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LABURPENA

Zientziaren aurrerakuntzak asko zor dio behaketa hutsez naturan ereduak
antzemateko dugun berezko gaitasunari. Esate baterako, abilezia honek
historiaurretik eragin ditu aurrerapenak nekazaritzan, urtaroen aldaketak
aztertuz. Hala ere, behaketa soilean oinarritutako zientzia giza-begiaren
gabeziez mugatuta dago. Argi ikuskorrari dagozkion maiztasunetatik kanpo
uhin elektromagnetikoak antzemateko ezintasuna da gabezi horietako bat, begia
espektro elektromagnetikoaren zati txiki batera mugatuta baitago. Bestalde,
giza begiak ezin ditu urrunegi dauden edo txikiegiak diren objektuak bereizi.
XVII. mendean, aurrerakuntza teknologikoak objektu ikuskorren eskalaren mugak
zabaltzea ahalbidetu zuen. Garatu ziren gailuen adibide dira teleskopioa, zeinarekin
Galileo Galileik Jupiterreko lau satelite handienak behatu zituen [1], eta baita
zelulen behaketa posible bilakatu zuen mikroskopioa ere [2]. Aurkikuntza hauei
esker, edozein distantziara kokatuta dauden eta edozein tamaina duten objektuak
giza begiaren bidez bereiztea noizbait posible izango zela pentsa zitekeen.

Nahiz eta hurrengo mendeetan ohiko mikroskopio optikoek hobekuntza asko
izan zituzten, tresna hauen bidez lortu daitekeen tamaina bereizgarriaren muga
ehun nanometro inguruan geratu zen, hortik jaitsi ezinik. Muga honen arrazoia ez
da egon garapen teknologikoaren esku, argiaren izaera hutsari baitagokio. Argiaren
uhin izaerak Abbe-ren difrakzio muga ezartzen du, zeinak ohiko mikroskopikoen
bereizmena uhin-luzeraren erdiak ezarritakoa baino hobea izatea eragozten duen
[3,4]. Ondorioz, argi ikuskorraren kasuan, difrakzio muga 200-400 nm bitartean
dago ezarrita. Fenomeno fisiko hau dela eta, argiaren bidez uhin-luzera baino
tamaina txikiagoa duten objektuak behatu eta manipulatzeko, ohiko mikroskopio
optikoetatik haratago joatea eta metodo berriak bilatzea ezinbestekoa da. Hori
horrela izanik, nanofotonikaren arloa argia eremu oso txikietan lokalizatzeko
metodoak bilatu asmoz sortu zen.

Adibide gisa, gainazal metalikoek uhin-luzeraren azpitik argia lokalizatzea
ahalbidetzen dute [5]. Argiaren lokalizazio hau gainazaleko plasmoi polaritoien
(ingelesez surface plasmon polariton, SPP) kitzikapenari esker da posible, non
uhin elektromagnetikoak metala eta hutsaren arteko interfasean kokatutako
kondukziozko elektroien oszilazioekin akoplatzen diren. SPPak argiaren eta
elektroien propietate hibridoak dituzten uhinak dira. Hain zuzen ere, gainazal
metalikoetan zehar hedatzen dira uhin hauek, eta euren eremu elektrikoa metala
eta hutsaren arteko interfasean oso lokalizatua dago, norabide perpendikularrean
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esponentzialki jaitsiz. Bestalde, nanofotonikaren arloan interes handia sortu duen
beste sistema fisiko bat nanoestruktura metalikoak dira. Tamaina nanometrikoa
duten objektu hauetan gainazaleko plasmoi lokalizatuak kitzikatu daitezke, eta
plasmoi hauen bidez energia elektromagnetikoa oso bolumen txikian kontzentratu
daiteke. Muturreko lokalizazio honek difrakzio muga gainditzen du eta gailu
fotonikoen bitartez objektu nanometrikoak bereiztea eta manipulatzea ahalbidetzen
du. Halaber, sistemaren geometriaren arabera, gainazaleko plasmoi lokalizatuek
eremu elektriko erasotzailea ≈ 1 − 3 magnitude-ordenatan areagotu dezakete [6–9].

Metaletako kitzikapen plasmonikoak espektro elektromagnetikoaren maiztasun-
tarte ultramorean, ikuskorrean edo infragorri hurbilean daude kokatuta. Era
berean, nanofotonikaren arloak beste kitzikapen batzuk ere aztergai ditu, zeinak
maiztasun-tarte hauetan eta gainerakoetan ere kokatzen diren. Horren adibide
dira material polarretan kitzikatu daitezkeen fonoi polaritoiak [10], eta erdieroaleei
dagozkien exzitoi polaritoiak [11]. Kitzikapen hauek induzitzen duten eremu
elektriko bortitzaren eta lokalizatuaren ondorioz, espektroskopiaren alorrean zenbait
teknikek aurrerapen nabarmenak izan dituzte, hala nola, gainazalak areagotutako
Raman espektroskopiak (ingelesez surface-enhanced Raman spectroscopy) [12–15]
edota gainazalak areagotutako espektroskopia infragorriak (surface-enhanced
infrared spectroscopy) [16–18]. Are gehiago, eremu elektrikoaren muturreko
lokalizazioaren bidez, molekula isolatuak bereiztea ere posible bilakatu da [19–21].
Oro har, material ugariren kitzipakenek dituzten ezaugarri interesgarriak direla
eta, nanofotonika arlo multidisziplinarra da gaur egun [22]. Arlo honek dituen
aplikazioen adibide gisa honakoak aipa ditzakegu: eguzki-plaketan energiaren
bilketa [23, 24], terapia fototermala medikuntzan [25, 26], drogen detekzioa [27] edo
informazio kuantikoaren prozesaketa [28].

Nanofonotikaren arloak tamaina nanometrikoa duten sistema fisikoetan
propietate optiko berriak aurkitu ahal izateko metodo ezberdinak garatu ditu,
zeinek argiaren eta materiaren elkarrekintza eskala nanometrikoan nola gauzatzen
den aztertzen duten. Metodo ugarik, elektromagnetismo klasikoaren esparruan
kokatuta, Maxwell-en ekuazioetan oinarrituz argiaren uhin izaera deskribatzen dute.
Halaber, Maxwell-en ekuazioak ebatzi ahal izateko, beharrezkoa da materialen
permitibitatea ezagutzea. Horretarako, esperimentuen bidez lortutako permitibitate
lokalak (hau da, uhin-bektorearen menpenkotasunik ez dutenak) edo materia-
kitzikapenak deskribatzeko eredu teorikoetan oinarritutako permitibitatearen
adierazpen analitikoak erabili ohi dira. Modu honen bidez, argia eta materia
deskribatzeko eredu klasikoak konbinatuz, sistema fisikoen erantzun optikoaren
inguruan ezaugarri ugari aurkitu eta ulertu daitezke.

Nahiz eta metodo klasikoek nanofotonikaren alorreko esperimentuetan
behatutako fenomeno ugari deskribatu ditzaketen [29], eskala nanometrikoan fisika
klasikoaren bitartez azaldu ezin diren zenbait efektu kuantiko ageri dira. Beraz,
zenbait kasutan beharrezkoa da argiaren eta materia-kitzikapenen izaera kuantikoa
aintzat hartzea [30–32]. Alde batetik, materia kondentsatuaren fisikak atomoen eta
elektroien izaera kuantikoa deskribatzen du egoera solidoko sistematan, Schrödinger-
en ekuazioan oinarrituz eta lehen printzipioetatik abiatuz. Nanofotonikaren
testuinguruan, ikuspuntu honek permitibitate klasikoek kontuan hartzen ez dituzten

x



efektu ez-lokalak deskribatu ditzake [33–35], esate baterako. Horretaz gain, material
ezberdinen arteko tarte mikroskopikoetan tunel kuantikoaren eraginez sistemaren
erantzun kuantikoa nola aldatzen den ere azal dezake [36–38] . Bestalde, optika
kuantikoaren esparrua ere oso arrakastatsua izan da nanofotonikaren arloan zenbait
efektu kuantiko azaltzeko. Ikuspuntu honek, argiaren eta materia-kitzikapenen
kuantizazioan oinarrituz, argiaren egoera ez-klasikoak eta argiaren eta materia-
kitzikapenen arteko akoplamenduaren ondorioz agertzen diren fenomeno ez-linealak
aztertzen ditu. Adibidez, zenbait atomok fotoi isolatuak igor ditzaketela behatu
da [39, 40], eta fenomeno hau azaltzeko guztiz beharrezkoa da optika kuantikoaren
ikuspuntua erabiltzea.

Hori guztia dela eta, nanofotonikaren arloak aurrerakuntza nabarmena izan
du azken urteotan, materia kondentsatuaren fisikaren eta optika kuantikoaren
metodo ezberdinak erabiliz. Tesi hau nanofotonikaren arloan ekarpen bat egiteko
asmotan idatzi da, deskribapen kuantikoen garrantzia zehazteko helburuarekin,
metodologia klasikoaren mugak eta abantailak ere aztertuz bide honetan. Zehazki
esanda, tesi hau hiru zati nagusitan banatu da. Lehenik, sistema metalikoetan
plasmoien ezaugarriak aztertu ditugu, materia kondentsatuaren fisikan oinarritutako
metodologia erabiliz. Bigarrenik, dielektriko batez banatutako bi metalez osatutako
sistematan plasmoien kitzikapenak eragin dezakeen argiaren igorpena dugu aztergai.
Amaitzeko, eredu klasiko eta kuantikoek argia eta materiaren arteko elkarrekintza
ultrabortitza (ingelesez ultrastrong coupling) nola deskribatzen duten ikertu dugu,
eredu horien arteko loturak ere ezarriz.

Tesiaren lehen bi kapituluetan, gure analisiaren oinarrian dauden aurretiko
ereduak eztabaidatu ditugu. Hasteko, 1. kapituluan, argia eta materia-kitzikapenen
arteko elkarrekintza ulertzeko oinarria finkatu dugu. Maxwell-en ekuazioak
aztertu ditugu lehenik, eta kitzikapen ezberdinek (hala nola, plasmoiek eta
molekulen bibrazioek) materialen permitibitatean duten eragina eztabaidatu dugu
gero. Ondoren, argiaren eta materiaren ereduak konbinatu ditugu, ikuspuntu
klasikotik abiatuta materia-kitzikapenen eta barrunbe plasmonikoetako edo
dielektrikoetako (ingelesez, plasmonic cavity eta dielectric cavity hurrenez hurren)
modu elektromagnetikoen arteko elkarrekintza deskribatu ahal izateko. Zehazki,
argia eta materiaren arteko elkarrekintza ahularen (non horien arteko akoplamendu
indarra argiaren eta materiaren galera-tasak baino txikiagoa den) eta elkarrekintza
bortitzaren (non handiagoa den) [41] arteko desberdintasunetan ipini dugu arreta.
Kapituluarekin bukatzeko, barrunbeetako elektrodinamika kuantikoaren (ingelesez
cavity quantum electrodynamics, cavity QED) inguruko sarrera egin dugu, argiaren
eta materiaren elkarrekintza optika kuantikoaren ikuspuntutik nola aztertzen
den ikusi dezagun. Bestetik, 2. kapituluan materia kondentsatuaren fisikaren
ikuspuntua hartu dugu, metalen egitura elektronikoaren deskribapen mikroskopio
zehatz bat egiteak sistemaren erantzun optikoaren azterketan duen eragina
ikertzeko. Eztabaida hau bi ardatz nagusitan banatu da. Alde batetik, dentsitate
funtzionalaren teoriak (ingelesez Density Functional Theory, DFT) eta denboraren
menpeko dentsitate funtzionalaren teoriak (Time Dependent Density Functional
Theory, TDDFT) metodo klasikoek baino plasmoien deskribapen zehatzagoa
ahalbidetzen dutela aztertu dugu. Bestetik, metal-dielektriko-metal materialez
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osatutako tunel-lotuneetan (ingelesez tunneling junction) elektroiek dielektrikoa
tunel efektuaren bitartez zein tasatan zeharkatzen duten kalkulatu dugu. Tasa hau
erabilita, tunel-lotuneetatik igortzen den argiaren intentsitatea kalkulatu daiteke
(5. kapituluan zehaztuko dugun bezala).

Oinarri teorikoa finkatuta, tesi honen ikerketa prozesuan zehar lortutako
emaitzak aurkeztu ditugu ondoren. Hasieran, lehen printzipioetatik abiatuta
kitzikapen plasmonikoen deskribapena gauzatu dugu. Zehazki, 3. kapituluan,
paladioan ipini dugu arreta eta material honi dagokion (110) norabideko gainazalean
zein plasmoi existitzen diren aztertu dugu. Horretarako, DFTn oinarritutako
metodologia erabili dugu lehenik gainazaleko banda egitura kalkulatzeko, atomoen
sare-egituran oinarrituta. Ondoren, banda egituraren bidez, sistemaz kanpoko
perturbazio ahul batek metalean induzitzen duen dentsitate elektronikoa kalkulatu
dugu TDDFTn oinarrituta [42, 43]. Emaitza hauek kitzikapen plasmoniko
ezberdinak aztertzeko aukera ematen dute. Horrela, lehendabizi gainazaleko
plasmoien ezaugarriak izan ditugu ikergai. Kalkulu teorikoen arabera, limite
lokal klasikoan (uhin-bektorearen anplitudea zero egiten den limitean) lortu dugun
plasmoiaren maiztasuna bat dator aurretiko esperimentuetan lortutako datuekin.
Hala eta guztiz ere, efektu ez-lokalak aztertzerako garaian, dispertsioari dagokionez
(hau da, maiztasunak uhin-bektorearekiko duen menpekotasunari dagokionez)
desadostasun nabarmena lortu dugu esperimentuetako neurketekin. Izan ere,
esperimentuetan dispertsio negatibo nabarmena neurtu izan den arren uhin-
bektorearen modulua 1 nm−1 magnitude ordenakoa denean, gure kalkuluen arabera
dispertsio positibo ahul bat du Pd(110) gainazaleko plasmoiak.

Era berean, Pd(110) gainazalean plasmoi akustikoak existitzen diren ala ez
ikertu dugu. Plasmoi hauek interes handia piztu dute, euren dispertsio linealaren
eraginez, haiei dagozkien uhin-bektoreen anplitudeak gainazaleko plasmoien
kasuan baino handiagoak direlako eta, ondorioz, eremu elektrikoa are eskualde
murritzagoan lokalizatu dezaketelako [44–46]. Elektroien gas homogeneo eta
isotropoan oinarritutako eredu teorikoen arabera, gainazaleko plasmoi akustikoak
existitu ahal izateko, beharrezkoa da metalaren barnealdean lokalizatutako egoera
elektronikoak egotea alde batetik, eta gainazalean lokalizatutakoak, bestetik.
Gainera, egoera hauek Fermiren abiadura desberdina izan behar dute bata
bestearekiko. Kalkulatu ditugun banda elektronikoen arabera, Pd(110) gainazalak
betetzen du baldintza hau. Hori horrela izanik ere, TDDFT bidezko kalkuluak
egin ondoren, ez dugu gainazaleko plasmoi akustikoen inolako ezaugarririk behatu
gainazalaren erantzun optikoan. Ondorioz, gainazaleko eta bolumeneko egoera
elektronikoak egotea ez da nahikoa gainazaleko plasmoi akustikoak existitzeko.
Horren ordez, banda egitura konplexuek kitzikapen horren existentzia ukatu
dezakete eta, beraz, plasmoien deskribapen zehatz bat egiteko beharrezkoa da
metalen banda egitura osoa kontuan hartzea.

Hariarekin jarraituz, 4. kapituluan, egitura elektronikoaren anisotropiak
plasmoien ezaugarrietan duen eragina ikertu dugu. Horretarako, bi dimentsiodun
(2D) materialak izan ditugu ikergai. Material hauetako plasmoiek, ohiko
gainazaleko plasmoiekin alderatuta, ezaugarri desberdinak dituzte. Esate baterako,
dispertsioari dagokionez, 2D plasmoien maiztasuna uhin-bektorearen moduluaren

xii



erro karratuarekiko proportzionala da, ohiko gainazal metalikoen kasuan gertatzen
ez den bezala. Horregatik, 2D plasmoien maiztasuna espektro elektromagnetikoaren
THz tartean edo tarte infragorrian egon daiteke, uhin-bektorearen anplitudea handia
denean ere. 2D plasmoien dispertsioa jadanik neurtu da esperimentuen bitartez [47],
eta bi dimentsiodun elektroien gas homogeneo eta isotropoaren ereduaren bitartez
azaldu daiteke teorikoki [48]. Bestalde, azken urteotan zenbait materialetan banda
egitura anisotropoa behatu denez, anisotropia honen geometriaren arabera (hala
nola, geometria triangeluarra, karratua eta hexagonala hautatu ditugu) [49–53],
2D materialetan plasmoien ezaugarriak nola aldatzen diren aztertu dugu.

2D plasmoien dispertsioa geometriaren arabera nola aldatzen den ikertzeaz gain,
bi dimentsioko elektroien gas anisotropoan plasmoi akustikoak daudela behatu
dugu, zeinek eremu elektrikoa oso eskualde txikian lokalizatzea ahalbidetzen duten.
Kitzikapen hau ez da 2D material isotropoetan ageri. Bestalde, gure emaitzen
arabera, plasmoi akustikoen kopurua geometriaren arabera aldatzen da: hiruki eta
lauki formako banda egitura duten materialetan, plasmoi akustiko bakarra dago,
eta hexagono formaren kasuan, aldiz, bi. Oro har, plasmoi akustikoen kopurua
materialean Fermiren abiadura berdina duten elektroien multzoen kopuruarekin
dago lotuta. Aurretik, plasmoi akustikoak soilik bi mota desberdinetako egoera
elektronikoak dauden materialetan behatu dira, adibidez, gainazalean lokalizatutako
eta metalaren barnealdean lokalizatutako egoera elektronikoak dituzten metaletan.
Gure emaitzek erakutsi dutenez, banda egituraren anisotropia plasmoi akustikoak
existitzeko beste mekanismo bat da, eta horrela, posible da banda elektroniko
bakarra duten materialetan ere plasmoi akustikoak kitzikatzea.

Aurreko kapituluetan, plasmoien propietateak aztertu ditugu sistema
ezberdinetan, horiek kitzikatzeko mekanismoari eta efizientziari arretarik ipini gabe.
Honela, 5. kapituluan, tesi honen bigarren gai nagusia garatu dugu: SPPak nola
kitzikatu daitezkeen elektroien bitartez metal-dielektriko-metal tunel-lotuneetan
potentziala ezarri ondoren, eta prozesu honen bidez tunel-lotunedun gailuek argia
nola igortzen duten [54]. Historikoki, SPPen kitzikapena elektrodoen arteko tarte
dielektrikoan gauzatzen dela uste izan da, tunel efektu inelastikoaren bitartez [55,56].
Prozesu hau Bardeen-ek sortutako tunel elastikoaren eredutik abiatuta deskribatu
da, non elektroien uhin-funtzioek tarte dielektrikoan duten izaera hartzen den
kontuan. Hori horrela izanik ere, prozesu honek ez du zenbait esperimentutan
detektatu den argi guztia aintzat hartzen [57]. Horregatik, argiaren igorpenaren
atzean bigarren prozesu bat gertatzen dela argudiatu zen, non elektroi beroek
(hau da, elektrodo bati dagokion Fermiren energia baino energia handiagoa duten
elektroiek) energia elektrodoan galtzen duten tunel efektu elastikoa gauzatu ondoren,
galdutako energiarekin SPPak kitzikatuz.

Testuinguru honetatik abiatuta, kapitulu honetan tunel-lotunedun gailuetatik
igortzen den argiaren deskribapen teorikoan sakondu dugu. Hasteko, literaturan
SPPen kitzikapen tasa kalkulatzeko sarritan erabiltzen diren bi metodo aztertu
ditugu. Horietako bat Fermiren urrezko legean dago oinarrituta eta bestea,
aldiz, korronte elektrikoaren fluktuazioek igortzen duten potentziaren kalkuluan.
Bi metodo hauen arteko lotura ezarri dugu, bien bitartez emaitza baliokideak
lortzen direla frogatuz. Gainera, SPPen kitzikapen tasaren kalkuluan, tunel efektu
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inelastikoak elektrodoetako prozesuen ekarpena aintzat hartzen duela erakutsi dugu,
elektroi beroen prozesua ereduan sartu beharrik izan gabe. Horretarako, gailuaren
soluzio kuantikoaren (ingelesez quantum device solution, QDS) metodoa proposatu
dugu, non elektroien uhin-funtzioa Schrödinger-en ekuazioaren bidez kalkulatzerako
garaian gailu osoa hartzen den kontuan, hau da, bi elektrodo metalikoak eta horien
arteko tarte dielektrikoa. Metodo hau sarri erabili izan den Bardeen-en hurbilketaz
haratago doa, non argiaren igorpenaren kalkulua soilik tarte dielektrikoan egiten
den. QDSak Bardeen-en hurbilketak baino kitzikapen tasa nabarmenki handiagoa
aurresaten du, SPParen eremu elektrikoa tarte dielektrikotik zenbait nanometrora
lokalizatuta dagoen kasuetan. Gainera, QDSak argiaren igorpenaren deskribapen
kualitatibo osatuago bat ematen du Bardeen-en hurbilketarekin alderatuta. Izan
ere, QDSaren arabera, korronte elektrikoa bortizki korrelazionatuta dago bi
elektrodoetan, eta Bardeen-en hurbilketak ezin dezake fenomeno hau azaldu.
Emaitza hau tarte dielektrikoan birkonbinatzen den elektroi-hutsune bikote baten
ondorioa dela interpretatu dugu. Horrela, birkonbinaketa prozesu honek argiaren
igorpenari gainerako ekarpen bat egiten dio, tarte dielektrikoan gertatzen diren
prozesuez haratago doana. Gure analisiak tunel-lotunedun gailuetatik argiaren
igorpenaren inguruan gaur egun dagoen ikuspuntua zabaltzea ahalbidetzen du.

3., 4. eta 5. kapituluetan materia-kitzikapenen ezaugarriak aztertu
ondoren, azken bi kapituluetan kitzikapenen eta modu elektromagnetikoen
arteko elkarrekintza nola gauzatzen den izan dugu ikergai. 6. kapituluan,
argiaren eta materiaren arteko akoplamendu ultrabortitzaren (non akoplamendu
indarra argiaren eta materia-kitzikapenaren maiztasunaren %10 den gutxienez)
[58, 59] atzean dauden teoria ezberdinak aztertu ditugu. Azterketa hau bi
ikuspuntu ezberdinetatik garatu dugu. Lehen ikuspuntua cavity QED alorrari
dagokio, zeinetan analisia hamiltondar kuantikoetan oinarrituta egin dugun.
Zehazki, literaturako lan batzuetan, argiaren eta materiaren arteko akoplamendua
deskribatzeko termino diamagnetiko bat erantsi izan zaio hamiltondarrari, baina
beste zenbait kasutan, aldiz, ez. Bestalde, ikuspuntu klasikotik begiratuz,
akoplatutako osziladore harmonikoetan oinarrituta dauden eredu klasikoak aztertu
ditugu, non osziladore batek modu elektromagnetikoa deskribatzen duen eta beste
osziladorea materia-kitzikapenari dagokion [60].

Akoplamenduaren eredu klasiko eta kuantikoak lortzeko, elektrodinamika
klasikoaren deskribapen lagrangearretik abiatu gara. Modu honen bidez, bi
ikuspuntu ezberdin horien arteko lotura ezarri dugu, bien bitartez autobalio
berdinak lortzen direla frogatuz, eta baita esperimentuetan neurtu daitezkeen
behagarrien balio berdinak lortzen direla ere. Bereziki, osziladoreen bi eredu
klasikoetan eta cavity QED alorreko bi hamiltondar kuantikoetan ipini dugu arreta.
Lehen eredu klasikoari malgukien bidezko akoplamendua (ingelesez spring coupling,
SpC) deitu diogu, zeina malguki batez akoplatutako bi osziladore mekanikoren
baliokidea den matematikoki. Eredu honek luzetarako elkarrekintzak deskribatzen
dituela frogatu dugu, hala nola, Coulomb elkarrekintzak (adibidez, molekula baten
eta nanopartikula plasmoniko baten elkarrekintza hurbilketa kuasi-estatikoan). Era
berean, eredu klasiko hau termino diamagnetikoa ez duen cavity QED alorreko
hamiltondar kuantikoaren baliokidea dela frogatu dugu. Aztertu dugun bigarren
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eredu klasikoan, aldiz, akoplamenduaren terminoa osziladoreen abiadurarekiko
proportzionala da, SpC ereduan ez bezala, non osziladoreen anplitudearekiko den
proportzionala. Horregatik, bigarren ereduari akoplamendu aldatua (ingelesez
modified coupling, MC) deitu diogu. Gure analisiaren arabera, eredu honek
zeharkako uhin elektromagnetikoen eta materia-kitzikapenen arteko akoplamendua
deskribatzen du zehazki (adibidez, barrunbe dielektrikoetan), eta bestalde, termino
diamagnetikoa ezarrita duen cavity QED alorreko hamiltondar kuantikoaren emaitza
baliokideak ematen ditu.

Osziladore harmonikoen ereduen baliotasuna ezarri ondoren, 7. kapituluan
fonoien eta barrunbe dielektrikoetako modu elektromagnetikoen arteko
elkarrekintza aztertzeko erabili ditugu eredu hauek. Ondorioz, kapitulu honek
bibrazioen akoplamendu bortitzaren alorrean sakondu du. Alor honek interes
handia piztu du, barrunbeetan molekulen bibrazioen eta eremu elektrikoaren
hutsaren fluktuazio kuantikoen arteko elkarrekintzak molekulen ezaugarri kimikoak
aldatzen dituela behatu zenetik [61, 62]. Orokorrean, molekulaz betetako Fabry-
Pérot barrunbeak sistema fisiko egokiak dira akoplamendu bortitza lortu ahal
izateko [63,64] . Hala ere, fonoien oszilazio indarra molekulena baino bortitzagoa
denez, fonoien bitartez modu elektromagnetikoekin are akoplamendu bortitzagoa
lortu daitekeela espero daiteke. Horregatik, kapitulu honetan material polar
bat hartu dugu kontuan, boro nitruro hexagonala (ingelesez hexagonal boron
nitride, hBN) hain zuzen. Material honen geruzaz beteriko Fabry-Pérot barrunbeak
ikertu ditugu material polarretako fonoien eta modu elektromagnetikoen arteko
akoplamendua aztertzeko.

Sistema honen bitartez, argiaren eta materiaren arteko akoplamendu erregimen
ezberdinak ikertu daitezkeela frogatu dugu. Lehenik, soilik 3 nm-ko lodiera
duen hBN geruza batekin akoplamendu bortitza lortu daiteke. Halaber,
argiaren eta materiaren arteko akoplamendu indarra nabarmenki igotzen da hBN
geruzaren lodiera igo ahala, eta 150 nm-ko lodieradun geruza baten bitartez
akoplamendu ultrabortitza lortzen da sisteman. Azkenik, hBN materialaz osorik
betetako Fabry-Pérot barrunbe baten kasuan, akoplamendu indarraren balioa
fonoiaren maiztasunaren %30 dela erakutsi dugu. Sistema honetan akoplamendu
indarrak kalkulatzeko, simulazio elektromagnetikoetan oinarritutako azterketa
numeriko bat egiteaz gain, fonoien eta argiaren deskribapen mikroskopikoan
oinarritutako eredu bat ere erabili dugu, akoplamendu indarraren adierazpen
analitiko bat lortzea ahalbidetzen duena. Horren arabera, osorik beteta dauden
barrunbeetan, akoplamendu indarra materialaren ezaugarrien menpekoa da
soilik eta, beraz, magnitude fisiko horrek ez du modu elektromagnetikoen
ezaugarriekiko menpekotasunik. Hori dela eta, Fabry-Pérot barrunbeetan ez
da posible materialaren ezaugarriek mugatutako akoplamendu indarra baino
handiagoa den baliorik lortzea. Bestalde, kapitulu honetan frogatu dugunez,
akoplamendu ultrabortitzaren ondorioz sortu diren modu hibridoen dispertsioa
zehazki lotuta dago hBNren permitibitatearekin eta materialaren bolumeneko
fonoi polaritoien dispertsioarekin. Aurkikuntza hauek guztiak direla eta, material
polarrez betetako mikrobarrunbe eta nanobarrunbeak aproposak dira fonoien eta
modu elektromagnetikoen akoplamendu bortitza eta ultrabortitza aztertzeko.
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Laburbilduz, tesi hau nanofotonikaren arloan ekarpena egiteko asmoarekin
idatzi da, bi helburu nagusirekin. Lehen helburua metodologia klasikoaren eta
kuantikoaren inguruan gaur egungo ulermena areagotzea izan da, bai materia
kondentsatuaren fisikaren ikuspuntutik eta baita optika kuantikoaren aldetik ere.
Horrela, sarri erabiltzen diren metodo ezberdinak aztertu ondoren, horien artean
orain arte ezarri gabe zeuden loturak ezarri ditugu. Ondoren, metodo horiek
sistema ezberdinetan aplikatu ditugu tesiaren bigarren helburua bete ahal izateko:
plasmoien, tunel inelastikoak induzitutako argiaren igorpenaren, eta argiaren
eta materiaren arteko akoplamendu ultrabortitzaren inguruan fenomeno berriak
aurkitzea eta aztertzea.
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INTRODUCTION

The progress of science owes much to our innate ability to recognize patterns in
nature through simple observation. From prehistoric times, this ability has enabled
advances in agriculture, for example, as people observed the changing of the seasons.
However, science based solely on visual observation is limited by the capabilities
of the human eye. One limitation is based on the inability to detect light waves
outside the visible range, which is a small part of the electromagnetic spectrum.
Further, objects that are too faint or too small cannot be distinguished by the
human eye. In the 17th century, the limits of the scale of visible objects were
broadened due to technological advances. The telescope allowed Galileo Galilei
to observe the four largest moons of Jupiter [1], while the microscope enabled
the observation of cells [2]. These early discoveries opened up the possibility that
objects at any distance or of any size could be observed through human eyes.

However, despite improvements in traditional optical microscopes over the
following centuries, the limit of the size that could be distinguished remained
around hundreds of nanometers. This limitation is not due to technological tools,
but to the nature of light itself. The wave behavior of light establishes Abbe’s
diffraction limit, which forbids to distinguish features in these microscopes at a
resolution better than half the wavelength [3,4]. For visible light, this condition
corresponds to a size of 200-400 nm. These sizes also correspond to the maximum
field localization possible by focusing light with a lens. To observe and manipulate
sub-wavelength objects with light, additional methods are necessary. The field of
nanophotonics emerged motivated by the search of these methods.

A particular structure that allows for localization of light in sub-wavelength
regions are metallic surfaces [5]. In planar metallic surfaces, electromagnetic
radiation can couple with collective oscillations of conduction electrons in the
metal-vacuum interface, leading to the emergence of excitations called propagating
surface plasmon polaritons (SPPs). These excitations, which have hybrid properties
of light and electrons, are waves that propagate along the surface, with electric
fields that are highly localized in the interface and decay exponentially through the
normal direction. Additionally, metallic nanostructures with nanometric dimensions
in all three spatial directions can support localized surface plasmons, which can
store electromagnetic energy in very small volumes. This extreme localization
overcomes the diffraction limit and enables the design of photonic devices that
manipulate light in the nanometric scale. It has been found that, for optimized
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geometries, localized surface plasmons can enhance the incident electric field by
≈ 1 − 3 orders of magnitude [6–9].

Plasmonic excitations in metals lie in the ultraviolet, visible or near infrared
ranges of the electromagnetic spectrum, but nanophotonic systems can also exploit
other excitations in other materials that occur in these and in other ranges or
the electromagnetic spectrum. Some examples are phonon polaritons in polar
materials [10] or exciton polaritons in semiconductors [11]. The strong electric fields
induced by the excitations in these systems have led to significant improvements
in spectroscopy techniques, such as surface-enhanced Raman scattering [12–15] or
surface-enhanced infrared spectroscopy [16–18]. Further, the possibility of extreme
field confinement has made it possible to even observe objects with molecular
resolution [19–21]. More generally, the promising properties of these excitations
have led to nanophotonics becoming a multidisciplinary field [22] with possible
applications including energy harvesting in solar cells [23,24], photothermal therapy
in medicine [25,26], drug detection [27] and quantum information processing [28].

In the search for new properties in nanophotonic systems, various theoretical
methods have been developed to study how light interacts with matter excitations
on the nanometric scale. A large variety of these methods fall within the framework
of classical electromagnetism that describes the wave-like behavior of light through
Maxwell’s equations. To solve these equations, the optical response of different
materials, as given by their permittivity, must be known together with the geometry
of the system. To quantify the permittivity, either experimentally measured local
values (i.e. which do not depend on the wavevector) or analytical expressions
based on classical local models of matter excitations have been used. Thus, by
combining classical descriptions of both light and matter excitations, it is possible
to understand many properties of the optical response of the system.

This classical framework has been successful in explaining many features of
nanophotonic systems observed in experiments [29]. However, in nanoscale systems,
quantum effects can emerge that cannot be accounted for by classical models and
that require considering the quantum nature of matter excitations and light [30–32].
On the one hand, the field of condensed matter physics accounts for quantum
phenomena by considering accurately the behavior of atoms and electrons according
to a description based on first principles of the solid system. In the context of
nanophotonics, this approach allows for considering non-local effects in the optical
response that are not captured by classical local permittivities [33–35], and to
describe how the optical response of systems with subnanometric gaps is modified
by considering the tunneling of electrons through the gaps [36–38], for instance. On
the other hand, the framework of quantum optics has been also successfully applied
to describe many phenomena in nanophotonics. This framework considers the
quantization of light and matter excitations, and describes phenomena related to
non-classical states of light, or non-linear phenomena emerged due to the coupling of
electromagnetic modes with molecular excitations or matter excitations in different
materials, among others. For example, it has been observed that single atoms and
other systems can emit antibunched light [39,40], which cannot be explained by
classical models.
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As a consequence, the field of nanophotonics has made significant progress in
recent years by adopting different tools from condensed matter physics and quantum
optics. This promising context has motivated this thesis, which aims to contribute
to the understanding of quantum effects in nanophotonics and to determine the
limitations and successes of classical models. The thesis focuses on three key areas
that involve i) a first-principles description of plasmonic excitations, ii) how they
can be excited and iii) how different matter excitations couple with electromagnetic
modes of different cavities. First, the thesis examines how methodologies based
on condensed matter theory can accurately describe the (non-local) properties of
plasmonic excitations in metallic structures by incorporating the characteristics of
the system through first principles. Secondly, we explore how systems formed by
metals separated by an insulator of nanometer thickness can emit light due to the
SPPs that are excited by electrons via inelastic tunneling. Finally, we investigate
the ability of both quantum and classical models to describe light-matter coupling
in the ultrastrong coupling regime, and how these different types of models are
connected with each other.

The first two chapters of this thesis provide an overview of the fundamental
models and principles on which our analysis is based. In Chapter 1, we
establish the basics for understanding the interaction between light and matter
excitations. We first discuss Maxwell’s equations, which describe the dynamics
of the electromagnetic fields, and then analyze the classical local permittivity of
materials supporting different matter excitations, such as plasmons and molecular
vibrations. Then, after this separate description of the properties of light and
matter excitations, we introduce the classical interaction between matter excitations
and electromagnetic modes in dielectric and plasmonic cavities, focusing on the
differences between the weak light-matter coupling regime (where the coupling
strength is weaker than the decay rates of light and matter) and the strong coupling
regime (where it is larger) [41]. Last, we introduce cavity quantum electrodynamics
(QED), which describes light-matter interaction in these coupling regimes within
the framework of quantum optics. On the other hand, Chapter 2 adopts the
perspective of condensed matter physics to the study of plasmonic systems. Two
topics motivate this discussion. First, we examine how a rigorous first-principles
description of the electronic properties, based on Density Functional Theory (DFT)
and Time Dependent Density Functional Theory (TDDFT), allows for a more
accurate description of the properties of plasmonic excitations than possible with
classical models. Afterwards, we discuss how solving the Schrödinger equation in
metal-insulator-metal tunneling junctions enables the evaluation of the electron
tunneling rate between the two metallic electrodes. This tunneling rate is used
in Chapter 5 (see below) to calculate the rate of light emission from tunneling
junctions.

After establishing the theoretical background, we present the results of the
thesis. We first consider the first-principles description of plasmonic excitations
using tools of condensed matter physics. In particular, in Chapter 3 we focus on
palladium and analyze plasmonic excitations on the (110) surface. With this aim,
we first use the methodology of DFT to calculate the band structure of the Pd(110)
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surface based on the distribution of the atoms in the lattice. We then use the
obtained band structure to calculate the electronic density induced by an external
weak probe within TDDFT [42, 43], which allows us to obtain the properties of
different matter excitations such as electron-hole pairs or, more importantly, surface
plasmons. This study enables the comparison of the theoretical dispersion relation
of the surface plasmon (i.e. how the frequency ω of these excitations depends on the
wavevector q) with already published experimental data. Further, studies in recent
decades have predicted an alternative excitation called acoustic surface plasmons,
where the dispersion relation is linear, i.e. ω ∝ |q| [44–46]. This excitation is
associated with even larger wavevectors than the conventional surface plasmons
(so that it can be localized in extremely small dimensions) and it is caused by the
existence of electronic states localized in the bulk and in the surface with different
Fermi velocities. We analyze whether the electronic structure of the palladium
(110) surface enables the existence of these plasmons.

Additionally, we analyze in Chapter 4 the effects of anisotropy at the atomic
scale on the plasmonic excitations in metals. In this analysis, we choose two-
dimensional (2D) metals, where the plasmonic excitations have different properties
than those in the three-dimensional case. Indeed, 2D plasmons typically follow
a dispersion relation of the form ω ∝

√
|q|, which means that these excitations

can reach the mid-infrared and THz parts of the spectrum with very large |q|.
This dispersion relation has been measured experimentally [47] and can already be
obtained from a simple model of a homogeneous and isotropic electron gas [48].
Motivated by experimental measurements of anisotropic electronic structures in
different materials [49–53], we study how different types of anisotropy of the
electronic structure in 2D homogeneous electron gases affects the plasmon dispersion
compared to the isotropic situation. Notably, we analyze in detail how the existence
and number of acoustic plasmons in 2D metals depends on the type of anisotropy.

In the previous chapters, we have analyzed the properties of plasmons in different
metallic systems, without paying attention to the excitation mechanism and its
efficiency. In Chapter 5, we turn our attention to the second main topic of this
thesis: the study of how plasmons can be excited via electrons in metal-insulator-
metal tunneling junctions under a bias potential, and how this process leads to light
emission [54]. Historically, the excitation of plasmons has been mainly attributed
to inelastic tunneling processes occuring in the insulator gap during the tunneling
of the electron between the two metallic electrodes [55,56]. However, it was found
that this theoretical description does not account for all the emitted light [57].
Therefore, it was argued that other processes also contribute to light emission,
such as the decay of hot electrons (i.e. electrons with larger energy than the Fermi
energy of the corresponding metallic electrode) after elastic tunneling. The main
objective of Chapter 5 is to show that calculations of inelastic tunneling based on
the solution of the Schrödinger equation in the complete metal-insulator-metal
device can describe additional light emission (related to that induced by processes
in the insulator gap) that is generated in the metallic electrode, without the need
of considering additional hot-electron excitation processes. In this context, we
consider two different methodologies previously used in the calculation of light
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emitted from tunneling junctions, to determine whether they lead to equivalent
descriptions and results.

Last, after the study in Chapters 3−5 of the properties of the matter excitations
themselves, the final two chapters are devoted to analyzing the coupling between
matter excitations and electromagnetic modes in optical cavities. In Chapter 6, we
analyze in detail theoretical frameworks that are used to study systems that are in
the ultrastrong coupling regime. This regime occurs when the coupling strength
between the electromagnetic mode and the matter excitation is comparable to the
frequencies of the uncoupled excitations [58, 59]. The first approach is based on
cavity QED, where the electromagnetic modes of the cavity and matter excitations
are quantized. On the other hand, we also consider classical models of light-
matter coupling that are based on two coupled harmonic oscillators. One oscillator
represents the matter excitation and the other corresponds to the electromagnetic
modes of a cavity [60]. The analysis of this chapter allows us to establish the
connection between classical and cavity-QED models in the ultrastrong coupling
regime, and to show that both approaches are equivalent for the analysis of typical
properties of the coupled system.

Having established in a sound footing the validity of the coupled harmonic
oscillator models, we use them in Chapter 7 to explore in detail the interaction
between phonons in polar materials and cavity modes. This chapter thus explores
the topic of vibrational strong coupling, which has raised considerable interest after
the finding that the coupling of molecular vibrations with vacuum fluctuations of
the electric field of a cavity mode could modify chemical reactions, without using
any external illumination [61,62]. Typically, the strong coupling regime is achieved
by filling a Fabry-Pérot cavity with molecules [63,64]. However, due to their larger
oscillator strength, phonons in polar materials can exhibit an even stronger coupling
with the microcavity modes than the molecular vibrations. Accordingly, we analyze
Fabry-Pérot microcavities filled with layers of the polar material hexagonal boron
nitride (hBN) as a versatile platform to study vibrational coupling with phonons
in different coupling regimes.

Hence, the aim of this thesis is to contribute to two main aspects of the field
of nanophotonics. The first objective is to advance the current understanding on
different classical and quantum methodologies, both within the condensed-matter
framework and within cavity QED, exploring the equivalences between different
widely-used approaches that were not clearly specified before. We then apply these
methodologies to fulfill the second main objective of the thesis, which consists in
analyzing new phenomena regarding plasmonic excitations, light emission from
tunneling junctions and light-matter interaction in the ultrastrong coupling regime.
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1
DESCRIPTIONS OF LIGHT-MATTER
INTERACTION IN THE NANOSCALE

In this thesis, we use quantum and classical frameworks to analyze the properties
of matter excitations in nanophotonic systemsi and their interaction with light, and
we highlight the differences and similarities between these two types of description.
The main goal of this chapter is to present classical descriptions that we use through
this thesis, but we also introduce at the end a description of light-matter interaction
based on cavity quantum electrodynamics (QED).

In Sec. 1.1, we summarize the theory of classical electrodynamics. Maxwell’s
equations are presented first in Sec. 1.1.1, where we emphasize that the classical
optical response of a bulk material is usually described by its permittivity and that
electromagnetic fields must satisfy certain boundary conditions in the interfaces
between different materials. We also illustrate in this subsection how to combine
the bulk Maxwell’s equations and the boundary conditions. With this purpose,
we choose a situation of large importance in this thesis, which consists in systems
formed by planar layers, and show that the optical response in this situation can
be obtained with the transfer-matrix formalism. Further, we outline in Sec. 1.1.2 a
description of classical electromagnetism based on the Lagrangian and Hamiltonian
formalisms, which is equivalent to Maxwell’s equations and will be useful in Chapter
6 to formally derive a cavity-QED framework of light-matter interaction. In Sec.
1.2, we discuss different optical excitations in matter. Specifically, we consider two
different types of excitations, collective oscillations of electrons in metals (plasmons,
Sec. 1.2.1) and vibrations in polar materials (phonons) or in molecular ensembles
(Sec. 1.2.2). We discuss simple models describing the permittivity of these materials

i For simplicity, in this thesis we use nanophotonics as a general term, but some of the
discussed approaches are also applied or applicable to systems of micrometer dimensions.
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and how different plasmonic and phononic resonances can be present depending
on the geometry of the system. Last, in Sec. 1.3 we formalize the description of
the light-matter interaction, focusing on the importance of distinguishing between
three regimes of interaction: the weak, strong and ultrastrong coupling regimes.
We compare the description of these regimes using two alternative models: one
based on classical coupled harmonic oscillators (Sec. 1.3.1), and the other on cavity
QED (Sec. 1.3.2).

1.1 Classical description of light

1.1.1 Maxwell’s equations
The most fundamental description of classical nanophotonics relies on Maxwell’s
equations, which are differential equations that model the dynamics of
electromagnetic fields interacting with any system or material [65–68]. The electric
and magnetic degrees of freedom are described by four vector fields, consisting in
the electric field E, the displacement vector D, the magnetic field B and magnetic
field strength H. Maxwell’s equations connect these magnitudes as

∇ · D = ρf, (1.1a)
∇ · B = 0, (1.1b)

∇ × E = −∂B
∂t

, (1.1c)

∇ × H = jf + ∂D
∂t

. (1.1d)

All the free charges that act as sources of electromagnetic radiation are introduced in
terms of the free charge density ρf(r, t) and current density jf(r, t). The conservation
of charge is ensured by the continuity equation

∇ · jf + ∂ρf

∂t
= 0, (1.2)

which is obtained by taking the divergence of Eq. (1.1d) and then relating the
displacement vector with the free charge density following Eq. (1.1a).

Besides the free charge and current densities, nanophotonic systems have
bound charges whose effect on the optical response is described with the (relative)
permittivity ε(r, r′, t, t′) and (relative) permeability µ(r, r′, t, t′) functions. These
functions establish additional relations between the vector fields E, D, B and H to
those given by Maxwell’s equations in Eq. (1.1). The permeability relates the fields
associated to magnetism, i.e., B and H. In this thesis, we consider non-magnetic
materials, and thus µ(r, r′, t, t′) = 1 in all cases. Accordingly, these fields are
related as B = µ0H, where µ0 is the vacuum permeability. The optical response of
matter is then fully described with the permittivity, which in a general non-local
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description relates E and D according to the integral relation

D(r, t) =
ˆ ˆ

ε0ε(r, r′, t, t′)E(r′, t′)dr′dt′, (1.3)

where ε0 is the vacuum permittivity. Usually, it is convenient to write this equation
in the frequency (ω) domain instead than in the time (t) domain. By considering
that the system is invariant to time translations, ε(r, r′, t, t′) = ε(r, r′, t − t′), and
calculating the Fourier transform of Eq. (1.3), the relation between the electric
and displacement fields becomes

D(r, ω) =
ˆ

ε0ε(r, r′, ω)E(r′, ω)dr′. (1.4)

The last relation can be further rewritten by performing the Fourier transform over
space, giving the optical response of the material as a function of the wavevector q
with

D(q, ω) = ε0ε(q, ω)E(q, ω). (1.5)

Hence, in order to fully characterize the optical response of a material, it is
necessary to know both the spatial and temporal dispersion of the permittivity
ε(q, ω). The spatial nonlocality (given by the dependence with q) is specially
important for phenomena at wavevectors of magnitude |q| ≳ kF, where kF is the
Fermi wavevector of the material. Taking into account that the Fermi wavelength
of standard materials is usually less than a nanometer, a non-local description is
necessary when the characteristic wavelength of the excitations of the system is
comparable to atomic dimensions. We discuss models of non-local permittivity in
more detail in Chapter 2.

