
cross-terms, ⟨μ⃗i(0)μ⃗ j(t)⟩, can play an important role in φ(t) and
Φ∗(ω), in particular, for strongly polar systems.11 The existence
and possible relevance of cross-dipolar contributions is well known
from the early times of dielectric spectroscopy (see, e.g., Refs. 12–14).
However, due to the impossibility of experimentally separating self-
and cross-dipolar terms, this separation has not usually been consid-
ered in the analysis of experimental data. In fact, the idea that cross-
correlations might be negligible – or that they should decay as the
self-terms do—was widely extended. Recently, the direct compar-
ison between dielectric relaxation and depolarized light scattering
data – together with the development of computational methods –
has allowed revisiting this question and highlighting the relevance of
cross-correlation terms in the dielectric response of polar liquids, as
water, and glass-forming systems.11,15–20 A new theory that considers
dipolar interactions has also been recently proposed.21

In the case of water, due to the HB network, the orientational
motions of different dipoles (molecules) become strongly correlated
over large distances. Then, why the Debye’s model, which does not
consider dipole interactions, seems to work? Here we investigate
this question by molecular dynamic (MD) simulations, that allow
reproducing in a reasonable way the experimental results. These
simulations allow not only separating self- and cross-dipolar con-
tributions, but also following what the water molecules do during
the dielectric relaxation. Even though we are dealing with dielectric
relaxation, we have also adopted the point of view of a scatter-
ing “practitioner” and we have calculated—in addition to the total
dielectric function φ(t) and its self- and cross-contributions—the
mean squared displacement and the intermediate scattering func-
tion of the relative motion of hydrogen atoms (positive charges) of
a water molecule with respect to the center of the negative electrical
charges, i.e., the individual dipolar dynamics. We have also calcu-
lated the mean squared displacement of the center of mass of water
molecules. We have found that the cross-dipolar-correlations are of
paramount importance for the dielectric relaxation of water. How-
ever, these correlations decay at a time close to the Debye time, τD.
In fact, we have demonstrated that at this time range, the dynamics
of water molecules cannot be distinguished from decoupled transla-
tional and orientational Brownian motions as it is considered in the
Debye model.2 This is the reason why, in spite of the complexity of
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water molecular dynamics, the Debye model that does not contain
dipolar interactions seems to work at t ≳ τD.

II. MOLECULAR DYNAMICS (MD) SIMULATION
METHODS
A. MD-simulation details

We have carried out massive MD-simulations of water by
means of the free open-source GROMACS package, within the
release version 2020.1. The TIP4P-EW model22 was chosen to cre-
ate a cubic box containing 1 223 871 water molecules that, after the
customary equilibration and optimization procedures, yields a cubic
cell length of 332.62 Å at a temperature value of 300 K. The produc-
tion runs were carried out under NVT conditions (fixed number of
molecules N, cell volume V, and temperature T). In order to evalu-
ate the electrostatic-like contribution terms, the Particle Mesh Ewald
algorithm was used and the standard Nose-Hoover protocol algo-
rithms were chosen as a thermostat and a barostat. A first production
run was calculated for 2.5 ns recording data every 0.1 ps, and, in
order to get an even better insight into the hydrogen bonding behav-
ior, we performed a subsequent 100 ps long MD simulation, saving
data every femtosecond. In neither of them, the so-called “lincs” con-
straint algorithm was used to fix the hydrogen bond lengths. Data
corresponding to the two different runs perfectly agree in the over-
lapping range. From the simulation trajectories we have calculated
the dielectric magnitudes and the scattering-like magnitudes follow-
ing the protocols that are described below. In spite of the limitations
of the TIP4P-EW model,22–24 we obtain a rather good agreement
between ε′′(ω) calculated from the simulations and experimental
data from different sources.3,25,26