On the other hand, non-local descriptions are really difficult in most situations.
Fortunately, in many systems of nanophotonics, the relevant wavelengths of optical
waves are much larger than the atomic dimensions. Therefore, a local classical
model of the permittivity, which neglects the dependence on q in Eq. (1.5), gives
a very reliable description that agrees with experimental measurements. This local
approximation consists in assuming ε(r, r′, ω) = ε(r, ω)δ(r − r′), which leads to the
relation

D(r, ω) = ε0ε(r, ω)E(r, ω) = ε0E(r, ω) + P(r, ω). (1.6)

In the last relation, we have further introduced the polarization density P, which
gives the dipole moment per unit volume at any point r. While the displacement
field is related to free charges as ∇ · D = ρf [Eq. (1.1a)], the polarization density
is determined by the bound charge density ρb as ∇ · P = −ρb [69]. According
to Eq. (1.6), the electric field is therefore related to all (free and bound) charges
as ∇ · E = ε−1

0 (ρf + ρb). This means that the optical response of a system can
be obtained either via the permittivity ε(r, ω) or via implicit treatment of bound
charges, but generally the former approach is the simplest one.
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Boundary conditions

A bulk material can typically be described by a single permittivity that is spatially
constant. However, nanophotonic systems are composed by more than one material
with different optical properties, which implies that Maxwell’s equations must be
solved with a permittivity that depends on the spatial coordinates. In a local
description based on classical electromagnetism, the main approach considered is
that the change of the permittivity between materials occurs abruptly in space.
According to this method, ε(r, ω) is piecewise constant, which allows solving Eqs.
(1.1a)-(1.1d) with a constant permittivity for each material. In this case, Maxwell’s
equations must also be verified at the interfaces between them. In an interface
between two materials indexed by numbers 1 and 2, and defining n12 as the unit
vector normal to the interface that points from material 1 to 2, Maxwell’s equations
are satisfied if the fields fulfill the following boundary conditions [66]:

n12 · (D2 − D1) = ρs, (1.7a)
n12 · (B2 − B1) = 0, (1.7b)
n12 × (E2 − E1) = 0, (1.7c)
n12 × (H2 − H1) = js, (1.7d)

where ρs and js are the surface charge density and surface current density associated
to free charges in the interface, respectively. In the systems analyzed in this thesis,
we do not consider any free charges in the interfaces, and thus ρs = js = 0.
Equations (1.7a)-(1.7d) imply in this case the continuity of the normal component
of the fields D and B, and of the tangential component of the fields E and H.
Therefore, for nonmagnetic materials the magnetic fields B and H are continuous
everywhere, but the electric field E has strong discontinuities at the interfaces
where the permittivity changes abruptly.

Application of Maxwell’s equations in anisotropic layered media:
transfer-matrix formalism

After presenting Maxwell’s equations and the boundary conditions in a single
interface, we now illustrate the implementation of these equations for a system
composed by layers of different materials separated by planar interfaces. This
discussion is of great importance for Chapter 7, because there we analyze light-
matter interaction in some planar systems. In this situation, the transfer-matrix
formalism is an efficient method to obtain the optical response, as described in
detail in Ref. [70]. The transfer-matrix formalism allows calculating the total
reflection r

s(p)
total and transmission t

s(p)
total coefficients of a s(p)-polarized planewave

for any layered structure, and it can be also applied to calculate the electric and
magnetic fields at any point in space. The s and p polarizations are also sometimes
refered to as the tranverse electric (TE) and transverse magnetic (TM) polarizations,
because a planewave is s(p)-polarized when its electric (magnetic) field is parallel
to the interfaces.
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1.1. Classical description of light

We consider a system formed by an arbitrary number Nlay of layers of different
materials separated by planar interfaces that are parallel to the x − y plane. Each
layer i ∈ {1, 2, ..., Nlay} has a finite thickness Li and permittivity εi. The system
also contains two semi-infinite layers, where one corresponds to the material from
where the incident light comes (this layer is labelled with i = 0) and the other is
the substrate (labelled by i = Nlay + 1). Further, since in Chapter 7 we analyze
cavities filled with an anisotropic material, we include the possibility of anisotropic
materials in the transfer-matrix formalism by considering that each layer i has a
permittivity tensor of the general diagonal form ↔

εi = diag(εi,x, εi,y, εi,z). A sketch
of the system is shown in Fig. 1.1a.

To obtain the intensities of the light reflected and transmitted by the layered
system, we first focus on a single interface between materials i and i + 1. In this
case, the Fresnel coefficients give the amplitudes of the reflected and transmitted
waves of a wave incident in the x−z plane. These coefficients for s- and p-polarized
waves are given by [67]

rs
i,i+1 =

√
εi,y − ξ2 −

√
εi+1,y − ξ2√

εi,y − ξ2 +
√

εi+1,y − ξ2
, (1.8a)

rp
i,i+1 =

εi+1,x

√
εi,x

(
1 − ξ2

εi,z

)
− εi,x

√
εi+1,x

(
1 − ξ2

εi+1,z

)
εi+1,x

√
εi,x

(
1 − ξ2

εi,z

)
+ εi,x

√
εi+1,x

(
1 − ξ2

εi+1,z

) , (1.8b)

ts
i,i+1 =

2
√

εi,y − ξ2√
εi,y − ξ2 +

√
εi+1,y − ξ2

, (1.8c)

tp
i,i+1 =

2εi+1,x

√
εi,x

(
1 − ξ2

εi,z

)
εi+1,x

√
εi,x

(
1 − ξ2

εi,z

)
+ εi,x

√
εi+1,x

(
1 − ξ2

εi+1,z

) , (1.8d)

where ξ = kx/k0 is the component of the wavevector kx parallel to the interfaces
and normalized with respect to the wavevector in vacuum k0 = ω/c, where c is the
speed of light in vacuum.

For systems with more than one interface, we search for the total transfer
matrix Ts(p) that relates the amplitudes of the electromagnetic field in the incident
medium (i = 0) and the substrate (i = Nlay + 1) for s(p)-polarized light as:(

A
s(p)
0,+

A
s(p)
0,−

)
= Ts(p)

(
A

s(p)
Nlay+1,+

A
s(p)
Nlay+1,−

)
. As

i,± and Ap
i,± correspond to the amplitude of the

electric and magnetic field, respectively (i.e. the amplitude of the field parallel
to the interface for each polarization), evaluated in the layer i ∈ {0, Nlay + 1} at
the position of their corresponding single interface. The second subindex indicates
the direction of propagation. The symbol + corresponds to the direction of the
incoming planewave (and thus also to the direction of the transmitted light) and,
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

similarly, the subindex − corresponds to the direction of the reflected light. Further,
A

s(p)
Nlay+1,− = 0 because in the substrate the electromagnetic field only propagates

in the direction of the transmission. Ts(p) is given by the expression [70]

Ts(p) = Ms(p)
0,1 Qs(p)

1 Ms(p)
1,2 Qs(p)

2 Ms(p)
2,3 ...Ms(p)

Nlay−1,Nlay
Qs(p)

Nlay
Ms(p)

Nlay,Nlay+1, (1.9)

with

Ms(p)
i,i+1 = 1

t
s(p)
i,i+1

(
1 r

s(p)
i,i+1

r
s(p)
i,i+1 1

)
, (1.10a)

Qs
i =

(
e−i ω

c di

√
εi,y−ξ2 0

0 ei ω
c di

√
εi,y−ξ2

)
, (1.10b)

Qp
i =

e
−i ω

c di

√
εi,x

(
1− ξ2

εi,z

)
0

0 e
i ω

c di

√
εi,x

(
1− ξ2

εi,z

)
 . (1.10c)

The matrix Ms(p)
i,i+1 relates the amplitudes A

s(p)
i,+ and A

s(p)
i+1,+ of the electromagnetic

fields propagating both in the + and − directions and evaluated at both sides

of the interface between layers i and i + 1:
(

A
s(p)
i,+

A
s(p)
i,−

)
= Ms(p)

i,i+1

(
A

s(p)
i+1,+

A
s(p)
i+1,−

)
. Qs(p)

i

describes the propagation of light through the layer i.

Once the total matrix Ts(p) =
(

T
s(p)
11 T

s(p)
12

T
s(p)
21 T

s(p)
22

)
is obtained, its matrix elements

are used to calculate the total transmission and reflection coefficients of the system

as t
s(p)
total =

A
s(p)
Nlay+1,+

A
s(p)
0,+

= 1
T

s(p)
11

and r
s(p)
total = A

s(p)
0,−

A
s(p)
0,+

= T
s(p)
21

T
s(p)
11

. With these coefficients, we

can finally obtain, for instance, the reflectivity spectra Rs(p) of any planar system,
which is defined as the ratio between the intensity of the reflected and incident light.
It is obtained as Rs(p) = |rs(p)

total|2 (rs(p)
total corresponds to the ratio of the amplitude

of the electromagnetic field).
Further, transfer-matrix simulations also allow obtaining the frequencies of

the modes in the system, as given by the poles of the Fresnel coefficients r
s(p)
total

and t
s(p)
total. The procedure consists in first obtaining the analytical expressions of

these coefficients from the transfer matrix Ts(p), and then solving numerically the
complex frequencies for which their denominator vanishes. With this aim, it is
necessary to extend the permittivities of all materials to complex values of ω. The
real part of the obtained complex eigenfrequency is the mode frequency, while
the imaginary part is equal to (minus) half the losses of the mode, and also equal
to half the full width at half maximum of the corresponding dip or peak in the
reflectivity or transmittance spectra.
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Figure 1.1: Optical response of a layered system: the Fabry-Pérot cavity. a) Sketch of a general
layered system with Nlay layers. We indicate the coordinates axes and the relevant parameters
that need to be introduced in transfer-matrix simulations to obtain the optical response: the
thicknesses Li and permittivity tensors ↔

εi of each layer. The red arrow corresponds to the incident
planewave with amplitude A

s(p)
0,+ for s(p)-polarized light, and the blue arrows to the reflected and

transmitted waves with amplitudes A
s(p)
0,− and A

s(p)
Nlay+1,+ that are obtained with transfer-matrix

simulations, respectively. b) Reflectivity spectrum (black line) of a Fabry-Pérot cavity filled
with a material of permittivity ε = 2 and thickness Lcav = 2000 nm that is placed between two
gold mirrors of thickness 20 nm. The reflectivity of the system is obtained with transfer-matrix
simulations. Dashed lines indicate the frequencies of the Fabry-Pérot modes in the approximation
of perfect mirrors, and the gray lines indicate the mode frequencies according to the poles of
the Fresnel coefficients. The inset shows a sketch of the system and the red arrow indicates the
normal incidence of light, which implies that the wave can be considered both s- or p-polarized.
c) Electric field distribution of the first four Fabry-Pérot modes, calculated with Eq. (1.12) for
n = 1, 2, 3 and 4. Each mode is evaluated at the frequency indicated in panel (b) by the dashed
line of the same color. The yellow slabs indicate the mirrors of the cavity.

To illustrate how the optical response of a planar system is obtained with
transfer-matrix simulations, we now choose Fabry-Pérot cavities as a typical
example, which we also analyze in detail in Chapters 6 and 7. These cavities
are formed by two planar parallel mirrors separated by a distance Lcav (i.e., Lcav
is the thickness of the cavity between the mirrors). Before presenting the results
according to the rigorous transfer-matrix simulations, we describe briefly the
main principles behind its optical response. For a cavity filled with a material
of permittivity ε, the wavevector of light inside the cavity satisfies the dispersion
relation k =

√
|k∥|2 + k2

z = ω
c

√
ε, where k∥ = (kx, ky) is the component of the

wavevector parallel to the interfaces. Further, mirrors establish the boundary
conditions to the modes; under the assumption of perfect mirrors (i.e. considering
that the mirrors have an infinite negative permittivity, ε(ω) = −∞), the component
of the electric field parallel to the interfaces E∥ must vanish in the mirror planes
according to Eq. (1.7). Consequently, a solution of Maxwell’s equation can only
exist under the condition

kzLcav = nπ, (1.11)
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

for any integer n. The frequencies ω that satisfy Eq. (1.11) for a given parallel
wavevector k∥ are the resonant frequencies of the Fabry-Pérot cavity. The parallel
component of the electric field associated to each mode, determined by the indexes
n and k∥, has a standing wave-like pattern of the form

E∥(r) = E∥0 sin
(

nπz

Lcav

)
eik∥·r∥ , (1.12)

where E∥0 is the maximum amplitude of the field component.
We next describe this system rigorously using transfer-matrix simulations, for

a specific cavity of thickness Lcav = 2000 nm, filled with a material of permittivity
ε = 2 and placed over a substrate of the same permittivity. Each mirror is composed
by a single layer of gold of thickness 20 nm (the permittivity of gold has been
taken from the experimental measurements in Ref. [71]). In Fig. 1.1b, we show
the reflectivity spectra of this cavity under normal incidence. At most frequencies,
the cavity is highly reflecting, but the spectra contains pronounced dips at certain
frequencies. We also indicate in the figure with gray lines the frequencies of the
modes of the system, as obtained by calculating the poles of the Fresnel coefficients.
The frequency of these modes and of the minima of the reflectivity almost coincide,
indicating that an experimental measurement of the reflectivity spectra gives precise
information about the modes of the system.

Additionally, the frequencies of the Fabry-Pérot modes given by the approximate
analytical Eq. (1.11) are indicated by dashed lines in Fig. 1.1b, together with
their corresponding electric field distribution given by the simplified Eq. (1.12)
in Fig. 1.1c, which indicates that the field of the nth mode contains n − 1 nodes.
The approximate frequencies are close to the mode frequencies obtained by the
transfer-matrix simulations. However, there is a difference between the two because
the gold mirrors of the cavity are not perfect (i.e. the mirrors do not have an
infinite permittivity and the reflection coefficient is not identical to one) and the
corresponding finite value of the metal permittivity shifts the resonant frequencies,
an effect not taken into account in Eq. (1.11). Therefore, although the approximate
Eq. (1.11) is useful to determine resonances of Fabry-Pérot cavities, the transfer-
matrix calculations describe the system more rigorously.

1.1.2 Lagrangian and Hamiltonian formulation of
electromagnetic fields

Maxwell’s equations describe completely the optical response of nanophotonic
systems according to classical electrodynamics. A reformulation of this classical
theory is based on the principle of least action and is usually written in terms of a
classical Lagrangian or Hamiltonian, as summarized in this section. This approach
is considerably less used than Maxwell’s equations to obtain the response of a
given system, but it is a necessary step to derive a quantized model of light-matter
interaction.

To write the classical electromagnetic Lagrangian (which needs to be equivalent
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1.1. Classical description of light

to Maxwell’s equations), we first determine the dynamical variables. In this
approach, the system is considered to be formed by point charges, where each of
them has charge Qi and is placed at the position ri. All these individual charges
lead to free charge and current densities following

ρf(r) =
∑

i

Qiδ(r − ri), (1.13a)

jf(r) =
∑

i

Qiṙiδ(r − ri), (1.13b)

where the dot · denotes the time derivative. Although in the formalism of Maxwell’s
equations (Sec. 1.1.1) we separated the matter degrees of freedom into free charges
[included in the density ρf in Eq. (1.1a)] and bound charges (included in ρb and
determined by the relative permittivity ε and polarization density P), in this
section we consider the materials as a collection of free charges [described within
the densities of Eq. (1.13)] over a vacuum background with ε(r, ω) = 1.

We now analyze the dynamical variables with which the electromagnetic degrees
of freedom are characterized within the classical Lagrangian and Hamiltonian
formalisms. With this aim, we start by considering the scalar potential V and
the vector potential A, which are defined so that the electric and magnetic fields
satisfy the expressions

E = −∇V − ∂A
∂t

, (1.14a)

B = ∇ × A. (1.14b)

With these definitions, Maxwell’s equations (1.1b) and (1.1c) are immediately
fulfilled for any V and A due to the vector identities

∇ · (∇ × A) = 0 ⇒ ∇ · B = 0, (1.15a)

∇ ×
(

−∇V − ∂A
∂t

)
= −∂∇ × A

∂t
⇒ ∇ × E = −∂B

∂t
. (1.15b)

Further, these potentials are not uniquely defined, because a transformation with
an arbitary function G(r, t) of the form

V → V − ∂G
∂t

, (1.16a)

A → A + ∇G, (1.16b)

gives the same electric and magnetic field as defined by Eq. (1.14). The exact
function G must be chosen before writing the Lagrangian in terms of the potentials,
taking into account that any particular choice of G gives a different gauge condition.
We consider here the Coulomb gauge, according to which the vector potential
satisfies the condition ∇ · A = 0. With this choice, the free charge density ρf(r) is
solely related to the scalar potential, as indicated by the first Maxwell’s equation
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

[Eqs. (1.1a) and (1.14a)] as

∇ · (ε0E) = ρf ⇒ ∇2V = − ρf

ε0
⇒ V (r) = 1

4πε0

ˆ
ρf(r′)

|r − r′|
dr′ = 1

4πε0

∑
i

Qi

|r − ri|
.

(1.17)

This equation shows that the positions ri of all charges fully determine the scalar
potential V (r). Therefore, V (r) is a redundant variable and only A and all ri are
necessary to describe completely the dynamics of the electromagnetic fields. The
resulting Lagrangian, as a function of the variables A and ri and of their velocities,
has the form [72,73]

LCou =
∑

i

1
2miṙ2

i −
∑
j>i

∑
i

QiQj

4πε0|ri − rj |
+
ˆ [ε0

2 (|Ȧ|2 − c2|∇ × A|2) + jf · A
]

dr.

(1.18)
To prove that the Lagrangian given by Eq. (1.18) does indeed describe classical

electrodynamics, we now derive the Euler-Lagrange equations. The equation
corresponding to each charge is

d

dt

∂LCou

∂ṙi
− ∂LCou

∂ri
= 0

⇒ mir̈i = Qi

∑
j ̸=i

Qj(ri − rj)
4πε0|ri − rj |3

− ∂A(ri, t)
∂t

+ Qiṙi∇ × (∇ × A(ri, t))

⇒ mir̈i = Qi[E(ri, t) + ṙi × B(ri, t)], (1.19)

which is the same as Newton’s equation of motion under the Lorentz force. Further,
the equation related to the vector potential reads

d

dt

∂LCou

∂Ȧ
− ∂LCou

∂A = ∇2A − 1
c2

∂2A
∂t2 + µ0jf = 0, (1.20)

which is equivalent to Eq. (1.1d) written in terms of the vector potential. Therefore,
the Lagrangian of Eq. (1.18) describes the same physics as classical electrodynamics
described by the four Maxwell’s equations and the Lorentz force.

Once the electromagnetic Lagrangian LCou has been justified, it can be used
to derive the classical Hamiltonian of light-matter interaction. To write the
Hamiltonian of the electromagnetic fields, the canonical momenta of the charged
particles pCou,i and of the electromagnetic fields ΠCou(r) are needed, which are
calculated from the Lagrangian as

pCou,i = ∂LCou

∂ṙi
= miṙi + QiA(ri), (1.21a)

ΠCou(r) = ∂LCou

∂Ȧ(r)
= ε0Ȧ(r). (1.21b)
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1.2. Optical excitations in matter

The Hamiltonian in the Coulomb gauge is obtained as HCou =
∑

i pCou,i · ṙi +´
ΠCou(r) · Ȧ(r)dr − LCou, which gives

HCou =
ˆ [

|ΠCou|2

2ε0
+ ε0c2

2 |∇ × A|2
]

dr +
∑
j>i

∑
i

QiQj

4πε0|ri − rj |

+
∑

i

[pCou,i − QiA(ri)]2
2mi

=
ˆ [

|ΠCou|2

2ε0
+ ε0c2

2 |∇ × A|2
]

dr︸ ︷︷ ︸
HEM

Cou

+
∑

i

|pCou,i|2

2mi
+
∑
j>i

∑
i

QiQj

4πε0|ri − rj |︸ ︷︷ ︸
Hmat

Cou

+
∑

i

−QipCou,i · A(ri)
mi︸ ︷︷ ︸

Hint
Cou

+
∑

i

Q2
i A(ri)2

2mi︸ ︷︷ ︸
Hdia

Cou

. (1.22)

Interestingly, we can divide the Hamiltonian into four contributions. The first two
terms, HEM

Cou and Hmat
Cou, correspond to the energy associated to the electromagnetic

fields and to the charged particles independently. The standard interaction between
light and matter is expressed by the term Hint

Cou. Last, Hdia
Cou is the so-called

diamagnetic term, and corresponds to an additional energy of the electromagnetic
field proportional to A2 and that depends on the magnitudes of all individual
charges Qi. This term is specially important in the description of systems with very
strong light-matter interaction, as discussed thoroughly in this thesis. Further, the
Hamiltonian of Eq. (1.22) connects classical electrodynamics and quantum optics,
as it can be directly quantized following the canonical quantization procedure.
We analyze in Chapter 6 in detail how quantum Hamiltonians can be obtained
from Eq. (1.22) for different systems and their connection with classical models of
light-matter interaction.

1.2 Optical excitations in matter
The permittivity ε(r, ω) introduced in Sec. 1.1.1 results from all excitations within
a given bulk material. In this section, we derive simple analytical expressions of the
permittivity of metals, ensembles of molecules and polar materials, which are the
main materials that we analyze in this thesis. These models are based on classical
descriptions of the displacement of electrons or ions in these materials. Further, we
discuss the resonant modes of metals induced by the collective oscillations of the
free electrons, called plasmons, in different configurations such as in bulk, surfaces
and spherical nanoparticles.

1.2.1 Plasmons
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

Drude model of metals

Metallic systems are widely used to localize light in the nanoscale, and different
descriptions of the electronic structure have been studied in order to calculate the
permittivity of metals. We analyze in Chapter 2 rigorous approaches, and in this
chapter we focus on the simplest description of the optical response of a metal.
This description is based on the Drude model, which assumes that the electronic
structure of the material is the same as that of a classical homogeneous electron
gas.

When an electric field E(t) = E0e−iωt oscillating at frequency ω is applied to
the metal, the position r of each electron of effective mass meff and charge e is
dictated by the equation of motion

meffr̈ + meffγpṙ = eE0e−iωt. (1.23)

This equation considers the free propagation of the electron driven by the
electric field (which induces an external force Fext(t) = eE0e−iωt). Additionally,
damping phenomena related to collisions with the nuclei and other processes are
phenomenologically included in the decay rate γp. Under the ansatz r(t) = r0e−iωt,
Eq. (1.23) can be solved to obtain the displacement of the electrons induced by
the electric field as

r0(ω) = − e

meffω(ω + iγp)E0(ω). (1.24)

The displacement r0 of each electron induces a dipole moment d = er0, and
the collective displacement of all electrons thus results in a polarization density
P(ω) = d

V = ρeer0(ω), where ρe is the electron density per unit volume V. By
inserting the resulting expression of P(ω) into Eq. (1.6), we obtain the permittivity
of the Drude model

εDr(ω) = 1 −
ω2

p

ω(ω + iγp) , (1.25)

with the plasma frequency ωp =
√

ρee2

meffε0
.

Equation (1.25) has been derived under the assumption that all electrons of
the metal are free, and it captures many features of the metallic optical response
at low energies [74]. However, interband transitions of electrons bound to nuclei
also contribute to the polarization density, and this feature has not been taken into
account in the previous derivation. The contribution of these electrons is important
at high energies, and corrections to Eq. (1.25) must be done to appropriately
describe the permittivity of metals. In this context, the simplest way to obtain
better agreement between theory and experimental measurements is to introduce
an offset ε∞ in Eq. (1.25).

Bulk plasmons and bulk plasmon polaritons

The Drude permittivity contains the necessary information to describe the
excitations of metallic systems, the simplest configuration being a bulk metal
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1.2. Optical excitations in matter

that extends to infinity. In this case, a longitudinal excitation called bulk plasmon
can be excited, which consists in a collective oscillation of the free electrons inside
the metal. The properties of this resonance can be obtained directly from Maxwell’s
equations. In the absence of external charges, the displacement vector follows the
equation ∇ · D(ω) = ∇ · [ε0ε(ω)E(ω)] = 0 [from Eq. (1.1a)]. This implies that free
longitudinal waves (which satisfy ∇ · E(ω) ̸= 0) can only exist in a homogeneous
material when the permittivity vanishes. For a metal with permittivity following
the Drude model expression of Eq. (1.25) (Drude metal in the following) and
neglecting losses (γp = 0), the bulk plasmons occur at frequency ω = ωp.

Further, we can also search for transverse electromagnetic modes inside the
bulk metal. First, we note that Maxwell’s equations admit solutions of the form of
propagating transverse waves. By trying solutions of the form E(r, t) = E0eik·re−iωt

and B(r, t) = B0eik·re−iωt into Eq. (1.1) (considering a single bulk material with
permittivity ε(ω) and no free charges, i.e. ρf = jf = 0), we observe that a non-trivial
solution (with E0 ̸= 0 and B0 ̸= 0) only exists if the magnitude of the wavevector
k = |k| and the frequency ω satisfy the dispersion relation

ω = ck√
ε(ω)

. (1.26)

By introducing the Drude permittivity [Eq. (1.25)] into Eq. (1.26), we obtain the
condition

ω =
√

ω2
p + c2k2. (1.27)

Propagating modes inside a Drude metal can therefore exist only at frequencies
ω ≥ ωp, i.e. when the Drude permittivity is positive. Transverse modes following
the dispersion of Eq. (1.27) are called bulk plasmon polaritons and are a result of
the hybridization of light and electronic oscillations. To show that these modes
have features of both photons and plasmons, we analyze two opposite limits of Eq.
(1.27). On the one hand, at the k → 0 limit, the transverse mode transforms into a
mode that is degenerate with the longitudinal oscillations of electrons at frequency
ω = ωp. Otherwise, at the opposite k → ∞ limit, the mode is equivalent to light
in vacuum with dispersion ω = ck, without influence of the metal electrons.

Surface plasmons and surface plasmon polaritons

Another type of plasmonic waves called surface plasmon polariton (SPP) appears
when a semi-infinite metal is in contact with a semi-infinite insulator (i.e. a
dielectric material with ε > 0). These excitations propagate along the metal-
insulator interface (which we set at the plane z = 0) in the x direction, and have an
evanescent tail in the z direction. The electric and magnetic fields at each medium
j ∈ {1, 2} therefore have a spatial dependence of the form

Ej(r) = Ejeik∥xe−kzj |z|, (1.28a)
Bj(r) = Bjeik∥xe−kzj |z|. (1.28b)
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

Due to the continuity of the parallel components of the electric and magnetic
fields along the interface, the parallel component of the wavevector k∥ is equal for
both materials, while kzj changes as

kzj =
√

ω2

c2 εj − k2
∥. (1.29)

A solution with the form given by Eq. (1.28) only exists if the boundary
conditions from Eq. (1.7) are fulfilled. At any given frequency ω, this only occurs
for wavevectors that satisfy [67,75]

k∥(ω) = ω

c

√
ε1ε2

ε1 + ε2
. (1.30)

A well-known analytical dispersion relation of SPPs can be obtained by considering
that the metal has a Drude permittivity ε1 = εDr(ω) [Eq. (1.25)] and the insulator
is vacuum (ε2 = 1), leading to the expression

ω2
SPP = ω2

p + c2k2
∥ −

√
ω4

p/4 + c4k4
∥. (1.31)

This dispersion relation is plotted in Fig. 1.2a, and it reveals the hybrid nature
of the SPPs, which are a mixture of photons and of the electronic oscillations. This
hybrid nature can be appreciated from the behavior of the dispersion relation in
limiting cases. While in the k∥ → 0 limit SPPs resemble pure photons as Eq. (1.31)
approaches the light line (ω = ck∥, indicated by the gray line in Fig. 1.2a), on the
opposite limit of large wavevectors the SPP frequencies approach the value ωp/

√
2

asymptotically (this frequency is plotted by the black line), and thus SPPs acquire
an electronic character. The frequency ωp/

√
2, which is entirely determined by the

electronic structure of the metal, is called the surface plasmon frequency ωSP of a
metal. Particularly at frequencies ω close to ωSP, high localizations of the electric
field can be obtained in the interface. This feature can be observed in Eqs. (1.29)
and (1.30), because the z component of the wavevector kz can be relatively large
in both materials, implying that at these conditions the electric field of the SPP
already decays strongly at a small distance from the interface (see Fig. 1.2b for a
sketch).

The dispersion relation of SPPs gives additional information about how to
excite them, because the frequency ω and parallel wavevector k∥ must be conserved.
As we observe in Fig. 1.2a, the SPP dispersion relation never crosses the light line,
and therefore it is impossible to excite SPPs with a conventional beam propagating
in vacuum. In order to overcome the mismatch of k∥ between light and SPPs,
several strategies have been proposed along the last decades. On the one hand,
glass prisms can be used, either creating a thin air gap between the prism and
the metallic surface (Otto configuration [76]) or depositing a thin metallic layer
over the prism (Kretschmann configuration [77]). Since the permittivity is larger
in glasses (ε > 1) than in vacuum, the light line inside the prisms changes to
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Figure 1.2: Analysis of surface plasmon polaritons (SPPs). a) Dispersion relation of SPPs (red
line) in a planar interface between vacuum and a semi-infinite layer of a Drude metal. The light
line in vacuum ω = ck∥ and the surface plasmon frequency ωSP correspond to the gray and black
lines, respectively. b) Sketch of the charge (red and blue regions) and electric field Ez distribution
(right) of a SPP. The SPP corresponds to a wave oscillating with wavelength λSPP = 2π/k∥. We
also indicate the coordinate axes that we use in this section and in all panels of this figure. c)
Dispersion relation of the two SPPs (red and blue lines) in the system indicated by the inset
under the quasistatic approximation. A metallic layer of thickness Lmet = 1 nm is placed over a
substrate of the same metal, with both separated by a gap of thickness Lgap = 0.5 nm, 1 nm or
2 nm for each blue line. The metallic layers are formed by a Drude metal and are placed on a
vacuum background. The light line in vacuum is indicated by a gray line. d) Spatial distribution
of the electric field enhancement |Ez |/|Eext| along the z direction perpendicular to all interfaces
and as a function of the normalized excitation frequency ω/ωp, for the same system of panel
(c). The gap thickness is Lgap = 1 nm. The system is excited by an external potential given
by Eq. (1.33) with k∥ = 1 nm−1. The electric fields corresponding to the two plasmonic modes
are highlighted by the blue and red dashed rectangles, at frequencies indicated in the dispersion
of panel (c) by dots. The permittivity of the metals is described by the Drude model with a
damping rate γp = ωp/100.
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

ω = ck/
√

ε, which can match the values of ω and k∥ needed to excite SPPs in the
metal-vacuum interfaces of the mentioned configurations. Further, gratings can be
also used [78,79], because due to the periodicity of these systems they can provide
multiples of their reciprocal lattice vectors to reach the necessary value of k∥. Last,
sharp tips (or other small nanoparticles) can also excite SPPs when placed close to
a metal [80–82], because the electric field confined in the small region between the
metallic layer and the tip can access the large values of k∥ of the SPP dispersion
relation.

The analysis of SPPs up to this point has been done by considering the full
solution of Maxwell’s equations. In this approach, the speed of light c is considered
to be finite, which causes the hybridization between light and plasmons in the
regime k∥ ≲ ω/c. Due to the effects of the finite value of c, the excitation following
the dispersion relation of Eq. (1.31) is considered to be the retarded SPP. On
the other hand, we are sometimes interested in analyzing plasmonic modes with
wavelengths comparable to the atomic scale and thus when the relevant wavevectors
satisfy the condition k∥ ≫ ω/c. In this non-retarded regime, retardation does not
affect the optical response of the system and the c → ∞ limit can be considered,
which simplifies the calculations of the dispersion relation and other properties of
the SPPs.

A key quantity that is used to study the optical response of surfaces in the
non-retarded regime is the so-called surface response function, defined as [33,83]

g(k∥, ω) =
ˆ

ρind(z, k∥, ω)ek∥z dz, (1.32)

where ρind(r, k∥, ω) is the electronic density induced by an external potential of
the form

Vext(r, k∥, ω) = − πQ2

ε0k∥
ek∥zeik∥·r∥e−iωt. (1.33)

Vext(r, k∥, ω) corresponds to the two-dimensional (2D) Fourier transform of the
Coulomb potential induced by a point charge placed in front of the system at
infinite distance, with the charge oscillating in time as Qe−iωt. In the non-retarded
regime, the quasistatic approximation can be used, where the vector potential
A does not vary in timeii. Hence, Eq. (1.14a) indicates that the electric field is
fully determined by the scalar potential as E = −∇V . Importantly, the surface
response function contains information of the electronic excitations of the system,
as its imaginary part Im[g(k∥, ω)], which is called the surface loss function, is
proportional to the power absorption due to the induced electronic excitations [83].
As a consequence, the dispersion relation of the modes is given by the poles of
g(k∥, ω).

We illustrate next the usefulness of the classical non-retarded approximation to
study plasmonic modes with very small wavelength in more complex systems than a
single metal-vacuum interface (quantum treatments of non-local optical response are

ii In the c → ∞ quasistatic limit, ω ≪ ck, so that the electromagnetic field oscillating as e−iωt

varies very slowly on the scale of time determined by c, justifying the ∂A
∂t

= 0 approximation.
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analyzed in Chapters 2, 3 and 4). To analyze classical results, we choose a system
formed by a semi-infinite Drude metal and a thin layer of the same material and of
thickness Lmet = 1 nm, both placed over a vacuum background (ε = 1). The thin
layer and the semi-infinite substrate are separated by a distance Lgap of the order
of 1 nm forming a nanogap (see inset in Fig. 1.2c). Despite the considered small
thicknesses Lgap and Lmet, the system can be modelled classically, with quantum
effects only becoming prominent for even smaller gap and metal thicknesses [84].
Due to the dimensions in this system, the plasmonic modes in the nanogap have
extremely small wavelengths (of the order of atomic dimensions), which justifies
the non-retarded approximation as the condition k∥ ≫ ω/c is satisfied.

To obtain the surface response function of this system, we first need to determine
the potential induced by the external source [given by Eq. (1.33)]. In the absence
of free charges, ∇ · E = 0 [Eq. (1.1a)], and from E = −∇V , the potential must
satisfy the Laplace equation ∇2V = 0. To be consistent with the expression of the
external potential, we make the following ansatz for the potential in the jth layer,

Vj(r, k∥, ω) = −2π

k∥
{Vj+(k∥, ω)ek∥z + Vj−(k∥, ω)e−k∥z}eik∥·re−iωt, (1.34)

which already satisfies the Laplace equation in each layer. Considering that the
oscillating point charge that probes the system is placed in the j = 1 layer,
we directly obtain V1+ = 1 by comparing Eqs. (1.33) and (1.34). All other
coefficients Vj+ and Vj− are obtained applying boundary conditions [Eq. (1.7)]
across all interfaces, which impose that both the potential V (r, k∥, ω) and the
normal component of the displacement vector Dz(r, k∥, ω) = −ε(r, ω)∂V (r,k∥,ω)

∂z
must be continuous.

Once the potential is obtained, Poisson’s equation ∇2V = ρind(r)/ε0 gives the
density of the bound charges (given by the polarization density as ρind(r) = −∇·P)
induced in the interfaces between materials. Last, inserting ρind(r) into Eq. (1.32)
leads to the surface response function of the form

g(k∥, ω) =ε(ω) − 1
ε(ω) + 1

× (e2k∥Lmet − 1)[(ε(ω) − 1)2 − e2k∥Lgap(ε(ω) + 1)2] − 4ε(ω)
(e2k∥Lmet + e2k∥Lgap − 1)(ε(ω) − 1)2 − e2k∥(Lmet+Lgap)(ε(ω) + 1)2

.

(1.35)

The surface response function of Eq. (1.35) contains a pole at the frequency
where the permittivity of the metal satisfies ε(ω) = −1, which for a Drude metal
occurs at ωSP = ωp/

√
2 (indicated by the red line in Fig. 1.2c). This solution

corresponds to the surface plasmon resonance of the semi-infinite substrate, which
is nondispersive in the non-retarded situation. Since this resonant frequency ωSP is
the same as that obtained by taking the k∥ → ∞ limit in the retarded expression
of Eq. (1.31), we have confirmed that the non-retarded calculation leads to same
solutions as the fully-retarded Maxwell’s equations in the k∥ ≫ ω/c limit.
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Further, due to the presence of the thin layer over the bulk metal, the system
has an additional mode at the frequency given by the second pole of the surface
response function, i.e. by the solution of the equation

(e2k∥Lmet + e2k∥Lgap − 1)(ε(ω) − 1)2 − e2k∥(Lmet+Lgap)(ε(ω) + 1)2 = 0. (1.36)

As opposed to the previous surface plasmon, this mode is dispersive also in the
non-retarded description. We plot the dispersion relation given by Eq. (1.36) in Fig.
1.2c by blue lines for gap thicknesses Lgap = 0.5 nm, 1 nm and 2 nm. The results
are very sensitive to Lgap, resulting in a smaller plasmonic wavelength (larger k∥)
for fixed ω with decreasing thickness. The obtained plasmonic wavelengths for all
Lgap are much smaller than the corresponding value for the retarded SPP of a
semi-infinite substrate at any frequency (for ω < ωSP), as observed by comparing
the corresponding dispersion relations of Fig. 1.2c (blue lines) and Fig. 1.2a (red
line)iii.

Additional information about the properties of the modes can be extracted by
calculating the induced electric field E = −∇V . We plot in Fig. 1.2d the spatial
distribution of the electric field (normalized to the external field amplitude |Eext|)
induced by the external potential of Eq. (1.33) with a fixed value k∥ = 1 nm−1 and
as a function of the excitation frequency ω normalized to the plasmon frequency
ωp. For most frequencies, the optical response of the system is weak, but strong
field enhancements appear at the frequencies of the two plasmonic modes of this
system (highlighted by dashed rectangles and indicated by dots in Fig. 1.2c). In
particular, for the lower frequency resonance at ω ≈ 0.50 ωp, the electric field is
mostly trapped in the gap between metals. Therefore, systems with very thin
layers have modes that confine light in extremely small dimensions.

Localized surface plasmons

The plasmonic resonances that we have considered up to now correspond to waves
that propagate either in the bulk metal or in metal-vacuum interfaces of the system.
We focus next on the resonances of metallic objects that are finite in the three
dimensions. In these systems, the oscillations of electrons are localized in space.
Accordingly, resonances in finite metallic nanostructures are called localized surface
plasmons (LSPs). Further, the lack of spatial invariance simplifies the excitation of
LSPs. For perfectly planar interfaces SPPs cannot be excited with a light beam
propagating in vacuum because the dispersion relations of SPPs do not cross the
light line, and thus the wavevector k∥ cannot be conserved. However, k∥ does not
need to be conserved in the excitation of LSPs in finite objects. Thus a light beam
can be used (without any glass prism) to excite plasmonic resonances in this case.

For illustration, here we consider the response of the simple case of a small
spherical nanoparticle made by a metal with Drude permittivity εDr(ω), which
can be described with an analytical solution. For nanoparticles of radius R much

iii The scale of the x axis is different in Figs. 1.2a and c, as can be appreciated by the slope of
the light line ω = ck∥ in both of them.
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Figure 1.3: Electric field enhancement due to the excitation of LSPs. a) Spatial distribution of
the amplitude of the induced electric field |Eind|, normalized with respect to the amplitude of the
external field |Eext| for a metallic nanosphere with Drude permittivity. The fields are evaluated
at frequency ω = ωp/

√
3, and the permittivity of the metal has a damping parameter of value

γp = 0.05 ωp. The external electric field is polarized along the x direction (indicated by the white
arrow). The direction of the dipole induced in the sphere and the induced charges are represented
by the black arrow and the black + and − symbols, respectively (in resonance, the induced
charges are dephased by π/2 with respect to the external field Eext). b) Field enhancement
|Eind|/|Eext| at the point (x, y) = (1.2R, 0) (where the origin is in the center of the sphere), as
a function of the normalized excitation frequency ω/ωp. The black dashed line indicates the
resonant frequency of the LSP, ωLSP = ωp/

√
3.

smaller than the wavelength of the illumination, the quasistatic approximation that
neglects retardation effects is valid, because light can be assumed to propagate
instantaneously to all points of the nanoparticle. In this context, and since there
are no free charges in the system, Maxwell’s equation (1.1a) implies the electric
field is directly calculated with the scalar potential that is obtained by solving the
Laplace equation ∇2V = 0 outside and inside the sphere. The potential also needs
to satisfy the same boundary conditions discussed in the section of SPPs, i.e. the
continuity of the potential and of the normal component of the displacement field
across the surface of the nanosphere.

To obtain the response, we first consider that the system is illuminated by a
planewave of wavevector k with spatial distribution Eexte

ik·r = Eexte
ik·rnx, where

nx is the unit vector in the direction of the x axis. Since the radius R of the sphere
is much smaller than the wavelength of the illumination, the phase of the external
electric field changes very little inside the system and the illumination can be
treated as an uniform electric field Eext. Consequently, in the non-retarded regime
the external potential reads Vext = −Eextx. We then obtain the total potential V (r)
from the solution of the Laplace equation together with the boundary conditions,
taking into account that far from the particle the total potential must be equal
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

to the external contribution, i.e., V (|r| ≫ R) ≈ Vext. The potential directly gives
the total electric field of the system, E(r) = −∇V (r) = Eext(r) + Eind(r), where
Eind(r) is the field induced by the external illumination. This contribution of the
electric field reads [60,85]

Eind(r) =
{

− εDr(ω)−1
εDr(ω)+2 Eext r < R

εDr(ω)−1
εDr(ω)+2

R3

r3 [3(Eext · nr)nr − Eext] r > R,
(1.37)

where nr = r
|r| is the unit vector in the radial direction with respect to the center

of the sphere.
Interestingly, the electric field of Eq. (1.37) outside the sphere is the same as

that created by a dipole at the center of the sphere of dipole moment

dind = 4πε0R3 εDr(ω) − 1
εDr(ω) + 2Eext = 4πε0R3 ω2

p

ω2
p − 3ω(ω + iγp)Eext. (1.38)

Thus, in many situations where only the electric field outside the sphere is considered,
the particle can be replaced by an effective point-like dipole. In the limit of no
losses, the induced dipole moment dind diverges at frequency ωLSP = ωp/

√
3,

corresponding to the resonant frequency of the LSP in a metallic sphere. We plot in
Fig. 1.3a the spatial distribution of the induced electric field [given by Eq. (1.37)]
of the system at the resonant frequency ωLSP. The field is mostly enhanced close
to the sphere in the x direction (parallel to the external electric field). For the
specific metal considered with losses γp = 0.05 ωp, the maximum enhancement of
the electric field is of about 20. Further, to emphasize the resonant behavior of
the system, we show in Fig. 1.3b the field enhancement |Eind|/|Eext| as a function
of the normalized frequency ω/ωp, evaluated in the point (x, y) = (1.2R, 0) from
the center of the sphere. The spectrum is dominated by a sharp peak centered at
resonant frequency ωLSP (black dashed line) and of width 2γp.

We have focused this discussion on LSPs of spherical particles, but the properties
of these excitations depend strongly on the geometry. For example, the resonant
frequency can be adjusted by choosing the material and the shape of the structure
appropriately [86]. Additionally, larger field enhancements than those analyzed
in Fig. 1.3 can also be obtained by engineering the geometry of the system. For
instance, by placing two metallic particles close to each other, much larger electric
fields can be induced in the gap between the particles compared to the single
particle scenario [6, 7].

1.2.2 Vibrational excitations
Molecular vibrations

We consider next a different type of matter excitation that can couple to light,
vibrations of molecules at infrared frequencies. In order to understand how these
excitations respond to light, the Lorentz oscillator model is typically used. In this
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1.2. Optical excitations in matter

model, the displacement of the ions is evaluated, by considering them as point
charges experiencing Coulomb interactions.

The main assumptions of the Lorentz model are that ions are in an equilibrium
position, and that they are subjected to a harmonic force Fspr = −ksprr that is
linear with respect to the distance |r| from this equilibium position, i.e. the force is
the same as that exerted by a spring with spring constant kspr according to Hooke’s
law. A damping force Fdamp = −meffγṙ is also included in the model, where γ is
the damping rate and meff the effective mass of the ions. Last, these particles with
charge Q react to an external electric field of amplitude Eext, which in the Lorentz
model is introduced as a time-dependent driving force Fext(t) = QEexte

−iωt.
The dynamics of the system under these forces is governed by Newton’s law
meffr̈ = Fspr + Fdamp + Fext, which leads to the equation of motion

meffr̈ + meffγṙ + ksprr = QEexte
−iωt. (1.39)

By trying a solution of the form r(t) = r0e−iωt in Eq. (1.39), the amplitude of the
oscillations for the ions is solved to be

r0(ω) =
Q

meff
kspr
meff

− (ω2 + iγω)
Eext(ω). (1.40)

When applying the Lorentz model to an ensemble of molecules of density ρmol,
the polarization density P(ω) is obtained as P(ω) = ρmolQr0(ω). Introducing this
polarization density into Eq. (1.6) leads to a permittivity of the form

ε(ω) = ε∞

(
1 + f

ω2
vib − ω2 − iωγ

)
, (1.41)

where ωvib =
√

kspr
meff

is the resonant frequency of the molecular vibrations, and f is
an effective oscillator strength. In the simple picture considered in this section, f

depends on the charge, effective mass and the density of the molecules as f = ρmolQ
2

meffε∞
.

However, the rigorous calculation of f for real molecules requires simulations that
account for complex interactions between ions. In general, f determines the strength
of the optical response at the resonant frequency ω ≈ ωvib. Last, we note that the
term ε∞ in Eq. (1.41) is introduced by hand as it does not come directly from
the derivation of the Lorentz model. This derivation considers a single vibration
that reacts resonantly with light, but molecules exhibit additional resonances at
other frequencies that also contribute to the optical response. The high-frequency
permittivity ε∞ accounts in an effective manner for the mean contribution of all
these resonant modes when their resonant frequencies are far from ωvib.