B. Computation of the dielectric relaxation
function and validation

In order to calculate from the molecular dynamics simulations
results different correlators of dipolar character, the following pro-
cedure was undertaken. First, for each and every water molecule its
electric dipole moment was calculated assuming that the negative
charge was sitting on the dummy atom of the four site TIP4P-EW
model,22 and both hydrogen atoms had positive values. If one aver-
ages the scalar product of these dipole values at different delay time
values, all along the simulation, the self-dipole correlation func-
tion, φself (t), is, thus, obtained. We note that this correlator cannot
be directly measured from a dielectric spectroscopic technique. In
addition, we have also calculated the autocorrelation functions, not
for the separate individual molecular dipoles, but, instead, for the
dipoles resulting from the addition to a single one of all other dipoles
which should be closer to the chosen one than a certain reference
distance, r. This is equivalent to calculating the total dipole moment
for all dipoles inside a sphere of radius r centered in the chosen
molecule. Of course, we made significant enough averages for the
central water molecules all along the simulated box. Obviously, for
r values below intermolecular distances, only one dipole is within
the spheres and one gets, again, the self-dipole correlation. How-
ever, by increasing the extent of the radius value, one should expect
that at certain r-value (rc) one gets the dipole correlation func-
tion that should represent the bulk behavior and thereby mimic
the experimental dipole response. This would imply that for r ≥ rc

the relaxation function φ(t) = ⟨M⃗(0)M⃗(t)⟩/⟨∣M⃗ (0)∣2⟩ [see Eq. (2)]
would always be the same independently of r. It is noteworthy to say
that for a single chosen molecule, although the number of molecules
that contribute to the sum of the total dipole fluctuates around a
constant value, only the central one is always bound to be inside the
sphere, whereas the rest are free to enter, leave and/or reenter the
sphere as the molecular dynamics evolves. We note that by means
of this procedure, we are not only sampling our system (the sphere
of radius r) at different times (ensemble average), but also differ-
ent equivalent systems (spheres of the same radius) within our large
cubic simulated cell.

Figure 1 shows the function φ(t) calculated for different val-
ues of r [φr(t)]. This figure also includes the normalized φself (t)
[φself (t)/φself (0)] function [see Eq. (2)] for comparison. In fact,
it corresponds to an r smaller than the intermolecular distance
(d ≈ 3.3 Å). As can be seen, for r ≥ 40 Å, φ(t) does not change with r.
The inset of the figure also shows the amplitude of φself (t), φself (0)
= 1/Gk(r)—where Gk(r) is the r-dependent Kirkwood factor
defined as Gk(r) = ⟨∣M⃗(0)∣

2
r
⟩/Nrμ2. Here Nr is the average number

of water molecules contained in a sphere of radius r. As can be seen
in the inset of the figure, this amplitude does not depend on r for
r ≥ 40 Å. Obviously, the amplitude of φcross(t), φcross(0) = 1 − 1/Gk,
does not depend as well. Thus, the dipolar relaxation functions that
are analyzed and discussed in the following are those corresponding
to r = 40 Å. We note that these results are in line with those previ-
ously reported by Elton8 that also needed to consider hundreds of
molecules to reproduce the dielectric spectra. However, by using a
mathematical procedure that involves the restriction of the trans-
lational motions of water molecules, Hölzl et al. recently reported
that only about 70 molecules are enough to reproduce the fre-
quency dependence of the dielectric losses of real water.20 It is worth

FIG. 1. Dielectric relaxation function, φ(t), calculated for spheres with different val-
ues of the radius r : 6 Å (dashed-dot black line); 12 Å (continuous blue line); 25 Å
(continuous green line); 40 Å (continuous red line); and 55 Å (dashed black
line). The figure also includes the self-function, φself(t)/φself(0), for compari-
son (dashed red line). This function in fact corresponds to φ(t) for r smaller
than the intermolecular distance. The inset shows the amplitude [1/Gk(r)] of the
self-contribution to φ(t) as a function of r . It ranges from 1 at r of the order of
the intermolecular distance, to a constant value of about 0.44 for r ≥ 40 Å. The
continuous line through the points is just for guiding the eye.
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mentioning that in the framework of our work, the only goal of the
procedure described above is to compute a reliable dipolar relax-
ation function—and its self- and cross-contributions—that repro-
duce (properly translated to the frequency domain) the experimental
data.

It is worthy of remark, that the frequency dependence of the
imaginary part of the dielectric permittivity, ε′′(ω)—calculated from
the φ(t) corresponding to r = 40 Å by a method based on the CON-
TIN program27—nicely agrees with experimental data from different
sources3,25,26 [see Fig. 2(a)]. Figure 2(b) shows that this agreement is
particularly good in the “relaxation” frequency range, ω < 1013 rad/s,
which is the focus of this work. Obviously, one cannot expect that the
simulations with the TIP4P-EW model could reproduce perfectly
the high-frequency range where polarization effects and quantum
processes likely start to play a significant role.19

C. Computation of mean-squared-displacements
and incoherent scattering functions

The scattering-like magnitudes of interest in this work are: (i)
the atomic mean-squared-displacement, ⟨r2(t)⟩; and (ii) the inco-
herent intermediate scattering function, F(Q, t), where Q is the

FIG. 2. (a) Comparison (linear scale) between ε′′(ω), calculated from the φ(t)
corresponding to a sphere of r = 40 Å (continuous black line), and experimental
data from different sources (red circles). A shift by a factor 1.3 has been applied
to the frequency scale of the MD-simulations data. (b) The same comparison but
now in a logarithmic scale and in a reduced frequency range (ω < 1013 rad/s).
panel 2(a) also includes the self- (blue dotted line) and cross-contributions (green
dashed line) to ε′′(ω) calculated from the MD-simulations for comparison (see
Sec. III A).

momentum transfer. In this context, “incoherent” means single
particle properties. These magnitudes are mathematically related
with the so-called self-part of the van Hove correlation function,
Gself (r, t), which for a particular type of atom in the sample and for
an isotropic system, is defined as:6,7

Gself (r, t) = 1
N
⟨∑N

i=1δ(r − ∣r⃗i(t) − r⃗i(0)∣)⟩ (3)

Here, r⃗i(t) is the position of atom i at time t, and N the number
of atoms of type i. Gself (r, t) can be computed from the atomic tra-
jectories of the different atoms in the simulation runs, where the
ensemble average is evaluated by considering different origin of
times along these runs. Once Gself (r, t) has been computed, the cor-
responding ⟨r2(t)⟩ can be calculated as the second moment of the
distribution28,29 that for an isotropic system reads:

⟨r2(t)⟩ = ∫
∞

0
r2Gself (r, t)4πr2dr (4)

On the other hand, the intermediate scattering function, F(Q, t),
is defined as the Fourier transform of Gself (r, t) to the reciprocal
space,28,29 that—again for an isotropic system—can be practically
calculated as:

F(Q, t) = ∫
∞

0
4πr2 sin (Qr)

Qr
Gself (r, t)dr (5)

For simple cases, Gself (r, t) is a Gaussian function expressed as:28,29

GGauss
self (r, t) = [α(t)

π
]

3/2
exp [−α(t)r2] (6)

Here, α(t)is a non-defined function of time. For instance, for a pure
diffusive process, α(t) = 1/4Dt, with D the diffusion coefficient. In
the framework of the Gaussian case, ⟨r2(t)⟩ is expressed as ⟨r2(t)⟩
= 3/[2α(t)] and F(Q, t) is entirely determined by ⟨r2(t)⟩ as:

F(Q, t) = exp [−
Q2⟨r2(t)⟩

6
] (7)

In general, deviations from the Gaussian case can be expected. They
might be quantified, in a first approximation, by the second order
non-Gaussian parameter, α2(t), defined as:30

α2(t) =
3
5
⟨r4(t)⟩
⟨r2(t)⟩2

− 1 (8)

where ⟨r4(t)⟩ is the fourth moment of the Gself (r, t) distribution.
Obviously, α2(t) is zero in the Gaussian case.

III. RESULTS AND DISCUSSION
A. Dielectric relaxation magnitudes

Figure 3 shows the dielectric relaxation results calculated from
our water simulations at 300 K. The figure includes not only
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FIG. 3. Dielectric relaxation functions: φ(t) (squares); φself(t) (diamonds); and
φcross(t) (circles). The dashed line through the points corresponding to φcross(t)
is the fitting curve corresponding to a generalized Debye function (see the text).
The dashed line through the points corresponding to φ(t) is the total model curve
(see the text). The continuous line through φself(t) data corresponds to Ø(t)
= [FHM(Q, t) − EISF(Q)]/[1 − EISF(Q)]; Q is the momentum transfer (see the
text, Sec. III B).