Bulk phonons and bulk phonon polaritons in polar materials

Other materials that support vibrational excitations are polar materials. Their
corresponding excitations are phonons, which are collective oscillations of the
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Figure 1.4: Optical response of systems supporting vibrational excitations. a) Real (purple line)
and imaginary (gray line) parts of the permittivity of ensembles of molecules [Eq. (1.41)], with
oscillator strength f = 0.08 ω2

vib, high-frequency permittivity ε∞ = 2 and losses γ = 0.05 ωvib.
b) Real (green line) and imaginary (gray line) parts of the permittivity of polar materials [Eq.
(1.42)], with LO phonon frequency ωLO = 1.2 ωTO, high-frequency permittivity ε∞ = 2 and
losses γ = 0.05 ωTO. c) Dispersion relation of bulk longitudinal (gray line) and transverse phonon
polaritons (black lines), with the same parameters as in panel (b). The light lines corresponding
to the vacuum permittivity (ε = 1) and to the high-frequency permittivity of the polar material
(ε = ε∞ = 2) are plotted by the blue and red dashed lines, respectively. In panels (b) and (c),
the Reststrahlen band is highlighted by the pink area.

atoms in the lattice. Some examples of polar materials are hexagonal boron nitride
(hBN) [87] and silicon carbide [88]. In these materials, the displacement of the
atoms associated with optical phonons create a dipole moment in each unit cell,
allowing light to interact with these collective vibrations. Under the approximation
that each atom is subjected to a harmonic force, the dynamics of the atoms can be
expressed with Eq. (1.39) and therefore the response of the material due to optical
excitation is modelled with the Lorentz oscillator model. The standard form to
write the permittivity in this context is

ε(ω) = ε∞

(
1 + ω2

LO − ω2
TO

ω2
TO − ω2 − iωγ

)
. (1.42)

ωTO and ωLO are the frequencies of the transverse optical (TO) and longitudinal
optical (LO) phonons, respectively, which are discussed below.

Comparing the permittivity of an ensemble of molecules [Eq. (1.41)] and of
a polar material [Eq. (1.42)] we find that, although they are obtained from the
same model, they are written in terms of different parameters. To justify this
difference, we plot in Figs. 1.4a and b the permittivity of Eq. (1.41) for a typical
ensemble of molecules and of Eq. (1.42) for a typical polar material, respectively.
In both cases, the imaginary part (gray line) peaks at the corresponding resonant
frequency ω = ωvib or ω = ωTO. However, the real part of the permittivity shows
a key difference between the two situations. For typical molecules (purple line
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1.2. Optical excitations in matter

in panel a), Re[ε(ω)] is always positive due to their relatively small oscillator
strength. On the other hand, in the case of polar materials (green line in panel b),
Re[ε(ω)] becomes negative for some frequencies. The frequency range of negative
permittivities is delimited (for negligible losses) by ωTO ≤ ω ≤ ωLO, which is
known as the Reststrahlen band (highlighted by the pink area). Since in polar
materials the TO and LO phonon frequencies give important information and can
be accessed experimentally [89], their corresponding permittivity in Eq. (1.42) is
usually written in terms of these frequencies instead of using an effective oscillator
strength f .

To analyze further how phonons couple to electromagnetic fields, we obtain
next the modes of a bulk polar material by solving Maxwell’s equations (losses are
neglected for simplicity). First, according to Maxwell’s equation ∇ · [ε(ω)E] = 0,
the longitudinal modes of the system (which need to satisfy the condition ∇·E ̸= 0)
only exist when the permittivity vanishes, which occurs at ω = ωLO (gray line in
Fig. 1.4). This mode is dispersionless because it cannot couple to transverse light
due to its longitudinal nature.

Regarding the transverse modes of the system, we consider again that
electromagnetic waves propagating through a material with permittivity ε(ω)
must satisfy the dispersion relation given by Eq. (1.26). By using the permittivity
of polar materials from Eq. (1.42), the dispersion relation can be solved for ω as

ω = 1√
2

√√√√
ω2

LO + c2k2

ε∞
±

√(
ω2

LO + c2k2

ε∞

)2
− 4c2k2

ε∞
ω2

TO, (1.43)

Equation (1.43) corresponds to the frequencies of new modes of the material, called
bulk phonon polaritons, which originate from the coupling of photons and phonons.
This dispersion relation is plotted in Fig. 1.4c by black lines for a material with LO
phonon frequency ωLO = 1.2 ωTO and ε∞ = 2. For each wavevector k, there are
two possible values of ω, implying that the dispersion contains two branches. In
the k → ∞ limit, the dispersion relation of the higher-energy transverse branch is
very close to the light line determined by the high-frequency permittivity ω = ck√

ε∞

(red dashed line, which we compare with the light line in vacuum ω = ck indicated
by the blue dashed line), while the lower-energy branch approaches the TO phonon
frequency. In the k → 0 limit, the higher-energy and lower-energy branches follow
the dispersion relations of the uncoupled LO phonon and the light line determined
by ε∞, respectively. Importantly, the transverse branches do not cross with each
other and their frequencies are always different from those of pure phonons and
photons (except in the k → 0 and k → ∞ limits), implying that bulk phonon
polaritons acquire hybrid properties of both light and matter. The hybridization
of the modes is a signature of strong coupling between photons and phonons, as
discussed in the next section. Further, the dispersion relation shows that bulk
phonon polaritons can be excited at any frequency, except in the Reststrahlen
band between ωTO and ωLO. This behavior can be related to the negative value
of the permittivity in this frequency range, which forbids the propagation of
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

electromagnetic fields inside the material.
Last, although we mainly focus on bulk phonon polaritons in this thesis, we

note that other types of phononic resonances can be excited in polar materials
depending on the geometry of the system. In an analogous way to the plasmonic
excitations, surface phonon polaritons can propagate along interfaces between a
polar material and an insulator [90], and localized phonon polaritons can be excited
in nanoresonators made by this type of materials [91]. These excitations occur
in the frequency range ωTO ≲ ω ≲ ωLO, where the permittivity is negative, and
support large concentrations of the electric field. Further, polar materials represent
a promising alternative to plasmonic materials. On the one hand, while plasmonic
resonances are usually excited in the ultraviolet, optical or near infrared spectral
ranges, polar crystals are suited to fabricate ultrasmall resonators with excitations
at smaller energy, reaching the far-infrared range [92]. Additionally, the lifetime of
optical phonons (of the order of picoseconds) is considerably larger than for the
free electrons (of the order of femtoseconds), and therefore systems supporting
phonon polaritons have typically less losses and larger quality factors than the
plasmonic counterparts.

1.3 Weak, strong and ultrastrong coupling
between light and matter

Matter excitations, such as the molecular vibrations and bulk phonons discussed
in Sec. 1.2.2, have well-defined frequencies and lifetimes for each particular
system. However, when materials that support any of these or other type of
matter excitations are placed inside cavities with resonant electromagnetic modes,
the properties of the excitations can be modified due to the light-matter interaction.

To demonstrate the effect of the coupling of matter excitations with
electromagnetic modes, we choose as an example a Fabry-Pérot cavity filled with
an ensemble of molecules. The reflectivity spectrum of the system is obtained from
transfer-matrix simulations (Sec. 1.1.1). Before focusing on the interaction, we
analyze the electromagnetic modes of a bare cavity, which consists in a cavity filled
with a material of constant permittivity, i.e. without any optically-active excitations.
We consider the same Fabry-Pérot cavity analyzed in Fig. 1.1, with thickness Lcav
= 2000 nm and background permittivity ε = 2. The reflectivity spectra of this
cavity is plotted in Fig. 1.5a as a function of the angle θ of the incident light with
respect to normal incidence. By modifying θ, the parallel wavevector k∥ changes,
which allows exciting Fabry-Pérot modes at different frequencies. Figure 1.5a
indicates the frequency and decay rate (inverse of the lifetime) of the first cavity
mode by the frequency and width of the reflectivity dip, respectively. In particular,
for the chosen parameters, the dispersion of the first mode varies from ωcav ≈ 0.21
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Figure 1.5: Analysis of the interaction between molecular vibrations and Fabry-Pérot cavity
modes. Reflectivity spectra of a) a dielectric cavity with constant permittivity ε = 2, b) a cavity
filled by molecules with weak oscillator strength (f = 0.8 · 10−4 eV2) and c) a cavity filled by
molecules with strong oscillator strength (f = 4 · 10−4 eV2). The spectra are plotted as a function
of the frequency ω and angle θ of the incident planewave. The insets show a scheme of each
cavity, and the blue dashed lines in panels (b) and (c) indicate the vibrational frequency of the
molecules ωvib = 0.24 eV. In all cases, the mirrors are two gold layers of 20 nm and the thickness
of the cavity is Lcav = 2000 nm, placed over a substrate of permittivity ε = 2.

eViv at normal incidence (θ = 0◦) to ωcav ≈ 0.27 eV at θ ≈ 70◦, and the mode has
a decay rate κ ≈ 0.004 eV.

We illustrate next the effects of light-matter interaction by considering that the
cavity is filled with an ensemble of molecules with the permittivity given by Eq.
(1.41). As representative values, we choose ωvib = 0.24 eV (which coincides with
the bare cavity frequency ωcav at the angle θ ≈ 42◦), γ = 0.01 eV and the high-
frequency permittivity ε∞ = 2, equal to the value used for the bare cavity (so that
the dispersion in Fig. 1.5a can be taken as reference). Further, a crucial parameter
that governs the light-matter coupling in this system is the oscillator strength f of
the molecules. For comparison, we show the reflectivity of a Fabry-Pérot cavity
filled by molecules with weak oscillator strength f = 0.8 · 10−4 eV2 (Fig. 1.5b) and
with strong oscillator strength f = 4 · 10−4 eV2 (Fig. 1.5c).

For the cavity filled with weak oscillators, the reflectivity spectrum is nearly
identical to that corresponding to the bare cavity (compare Fig. 1.5b with 1.5a),
except for angles θ ≈ 42◦ where the frequency of the cavity mode ωcav is close
to or on resonance with the vibrational frequency of the molecules (indicated by
the blue dashed line). Under this condition ωcav ≈ ωvib, the dispersion of the
mode in the cavity filled with molecules (as given by the reflectivity dips) becomes
slightly distorted compared to the smooth dispersion of the bare cavity. However,
the change is relativelly small and the frequency of the mode of the filled cavity

iv In this thesis, when we use numerical values, we use eV as units of frequency. Although eV
is an unit of energy, it allows us to compare easily classical frequencies ω and quantum energies
ℏω using the same units. When we refer to classical frequencies, eV has to be understood as a
shorthand notation of the actual unit eV/ℏ.
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

continues varying in a continuous way with the angle θ of the incident light.
On the other hand, for the larger oscillator strength, a very different behavior is

observed. The dispersion of the system splits into two branches below and over ωvib
instead of being continuous, showing an anticrossing when ωcav approaches ωvib.
The very different spectra calculated in Figs. 1.5b and c correspond to two different
regimes of light-matter interaction, called weak and strong coupling regimes. To
fully understand the boundary between these two regimes and the properties of the
modes in each of them, we next consider simple models of light-matter coupling.
Specifically, we discuss two different approaches to analyze this coupling, the
first based on classical mechanics and the second on cavity QED. The interaction
between Fabry-Pérot cavity modes and polar materials is analyzed in much more
detail in Chapter 7.

1.3.1 Classical harmonic oscillator model
A canonical system to represent classically the phenomenology behind light-matter
interaction consists in coupled harmonic oscillators. In this kind of models, one
oscillator is characterized by a displacement xmat(t) and represents the degrees
of freedom of the matter excitation, whose physical origin can be electronic
(e.g. molecular excitons) or vibrational, for instance. The electromagnetic mode
that couples with the matter excitations is modelled with another oscillator of
displacement xcav(t), and can correspond to a resonance of different types of optical
resonators, such as Fabry-Pérot cavities, metallic planar layers supporting SPPs,
nanocavities supporting localized plasmon polaritons, photonic crystals... These
two oscillators have natural frequencies ωcav and ωmat, and interact with coupling
strength g. Further, the losses of the cavity mode and the matter excitations are
included as friction terms for the oscillators, with decay rates κ and γ, respectively.
There are more than one possible way to describe the coupling between classical
oscillators, and Chapter 6 is devoted to a full discussion of these models, including
a more careful analysis of the physical interpretation of the displacements xcav and
xmat. Focusing here just on the most intuitive model based on classical mechanical
springs, the oscillators of this system satisfy the equations of motion [60]

ẍcav + κẋcav + ω2
cavxcav + 2g

√
ωcavωmatxmat = 0, (1.44a)

ẍmat + γẋmat + ω2
matxmat + 2g

√
ωcavωmatxcav = 0. (1.44b)

This system of equations is usually solved in the frequency domain. Under the
ansatz xcav(t) = xcave−iωt and xmat(t) = xmate

−iωt, Eq. (1.44) transforms to

(−ω2 − iωκ + ω2
cav)xcav + 2g

√
ωcavωmatxmat = 0, (1.45a)

2g
√

ωcavωmatxcav + (−ω2 − iωγ + ω2
mat)xmat = 0. (1.45b)

Further, classical models of coupled harmonic oscillators are often used in systems
with coupling strengths that are small compared to the bare frequencies ωmat
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Figure 1.6: Theoretical analysis of the different light-matter coupling regimes. a) Eigenfrequencies
Re(ω±) of the classical model of coupled harmonic oscillators [Eq. (1.46)] as a function of the
normalized coupling strength g/ωmat. The two oscillators are resonant at the same frequency
(ωcav = ωmat) and have decay rates κ = 0.1 ωmat and γ = 0.02 ωmat. The purple and brown
lines represent the eigenfrequencies ω± for coupling strengths for which Re(ω+) = Re(ω−) and
for which Re(ω+) ̸= Re(ω−), respectively. The vertical line indicates the boundary between
different coupling regimes. b) Evolution of the magnitude |xmat(t)|2 under no coupling (g = 0,
pink line), weak coupling (g = 0.02 ωmat, purple line) and strong coupling (g = 0.08 ωmat, brown
line). In the three cases, the initial state of the system is xmat(t = 0) = 1 and xcav(t = 0) = 0. c)
Eigenfrequencies ω of the Hopfield Hamiltonian as a function of the normalized coupling strength
g/ωmat obtained with the RWA (black line), the Hopfield Hamiltonian without the diamagnetic
term (blue line) and the complete Hopfield Hamiltonian (red line), without including losses in
any of these cases (κ = γ = 0). In panels (a) and (c), the weak coupling regime is highlighted
by the white area, the strong coupling regime by the yellow area and the ultrastrong coupling
regime by the green area (there is no white area in panel (c) due to the assumption of no losses).

and ωcav. Under these circumstances, the mode frequencies ω of the coupled
system do not differ too much from those of the uncoupled oscillators, and thus an
approximation of the form ωcav + ω ≃ 2ωcav can be done (and the corresponding
approximation for ωmat) to simplify Eq. (1.45). The resulting system of linear
equations has nonzero solutions for xcav and xmat when its determinant vanishes,
which leads to the two complex eigenfrequencies given by

ω± = 1
2(ωcav + ωmat) − i

2(κ + γ) ± 1
2

√(
ωcav − ωmat + i

γ − κ

2

)2
+ 4g2. (1.46)

The frequencies of the coupled modes are given by the real part of this expression.
We plot Re(ω±) in Fig. 1.6a as a function of the coupling strength, for two
oscillators at zero detuning (ωcav = ωmat) and decay rates κ = 0.1 ωmat and
γ = 0.02 ωmat. As can also be obtained from Eq. (1.46), the real part of both
eigenfrequencies is equal for coupling strengths satisfying g ≤ |κ−γ|

4 (purple line).
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

Therefore, there is no energy separation (splitting) between the two modes and,
when this occurs, the system is in the weak coupling regime.

In contrast, the strong coupling regime corresponds to the situation where
the resonant coupling between light and matter leads to the existence of two
hybrid modes with different frequencies ω+ and ω− from those of the uncoupled
constituents ωcav and ωmat. More in detail, several criteria of strong coupling have
been discussed. As a first option, any non-zero separation between the frequencies
of the two modes can be considered enough for strong coupling, corresponding
to the criteria g ≥ |κ−γ|

4 . However, this condition is often not considered to
be sufficient from a practical point of view, because the separation between the
modes could be much smaller than the spectral peak widths, a situation where no
new phenomenology distinctive of strong coupling is expected. To minimize this
issue, the more strict criteria g ≥ |κ+γ|

4 , g ≥ |κ+γ|
2 or g ≥

√
κ2+γ2

8 have all been
considered.

The consequences of weak and strong light-matter coupling can also be
analyzed by solving the equations of motion of Eq. (1.44) in time domain,
instead of in frequency domain. If the matter excitation is not coupled to any
electromagnetic mode (g = 0), the dynamics of the matter oscillator is given by
xmat(t) = xmat(t = 0)e−γt/2e−iωmatt. Thus, the energy associated to the oscillator,
which is proportional to |xmat(t)|2 = |xmat(t = 0)|2e−γt, decays at a rate solely
determined by the decay rate γ (we plot this solution by the pink line in Fig. 1.6b).
By considering the same losses as before and a value of g = 0.02 ωmat = κ+γ

6 larger
than zero but still corresponding to the weak coupling regime, the dynamics of the
oscillator changes. Although such weak coupling strengths do not alter the real part
of the oscillator frequencies in Eq. (1.46), the imaginary part, which corresponds
to half the decay rate of the eigenstates, does get modified. This change leads
to a slower or, typically, faster decay of the matter excitation. We illustrate this
effect in Fig. 1.6b for an initial state of xmat(t = 0) = 1 and xcav(t = 0) = 0. A
faster decay of the energy of the matter oscillator ∝ |xmat(t)|2 is indeed observed
for such a system (purple line), compared with the uncoupled system (g = 0, pink
line). This modification of the spontaneous emission rate of the matter excitation
is called Purcell effect [93], and the ratio between the modified decay rate and the
decay rate in vacuum γ can be related to the quality factor Q, the effective volume
V and the wavelength λ of the cavity mode as

FP = 1 + 3
4π2

Q
V

λ3. (1.47)

Last, in the strong coupling regime, the energy of the matter oscillator
∝ |xmat(t)|2 shows several periods of oscillation before it completely dissipates.
These oscillations can be observed in the brown curve of Fig. 1.6b, where we plot
|xmat(t)|2 for the same losses and initial state as for the weak coupling situation,
but in a system with coupling strength g = 0.08 ωmat = 2

3 (κ + γ). Besides the
oscillations of |xmat(t)|2, we note that the energy of the cavity mode ∝ |xcav(t)|2
also shows oscillations, where the maxima of the cavity energy coincides with the
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1.3. Weak, strong and ultrastrong coupling between light and matter

minima of the matter energy an vice versa (not shown). This behavior indicates
that in the strong coupling regime the matter excitation and the cavity mode
interchange energy before they both decay.

1.3.2 Cavity quantum electrodynamics description
An alternative approach to study light-matter interaction is to consider explicitly the
quantum nature of the electromagnetic fields and the matter excitations following
the framework of cavity QED. Possibly the simplest scenario within cavity QED
consists in a matter excitation coupled to a single cavity mode. According to
the canonical quantization procedure, the energy of the electromagnetic mode
is quantized by using bosonic creation â† and annihilation â operators. On the
other hand, the matter excitation is quantized using bosonic or fermionic operators
depending on its nature. In this thesis we only deal with bosonic systems, and
thus the energy associated to the matter is quantized with the creation b̂† and
annihilation b̂ operators with the commutation rules [b̂, b̂†] = [â, â†] = 1. In
this context, the light-matter interaction is expressed with the so-called Hopfield
Hamiltonian [94]

ĤHop = ℏωcav

(
â†â + 1

2

)
︸ ︷︷ ︸

ĤEM
Hop

+ ℏωmat

(
b̂†b̂ + 1

2

)
︸ ︷︷ ︸

Ĥmat
Hop

+ ℏg(â + â†)(b̂ + b̂†)︸ ︷︷ ︸
Ĥint

Hop

+ ℏD(â + â†)2︸ ︷︷ ︸
Ĥdia

Hop

.

(1.48)
The first two terms, ĤEM

Hop and Ĥmat
Hop, are associated to the energies of the free

oscillators of the cavity mode and the matter excitation. The interaction between
light and matter is considered in the term Ĥint

Hop and it scales with the coupling
strength g. Last, the so-called diamagnetic term Ĥdia

Hop originates from the self-
interaction of the cavity mode. However, the necessity to include this term in
cavity QED models is still under discussion, and depends on the system under
study. Mainly, two different values for the scaling parameter D are considered,
D = 0 (no diamagnetic term) and D = g2

ωcav
(which is established by quantum sum

rules [95]). We notice that the operators appearing in the diamagnetic term are
only those of the electromagnetic field, but that this term depends on the coupling
strength g with the matter excitation. We discuss the Hopfield Hamiltonian and the
diamagnetic term in more detail in Chapter 6. Further, we do not consider losses
in this analysis because they cannot be included directly in Eq. (1.48) without
breaking hermiticity. For small coupling strengths, Lindblad operators include
these losses in the context of open quantum systems [96,97]. However, for large
coupling strengths, more intricate methods must be used [98,99].

There is no known close solution of the eigenstates of the Hopfield Hamiltonian
in Eq. (1.48). However, in the regime of small coupling strengths (compared to
the bare frequencies ωcav and ωmat), the rotating-wave approximation (RWA) is
usually made, which leads to exact solutions. The RWA takes into account that,
for small g, the combined operators âb̂† and â†b̂ of the interaction term evolve in
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Chapter 1. Descriptions of light-matter interaction in the nanoscale

time as e−i(ωcav−ωmat)t, whereas the counter-rotating terms âb̂ and â†b̂† follow the
evolution of the form e−i(ωcav+ωmat)t. Close to zero detuning, the contribution of
the latter operators averages to zero at relevant time scales, because they oscillate
much faster than the former operators. Further, the diamagnetic term scales with
g2, and it is negligible at first order of g. The RWA thus consists in neglecting
the diamagnetic and the counter-rotating terms. The RWA Hamiltonian therefore
reads

ĤRWA = ℏωcav

(
â†â + 1

2

)
+ ℏωmat

(
b̂†b̂ + 1

2

)
+ ℏg(âb̂† + â†b̂). (1.49)

By solving Schrödinger’s equation, we obtain that the ground state is at zero energy,
while the eigenfrequencies of the first two excited states are

ω± = 1
2(ωcav + ωmat) ± 1

2

√
(ωcav − ωmat)2 + 4g2. (1.50)

These frequencies are exactly the same as those obtained with the classical coupled
harmonic oscillator models for small coupling strength [Eq. (1.46)] and no losses
(κ = γ = 0), which points out towards the equivalence of classical and quantum
models of these systems (Chapter 6).

After analyzing the eigenfrequencies of the Hopfield Hamiltonian for small
coupling strengths, we now compare the results of different methods by extending
the calculation to larger values of g. We plot in Fig. 1.6c the eigenfrequencies of the
ground state and the two excited states that in the RWA are associated to a single
excitation, for zero detuning between the cavity mode and matter excitation. The
black line corresponds to the analytical eigenfrequencies obtained with the RWA
[Eq. (1.50)], whereas the blue and red lines indicate the numerical eigenfrequencies
of the complete Hopfield Hamiltonian with D = 0 and D = g2

ωcav
, respectively. For

small g, in the range highlighted by the yellow area, the three lines almost overlap,
showing the validity of the RWA (note that since we do not consider losses, the
system is always strongly coupled in Fig. 1.6c). However, the three models start
to differ at g ≈ 0.1 ωmat, corresponding to the onset of the ultrastrong coupling
regime, highlighted by the green area in Fig. 1.6c.

An interesting feature in the ultrastrong coupling regime is that the ground-
state energy is shifted from zero when the full Hamiltonian in Eq. (1.48) (without
RWA) is considered, including the counter-rotating terms. It becomes negative
for D = 0 and positive when the diamagnetic term with D = g2

ωcav
is included.

This shift implies that the ground state is not equal to the vacuum state, and
as a consequence, the population of the number operators â†â and b̂†b̂ in the
ground state is nonzero in the ultrastrong coupling regime. However, the ground
state cannot radiate by decaying to a lower-energy state, and since these â†â and
b̂†b̂ excitations cannot be then detected, they are said to be virtual [100, 101].
Additionally, for the complete Hamiltonian with D = 0, the frequency of the
lower hybrid mode crosses the ground-state energy at g = 0.5 ωmat, leading to the
superradiant phase transition [102,103]. In contrast, when D = g2

ωcav
is included,
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1.3. Weak, strong and ultrastrong coupling between light and matter

this crossing never occurs, and the system becomes stable with respect to that
phase transition.

Last, we note that although the relation between classical and quantum models
is well established for small g, their connection within the ultrastrong coupling
regime has been much less explored. For example, it becomes necessary to clarify
how to include the effects of the diamagnetic term in the classical model. This and
other related questions are addressed in Chapter 6.
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2
QUANTUM DESCRIPTIONS OF
PLASMONIC EXCITATIONS AND OF
ELECTRON TUNNELING

In this chapter, we outline the quantum perspective based on condensed matter
theory that we use throughout this thesis. While in the previous chapter we have
given a classical description of metals based on a local permittivity, such models fail
when dealing with phenomena where charge oscillations of atomic-size wavelength
are involved. Therefore, we now go beyond classical descriptions of metallic systems,
which allows for an accurate description of the properties of plasmons and of how
electrons can excite these plasmons.

First, we focus on the calculation of the excitation spectra in metals. Under the
assumption of a weak external perturbation, it is safe to work in the linear response
regime, and therefore the properties of metallic excitations can be analyzed within
linear response theory. According to this theory, all the information about the
response of a system to any external probe is encapsulated in the linear response
function. After analyzing the main properties of this function in Sec. 2.1, we use it
to calculate the non-local permittivity of a homogeneous electron gas (HEG) in
Sec. 2.2. This system is useful for a simple description of electronic excitations in
metals, because the permittivity can be obtained analytically under the assumption
that electrons in metals behave in the same way as in a HEG. However, in real
systems the band structure differs from that of free electrons. In Sec. 2.3, we give
the necessary tools to obtain the excitation spectra of real metals in terms of their
atomic and electronic structure, under the Density Functional Theory (DFT) and
Time-Dependent Density Functional Theory (TDDFT).

After discussing the properties of plasmonic excitations in metallic systems, we
describe a mechanism to excite surface plasmon polaritons (SPPs) in such systems
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Chapter 2. Quantum descriptions of plasmons and of electron tunneling

using tunneling electrons. In systems formed by two metallic electrodes separated
by an insulator barrier, electrons from one electrode can tunnel through the gap to
the other electrode. During the tunneling, electrons lose part of their energy to
excite SPPs, and these SPPs can then lead to electromagnetic radiation. In Sec.
2.4, we summarize Bardeen’s theory of quantum elastic tunneling, which gives the
basic tools to calculate the SPP excitation rate in this context.

2.1 Linear response theory
As the first step towards the extraction of the excitation spectra in metals, we
outline the basis of the linear response theory. This theory aims to explain how a
system responds to a weak perturbation created by an external probe. The probe
is usually represented by a physical magnitude X, and a particular magnitude Y of
the system is measured. The response is quantified in terms of the X-Y response
function.

In quantum mechanics, the formulation of the linear response theory starts
with a time-dependent Hamiltonian that describes the interaction of the system
with the probe in the form

Ĥsys-probe(t) = ςprobe(t)Ŷsys(t). (2.1)

ςprobe(t) describes the time dependence of the perturbation and depends on the
physical quantity X. Ŷsys(t) is the quantum operator associated to the magnitude
Y of the system written in the Heisenberg picture. The objective is to know how
the operator Ŷsys(t) evolves in time. Usually, obtaining the analytical expression of
Ŷsys(t) from Eq. (2.1) is very difficult or even impossible. However, assuming that
the response of the system is linear, the solution for the expectation value ⟨Ŷsys(t)⟩
can be written [104,105]

⟨Ŷsys(t)⟩ =
ˆ

χX→Y (t − t′)ςprobe(t′)dt′. (2.2)

χX→Y (t − t′) is the response function and is invariant to time translations. By
performing the Fourier transform of Eq. (2.2), the expression of ⟨Ŷsys⟩ simplifies to

⟨Ŷsys(ω)⟩ =
ˆ

χX→Y (t − t′)ςprobe(t′)e−iωtdt dt′

=
ˆ

χX→Y (t − t′)e−iω(t−t′)ςprobe(t′)e−iωt′
dt dt′

= χX→Y (ω)ςprobe(ω). (2.3)

Therefore, the response of the system at a particular frequency ω is only affected
by the external perturbation ςprobe(ω) at the same frequency. We next analyze how
χX→Y (ω) is calculated using the tools of the linear response theory. Further, in
this thesis, we are interested in analyzing how the electronic density of a metallic

40



2.1. Linear response theory

system is modified due to the interaction with a probe. Thus, from now on, the
analysis focuses in the particular case of the density-density response function.

2.1.1 Density-density response function
In the formalism of linear density-density response, the system is characterized
with the electronic density ρind(r, t) induced by the probe. The interaction with
the external probe is expressed through the external potential Vext(r, t) induced
by this probe. To calculate how Vext(r, t) affects the system, we consider a single
frequency ω in the potential to focus on the evolution of the electronic density
just at the same frequency, i.e. ρind(r, t) = ρind(r, ω)e−iωt. Further, in the
linear response regime, the external potential must be turned on adiabatically to
ensure that the system reacts slowly. This adiabatic potential can be written as
Vext(r, t) = Vext(r, ω)e−iωteηt (where the potential is turned on at the t → −∞
time limit), and this analysis is valid only for small η > 0 so that the system-
probe interaction does not become too strong to leave the linear response regime.
Therefore, the η → 0 limit is considered finally.

The density-density response function can be obtained by making the Fourier
transform of the system-probe Hamiltonian over spatial variables as

Ĥsys-probe =
ˆ

Vext(r, t)ρind(r)e−iωtdr =
ˆ

Vext(q, ω)ρ∗
ind(q)e−i(ω+iη)tdq. (2.4)

Each q component of the electronic density responds only to the same q component
of the external potential. Thus, each Fourier component of the response function,
according to Eq. (2.2), reads [106]

χ(q, ω) = ρind(q, ω)
Vext(q, ω) . (2.5)

Since we only deal with density-density response functions, we eliminate the
subscript X → Y from the symbol χX→Y to simplify the notation.

In order to calculate the response function, the expectation value of the electronic
density for the quantum state |Ψ⟩ must be calculated with [106]

ρind(q, ω) = ⟨Ψ|eiq·reiωte−ηt|Ψ⟩ . (2.6)

In this equation, |Ψ⟩ is the solution of the Schrödinger equation

[Ĥsys + Vext(q, ω)ρ∗
ind(q)e−i(ω+iη)t] |Ψ⟩ = iℏ

∂ |Ψ⟩
∂t

, (2.7)

where a single q term of the Hamiltonian Ĥsys-probe is considered. Since χ(q, ω)
is calculated in the linear response regime, Eq. (2.7) needs to be solved just
at first order of perturbation theory. With this aim, we expand |Ψ⟩ over the
eigenstates |ϕn⟩ of the system Hamiltonian Ĥsys (i.e. which satisfy the equation
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Chapter 2. Quantum descriptions of plasmons and of electron tunneling

Ĥsys |ϕn⟩ = ℏωn |ϕn⟩), according to the expression

|Ψ⟩ =
∑

n

an(t)e−iωnt |ϕn⟩ . (2.8)

By introducing this expression into Eq. (2.7), the solution needs to satisfy the
initial conditions am(−∞) = 1 for all the states |ϕm⟩ that are occupied before
the interaction is turned on, and an(−∞) = 0 for the unoccupied states |ϕn⟩. At
first-order approximation, the occupation factor of the occupied states can be
assumed to remain constant at am(t) = 1. Subsequently, Eq. (2.7) with these
initial conditions gives the coefficients of the unoccupied states, which are

an(t) =
occ.∑
m

e−i(ω+iη−ωm+ωn)

ℏ(ω + iη − ωm + ωn)Vext(q) ⟨ϕn|ρind(q)|ϕm⟩ . (2.9)

Last, the coefficients an(t) give the expectation value of the density with [106]

ρind(q, t) =
occ.∑
m

unocc.∑
n

an(t)ei(ωm−ωn)t ⟨ϕm|ρind(q)|ϕn⟩ + c.c., (2.10)

where c.c. stands for the complex conjugate. By introducing the coefficients of Eq.
(2.9) into this last expression, the response function [Eq. (2.5)] is calculated as

χ(q, ω) =
occ.∑
m

unocc.∑
n

[
| ⟨ϕn|ρind(q)|ϕm⟩ |2

ℏ(ω + iη + ωm − ωn) − | ⟨ϕn|ρind(q)|ϕm⟩ |2

ℏ(ω + iη − ωm + ωn)

]
. (2.11)

This result implies that if all eigenvalues ωm(n) and eigenstates
∣∣ϕm(n)

〉
are known

for a system, we can calculate the density ρind(q, ω) induced in the system by any
external perturbative potential Vext(q, ω) using Eq. (2.5).

2.1.2 Causality and Kramers-Kronig relations
From a physical point of view, a response function must satisfy certain properties,
such as the preservation of causality. To demonstrate that the response function
from Eq. (2.11) is appropriate in regards of this property, we first observe that
χ(q, ω) exhibits poles at frequencies ω = ±(ωm − ωn) − iη. χ(q, ω) is therefore
analytic in the upper half of the complex plane but not in the lower half. This
property has a significant consequence in the response function in the time domain,
which becomes apparent by computing the inverse Fourier transform,

χ(q, t − t′) = 1
2π

ˆ ∞

−∞
χ(q, ω)e−iω(t−t′)dω. (2.12)

If t − t′ is negative, the contour of this integral can be closed in the upper complex
plane (indicated by C1 in Fig. 2.1a), because the exponential of Eq. (2.12) vanishes
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a b

Figure 2.1: Contours of the complex integrals related to the response function χ(q, ω). a) Contours
of the integral in Eq. (2.12), for t − t′ < 0 (C1, in red) and for t − t′ > 0 (C2, in green). b)
Contour C3 of the integral in Eq. (2.15). The poles of the integrands are indicated by gray dots
in both panels.

in the |ω| → ∞ limit. Since χ(q, ω) is analytic inside the contour C1, χ(q, t − t′)
must be zero. However, for positive values of t − t′, the integral must be evaluated
in the lower half plane, where χ(q, ω) is no longer analytic (the corresponding
contour is indicated by C2 in Fig. 2.1a together with the poles of the response
function). This analysis leads to the important result

χ(q, ω) analytic for Im ω > 0 ⇐⇒ χ(q, t − t′) = 0, t − t′ < 0
̸= 0, t − t′ > 0. (2.13)

Accordingly, the response function χ(q, t− t′) does not violate causality, because an
external perturbation at time t′ can only modify the system at later times t > t′.

Further, the response function χ(q, t − t′) is real in the time domain, because
the two quantities related by the time-dependent response function in Eq. (2.2), i.e.
⟨Ŷsys(t)⟩ for the system and ςprobe(t) for the probe, are real. This property of the
response function implies that its Fourier transform χ(q, ω) in the frequency domain
is complex. The mathematical properties of χ(q, ω) give additional information
about the processes involved in the response of the system. We consider separately
the real and imaginary parts of the frequency-dependent response function as
χ(q, ω) = χR(q, ω) + iχI(q, ω). By using standard properties of the Fourier
transform, each of these parts can be written as follows,

χR(q, ω) = 1
2

ˆ +∞

−∞
[χ(q, t) + χ(q, −t)]eiωtdt, (2.14a)

χI(q, ω) = − i

2

ˆ +∞

−∞
[χ(q, t) − χ(q, −t)]eiωtdt. (2.14b)

We observe that the real part χR(q, ω) accounts for processes that are invariant
to the time reversal transformation t → −t, and thus it is called as the reactive
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part of the response. On the contrary, the imaginary part χI(q, ω) is not invariant
with respect to time reversal, making it sensitive to the direction of the arrow
of time. Since the physical processes involved in closed microscopic systems are
usually invariant to time reversal, χI(q, ω) must be related to energy absorption
due to the interaction with the environment. As a consequence, χI(q, ω) is called
the dissipative part of the response.

Although χR(q, ω) and χI(q, ω) describe different phenomena on the response
of a system, these two functions are not independent of each other. Indeed, χR(q, ω)
also contains information about dissipative processes of the system and vice versa
for χI(q, ω). To analyze this relationship in further detail, let us integrate the
function χ(q,ω′)

ω−ω′ with respect to ω′ in the closed path C3 indicated in Fig. 2.1b.
Since there is no pole inside the area determined by the path C3, the integral
over the complete path must vanish. Further, the integral in the big half circle
(dashed lines) vanishes in the |ω′| → ∞ limit because χ(q, ω′) scales with 1/|ω′|2.
Therefore, the integral has to be performed in the real line and in the small half
circle around the pole ω = ω′, which evaluates

˛
χ(q, ω′)
ω − ω′ dω′ = PV

(ˆ ∞

−∞

χ(q, ω′)
ω − ω′ dω′

)
+ iπχ(q, ω) = 0, (2.15)

where PV stands for the Cauchy principal value. By taking the real and imaginary
parts of Eq. (2.15), we obtain

χR(q, ω′) = − 1
π

PV

(ˆ ∞

−∞

χI(q, ω′)
ω − ω′ dω′

)
, (2.16a)

χI(q, ω′) = 1
π

PV

(ˆ ∞

−∞

χR(q, ω′)
ω − ω′ dω′

)
. (2.16b)

These important results in linear response theory are called the Kramers-Kronig
relations [107]. These relations imply that if either the real or imaginary part
of χ(q, ω) is known at all frequencies, the other can be calculated directly. In
many systems, the imaginary part χI(q, ω) can be calculated computationally in
a considerably faster way than the real part χR(q, ω). In this case, the direct
calculation of χI(q, ω) and the following use of Kramers-Kronig relations to obtain
χR(q, ω) can be much more efficient than calculating the complete response function
χ(q, ω) from the beginning.

2.2 Permittivity of an homogeneous electron gas
under the random phase approximation

The linear response theory outlined in the previous section can be used to derive
the non-local permittivity ε(q, ω) of a metal. In this derivation, we start by relating
the density-density response function [Eq. (2.11)] with the electromagnetic fields
inside the metal. By taking the spatial Fourier transform of Maxwell’s equation
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(1.1a), we relate the displacement and electric fields with the charge densities of the
metal and the probe. First, the displacement field reads [directly from Eq. (1.1a)]

iq · D(q, ω) = ρext(q, ω), (2.17)

where ρext(q, ω) is the charge density of the external probe. By using the relation
between the displacement and electric fields D = ε0E + P, we obtain that the
electric field is written as

iq · E(q, ω) = 1
ε0

[ρext(q, ω) + ρind(q, ω)], (2.18)

where ρind(q, ω) = −iq · P(q, ω) is the induced charge density of the system
obtained from the polarization density P(q, ω).

In linear optical response, the electric and displacement fields are related as
D(q, ω) = ε0ε(q, ω)E(q, ω) [Eq. (1.5)]. We then obtain the (relative) permittivity
ε(q, ω) of the metal by inserting in the left handside of this equation the expression
of D in Eq. (2.17), and in the right handside the expression of E in Eq. (2.18).
We obtain

1
ε(q, ω) = 1 + ρind(q, ω)

ρext(q, ω) = 1 + VCou(q)χ(q, ω). (2.19)

In the last step, we have used the definition of the density-density response function
given by Eq. (2.5), where the external potential is Vext(q, ω) = VCou(q)ρext(q, ω)
[108] and VCou(q) is the Fourier transform of the Coulomb potential.

We have thus shown that the permittivity of any quantum system can be
calculated directly from the response function of Eq. (2.11). However, even for
the HEG, which is the simplest model for metals, the calculation of χ(q, ω) is a
difficult task. In the derivation of the response function, we have considered the
interaction between the system and the probe, but the interaction between all
electrons within the system has been neglected. In the most rigorous approach, all
the electron-electron interactions should be included in the Schrödinger equation
of the system [Eq. (2.7)], in order to obtain all eigenstates |ϕn⟩ accordingly. Due
to the difficulty of solving the complete equation, approximations must be made.

An important approximation used for the HEG is the Random Phase
Approximation (RPA). In this approach, the interaction of all the other electrons
is treated as an effective external potential for each electron. That is, the screening
field of the form VCou(q)ρind(q, ω) due to the induced density is treated in the same
way as the field of the external probe VCou(q)ρext(q, ω). Besides the screening field
of other electrons, further contributions to the electron-electron interaction (such
as exchange and correlation, as explained in Sec. 2.3), are neglected.

As a first step, before calculating the response function of the interacting system
according to the RPA, we calculate the response function of a hypothetical system
of non-interacting electrons. In this approach, treating the screening potential as
an external contribution, the electrons can be considered as being independent of
each other. Therefore, each electron is influenced by an effective potential that
accounts for both the external potential and screening potential of other electrons.
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Chapter 2. Quantum descriptions of plasmons and of electron tunneling

The response function of this system would be given by Eq. (2.5) with the external
potential Vext(q, ω) = VCou(q)ρext(q, ω) + VCou(q)ρind(q, ω), i.e.

χ0(q, ω) = ρind(q, ω)
VCou(q)[ρind(q, ω) + ρext(q, ω)] . (2.20)

In this expression, χ0(q, ω) is the response function of a non-interacting electron
gas, i.e. it is calculated according to Eq. (2.11) with single-electron orbitals |ϕn⟩.
However, χ0(q, ω) is not the response function of the actual interacting system.
We note that the interacting system just reacts to the external potential, because
the contribution of the screening would be included in the interaction of the
system, not as being an external contribution. That is, the response function of the
interacting system satisfies Eq. (2.5) with Vext(q, ω) = VCou(q)ρext(q, ω), instead
of with Vext(q, ω) = VCou(q)ρext(q, ω) + VCou(q)ρind(q, ω) as the non-interacting
system. From this perspective, we can use χ0(q, ω) from Eq. (2.20) to obtain the
approximate response function χRPA(q, ω) of the interacting electron gas according
to

χRPA(q, ω) = ρind(q, ω)
VCou(q)ρext(q, ω) = χ0(q, ω)

1 − VCou(q)χ0(q, ω) . (2.21)

Last, by introducing this expression into Eq. (2.19), the permittivity of a metal
can be calculated directly from the non-interacting response function with

ε(q, ω) = 1 − VCou(q)χ0(q, ω). (2.22)

After obtaining the expression of the permittivity for a general HEG, in the
following subsections we analyze in detail the results corresponding to three
particular systems.

2.2.1 3D homogeneous electron gas
The first calculation of a permittivity under the RPA was carried out by
Lindhard for a three-dimensional (3D) HEG [109]. The Lindhard permittivity
εLin(q, ω) = εLin

R (q, ω) + iεLin
I (q, ω) is calculated using the Fourier transform of

the Coulomb potential in three dimensions (with q = |q|),

VCou(q) = e2

ε0q2 , (2.23)

and computing the non-interacting response function χ0(q, ω) according to Eq.
(2.11). For a metal with Fermi velocity vF, plasma frequency ωp and electron
effective mass meff, the real part of the Lindhard permittivity is

εLin
R (q, ω)

= 1 +
3ω2

p

(qvF)2

{
1
2 + meffvF

4ℏq

[(
(ℏω + ℏ2q2

2meff
)2

(ℏqvF)2 − 1
)

ln
∣∣∣∣∣ℏω − ℏqvF + ℏ2q2

2meff

ℏω + ℏqvF + ℏ2q2

2meff

∣∣∣∣∣
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Figure 2.2: Excitation spectra and permittivities according to the RPA. a) Excitation spectra
obtained from the RPA. The blue area indicates the momentum-energy region where electron-hole
pairs can be excited in 2D and 3D metals. The red and black lines give the dispersion relation
of the plasmon in the 2D and 3D HEG, respectively. The energy ℏω and wavevector q are
normalized by the Fermi energy EF and Fermi wavevector kF, respectively. b) Real part and
c) imaginary part of the Lindhard permittivity εLin(q, ω) for q = 0.01kF (blue), q = 0.015kF
(purple) and q = 0.02kF (red), for a 3D HEG with plasma energy ℏωp = 1.6EF. The black dashed
line corresponds to the Drude permittivity εDr(ω) with plasma energy ℏωp = 1.6EF and damping
energy ℏγ = 5 · 10−4EF.

−

(
(ℏω − ℏ2q2

2meff
)2

(ℏqvF)2 − 1
)

ln
∣∣∣∣∣ℏω − ℏqvF − ℏ2q2

2meff

ℏω + ℏqvF − ℏ2q2

2meff

∣∣∣∣∣
]}

. (2.24)

On the other hand, for ℏq ≤ 2meffvF, we obtain the imaginary part given by

εLin
I (q, ω)

= π

2
3ω2

p

(qvF)2
ω

qvF
, 0 ≤ ℏω ≤ − ℏ2q2

2meff
+ ℏqvF,

= π

2
3ω2

p

(qvF)2
meffvF

ℏq

[
1 −

(ℏω − ℏ2q2

2meff
)2

(ℏqvF)2

]
, ℏqvF − ℏ2q2

2meff
≤ ℏω ≤ ℏqvF + ℏ2q2

2meff
,

= 0, ℏqvF + ℏ2q2

2meff
≤ ℏω, (2.25)

while for ℏq > 2meffvF, the imaginary part is

εLin
I (q, ω)

= π

2
3ω2

p

(qvF)2
meffvF

ℏq

[
1 −

(ℏω − ℏ2q2

2meff
)2

(ℏqvF)2

]
,

ℏ2q2

2meff
− ℏqvF ≤ ℏω ≤ ℏ2q2

2meff
+ ℏqvF,
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Chapter 2. Quantum descriptions of plasmons and of electron tunneling

= 0, elsewhere. (2.26)

The permittivity of a material contains information about the electronic
excitations that can be directly measured in an experiment. For instance, in
electron energy loss spectroscopy, an incident electron can transfer energy ℏω and
momentum ℏq to an excitation of the system. If this experiment is carried out
in bulk, the loss function − Im[ε−1(q, ω)] is proportional to the differential cross
section of electron scattering d2σsca

dωdΩθϕ
per solid angle Ωθϕ [110, 111]. Since the

scattering cross section of a bulk material is influenced by its excitations, the loss
function can be used to analyze bulk excitations of different materials.