φ(t) = ⟨M⃗(0)M⃗(t)⟩/⟨∣M⃗ (0)∣2⟩ but also the self- and cross-terms
contributions [see Eq. (2)] that, in principle, cannot be experimen-
tally separated but are unambiguously calculated from the MD-
results. We can see that the contribution of the self-term is only
about 44% of the total relaxation amplitude. This highlights the
paramount importance of cross dipolar correlations in the dielectric
relaxation of water. From the amplitude of φself (t), we can esti-
mate Gk ≅ (1/0.44) = 2.3, that is rather similar to the values recently
reported31 which were computed from MD-simulations data corre-
sponding to different nonpolarizable and polarizable water models:
SPC and SPC/E (Gk ≅ 2.5); TIP4P (Gk ≅ 2.2); and SWM4-DP (Gk
≅ 2.4). This not only gives support to our results but also indicates
that the amplitude of φself (t)—and thereby that of φcross(t)—seems
to be very similar for different water models. The calculated self-
and cross-contributions—properly transformed to the frequency
domain (see Sec. II–B)—are included in Fig. 2(a) for comparison
with the total ε′′(ω). Qualitatively, they look-like similar to those
recently reported in Ref. 19 and 20. However, we note that in those
cases the authors did not quantify either the amplitude of such
contributions or the equivalent value of Gk. Figure 3 shows that
the short-time (high-frequency) decay of φ(t) is mainly due to the
self-contribution, because φcross(t) is basically constant until about
0.5 ps. This regime is likely related with dipolar librations and oscil-
latory motions. We note that the non-vibrational decay (t ≳ 0.05 ps)
of the self-contribution is not unimodal as it has been recently sug-
gested in Ref. 20. It cannot be described by only one exponential
function. A stretched exponential, or the addition of two expo-
nentials, seems to be more appropriate. In fact, Fig. 4 shows that
φself (t) can be accurately modeled—in the full-time range—by a
relaxation function, that combines two exponential functions, plus
a vibrational contribution given by a damped harmonic oscillator
correlation function:

φself (t)/φself (0) = (1 − C)φv(t) + CφR(t) (9)

FIG. 4. Normalized self-contribution to the dipolar relaxation (blue circles). The
continuous blue line through the points is the fitting curve corresponding to the
proposed model [Eqs. (9)–(11)]. The other curves are the different components
of the model: dipolar librations (long-dash dashed line); fast relaxation compo-
nent (short-dash dashed line); slow relaxation component (black continuous line);
total relaxation component (dotted blue line). The arrows mark the indicated
characteristic times.

where the vibrational term is expressed as:

φv(t) = exp (−Γt) cos (ω0t) (10)

and the relaxation term reads as:

φR(t) = (1 − A) exp (−t/τ0) + A exp (−t/τself ) (11)

In these equations, C is the amplitude of the relaxation contribution
and A that corresponding to the slow main relaxation component
within the relaxation function. On the other hand, Γ and ω0 are,
respectively, the attenuation coefficient and the characteristic fre-
quency of the damped harmonic oscillator. τ0 and τself are the
relaxation times corresponding to the two relaxation components.
The values of these parameters obtained by fitting φself (t)/φself (0)
with Eqs. (9)–(11), are: Γ = 2.49 ⋅ 1013 s−1; ω0 = 8.70 ⋅ 1013 s−1;
C = 0.953; A = 0.898; τ0 = 0.31 ps; τself = 5.4 ps. The different con-
tributions of the model function are included in Fig. 4. The charac-
teristic times of the model are also indicated by arrows in this figure.
We note that due to the large separation between τ0 and τself , the
model used here is basically the same that the so-called “convolution
model” that has been previously used to fit both, coherent and inco-
herent, neutron scattering data of water7,9 and NMR data of water as
well.32 Although this model is phenomenological, the interpretation
of the fast component of the relaxation contribution is that it corre-
sponds to “localized” motions, i.e., restricted angular motions for the
dipoles. In other words, failed jump attempts, which contribution to
the global dipolar reorientation is fast but limited (see the ampli-
tude in Fig. 4). Starting from the value of C ⋅ A (C ⋅ A = 0.856), i.e.,
the level at which φself (t)/φself (0) decays by the vibration and local
relaxation processes (see Fig. 4), we can have an estimation of the
restricted angle explored by the dipoles by the combination of these
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two processes. In the framework of the “wobbling-in-cone model”33