In particular, the loss function − Im[εLin(q, ω)−1] = εLin
I (q, ω)/[εLin

R (q, ω)2 +
εLin

I (q, ω)2] is nonzero in the energy-momentum region delimited by the curves
ℏω = ℏqvF ± ℏ2q2/2meff (indicated by the blue area in Fig. 2.2a), where εLin

I (q, ω)
is positive. This is the necessary condition to induce a transition for an electron
from a state of momentum ℏk inside the Fermi’s sphere of the metal, leaving a
hole in this state, to an unoccupied state of momentum ℏ(k + q). Therefore, all
the excitations measured in a metal for all these values of ω and q correspond to
electron-hole pairs [106].

Moreover, the loss function is also nonzero if both εLin
R and εLin

I vanish, and
this condition gives raise to a plasmonic collective excitation (we have also justified
the condition ε = 0 for a bulk plasmon in Sec. 1.2.1 for classical electrodynamics).
The black curve in Fig. 2.2a indicates the dispersion relation ω(q) of the plasmon,
by solving numerically εLin

R (q, ω) = 0 in Eq. (2.24) in the region of q and ω
where εLin

I (q, ω) = 0. In the q → 0 limit of local response, Lindhard’s calculation
indicates that a bulk plasmon exists at frequency ω = ωp, recovering the result
obtained within the Drude permittivity (Sec. 1.2.1). In contrast to the Drude
model, however, RPA calculations result in a dependence on the frequency ω of the
modes with increasing q. At small q, the resulting dispersion can be approximated
as

ω(q) = ωp

[
1 + 3

10

(
qvF

ωp

)2
+ O

(
qvF

ωp

)4
]

. (2.27)

In this low-q regime, the plasmonic resonance of a HEG appears as a peak of zero
widthi, because the loss function diverges under the condition εLin

I = εLin
R = 0.

However, the plasmon is not undamped for all q. As shown in Fig. 2.2a, the
dispersion of the plasmon (black curve) increases slower than the boundary of
the region of the electron-hole excitations (blue area). Subsequently, at momenta
ℏq ≳ ℏω

vF
, electron-hole pairs can be excited at the same frequencies ω(q) of the

plasmon, which opens a decay channel for the collective excitation. Therefore, the

i In real metals, plasmonic resonances have a finite linewidth even in the q → 0 limit. As
we discuss thoroughly in Chapter 3, the discrepancy between this theoretical result and reality
emerges because the HEG is a too simple model for real metals.

48



2.2. Permittivity of an homogeneous electron gas under the RPA

plasmon acquires a finite lifetime under these circumstancesii.
To analyze the relation between the Drude [Eq. (1.25)] and Lindhard

permittivities, we plot their real and imaginary parts in Figs. 2.2b and c,
respectively. We show εLin(ω) at small values of q = 0.01kF (blue), 0.015kF
(purple) and 0.02kF (red), to study the q → 0 limit of local response. The Drude
permittivity εDr(ω) is local and does not depend on q. We observe that the real part
of the Lindhard permittivity approaches εDr

R (ω) at large frequencies ω ≫ q/vF. By
decreasing q, the two permittivities become more similar, and Eq. (2.24) indicates
that in the local limit they are indeed equivalent,

lim
q→0

εLin
R (q, ω) = 1 −

ω2
p

ω2 = εDr
R (ω). (2.28)

From this perspective, the Lindhard permittivity can be understood as a non-local
extension of the Drude permittivity.

However, the two models give a very different description of the damping
phenomena in a metal, as shown in Fig. 2.2c. As mentioned previously, the
imaginary part of the Lindhard permittivity describes the excitation of electron-
hole pairs. In the HEG, these excitations are only possible with a finite momentum
transfer ℏq, and therefore, εLin

I vanishes completely for all frequencies in the q → 0
limit. In contrast, in the Drude model, the friction parameter γ is introduced to
represent the damping of the electrons. We plot the imaginary part of the Drude
permittivity in 2.2c for a small damping of value ℏγ = 5 · 10−4EF (EF being the
Fermi energy of the metal), and a completely different dependence on ω is shown as
compared to the Lindhard permittivity. Thus, there is no correspondence between
the two models according to the imaginary part of the permittivity.

2.2.2 2D homogeneous electron gas
A decade after the publication of the Lindhard permittivity, Stern followed the
same approach to calculate the permittivity of a HEG confined in a plane [48]. This
work showed that plasmons in 2D electron gases are a very promising alternative to
those in bulk metals because of their very different properties. Since then, plasmons
have been extensively studied in 2D materials including graphene [112] and in
systems exploiting electronic surface states, such as topological insulators [113,114].

According to the calculation by Stern, the response function of a 2D HEG under

ii Inside the region of electron-hole excitations, the strict condition εLin(q, ω) = 0 for the
existence of plasmons cannot be satisfied, because the imaginary part of the permittivity is
positive, i.e. εLin

I (q, ω) > 0. However, the loss function still contains a clear peak of finite
linewidth at frequencies where εLin

R (q, ω) = 0. Thus, inside the electron-hole region we still
consider the existence of plasmons for frequencies where the real part of the permittivity vanishes,
even if the imaginary part is nonzero.
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Chapter 2. Quantum descriptions of plasmons and of electron tunneling

the RPA leads to the expression [48]

χRPA-2D
R (q∥, ω) = meffkF

πℏ2q∥

[
−

q∥

kF
+ Θ(ζ2

+ − 1)
√

ζ2
+ − 1 − sgn(ζ−)Θ(ζ2

− − 1)
√

ζ2
− − 1

]
,

(2.29a)

χRPA-2D
I (q∥, ω) = meffkF

πℏ2q∥

[
Θ(1 − ζ2

+)
√

1 − ζ2
+ − Θ(1 − ζ2

−)
√

1 − ζ2
−

]
, (2.29b)

where q∥ = |q∥| is the magnitude of the 2D wavevector q∥ = (qx, qy), Θ denotes
the Heaviside step function and

ζ± = ω

vFq∥
±

q∥

2kF
. (2.30)

The permittivity εRPA-2D(q∥, ω) of these materials is then calculated
straightforwardly with Eq. (2.22), using the 2D Fourier transform of the Coulomb
potential

VCou(q∥) = e2

2ε0q∥
. (2.31)

Following the same analysis carried out for 3D metals, the result of the response
function allows obtaining the excitation spectra of 2D materials with the loss
function − Im[ε−1(q∥, ω)]. The momentum ℏq∥ and energy ℏω required to excite
electron-hole pairs are determined by the imaginary part of the permittivity under
the condition εRPA-2D

I (q∥, ω) > 0. Their corresponding spectrum is delimited by
the curves ℏω = ℏq∥vF ± ℏ2q2

∥/2meff, which is exactly the same as for the 3D HEG.
Therefore, the properties of the electron-hole pairs do not strongly depend on the
dimensionality of the material. More importantly, the dispersion of the plasmons,
given by the condition εRPA-2D

R (q∥, ω) = 0, is very different from the 3D counterpart
as plotted in Fig. 2.2a (red curve). In the low-q∥ regime, the dispersion of 2D
plasmons (2DP) can be approximated to

ω2
2DP(q∥) = e2EF

2πε0ℏ2 q∥ + 3
4v2

Fq2
∥ + O(q3

∥). (2.32)

Whereas in bulk metals the non-retarded plasmon frequency tends to the finite
value ωp in the q → 0 limit and has a weak dispersion at small q (Fig. 2.2a), the
2D plasmon frequency reaches zero in the q∥ → 0 limit and it scales as ω2DP ∝ √

q∥.
According to this dispersion relation, plasmons can be excited even in the THz and
far-infrared ranges at relatively large q∥, and thus 2D systems increase the range
of applicability of this type of excitations from 3D metals.
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2.2. Permittivity of an homogeneous electron gas under the RPA

2.2.3 A 2D layer over a 3D bulk substrate: acoustic surface
plasmons

Several metal surfaces, such as those of beryllium or of the noble metals Cu, Ag or
Au [115], support electronic states that are strongly localized in the metal-vacuum
interface, known as the Shockley surface states. Due to the strong localization
of the Shockley states, the electrons that occupy these bands can be considered
as forming a 2D gas placed over a semi-infinite 3D HEG. Although a rigorous
description of the excitation spectra requires the complete information about the
band structure of the corresponding metal surfaces, a simple model based on the
RPA already describes some properties of the excitations that have been verified
experimentally [45,116].

We consider a simple model where the gas comprising all bulk electrons is located
at z < 0, whereas the sheet filled by the electrons in the Shockley states is in the
plane z = zs. Following linear response theory, we can relate the induced electronic
densities in the 2D (ρ2D

ind) and 3D (ρ3D
ind) gases with their corresponding response

functions χ2D(q∥, ω) and χ3D(q∥, ω). We write these expressions by performing
the Fourier transform in the direction parallel to the interface (taking advantage of
the translational invariance in this direction), but leaving the dependence over z
explicitly, which gives [117]

ρ2D
ind(z, q∥, ω) =

[
Vext(z, q∥, ω) +

ˆ
VCou(z, z′, q∥)ρ3D

ind(z′, q∥, ω)dz′
]

× χ2D(q∥, ω)δ(z − zs), (2.33a)

ρ3D
ind(z, q∥, ω) =

ˆ [
Vext(z′, q∥, ω) +

ˆ
VCou(z′, z′′, q∥)ρ2D

ind(z′′, q∥, ω)dz′′
]

× χ3D(z, z′, q∥, ω)dz′, (2.33b)

with the Fourier transform of the Coulomb potential

VCou(z, z′, q∥) = e2

2ε0q∥
e−q∥|z−z′|. (2.34)

In order to obtain the excitation spectra of the metallic surface, we need to
focus on the electronic density of the 2D gas. These electrons are exposed to the
external potential and also to the Coulomb interactions from the electrons in the
metallic substrateiii. By combining Eqs. (2.33a) and (2.33b), we find that the
induced density in the 2D HEG is proportional to the effective external potential
Ṽext given by [117]

Ṽext(z, q∥, ω) =Vext(z, q∥, ω)

iii There are also electron-electron interactions within the 2D HEG, but the effects of these
interactions are already included into the response function χ2D(q∥, ω) of the 2D system.
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+
ˆ ˆ

VCou(z, z′, q∥)χ3D(z′, z′′q∥, ω)Vext(z′′, q∥, ω)dz′dz′′.

(2.35)

Indeed, the density ρ2D
ind can be written in terms of this potential as

ρ2D
ind(z, q∥, ω) = χeff(q∥, ω)Ṽext(z, q∥, ω)δ(z − zs). (2.36)

Importantly, the response of the 2D HEG to the effective external potential
Ṽext(z, q∥, ω) is fully determined by the effective response function

χeff(q∥, ω) =
χ2D(q∥, ω)

1 − [W (q∥, ω) − VCou(zs, zs, q∥)]χ2D(q∥, ω) , (2.37)

where W (q∥, ω) is the so-called screened interaction. According to the last
expression, if the response function of the 2D HEG χ2D(q∥, ω) is known, we can
directly obtain the response of the system in the presence of the 3D semi-infinite
HEG. However, as discussed in detail above, it is difficult to obtain the response
function of an interacting system. To simplify the calculations, we can use the RPA,
where Eq. (2.21) gives the relation between the response function of the interacting
system χ2D and the response function corresponding to the non-interacting system
χ0

2D (which can be calculated with Eq. (2.11) using single-electron orbitals). With
Eq. (2.21), we can simplify Eq. (2.37) to write it in terms of the response function
of the non-interacting system χ0

2D as

χeff(q∥, ω) =
χ0

2D(q∥, ω)
1 − W (q∥, ω)χ0

2D(q∥, ω) . (2.38)

Last, in order to calculate the effective response function with Eq. (2.38), we
must know how the screened interaction term W (q∥, ω) is evaluated. In the absence
of the substrate metal, the term W (q∥, ω) that mediates the interaction between
electrons is equal to VCou(q∥), so that we recover Eq. (2.21). However, by adding
the metallic substrate, W (q∥, ω) transforms to

W (q∥, ω) =VCou(zs, zs, q∥)

+
ˆ ˆ

VCou(zs, z′, q∥)χ3D(z′, z′′, q∥, ω)VCou(z′′, zs, q∥)dz′dz′′. (2.39)

According to this equation, the main effect of the bulk electrons is to screen the
interaction between the electrons of the surface, as given by the second term in the
right handside. Further, in the same manner as in the derivation of Eq. (2.22), we
can describe the excitation spectra of the metallic surface in terms of the screened
Coulomb interaction according to the permittivity

εeff(q∥, ω) = 1 − W (q∥, ω)χ0
2D(q∥, ω). (2.40)
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2.2. Permittivity of an homogeneous electron gas under the RPA

As analyzed for the 2D and 3D HEGs, the plasmonic excitations of the system
are given by the zeroes of the real part of the permittivity. Interestingly, by
placing a 2D layer over a 3D substrate, the effective permittivity εeff(q∥, ω) has
two zeroes in the q∥ → 0 limit. The first zero occurs at high frequencies. Under the
condition ω ≫ vFq∥, the following limits of the response function and the screening
interactions are known [117],

lim
q∥→0

χ0
2D(q∥, ω ≫ vFq∥) = 1

VCou(q∥)
ω2

2DP
ω2 , (2.41a)

lim
q∥→0

W (q∥, ω ≫ vFq∥) = VCou(q∥) ω2

ω2 − ω2
SP

. (2.41b)

Thus, the first zero of the permittivity [Eq. (2.40)] occurs at the frequency

ω2 = ω2
SP + ω2

2DP, (2.42)

which is associated to in-phase collective oscillations of the surface and bulk
electrons.

The other zero of the permittivity is associated to the out-of-phase collective
oscillations of these electrons. The dispersion of the second excitation is [117]

ω = avFq∥, (2.43)

which follows a linear scaling of ω with q∥, instead of the ω ∝ √
q∥ dependence

observed for the single 2D HEG. Due to the linear dispersion relation of Eq. (2.43),
these waves that appear in metallic surfaces with surface and bulk electronic states
are called acoustic surface plasmons. The parameter a that mediates the velocity
of these acoustic waves is of the order of 1, and its exact value depends on the
electronic structure of the metal and on the position of the 2D sheet with respect
to the bulk metal. In the simple model that we have outlined in this section, this
value can be written as [117]

a =

√
1 + I2

π[π + 2I] (2.44)

where I = limq∥→0 W (q∥, ω → 0) is defined to be the q∥ → 0 limit of the static
screening (for ω = 0) induced by the bulk particles. avF is much smaller than the
speed of light, and thus acoustic surface plasmons have a much larger wavevector
than electromagnetic waves in vacuum, and also a larger one than the 2D plasmon
with ω ∝ √

q∥ dispersion. Hence, acoustic surface plasmons confine electromagnetic
energy in even smaller dimensions than the conventional plasmons.
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2.3 Ab initio methods
In real metals, electrons do not behave like in a homogeneous gas, but interact
with nuclei in a lattice. Thus, a more precise description of the excitation spectra
of metals must include the interactions of electrons with other electrons and with
the electrostatic potential of the nuclei. Solving the Schrödinger equation to find
the wavefunction that depends on the position ri of all these ∼ 1023 particles is
impossible with the current technology, so that Density Functional Theory (DFT)
is used instead. This theory describes the system through a ground-state electronic
density that depends on one position vector r. Further, Time Dependent Density
Functional Theory (TDDFT) can be used to study the response of the metal to a
time-dependent external perturbation. This section explains how ab initio methods
based on TDDFT can be used in the linear regime to calculate the response function
χ(q, ω) of metals, which allows us to obtain the properties of excitations in metallic
systems.

2.3.1 Density Functional Theory
Born-Oppenheimer approximation

The wavefunction Ψ associated to all particles in a metal is the solution of the
time-independent Schrödinger equation

ĤmetΨ(r1, r2, ..., rNel , R1, R2, ..., RNnuc) = ℏωΨ(r1, r2, ..., rNel , R1, R2, ..., RNnuc),
(2.45)

where ri and RA are the position coordinates of the Nel electrons and Nnuc nuclei,
respectively. The Hamiltonian of the metal Ĥmet reads

Ĥmet = T̂el + T̂nuc + V̂el-el + V̂nuc-nuc + V̂nuc-el

=
∑

i

− ℏ2

2me
∇2

i −
∑

A

ℏ2

2MA
∇2

A + e2

4πε0

1
2
∑
i ̸=j

1
|ri − rj |

− e2

4πε0

∑
i,A

ZA

|ri − RA|
+ e2

4πε0

1
2
∑

A ̸=B

ZAZB

|RA − RB |
, (2.46)

where the subindexes i and j refer to electrons, while A and B correspond to
nuclei. The first two terms of the Hamiltonian, T̂el and T̂nuc, are the kinetic
energy operators of the electrons of mass me and of the nuclei with mass MA and
atomic number ZA, respectively. The other three terms represent the Coulomb
interactions between all the particles, where V̂el-el is the potential energy due to
the interactions between different electrons, the term V̂nuc-el corresponds to the
interactions of electrons with nuclei, and the last term V̂nuc-nuc accounts for the
interaction between different nuclei.

The Hamiltonian of Eq. (2.46) is not separable into the single-particle
coordinates ri or RA due to the interaction terms. Even in the simplest
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2.3. Ab initio methods

scenario of two interacting electrons in an atom, the Schrödinger equation is
not analytically solvable and numerical methods are necessary. The computational
cost of this task increases exponentially with the number of particles, and thus
further approximations must be made for a metal. As a first step, a widely-used
approximation was first proposed by M. Born and R. Oppenheimer [118], by
considering that the ratio between the masses of the electrons and of the nuclei
is of the order me

MA
∼ 10−3. The Born-Oppenheimer approximation consists in

separating the wavefunctions into two parts, one associated to the electrons and
the other one to the nuclei, in the form Ψ(r1, r2, ..., rNel , R1, R2, ..., RNnuc) ≈
ϕ(r1, r2, ..., rNel)Φ(R1, R2, ..., RNnuc). Due to the large mass of the nuclei, the
contribution of their kinetic energy T̂nuc is small, and therefore it is assumed that
the electronic part of the wavefunction ϕ(r1, r2, ..., rNel) is not affected by the
dynamics of the nuclei encoded in the wavefunction Φ(R1, R2, ..., RNnuc). All the
nuclei can therefore be considered to be at fixed positions inside the lattice. Hence,
the electronic wavefunction satisfies the Schrödinger equation with the Hamiltonian

Ĥel = T̂el+V̂ext+V̂el-el = − ℏ2

2me

∑
i

∇2
i − e2

4πε0

∑
i,A

ZA

|ri − RA|
+ e2

4πε0

1
2
∑
i ̸=j

1
|ri − rj |

.

(2.47)
Since the coordinates RA are not longer dynamical variables of the problem, the
electrostatic potential caused by the nuclei is treated as an external contribution
in V̂ext. However, the term V̂el-el that connects the positions ri of all electrons still
remains, which makes further approximations necessary to separate the Hamiltonian
into terms with a single position ri and to solve the electronic problem.

Hohenberg-Kohn theorems and Kohn-Sham equations

The basic idea of DFT is to describe the system with the ground-state electronic
density ρ0(r) instead of with all the eigenfunctions from the Hamiltonian in Eq.
(2.47). This density is defined from the ground-state wavefunction ϕ0(ri) as

ρ0(r) = Nel

ˆ
dr2

ˆ
dr3 · · ·

ˆ
drNel |ϕ0(r, r2, r3, ..., rNel)|2, (2.48)

and is normalized so that the total number of electrons in the system is Nel, i.e. it
satisfies

´
ρ0(r)dr = Nel. The importance of this function in the full description of

the electronic system is expressed by the two Hohenberg-Kohn theorems [119], the
first of which states

• First Hohenberg-Kohn theorem: The external potential (corresponding to
the nuclei) of the system is a unique functional of the ground-state density
(up to a constant): V̂ext[ρ0(r)].

Among the three terms of the electronic Hamiltonian of Eq. (2.47), only the
external potential V̂ext depends on the system to be analyzed (i.e. on the position
and atomic number of the nuclei), while T̂el and V̂el-el are universal operators.
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Chapter 2. Quantum descriptions of plasmons and of electron tunneling

According to the first Hohenberg-Kohn theorem, the ground-state density fully
determines V̂ext, and thus, there is a one-to-one correspondence between ρ0(r) and
the Hamiltonian Ĥel[ρ0(r)]. As a consequence, all excited states of the Schrödinger
equation are also unique functionals of ρ0(r) and therefore, all the properties of the
system can be extracted from this function. Further, the ground-state density is a
much simpler mathematical object than the wavefunctions because it is a function
of just a single position vector r. The method to find ρ0(r) is specified in the
second theorem.

• Second Hohenberg-Kohn theorem: The ground-state energy can be obtained
using the variational principle. Accordingly, the actual ground-state density
of the system is the function that minimizes the functional of the ground-state
energy, ℏω0[ρ0(r)].

In order to fulfill this minimization procedure, we first write the ground-state
energy in the functional form

ℏω0[ρ0(r)] = ⟨ϕ0|T̂el + V̂ext + V̂el-el|ϕ0⟩ = T̂el[ρ0(r)]+V̂el-el[ρ0(r)]+
ˆ

Vext(r)ρ0(r)dr.

(2.49)
This functional must be minimized under all functions ρ0(r), with the constraint
that ρ0(r) must be normalized according to

´
ρ0(r)dr = Nel. By using Lagrange

multipliers Λ, the ground-state density is given by the equation

δ

δρ0(r)

[
ℏω0[ρ0(r)] − Λ

ˆ
ρ0(r′)dr′

]
= 0 ⇔ δTel[ρ0(r)]

δρ0(r) +δVel-el[ρ0(r)]
δρ0(r) +Vext(r) = Λ.

(2.50)
The main difficulty of this approach is that the exact analytical form of the electron-
electron interaction functional, Vel-el[ρ0(r)], is unknown. In response to this, W.
Kohn and L. J. Sham proposed an alternative approach to the problem based on
the Hohenberg-Kohn theorems.

The key idea of the Kohn-Sham (KS) approach [120] is to replace the
Hamiltonian of interacting particles [Eq. (2.47)] with an effective Hamiltonian of
a fictitious non-interacting system that has the same ground-state density as the
original system, given by

ĤKS =
∑

i

(
− ℏ2

2me
∇2

i + VKS(ri)
)

. (2.51)

The electron-electron interactions are not completely eliminated because their
effects are introduced inside the effective KS potential VKS(r) to which each
electron is subjected. Further, ĤKS is separable over all variables ri corresponding
to individual electrons, and thus the single-particle Schrödinger equation of the KS
Hamiltonian gives the single-particle KS orbitals ϕKS

i (r) and KS energies ℏωKS
i ,

− ℏ2

2me
∇2ϕKS

i (r) + VKS(r)ϕKS
i (r) = ℏωKS

i ϕKS
i (r). (2.52)
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With these orbitals, all the wavefunctions of the system can be expressed as a
Slater determinant evaluated as

ϕ(r1, r2, ..., rNel) = 1√
Nel!

∣∣∣∣∣∣∣∣∣
ϕKS

1 (r1) ϕKS
2 (r1) · · · ϕKS

Nel
(r1)

ϕKS
1 (r2) ϕKS

2 (r2) · · · ϕKS
Nel

(r2)
...

...
...

ϕKS
1 (rNel) ϕKS

2 (rNel) · · · ϕKS
Nel

(rNel)

∣∣∣∣∣∣∣∣∣ . (2.53)

In order to find the expression of the KS potential, we need to know the ground-
state energy functional ℏω0[ρ0(r)] first. We first note that, since the electrons are
considered to be independent within the KS approach, the ground-state density is
simplified by introducing Eq. (2.53) into Eq. (2.48), which leads to the expression

ρ0(r) =
occ.∑

i

|ϕKS
i (r)|2. (2.54)

Thus, the ground-state density of the system is the sum of the probability densities
of the occupied individual KS orbitals. With the help of this expression, the
functional ℏωKS

0 [ρ0(r)] under the KS approach can be written as [120–122]

ℏωKS
0 [ρ0(r)] = − ℏ2

2me

ˆ
[ϕKS

i (r)]∗∇2ϕKS
i (r)dr +

ˆ
Vext(r)ρ0(r)dr

+
ˆ

ρ0(r)ρ0(r′)
|r − r′|

drdr′ + ℏωxc[ρ0(r)]. (2.55)

The first term in the right handside corresponds to the kinetic energy of a non-
interacting system. The contribution of the external potential (of the nuclei)
is included in the second term in the same way as in Eq. (2.49). Part of the
potential energy due to electron-electron interactions is introduced within the
Hartree energy functional, ℏωHar[ρ0(r)] =

´ ρ0(r)ρ0(r′)
|r−r′| drdr′. However, these kinetic

and potential functionals do not account for all the effects of electronic interactions,
and the remaining contributions are included in the exchange-correlation functional
ℏωxc[ρ0(r)]. This functional is defined to be the necessary term for the ground-state
energy functional in Eq. (2.55) to give the actual value of the energy, and thus,
the functional of Eq. (2.55) is exact in theory. Nevertheless, the main problem of
the KS approach is that the exact form of the exchange-correlation functional is
unknown. Thus, in practical calculations we cannot obtain the exact KS orbitals
and energies from Eq. (2.55) directly, and we must make approximations for the
exchange-correlation term, as we discuss below.

The equations that the KS orbitals must satisfy are obtained by applying
the second Hohenberg-Kohn theorem into Eq. (2.55), i.e. these equations are
obtained by minimizing the functional of Eq. (2.55) over the ground-state density
ρ0(r). An advantage of the KS approach is that this minimization procedure can
be carried out more easily by using single-electron KS orbitals ϕKS

i (r), because
they are related with the ground-state density according to Eq. (2.54). By
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Chapter 2. Quantum descriptions of plasmons and of electron tunneling

Figure 2.3: Graphical representation of the self-consistent calculations within DFT. An initial
guess of the ground-state density ρ0(r) is introduced in the main self-consistent loop, schematized
by the box in the center. In this loop, Eqs. (2.52), (2.54) and (2.57) are solved repeteadly to
obtain the actual KS potential VKS(r), KS orbitals ϕKS

i (r) and ground-state density ρ0(r). After
obtaining convergence, the last function ρ0(r) exits the loop and is used to calculate different
physical properties of the system.

using the method of Lagrange multipliers (for convenience, we use ℏωKS
i as

multipliers) with the constraint that the KS orbitals must be normalized to unity,
i.e.
´

ϕKS
i (r)[ϕKS

i (r)]∗dr = 1, we obtain [121]

δ

δ[ϕKS
i (r)]∗

[
ℏωKS

0 [ρ0(r)] − ℏωKS
i

ˆ
ϕKS

i (r)[ϕKS
i (r)]∗dr

]
= 0

⇔ − ℏ2

2me
∇2ϕKS

i (r) + Vext(r)ϕKS
i (r) + ϕKS

i (r)
ˆ

ρ0(r)
|r − r′|

dr′

+ ϕKS
i (r)δℏωxc[ρ0(r)]

δρ0(r) = ℏωKS
i ϕKS

i (r). (2.56)

By comparing this last expression, obtained by the variational principle, with Eq.
(2.52), we observe that the KS orbitals ϕKS

i (r) satisfy the Schrödinger equation
with the KS Hamiltonian ĤKS from Eq. (2.51) with the potential given by

VKS(r) = Vext(r) +
ˆ

ρ0(r)
|r − r′|

dr′︸ ︷︷ ︸
VHar[ρ0(r)]

+ δℏωxc[ρ0(r)]
δρ0(r)︸ ︷︷ ︸

Vxc[ρ0(r)]

. (2.57)

This effective KS potential contains three terms: the external potential, the
Hartree potential VHar[ρ0(r)] and the (unknown) exchange-correlation potential
Vxc[ρ0(r)]. Although the KS equations [Eq. (2.52)] are now fully determined,
they are still very difficult to solve, because the KS potential depends on the
ground-state density ρ0(r). Therefore, all ϕKS

i (r) orbitals are needed to build the
KS potential, but the KS orbitals cannot be known without solving the KS equation
itself. To overcome this problem, a self-consistent method is usually used in DFT
calculations, as shown by the diagram of Fig. 2.3. Based on the atomic structure
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of the system, a first guess of ρ0(r) is made, which is used to construct the KS
potential VKS(r). Then, Eq. (2.52) is solved, which leads to a new ground-state
density that can be different from the initial guess. This new density leads to a
new KS potential, and the KS equations are again solved with new solutions. This
procedure continues in a self-consistent loop until the ground-state density ρ0(r)
and the KS eigenvalues do not change. When this convergence is fulfilled, the last
function ρ0(r) represents the real ground state of the system, and many properties
of the solid system can be calculated from there.

Exchange and correlation

DFT is an exact theory as described up to this point. However, since the exact form
of the exchange-correlation potential Vxc(r) is unknown, it must be approximated
in order to solve the KS equations. Accordingly, DFT has been successful mainly in
systems where electrons are not strongly correlated, and thus where the exchange-
correlation energy is small enough for the approximations to be valid. In particular,
here we outline the Local Density Approximation (LDA) that is used in the
calculations of Chapter 3. This approximation was first proposed by W. Kohn
and L. J. Sham [120], and it is still used as a reliable approach for many systems
despite its simplicity.

Although the electronic structure of most real systems is highly inhomogeneous,
the LDA approximates the exchange-correlation energy of the real system by using
the results corresponding to the HEG, which is the simplest system where this
energy can be calculated. To obtain the value of the exchange-correlation energy
of the real metal, we consider at each point r, with electronic density ρ0(r), a
HEG with the exact same density ρ0(r). We discuss below how to obtain the
contribution eHEG

xc [ρ0(r)] of each point r to the total energy. With this result, the
total energy is then obtained by integrating all contributions over space. With this
procedure, the LDA approximation neglects any contribution of the gradients of
the density ∇ρ0(r) to the exchange-correlation energy. Under these assumptions,
the functional form of the exchange-correlation energy is written as

ℏωLDA
xc [ρ0(r)] =

ˆ
ρ0(r)eHEG

xc [ρ0(r)]dr. (2.58)

In order to obtain the exchange-correlation functional in the HEG, we separate
it into two terms as eHEG

xc [ρ0(r)] = eHEG
x [ρ0(r)] + eHEG

c [ρ0(r)], where the first and
the second term in the right handside correspond to the exchange and correlation
energy, respectively. First, we note that the origin of the exchange energy ℏωx is
the antisymmetrization of the wavefunction in the Slater determinant [Eq. (2.53)],
and that it can be exactly calculated in terms of KS orbitals according to the
expression [121]

ℏωx[ρ0(r)] = −1
2

e2

4πε0

∑
i,j

ˆ ˆ [ϕKS
i (r)]∗[ϕKS

j (r′)]∗ϕKS
i (r′)ϕKS

j (r)
|r − r′|

dr dr′. (2.59)
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In the case of a HEG, since the potential is constant over space, the corresponding
Schrödinger equation implies that all occupied KS orbitals are planewaves of the
form ϕKS

i (r) = 1√
V eiki·r, where V is the volume of the system. The wavevectors

ki of the occupied states are inside the Fermi’s sphere, i.e. with magnitude
|k| < kF = (3π2ρ0) 1

3 . Evaluating the integrals of Eq. (2.59) with these
wavefunctions, we obtain the expression

eHEG
x [ρ0(r)] = −3

4

(
3
π

) 1
3

ρ0(r) 4
3 . (2.60)

Unfortunately, the functional of the correlation energy is unknown even for the
simplest case of the HEG. However, several Monte-Carlo simulations have evaluated
this term with high precision, and thus we can find different parametrizations
fitting these simulations in the literature. In particular, in Chapter 3 we use the
Ceperley-Alder form [123] for the exchange-correlation functional. By combining
the correlation term with the exchange term of Eq. (2.60), the exchange-correlation
functional and the corresponding potential (evaluated with the functional derivative
Vxc[ρ0(r)] = δℏωxc[ρ0(r)]

δρ0(r) = ∂
∂ρ0

[ρ0eHEG
xc (ρ0)]), read

eHEG
xc [ρ0(r)] = e2

4πε0

[
0.458

rs
− γHEG

xc
1 + β1

√
rs + β2rs

]
, (2.61a)

V HEG
xc [ρ0(r)] = e2

4πε0

[
−0.611

rs
−

γHEG
xc (1 + 7

6 β1
√

rs + 4
3 β2rs)

(1 + β1
√

rs + β2rs)2

]
. (2.61b)

The fitting done by Ceperley and Alder gives the parameters γHEG
xc = 0.13450 Å−1,

β1 = 1.4476 Å− 1
2 and β2 = 0.6302 Å−1 [124]. The ground-state density is

introduced into Eq. (2.61) in terms of the Wigner-Seitz radius, defined as

rs(r) =
(

3
4πρ0(r)

) 1
3

. (2.62)

2.3.2 Time-Dependent Density Functional Theory in the
linear response framework

TDDFT is an extension of DFT that analyzes the modification of the electronic
density of a system due to a time-dependent external potential [42,43]. Whereas
DFT deals with properties related to the ground state, TDDFT is necessary to
study the excited states of the Hamiltonian. The general formulation of TDDFT
relies on the Runge-Gross theorem, which is an extension of the Hohenberg-Kohn
theorems and states that the electronic density ρ(r, t) is a unique functional of the
external potential Vext(r, t) [125]. However, this general approach requires to solve
the time-dependent KS equations, which is a more computationally demanding
task than obtaining the ground-state density from the time-independent equations.
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On the other hand, if the time-dependent external potential is weak, the results of
DFT can be combined with linear response theory (Sec. 2.1). Since in this thesis
we work in the perturbative regime, in this subsection we outline the procedure to
work with TDDFT in the linear response framework.

The stardard procedure begins by writing the external potential as V
(0)

ext (r) +
V

(1)
ext (r, ω), where the zeroth-order term V

(0)
ext (r) is the static ionic potential (which

is the same as the external potential used in Sec. 2.3.1 for DFT) and the much
smaller first-order term V

(1)
ext (r, ω) is the external time-dependent perturbation

written in frequency domain (we focus on the contribution to the perturbation at a
single frequency ω because in the linear regime each ω component can be considered
independently, as discussed in Sec. 2.1). While the static potential V

(0)
ext (r) gives

the ground-state density ρ0(r), the inclusion of the time-dependent perturbation
induces a charged density as given by the expression ρ0(r) + ρ1(r, ω) + ..., where we
only focus on the first-order correction of the induced density ρ1(r, ω) neglecting
higher-order terms in the expansion. Further, within the KS theory, the electronic
density also modifies the Hartree potential in Eq. (2.57) by adding the term

V
(1)

Har(r, ω) =
ˆ

ρ1(r′, ω)
|r − r′|

dr′. (2.63)

Further, the modification of the exchange-correlation potential due to the
perturbation is expressed as a linear expansion with respect to the electronic
density around the ground-state density, i.e.

V (1)
xc (r, ω) =

ˆ
δVxc(r, ω)
δρ(r′, ω)

∣∣∣∣
ρ(r′,ω)=ρ0(r′)︸ ︷︷ ︸

Kxc(r,r′,ω)

ρ1(r′, ω)dr′, (2.64)

where we define the dynamical exchange-correlation kernel Kxc(r, r′, ω).
As explained in Sec. 2.1, the excitation spectrum of a metal is encoded in the

response function χ(r, ω) that connects the external potential and the modified
density as

ρ1(r, ω) =
ˆ

χ(r, r′, ω)V (1)
ext (r′, ω)dr′. (2.65)

However, a direct calculation of this response function [applying Eq. (2.11)] would
require all the eigenfunctions of the Hamiltonian of Eq. (2.47), which considers all
the electron-electron interactions. We have shown in Sec. 2.3.1 that an equivalent
description of the system is to introduce all the interactions effectively inside the
KS potential, and to solve the single-electron Schrödinger equation from Eq. (2.52).
In the linear regime, a perturbative KS potential acts as an external contribution
that modifies the electronic density following

ρ1(r, ω) =
ˆ

χKS(r, r′, ω)V (1)
KS (r′, ω)dr. (2.66)
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This equation is very helpful because we can evaluate the KS response function
χKS(r, r′, ω) using Eq. (2.11) with the Kohn-Sham orbitals calculated within DFT.

Nevertheless, Eq. (2.66) does not solve the problem completely, because the
objective is to calculate the response of the system just to the external potential
V

(1)
ext (r, ω), and not to the KS potential V

(1)
KS (r, ω) = V

(1)
ext (r, ω) + V

(1)
Har(r, ω) +

V
(1)

xc (r, ω). By noticing that the density ρ1(r, ω) is equal in Eqs. (2.65) and (2.66),
and by introducing the expressions of the Hartree potential [Eq. (2.63)] and the
exchange-correlation potential [Eq. (2.64)] into Eq. (2.66), one can prove that
the response functions associated with the external and KS potential are related
according to the integral equation

χ(r, r′, ω) =χKS(r, r′, ω)

+
ˆ

dx
ˆ

dx′χKS(r, x, ω)
[

1
|x − x′|

+ Kxc(x, x′, ω)
]

χ(x′, r′, ω),

(2.67)

which depends on the dynamical exchange-correlation kernel Kxc(x, x′, ω) as defined
in Eq. (2.64).

To summarize, we have shown that the procedure to obtain the response function
of a metal within TDDFT follows three main steps. First, we need to calculate
the KS orbitals from the unperturbed KS Hamiltonian [Eq. (2.52)]. Then, after
including the perturbation, the KS response function can be directly calculated
by introducing the KS orbitals ϕKS

i (r) into Eq. (2.11). Last, the needed response
function is the solution of Eq. (2.67). However, this integral equation cannot be
solved analytically for real systems, and computational methods are needed as
explained in Sec. 2.3.3.

Dynamical exchange and correlation kernel

Besides the difficulties of solving an integral equation to obtain χ(r, r′, ω), Eq.
(2.67) has the additional problem that it requires the exact form of the dynamical
exchange-correlation kernel Kxc(x, x′, ω). Since the exchange-correlation potential
Vxc(r) is unknown in DFT, the definition from Eq. (2.64) cannot be used directly to
obtain the dynamical kernel Kxc(x, x′, ω) within the TDDFT formalism. Thus, we
must make approximations in the same way as in the time-independent formalism.

In Chapter 3, we use two approximations for Kxc(x, x′, ω) that are very common
due to their simplicity. The first one is the RPA, which is the crudest approximation
that can be made in Eq. (2.67) because it neglects entirely the dynamical kernel:
Kxc(x, x′, ω) = 0. This is a generalization of the RPA that we have discussed
for the HEG (Sec. 2.2), where the screening of the electrons is considered inside
the Hartree potential and the exchange and correlation are completely neglected.
However, the RPA gives more accurate results in the TDDFT approach than for
the HEG, because in the former case the exchange and correlation are not fully
eliminated: even though Kxc(x, x′, ω) is neglected in the dynamical response, the
KS orbitals are calculated with the static exchange-correlation potential Vxc[ρ0(r)].
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Therefore, the response function obtained in the TDDFT formalism under the RPA
contains some effects of exchange and correlation.

Raising one step in the level of complexity, the next approximation is the
Adiabatic Local Density Approximation (ALDA), which is an extension of the
LDA of the time-independent DFT. The LDA considers that the ground-state
density varies slowly in space (because the contribution of ∇ρ0(r) and of all
higher-order terms to the exchange-correlation energy are neglected), and the
same assumption is made for the perturbed density, so that the ALDA kernel
is local in space: Kxc(r, r′, t, t′) = Kxc(r, t, t′)δ(r − r′). Further, the adiabatic
approximation means that the dynamical kernel is considered to be instantaneous
in time, Kxc(r, r′, t, t′) = Kxc(r, r′)δ(t − t′). This locality in time implies that
its Fourier transform is independent of ω, and thus all possible variations of the
dynamical exchange and correlation with frequency are neglected. With these
assumptions, the ALDA kernel is calculated by introducing the exchange-correlation
potential of the HEG [Eq. (2.61b)] in the definition of the exchange-correlation
kernel from Eq. (2.64), which leads to the expression

KALDA
xc (r, r′, ω) = δV HEG

xc [ρ0(r)]
δρ0(r′) δ(r − r′). (2.68)

Due to the adiabatic approximation, this kernel works well in the static ω → 0 limit,
while the error is considerably larger for high-frequency phenomena. However, the
agreement of ALDA with experimental data for the energies of interest in this
thesis is remarkably good and better than for the RPA [126–128]. Indeed, ALDA
fails mostly in the description of higher-order processes involving multiparticle
excitations, but the excitation spectra close to the plasmonic resonances is
dominated by single electron-hole excitations. Therefore, for the calculations
in this thesis, the RPA and particularly the ALDA are reasonable approximations.

2.3.3 Computational methods to calculate electronic
excitations in metallic surfaces

In the DFT and TDDFT approaches, computational methods are necessary to solve
the KS equations [Eq. (2.52)] and the integral equation of the response function
[Eq. (2.67)]. In the case of bulk (infinite) crystalline materials, the periodicity
of the system allows for the transformation of functional equations into matrix
equations, for which there are efficient numerical methods available. However,
in this thesis we analyze the excitation spectra of metallic surfaces, where the
periodicity is broken in one dimension, and this fact must be taken into account in
the methodology. In this subsection, we summarize the computational methods to
calculate the excitation spectra with DFT and TDDFT in surface systems.
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Calculation of the Kohn-Sham orbitals with a planewave basis

The computational effort to solve the KS equations can be simplified by expanding
the wavefunctions into an appropriate basis. In bulk solid-state crystalline systems
(infinite in the three dimensions), we can take advantage of Bloch’s theorem to
choose the basis. Since the KS potential in crystals has a periodicity given by
the lattice vectors R, i.e. it satisfies the condition VKS(r) = VKS(r + R), Bloch’s
theorem implies that the eigenfunctions of the KS Hamiltonian must satisfy the
form [129]

ϕKS
nk (r) = eik·runk(r). (2.69)

The subindexes n and k of the KS orbital refer to the associated band index
and wavevector, respectively. The function unk(r) = unk(r + R) has the same
periodicity as the KS potential. Equation (2.69) implies that an appropriate basis
for the expansion of KS orbitals are plane waves. Indeed, these orbitals can be
expanded as

ϕKS
nk (r) = 1√

V

∑
K

cnk+Kei(k+K)·r, (2.70)

where K are reciprocal lattice vectors and the volume V of the system (which is
considered to be very large but finite) acts as a normalization constant.

With the planewave basis for the KS orbitals, we do not have to solve the KS
equation [Eq. (2.52)] in real space. Instead, by introducing the expansion of Eq.
(2.70) into Eq. (2.52), we obtain a linear system for the coefficients cnk+K, which
can be solved using linear algebra computational methods. All these coefficients
are related as∑

K′

(
−ℏ2|k + K|2

2me
δK,K′ + ⟨k + K|VKS(r)|k + K′⟩

)
cnk+K′ = ℏωnkcnk+K.

(2.71)
Thus, the band structure of a solid system is obtained by solving Eq. (2.71) for
each wavevector k in the Brillouin zone. Although this equation contains an infinite
sum over K vectors, a finite set is chosen in practice, where the necessary number
of vectors depends on the system and on the required accuracy. The choice of
the finite set is typically done by considering a cut-off energy ℏωcut-off, where all
reciprocal state vectors that satisfy the following condition are used in the system
of Eq. (2.71):

ℏ2|k + K|2

2me
≤ ℏωcut-off. (2.72)

A main problem of the matrix equation of Eq. (2.71) is that it requires
periodicity in the system to have a basis of reciprocal lattice vectors. This
requirement is satisfied in solid materials. However, in this thesis we perform
DFT and TDDFT calculations in metallic surfaces, and in surface systems formed
by a semi-infinite metallic medium and vacuum there is no periodicity in the
direction perpendicular to the metal-vacuum interface. In order to apply the
described approach in this type of systems, the supercell method is typically used.
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For metallic surfaces, this method consists in considering a finite number of atomic
layers in the metal. The number of layers must be sufficient to recover the bulk
properties of the metal in the innermost layers. All these atoms are introduced in
the supercell, and further, an empty space is also considered in the supercell above
the topmost atomic layer to model the vacuum. To perform the DFT calculations,
an infinite 3D system is created by repeating the supercell periodically. A main
drawback of this method is that a large number of atoms is needed for an accurate
description of the system. Additionally, the ensuing large cell demands a larger set
of reciprocal lattice vectors K in the matrix to solve Eq. (2.71), because vectors K
associated to large cells have a small magnitude. Thus, in the supercell geometry
more K vectors are needed to satisfy the condition of Eq. (2.72) for the same
cut-off energy ℏωcut-off in comparison to the case of bulk crystalline metals. Due to
these drawbacks, DFT calculations in surfaces are quite expensive computationally.

Calculation of the linear response function and surface response
function with a planewave basis

Once the KS orbitals are known for a system, the next step to obtain its excitation
spectra is the calculation of the linear response function within the TDDFT
formalism, as described in Sec. 2.3.2. As done for the KS orbitals, we can
expand the response function into the reciprocal lattice vectors K to simplify the
calculations. Further, in this thesis, we are interested in calculating the response
of metallic surfaces to the specific external potential Vext(q∥, ω) given by (1.33).
Since this external potential is given as a function of the wavevector q∥ in the plane
parallel to the metal-vacuum interface, we are interested in calculating the linear
response function in reciprocal space. By expanding the response function χ(r, r′, ω)
over the reciprocal lattice vectors K and performing the Fourier transform, this
function is written as

χ(r, r′, ω) =
∑
q∥

∑
K,K′

χK,K′(q∥, ω)ei(q∥+K)·re−i(q∥+K′)·r′
. (2.73)

The expansion over reciprocal vectors K is very helpful, because it allows
transforming the integral equation (2.67) for each q∥ and ω component of the
response function into a matrix equation of the form

χK,K′ = χKS
K,K′ +

∑
K′′,K′′′

χKS
K,K′′

[
V Cou

K′′,K′′′ + Kxc
K′′,K′′′

]
χK′′′,K′ , (2.74)

which is considerably easier to solve with computational methods than Eq. (2.67).
In this equation, we need the matrix elements of the KS response function χKS

K,K′ ,
which after introducing the KS orbitals ϕKS

nk∥
into Eq. (2.11) can be calculated as

χKS
K,K′(q∥, ω) = 2

S

SBZ∑
k∥

∑
m

∑
n

f
mk∥
FD − f

nk∥+q∥
FD

ℏ(ω + iη + ωmk∥ − ωnk∥+q∥)
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×
〈

ϕKS
mk∥

∣∣∣e−i(q∥+K)·r
∣∣∣ϕKS

nk∥+q∥

〉 〈
ϕKS

mk∥

∣∣∣ei(q∥+K′)·r
∣∣∣ϕKS

nk∥+q∥

〉
,

(2.75)

where S is the in-plane unit cell area and the factor 2 accounts for the spin. The
sum of Eq. (2.75) is performed over all k∥ inside the surface Brillouin zone (SBZ).
Further, in this equation we have introduced the Fermi-Dirac occupation factor
f

nk∥
FD of the state in the band n at parallel wavevector k∥. In the derivation of

the linear response function of Eq. (2.11), we have assumed that the system is
at zero temperature, for which the states are either occupied (with occupation
factor 1) or unoccupied (with occupation factor 0). By now including factors f

nk∥
FD ,

we generalize the calculation for nonzero temperatures where occupation factors
between 0 and 1 are possible.

Last, an important quantity that directly leads to the excitation spectra of
metallic surfaces is the surface response function g(q∥, ω). This function has
been defined in Eq. (1.32), and we have used a classical calculation based on
Maxwell’s equations to analyze the excitation spectra of planar systems in Sec.
1.2.1. Importantly, we can use the same definition of g(q∥, ω) in the quantum
approach to obtain the excitation spectra of metallic surfaces. The calculation of
g(q∥, ω) requires the density induced by the external potential from Eq. (1.33). In
the quantum approach, this information is entirely given by the response function
χ(q∥, ω). Indeed, the surface response function g(q∥, ω) can be calculated with the
response function obtained from the TDDFT approach. To demonstrate it, we
introduce Eq. (2.65) into Eq. (1.32), and we obtain the surface response function

g(q∥, ω) = −2π

q∥

ˆ
dz

ˆ
dz′χK∥=K′

∥=0(z, z′, q∥, ω)eq∥(z+z′), (2.76)

where the matrix elements over the parallel component of the reciprocal lattice
vectors K∥ are defined as

χK∥,K′
∥
(z, z′, q∥, ω) =

∑
Kz,K′

z

χK,K′(q∥, ω)eiKzze−iK′
zz′

. (2.77)

Hence, if the KS orbitals ϕKS
nk∥

of a system are known, the surface response function
g(q∥, ω) can be directly calculated within three steps. First, we obtain the matrix
elements of the KS response function χKS

K,K′ with Eq. (2.75). After, Eq. (2.74)
gives the matrix elements of the response function of the actual interacting system,
χK,K′ . Last, we perform the integral in Eq. (2.76) to calculate g(q∥, ω).

Extraction of the single-slab response function from the supercell
geometry

An additional problem of the supercell geometry, beyond the computational cost,
is that different slabs interact with each other in the periodic system due to the
long-range Coulomb potential. Therefore, each slab is influenced by the external
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potential and by the potential induced by the electrons from all the other slabs.
However, the objective of our TDDFT calculations is to determine the response of
a single slab to the external potential. As a consequence, the inter-slab interactions
must be eliminated from the calculation. We now summarize the procedure
proposed by Nazarov in Ref. [130], which we use in Chapter 3.

The response function χ̃(q, ω) of the supercell geometry is the result directly
achievable from TDDFT calculations according to the procedure above. The matrix
elements of this function connect the external potential with the induced density
according to

ρ1K(q∥, ω) =
∑
K′

χ̃K,K′(q∥, ω)V ext
K′ (q∥, ω). (2.78)

However, the response function χ(q, ω) of a single slab needs to satisfy the equation

ρ1K(q∥, ω) =
∑
K′

χK,K′(q∥, ω)V eff
K′ (q∥, ω), (2.79)

where V eff
K′ are the K-components of the effective potential Veff(r, ω) to which a

single slab is subjected, i.e.

Veff(r, ω) = Vext(r, ω) + e2

4πε0

ˆ
r′∈(other slabs)

ρ1(r, ω)
|r − r′|

dr′

︸ ︷︷ ︸
Vind(r,ω)

. (2.80)

The effective potential includes the contribution of the external potential together
with the induced potential Vind(r, ω), which consists in the Coulomb interactions
caused by the induced charges in all the other slabs.

In order to apply the computational procedure, we need the expansion of
the potentials into reciprocal lattice vectors K. With this aim, we separate the
effective potential as V eff

K (r, ω) = V ext
K (r, ω)+V ind

K (r, ω). By performing the Fourier
transform of V ind

K (r, ω) in Eq. (2.80) over the r∥ direction and performing the
integral in the z direction for all slabs, the induced potential can be written in
terms of the induced charge density as (see Ref. [130] for a detailed derivation)

V ind
K (q∥, ω) =

∑
K′

CK,K′(|K∥ + q∥|)ρ1K′(q∥, ω), (2.81)

with the matrix elements

CK,K′(β) = δK∥,K′
∥

4π(β2 − KzK ′
z)δK∥,K′

∥

βLcell(β2 + K2
z )(β2 + K ′2

z ) cos
[

(Kz + K ′
z)Lcell

2

] (
1 − e−βLcell

)
,

(2.82)
where Lcell is the thickness of each supercell considered in the TDDFT calculations.
Last, we introduce the expansion of the effective potential of Eq. (2.81) into Eq.
(2.79). By noticing that the density components ρ1K of Eqs. (2.78) and (2.79)
must be equal for every external potential, the relation between the single-slab and
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the supercell response functions in matrix notation verifies

χ(q∥, ω) = χ̃(q∥, ω)
[
1 − C(|G∥ + q∥|)χ̃(q∥, ω)

]−1
. (2.83)

A crucial characteristic of this last equation is that, although the function χ̃(q∥, ω)
depends on Lcell (and thus, on the computational details), the function χ(q∥, ω) has
been verified to be independent of that parameter, as expected from a single surface.
Therefore, Eq. (2.83) gives the final result necessary to obtain the excitation spectra
of a metallic surface.

2.4 Bardeen’s theory of elastic electron tunneling
In nanophotonics, a quantum description of the electron dynamics is not only useful
to study the properties of plasmons in metallic systems (as outlined in previous
sections of this chapter), but it can also describe how these plasmons can be excited
by injecting electrons into the metal. In this context, a particular system of interest
are metal-insulator-metal (MIM) tunneling junctions, consisting in two metallic
electrodes separated by an insulator nanometric gap. By applying a bias voltage
VB to the junction, an excess of energy eVB is induced in the electrons of one of the
two metallic electrodes. The electrons of this metal can tunnel elastically through
the insulator gap between the electrodes to an unoccupied state in the other metal,
generating a direct current. Further, inelastic processes during electron tunneling
also occur, where the energy lost by the electrons can result in the excitation of
SPPs. Light emission from MIM junctions due to SPP excitation by inelastic
tunneling was first measured by Lambe and McCarthy [131]. We discuss how to
describe the inelastic tunneling and quantify the excitation rate of SPPs in MIM
tunneling junctions in Chapter 5. In this section, we set the foundation of this
discussion by introducing the theory originally created by Bardeen to describe
elastic tunneling [132].

In order to describe the dynamics of the electrons according to Bardeen’s theory
of elastic electron tunneling, we define the electronic Hamiltonian Ĥel as

Ĥel = −ℏ2∇2

2meff
+ U(z), (2.84)

where the symbol meff refers to the effective mass of the electrons in the MIM
junction. This Hamiltonian is essentially a free electron model supplemented with
the description of a potential to account for the barrier. It includes the kinetic
energy of the electrons in the metals (first term in the right handside) and the
potential energy U(z) (second term in the right handside) [133].

To characterize the potential energy U(z), we first consider that the metals
placed on the left and on the right of the insulator gap have Fermi energies EL

F
and ER

F , respectively. If there is no bias potential applied (VB = 0), the system
is at equilibrium and the Fermi surfaces of both metals are at the same energy,
which we set as the zero energy level. From this reference, the lowest values of
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b

c

a

Figure 2.4: Schematics of the description of the MIM junction according to Bardeen’s theory.
a) Potential energy U(z) of the electrons in the MIM junctions. The dashed lines represent the
potential energy U(z) with the linear function Ugap(z) for the gap (of thickness Lgap), while solid
lines represent the potential energy U(z) under the rectangular approximation that we consider
in our calculations. The occupied states of the metals in the left and right are represented by red
and blue, respectively. b-c) Electronic wavefunctions ΨL(r) and ΨR(r) of the Hamiltonians ĤL
and ĤR within Bardeen’s approximation, respectively. Solid lines indicate the boundary between
the metal considered in the Hamiltonian ĤL or ĤR and the gap. Dashed lines show the boundary
between the gap and the metal that is considered absent in the corresponding Hamiltonian.

the potential energy that electrons can have in the left and right metals are −EL
F

and −ER
F , respectively. The height of the barrier in the gap region is U0. For

applied bias potentials, the energies of all electrons in one metal are shifted by a
value eVB as compared to those in the other electrode (see sketch in Fig. 2.4a).
We maintain the zero energy reference in the Fermi energy of the left metal, and
thus the minimum potential energy remains here as UL = −EL

F . In the right metal,
this minimum energy shifts to the value UR = −ER

F − eVB, while the energy of the
highest occupied state becomes −eVB. This shift of the energy levels also affects
the work functions of the metals, which causes a modification of the potential
inside the insulator barrier. The potential in this region can be described with the
linear function Ugap(z) = U0 − eVB

z
Lgap

, where z is the perpendicular direction to
the interfaces of the junction and Lgap is the thickness of the insulator gap (the
potential U(z) with the linear function is indicated by dashed lines in the sketch
of Fig. 2.4a). However, to obtain simple analytical expressions of the electronic
wavefunctions, we use a rectangular approximation for the barrier potential, which
takes a constant value determined by the average Ugap(z) ≈ U0 − eVB

2 (we show
the rectangular potential energy U(z) in Fig. 2.4a by solid lines).

In Bardeen’s theory, the main approximation is that the two metals are
considered as two separate entities, and thus the electronic states of each metal
are not affected by the other one. The eigenstates of the system are obtained from
the separate Hamiltonians of the left (ĤL) and right (ĤR) metals. Each of these
Hamiltonians includes operators for the kinetic and the potential energy. The
potential energy operator considers the energy level of the corresponding metal (UL
or UR) and of the insulator barrier (Ugap). We illustrate in Figs. 2.4b and c with
vertical solid lines the metal-insulator boundary considered in the Hamiltonians ĤL
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and ĤR, respectively. However, when calculating the wavefunction associated with
each electrode, we do not consider the presence of the other one i.e. we extend the
gap barrier to infinity (we show in Figs. 2.4b and c the metal-insulator boundary
neglected in each Hamiltonian by dashed lines). Following this procedure, and by
solving the Schrödinger equation, we obtain the wavefunctions of the states of the
left metal (see Fig. 2.4b) [134]:

ΨL(r) =


1√
Lz

1√
S

(
eikzLz + ikzL+kzgap

ikzL−kzgap
e−ikzLz

)
eik∥·r∥ z ≤ 0

1√
Lz

1√
S

(
2ikzL

ikzL−kzgap
e−kzgapz

)
eik∥·r∥ z > 0

. (2.85)

Equivalently, the eigenfunctions corresponding to the right metal have the form
(see Fig. 2.4c)

ΨR(r) =


1√
Lz

1√
S

(
2ikzR

ikzR−kzgap
ekzgap(z−Lgap)

)
eik∥·r∥ z ≤ Lgap

1√
Lz

1√
S

(
e−ikzR(z−Lgap) + ikzR+kzgap

ikzR−kzgap
eikzR(z−Lgap)

)
eik∥·r∥ z > Lgap

.

(2.86)

Lz is the (arbitrary) length of the system in the z direction, whereas S is the
surface area of the interfaces in the r∥ = (x, y) plane. These two parameters act as
normalization constants in the wavefunctions. Further,

kzL(R)(ωel, k∥) =
√

2meff

ℏ2

(
ℏωel − UL(R)

)
− |k∥|2 (2.87)

is the z component of the wavevector of an electron in the left (right) metal. The
spatial decay of the wavefunction in the gap region is governed by the value

kzgap(ωel, k∥) =
√

2meff

ℏ2 (Ugap − ℏωel) + |k∥|2. (2.88)

Since the electronic states of Bardeen’s theory are localized in a single metal,
the occupation of each wavefunction ΨL(r) and ΨR(r) is dictated by the Fermi-

Dirac distribution of its respective metal f
L(R)
FD (ωel) =

[
1 + exp

(
ℏωel−E

L(R)
F

kBT

)]−1

at temperature T , with Boltzmann constant kB.
Further, in Bardeen’s theory, the interaction between the two metals that leads

to elastic tunneling is treated at a perturbative level. Each electron of the left
metal is at first in the state |ΨL⟩ (with energy ℏωel

L and parallel component of the
wavevector k∥L) corresponding to the Hamiltonian ĤL. The rest of the electronic
Hamiltonian of Eq. (2.84), Ĥel − ĤL, induces transitions to states of the form |ΨR⟩
(with respective values ℏωel

R and k∥R). The assumption of weak tunneling due to a
sufficiently thick gap implies that the transition rate between two particular left
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and right states is dictated by Fermi’s golden rule, as

ΓL→R = 2π

ℏ2 δ(ωel
L − ωel

R)| ⟨ΨR|Ĥel − ĤL|ΨL⟩ |2. (2.89)

We first compute the matrix element of the interaction Hamiltonian Ĥel − ĤL.
Although the wavefunctions depend on the three spatial coordinates as ΨL(R)(r) =
ΨL(R)(z)eik∥L(R)·r∥ , the interaction Hamiltonian only depends on z, which allows
separating the integral into spatial coordinates:

| ⟨ΨR|Ĥel − ĤL|ΨL⟩ |2

=
(ˆ

Ψ∗
R(z)e−ik∥R·r∥(Ĥel − ĤL)[ΨL(z)eik∥L·r∥ ]dr

)
×
(ˆ

Ψ∗
L(z′)e−ik∥L·r′

∥(Ĥel − ĤL)[ΨR(z′)eik∥R·r′
∥ ]dr′

)
=
∣∣∣∣ˆ Ψ∗

R(z)(Ĥel − ĤL)ΨL(z)dz

∣∣∣∣2 ˆ ˆ e−i(k∥R−k∥L)·(r∥−r′
∥)dr∥dr′

∥

=
∣∣∣∣ˆ Ψ∗

R(z)(Ĥel − ĤL)ΨL(z)dz

∣∣∣∣2 (2π)2δ(k∥R − k∥L)S. (2.90)

Since the Hamiltonian ĤL is equal to the complete electronic Hamiltonian Ĥel in
the regions of the left metal and the insulator gap, the integral over z in Eq. (2.90)
has to be done just in the right metal. In this region, the complete Hamiltonian
Ĥel is equal to ĤR, and following the procedure of Bardeen in Ref. [132], we can
add the vanishing term −ΨL(z)(Ĥel − ĤR)Ψ∗

R(z) to obtain a symmetrical form
inside the integral:
ˆ ∞

−∞
Ψ∗

R(z)(Ĥel − ĤL)ΨL(z)dz

=
ˆ ∞

Lgap

Ψ∗
R(z)(Ĥel − ĤL)ΨL(z) − ΨL(z)(Ĥel − ĤR)Ψ∗

R(z) dz

=
ˆ ∞

Lgap

Ψ∗
R(z)(Ĥel − ℏωel

L )ΨL(z) − ΨL(z)(Ĥel − ℏωel
R)Ψ∗

R(z) dz

=
ˆ ∞

Lgap

Ψ∗
R(z)

(
−ℏ2∇2

2meff
+ U(z)

)
ΨL(z) − ΨL(z)

(
−ℏ2∇2

2meff
+ U(z)

)
Ψ∗

R(z) dz

= − ℏ2

2meff

ˆ ∞

Lgap

(
Ψ∗

R(z)∂2ΨL(z)
∂z2 − ΨL(z)∂2Ψ∗

R(z)
∂z2

)
dz. (2.91)

Here, we have taken into account that the energies ℏωel
L and ℏωel

R must be equal
so that Eq. (2.89) leads to a nonzero value. By noticing that the functions ΨL(z)
and ∂ΨL(z)

∂z vanish at infinity, we solve the integral using the method of integration
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by parts:
ˆ

Ψ∗
R(z)(Ĥel − ĤL)ΨL(z)dz

= − ℏ2

2meff

(
Ψ∗

R(z)∂ΨL(z)
∂z

∣∣∣∣∞
Lgap

−
ˆ ∞

Lgap

∂ΨL(z)
∂z

∂Ψ∗
R(z)
∂z

dz

− ΨL(z)∂Ψ∗
R(z)
∂z

∣∣∣∣∞
Lgap

+
ˆ ∞

Lgap

∂ΨL(z)
∂z

∂Ψ∗
R(z)
∂z

dz

)

= ℏ2

2meff

(
Ψ∗

R(z)∂ΨL(z)
∂z

− ΨL(z)∂Ψ∗
R(z)
∂z

)∣∣∣∣
z=Lgap

. (2.92)

Equations (2.89), (2.90) and (2.92) lead to the following transition rate between
left and right states:

ΓL→R = (2π)3ℏ2

4m2
eff

Sδ(ωel
L −ωel

R)δ(k∥R−k∥L)
∣∣∣∣∣Ψ∗

R(z)∂ΨL(z)
∂z

− ΨL(z)∂Ψ∗
R(z)
∂z

∣∣∣∣
z=Lgap

∣∣∣∣∣
2

.

(2.93)
According to Eq. (2.93), together with the energy ℏωel, the parallel component

of the wavevector k∥ must also be conserved in the transition due to the homogeneity
of the system in the r∥ direction. Further, the electronic wavefunctions appear in
the expression of the transition rate in the form jBar(z) = iℏe

2meff
[Ψ∗

R(z)∂zΨL(z) −
ΨL(z)∂zΨ∗

R(z)]nz (where nz is the unit vector in the z direction) evaluated in
the boundary between the gap and the right metal. In the original work by
Bardeen, this term was associated to the transition current density of elastic
tunneling, due to its similar form of the probability current density j(z) =

iℏe
2meff

[Ψ∗(r)∇Ψ(r) − Ψ(r)∇Ψ∗(r)] of a quantum state.
The current density measured in an experiment is due to all possible transitions

from occupied states of the left metal to unoccupied states of the right metal.
Thus, the rate ΓL→R must be summed for all these transitions. We first consider
the sum over all final states, which leads to the transmission probability for each
incident electron through the junction. To characterize the electronic states, we
use the Sommerfeld model, where the electrons are considered to be free in a
box of dimensions determined by the parameters S (along the r∥ plane) and Lz

(along the z direction). We further apply periodic boundary conditions in the
box. Under these conditions, the states are given by wavevectors of the form
kL(R) =

(
2π√

S
nx, 2π√

S
ny, 2π

Lz
nz

)
with integers nx, ny and nz. Considering the

large number of states, we can substitute the discrete sum over all final states
of wavevectors kR, 1

LzS

∑
kR

, with the integral 1
(2π)3

´
dkR, which leads to the

expression

ΓL =
∑
kR

ΓL→R = Lz

2π

S

(2π)2

ˆ
ΓL→R

dkzR

dωR
el

dk∥R dωel
R
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=LzS2ℏ2

4m2
eff

dkzR

dωel
R

∣∣∣∣
ωel

R =ωel
L

×

∣∣∣∣∣∣Ψ∗
R(k∥L,ℏωel

L )(z)
∂ΨL(k∥L,ℏωel

L )(z)
∂z

− ΨL(k∥L,ℏωel
L )(z)

∂Ψ∗
R(k∥L,ℏωel

L )(z)
∂z

∣∣∣∣∣
z=Lgap

∣∣∣∣∣∣
2

.

(2.94)

The effect of the integral over the final states in Eq. (2.94) is thus to impose that
the left and right states have the same parallel wavevector k∥L and energy ℏωel

L ,
as expected for an elastic process. Further, the term dkzR

dωR
el

= meff
ℏkzR

includes the
density of states in the metal on the right. By introducing the expression of the
wavefunctions of Eqs. (2.85) and (2.86) into Eq. (2.94), the transition rate per
incident electron is calculated as

ΓL = ℏ
meffLz

16k2
zLkzRk2

zgap

(k2
zL + k2

zgap)(k2
zR + k2

zgap)e−2kzgapLgap . (2.95)

The total tunneling rate is obtained after we sum ΓL over all initial states of
the left metal:

Γel =
occ.∑
kL

ΓL = Lz

2π

S

(2π)2

ˆ ∞

0
dωel

L

ˆ minj∈{L,R}

√
2meff
ℏ2 (ℏωel

L −Uj)

0
dk∥L[

fL
FD(kL)(1 − fR

FD(kR))ΓL(ℏωel
L , k∥L)2πk∥L

dkzL

dωel
L

]
.

(2.96)

We notice that for each energy ℏωel
L , there are electronic states with wavevectors

up to a maximal value of |k∥L(R)| =
√

2meff
ℏ2 (ℏωel

L − UL(R)) in the metal on the left
and on the right. Due to the conservation of k∥, a transition is valid only if both
metals have an electronic state for a vector k∥L(R). Thus, the integral has to be
calculated up to the minimum between the two extremal values |k∥L(R)| that accept
a state in both metals. Further, in Eq. (2.96) we impose that the initial state
of wavevector kL must be occupied [with probability given by the Fermi-Dirac
occupation factor of the left metal fL

FD(kL)] and that the final state of wavevector
kR must be unoccupied [with probability 1 − fR

FD(kR)]. The calculation of Eq.
(2.96) describes the electronic properties of different junctions, such as how the
current intensity is modified according to the applied bias potential VB.

The elastic tunneling rate Γel is a very important result of Bardeen’s theory, as
it allows the characterization of the electronic properties of tunneling junctions.
Another important magnitude related to tunneling junctions is the inelastic
tunneling rate Γinel, which quantifies the excitation rate of plasmonic resonances
and thus describes how light is emitted from tunneling junctions. We discuss in
Chapter 5 how Bardeen’s theory describes light emission from tunneling junctions.
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Further, we compare this theory with other methodologies and discuss the validity
of the approximations involved in the approach of Bardeen.
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3
AB INITIO DESCRIPTION OF
PLASMONIC EXCITATIONS ON THE
PD(110) SURFACE

3.1 Introduction
The study of surface plasmons in different metals [33, 75, 135, 136] has gained
significant interest since Ritchie’s first discovery [137]. A particular focus has been
placed on understanding how the properties of surface plasmons, such as energy and
lifetime, vary with in-plane wavevector q∥. As discussed in Chapter 1, for a metal
with Drude permittivity, the energy of the surface plasmon is ℏωSP = ℏωp/

√
2 at

all q∥ (in the non-retarded regime), making it dispersionless. However, this classical
Drude model neglects non-local effects. Incorporating these effects can provide
more accurate information about the dispersion relation of surface plasmons, as
outlined in Chapter 2. Indeed, in a simple model based on the homogeneous
electron gas (HEG), Feibelman included the microscopic spatial distribution of
the electronic density close to the jellium border of the metal, predicting that the
dispersion relation of the surface plasmon in the |q∥| → 0 limit is given by [138]

ℏωSP = ℏωSP(q∥ = 0)
(

1 − Re{d⊥(ωSP)}
2 |q∥|

)
, (3.1)

where d⊥ is the centroid of the induced electronic density relative to the jellium
edge. The parameter d⊥ is of the order of 1 Å [139], and thus according to Eq.
(3.1) the surface plasmon energy is modified by wavevectors q∥ of magnitude of the
order of 1 Å−1, which are much larger than those corresponding to the retarded
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regime (of the order of 10−3 Å−1). Calculations carried out for the jellium model
with the random phase approximation (RPA) [140,141] and adiabatic local density
approximation (ALDA) [142,143] show that in metals with typical bulk densities
[rs = 2 − 6, as given by Eq. (2.62)], the centroid of the induced density lies outside
the jellium border (d⊥ > 0). This leads to a negative dispersion in Eq. (3.1). At
larger |q∥|, the dispersion becomes positive when higher-order terms are included.
This simple picture has been confirmed by several experiments in simple metals
such as aluminum or magnesium [144,145].

However, the assumption that electrons behave as in a HEG is a simplistic
description of most metals and do not provide accurate predictions for all systems.
In fact, for some metals, there is a qualitative discrepancy between theoretical
predictions and experimental measurements. For instance, in the case of silver,
experimental measurements show a positive dispersion relation [146–149], as
opposed to the theoretical prediction of a negative dispersion indicated in Eq.
(3.1). This discrepancy is attributed to the presence of totally occupied 4d valence
bands in silver, which significantly alter the behavior of electrons compared to
the HEG [150–152]. Furthermore, the jellium model is inadequate for accurately
predicting the lifetime of surface plasmons. In the |q∥| → 0 limit, there are no
electron-hole transitions in the HEG, and thus the surface plasmon should not
decay. According to this model, the lifetime should therefore be infinite at long
wavelengths. However, experimental measurements show that usually the lifetime
of surface plasmons is of the order of few femtoseconds or shorter, even at low |q∥|.

To accurately describe the phenomena observed in experiments, more advanced
and sophisticated descriptions of metals are necessary, for example based on the
TDDFT approach (Sec. 2.3). The inclusion of the complete band structure, together
with proper exchange-correlation effects, allows for the accurate consideration of
all intraband and interband transitions that can modify the optical properties
of the metal, such as the frequencies and lifetimes of excitations. In the case of
surface plasmons in solids, the TDDFT approach was first successfully applied to
the nearly free-electron metal Mg(0001) surface, where the experimental dispersion
relation was reproduced with larger accuracy than with the HEG model [153]. Ab
initio calculations applied to d metals such as silver [154] or gold [155,156] have
successfully resolved the qualitative discrepancies of the simple HEG model, leading
to the recovery of a positive surface plasmon dispersion.

Based on the success of TDDFT to reproduce the experimental features of
surface plasmons in d metals, in the present chapter we use ab initio calculations
to study the properties of these excitations on the Pd(110) surface. This study
is motivated by a lack of accurate analysis of surface plasmons in palladium. We
calculate the electronic structure of Pd(110) and then analyze the dispersion relation
and damping of the corresponding surface plasmon. Our theoretical results allow
for comparison with several experimental works that have obtained slightly different
data. For example, electron energy loss spectroscopy experiments have measured
surface excitations between 6.8 and 7.0 eV in single-crystal surfaces [157,158], and
around 6.5 eV in polycrystalline Pd [159,160]. Other scattering experiments have
also detected energy-loss peaks in the 7.2 − 7.5 eV energy range, which may also

76



3.2. System and computational details

be related to the surface plasmon [161,162]. Further, the dispersion relation of the
surface plasmon in palladium has been shown experimentally to depend strongly
on the specific surface. While a nondispersive surface plasmon peak with energy
6.6 eV was observed on Pd(111) in Ref. [163], Rocca et al. found that the surface
plasmon in Pd(110) exhibits an unusually strong negative linear dispersion in the
|q∥| → 0 limit [164, 165]. The authors proposed that the electronic structure of
Pd(110) behaves differently with respect to simple and noble metals. However, no
further analysis was conducted, and the results of this chapter could shed light on
the discrepancies between different experimental data.

The calculation of the optical response of the Pd(110) surface is also motivated
by the search for acoustic surface plasmons. As explained in Section 2.2.3, these
excitations have a linear dispersion relation and are associated with considerably
larger wavevectors than conventional surface plasmons. In the previous chapter,
the dispersion of acoustic surface plasmons has been derived using the RPA in a
system consisting of a 3D semi-infinite jellium and a 2D sheet of a HEG. However,
this model does not consider the band structure of real metals. To observe acoustic
surface plasmons in such systems, it is necessary to have electronic states highly
localized in both the bulk and the surface with different Fermi velocities. No
acoustic plasmon has been observed on palladium surfaces so far. However, Pd is
a promising material for such excitations because it has been shown that several
groups of electrons with different Fermi velocities lead to the existence of acoustic
plasmons in bulk Pd [166, 167]. Therefore, the analysis of this chapter aims to
clarify whether acoustic plasmons in bulk metal have any influence on the optical
response of the surface and whether acoustic surface plasmons exist at the interface
between Pd(110) and vacuum.

3.2 System and computational details
The objective of this chapter is to analyze the excitation spectra of the Pd(110)
surface. To achieve this goal, we calculate the surface loss function Im[g(q∥, ω)]
of the system using the methodology described in Chapter 2. We start by self-
consistently calculating the band structure using a homemade code [168]. The
atomic structure of bulk palladium forms the face-centered cubic lattice. We use
the experimental value of a = 3.89 Å for the lattice parameter [169]. However,
since the code used for the calculations considers periodic structures, we simulate
the Pd(110) surface with a slab consisting of 19 atomic layers, separated by vacuum
intervals of thickness corresponding to nine interlayer spacings. To avoid long-range
Coulomb interactions between slabs, we use the methodology outlined in Sec. 2.3.3
so that we finally consider the optical response of a single slab without the influence
of the other slabs.

In principle, the topmost three atomic layers in the Pd(110) surface have different
interlayer distances than those in bulk due to surface relaxation, as reported by a
low-energy diffraction experiment [170]. Specifically, the distance between the first
two layers is modified by −5.1 ± 1.5%, and the distance between the second and
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third layers is modified by +2.9 ± 1.5%. However, we have checked that this surface
relaxation does not visibly affect the electronic band structure or the excitation
spectra of the system. Therefore, we present our results using an ideal surface
without any relaxation of atomic positions.

To calculate the electronic band structure, it is necessary to introduce the
external potential into Eq. (2.57) to obtain the complete Kohn-Sham (KS) potential.
The ionic electrostatic potential diverges at the exact positions of the ions [Eq.
(2.47)], which makes the calculation of the KS orbitals computationally complex
due to the large basis needed to reproduce these orbitals close to the ionic positions.
To simplify this calculation, the method of pseudopotentials is usually used. We
consider that the band structure near the Fermi energy is mainly determined by
the valence electrons, which interact with the ions and also with the core electrons.
To include the effect of the core electrons, we replace the ionic external potential
with pseudopotentials. At distances far from the atomic nuclei, the contribution of
the core electrons in the potential is negligible, and the pseudopotential is required
to be exactly equal to the ionic potential at distances r > Rc from the nuclei, for
some defined core radius Rc. The negative charge of the core electrons neutralizes
the positive charge of the nuclei, which softens the divergence of the ionic potential
in the r → 0 limit. With a pseudopotential that satisfies these conditions, we
obtain a very similar band structure as with the KS equations of the real system,
and the corresponding pseudowavefunctions are only modified at r < Rc with
respect to the real wavefunctions. In our calculations, we use the Troullier-Martins
norm-conserving pseudopotential [171], where the norm of the pseudowavefunctions
inside the core (r < Rc) is equal to that of the actual wavefunctions. Further,
for the exchange-correlation potential in Eq. (2.57), we adopt the Ceperley-Alder
form [123], which is based on the Local Density Approximation (LDA) and given
by Eq. (2.61b).

Once the band structure of the Pd(110) surface has been obtained, the matrix
elements of the non-interacting linear response function χKS

K,K′ can be calculated
directly with Eq. (2.75) using the KS orbitals and energies [which are the solutions
of Eq. (2.52)]. These orbitals are calculated for several k∥ wavevectors in the
surface Brillouin zone, and then the linear response function is given as a function
of the wavevector q∥ by summing the contribution of electronic orbitals at all k∥
vectors. To account for all interband and intraband transitions, the Fermi-Dirac
occupation factors f

nk∥
FD for the n band at k∥ wavevector must be included in the

equation. We calculate these factors for a temperature of 10 meV to reduce noise
from the discrete summation over k∥. This summation is performed over a 136
× 96 grid of k∥ wavevectors in the surface Brillouin zone. Further, since the two
different wavevectors used in this chapter (k∥, which is associated to the electronic
band structure; and q∥, which gives the dispersion relation of the surface loss
function, and thus, also of the plasmonic excitations) belong to the same grid, our
calculations also set a minimum value of |qmin

∥ | = 2π
96a = 0.017 Å for q∥ accessible

to calculate the optical response of the material.
Another important remark about Eq. (2.75) is that the surface response function

depends on an infinitesimal value of η. In practical calculations, a finite value of η
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must be used to avoid computational issues, resulting in an artificial broadening
in the spectra. To avoid such broadening, we follow an alternative formulation.
First, the imaginary part of the linear response function is calculated using the
method described in Ref. [172], which does not depend on η. Then, the real
part is calculated using the Kramers-Kronig relation [Eq. (2.16)]. This approach
significantly accelerates the calculations. In order to obtain Re[χKS

K,K′(q∥, ω)] at a
single frequency, it is necessary to know Im[χKS

K,K′(q∥, ω)] at all ω. With this aim,
we consider in our calculations all the Pd valence states with energies up to 25 eV
above the Fermi level, which ensures convergence of the results within the range of
energies considered in this study.

Next, we calculate the linear response function of the interacting system in
the supercell geometry using Eq. (2.67). Subsequently, we use Eq. (2.83) to
calculate the linear response function associated with a single slab cutting the
interaction with other slabs in the periodic structure. This last result enables
us to obtain the surface loss function using Eq. (2.76) and the induced density
using Eq. (2.65) [taking into account the external potential described by Eq.
(1.33)]. To incorporate dynamical exchange-correlation effects, we use the dynamic
exchange-correlation kernel Kxc in Eq. (2.67) under two approximations: the RPA
and ALDA (Sec. 2.3.2). Previous studies have shown that at low values of |q∥|,
the excitation spectrum of many metals remains largely unaffected by dynamical
exchange and correlation, while the results at larger |q∥| become more significantly
affected [43, 173]. In the latter regime, ALDA typically yields better agreement
with experimental observations than RPA [153,174,175]. Because of this agreement,
in this chapter we show mostly results under ALDA, but we have checked the
agreement between the results obtained with ALDA and RPA. We further show the
comparison between the results under the two approximations. Since it has been
shown that ALDA usually describes accurately experimental results in d metals, we
expect that more sophisticated methods than using ALDA would not significantly
impact our results.

3.3 Electronic band structure of the Pd(110)
surface

Figure 3.1 presents the electronic band structure of the 19-atomic Pd(110) slab
obtained from the ab initio calculations. The 4d bands dominate both the occupied
and unoccupied valence band structure around the Fermi level, strongly hybridizing
with s − p states within the energy interval of −5.5 to 0.5 eV. Notably, the band
structure exhibits energy gaps for bulk electronic states (indicated with gray curves
in Fig. 3.1). For instance, a wide energy gap ranging from −0.2 to 2.2 eV is located
around the XS and SY symmetry directions. Additionally, two other gaps can be
observed around the X and Y high-symmetry points, with the bottom at energies
of 3.4 and 1.1 eV, respectively. Some narrow gaps can also be detected in the
occupied part of the bands.
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Figure 3.1: Band structure of the 19-atomic Pd(110) slab calculated along the lines of high
symmetry in the surface Brillouin zone. The states with strong localization in the surface atomic
layer are highlighted by blue dots.

While most of the bands plotted in Fig. 3.1 are associated to states of bulk
palladium, we identify the states that are highly localized on the topmost atomic
layer and could influence the excitation spectra of the surface by marking them
with blue dots in Fig. 3.1. Interestingly, in the wide gap of bulk states (without
blue dots) observed at the Y point, we find two clear unoccupied surface states,
where one is close to the bottom of the gap at 1.3 eV and the other at 3.0 eV.
To verify the existence of these states, we have compared our results with data
obtained by an inverse photoemission experiment in Ref. [176]. The experiment
shows two surface states at the Y point of the Brillouin zone, where one correlates
well with the state at 1.3 eV obtained from our calculations, while the other is
located at 3.5 eV and has an almost flat dispersion. This dispersion relation does
not completely match the parabolic-like dispersion that we observe in Fig. 3.1
around similar energies, but the origin of this discrepancy is not clear. Furthermore,
we obtain several other surface states around the Γ point with free-electron-like
dispersion. These states could be the precursors of the image potential states,
which are detected at 3.8 eV at the same point of the Brillouin zone in Ref. [176].
We also notice that most of the surface states are found below the Fermi level and
are mainly of d type. These states could be related to many interband transitions
in the surface region, but the existence of so many states does not allow us to
establish any specific role for each of these states in the excitation spectra.

Surface states that are located in the vicinity of the Fermi level can have a
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particularly relevant contribution to the excitation spectra. In this regard, a surface
state of d type is found around the Y point, which is unoccupied at this point
and has a small dispersion, but upon moving towards S, the band crosses the
Fermi level and becomes occupied. On the contrary, this state remains above
the Fermi level and unoccupied along the YΓ direction. This surface state has
been experimentally observed [176] and is also consistent with previous DFT
calculations [177,178]. Another state with similar characteristics is also observed
around the S point, which gets occupied in the SY direction and agrees with
previous calculations [178]. The existence of such states around the Fermi level
suggests the possibility of acoustic surface plasmons in the Pd(110) surface, arising
from out-of-phase collective oscillations of charges involved in these surface states
and in bulk. In Section 3.4.3, we analyze whether the band structure plotted in
Fig. 3.1 leads to this excitation.

3.4 Excitation spectrum of the Pd(110) surface

3.4.1 Surface plasmon
Figure 3.2 displays the surface loss function Im[g(q∥, ω)] of the Pd(110) surface
obtained from the band structure discussed in Section 3.3. We use the ALDA to
account for dynamical exchange-correlation effects and calculate the surface loss
function at two different directions of q∥: the high-symmetry lines ΓX and ΓY. We
find that the surface loss function does not significantly differ for both directions,
indicating that the optical response of the Pd(110) surface is highly isotropic. The
surface loss function is dominated by a broad surface plasmon peak labeled as
SP (yellow-white color in the contour plot of Fig. 3.2). This peak is observed at
energies ranging from 7.3 − 7.6 eV for most wavevectors q∥ shown in Fig. 3.2. We
also observe a shift in the peak for values |q∥| < 0.1 Å−1, which occurs because
the top and bottom interfaces of the 19-atomic slab interact with each other at
such small wavevectors. Therefore, at this range of q∥, the considered system does
not accurately represent an ideal surface. To extract the value of the semi-infinite
surface plasmon at the |q∥| → 0 limit, we directly extrapolate the maxima of the
loss function from the |q∥| ≈ 0.1 − 0.4 Å−1 range. This extrapolation yields a value
of ℏωSP(q∥ = 0) = 7.35 eV, which is consistent with the experimental value of 7.37
± 0.10 eV reported by Rocca et al. in Ref. [164].

To confirm that the shift of the SP maxima at low |q∥| is due to the finite
thickness of the slab, we consider the classical dispersion of surface hybrid plasmons
in a thin slab. Specifically, we analyze a slab composed of a Drude metal with
a surface plasmon energy of ℏωSP = ℏωp/

√
2 and thickness Lmet, for which the

energies of the two non-retarded plasmonic modes are [33,75,137]

ℏω±
SP = ℏωSP(q∥ = 0)

√
1 ± e−|q∥|Lmet . (3.2)

The classical dispersions of these two hybrid modes are depicted as dashed lines in
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Figure 3.2: Surface loss function Im[g(q∥, ω)] of the 19-atomic Pd(110) slab along the lines of
high symmetry ΓX and ΓY in the surface Brillouin zone, calculated with ALDA. The dashed lines
show the classical dispersion relation for surface modes in a thin film of a Drude metal [given
by Eq. (3.2)], where the surface plasmon SP splits into two hybrid surface modes indicated by
SP+ and SP− at small |q∥|. The green dots indicate the experimental data points of the surface
plasmon dispersion reported in Ref. [164].

Fig. 3.2, with the value ℏωSP(q∥ = 0) = 7.35 eV obtained from the extrapolation.
When |q∥| ≫ 1/Lmet, the two interfaces are decoupled, and the two modes are
degenerate, with each mode corresponding to the surface plasmon of a single
interface. At |q∥| ≈ 0.1 Å−1, the two modes start to split, and at lower wavevectors,
we observe that the maximum of the surface loss function obtained with the full ab
initio calculations follows a similar tendency as the classical dispersion labeled by
SP−, which corresponds to in-phase oscillations of electrons at both interfaces [179].
However, the surface plasmon peak obtained from TDDFT calculations displays
a higher energy than the prediction of the Drude model. We attribute this effect
to interband transitions involving d valence states, which are not included in the
dispersion of Eq. (3.2). In fact, previous studies have shown that even in relatively
simple metals, such as lead, the band structure effects can deviate the excitation
spectra from the prediction of Eq. (3.2) [179].

Although the surface plasmon dispersion resulting from the TDDFT calculations
agrees reasonably with the classical dispersion SP−, no discernible feature is
observed at energies above 7.35 eV marked by the dashed line labeled with SP+.
This line corresponds to the antisymmetric mode where electronic charges of
the two interfaces oscillate out of phase. The absence of a distinct peak in the
surface loss function associated with a collective resonance suggests that interband
transitions dominate the spectra in this energy range. To support this explanation,
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Figure 3.3: Surface loss function of the Pd(110) surface at low momentum transfers. a) Im[g(q∥, ω)]
calculated for a Pd(110) slab of thickness equivalent to a 19-atomic slab obtained with classical
electromagnetism under the non-retarded approximation. We use the bulk permittivity of Pd
reported in Ref. [180]. b) Im[g(q∥, ω)] calculated for a 19-atomic Pd(110) slab within the ab initio
approach along the ΓX line (zoom in of Fig. 3.2). The dashed lines show the classical dispersion
of the two hybrid surface modes SP− and SP+ [Eq. (3.2)]. The white region in panel (b) at
|q∥| < 0.017 Å is inaccessible in our ab initio calculations.

we plot in Fig. 3.3a the surface loss function obtained from a classical non-
retarded electromagnetic calculation using the experimental bulk permittivity of
palladium of Ref. [180]. Within the range of |q∥| considered in the figure, the
SP− hybrid mode dominates the spectra, while the intensity of the upper-energy
SP+ peak is negligible. Furthermore, when performing corresponding calculations
using the Drude permittivity instead of the experimental one, both SP+ and
SP− peaks become clearly visible with similar intensities (not shown). Notably,
the classical calculation in Fig. 3.3a also demonstrates a deviation in the SP−

peak dispersion from the prediction of Eq. (3.2), as also observed in the results
obtained with the TDDFT calculations (Figure 3.3b zooms in on the surface loss
function plotted in Fig. 3.2 for the low-|q∥| range). This comparison confirms that
the Drude permittivity fails to account for the strong influence of d electrons at
small wavevectors, which suppresses the SP+ mode and modifies moderately the
dispersion of the SP− mode.

We now shift our focus to the regime of large |q∥|. In this case, according to Eq.
(3.2) and as also depicted in Fig. 3.2, the influence of the finite thickness of the film
diminishes significantly, and therefore the results can be interpreted as being very
close to those of a semi-infinite substrate. As previously discussed, the loss function
exhibits a peak at an (extrapolated) energy of approximately 7.35 eV for low |q∥|,
in agreement with experimental data from the same surface reported in Ref. [164].
However, when observing the behavior of the surface plasmon for increasing |q∥|,
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Figure 3.4: Surface loss function of Pd(110) calculated at |q∥| = 0.370 Å−1 along the ΓX line
using RPA (black line) and ALDA (red line).

the agreement between our theoretical predictions and the experimental data is
not so satisfactory. The experimental dispersion shows a negative trend up to 0.16
Å−1 along the ΓX direction and up to 0.12 Å−1 along the ΓY direction, with an
unusually large slope, even for materials that exhibit negative dispersion [153].
Subsequently, the dispersion becomes positive, at least up to the maximum value
of |q∥| = 0.18 Å−1 reported in the experiment. On the contrary, the surface loss
function peak in our calculations displays a weak increase as a function of |q∥|,
extending up to the maximum explored |q∥|. This behavior aligns more closely
with the absence of dispersion observed for Pd(111) by Netzer and El Gomani [163].
However, the measured energy of 6.6 eV in that experiment significantly deviates
from our calculations and the more recent experimental results reported by Rocca
et al. in Ref. [164]. These discrepancies strongly suggest that band effects play
a crucial role in determining the energy and dispersion of the surface plasmon,
emphasizing the need for further analysis.

To evaluate the impact on the excitation spectrum of the approximations
used in the dynamical exchange-correlation kernel Kxc, we compare the results
obtained with ALDA (as discussed thus far) to those obtained with the simpler
RPA. Initially, we have checked that for low |q∥| the calculated surface loss function
Im[g(q∥, ω)] is nearly identical for both approximations. However, differences
become apparent as |q∥| increases, with ALDA generally yielding larger values
of Im[g(q∥, ω)] compared to RPA. The most significant differences occur on the
low-energy side of the surface plasmon peak. To illustrate this, Fig. 3.4 presents the
results obtained using both approximations for one of the largest |q∥| values in our
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calculations (|q∥| = 0.370 Å−1 in the ΓX high-symmetry line), which corresponds
to the regime where the most pronounced deviations between RPA and ALDA are
observed. In this context, the RPA calculations indicate a surface loss function
peak centered at ℏωSP ≈ 7.7 eV, while ALDA shifts the peak to slightly lower
energies, placing it at ℏωSP ≈ 7.6 eV. Importantly, the relative difference between
the two approximations is much smaller than the width of the peak itself. This
finding indicates that dynamical exchange-correlation effects beyond the RPA have
minimal influence on the description of surface plasmons in metals with high valence
charge density, such as Pd. It is worth noting that for other metallic surfaces, such
as those corresponding to the simple Mg, these effects are more significant [153],
highlighting the dependence on the specific material under consideration.

In addition to providing information about the dispersion of the surface plasmon,
the surface loss function also reveals its decay rate, which is directly linked to the
linewidth of the peak calculated by the full width at half maximum. Interestingly,
the value of the linewidth remains relatively large even at small |q∥| values. For
instance, at |q∥| = 0.05 Å−1, both RPA and ALDA calculations yield a linewidth
of ≈ 1.8 eV. This significant value can be attributed to the efficient decay of
the surface plasmon into electron-hole pairs involving valence states of the d
bands and highlights the necessity of considering real band structure effects. In
contrast, the simple HEG model, which neglects these states, would predict a
very narrow linewidth for the mode due to the absence of interband transitions.
Furthermore, the linewidth broadens as the wavevector |q∥| increases, indicating
an increased decay into incoherent electron-hole pairs. At the largest |q∥| value
considered (|q∥| = 0.4 Å−1), we obtain a linewidth of 3.3 eV for RPA and 4.9 eV
for ALDA. This observation aligns with previous calculations demonstrating that,
in general, ALDA predicts a more efficient decay into electron-hole pairs compared
to RPA [128,181]. Despite the large linewidth of the surface plasmon peak, this
plasmon remains the dominant feature in the surface loss function for all the q∥
vectors shown in Fig. 3.2. Consequently, the surface plasmon does not become
completely suppressed by electron-hole decay within this range of wavevectors.