C ⋅ A can be expressed as:

C ⋅ A = [1
2

cos (ϑ0)(1 + cos (ϑ0))]
2

(12)

where ϑ0 is the cone half-angle of dipolar oscillation. With the value
of C ⋅ A = 0.856 we obtain ϑ0 ≈ 18.5○, i.e., the maximum angular
range explored by the combined vibration and restricted dipolar
reorientation would be of the order of 37○. On the other hand, the
slow component of the relaxation function would correspond to a
global motion that fully randomizes the dipolar orientation. The
nature of this process will be discussed in the Sec. III B.

Now, concerning the decay of cross correlations, Fig. 3 shows
that, in contrast to the behavior of φself (t), φcross(t) displays a single-
step decay, which seems to approximately follow a single exponen-
tial. To better characterize this decay, we have fitted φcross(t) by
a phenomenological generalized Debye function: A exp [−(t/τ)γ];
with γ a shape parameter that can be smaller or larger than one.
The fitting curve is included in Fig. 3 as a dashed line. We can
see that the description is rather good in the full-time range, deliv-
ering a value of γ of 1.2, i.e., the cross-contribution results to be
slightly “compressed.” We also obtain a characteristic time, τcross, of
about 15 ps. We note that, obviously, the model function describ-
ing the total dielectric relaxation, φ(t) = ⟨M⃗(0)M⃗(t)⟩/⟨∣M⃗ (0)∣2⟩,
would be the addition of the functions describing both, self- and
cross-contributions, properly weighted (see Fig. 3). Accordingly,
apart from the vibrational process, the relaxation times character-
izing the total dipolar relaxation would be just those characterizing
both, the self- and cross-contributions: τ0; τself ; and τcross. How-
ever, from the experimental point of view, the usual procedure is
to determine a main characteristic time from the total dipolar relax-
ation, the Debye time, τD, from the condition ωmaxτD = 1—where
ωmax is the frequency corresponding to the maximum of ε′′(ω) at a
given temperature. Even though the Debye time is a phenomenolog-
ical time without any particular meaning from a microscopic point
of view, we have mimicked this procedure with the data of ε′′(ω)
obtained from the simulations and reported in Fig. 2(a). We obtain
a value of τD = 10.5 ps, slightly larger than the experimental values
(τD ≈ 8–9 ps) (we remind the shift factor of 1.3 for the frequency
scale of the simulations used in the comparison with the experimen-
tal data shown in Fig. 2). According to these results, τcross results to
be of the order of τD (τcross ≈ 1.4τD). Then, we can conclude that the
experimental phenomenological time, τD, approximately marks the
time-scale at which cross-correlations decay to zero. On the other
hand, we note that the total and single dipole relaxation times that
we obtained approximately follow the Madden-Kivelson relation-
ship τD/τself ≈ Gk (assuming that the so-called dynamic coupling
parameter is of the order of 1).34

At this point, it is important to note that in some cases, the
experimental values of ε′′(ω) and/or ε′(ω) are usually fitted in the
relaxation range by the addition of two or three Debye processes
(see, e.g., Refs. 3, 35, and 36). By this completely phenomenological
procedure, it is usually found that the most intense Debye contribu-
tion indeed corresponds to the so-called Debye peak (τD ≈ 8–9 ps at
≈300 K). The other (one or two) contributions—with smaller ampli-
tudes and relaxation times in the range 0.1–1 ps—give account for
the high-frequency deviations of ε′′(ω) from the main Debye peak.

The problem is that this kind of procedure uses to deliver different
relaxation times that cannot be related with any physical process,
in particular, in the high-frequency range. For example, in a recent
paper,37 the authors, following this procedure, they have interpreted
the process with relaxation time of about 1 ps at ambient tempera-
ture, as due to the single-dipole reorientation (self-contribution in
our terminology). Then, they have used the value of 1 ps to calcu-
late the ratio between collective and single-dipole relaxation times
(τD/τself ). In this way they reported very high values of this ratio
(≈8 at 300 K) that they use to check theoretical approaches. Our sim-
ulation results do not support this kind of procedure and interpre-
tation. We unambiguously calculate the single-dipole reorientation
function (φself (t)) that shows a main reorientation process with a
time scale of about 5 ps.

B. Scattering-like magnitudes
First of all, in order to get insight about the molecular displace-

ments at the time scales of the dielectric processes, we have calcu-
lated the mean squared displacement of the center of mass (CM)
of water molecules (⟨r2(t)⟩

CM
). The results obtained are included

in Fig. 5(a). As expected, the long-time regime of ⟨r2(t)⟩
CM

is pro-
portional to time (⟨r2(t)⟩

CM
= 6Dt with D = 2.627 × 10−9 m2 s−1)

indicating a pure diffusive regime for water molecules (from NMR:
D = 2.405 × 10−9 m2 s−138) at that time scale. We note, however, that
in previous MD-simulations—carried out with a smaller cubic cell
(about 65 Å side) and a TIP3P model of water—we have shown
that the Q-dependence of the incoherent relaxation times corre-
sponding to the oxygen motions (CM of water molecules), and the

FIG. 5. (a) Mean squared displacement corresponding to the center of mass (CM)
of water molecules (circles) and to the relative motion of hydrogen atoms (positive
charges) of a water molecule with respect to the center of negative charges (M-
point) (squares). The dashed-dotted line is the description (for t > 1 ps) of the
mean squared displacement of the CM by the jump diffusion model (see the text).
Non-Gaussian parameter, α2(t), (continuous line) for the CM displacements and
(dashed line) for the relative motion. (b) Effective power exponent Y (t) for the CM
motion (see the text). The thick gray line marks the time range τD–τcross.
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corresponding ⟨r2(t)⟩
CM

, can be nicely described by a jump dif-
fusion model with a jump diffusion time of about 0.3 ps and an
average jump length of about 0.6 Å (see supplementary material of
Ref. 7). The simulation data reported in this manuscript deliver sim-
ilar results. Figure 5(a) includes the ⟨r2(t)⟩ corresponding to a jump
diffusion model: ⟨r2(t)⟩ = 2⟨u2⟩ + ℓ2t/τ j ; where ℓ is the average

jump length, τj the characteristic time and
√
⟨u2⟩ a measure of the

dimension of the “thermal cloud.” The curve included in the figure
corresponds to

√
⟨u2⟩ = 0.63Å; ℓ = 0.64Å; and τj = 0.26 ps. These

values have been obtained by fitting (for t > 1 ps) the ⟨r2(t)⟩
CM

calculated from the simulations. We see that the jump diffusion
expression nicely describes the MD-simulation data for t > 1 ps.
Obviously, the description fails in the short-time ballistic-like regime
that in the framework of this model is represented by ⟨u2⟩. We note
that in the jump diffusion model, the pure diffusive regime charac-
terized by ⟨r2(t)⟩

CM
= 6Dt and α2(t) = 0, is only obtained at times

rather long with respect to the jump time. In order to be more precise
about when the water molecules reach this pure diffusive regime, we
have represented in Fig. 5(b) the calculated function Y(t) defined
as Y(t) = d[log ⟨r2(t)⟩

CM
]/d[logt]. We note that Y = 2 means pure

ballistic displacement and Y = 1 pure diffusion. A minimum in Y(t)
would indicate some kind of restricted motions, being the depth
of the minimum a measure of the “caging” strength. Figure 5(b)
shows that water molecules reach a pure diffusive regime only at
t ∼ τD − τcross, i.e., at a time scale more than 30 times the jump time.
It seems that the diffusion process of water molecules in general is
rather homogeneous at molecular level as the non-Gaussian para-
meter indicates: α2(t) is not very high in general (values smaller
than 0.3 use to indicate almost Gaussian behavior39) and becomes
zero (pure Gaussian, homogeneous behavior) once the isotropic dif-
fusive regime is established. Thus, although the translation of water
molecules clearly follows a jump-diffusion mechanism, at the time
scale of τD–τcross, the behavior of the mean squared displacement
and the non-Gaussian parameter—and thereby that of the self-part
of the van Hove correlation function—cannot be distinguished from
that corresponding to a pure continuous diffusion.