3.4.2 Induced density on the Pd(110) surface
To gain further insights into the nature of the peak observed in the surface loss
function of Fig. 3.2, we now analyze the distribution of the induced charge density
ρind(z, q∥, ω). This density is induced by the external potential Vext(z, q∥, ω),
which is given by Eq. (1.33) and represents the Coulomb potential of an oscillating
point charge placed at infinity. In Figs. 3.5a and b, we present the real and
imaginary parts of ρind(z, q∥, ω), respectively, as a function of energy and the
spatial coordinate z (perpendicular to the surface) for a specific wavevector with a
magnitude of |q∥| = 0.084 Å−1 along the ΓX symmetry direction. Interestingly,
near the energy ℏωSP = 7.35 eV corresponding to the surface loss function peak,
Im[ρind(z, q∥, ω ≈ ωSP)] (Fig. 3.5b) exhibits a dominant maximum positioned
above the topmost atomic layer of palladium (atomic layers are indicated by
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Figure 3.5: Spatial distribution for |q∥| = 0.084 Å−1 along the ΓX direction of the a) real
and b) imaginary parts of the charge density ρind(z, q∥, ω) induced by the external potential
Vext(z, q∥, ω), plotted as a function of energy. The results are calculated using ALDA. The origin
of the z coordinate corresponds to the geometrical surface position (dashed lines). Solid lines
indicate the positions of the palladium atomic layers.

solid horizontal lines in the figure). This strong localization of the density close
to the interface supports our assertion that the maximum of the surface loss
function is associated with the surface plasmon. Additionally, due to the relatively
small wavevector considered, the induced density penetrates deeply into the metal,
displaying a relatively slow decay in amplitude while exhibiting oscillations with the
same periodicity as the crystal lattice. Further, for energies exceeding ℏωSP = 7.35
eV, it is shown in Fig. 3.5a that Re[ρind(z, q∥, ω)] presents an undamped oscillatory
behavior. Thus, Pd(110) demonstrates at these energies a considerably larger
optical transparency than for the ℏωSP < 7.35 eV range, where the decay of the
induced density is stronger. This observation implies that at energies ℏωSP > 7.35
eV the electrons are less effective at screening the external electric field.

A significant aspect related to the induced density is the centroid position
when a surface plasmon is excited, which is calculated by the first moment of
ρind(z, q∥, ω ≈ ωSP). This centroid is directly related to the Feibelman parameter
d⊥ presented in Eq. (3.1), which gives the relative position of the centroid from
the geometric position of the surface, and is calculated as

d⊥ =
´∞

−∞ zρind(z)dz´∞
−∞ ρind(z)dz

. (3.3)

At the energy of ℏωSP = 7.35 eV, we determine the centroid for various small values
of |q∥| and find that the average centroid position is 0.635 Å above the geometric
surface position of the metal. This geometric surface is defined as to be above
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Figure 3.6: Spatial distribution for |q∥| = 0.336 Å−1 along the ΓX direction of the a) real
and b) imaginary parts of the charge density ρind(z, q∥, ω) induced by the external potential
Vext(z, q∥, ω), plotted as a function of energy. The results are calculated using ALDA. The origin
of the z coordinate corresponds to the geometrical surface position (dashed lines). Solid lines
indicate the positions of the palladium atomic layers.

the topmost atomic layer at half the distance between atomic layers (indicated
by dashed lines in Fig. 3.5, where we establish the z = 0 origin in this figure).
Therefore, the centroid of the induced charge density is located outside the surface,
contrary to the behavior observed in Ag and Au, where the influence of d electrons
pushes the charge centroid inwards the metal [33]. In this regard, the placement
of the induced charge centroid in palladium corresponds to the scenario exhibited
by simple metals. However, our calculations also present differences with simple
metals. For example, simple metals exhibit a negative dispersion at small |q∥|,
while we obtain a weak positive dispersion for Pd(110).

According to this discussion, the electronic structure of Pd(110) exhibits two
contrasting features: the presence of d electrons, which are considered to contribute
to a positive dispersion of the surface plasmon [33], and the centroid position of
the induced charge density outside the metal, which suggests a negative dispersion
[Eq. (3.1) with d⊥(ωSP) > 0]. Figure 3.2 shows that the overall effect is a positive
dispersion with a considerably weaker slope compared to Au and Ag. This less
pronounced surface plasmon dispersion in Pd could be attributed to the more
delocalized nature of the d states. However, it is important to note that this
conclusion is based solely on the surface loss function peak positions at |q∥| values
larger than approximately 0.05 Å−1. An accurate determination of the peak
position at smaller |q∥| values requires considering significantly thicker slabs of
Pd(110) in TDDFT calculations, which would increase the computational cost.

We explore next how the induced charge density is modified with increasing
wavevector. With this aim, we plot in Figs. 3.6a and b Re[ρind(z, q∥, ω)] and
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Figure 3.7: Surface loss function of the 19-atomic Pd(110) slab calculated with ALDA for the five
smallest values of |q∥| considered in our calculations along the ΓX direction: 0.0168 Å−1 (black
solid line), 0.0336 Å−1 (blue solid line), 0.0504 Å−1 (purple solid line), 0.0672 Å−1 (red solid
line) and 0.0840 Å−1 (orange solid line). The dashed green line shows the surface loss function
calculated at q∥ = 0 employing classical electromagnetic calculations with the experimental bulk
permittivity of Pd reported in Ref. [180] by Palik. For the latter, the inset shows a zoom in the
2.5 − 5.5 eV interval.

Im[ρind(z, q∥, ω)], respectively, evaluated at |q∥| = 0.336 Å−1 along the ΓX
direction. We observe a clear peak in Im[ρind(z, q∥, ω)] at energies around 7.6
eV, which correlates well with the peak observed in the surface loss function. The
behavior of the induced density near the surface plasmon energy is similar to the
case of low wavevectors (Fig. 3.5), but it presents some notable distinctions. As
|q∥| increases, the region influenced by the external field diminishes, resulting in
a decreased efficiency in exciting the electrons within the bulk and a stronger
confinement of the electronic density of the surface plasmon close to the vacuum-
Pd(110) interface.

3.4.3 Additional plasmonic excitations
Although the surface plasmon peak dominates the surface loss function of Pd(110),
a closer examination of Fig. 3.2 at low values of |q∥| reveals a subtle peak around
4.9 eV. To provide a clearer illustration, we show in Fig. 3.7 the surface loss function
at the five lowest |q∥| values accessible in our TDDFT calculations along the ΓX
direction (which correspond to vertical cuts in Fig. 3.2). The small peak observed
at 4.9 eV increases in energy and diminishes in spectral weight as |q∥| increases
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until it eventually disappears at 5.0 eV for |q∥| = 0.17 Å−1. The impact of this
excitation can also be observed in the induced density shown in Fig. 3.5, where
the real part (panel a) exhibits weak resonating behavior around 4.9 eV within
the crystal, and a weak oscillating feature along z is discernible in the imaginary
part (panel b) at the same energy. Liu and Brown [182, 183] detected a similar
mode at an energy of 5.2 eV without resolving its dispersion and interpreted it
as a surface feature. Given that we observe this excitation in the surface loss
function Im[g(q∥, ω)], its effects are indeed influenced by the surface. However, the
presence of resonances associated with the induced density inside the bulk suggests
that the origin of this excitation lies in the bulk properties of Pd. To validate
this, in Fig. 3.7 we indicate by the green dashed line the classical surface loss
function at q∥ = 0 obtained using the experimental bulk permittivity of palladium
reported in Ref. [180]. A weak feature around 4.5 eV can be distinguished (see
inset for a zoom), and we attribute it to the excitation obtained in our TDDFT
calculations. Consequently, we have established that the bulk permittivity of Pd
already encompasses this excitation.

Hence, the surface loss function primarily exhibits two notable features: the
dominant surface plasmon peak and a relatively smaller peak around 4.9 eV. Apart
from these excitations, no other significant features are observed in the surface
loss function, regardless of whether ALDA or RPA is employed. The absence of
any prominent peak at low energies (below 4 eV) indicates that our calculations
do not provide evidence of low-energy interband plasmons or acoustic surface
plasmons. This lack of evidence may be due to the abundance of surface states
in the valence band structure of Pd(110), as observed in Fig. 3.1. Although
the presence of surface states near the Fermi level should, in principle, facilitate
the occurrence of acoustic surface plasmons with linear dispersion, the numerous
amount of transitions involving surface states discourages the formation of well-
defined resonances corresponding to collective excitations. This stands in contrast
to the situation in the bulk [166,167]. Consequently, our calculations suggest that
the Pd(110) surface may represent a scenario where the mere existence of distinct
electronic states localized in the bulk and on the surface is insufficient to generate
a surface collective mode with a linear dispersion.

3.5 Summary
In this chapter, we have presented the TDDFT-based calculations of the excitation
spectra of the Pd(110) surface. The surface loss function presents a prominent
feature corresponding to the surface plasmon, which manifests at an energy of 7.35
eV for small wavevectors. This result aligns with existing experimental data for this
surface at low |q∥|. However, as |q∥| increases, our TDDFT calculations predict a
weak positive dispersion of the surface plasmon up to approximately |q∥| = 0.4 Å−1.
This finding contradicts the electron energy-loss experiments conducted on this
surface, as reported in Ref. [164], where a pronounced negative dispersion of the
surface plasmon was observed at low |q∥|. Hence, the excitation spectrum of the
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Pd(110) surface exhibits a substantial discrepancy between the ab initio surface
response calculations and the electron energy-loss experiments. Accordingly, further
experimental and theoretical investigations are required to discover the origin of
such discrepancy. From a theoretical viewpoint, it is important to acknowledge
that the present calculations are conducted by considering the response of the
surface to an external static charge, and a more accurate theoretical description of
the experiment could be achieved by surpassing this assumption. In this respect,
the dynamics of the incident probing electron should be also considered quantum
mechanically in the same way as the free electrons in the metal [184,185].

The calculations presented in this chapter highlight the significance of
considering accurately the electronic structure of metals, emphasizing the limitations
of a classical Drude description. In contrast to the Drude model, which predicts
two modes in the low-|q∥| region, the ab initio calculations demonstrate a modified
dispersion for the mode at low energies, while no evidence of the upper mode is
observed due to the impact of band structure effects. Therefore, interband and
intraband transitions within the metal can significantly perturb the excitation
spectra from the simplest description of free particles in a HEG. Further, a local
description is not valid in the range of wavevectors q∥ considered in this chapter.
Therefore, only a quantum non-local description based on the atomic structure of
the material can give accurately the dispersion relation of the surface plasmon and
the density induced by an external potential.

On the other hand, ab initio calculations performed in other metals previously
revealed an important feature that the Drude model cannot describe: the existence
of acoustic surface plasmons resulting from the out-of-phase collective excitations of
surface and bulk electrons. However, the calculated surface loss function exhibits a
robust resonant response only at ultraviolet energies and no signature of low-energy
collective excitations is found, despite the presence of surface states near the Fermi
level. While the coexistence of free-electron-like states in both the surface and bulk
enables the formation of acoustic surface plasmons (Sec. 2.2.3), our findings suggest
that an abundance of surface states can impede the emergence of well-defined
collective excitations. Adopting a quantum perspective that accounts for free
electrons alone is also insufficient for an accurate description of acoustic surface
plasmons, because this model only considers a single electronic band for the surface
electrons. Therefore, a thorough analysis of the band structure is necessary to
determine whether a particular system can support these acoustic excitations.
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4
PLASMONIC EXCITATIONS IN
TWO-DIMENSIONAL ANISOTROPIC
ELECTRON SYSTEMS

4.1 Introduction
As discussed in Sec. 1.2.1, the properties of plasmonic excitations are highly
influenced by the geometry of metallic systems [86]. For instance, we have examined
the behavior of a Drude metal with bulk plasmon frequency ωp, revealing that the
frequency of the surface plasmon at a planar metal-vacuum interface is ωp/

√
2,

while in the case of a metallic sphere, this value shifts to ωp/
√

3. By carefully
selecting the appropriate geometry, the frequency of the plasmonic excitation can
be engineered. However, in three-dimensional systems, this frequency tends to
converge to a finite value in the |q∥| → 0 limit. In this context, two-dimensional
(2D) materials have emerged as a highly promising alternative. Unlike in their
three-dimensional counterparts, plasmons in 2D materials exhibit a dispersion as
ω ∝

√
|q∥| when the wavevector q∥ approaches zero. Consequently, 2D materials

can support plasmons with arbitrarily small frequencies in the non-retarded regime,
even in the mid-infrared and THz regions of the electromagnetic spectrum.

The investigation of plasmons in two-dimensional materials was pioneered by
Stern [48], who initially calculated the ω ∝

√
|q∥|-like dispersion, as described in

Sec. 2.2.2. This calculation was conducted assuming that the material behaves
like a 2D homogeneous electron gas and using the random phase approximation
(RPA). Subsequently, further theoretical and experimental investigations confirmed
the predicted dispersion of the 2D plasmon in metallic layers (caused by surface
electronic states) [173] and in graphene [186]. However, the energy band dispersion
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in many other 2D systems can be significantly different from that corresponding
to free electrons, leading to the need of further studies to analyze whether 2D
plasmons exhibit a similar dispersion in systems with diverse electronic structures.
For instance, certain materials exhibit an anisotropic band structure, resulting
in an anisotropic 2D plasmon dispersion, as observed in graphene [186, 187],
borophene [188,189], and black phosphorous [190–192], for example.

In this context, some previous works have been focused on investigating the
effects of anisotropy on conventional 2D and 3D plasmons. These works have
analyzed anisotropy by considering materials with an elliptical band dispersion
[193–195] and found modifications on the dispersion of the conventional plasmon,
but no additional modes were observed. However, a recent study that considered
accurately the anisotropic band structure of graphene predicted the emergence of
an acoustic plasmon (AP) in this material [187], due to the presence of electrons
with different Fermi velocities in two valleys of the same energy band. The AP
has a linear dispersion ω ∝ |q∥| and is associated with even larger wavevectors
than the conventional 2D plasmon with ω ∝

√
|q∥|-like dispersion, which makes it

promising for concentrating light on an even smaller scale than that achieved with
usual 2D materials. Nevertheless, according to the current understanding, acoustic
plasmons can only appear in systems with two different groups of electrons. For
example, these groups of electrons can correspond to states localized in the surface
and in the bulk [117], or to s − p and d states with different Fermi velocities [166].
However, such a situation cannot occur in 2D materials with a single band, and
there is a lack of studies focusing on the origin of the existence of different groups
of electrons in these systems that may lead to acoustic plasmons.

Motivated by the promising potential of anisotropic 2D materials to support
acoustic plasmons, this chapter focuses on investigating how the specific form
of anisotropy in the band structure of a 2D system can influence its plasmonic
characteristics. While previous studies primarily examined materials with elliptical
band dispersion and did not observe acoustic plasmons, band structures with other
types of anisotropy have been measured in recent years. Some examples are the
band structure with triangular form found in borophene [52], the diamond-like
structure in the topological nodal semimetal ZrSeS [50,51,53], and the hexagonal
arrangement in the topological insulator Bi2Se3 [49]. Consequently, we analyze
the dispersion relations of plasmons in materials featuring such anisotropies. In
particular, we study the permittivity and the properties of plasmonic excitations
in a free and homogeneous electron gas with a distorted Fermi surface (the band
structure of the materials and further details of the calculations are given in Sec.
4.2), considering triangular anisotropy (Sec. 4.3.1), square anisotropy (Sec. 4.3.2),
and hexagonal anisotropy (Sec. 4.3.3). Additionally, we discuss the effects of
anisotropy on the plasmonic excitations in intermediate situations that lie between
isotropic and ideally anisotropic materials (Sec. 4.3.4). These calculations allow
us, on the one hand, to analyze how the dispersion of the conventional 2D plasmon
is altered depending on the type of anisotropy and, on the other hand, to perform
a systematic study of the properties of acoustic plasmons in 2D materials.
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4.2 Details of calculations
To obtain the properties of plasmons in 2D anisotropic materials, we first calculate
the permittivity of these materials employing the RPA. We follow the methodology
outlined in Chapter 2 for this purpose. The initial step involves computing the
linear response function for the non-interacting system, denoted as χ0(q∥, ω). In a
general system, this function is defined by Eq. (2.11). However, in the case of a
non-interacting 2D homogeneous electron gas of surface area S, the corresponding
expression simplifies to

χ0(q∥, ω) = lim
η→0

1
S

∑
k∥

fFD(k∥) − fFD(k∥ + q∥)
ω − (ωk∥+q∥ − ωk∥) + iη

= lim
η→0

1
(2π)2

ˆ
dk∥

fFD(k∥) − fFD(k∥ + q∥)
ω − (ωk∥+q∥ − ωk∥) + iη

. (4.1)

Here, ωk∥ represents the energy of the single electronic band at the two-dimensional
wavevector k∥. η is an infinitesimal parameter introduced just to avoid divergences
in the calculations, but the actual result is given by the η → 0 limit. We assume
that the surface area S is infinitely large, allowing us to treat all k∥ as infinitesimally
close to each other. This assumption enables us to convert the discrete sum into
an integral in Eq. (4.1), simplifying the calculations. Furthermore, to characterize
the occupied and unoccupied states in the system, we consider the Fermi-Dirac
distribution and specifically focus on the case of zero temperature. Thus, we
approximate the Fermi-Dirac occupation factors fFD(k∥) using the Heaviside step
function as fFD(k∥) ≈ Θ(ωk∥ − EF), where EF denotes the Fermi energy.

Importantly, in Eq. (4.1) two different wavevectors are involved: k∥ and q∥.
While the symbol k∥ refers to the wavevector of the electrons in the metal, the
symbol q∥ gives the dispersion relation of the response function χ0(q∥, ω) and
permittivity ε(q∥, ω). According to linear response theory, the response function
of Eq. (4.1) relates the external potential Vext(q∥, ω) with the density induced
in the system by this potential as Vext(q∥, ω)χ0(q∥, ω) = ρind(q∥, ω). From this
perspective, the result of Eq. (4.1) can be interpreted in the following way:
the external potential transfers the momentumi q∥ to an electron with initial
momentum k∥. Thus, the electron is excited from a state of momentum k∥ to
another state of momentum k∥ + q∥, which creates the fluctuations of the induced
density ρind(q∥, ω) given by wavevector q∥. The linear response function χ0(q∥, ω)
is therefore given by the contribution of all possible transitions after the momentum
transfer q∥, i.e. all transitions from an initial occupied state of momentum k∥
[given by the Fermi-Dirac occupation factor fFD(k∥)] to a final unoccupied state

i Since, as described below, in this chapter we adopt units where ℏ = 1, the vector q∥
is associated with both the wavevector that represents the spatial Fourier transform of the
permittivity ε(q∥, ω) and the momentum ℏq∥ transferred by an external perturbation to the
system. Therefore, we use these two magnitudes to refer to the variable q∥. Similarly, we refer to
the parameter ω as both the frequency and the energy ℏω given by the external perturbation.
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of momentum k∥ + q∥ [given by the Fermi-Dirac occupation factor fFD(k∥ + q∥)].
After performing the integral in Eq. (4.1), we calculate the permittivity

ε(q∥, ω) within the RPA using Eq. (2.22), which involves the two-dimensional
Fourier transform of the Coulomb potential as given by Eq. (2.31). This
calculation provides us with both the real part εR(q∥, ω) and imaginary part
εI(q∥, ω) of the permittivity. From this permittivity, we extract the loss function
− Im[ε−1(q∥, ω)], which allows us to obtain the collective excitations of the
system that emerge as well-defined peaks in this function. Considering that
− Im[ε−1(q∥, ω)] = εI(q∥, ω)/[εR(q∥, ω)2+εI(q∥, ω)2], the peaks in the loss function
are given by the zeroes of the real part of the permittivity εR(q∥, ω). Further, the
loss function is also nonzero when εR ̸= 0, if εI > 0. This last condition corresponds
to the excitation of electron-hole pairs (Sec. 2.2).

The energy band dispersion ωk∥ is a key parameter to calculate the permittivity
according to Eq. (4.1), as it characterizes the specific system under investigation.
In this chapter, we consider anisotropic free electron gases with different geometries
on the Fermi surfaces. The energy dispersion of the single electronic band of these
systems can be expressed using a general form given by the following equation:

ωk∥ =
(

max
n∈{1,2,...,N}

{
kx cos

(
2π

n

N

)
+ ky sin

(
2π

n

N

)})2
, (4.2)

which is valid for a 2D material with a band characterized by curves of constant
energy that are regular polygons with N sides. Specifically, we focus on three
different forms for the anisotropy: triangular anisotropy with N = 3, square
anisotropy with N = 4, and hexagonal anisotropy with N = 6. In all the
systems we analyze, for any fixed direction nk∥ = k∥

|k∥| in the k-space, the band
structure resembles that of a free electron gas, with the energy following the relation
ωk∥ ∝ |k∥|2. The primary effect of anisotropy is observed in the effective mass meff
of the electrons, which depends on the direction nk∥ . This relationship is given by
m−1

eff ∝ ∇n(∇nωk∥) [129], where ∇n represents the directional derivative along nk∥ .
Notably, in all systems following the dispersion equation of Eq. (4.2), the minimum
effective mass occurs in the direction normal to the sides of the Fermi surface,
while the maximum value is observed in the direction aligned with the edges of the
corresponding polygon. The existence of electrons with different effective masses
can result in acoustic plasmons, as we analyze in the following.

Last, we note that in this chapter, we adopt a unit system where ℏ = 1 and
me = 1. Consequently, we eliminate these prefactors in the relation between the
energy ωk∥ and wavevector k∥, which leads to a more concise expression between
these two magnitudes, as described by Eq. (4.2).

4.3 Excitation spectra of two-dimensional
anisotropic electron gases
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Figure 4.1: Band structure, permittivity, and loss function for a 2D system with triangular band
structure. a1) Band structure ωk∥ of the material (contour plot) with the two main symmetry
directions of the lowest and the largest effective masses marked by thick brown and green dashed
lines, respectively. Thin black dashed lines highlight curves of constant energies, and the black
solid line shows the Fermi surface. The momentum q∥ along the qy = 0 direction is shown by the
magenta arrow. The Fermi velocities vF1 and vF2 of the carriers at the two edges are marked by
purple arrows. a2) Real and a3) imaginary parts of the permittivity, and a4) loss function as a
function of the momentum component qx and energy ω. In (a4) the 2D plasmon peak (2DP) is
marked by a cyan dashed line. Row b) Same as in the panels of row (a), for momentum transfers
q∥ with qy =

√
3

2 qx. Additionally, in (b4) the acoustic plasmon peak AP is highlighted by a
magenta dashed line (see labels). Row c) Same as in the panels of row (a), for q∥ with qy =

√
3qx.

4.3.1 Triangular anisotropy
The permittivity ε(q∥, ω) and the loss function −Im[ε−1(q∥, ω)] of the electronic
system with triangular anisotropy (where the band dispersion is given by Eq. (4.2)
with N = 3) are reported in Fig. 4.1. We calculate the permittivity as a function
of the x component of the momentum, qx, for three different directions of the q∥

vector given by the equations qy = 0, qy =
√

3
2 qx, and qy =

√
3qx. The momentum

transfers q∥ along these three directions are indicated by magenta arrows in panels
(a1), (b1), and (c1) of Fig. 4.1, respectively, where the contour plot represents the
energy band dispersion ωk∥ in the 2D plane (the same in the three panels). The
high-symmetry directions of the band structure are indicated by a brown and a
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green dashed line, for directions with the lowest and largest effective masses for
the electrons, respectively.

The collective excitations characterized by the momentum q∥ and energy ω
are extracted from the positions of the sharp peaks in the loss function, shown
in Fig. 4.1a4. When the momentum of the perturbation lies in the qy = 0
direction, we observe a continuum of electron-hole excitations in the area delimited
by ω

EF
<
(

qx√
EF

)2
+ 2

(
qx√
EF

)
(the electron-hole continuum corresponds to the

εI(q∥, ω) > 0 region of that can be observed in Fig. 4.1a3 and is the same as
the blue area indicated in Fig. 2.2a). This condition corresponds to the range of
energies ωk∥+q∥ −ωk∥ where intraband transitions can occur for a given qx according
to Eq. (4.2), as also occurs for systems with an isotropic 2D band dispersion [48]
(see Sec. 2.2.2). Besides the area representing the electron-hole continuum, in Fig.
4.1a4 we observe a narrow peak highlighted by a cyan dashed line, corresponding
to the 2D plasmon (2DP). This excitation lies outside the electron-hole continuum,
and the absence of any decay path into electron-hole pairs leads to an infinite
lifetime for the plasmon (for an ideal homogeneous electron gas as assumed in this
chapter). The finite thickness of the plasmon peak seen in Fig. 4.1a4 is solely
due to the finite parameter η introduced in calculations employing Eq. (4.1) to
avoid numerical issues. Interestingly, the dispersion of the 2D plasmon is similar
to that in an isotropic free electron gas predicted by Stern [48], with a √

qx-like
dependence at small momentum transfers. The triangular energy anisotropy only
slightly distorts the dispersion of the plasmon in this symmetry direction, but
otherwise, most of the corresponding properties of isotropic materials appear also
in the anisotropic case.

At momentum transfers along the direction parameterized by qy =
√

3
2 qx

(magenta arrow in Fig. 4.1b1), the excitation spectrum of the system exhibits
greater complexity compared to the qy = 0 case. This can be observed in Figs.
4.1b2, b3, and b4, which show εR, εI, and −Im[ε−1], respectively. In Fig. 4.1b3,
the upper boundary of the electron-hole continuum in εI appears nearly identical
to the qy = 0 case in Fig. 4.1a3, but an additional sharp peak is visible at low
energies ω. The presence of a distinct two-peak structure in εI can be explained
by the occurrence of intraband transitions near the Fermi surface at two specific
energy values. In this system, all electrons have the same magnitude of Fermi
velocity vF = |vF|, but there are three groups of carriers with Fermi velocity vectors
vF ∝

∂ωk∥
∂k∥

pointing in different directions: vF1 = vF(1, 0), vF2 = vF

(
− 1

2 ,
√

3
2

)
,

and vF3 = vF

(
− 1

2 , −
√

3
2

)
. These directions correspond to the three brown dashed

lines depicted in Fig. 4.1b1. Each group of electrons occupies one side of the Fermi
surface triangle, indicated by the thick black line in Fig. 4.1b1. Considering that
the carriers at the Fermi energy level (ωk∥ = EF) are excited to states with energy

ωk∥+q∥ = EF + |q∥|2 + q∥ · vF (4.3)

[as can be obtained from Eq. (4.2)], the energies of the excited states differ for
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Figure 4.2: Contour plots of the dispersion of a) the 2D plasmon normalized energy
ω2DP(q∥)

EF

and b) the acoustic plasmon normalized energy
ωAP(q∥)

EF
in the qx − qy plane, for a system with

a free-electron-like band structure with the triangular anisotropy. The black dashed lines in panel
(a) highlight curves of constant energy ω2DP. Brown and green dashed lines in panel (b) indicate
the symmetry directions of the band structure with the lowest and the largest effective masses,
respectively. The gray regions represent the momentum q∥ regions where the acoustic plasmon
does not exist.

electrons with Fermi velocities vF1 and vF2, because q∥ · vF1 ̸= q∥ · vF2 as can
be observed in Fig. 4.1b1 (note that for qy = 0, represented in the upper row of
Fig. 4.1, only the carriers with Fermi velocity vF1 are excited to a state of higher
energy, because q∥ · vF2 and q∥ · vF3 are negative).

These two distinct excitation channels are behind the two separate regions
with high values of εI (the two black regions in Fig. 4.1b3). The existence of two
groups of carriers moving predominantly with different velocity components along
the q∥ direction gives rise to two distinct modes: one where both groups oscillate
in phase and another where they oscillate out of phase. The former corresponds
to the 2D plasmon, which is also observed for momentum transfers with qy = 0.
Thus, the dispersion of this plasmon, depicted in Fig. 4.1b4 by the cyan dashed
line, closely resembles the dispersion reported in Fig. 4.1a4. The out-of-phase
collective oscillation represented by the second peak in the loss function of Fig.
4.1b4, highlighted by the magenta dashed line, arises from an additional zero
crossing of the real part of the permittivity εR, which is evident in the low-energy
region of Fig. 4.1b2. We attribute this peak to an AP, as its dispersion is linear and
similar to that of sound waves. However, unlike the 2D plasmon, the AP resides
within the electron-hole continuum, where the imaginary part of the permittivity
εI does not vanish for the corresponding momenta and energies. Consequently, the
acoustic plasmon is predicted to have a finite lifetime even within a free-electron
model. With increasing momentum |q∥|, the width of the AP peak in the loss
function gradually expands, accompanied by a decrease in its lifetime.
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Last, when considering momentum transfers along the line qy =
√

3qx (panels
(c1-4) in Fig. 4.1), the acoustic plasmon is absent. Although two groups of carriers
with different Fermi velocities vF1 and vF2 can be excited along this symmetry
direction of the system [highlighted by purple arrows in Fig. 4.1c1], these velocities
have the same component q∥ · vF along the direction of momentum q∥, and thus
electrons of both groups are excited to the same energy level as indicated by
Eq. (4.3). This lack of two different values of q∥ · vF prevents the appearance of
two well-separated peaks in the imaginary part of the permittivity εI, which is a
necessary condition for the existence of an acoustic plasmon. This absence of two
peaks arises because the vector q∥ aligns with a symmetry direction of the band
structure (green dashed line in Fig. 4.1c1), similar to the case of qy = 0 (brown
dashed line in Fig. 4.1a1). Hence, these findings indicate that to excite an acoustic
plasmon in an anisotropic 2D electron system, the momentum transferred by the
perturbation should not follow the symmetry directions present in the energy band
structure.

After examining the permittivity and loss function in three specific momentum
transfer directions, let us now generalize the discussion to any direction of q∥. In
Fig. 4.2, we plot the energies of the two observed plasmons, ω2DP(q∥)

EF
and ωAP(q∥)

EF
,

normalized to the Fermi energy, as a function of q∥. Figure 4.2a illustrates the
dispersion of the 2D plasmon, with dashed lines highlighting curves of constant
energy for this plasmon. The 2D plasmon dispersion is positive in any radial
direction of q∥ and follows the triangular symmetry of the energy band structure,
consistent with the geometry of the considered electron gas. At large magnitudes
of |q∥|, the curves of constant plasmon energy ω2DP resemble the triangular shape
corresponding to the energy of the electronic band (first column in Fig. 4.1).
However, for small |q∥|, the curves with constant plasmon energy ω2DP deviate
significantly from the characteristic triangular shape of the band, leading to a more
intricate dependence on the momentum transfer direction.

On the other hand, Fig. 4.2b presents the dispersion of the acoustic plasmon
ωAP(q∥)

EF
. As already observed in Fig. 4.1, this excitation is prohibited at certain

momentum transfers, represented by gray areas in Fig. 4.2b. The energy of the
acoustic plasmon can be approximated as ωAP ≃ q∥ · vF, where vF corresponds to
the lowest Fermi velocity among the two groups of electrons that are excited with
momentum transfer q∥. In a system with triangular anisotropy, where electrons
possess three distinct velocity vectors vF, for some momentum transfers only
one group of carriers exhibits a positive value for q∥ · vF, and thus under this
condition a single group of electrons can be excited to a state of larger energy [Eq.
(4.3)]. Consequently, the condition for the appearance of an acoustic plasmon (the
existence of two distinct groups of electrons) cannot be fulfilled, as it occurs in the
gray areas of Fig. 4.2b around qy = 0 and positive qx, or their symmetry-equivalent
directions (along the brown dashed lines). Similarly, in the qy =

√
3qx direction and

its symmetry-equivalent directions (indicated by the green dashed lines), although
two carrier groups possess a positive value of q∥ · vF, this velocity component is
identical for both groups, and no AP is found. Further, while the AP is purely
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forbidden by symmetry only in these specific directions, it also does not appear
in the extended regions surrounding the brown dashed lines. This absence of
an AP occurs because electronic states with just slightly different Fermi velocity
components q∥ · vF are involved in the electron-hole transitions, resulting in two
nearby peaks with finite linewidths in εI around q∥ · vF. Consequently, if the
two Fermi velocity components are sufficiently close, these peaks in εI overlap,
preventing the realization of an AP. In other words, for the appearance of the AP, it
is necessary to have an energy range with εI(ω) ≃ 0 between the two peaks so that
Im[ε−1] contains a clear peak, requiring sufficiently different velocity components
along the direction of q∥.

4.3.2 Square anisotropy
After thoroughly analyzing the permittivity and loss function of the system with
triangular anisotropy, we now turn our attention to the case where the Fermi
surface takes a square shape, corresponding to the band dispersion parameterized
by Eq. (4.2) for N = 4. Fig. 4.3 shows the permittivity and loss function for such
a system, as a function of qx for q∥ in three different directions: (a) qy = 0, (b)
qy = qx

2 , and (c) qy = qx (these directions are indicated by magenta arrows in
the first column of Fig. 4.3, where the colormap represents the energy ωk∥ of the
electronic band). The qy = 0 line represents the symmetry direction with the lowest
effective mass (indicated by brown dashed lines in the first column of Fig. 4.3),
while the qy = qx (or qy = −qx) line corresponds to the direction with the largest
effective mass (green dashed lines). On the other hand, we choose the direction
qy = qx

2 because it is halfway between the two different symmetry directions.
The findings in Fig. 4.3 confirm the observations made for the triangular band

case. In the N = 4 scenario, the conventional 2D plasmon (ω ∝
√

|q∥| for small
|q∥|) exists at momentum transfers in all directions, whereas the momentum space
for the appearance of the AP is more limited. Specifically, the acoustic plasmon
(ω ∝ |q∥|) can only be excited with momentum transfers q∥ in directions where
two groups of carriers with different Fermi velocity components are present. By
symmetry, this condition is not met for qy = 0 (row (a) in Fig. 4.3) and qy = qx

(row (c) in the same figure). Therefore, the presence of the AP requires q∥ not to
be parallel to any line of high symmetry (for instance, the AP can be excited at
qy = qx

2 , as indicated by row (b) in Fig. 4.3).
Following the previous discussion for the triangular anisotropy, we illustrate in

Fig. 4.4 the complete dispersion of the two plasmons that can manifest in materials
with a square-shaped band structure, presented in the qx − qy plane. In Fig. 4.4a,
we present the normalized dispersion of the conventional 2D plasmon, ω2DP(q∥)

EF
. At

small |q∥|, this dispersion exhibits high isotropy, while at larger distances from
q∥ = 0, the anisotropy increases, resembling the same square shape as that of the
energy band. This behavior differs from the dispersion of the 2D plasmon observed
in systems with triangular symmetry (Fig. 4.2a), where anisotropy is prominent
even at very small momentum transfers.

The dispersion of the AP, ωAP(q∥)
EF

, is reported in Fig. 4.4b. The underlying
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Figure 4.3: Band structure, permittivity, and loss function for a 2D system with square band
structure. a1) Band structure ωk∥ of the material (contour plot) with the two main symmetry
directions of the lowest and the largest effective masses marked by brown and green dashed lines,
respectively. Thin black dashed lines highlight curves of constant energies, and the black solid line
shows the Fermi surface. The momentum q∥ along the qy = 0 direction is shown by the magenta
arrow. The Fermi velocities vF1 and vF2 of the carriers at the two edges are marked by purple
arrows. a2) Real and a3) imaginary parts of the permittivity, and a4) loss function as a function
of the momentum component qx and the energy ω. In (a4) the 2D plasmon peak is marked
by a cyan dashed line. Row b) Same as in the panels of row (a), for momentum transfers q∥
with qy = 1

2 qx. Additionally, in (b4) the acoustic plasmon peak AP is highlighted by a magenta
dashed line (see labels). Row c) Same as in the panels of row (a), for q∥ with qy = qx.

mechanism for the AP in the system with a square symmetry is fundamentally the
same as in the previously studied triangular system. It arises from the existence of
two groups of carriers moving in a specific direction with different group velocities.
However, in the case of the square band structure, there are only two particular
directions where this condition is not met. Nonetheless, as depicted in Fig. 4.4b,
the regions around each symmetry line where the AP does not appear have different
extensions. In proximity to the directions with the lowest effective mass (qx = 0
and qy = 0, indicated by brown dashed lines), the AP emerges rapidly upon
symmetry breaking. Conversely, in the regions near the directions with the largest
effective mass (qy = ±qx, green dashed lines), the absence of the AP persists over
a significantly broader range. This difference can be attributed to the fact that in
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Figure 4.4: Contour plots of the dispersion of a) the 2D plasmon normalized energy
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and b) the acoustic plasmon normalized energy
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in the qx − qy plane for a system with

a free-electron-like band structure with square anisotropy. The black dashed lines in panel (a)
highlight curves of constant energy ω2DP. Brown and green dashed lines in panel (b) indicate
the symmetry directions of the band structure with the lowest and the largest effective masses,
respectively. The gray regions represent the momentum q∥ regions where the acoustic plasmon
does not exist.

the former case, the AP energy is minimal near the symmetry directions marked
by brown dashed lines, with a corresponding low damping rate due to the absence
of electron-hole pairs as a decay channel (as can be observed in Fig. 4.3a3, where
εI(ω) ≈ 0 in the ω → 0 limit). In the other scenario, the AP energy becomes
maximal as the green dashed lines are approached, leading to a significant decay
into electron-hole pairs (εI(ω) ≫ 0 if ω ≫ 0). Consequently, the emergence of two
distinct peaks in εI that are associated to the emergence of an acoustic plasmon
becomes more challenging in this particular direction.

4.3.3 Hexagonal anisotropy
We now examine the permittivity and loss function of a 2D electron gas with
hexagonal anisotropy [corresponding to N = 6 in Eq. (4.2)]. These functions
are reported in Fig. 4.5 again as a function of the energy ω and the momentum
transfer component qx. In each row of panels (a), (b), and (c), the qy component
of the vector q∥ is fixed at qy = 0, qy = qx/2

√
3, and qy = qx/

√
3, respectively, as

indicated by the magenta arrows in the first column. Similar as in the previous
cases, these directions correspond to the symmetry directions of lowest (qy = 0)
and largest (qy = qx/

√
3) effective mass, and to an intermediate non-symmetric

direction between the other two (qy = qx/2
√

3).
In contrast to materials with triangular and square anisotropic band structures,

the hexagonal anisotropy exhibits two distinct peaks in the loss function along
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the qy = 0 line (Fig. 4.5a4). Along this symmetry direction, in addition to the
conventional 2D plasmon with low-|q∥| dispersion ω ∝

√
|q∥|, a separate acoustic

mode with linear dispersion, denoted as AP1, emerges at lower energies. The
appearance of the AP1 can be attributed to the presence of three distinct groups
of carriers at the Fermi surface. The carriers located at the Fermi surface edge
with Fermi velocity vF1 (see Fig. 4.5a1) constitute a fast-moving group, and
their intraband transitions generate a well-defined peak in the imaginary part of
the permittivity εI above the electron-hole continuum, (the leftmost black region
depicted in Fig. 4.5a3). On the other hand, the carriers at the edges corresponding
to Fermi velocities vF2 and vF3 (Fig. 4.5a1) move in the direction of the q∥ vector
with the velocities q∥ · vF2 = q∥ · vF3 that are half the magnitude of q∥ · vF1.
Transitions involving these slower carriers give rise to a distinct peak in εI at lower
energies (the rightmost black region in Fig. 4.5a3), exhibiting an initial dispersion
slope that is precisely half the slope of the upper peak. Further, the peaks in εI
are highly pronounced at low momentum, while an increase in qx leads to broader
peaks. Consequently, the linewidth of the AP1 peak in the loss function (Fig.
4.5a4) increases until it ceases to exist at qx values larger than ∼ 0.8

√
EF.

When the q∥ vector aligns with the qy = qx/2
√

3 direction, as shown in Fig.
4.5b1, the components of vF2 and vF3 along this direction become distinct. In
combination with the states characterized by the Fermi velocity vF1, the system
now exhibits three groups of carriers with different group velocities, because in
this case we obtain q∥ · vF1 ̸= q∥ · vF2 ̸= q∥ · vF3. Therefore, the electrons are
excited to three different energy levels [Eq. (4.3)]. Consequently, the lower-energy
peak in εI that appears in Fig. 4.5a3 for qy = 0 splits into two well-separated
peaks, as observed in Fig. 4.5b3. The presence of three well-separated peaks in
εI at small |q∥| causes the real part of the permittivity εR to cross the zero line
six times (Fig. 4.5b2). This, in turn, leads to the appearance of three distinct
peaks in the loss function of Fig. 4.5b4, namely, the upper-energy optical branch
2DP and two acoustic branches with linear dispersion, denoted as AP1 and AP2.
The AP2 mode, characterized by the lowest energy (smallest group velocity) of the
two, corresponds to the out-of-phase oscillation of carriers residing at the Fermi
surface edges with velocities vF2 and vF3. On the other hand, the AP1 mode, with
a larger group velocity, involves the out-of-phase motion of carriers with velocities
vF1 and vF2.

Furthermore, for momentum transfers q∥ aligned with the qy = qx/
√

3 direction
(parallel to one of the green lines in Fig. 4.5c1), only transitions involving states
associated to Fermi velocities vF1 and vF2 are allowed, because momentum transfers
in this direction cannot excite electrons with velocity vF3 from an occupied
state to an unoccupied state at small |q∥| [because q∥ · vF = 0 in Eq. (4.3)].
Moreover, the group velocity components of the excited electrons are equal, i.e.,
both groups of carriers are moving with the same velocity q∥ · vF1 = q∥ · vF2 and
are indistinguishable. As a result, a single peak appears in εI as shown in Fig.
4.5c3, resembling the behavior of a conventional one-component electron gas [48].
Consequently, the electron-hole continuum in the loss function depicted in Fig.
4.5c4 remains almost unaffected with respect to that of an isotropic electron gas,
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Figure 4.5: Band structure, permittivity, and loss function for a 2D system with hexagonal band
structure. a1) Band structure ωk∥ of the material (contour plot) with the two main symmetry
directions of the lowest and the largest effective masses marked by brown and green dashed lines,
respectively. Thin black dashed lines highlight curves of constant energies, and the black solid
line shows the Fermi surface. The momentum q∥ along the qy = 0 direction is shown by the
magenta arrow. The Fermi velocities vF1, vF2, and vF3 of the carriers at the three edges are
marked by purple arrows. a2) Real and a3) imaginary parts of the permittivity, and a4) loss
function as a function of the momentum component qx and the energy ω. In (a4) the 2D plasmon
(2DP) and the first acoustic plasmon (AP1) peaks are marked by cyan and magenta dashed
lines, respectively. Row b) Same as in the panels of row (a), for momentum transfers q∥ with
qy = 1

2
√

3
qx. Additionally, in (b4) the second acoustic plasmon peak AP2 is highlighted by a

green dashed line (see labels). Row c) Same as in the panels of row (a), for q∥ with qy = 1√
3

qx.

and only a single 2D plasmon peak manifests at higher energies.
To conclude, Fig. 4.6a illustrates the dispersion of the conventional 2D plasmon

for momentum transfers q∥ in any direction. At small |q∥|, its dispersion is highly
isotropic, while at larger momenta, it adopts the hexagonal form characteristic
of the electronic band dispersion. A similar behavior was displayed in Fig. 4.4
for the system with square anisotropy. However, in the case of a square-shaped
band structure, the anisotropic behavior of the 2D plasmon dispersion emerges
at smaller |q∥| compared to the hexagonal case. This outcome is expected since
the hexagonal form is closer to isotropy than the square one. Only in the case
of a triangular band structure is an anisotropic dispersion observed even at very
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in materials with free-electron-like band structure with hexagonal

anisotropy. The black dashed lines in panel (a) highlight curves of constant energy ω2DP. Brown
and green dashed lines in panels (b) and (c) indicate the symmetry directions of the band structure
of lowest and largest effective mass, respectively. The gray regions represent the wavevectors q∥
for which the respective acoustic plasmon does not exist.

small |q∥| (Fig. 4.2a), because this shape represents a regular polygon significantly
distinct from a circle.

The dispersions of the two acoustic plasmons AP1 and AP2 corresponding to the
system with hexagonal symmetry are plotted in Figs. 4.6b and 4.6c, respectively.
In both cases, the initial dispersion is linear in all radial directions of q∥ where
these plasmons can be excited. The slopes of these dispersions are determined by
the two lowest values of the velocity components q∥ · vF among the three groups
of electrons excited by the perturbation. Directions of high symmetry in the band
dispersion do not allow the existence of one or two acoustic plasmons since they
lack three distinct velocity components q∥ · vF. The importance of the direction
has been previously discussed for the triangular and square cases. However, in
comparison to those, the acoustic plasmons in the hexagonal system experience a
more pronounced damping, and therefore they exist in a smaller q∥ region than
the corresponding excitations in the triangular and square case, as observed by
comparing Fig. 4.6 with Figs. 4.2 and 4.4. Consequently, although the number
of plasmons with a sound-like dispersion increases in the hexagonal system, their
lifetime diminishes.

We can generalize the discussion about the existence of acoustic plasmons for
materials with a band structure in the form of any regular polygon (that is, as
given by Eq. (4.2) with any value of N). The number of acoustic plasmons that
can be excited for any q∥ is determined by the number of distinct Fermi velocity
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Figure 4.7: Analysis of the effects of the degree of anisotropy on the permittivity and the loss
function of 2D materials. a) Sketch of the Fermi surfaces for different anisotropy factors ∆ between
2 and 6 [as defined in Eq. (4.4)]. Different values of ∆ are represented by solid lines of different
color as indicated by the inset. b) Real and c) imaginary parts of the permittivity and d) loss
function of an electron system with the square symmetry evaluated at q∥ = (0.15
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for the same anisotropy factors ∆ as in panel (a) (see legend in this panel).

components in the q∥ direction, denoted as q∥ · vF. This number increases with
larger values of N , where the Fermi surface exhibits more linear sides and the
Fermi velocities of the electrons span a greater range of directions, with a maximum
of N/2 different positive values of q∥ · vF. However, as N increases, the q∥ · vF
components become closer to each other, and the number of electrons associated to
each specific vF vector decreases. Consequently, the peaks in the imaginary part
of the permittivity εI associated to each group overlap with each other, resulting
in a more efficient damping for each acoustic plasmon. This behavior is evident in
the N → ∞ limit of Eq. (4.2), which corresponds to the circular or isotropic case.
In this limit, each electron on the Fermi surface possesses a unique value of q∥ · vF,
but since there is no distinct group of electrons with a specific Fermi velocity, no
acoustic plasmon exists.