On the other hand, to obtain more information about the
dynamics of the individual dipoles, we can follow the relative motion
of the hydrogen atoms (positive electrostatic charges) of each water
molecule with respect to the center of negative charges in the
molecule (the so-called M-point in the geometry of water molecule
used in the TIP4P-EW model22). First, we have calculated the mean
squared displacement (MSD), ⟨r2(t)⟩, corresponding to such a rel-
ative motion as well as the non-Gaussian parameter, α2(t), which
can be considered as a measure of the complexity and/or hetero-
geneity of the motions (see, e.g., Ref. 40). The results obtained are
displayed in Fig. 5(a). As expected, the MSD of this relative motion
increases with time until it reaches a constant value, which indicates
a kind of “stable” (in time) localized relative motion of hydrogen
atoms of each water molecule. We see that the time scale at which
this constant value is reached is again of the order of τD–τcross. This
is also the time scale at which the non-Gaussian parameter, α2(t),
of this relative motion—that was very high at short times—goes to
zero. To know more about the type of localized motions involved, we
can calculate the intermediate scattering function, FHM(Q, t), corre-
sponding to this relative motion of H-atoms (see Sec. II C). Q is the

momentum transfer. For a localized motion in general, F(Q, t) can
be expressed as:41 F(Q, t) = EISF(Q) + [1 − EISF(Q)]Ø(t), where
EISF is the elastic incoherent structure factor, which resembles
the Fourier transformed asymptotic density distribution of mov-
ing atoms (H-atoms in our case). EISF in general depends on Q
and this dependence informs us about the geometry of the localized
motion.41 This is the great advantage of F(Q, t) function. On the
other hand, Ø(t) is a more or less complex function that depends on
the problem we are considering. In any case, the localized nature of
a motion implies that the characteristic time scale of Ø(t) has to be
constant for length scales larger than that of the localization. In other
words, this time scale cannot depend on Q for Q values smaller than
that associated to the localization length. The results obtained for
FHM(Q, t) are shown in Fig. 6 for different Q-values in the range 0.3
to 5 Å−1. The localized nature of the motions is clearly indicated by
the long-time plateaus of FHM(Q, t), which define the EISF(Q). The
obtained values of EISF(Q) in a wide Q-range, which extends until
Q = 10 Å−1, are shown in Fig. 7. The line through the points corre-
sponds to the fitting with the function: EISF(Q) = ∣sin (QR)/QR∣2,
which is the mathematical model associated to an isotropic rota-
tion on a spherical surface of radius R.41 For the radius we obtain
R = 0.88Å, which agrees rather well with the H-M average length
of the water model used in the simulations.22 Figure 6 shows that
τD–τcross marks the time scale at which the long-time plateaus
defining the EISF are established. Figure 6 also shows that the
decay function Ø(t) is rather complex and involves a first short-
time decay—likely related to vibrational motions of the hydrogen
atoms—and a second decay towards the final plateau that again can-
not be described only by a single exponential function. As expected,
Ø(t), calculated as Ø(t) = [FHM(Q, t) − EISF(Q)]/[1 − EISF(Q)],
does not depend on Q in the low-Q limit: Q ≲ 0.9 Å−1. More-
over, Fig. 3 shows that, properly scaled, Ø(t) agrees rather well
with the self-contribution function to the dipolar relaxation, φself (t),
calculated in an independent way. This indicates that the calcu-
lated scattering function in fact corresponds to the orientational

FIG. 6. Intermediate scattering function corresponding to the relative motion of
hydrogen atoms (positive charges) of a water molecule with respect to the center
of negative charges (M-point) for different Q (momentum transfer) values, from the
top: 0.3; 0.5; 0.7; 0.9; 1.1; 1.3; 1.5; 1.7; 1.9; 2.1; 2.5; 3; 4; and 5 Å−1. The thick
gray line marks the time range τD–τcross.
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FIG. 7. Elastic incoherent structure factor [EISF(Q)] for the relative motion of hydro-
gen atoms (positive charges) of a water molecule with respect to the center of
negative charges (M-point) (circles). The continuous line corresponds to the fit-
ting curve EISF(Q) = ∣sin (QR)/QR∣2 with R = 0.8825 Å. The inset shows a
magnification of EISF(Q) in the reduced Q-range indicated.

correlation function of order one (Sears expansion terminology42),
which is that describing the self-contribution of the dielectric relax-
ation. Moreover, the slow decay of Ø(t) towards the plateau should
be identified with the slow component of the relaxation function
[A exp (−t/τself )] [Eq. (11)] that was introduced in the Sec. III A.
What can we learn about this process from the EISF obtained? The
problem is that the same EISF can be obtained for a model of contin-
uous diffusion and for a model of isotropic rotational jumps. As in
the case of translational diffusion (jump diffusion) discussed above,
it has been shown by computer simulations that the rotation of water
molecules take place by large angular jumps, which have been related
to the breaking and reforming of hydrogen bonds and/or hydro-
gen bond exchange32,43,44 in the framework of the Ivanov model.45

Our results indicate, first of all, that the assumption of isotropy of
these processes is a good approximation. We note that the process
involving large angular displacements has to be rather complex at
molecular level as the high values of the non-Gaussian parameter,
α2(t), indicate [see Fig. 5(a)]. However, at the time scale of τD–τcross
the non-Gaussian parameter goes to cero and, according to the EISF,
the reorientation of water molecules cannot be distinguished from
a rotational diffusion. This is a similar situation to that found for
molecular translation (see above). In fact, our results are in this
way in line of those recently reported46 that found that rotational
dynamics of water molecules can be described as a Lévy rotor (non-
Brownian) at intermediate times, due to hydrogen bond breaking
and reforming, before becoming indistinguishable from Brownian
dynamics at t ∼ 25 ps.

IV. SUMMARY AND CONCLUSIONS
In conclusion, by comparing dielectric and scattering dynamic

magnitudes that in some cases cannot be obtained experimen-
tally, we have shown that: (i) the dipole-dipole correlations medi-
ated by HBs are of paramount importance for the dielectric
relaxation of water. They amount for almost a 60% of the total

dielectric amplitude; (ii) these correlations decay at t ∼ τcross, which
is of the order of the phenomenological time known as Debye
time, τD; (iii) the correlation function corresponding to the cross-
dipolar contribution is almost Debye-like and does not show any
evidence of librations or fast processes; (iv) in contrast, the cor-
relation function corresponding to the self-dipolar contribution is
a two-step function. The first decay corresponds to dipolar libra-
tions. The second one to a dipolar relaxation process that is not
unimodal. It can be described by a low-amplitude fast process (τ0
= 0.31 ps) and a main slow process (τself = 5.4 ps) that fully random-
izes the dipolar orientation; (v) then, the so-called Debye time has
not any microscopic physical meaning. From a microscopic point
of view, the times characterizing the dipolar relaxation of water
are —apart from the libration processes—τ0 = 0.31 ps, τself = 5.4 ps,
and τcross = 15 ps. We note that these values do correspond to the
MD-simulations carried out with the TIP4P-EW model of water.
We could estimate the values for actual water by means of the
shift factor (≈1.3) mentioned in the caption of Fig. 2. By applying
this shift factor we would obtain: τ0 ≈ 0.24 ps, τself ≈ 4.15 ps, and
τcross ≈ 11.5 ps; (vi) although the translation and rotation of water
molecules are “jump” processes in the short time range, at the time
scale of about τD the observed behavior cannot be distinguished
from that corresponding to uncoupled Brownian translational and
rotational diffusion. These are the reasons why—even though the
utmost importance of dipole–dipole correlations—the Debye model
(that does not consider intermolecular dipolar interactions) seems
to work at t ≳ τD.

These results not only contribute to clarify a long-standing
question but also open new views to general questions beyond water
dynamics. In particular, the importance of cross correlations for the
interpretation of dipolar relaxation in liquids and glass-forming sys-
tems and their relationships with the so-called Debye peak present
in many different systems other than water.
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