4.3.4 Electron gas with non-ideal anisotropic dispersion
The analysis conducted in Secs. 4.3.1, 4.3.2, and 4.3.3 has assumed ideal electronic
band dispersions, where the Fermi surfaces form perfect regular polygons as
described by Eq. (4.2). However, even though anisotropy with such symmetries has
been observed in various materials, real systems often deviate from an ideal shape.
To analyze the applicability of our analysis to more realistic cases, we examine how
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the permittivity and the properties of plasmons depend on the level of anisotropy
in a system. We focus on the specific case of square anisotropy, as it provides
a straightforward parameterization of the band structure for different degrees of
anisotropy, but the conclusions can be extended to other types of symmetries as
well. In this particular case, we consider the following band dispersion:

ωk∥ = (|kx|∆ + |ky|∆) 2
∆ , (4.4)

where the parameter ∆ quantifies the level of anisotropy in the system. At ∆ = 2,
the band dispersion corresponds to the isotropic free electron gas. For ∆ > 2,
some degree of anisotropy is introduced, and as ∆ increases, the band dispersion
deviates further from the isotropic case. In the ∆ → ∞ limit, the band dispersion
converges to the same form described by Eq. (4.2) for N = 4, representing the
ideal square anisotropy. We illustrate the effects of the anisotropy factor ∆ on the
band structure of the system in Fig. 4.7a, where we plot the Fermi surfaces of the
system for different ∆ values as given by Eq. (4.4).

The dependence of the permittivity and loss function on the anisotropy
factor ∆ can be observed in Figs. 4.7b, c, and d. These figures show εR, εI,
and Im[ε−1], respectively, as a function of ω at a fixed momentum transfer
q∥ = (qx, qy) = (0.15

√
EF, 0.075

√
EF), for different values of ∆. As expected,

in the isotropic case (∆ = 2, orange line) we observe that the electron-hole
continuum (the region of εI > 0 as shown in Fig. 4.7c) extends up to the energy
ω

EF
=
(

|q∥|√
EF

)2
+ 2 |q∥|√

EF
≃ 0.364. As ∆ increases, the density of states with

Fermi velocities in the qx = 0 and qy = 0 directions also increasesii, favoring
intraband transitions with energies around ω = q∥ · vF = qyvF = 0.15EF and
ω = q∥ · vF = qxvF = 0.3EF. Consequently, two peaks at these energies can be
observed in εI (Fig. 4.7c) for ∆ > 2. These two peaks in εI lead to significant
modifications in εR (Fig. 4.7b) around ω = 0.15EF, where it reaches zero for
∆ exceeding 4. This occurrence is attributed to the appearance of the acoustic
plasmons when εR approaches zero, as observed in the well-defined peak of the
loss function in Fig. 4.7d at slightly higher energies. These findings confirm that
our results for ideal polygonal band dispersions can be applied to more realistic
systems because the acoustic plasmon can also emerge in non-idealized systems

4.4 Summary
We have demonstrated that the permittivity and loss function of a 2D free electron
gas can be significantly altered by varying the shape of the energy band. By

ii The fermi velocity is parallel to the gradient of ωk∥ , and this gradient is perpendicular to
the Fermi surface. As shown in Fig. 4.7a, for ∆ = 2, we obtain the same density of electrons for
each direction of vF, due to the isotropy of the Fermi surface. For ∆ ≫ 2, the shape of the Fermi
surface is similar to a square, where the gradient of many points is (almost) parallel to the qx = 0
and qy = 0 directions. Therefore, for ∆ ≫ 2, the Fermi velocity of most electrons is parallel to
the qx = 0 and qy = 0 directions.
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considering systems with triangular, square, and hexagonal band shapes, we
have observed anisotropy in the dispersion of the conventional 2D plasmon with
a characteristic ω ∝

√
|q∥| behavior. In the case of the triangular system, a

pronounced deviation from isotropic behavior is observed at all momentum transfers.
For systems with higher symmetry, the plasmon dispersion becomes nearly isotropic
at small momentum transfers, while anisotropy becomes visible only at larger
momentum transfers. The threshold for the transition from isotropic to anisotropic
dispersion increases as the symmetry of the system increases.

Furthermore, we have shown that the permittivity depends strongly on the
direction of the Fermi velocities of the carriers. More importantly, additional
plasmon modes with characteristic sound-like dispersion can emerge if the system
contains at least two groups of electrons with different Fermi velocities. In systems
with triangular and square symmetries, we have identified one acoustic plasmon
and determined its dispersion across the entire momentum space. In the case of the
hexagonal system, the number of acoustic plasmons increases to two. We anticipate
that higher symmetries would lead to an even greater number of such plasmons.
However, this process is accompanied by a rapid reduction in the spectral weight of
these modes, eventually leading to the well-known result that such modes cannot
exist in an isotropic 2D electron gas. In summary, the findings presented in this
chapter suggest anisotropy as a possible mechanism for the emergence of acoustic
plasmons. While these excitations are predominantly observed in systems with two
different types of electronic states (such as surface and bulk states, as discussed in
Chapters 2 and 3), our results demonstrate the potential to create systems that
consist of a single electronic band and that also support acoustic plasmons.
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5
LIGHT EMISSION FROM TUNNELING
JUNCTIONS

5.1 Introduction
After analyzing the properties of plasmons in different metallic systems, we now
turn our attention to the study of the excitation process of plasmonic resonances
and the resulting emission of light. In particular, we focus on metal-insulator-
metal (MIM) junctions, which are a source of electromagnetic radiation as first
discovered by Lambe and McCarthy almost half a century ago [131]. In these
systems, light emission originates from the excitation of surface plasmon polaritons
(SPPs) by electronic injection when a bias potential is applied between the two
thin metallic electrodes, inducing a tunneling current in the insulator (see Fig.
5.1a). The first studies of light emission from MIM junctions were carried out in
planar junctions, and involved introducing some roughness on the surfaces of the
electrodes to enable radiation of the gap SPPs. Subsequently, the role of fast SPPs
localized at the metal-vacuum interface, as opposed to the gap SPP, was studied by
several authors [57, 196–198]. The interest in light emission by inelastic tunneling
was revived when light emission from a scanning tunneling microscope (STM)
was first measured [199] and the role of localized plasmons was shown [200]. This
localized light emission process has been used as a spectroscopic tool to characterize
samples with nanometer, and even subnanometric spatial resolution by measuring
the spatial variations of the emitted light [21, 201–203]. After these milestone
contributions, light emission in the tunneling regime has been a topic of interest
because of its many interesting features for potential applications.

Despite the many potential applications of these systems as optical sources, their
development has been hampered by the extremely low electron-to-SPP conversion
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Figure 5.1: Schematics of the light emission process from a MIM tunneling junction due to
inelastic tunneling. a) Sketch of a MIM junction. When a bias potential VB is applied, an
electronic current of density j is induced in the system. An electron excites an electromagnetic
mode of energy ℏω due to the inelastic tunneling mechanism. This mode would then emit light
towards the detectors. b) Sketch of the inelastic tunneling processes considered by Bardeen’s
approximation, where the electron decays only in the insulator gap. c) Sketch of the inelastic
tunneling processes considered by the quantum device solution (QDS) that we propose in this
chapter. The QDS includes inelastic tunneling processes of (i) the first metallic electrode, (ii) the
insulator gap and (iii) the second electrode.

rate. It was found that in optimized configurations based on localized plasmons at
the tip of a scanning tunneling microscope (STM) [204] or between the edges of two
cubes [205], the conversion rates are on the order of 10−3 and 10−2, respectively.
To explain the light emission by a tunneling junction, two physical mechanisms
have been proposed.

The first mechanism was based on inelastic tunneling in the insulator gap. The
inelastic process in the gap is illustrated in Fig. 5.1b. When a bias voltage VB is
applied, electrons in one metallic electrode gain an excess energy of e|VB|. These
electrons can tunnel through the few-nanometer thick insulator gap between the
metals to occupy an unoccupied state in the other electrode. In MIM junctions,
the dominant charge transport process is elastic tunneling, which generates a direct
current [206,207]. Alternatively, an electron can use part of its excess energy to
excite a SPP (with energy ℏω < e|VB|) in the insulator gap during tunneling. The
SPP subsequently relaxes either by absorption or radiation.

Although models of inelastic tunneling in the gap describe experimental data
in many systems, it has been reported that this mechanism does not account for
the measurements of light emission by MIM junctions. For instance, Kirtley et al.
measured light emission from metallic gratings where the electric field of the modes
is not mostly concentrated in the insulator gap of the junction. In this case, the
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theory based on inelastic tunneling underestimated the light intensity by more than
an order of magnitude [57]. Further, it was observed that the radiative intensity
depended on the thickness of the top electrode, and models of inelastic tunneling
could not explain this dependence because they only considered the interaction
between the current and the electric field in the gap. To explain these discrepancies
between theory and experiment, the authors suggested a second mechanism of
light emission, known as the hot electron decay [208]. In this model, electrons first
tunnel elastically and become hot electrons in the second electrode. Then, they
thermalize through interactions with other electrons and with phonons. Due to the
continuous pumping, a population of hot electrons, not described by a Fermi-Dirac
distribution, is maintained. These hot electrons can relax radiatively. On the other
hand, Persson and Baratoff analyzed light emission in a STM and found that the
inelastic tunneling mechanism overcomes the hot electron mechanism by a factor
of approximately 103 [209].

At this point, we emphasize that many authors have considered that emission
originated in the metallic electrode is necessarily due to the hot electron process
[208,209], and that inelastic tunneling implies emission originated in the gap only
(Fig. 5.1b) [208–210]. In what follows, we revisit this point of view by considering a
more rigorous description of the inelastic tunneling that indicates how processes in
the metal can also lead to emission, as depicted schematically in Fig. 5.1c, without
requiring the hot electron mechanism.

Up to now, all the calculations (except Ref. [55]) assume that the light emission
process takes place in the gap. This process is typically modelled based on
Bardeen’s theory of electron tunneling (Bardeen’s approximation). In this chapter,
we introduce an extension of the models of inelastic tunneling that is obtained by
solving the Schrödinger equation in the complete MIM device and that we denote
the full quantum device solution (QDS). This solution also accounts for processes
in the metallic electrodes (Fig. 5.1c), and we show that it includes some features
observed experimentally that cannot be predicted by Bardeen’s theory.

Additionally, within the QDS, we show the equivalence of the two main
approaches that have been used to describe inelastic light emission. The first
one is based on the usual picture of a radiative emission due to an electronic
transition between two states. Fermi’s golden rule can then be used to compute the
rate of excitation of SPPs [56,211]. The second one is based on the classical picture
of radiation due to time-dependent currents. It relies on the calculation of the power
radiated by the time-dependent fluctuations of the current density [55,212]. Laks
and Mills used this viewpoint to model the experiment of Lambe and McCarthy
by calculating the emission efficiency of planar junctions with surface roughness in
Ref. [55]. A summary of these two methods can be found in the review paper by
Parzefall [56]. To our knowledge, no systematic explicit proof of their equivalence
has been reported.

The structure of this chapter is the following. In Sec. 5.2, we present the
QDS and use it to explain elastic tunneling phenomena, comparing the obtained
results with those given by Bardeen’s approximation. In Sec. 5.3, we establish the
relation of two different approaches used to describe light emission by inelastic
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tunneling, based either i) on the transition rate of electrons between two states, or
ii) on the calculation of emission by fluctuating currents. We further emphasize the
importance of using these approaches within the QDS. In particular, we use the QDS
to compute the cross-spectral density of the current density in a second quantization
framework. These results indicate that the QDS accounts for processes of non-local
electron-hole recombination within the metallic electrodes that contribute to light
emission and that are not considered by Bardeen’s approximation. Last, in Sec.
5.4, we calculate the radiative and non-radiative power due to the excitation of
different SPPs in planar junctions, analyzing in detail the differences between the
results obtained with Bardeen’s approximation and the QDS.

5.2 Descriptions of elastic tunneling
We start by reviewing and comparing the frameworks that are used to describe
electronic transport in a barrier. We first remind the main results of Bardeen’s
description of elastic tunneling in MIM junctions (for a more complete discussion
see Sec. 2.4), and we then compare Bardeen’s approach with the textbook solution
of the Schrödinger equation denoted QDS.

The tunneling junction is represented by the potential energy as shown in the
inset of Fig. 5.2c (also shown in Fig. 2.4a). Within this description of the junction,
the electronic wavefunctions are obtained by solving the Schrödinger equation
with the Hamiltonian Ĥel given by Eq. (2.84). From Bardeen’s perspective, the
complete Hamiltonian is separated into two approximate expressions, each related
to the left or right metallic electrode at potential energy UL or UR, respectively.
This approximation allows obtaining simple expression of the wavefunctions for
electrons in each metal, which are given by Eqs. (2.85) and (2.86) and repeated
here for ease of reference (we now use the superscript BA to denote that these
wavefunctions are obtained within Bardeen’s approximation):

ΨBA
L (r) =


1√
Lz

1√
S

(
eikzLz + ikzL+kzgap

ikzL−kzgap
e−ikzLz

)
eik∥·r∥ z ≤ 0

1√
Lz

1√
S

(
2ikzL

ikzL−kzgap
e−kzgapz

)
eik∥·r∥ z > 0

,

ΨBA
R (r) =


1√
Lz

1√
S

(
2ikzR

ikzR−kzgap
ekzgap(z−Lgap)

)
eik∥·r∥ z ≤ Lgap

1√
Lz

1√
S

(
e−ikzR(z−Lgap) + ikzR+kzgap

ikzR−kzgap
eikzR(z−Lgap)

)
eik∥·r∥ z > Lgap

.

In this expression, the wavevectors kzL(R) and kzgap are given by Eqs. (2.87) and
(2.88) for an electron with parallel wavevector k∥, energy ℏωel and effective mass
meff, i.e.

kzL(R)(ωel, k∥) =
√

2meff

ℏ2

(
ℏωel − UL(R)

)
− |k∥|2
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Figure 5.2: Comparison of the Bardeen’s and quantum device solution (QDS) approaches for
electron tunneling mechanisms. a-b) Schematics of the processes of elastic tunneling (Γel) and
inelastic tunneling (Γinel) using (a) the wavefunctions ΨBA

L and ΨBA
R corresponding to Bardeen’s

approximation, and (b) the wavefunctions ΨQDS
L and ΨQDS

R of the QDS. The wavefunctions are
vertically shifted by their energy, where ℏωel is the initial electronic energy and ℏω

(ν)
K∥

is the
energy of a SPP excited by the electron due to inelastic tunneling. c) Elastic tunneling rate Γel
per unit of surface area S of the metallic interfaces, calculated with Bardeen’s approximation
(black dots) and the QDS (orange line), plotted as a function of the bias potential VB. The inset
is the same figure as Fig. 2.4a and shows the schematics of the potential energy U(z) of electrons
in the MIM junction and the occupied states in each metal.

and
kzgap(ωel, k∥) =

√
2meff

ℏ2 (Ugap − ℏωel) + |k∥|2,

where Ugap is the potential energy in the insulator gap (see Sec. 2.4 for a more
detailed definition of the parameters involving these equations).

According to Bardeen’s theory, electrons are initially in an eigenstate of the
Hamiltonian of the left metal ĤL, and the interaction Hamiltonian Ĥel −ĤL induces
transitions to states corresponding to the right metal (as schematically shown in
Fig. 5.2a by the arrow with the Γel label). Under the assumption of weak tunneling,
the calculation of the tunneling rate is done using Fermi’s golden rule. We obtain
that the elastic tunneling rate per electron in the left metal is given by Eq. (2.95),
i.e.

ΓL = ℏ
meffLz

16k2
zLkzRk2

zgap

(k2
zL + k2

zgap)(k2
zR + k2

zgap)e−2kzgapLgap .

We now turn to a more rigorous approach that does not use Bardeen’s
approximation. The eigenstates of the Hamiltonian of Eq. (2.84) for a rectangular
barrier are analytically solvable. For a fixed energy ℏωel and parallel wavevector
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k∥, the Hamiltonian of a rectangular barrier contains two degenerate states, of the
form

ΨQDS
L (r) =


1√
Lz

1√
S

(
eikzLz + rLe−ikzLz

)
eik∥·r∥ z ≤ 0

1√
Lz

1√
S

(
αLekzgapz + βLe−kzgapz

)
eik∥·r∥ 0 < z ≤ Lgap

1√
Lz

1√
S

tLeikzRzeik∥·r∥ Lgap < z

, (5.1)

and

ΨQDS
R (r) =


1√
Lz

1√
S

tRe−ikzL(z−Lgap)eik∥·r∥ z ≤ 0
1√
Lz

1√
S

(
αRe−kzgap(z−Lgap) + βRekzgap(z−Lgap)) eik∥·r∥ 0 < z ≤ Lgap

1√
Lz

1√
S

(
e−ikzR(z−Lgap) + rReikzR(z−Lgap)) eik∥·r∥ Lgap < z

,

(5.2)

with coefficients

rL = −e2kzgapLgap(kzgap + ikzL)(kzgap − ikzR) − (kzgap − ikzL)(kzgap + ikzR)
e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) ,

(5.3a)

αL = − 2ikzL(kzgap + ikR)
e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) ,

(5.3b)

βL = − 2ikzL(kzgap − ikR)e2kzgapLgap

e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) ,

(5.3c)

tL = − 4iekzgapLgape−ikRLgapkzgapkzL

e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) ,

(5.3d)

rR = −e2kzgapLgap(kzgap − ikzL)(kzgap + ikzR) − (kzgap + ikzL)(kzgap − ikzR)
e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) ,

(5.3e)

αR = − 2ikzR(kzgap + ikL)
e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) ,

(5.3f)

βR = − 2ikzR(kzgap − ikL)e2kzgapLgap

e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) ,

(5.3g)

tR = − 4iekzgapLgape−ikLLgapkzgapkzR

e2kzgapLgap(kzgap − ikzL)(kzgap − ikzR) − (kzgap + ikzL)(kzgap + ikzR) .

(5.3h)
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rL(R) and tL(R) give the reflected and transmitted amplitudes. The wavefunctions
ΨQDS

L (r) in Eq. (5.1) and ΨQDS
R (r) in Eq. (5.2) are the textbook solutions to

describe quantum tunneling from the left metal to the right metal and vice versa,
respectively. Since the wavefunctions are calculated in the complete MIM device,
we refer to these wavefunctions as the quantum device solution (QDS).

It is possible to obtain exactly the elastic tunneling rate using the QDS. Since
the electrons under this description are already in an eigenstate of Ĥel from the
beginning, the tunneling properties are included in ΨQDS

L (r), as we indicate in Fig.
5.2b by the arrow with the Γel label. From this wavefunction, we can obtain its
associated probability current density from the general definition [213]

jz(r) = iℏe

2meff

[
Ψ∗(r)∂Ψ(r)

∂z
− Ψ(r)∂Ψ∗(r)

∂z

]
, (5.4)

which for Eq. (5.1) is constant over space with the value jz(z) = − 1
LzS

ℏekzR
meff

|tL|2.
Since this expression gives the amount of charge that crosses the junction per unit
of area and time, the tunneling rate ΓQDS

L is directly calculated as

ΓQDS
L = S

−e
jz. (5.5)

By introducing the value of the coefficient tL [Eq. (5.3d)] into Eq. (5.1) and
applying Eq. (5.4) to calculate the current density jz(z), we obtain

ΓQDS
L = ℏ

meffLz
16k2

zLkzRk2
zgape−2kzgapLgap

×{(1 + e−4kzgapLgap)(k2
zgap + k2

zL)(k2
zgap + k2

zR)
− 2e−2kzgapLgap [(k2

zgap − k2
zL)(k2

zgap − k2
zR) − 4k2

zgapkzLkzR]}−1.

(5.6)

The tunneling rate given by Bardeen’s approximation [Eq. (2.95)] is identical
to the expression that is obtained from the rate of the QDS [Eq. (5.6)] under the
assumption of weak tunneling, i.e. for kzgapLgap ≫ 1. To analyze the validity of this
assumption, we focus on an Al-AlOx-Au junction as a particular example, which is
typically used to analyze elastic and inelastic tunneling phenomena [54,131,198].
For these metals, we use through this chapter numerical values of the Fermi energies
EL

F = 11.5 eV and ER
F = 5.5 eV [129]. Further, it has been measured that the

effective mass of the electrons in junctions with AlOx is meff = 0.23me (where me

is the electron mass) [214], and we fix the height of the barrier on a typical value
of U0 = 2 eV. Since Bardeen’s approximation works accurately for kzgapLgap ≫ 1,
the largest mismatch with the QDS occurs in the regime of very thin layers and
of high bias potentials, where kzgap is low according to Eq. (2.88). However,
even for values of Lgap = 1 nm and VB = 3 V, we have checked that Bardeen’s
approximation underestimates the tunneling rate ΓL of the electrons at the Fermi
surface only by a factor of 0.4%.
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Although the tunneling rate per electron allows us to compare Bardeen’s
approximation with the QDS by means of an analytical expression [Eqs. (2.95)
and (5.6)], the measurable quantity in experiments is the intensity of the electronic
current (related to the total tunneling rate Γel), instead of the individual rate ΓL.
In order to model these experiments, we calculate Γel by summing Eqs. (2.95)
and (5.6) over all occupied initial states of the left metal that can tunnel to
unoccupied states of the right metal. Specifically, Γel is calculated by introducing
ΓL of Eq. (2.95) (for Bardeen’s approximation) or Eq. (5.6) (for the QDS)
into Eq. (2.96). To perform this calculation, we have included the probability
that a state is occupied in the left metal and unoccupied in the right metal.
Since the states described by Bardeen’s approximation are localized in a single
metal, these probabilities are dictated by the Fermi-Dirac occupation factors of

its respective metal f
L(R)
FD (kL) =

[
1 + exp

(
ℏωel(kL)−E

L(R)
F

kBT

)]−1
at temperature T ,

with Boltzmann constant kB. The assignment of a Fermi-Dirac occupation factor
is not so straightforward in the approach of the QDS, because the corresponding
electronic states are delocalized over the two metals with different Fermi levels.
However, following a similar argument than for Bardeen’s approximation, we
associate the occupation factor fL

FD(kL) to the states ΨQDS
L (r) that originate

from the left metal, and accordingly the factor [1 − fR
FD(kL)] corresponds to the

unoccupied states ΨQDS
R (r) that tunnel from the right to the left metal.

We plot in Fig. 5.2c the elastic tunneling rate Γel per surface area S as a
function of the applied voltage VB for temperature T = 0, where the Fermi-Dirac
occupation factors are given by Heaviside step functions (we have checked that
the following discussion remains also valid for room and larger temperatures). We
compare the results obtained with Bardeen’s approximation (black dots) and the
QDS (orange line) for a thin gap of width Lgap = 1 nm. The two approaches follow
a nearly identical trend with a relative error of at most 2.1 · 10−3 at VB = 3 V.
In most experiments, the gap thickness Lgap is larger, which decreases the error
between the two approaches even more. Therefore, we have shown that Bardeen’s
approximation gives very reliable results in the description of elastic tunneling. This
approach is also easy to use and can be easily extended to barriers with potential
energies U(z) for which the Schrödinger equation is not solvable analytically, so
that it has been applied successfully to study many systems. Additionally, the
agreement between the Bardeen’s and QDS approaches indicates that associating
single-metal Fermi-Dirac occupation factors f

L(R)
FD (kL) to the states of the QDS

works accurately, and therefore we follow this methodology in the following section
where we turn to the inelastic tunneling current.

5.3 Descriptions of inelastic tunneling
The phenomenon of light emission due to inelastic tunneling has been computed
using two different models in the literature: a calculation based on Fermi’s golden
rule and a calculation of the radiated power due to current density fluctuations.
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These two models are based on the two usual physical pictures of light emission:
the quantum matter picture is based on the radiative relaxation of an excited
state, and the classical electromagnetic picture is based on the power radiated by
a time-dependent current.

In this section, we aim to provide a comprehensive review of the two models and
to prove their equivalence under appropriate conditions. Further, these methods
are often used within the framework of Bardeen’s approximation, but we emphasize
here the consequences of using them within the QDS.

Finally, let us stress that we compute the inelastic transition rate leading to
SPP excitation. Once this is known, then the photon emission rate can be deduced
by merely multiplying it by the surface plasmon radiative decay yield.

5.3.1 Fermi’s golden rule
In the description of light emission from tunneling junctions, it is necessary to
include the interaction between electrons and electromagnetic modes. Among
different points of view to account for this interaction, one of them is a direct
extension of models of elastic tunneling that involves introducing the light-matter
coupling in the quantum Hamiltonian of Eq. (2.84). The effects of this coupling are
usually treated under the formalism of Fermi’s golden rule. This general approach
has been used in a large variety of systems, such as in the analysis of photon
emission from superconducting junctions [215]. Focusing now on the specific case
of planar MIM junctions, the complete Hamiltonian that describes elastic tunneling
together with the interaction between electrons and SPPs is

Ĥel-SPP = Ĥel +
∑
K∥

∑
ν

ℏω
(ν)
K∥

â
†(ν)
K∥

â
(ν)
K∥

− e

meff
p̂ · Â. (5.7)

Together with the electronic Hamiltonian Ĥel in Eq. (2.84), the second term
on the right handside of this expression is the plasmonic Hamiltonian. The
superscript ν refers to all different SPP modes of the system (mostly localized at
different interfaces) whose dispersion ω

(ν)
K∥

is a function of the parallel component
of the wavevector K∥. We have included the corresponding creation operator
â

†(ν)
K∥

and annihilation operator â
(ν)
K∥

for each vector K∥. The last term in Eq.
(5.7) corresponds to the light-matter interaction Ĥint, which, depending on the
system and its mode structure, is described with the vector potential Â in the
Coulomb gauge as Ĥint = − e

meff
p̂ · Â, or in terms of the scalar potential V̂ as

Ĥint = −eV̂ [209, 211, 216]. In this work, we use the former interaction term
because all transverse modes in planar junctions can be described entirely with
the vector potential. The operator p̂ = −iℏ∇ acts on the electronic wavefunctions,
whereas the field operator Â is written after the decomposition into all plasmonic
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modes as [217]

Â(r, t) =
∑
K∥

∑
ν

√√√√ ℏ
2ε0Sω

(ν)
K∥

eiK∥·r∥u(ν)
K∥

(z)â(ν)
K∥

e
−iω

(ν)
K∥

t

+

√√√√ ℏ
2ε0Sω

(ν)
K∥

e−iK∥·r∥u∗(ν)
K∥

(z)â†(ν)
K∥

e
iω

(ν)
K∥

t
, (5.8)

where u(ν)
K∥

(z) gives the spatial dependence of the vector potential along the z

direction for each mode, under the condition iK∥ · u(ν)
K∥

(z) + ∂
∂z

(
u(ν)

K∥
(z) · nz

)
= 0

implied by the Coulomb gauge (nz is the unit vector of the z direction). Further,
the quantization of each plasmonic mode with energy ℏω

(ν)
K∥

leads to the following
normalization condition of u(ν)

K∥
(z) [217,218]:

ˆ 1
2

{
∂

∂ω
[ωε(z, ω)]

∣∣∣u(ν)
K∥

(z)
∣∣∣2 +

∣∣∣∣ε(z, ω)
|K∥|

ω

c

(
u(ν)

K∥
(z) · nz

)∣∣∣∣2
}

dz = 1. (5.9)

To quantize the SPP field, losses have been neglected. This approximation is valid
inasmuch as the density of states is not perturbed significantly [217]. It provides an
accurate description of the electron-SPP coupling which will be used to compute
the SPP emission rate. The photon emission rate will be computed subsequently
using the radiative yield of the SPP.

The Hamiltonian of Eq. (5.7) is not exactly solvable in general, and the
usual approach to describe inelastic tunneling is to treat Ĥint = − e

meff
p̂ · Â as a

perturbative term under the assumption of weak light-matter interaction. It is
first assumed that the electrons come from the left metal and that there is no
excited plasmon. Therefore, the initial state is of the form |ΨL⟩ ⊗ |0pl⟩i. Here,
the state |0pl⟩ implies that all modes ν at all wavevectors K∥ are in the zero
occupation number state. The final plasmonic state is of the form

∣∣∣1(ν)
K∥

〉
, where

all modes are unoccupied except for a SPP mode ν of parallel wavevector K∥
with occupation number 1. On the other hand, the electronic part of the final
state can be of the form |ΨL⟩ or |ΨR⟩, depending on the Fermi-Dirac occupation
factor of these states. Due to the applied bias potential, it is expected that, at low
temperatures, the number of unoccupied states will be significantly greater in the
right metal than in the left metal for final energies lower than that of the initial
state. Thus, the transitions to the states of the left metal are highly suppressed,
i.e. ΓL→L ≪ ΓL→R, and in this formalism we only focus on the transitions of the

i If we do not specify the superscript BA or QDS in the electronic state ΨL(R) in this chapter,
the expression is valid for both of these approaches.
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form L → R. Specifically, the tunneling rate according to Fermi’s golden rule reads

ΓL→R = 2π

ℏ2

∑
K∥

∑
ν

δ(ωel
L − ωel

R − ω
(ν)
K∥

)
∣∣∣M(ν)

L,R,K∥

∣∣∣2 , (5.10)

with the matrix element

M(ν)
L,R,K∥

=
〈

ΨR, 1(ν)
K∥

∣∣∣Ĥint

∣∣∣ΨL, 0pl

〉
=

√√√√ ℏ
2ε0Sω

(ν)
K∥

iℏe

meff

ˆ
Vgap+Vmet

Ψ∗
R(r)

[
u(ν)

K∥
(z)e−iK∥·r∥

]
· ∇ΨL(r) dr

=
〈

ΨL, 0pl

∣∣∣Ĥint

∣∣∣ΨR, 1(ν)
K∥

〉∗

=

√√√√ ℏ
2ε0Sω

(ν)
K∥

−iℏe

meff

ˆ
Vgap+Vmet

ΨL(r)
[
u(ν)

K∥
(z)e−iK∥·r∥

]
· ∇Ψ∗

R(r) dr,

(5.11)

where we specify that this integral has to be performed in the volume of the gap
Vgap and of the metallic regions, Vmet. Note that when accounting for metallic
layers with finite thickness, we limit the integration over z but, for the sake of
simplicity, we still use the electron wavefunctions given by Eqs. (5.1) and (5.2)
established for metals with infinite thickness. Since the contributions of the gap and
the metals must be summed, these two terms may produce quantum interferences,
as we discuss in Sec. 5.4. Further, combining the two equivalent forms of the
matrix element shown in Eq. (5.11), we can write M(ν)

L,R,K∥
in a symmetric form

that is similar to the elastic tunneling rate obtained with Bardeen’s approximation
[Eq. (2.95)], as

M(ν)
L,R,K∥

=

√√√√ ℏ
2ε0Sω

(ν)
K∥

iℏe

2meff

×
ˆ

Vgap+Vmet

[
u(ν)

K∥
(z)e−iK∥·r∥

]
· [Ψ∗

R(r)∇ΨL(r) − ΨL(r)∇Ψ∗
R(r)] dr,

(5.12)

where, in analogy with Eq. (5.4), the wavefunctions ΨL(r) and ΨR(r) appear in
the form of the inelastic current density as [211]

jL→R(r) = iℏe

2meff
[Ψ∗

R(r)∇ΨL(r) − ΨL(r)∇Ψ∗
R(r)] . (5.13)

The experimentally measurable quantity is the intensity of the emitted light due to
the total inelastic tunneling rate, which is given by the sum over all occupied initial
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Chapter 5. Light emission from tunneling junctions

states in the left metal and unoccupied final states of the right metal, calculated
as Γinel =

∑
kL

∑
kR

ΓL→RfL
FD(kL)[1 − fR

FD(kR)], i.e.

Γinel =
∑
K∥

∑
ν

∑
kL

∑
kR

2π

ℏ2 δ(ωel
L − ωel

R − ω
(ν)
K∥

)fL
FD(kL)[1 − fR

FD(kR)]|M(ν)
L,R,K∥

|2.

(5.14)
The corresponding total power transferred by the tunneling current to the SPPs is
given by

P =
∑
K∥

∑
ν

∑
kL

∑
kR

ℏω
(ν)
K∥

ΓL→R(ω(ν)
K∥

)fL
FD(kL)[1 − fR

FD(kR)],

=
∑
K∥

∑
ν

∑
kL

∑
kR

2π

ℏ2 δ(ωel
L − ωel

R − ω
(ν)
K∥

)fL
FD(kL)[1 − fR

FD(kR)]|M(ν)
L,R,K∥

|2ℏω
(ν)
K∥

.

(5.15)

Following the standard procedure of elastic tunneling, the calculation of these
transition rates is usually done under Bardeen’s approximation, by evaluating the
integral of the matrix element [Eq. (5.12)] just in the gap with the wavefunctions
from Eqs. (2.85) and (2.86). This approximation assumes that the SPP is
excited in the barrier due to the inelastic tunneling processes in the gap. This
approach also gives an intuitive understanding on how the optical properties of
the MIM junction influence the light emission process. We first notice that in
typical gaps of few nanometers, the variation of the electromagnetic field is very
smooth and it can be considered as constant in the integration region of Eq.
(5.12). This assumption implies that the electronic and optical properties of the
junction can be considered separately in Eq. (5.10). On the one hand, ΓL→R is
proportional to the electronic matrix element |

〈
ΨBA

R
∣∣p∣∣ΨBA

L
〉

+
〈
ΨBA

L
∣∣p∣∣ΨBA

R
〉

|2 =∣∣−iℏ
´

ΨBA*
R (r)∇ΨBA

L (r) − ΨBA
L (r)∇ΨBA*

R (r)dr
∣∣2. On the other hand, by doing

the sum over all plasmonic modes, the tunneling rate is also proportional to
the projected local optical density of states ρopt(r) =

∑
K∥

∑
ν δ(ωel

L − ωel
R −

ω
(ν)
K∥

)|u(ν)
K∥

(r) · nz|2. Therefore, this analysis suggests that the light emission can be
enhanced by choosing optical antennas with large ρopt.

However, we emphasize that Eq. (5.12) includes processes inside the metals,
provided that we use the wavefunctions of Eqs. (5.1) and (5.2) corresponding to the
QDS, whereas Bardeen’s approximation only considers gap processes (we compare
inelastic transitions according to these two perspectives in Figs. 5.2a and b by the
arrows with the label Γinel). When taking the square modulus of Eq. (5.12) within
the QDS, we obtain the contributions of the gap, the metal electrodes and a mixed
term which is a quantum interference between the two processes. Hence, it appears
that it is not necessary to invoke a hot electron mechanism to obtain a contribution
of light emission from the metallic electrodes. Further, we emphasize that the
inelastic tunneling rate is proportional to the projected local optical density of
states only within Bardeen’s approximation. This is no longer necessarily true
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5.3. Descriptions of inelastic tunneling

when considering the QDS, due to the interferences between the amplitudes of the
SPP electric field in the gap and in the metal.

5.3.2 Energy-loss model and Poynting vector flux
calculation

An alternative model to describe light emission from tunneling junctions has been
introduced by Davis [211] and consists in calculating the rate of energy dissipation
by the electronic current [66,67],

P = −
ˆ

V
dr j(r, t) · E(r, t), (5.16)

where E(r, t) is the electric field generated by the current density j(r, t). This
method has also been used by other authors [210, 219, 220]. A slightly different
formulation considers the current density as a source that emits light to the far
field, and integrate the flux of the Poynting vector. This approach was proposed
originally by Hone et al. in Ref. [212] and, since then, it has been a popular method
starting from the implementation of Laks and Mills to describe light emission
from planar junctions [55], being followed by many works [198,221–225]. We first
show the equivalence of these two points of view using the electromagnetic energy
conservation in a volume V in the stationary regime:

ˆ
V

dr j(r, t) · E(r, t) + Pabs(t) + Prad(t) = 0, (5.17)

where Prad is the flux of the Poynting vector across a surface enclosing the volume
V and Pabs is the power absorbed by the matter within this volume. Within the
approximation of a non-lossy metal Pabs(t) = 0, so that the radiated power is equal
to the opposite of the power transferred from the tunneling current to the field.
This equality establishes the equivalence between a calculation of the Poynting
vector and a calculation of the power transferred from the fluctuating currents to
the field. When accounting for the unavoidable metallic losses, the emitted power
is then derived by multiplying the power P transferred to the SPPs [Eq. (5.16)]
with the radiative efficiency ηrad as discussed previously.

To proceed with the evaluation of Eq. (5.16), we first relate the electric field to
the current density using the Green’s tensor G(r, r′, ω) of the MIM junction as

E(r, ω) = iωµ0

ˆ
dr′ G(r, r′, ω) · j(r′, ω). (5.18)

By introducing this last expression into Eq. (5.16), we observe that the power P
transferred from the current to the field can be computed with the expression of the
current density j(r, ω) and the Green’s tensor G(r, r′, ω). In particular, regarding
the dependence on the current, the power P can be written explicitly in terms of
Sjpjq (r, r′, ω), which is the pq element of the power cross-spectral density tensor of
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Chapter 5. Light emission from tunneling junctions

the current density given by jp(r, ω)jq(r′, ω′) = 2πδ(ω + ω′)Sjpjq (r, r′, ω) (where
the symbol x denotes the ensemble average of x):

P =
ˆ ∞

0
dω 2ωµ0

ˆ
dr
ˆ

dr′
∑
p,q

Sjpjq
(r, r′, ω) Im[Gp,q(r, r′, ω)]. (5.19)

It is thus necessary to know Sjpjq
(r, r′, ω) in the nonequilibrium situation of a

biased junction, which can be computed using the statistical properties of the two
reservoirs on both sides of the junction. In most works [55,212,226], the emitted
power was calculated by using the form

Sjzjz
(r, r′, ω) ≈ eIel

S2

1 − ℏω
eVB

1 − exp
(

ℏω−eVB
kBT

)δ(r − r′), (5.20)

where Iel is the intensity of the elastic current (which can be calculated following
the methodology outlined in Sec. 5.2 and using Iel = −eΓel). Typically, the limit of
Eq. (5.20) at T = 0 has been used, which predicts a linear spectrum proportional
to eVB − ℏω. It was further assumed that the correlation function is nonzero in
the gap and zero outside. Finally, it was assumed that the correlation function is
delta correlated.

All these assumptions prevented a comparison of this model with the Fermi’s
golden rule result derived in the previous subsection. To obtain an equation that is
consistent with the approach presented in Sec. 5.3.1, we now report a calculation of
the power cross-spectral density of the current density. We start by introducing the
form of the field operator for an arbitrary number of electrons in the conduction
band [104]:

Ψ̂(r, t) =
∑

n

Ψn(r)Ôn(t). (5.21)

Here, we use the subscript n = (k, l) where l = L, R labels the state with wavevector
k and propagation coming from the left or the right metal. Ôn is the Fermionic
annihilation operator of the n state. The current density operator is then given
by [104]

ĵ(r, t) = iℏe

2meff
[Ψ̂†(r, t)∇Ψ̂(r, t) − Ψ̂(r, t)∇Ψ̂†(r, t)]. (5.22)

The time dependence of each Fermionic operator can be cast in the form

Ôn(t) = Ôn exp(−iωnt). (5.23)

where ℏωn = ℏ2k2

2meff
+ UL(R). It follows that the current density in frequency domain

is
ĵ(r, ω) =

∑
n,n′

j(r, n, n′) 2πδ(ω − ωn′n) Ô†
nÔn′ , (5.24)

where j(r, n, n′) = iℏe
2meff

[Ψ∗
n(r)∇Ψn′(r) − Ψn′(r)∇Ψ∗

n(r)] and ωn′n = ωn′ − ωn.
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We can now compute the ensemble average of the current density
ĵp(r, ω)ĵq(r′, ω′) where p, q stands for the cartesian components of the current
density. To proceed, we assume that the system is a statistical mixture and
use the commutation relations satisfied by Fermionic operators {Ôn, Ôn′} =
0 ; {Ô†

n, Ô†
n′} = 0 ; {Ô†

n, Ôn′} = δn,n′ where {a, b} = ab + ba. We have to evaluate
terms of the form Ô†

n1Ôn2Ô†
n3Ôn4 =

∑
r Pr ⟨r|Ô†

n1
Ôn2Ô†

n3
Ôn4 |r⟩ where r denotes

a particular Fock state and Pr is the canonical probability that the system is in
state r. Given that ⟨r|On|r⟩ = ⟨r|O†

n|r⟩ = 0 and ⟨r|O†
nOn|r⟩ = fFD(n), where

fFD(n) is the Fermi-Dirac distribution evaluated at the energy ℏωn, the correlation
is of the form:

Ô†
n1Ôn2Ô†

n3Ôn4 =δn1,n2δn3,n4(1 − δn1,n3)C1 + δn1,n4δn3,n2(1 − δn1,n2)C2

+δn1,n2δn1,n3δn1,n4C3. (5.25)

Here, C1 = fFD(n1)fFD(n3), C2 = fFD(n1)[1 − fFD(n2)], C3 = fFD(n1). We
note that the terms C1 and C3 only contribute to a zero frequencyii so that
only the contribution C2 proportional to fFD(n1)[1 − fFD(n2)] yields a non-zero
contribution to the radiated field at frequencies ω > 0. Furthermore, considering
that the Fermi level on the left side is larger than the Fermi level on the right
side, Eq. (5.24) selects the terms where n1 = (kR, R) and n2 = (kL, L) so that
ω = ωn2 − ωn1 = ωel

L − ωel
R > 0. Hence, the statistical average is only nonzero if

there is an electron-hole pair with an electron in a state L and a hole in a state R.
Finally, we obtain

Sjpjq
(r, r′, ω) =

∑
kL

∑
kR

jp,L→R(r)j∗
q,L→R(r′)2πδ(ω − ωel

L + ωel
R)fL

FD(kL)
[
1 − fR

FD(kR)
]

.

(5.26)

This correlation function goes beyond the previous models: i) it is non-zero in
the metallic electrodes; and ii) it is correlated in both electrodes in marked contrast
with the assumption of a delta-correlated current. In the next subsection, we use
this explicit form to establish the equivalence with the Fermi’s golden rule result
obtained in Sec. 5.3.1. We then discuss in detail the properties of this correlation
function and observe that it has all the properties that were missing in previous
models and motivated the introduction of a hot electron mechanism [208].

5.3.3 Equivalence of the methods
In order to compute from Eq. (5.19) the power transferred from the electronic
tunneling current to the SPPs, we consider the contribution of the SPP modes of

ii By relating the statistical average ĵp(r, ω)ĵq(r′, ω′) and the correlation Ô†
n1 Ôn2 Ô†

n3 Ôn4 , we
observe from Eq. (5.24) that ω = ωn2 − ωn1 and ω′ = ωn4 − ωn3 . Therefore, the frequencies ω
and ω′ of the current density average are nonzero only if n1 ̸= n2 and n3 ̸= n4. This condition is
only satisfied for the term proportional to C2 in Eq. (5.25).
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Chapter 5. Light emission from tunneling junctions

all branches ν and all wavevectors K∥ in the Green’s tensor. Using the expansion
of the Green’s tensor over these modes [67,68], we obtain

Gp,q(r, r′, ω) =
∑
K∥

∑
ν

c2(
ω

(ν)
K∥

)2
− ω2

u
∗(ν)
p,K∥

(r)u(ν)
q,K∥

(r′)
S

. (5.27)

We then apply the limit limϵ→0 Im[1/(α2 − (ω + iϵ)2)] = π/(2α)δ(ω − α), which
leads to

Im[Gp,q(r, r′, ω)] =
∑
K∥

∑
ν

πc2

2ω
(ν)
K∥

u
∗(ν)
p,K∥

(r)u(ν)
q,K∥

(r′)
S

δ(ω − ω
(ν)
K∥

). (5.28)

By inserting the above forms of the Green’s tensor and the current density
cross-spectral density into Eq. (5.19), we recognize the matrix elements M(ν)

L,R,K∥

and recover Eq. (5.15). This establishes the equivalence between the different
models provided that the exact current density cross-spectral density given by Eq.
(5.26) is used.

5.3.4 Current-density correlation function
We now turn to the discussion of the cross spectral density in Eq. (5.26). In Fig.
5.3a, we plot Sjzjz calculated with Eq. (5.26) in the center of the gap, for different
bias potentials and in the zero temperature limit. For all considered values of VB,
the results obtained with Bardeen’s approximation (dots) agree almost perfectly
with those obtained with the QDS (lines). Hence, Bardeen’s approximation is a
very accurate approach to describe current fluctuations inside the gap. However,
we note that a linear behavior with the voltage is only observed for the smallest
bias potential considered, VB = 0.5 V. For larger bias potentials (VB = 1.5 V and
2.0 V), Sjzjz is not linear with respect to ω as opposed to the prediction of Eq.
(5.20) at T = 0 K. Therefore, the exact definition of Eq. (5.26) must be used in
this approach to calculate the intensity of the emitted light. This issue has been
discussed in two recent papers [225,227].

The QDS allows us to discuss the spatial dependence of the correlation between
two arbitrary points of the full device, because we can explore currents in the metals
using this approach. With this aim, we plot in Fig. 5.3b the cross-spectral density
Sjzjz

(z, z′, ω) for fixed values Lgap = 2 nm, VB = 2 V and ℏω = 1 eV, by varying
the positions z and z′ (for the same position in the parallel direction, r∥ = r′

∥). We
observe that there is a peak at z = z′ with a width of the order of 1 nm, close to the
Fermi wavelengths of the metals, which are around 0.52 nm for gold and 0.36 nm
for aluminium [129]. Therefore, the consideration of delta-correlated currents in Eq.
(5.20) is accurate enough to describe this feature for most purposes. Nevertheless,
we observe a second weaker and broader correlation peak for positions z and z′ at
opposite metals. Upon inspection (see appendix A), this maximum occurs when the
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Figure 5.3: Spatial correlations of the current density jz and charge density ρ. a) Cross-spectral
density of the current density fluctuations Sjzjz in the center of the insulator gap as a function of
the energy ℏω, for different bias potentials VB = 0.5 V, 1 V, 1.5 V and 2 V. Dots correspond to
the calculation with the wavefunctions obtained within Bardeen’s approximation, and the solid
lines to the QDS. b) Cross-spectral density Sjzjz (z, z′) for points z and z′ at the same position
in the parallel direction (r∥ = r′

∥), for Lgap = 2 nm, VB = 2 V and ℏω = 1 eV. The insulator
gap is located at values of z and z′ between 0 and 2 nm. Dashed lines highlight the two peaks
under the conditions z = z′ and z′ − Lgap = −z

√
(ER

F + eVB)/EL
F (and its symmetric form). c)

Cross-spectral density Sjzjz (r∥, r′
∥) for varying positions z = z′ and as a function of the distance

in the parallel direction x − x′, for the same parameters as in panel (b). d-e) Cross-spectral
density of the current Sjzjz (z, z′) and charge densities Sρρ(z, z′), respectively. The point z′ = −3
nm is fixed and the correlations are calculated for varying second point z (with r∥ = r′

∥), in the
same system and for same ω as in panels (b) and (c).
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current density jL→R has a similar phase for all L → R transitions. The equations

describing this condition are i) z′−Lgap
z = − kzR

kzL
= −

√
ER

F +eVB

EL
F

, if z is in the left

metal and z′ in the right metal; and ii) z−Lgap
z′ = −

√
ER

F +eVB

EL
F

if z is in the right
metal and z′ in the left metal. Both cases are indicated by dashed lines in Fig.
5.3b.

We further analyze how the currents are correlated for different points in the
direction parallel to the interfaces r∥ ̸= r′

∥, and for varying values z = z′, as shown
in Fig. 5.3c (we consider x ̸= x′ but y = y′). The correlations are oscillatory as
a function of the difference x − x′, and become weaker for distances larger than
the Fermi wavelength. The periodicity of these oscillations is of the order of 1
nm. We also observe that the width of the peak of Sjzjz

(r∥, r′
∥, ω) is not constant

for z = z′ close to the insulator gap and becomes broader inside the gap. This
effect can be easily included in the approximate Eq. (5.20) by broadening the
delta function δ(r − r′) in the parallel direction. Therefore, the assumption of
delta-correlated currents in Eq. (5.20) needs small corrections to describe current
correlations along the r∥ direction due to the finite thickness of the corresponding
peak, but the assumption completely fails to capture the second peak observed for
the correlations along the z direction.

In order to understand the physical origin of the current correlations in the
two metals, we now focus on the correlations of the electronic charge density
fluctuations. The charge density ρL→R, associated to each transition from an initial
state ΨQDS

L (r) to a final state ΨQDS
R (r), is obtained from the current density jL→R

of Eq. (5.13) by using the continuity equation

∇ · jL→R + ∂ρL→R

∂t
= 0. (5.29)

The cross-spectral density Sρρ is then calculated with Eq. (5.26) after substituting
jL→R with ρL→R.

For the analysis, we fix the point z′ = −3 nm in the left metal, and observe the
cross-spectral density of the current density Sjzjz

(Fig. 5.3d) and charge density
Sρρ (Fig. 5.3e) for any second position z and for r∥ = r′

∥. The latter correlations
oscillate more strongly in space as compared to those associated to the current
density. In the results of Sρρ, we observe a clear peak in the position z′ = z as
happens for Sjzjz

. More importantly, the second peak in the opposite metal also
appears, but whereas the correlation is positive for the current density, we obtain
negative values in the case of the charge density. We attribute this result to the
presence of a hole with positive charge and opposite velocity. In other words, as a
negative charge moves toward the barrier in the left electrode, a positive charge
also moves toward the barrier in the right electrode. The double peak in Sρρ and
Sjzjz

disappears inside the gap, where the electron and the hole recombine. These
currents in the metal electrodes give a contribution to the light radiation apart from
the correlations just inside the gap. Therefore, the QDS introduces in a natural
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way a contribution of the currents in the metallic electrodes to the excitation of
SPPs without any need to invoke hot electron mechanisms.

To summarize, by starting with the combined Hamiltonian Ĥel-SPP of electrons
and SPPs in Sec. 5.3.1, we have established the exact equivalences between the two
models, one based on Fermi’s golden rule and the other on the energy dissipation
by a tunneling current. When accounting for the contribution of the current in
the metal, the assumption of a delta-correlated current does not hold any longer.
Furthermore, the emission processes occuring in the gap and in the metals can
interfere. In practice, the impact of these effects depends on the spatial structure
of the modes. We explore in the next section how significant are these effects for
the different plasmonic modes of planar junctions.

5.4 Light emission from planar devices
In this section, we analyze the contribution to light emission from the different
SPP modes of a device composed by metallic electrodes of ≈ 10 − 20 nm thickness
at both sides of the gap. The slow mode of the MIM junctions is localized in
the insulator gap. Its electric field is strongly confined and it is therefore very
large so that it couples efficiently to the tunneling electrons [54,56,198,228]. On
the other hand, this mode is characterized by a small group velocity and has no
radiative losses unless the surface becomes rough. Other SPP modes are localized
at metal-dielectric interfaces few nanometers far from the insulator gap and can
also contribute to radiation [196,208,225]. Their coupling to the inelastic tunneling
mechanism is less efficient, specially at junctions with thick metallic electrodes,
because the electric field of the SPP of the corresponding interfaces penetrates
weakly into the gap. On the other hand, their radiative losses can be larger. With
the objective to analyze the contribution of the coupling in the gap and the coupling
in the metal, we choose as a representative system a junction that was considered
in the first experiment of light emission from tunneling junctions, consisting in a
planar junction formed by an aluminium and a gold electrode separated by a layer
of aluminium oxide.

5.4.1 Mode structure of the system
In order to study the intensity of light emission due to inelastic tunneling in
Al-AlOx-Au junctions (where electrons tunnel from the Al electrode to the Au
electrode), we first analyze the properties of the SPPs of the system. These modes
are obtained by assuming that the insulators have a non-dispersive permittivity,
with the value ε = 3.1 for aluminium oxide in the gap. Further, the aluminium
layer is deposited over a glass substrate with a representative permittivity ε = 2.5,
and the insulator in the opposite direction is set to be vacuum. The two metals are
represented by a Drude permittivity of the form εDr(ω) = ε∞ − ω2

p/ω2 [Eq. (1.25)],
with parameters ℏωp = 14.7 eV and ε∞ = 1 for aluminium [229], whereas we choose
ℏωp = 9.065 eV for gold [230]. Further, we consider interband transitions in gold by
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setting ε∞ = 9. The losses in the Drude model are neglected in the calculation of
the SPP excitation rates to ensure that the energies of the modes are real and their
respective electric fields can be normalized following the quantization rule from
Eq. (5.9). We have checked that the dispersion relations in the range of energies
considered change only slightly after including losses in the permittivities. Further,
we fix the metal thickness of the aluminium layer at LAl = 10 nm and of the gold
layer at LAu = 20 nm (unless stated otherwise). Since these two thicknesses are
smaller than the electron mean free paths of their respective metal [231], we assume
that the electronic wavefunctions given in Sec. 5.2 are valid in the whole metallic
regions. A sketch of the system is shown in the inset of Fig. 5.4a.

This system contains three different modes of SPPs, typically referred to as
the fast, medium and slow modes, based on their group velocities according to the
dispersion relations (shown in Fig. 5.4a) [232]. The group velocities of the fast
and the medium modes are very close to the speed of light in vacuum and in the
glass, respectively, while it is much smaller for the slow mode. Among these three
modes, the slow mode (brown line in Fig. 5.4a) has received significant attention
in studies of quantum tunneling due to its large electric field in the gap region.
Fig. 5.4b illustrates the large sensitivity of the group velocity on the gap thickness.
The normalized electric field distribution u(s)

K∥
of the slow mode at energy ℏω

(s)
K∥

=
2 eV and thickness Lgap = 3 nm is shown in Fig. 5.4c, where we plot the field
components in the directions (top) parallel and (bottom) perpendicular to the
interfacesiii. It is apparent that the mode is strongly confined in the gap. However,
it is worth noting that the electric fields also penetrate in the metals, which can
contribute to the coupling with the electronic current and increase the excitation
rate when considering processes in metals within the QDS, as discussed below.

Together with the slow mode, the finite thicknesses of the metallic electrodes
lead to the existence of two additional modes localized in the other two metal-
insulator interfaces. The fast and medium modes are SPPs mostly localized in
the gold-vacuum and aluminium-substrate interfaces, respectively. These modes
follow the typical dispersion relations of SPPs calculated with semi-infinite Drude
metals [Eq. (1.31)], and the materials at a distance of a few nanometers from these
interfaces only cause slight modifications to the dispersion relations.

The dispersion relation (Figs. 5.4a and b) and the field distribution of the
modes (Figs. 5.4c, d and e) are useful to analyze which mode may contribute
for light emission. The field distributions of the fast and medium modes suggest
a smaller electromagnetic energy stored in the gap compared to the slow mode
(shown for ℏω

(m)
K∥

= ℏω
(f)
K∥

= 2 eV and Lgap = 3 nm), which results in a smaller
excitation rate due to a weaker coupling with tunneling electrons. Despite its
small excitation rate, only the fast mode may contribute through leakage in the
glass, because it is seen in Fig. 5.4a that it is the only mode whose dispersion
relation is inside the light cone of the glass (Fig. 5.4a). On the other hand, if
the gold-vacuum interface is rough [212] or periodically structured [221], the slow

iii Since in this chapter we have neglected losses of the Drude permittivities, the electric fields
are real or purely imaginary in the whole space.
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Figure 5.4: SPPs in Al-AlOx-Au tunneling junctions. a) Dispersion relation of the fast (yellow),
medium (gray) and slow (brown) modes. The dark blue area indicates the light cone in vacuum,
and the light blue area highlights the light cone in the glass substrate. The inset shows a sketch of
the device, including the thicknesses of the layers considered in the rest of the panels and in most
of the calculations. On the right of the structure we show schematically the field distribution of
the different SPP modes, emphasizing the interface where each of them propagates predominantly.
Each field distribution is plotted in the same color as the corresponding dispersion (yellow for
the fast mode, gray for the medium mode and brown for the slow mode). b) Dispersion relation
of the slow mode for different gap thicknesses Lgap = 1 nm, 2 nm, 3 nm and 4 nm (from the
darkest to the lightest brown). c-e) Electric field distributions at energy ℏω

(ν)
K∥

= 2 eV of the slow
(c), fast (d) and medium (e) modes, for Lgap = 3 nm. The top panels show the distribution of
the electric field component along the direction parallel to the interfaces of the junction u

(ν)
∥,K∥

,

and the bottom panels show the component in the z direction u
(ν)
z,K∥

. Dashed lines in panels (c-e)
indicate the positions of the metal-insulator interfaces.

mode can be coupled into vacuum and it can dominate the light emission process
due to its far larger excitation efficiency. In the following subsections, we analyze
the effect of the electric field distributions on the theoretical prediction of light
emission from the gap and the metal regions.
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Chapter 5. Light emission from tunneling junctions

5.4.2 Excitation rate of the slow mode
We first explore the excitation rate of the slow mode. Within Bardeen’s
approximation, it amounts to compute an overlap integral between the current
density and the SPP field in the gap (i.e. the integral in Eq. (5.12) is calculated
only inside the gap volume Vgap). Within the QDS model, we also need to explore
the contribution to the excitation rate from the processes in the metal regions and
from the quantum interferences due the coupling in the gap and in the metal.

We start by using Bardeen’s approximation and the formalism of inelastic
tunneling (described in Sec. 5.3) to calculate the excitation rate Γ(s)

inel of the slow
mode [from Eq. (5.14)]. We plot Γ(s)

inel (where the superscript s refers to the slow
mode) in the inset of Fig. 5.5a as a function of the bias potential for a fixed gap
thickness of Lgap = 3 nm. As VB increases, the transition rate grows due to an
exponential increase of the matrix element [Eq. (5.12)] and a linear raise of the
number of initial and final states. For instance, increasing the bias potential from
0.6 V to 2.4 V causes the number of excited SPPs to increase by three orders of
magnitude, from 3.8 ·1018 to 1.2 ·1021 SPPs per second and square meter. However,
the efficiency of the planar junction does not increase at the same rate because
it is measured in terms of the ratio between the elastic and inelastic transition
rates, corresponding to the number of excited slow SPPs per tunneling electron.
The elastic tunneling rate [Eq. (2.96)] also increases significantly with VB, which
means that the efficiency of the tunneling junctions only raises slightly from 10−4

to 2 · 10−4 for the range of VB considered. We have also checked numerically that
the efficiency of the junction improves for thinner gaps because the density of states
of the slow mode is larger (as can be deduced from the dispersion relations shown
in Fig. 5.4b). For example, at Lgap = 1 nm, we obtain an efficiency of around
8 · 10−4 SPPs excited per tunneling electron. Therefore, the efficiency of the planar
junctions according to the inelastic tunneling process is not expected to exceed the
ratio Γ(s)

inel/Γel = 10−3, even for narrower gaps that are experimentally considered
in typical light-emission experiments with planar junctions.

To determine whether the inelastic tunneling in the gap can fully account for
the excitation of the slow mode, we include the contribution of the metal electrodes
according to the QDS model, as explained in Sec. 5.3. After analyzing the SPP
excitation rate Γ(s)

inel in the inset of Fig. 5.5a, we now focus on the power P(s)

transferred by the current to excite this mode [given by Eq. (5.15)]. With this
purpose, we show in Fig. 5.5a the spectral contribution P (s)(ℏω

(s)
K∥

) at each energy
ℏω

(s)
K∥

, which is related to the total non-radiative power P(s) and to the slow SPP-

excitation rate Γ(s)
inel as P(s) =

´
P (s)(ℏω

(s)
K∥

)d(ℏω
(s)
K∥

) =
´
ℏω

(s)
K∥

dΓ(s)
inel

d(ℏω
(s)
K∥

)
d(ℏω

(s)
K∥

). We

use the electronic states of the QDS [Eqs. (5.1) and (5.2)] to calculate the spectral
power P

(s)
QDS according to the processes in the whole MIM device (performing the

integral of Eq. (5.12) in the volumes Vgap of the gap and Vmet of the metals), and we
compare it with the contribution of the gap according to Bardeen’s approximation,
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5.4. Light emission from planar devices

P
(s)
BA (calculating Eq. (5.12) just inside Vgap).

For bias potentials VB = 0.6 V, 1.2 V or 1.8 V, the results of the full QDS (solid
line) are nearly identical to those according to Bardeen’s approximation (dots) for
all energies, with a largest mismatch of 5% in the integrated non-radiative power
P(s). Indeed, for all these values of VB, the negative permittivity of the metals is
large for all energies ℏω

(s)
K∥

≤ eVB, resulting in limited penetration of the electric
field within these regions. Further, at energies ℏω

(s)
K∥

> eVB, the spectral power
vanishes completely, because we assume zero temperature and the Fermi-Dirac
occupation factors of the metals do not allow any transition between states at
those energies (for T > 0 it is possible to excite SPPs at ℏω

(s)
K∥

> eVB [233], but we
take T = 0 for simplicity because the main results of this work remain very similar
otherwise). Since the calculation within Bardeen’s approximation agrees with high
accuracy with the calculation of the full QDS at all ℏω

(s)
K∥

, the consideration of the
inelastic processes only in the insulator gap would be accurate enough to describe
the excitation of the slow SPP in the range of VB considered.

For VB = 2.4 V, both calculations still agree with high accuracy at low energies,
but the difference becomes considerably larger for ℏω

(s)
K∥

≳ 1.8 eV. In this region,
P (s)(ℏω

(s)
K∥

) is dominated by a peak, where the plasmonic density of states increases
considerably (see dispersion relation in Fig. 5.4b). At this peak, the spectral
power according to the calculation of the QDS, P

(s)
QDS, is generally larger than the

value obtained within Bardeen’s approximation, P
(s)
BA, suggesting that the metal

contribution gains importance under these conditions.
To further showcase the importance of the metal contribution in the high-energy

regime, we plot in Fig. 5.5b the ratio P
(s)
QDS/P

(s)
BA for varying energies and gap

thicknesses under a larger bias potential of VB = 3 V. Two distinct regions are
observed: one at thin gaps or low energies, where the contribution within the
metals reduces the excitation power of the slow mode (P (s)

QDS < P
(s)
BA), and another

at thick gaps and high energies, where it increases (P (s)
QDS > P

(s)
BA). To clarify this

phenomenon, the spatial distribution of the electric field of the slow mode (brown
line and background) is shown in Figs. 5.5c-e, together with the inelastic current
Re(jz,L→R) associated with a L → R transition for an electron initially at the
highest occupied energy level of aluminium (blue lines), for values of Lgap and
ℏω

(s)
K∥

indicated by white dots in Fig. 5.5b. For thin gaps (Figs. 5.5c and d for
Lgap = 1 nm), the electric field is highly concentrated inside the gap, with some
penetration into the metals near the gap. Due to the phase difference of the electric
field between the insulator and the metal, the metal contributions tend to interfere
destructively with the gap contribution. Accordingly, the calculation of the QDS
in the full device predicts a smaller excitation rate than Bardeen’s approximation,
as shown by the region of P

(s)
QDS < P

(s)
BA in Fig. 5.5b. The effect is more significant

at large energies, where the negative electric field in the metal becomes even more
concentrated close to the gap leading to a stronger destructive interference (as can
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Figure 5.5: Analysis of the power transferred by the tunneling current to the slow mode. a)
Spectral power P (s) per surface area S of the junction, with thicknesses Lgap = 3 nm, LAl = 10
nm and LAu = 20 nm (see sketch in Fig. 5.4a), and bias potentials VB = 0.6 V (orange), 1.2 V
(red), 1.8 V (purple) and 2.4 V (blue). Dots correspond to the gap contribution to the power,
P

(s)
BA, according to Bardeen’s approximation, and the solid lines to the joint contribution of

processes in the gap and in the metals calculated using the QDS, P
(s)
QDS. The inset shows the

total inelastic tunneling rate Γ(s)
inel per surface area in logarithmic scale as a function of the bias

potential. Colored squares correspond to the values of VB that we choose in the main panel. b)
Ratio between the spectral power contributions P

(s)
QDS/P

(s)
BA as a function of the gap thickness

Lgap and SPP energy ℏω
(s)
K∥

. The applied bias voltage is VB = 3 V. The color bar is in linear scale.
c-e) Schematics of the distributions of the fluctuating electronic current density Re(jz,L→R) for
an electron initially in the highest occupied energy level (blue) and the electric field Ez (brown)
of the slow mode for gap thicknesses Lgap and energies ℏω

(s)
K∥

indicated by the dots in panel (b):

c) ℏω
(s)
K∥

= 1.6 eV and Lgap = 1 nm; d) ℏω
(s)
K∥

= 2.5 eV and Lgap = 1 nm; and e) ℏω
(s)
K∥

= 2.5 eV
and Lgap = 4 nm. The wavelength of the electronic current density and the decay length of the
SPP are indicated in each panel.

be observed by comparing Fig. 5.5d for ℏω
(s)
K∥

= 2.5 eV with 5.5c for ℏω
(s)
K∥

= 1.6
eV).

On the other hand, the inelastic electronic current jL→R oscillates in space. For
larger Lgap these oscillations can give not only destructive interferences between
the processes in the gap and the metals, but also constructive ones under some
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circumstances. Due to the oscillations of jL→R (whose wavelength varies between
5 and 9 nm in the energy range considered in Fig. 5.5b), the integrand of the
matrix element of Eq. (5.12) has the same sign in some regions of the metal as
in the gap, leading to a constructive interference. Since the contribution close to
the gap leads to a destructive interference, the wavelength of the electronic current
should be small compared to the SPP decay length to have an overall constructive
interference, which happens for large Lgap (Fig. 5.5e), because the SPP decay
length increases with the gap thickness. After accounting for all constructive and
destructive interferences within the metal according to the QDS, the interference
averages to be constructive for all electrons in junctions with Lgap ≳ 1.6 nm, and
the excitation power at 2.5 eV can be even twice as high as that predicted by
Bardeen’s approximation. At larger energies, the slow mode contains significant
losses, and thus the description based of non-lossy Hermitian Hamiltonians that
we present in this work loses its accuracy.

In general, Fig. 5.5b illustrates that Bardeen’s approximation can underestimate
or overestimate the excitation power of the slow mode up to a factor of two.
Importantly, while the slow mode is non-radiative in perfectly planar junctions, it
can dominate light emission in other systems, such as in localized gap tunneling
junctions [209], commonly used in STM, or in planar junctions with sufficient
surface roughness. In these systems, the QDS gives a more appropriate description
of radiation than Bardeen’s approximation that only considers the gap contribution.

5.4.3 Excitation rate of the fast mode
The formalism of inelastic tunneling predicts that the excitation of the fast mode
is far less efficient than for the slow mode, due to the considerably weaker electric
field inside the gap (see Fig. 5.4d). In particular, as shown in Fig. 5.6a, the
spectral power P

(f)
BA of the fast mode at VB = 0.6 V is of the order of 1011 s−1

m−2, which is 107 times smaller than P
(s)
BA for the slow mode. However, the

study of the excitation rate of the fast mode is important, because in perfectly
planar junctions it is the only process that leads to radiation. Although for many
systems with surface roughness, or in situations where a localized gap mode is
produced, the slow mode can be dominant, its radiative efficiency depends on the
roughness and on the details of the geometry. It was estimated that in gratings
with a periodicity of hundreds of nanometers, the emission of the fast mode may
overcome the emission by the slow mode by a factor of 102 [196]. Indeed, the main
discrepancy between the theory of inelastic tunneling and experiments was firstly
observed for gratings [57, 197]. The results that we present for planar junctions
can be generalized to describe the contribution of Bardeen’s approximation and
the QDS in other kinds of systems where the fast mode is the leading mechanism
of light emission.

Interestingly, when the QDS is applied, we already observe a difference from
Bardeen’s approximation at VB = 0.6 V in the calculation of the spectra P (f).
Although this variation is only 18% in the integrated power P(f), it is considerably
larger than for the slow mode at the same bias potential. This suggests that
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Figure 5.6: Analysis of the power transferred by the tunneling current to the fast mode. a-c)
Spectral radiative power P (f) per surface area S of the junction, with thicknesses Lgap = 3 nm,
LAl = 10 nm and LAu = 20 nm, and bias potentials VB = 0.6 V (a), 1.2 V (b) and 1.8 V (c).
Dots indicate the contribution of the gap according to Bardeen’s approximation, and the solid
lines refer to the full results of the QDS. d) Spectral radiative power P (f) per surface area S under
bias potential VB = 2.5 V. We compare the results obtained using Bardeen’s approximation (dots)
and the QDS (solid line) for LAu = 20 nm. Dashed lines indicate the results according to the
QDS for LAu = 10 nm and LAu = 30 nm. The upper inset shows the results within Bardeen’s
approximation for LAu = 10 nm, 20 nm and 30 nm. The lower inset shows the electric field of
the fast mode at energy 1.8 eV for LAu = 20 nm and the corresponding fluctuating inelastic
current density of one electron. All results in this panel have been obtained for LAl = 10 nm and
Lgap = 3 nm.

including the metal contribution is significant for the fast mode as pointed out by
Kirtley et al. [208]. The discrepancy between Bardeen’s approximation and the
QDS increases considerably for VB = 1.2 V (Fig. 5.6b) and continues to grow with
VB. Further, at VB = 1.8 V (Fig. 5.6c), local minima and maxima in P

(f)
QDS are

observed at different energies, which is related to the oscillatory behavior of the
inelastic current density for each electron, as shown in the lower inset of Fig. 5.6d
together with the electric field of the fast mode. The wavelength of the oscillations
inside the metal depends on the energy of the electrons, leading to constructive or
destructive interference with the contribution of the insulator gap in the integral of
Eq. (5.12), which relates the current density according to Eq. (5.13) with the field
distribution of the mode [Eq. (5.8)]. However, we do not expect these oscillations to
be as predominant in experiments, because the position of the maxima and minima
in the spectra P

(f)
QDS is very sensitive to the thicknesses of the metals and the gap.

In real systems, metallic surfaces present small roughness, and thus the contribution
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of different thicknesses will cancel out these oscillations and the measured power
would be the average between thicknesses. Finally, we remind that the calculation
of the matrix element uses a very simple model which may produce artefacts.
Specifically, to compute the overlap integral between the electronic wavefunction
and the SPP electric field, we use the electronic wavefunction computed for an
infinite metal [Eqs. (5.1) and (5.2)] and perform the integral over a finite thickness.

The increased importance of the metal contribution to light emission at larger
energies becomes more evident in Fig. 5.6d. The comparison between the results
obtained with Bardeen’s approximation (dots) and QDS (solid line) for VB = 2.5
V demonstrates that, for most energies, the results of the latter calculation are
significantly larger than for the former. Therefore, despite the oscillations in the
calculation for the full system, the integrated power P(f)

QDS is notably larger than
P(f)

BA.
The role of the thickness of the metallic electrodes is also highlighted in Fig. 5.6d.

The upper inset indicates the result P
(f)
BA according to Bardeen’s approximation for

LAu = 10 nm, 20 nm and 30 nm (the values of LAu = 20 nm are the same as in the
main panel). We obtain that P

(f)
BA decreases significantly by increasing LAu, because

the electric field inside the gap becomes smaller due to the exponential decay from
the Au-vacuum interface where the fast SPP is mostly localized. Therefore, the
decrease of the inelastic tunneling rate according to Bardeen’s approximation is
dictated by the decay length of the SPP. However, experimental measurements
from Ref. [57] indicate that the intensity of the light emitted by the fast mode
decreases with LAu more slowly than the decay length of the SPP. Indeed, by
increasing LAu, the electric field inside the metal gets stronger and it could be
expected that the contribution from the metal compensates the decrease of the
gap contribution. To verify this, we plot in Fig. 5.6d the results predicted by the
QDS for the same thicknesses, LAu = 10 nm, 20 nm and 30 nm. The obtained
radiative power decreases more slowly as a function of LAu than expected from
Bardeen’s approximation, indicating that the latter cannot provide the correct
dependence of the intensity of the emitted light on the thicknesses of the electrodes.
In general, Figs. 5.6a-d show that under different circumstances, the QDS can lead
to a value of the power P(f)

QDS two or three times larger than P(f)
BA for intermediate

bias potentials, or even an order of magnitude larger at high energies and thick
metallic layers.

Together with the inelastic processes in the metallic regions, Kirtley et al. argued
that processes close to vacuum-metal interfaces placed far from the insulator gap
could also contribute significantly to the excitation of the fast mode [208]. To verify
this, we first observe in Fig. 5.4d that the electric field changes drastically from
the bulk metal to vacuum at the interface. Therefore, one could expect indeed that
under a non-local description of the electromagnetic response, the electrons placed
close to the interface interact with the strong electric fields outside the metal and
that a large contribution to the electron-SPP matrix element corresponds to this
region. This feature cannot be explained by Bardeen’s approximation.

In the QDS approach to calculate the SPP excitation rate in planar junctions,
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Figure 5.7: Consideration of the non-local optical response in the light emission induced by the
excitation of the fast mode. a) Schematics of the ground state density ρ0(z) (gray) and the
induced charge densities for two different possible metals (ρind1(z) in brown and ρind2(z) in
green). The dashed lines indicate the position of the centroid of the induced charge density of the
same color. The blue area indicates the step-like positive charge background that is considered in
the jellium model of metals. b) Schematics of the distribution of the electronic current density
jz,L→R(z) considered in the calculations, up to the boundary of the ionic positive background.
We also show the spatial distribution of the permittivities considered in our non-local approach
for each ρind(z) distribution shown in panel (a). c) Spectral radiative power per surface area S
for different distances z0 from the boundary between the aluminium and vacuum permittivities
(corresponding to the position of the centroid of charge) to the boundary of the step-like ionic
positive background. z0 is indicated in panel (b) and in the inset of panel (c), and we consider
that the boundary between permittivities is inside the ionic background [brown color in (a) and
(b)]. All these calculations are done for a junction with two aluminium layers of thickness LAl =
5 nm, and parameters Lgap = 2 nm and VB = 0.5 V.

we need to calculate the integral of Eq. (5.12). The regions of this integral are
delimited by the volumes of the insulator gap (Vgap) and of the metals (Vmet).
In all the calculations shown up to this point, we consider a local approach of
electromagnetism to calculate the electric field of the SPPs. This perspective
implies that in the metallic regions (inside the volume Vmet) the system has a
Drude permittivity, and that outside this region the permittivity is constant over
frequency and positive. Accordingly, the electromagnetic fields drop strongly
exactly at the interface between these two regions, so that the electronic current
interacts with the electric field of the gap and the weaker electric field inside the
metallic regions, while it does not interact with the strong electric fields in vacuum
and in the substrate (see Fig. 5.4).

However, according to the non-local theory of optical response of metals, the
tunneling electrons could interact with the strong electric fields close to the
metal-vacuum boundary. To visualize this, we show in Fig. 5.7a a sketch of
the electronic density distribution close to this boundary. As an example, we
consider a simple jellium model for the metal, where the ions create an uniform
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density of positive charge (indicated by the blue area). This uniform background
leads to the calculation of the electronic ground state density ρ0(z) that decays
gradually at the boundary between the jellium charge density and vacuum. ρ0(z)
indicates the region where the wavefunctions of the tunneling electrons are well
defined. Regarding the fields at optical frequency, the discontinuity of the normal
fields takes place across a finite but narrow region where an oscillating charge
density is induced. This region of strong induced charges is called the centroid
of charge. The position of the centroid of charge does not coincide with the
interface between the jellium and vacuum. It can be either inside (case 1 indicated
by ρind1(z), brown curve) or outside (case 2 indicated by ρind2(z), green curve)
the jellium depending on the metal (inside for noble metals including d-band
excitations, such as Au or Ag, and outside for s-like metals such as Na or Al). The
positions of the centroid of the charge density are highlighted by vertical dashed
lines in Fig. 5.7a. From the optical point of view, a simple model to obtain the
optical response amounts to shifting the position of the metal interface to the
position given by the charge centroid. This shift is given by the so-called Feibelman
parameters [35, 138, 234–237]. The key point regarding the interaction between
tunneling electrons and optical modes is that in case 1 (brown curve), the tunneling
electrons (present in the jellium) can interact with an electric field lying outside
the centroid of charge and therefore, much larger.

To account for this electron-SPP interaction, we use a very simple approach.
We consider that the electronic current is defined in the region delimited by the
metallic volume Vmet of the ionic background in the jellium model, as shown by
the blue curve (current density jz,L→R) and the blue area (ionic background) in
Fig. 5.7b. On the other hand, when calculating the electric fields of the SPPs,
we assume that the boundary between the metallic permittivity εDr(ω) and the
vacuum permittivity ε = 1 is given by the centroid of the induced charge density
(as shown by brown and green). Importantly, the boundary between permittivities
generally does not coincide with the integration boundary of Eq. (5.12) given by
Vmet (blue area), and the difference z0 between them lies within few angstroms (in
our calculations, Vmet extends from the boundary between permittivities).

We show the consequences of considering this simple model of non-local optical
response by examining a system composed of two aluminium electrodes of thickness
LAl = 5 nm separated by an insulator gap of thickness Lgap = 2 nm. These values
are taken from Ref. [225], where it was noted that the gap contribution alone
does not explain all the light emitted by the fast mode of this system, even at
low bias potentials. We show in Fig. 5.7c the spectral radiative power P (f) of
the fast SPP of the mentioned junction for VB = 0.5 V. In these circumstances,
the calculation of the excitation power with the QDS P

(f)
QDS and in the absence

of any non-local effect (dashed line), is very similar to the gap contribution P
(f)
BA

according to Bardeen’s approximation (dots), because i) at such low bias potentials,
the field penetration is small at all energies ℏω

(f)
K∥

< eVB due to the large negative
permittivities of the metals, so that the fields at the gap are comparatively large;
and ii) at so thin metallic layers, the space to excite the fast SPP in the metals

137



Chapter 5. Light emission from tunneling junctions

is minimal compared to the gap where the electric fields are confined. However,
these two calculations assume that the electron density is nonzero only up to the
interfaces between the aluminium and vacuum permittivities, where the limits of
the integrals in Eq. (5.12) are set.

We now consider that the electronic current shifts by a maximum distance z0
with respect to the boundary between permittivities, as shown in the inset of Fig.
5.7c, according to the simple model of non-locality introduced above. This model
results in electrons tunneling from the first electrode and reaching positions near
the metal-vacuum interface of the other second electrode where the electric field is
strong, which efficiently boosts the coupling to electrons. Specifically, we consider
that electrons can interact with the electric field outside the electrode in a region of
different widths z0 = 0.5 Å, 1 Å, 1.5 Å, 2 Å, 2.5 Å and 3 Å (from brown to yellow
lines in Fig. 5.7c). The power transferred to the fast SPP becomes considerably
larger for increasing z0. For example, for z0 = 3 Å, the QDS predicts an excitation
power P

(f)
QDS four times larger than P

(f)
BA. We have thus shown that the QDS can

account not only for processes in the gap and in the bulk metal, but also for those
at the interface. The model is thus able to describe systems where any contribution,
and not only from inelastic tunneling processes in the gap, is relevant.

5.4.4 Excitation rate of the medium mode
To complete the results obtained for the slow and fast modes in the previous
subsections, we last analyze briefly the excitation of the medium SPP mode. Figure
5.8 shows the emission rate of the medium mode under varying bias potentials (VB
= 0.6 V, 1.2 V, 1.8 V, and 2.4 V), for a junction with thicknesses LAl = 10 nm, LAu

= 20 nm and Lgap = 3 nm. The calculation with the QDS (P (m)
QDS, results shown

by solid lines) in the complete device reveals some oscillations as a function of the
SPP energy. These oscillations are due to constructive or destructive interferences
between the metal and gap contributions, as we have already discussed for the slow
and fast modes. Curiously, the QDS predicts a smaller power transferred to the
medium mode than Bardeen’s approximation (P (m)

BA , results shown by dots). This
is the opposite behavior found for the slow and fast modes (Figs. 5.5 and 5.6),
where the QDS gives a larger contribution than Bardeen’s approximation. Further,
the medium mode excitation rate is much smaller than the slow mode excitation
rate. In addition, it can only be coupled radiatively by roughness as opposed to the
fast mode. Therefore, the medium mode is likely negligible regarding light emission
from a planar junction, so that the contribution of the metallic electrodes can be
expected to increase the total emission rate once all SPP modes are considered.

5.5 Summary
In this chapter, we have introduced a theoretical approach to describe light emission
from planar tunneling junctions. The proposed quantum device solution (QDS)
solves the Schrödinger equation in the complete system with the metallic layers and
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Figure 5.8: Spectral non-radiative power P (m) per surface area S of the junction caused by the
excitation of the medium SPP mode, with thicknesses LAl = 10 nm, LAu = 20 nm and Lgap =
3 nm, and bias potentials VB = 0.6 V (orange), 1.2 V (red), 1.8 V (purple) and 2.4 V (blue).
Dots indicate the calculation using Bardeen’s approximation, and the solid lines refer to the full
calculation by the QDS.

the insulator gap, unlike Bardeen’s approximation that considers electronic states
in each electrode separately. While Bardeen’s approximation accurately describes
elastic tunneling, we show that it can only model accurately the excitation of the
slow SPP mode for small energies. For the other cases, and particularly when the
fast mode plays a significant role, a more general approach is needed in order to
account for the excitation of SPPs by the electrons in the metallic electrodes.

To describe inelastic tunneling accurately, we revisit two approaches that model
this mechanism: a Hamiltonian description of light-matter interaction based on
Fermi’s golden rule, and the calculation of the power radiated by fluctuating currents.
These models were used independently in the past. Here, we have established
explicitly their equivalence so that they lead to the same theoretical predictions
under appropriate circumstances. We have stressed that these descriptions are
mostly used under Bardeen’s approximation and a current density correlation
model that neglects non-local correlations of the current density. We have extended
their domain of applicability by abandoning Bardeen’s approximation using the
exact wavefunctions of the QDS. Interestingly, with this model, we have shown that
the electronic current density is strongly correlated in the opposite metals. These
strong correlations can be interpreted as an electron-hole pair that recombines in
the gap and include a contribution to light emission from metallic electrodes.

Last, we evaluate the difference between the QDS and Bardeen’s approximation
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Chapter 5. Light emission from tunneling junctions

to calculate the excitation rate of SPPs in planar junctions and the corresponding
light emission. We find that these differences are negligible for the slow mode
at small energies. In contrast, we have found that the processes in the metallic
electrodes contribute mostly to the excitation of the fast mode, which is known to
dominate in the case of periodically corrugated planar junctions. Further, under a
non-local description of optical response in the metallic electrodes, processes close
to the metal-vacuum interfaces can also contribute to light emission significantly.
Since the QDS accounts for these processes in the electrodes and close to the
interfaces, and improves the results of Bardeen’s approximation considerably, it
does no longer appear necessary to invoke a different hot electron mechanism to
account for additional light emission.

In summary, the approach presented here generalizes the current theoretical
framework of light emission by inelastic tunneling, and could be extended to many
other systems with different geometries.
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6
COMPARISON OF CLASSICAL AND
CAVITY-QED MODELS IN THE
ULTRASTRONG COUPLING REGIME

6.1 Introduction
The results presented in Chapters 3, 4 and 5 have been devoted to the properties
and excitation of plasmons, without considering their interaction with any external
optical resonance. However, a rich variety of phenomena can be observed when
matter excitations (in molecules, quantum dots, two-dimensional materials...)
interact with the electromagnetic modes of an optical cavity or resonator. As
discussed in Sec. 1.3, an important interaction regime occurs when the coupling
strength g between the cavity modes and the matter excitations exceeds the losses.
In this strong coupling regime [41,238], hybrid modes appear that are known as
polaritons and have a different frequency and properties compared to those of the
uncoupled resonances.

In order to characterize the properties of the hybrid modes, we need to use
appropriate descriptions of light-matter interaction. These descriptions can be
based on classical or quantum models, which have been discussed in Secs. 1.3.1
and 1.3.2, respectively. Models based on cavity quantum electrodynamics (QED)
have been successfully used to evaluate the frequencies of the hybrid modes and
also to explain phenomena related to strong coupling beyond the classical realm,
such as nonlinearities due to the Jaynes-Cummings ladder [239], emission of
strongly correlated light [240], and changes on the chemical reactivity [62] or on
the conductivity [241] of molecules situated in optical resonators.

Further, cavity-QED models can be particularly interesting in the ultrastrong
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

coupling regime, where the coupling strength of the system overcomes the 10% of the
frequencies of the uncoupled excitations, because additional quantum phenomena
emerge in this situation. For instance, a shift of the energy of the ground state is
predicted, together with the appearance of virtual excitations in this state [242].
These effects are attributed to the breakdown of the rotating-wave approximation
(RWA), which makes necessary to include the counter-rotating terms [i.e. the
combined operators âb̂ and â†b̂† from Eq. (1.48)] in the Hamiltonian. However,
two different Hamiltonians have been considered when studying the ultrastrong
coupling regime, where the difference stems from the presence or absence of a
contribution to the energy called diamagnetic term, corresponding to the term
Ĥdia

Hop in Eq. (1.48). This diamagnetic term is also known as the A2 term, where A
refers to the transverse vector potential of the electromagnetic mode. Introducing
this term avoids a superradiant phase transition [102], for example. However, the
inclusion of the diamagnetic contribution is still under discussion [95, 103,243–245]
and it depends on the system [246,247].

We focus on three situations of interest. First, we consider conventional dielectric
cavities. In this case, the electromagnetic fields of the cavity modes are transverse
and expressed with the vector potential. As a consequence, the diamagnetic term
is necessary to model the interaction of these modes with excitations of molecules
introduced in the cavity (see schematics for a dielectric Fabry-Pérot cavity in Fig.
6.1a). On the other hand, if molecules interact with a cavity via Coulomb coupling,
the interaction is mediated by longitudinal fields. This type of interaction occurs,
for instance, in systems with plasmonic cavities of nanometric dimensions (such
as metallic nanospheres, as shown in Fig. 6.1b). In this case, we can use the
quasistatic approximation that neglects the effect of all transverse modes, leading
to the disappearance of the diamagnetic term. In a general system, both transverse
and longitudinal fields may appear. By decomposing the total electric field into
these components, the incorporation of the diamagnetic term for each component
depends on whether it exhibits transverse or longitudinal characteristics. We
illustrate in Fig. 6.1c the case of an ensemble of molecules inside a Fabry-Pérot
cavity. In this system, each molecule couples with the transverse electromagnetic
modes of the cavity and with other molecules via longitudinal Coulomb interactions
(we discuss in Sec. 6.5.3 how this system can be treated in a simplified case).

On the other hand, light-matter interaction can also be modelled with fully
classical models based on coupled harmonic oscillators [60,248,249]. These systems
are appropriate when linear phenomena dominate, e.g. when many molecules
are introduced in a cavity to obtain large coupling strengths. These classical
coupled harmonic oscillator models have successfully described the avoided crossing
of the hybrid modes [250], Fano resonances [251], stimulated Raman [252] and
electromagnetic induced transparency [253–255]. Further, they are used to fit
experimental data and to extract the coupling strength g, the frequencies of
the hybrid modes and the fraction of light and matter corresponding to each
mode [256,257]. However, it is often not clear the exact physical magnitude that
each oscillator represents, which can make it difficult to determine the value of a
given observable in an experiment. Further, in a similar way as we have described
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Figure 6.1: Schematics of the interaction between molecular excitations and cavity modes in the
three systems considered in this chapter. a) A molecule placed inside a dielectric (Fabry-Pérot)
cavity. The transverse field of the single cavity mode considered is described with the vector
potential A, which leads to the presence of the diamagnetic term ∝ |A|2 in the cavity-QED
Hamiltonian that describes this system. b) A molecule close to a metallic nanosphere and coupled
to a single plasmonic mode. Within the quasistatic approximation, the molecule only interacts
with the longitudinal fields of the nanosphere, via the Coulomb potential VCou. Since the vector
potential A is not considered, the diamagnetic term is absent in the corresponding cavity-QED
description. c) An ensemble of molecules placed inside a Fabry-Pérot cavity. In this system,
each molecule interacts with the transverse cavity modes indicated by the vector potential A
and with the longitudinal fields associated with the Coulomb potential VCou induced by the
other molecules. Whereas the interaction with cavity modes requires a diamagnetic term in the
cavity-QED description, the coupling with other molecules is described without this term.

the possibility to use two cavity-QED Hamiltonians to model light-matter coupling
with or without diamagnetic term, different classical models have been used to
analyze the strong and ultrastrong coupling regimes. These classical models are
almost equivalent in the strong coupling but not in the ultrastrong coupling regime,
leading e.g. to different frequencies of the hybrid modes and of the corresponding
mode splitting. However, the choice of the model is often not clearly justified [258].
Therefore, it can be useful to analyze in detail the relation between these classical
models with the cavity-QED formalism, in order to understand better how to
use and interpret the classical harmonic oscillator models and how each classical
oscillator is related with physical magnitudes of the system. In this analysis, it is
again critical to consider if the matter excitations couple with either the transverse
electromagnetic fields (e.g. in conventional dielectric cavities) or the longitudinal
fields characteristic of Coulomb coupling with plasmonic cavities.

In this chapter, we present a pedagogical overview of the different classical
models of coupled harmonic oscillators that can be used to describe ultrastrong
coupling in nanophotonics, and their connection with cavity-QED descriptions. We
establish that the main light-matter coupling mechanism, i.e. either the coupling
occurs via transverse electromagnetic fields or via Coulomb interactions, is the key
to determine the right model of the system. In Sec. 6.2, we present in detail the
two main classical coupled harmonic oscillator models under consideration and
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

show that they lead to different dispersions of the hybrid modes as a function of
the frequency of the cavity mode. We then show in Sec. 6.3 how these classical
equations can be derived from a Lagrangian description of electrodynamics. In
Sec. 6.4, we use the classical Lagrangian to derive the corresponding quantum
Hamiltonian, and in this way we establish the connection of each classical coupled
harmonic oscillator model with the cavity-QED descriptions. In Sec. 6.5, we
determine how to calculate physical observables of the system, such as the electric
field of the cavity mode or the induced dipole moment of the matter excitation,
using the amplitudes of the classical oscillators. With this aim, we consider in this
section the three specific examples shown in Fig. 6.1. Specifically, we first discuss
the application of coupled harmonic oscillator models in systems with transverse
(molecule in a dielectric cavity, Sec. 6.5.1) and longitudinal (molecule coupled to a
metallic nanoparticle via Coulomb interactions, Sec. 6.5.2) fields. We then consider
a system or large relevance in studies of strong and ultrastrong coupling, which
consists in an ensemble of molecules inside a Fabry-Pérot cavity [259–261] and
where both components of the electromagnetic fields (transverse and longitudinal)
need to be considered (Sec. 6.5.3). Last, although in this chapter we mainly focus
on two different models of classical coupled harmonic oscillators, we show in Sec.
6.6 how to use alternative classical models that lead to equivalent results.

6.2 Classical models of coupled harmonic
oscillators in nanophotonics

We have discussed in Sec. 1.3.1 that light-matter interaction can be modelled
classically using two coupled harmonic oscillators. While the previous discussion
has been focused on the strong coupling regime, we now turn our attention to the
ultrastrong coupling regime, and in this section we compare two different harmonic
oscillator models that are mainly used in this context.

According to one of the main classical models, the interchange of energy between
the matter and light degrees of freedom can be described by making an analogy with
the widely-used spring mass model, as it is schematically shown in Fig. 6.2a. This
model is able to capture the dynamics of strongly-coupled light-matter systems,
such as Rabi oscillations [60]. In this approach, the cavity mode is replaced by
a mass mcav attached to a spring with spring constant kcav, while the matter
excitation is modelled in the same way with a mass mmat and spring constant kmat.
These two masses are coupled with each other by a spring of spring constant kSpC.
The equations of motion for the displacements Xcav and Xmat of the oscillators
from the equilibrium positions are

mcavẌcav + kcavXcav + kSpC(Xcav − Xmat) = 0, (6.1a)
mmatẌmat + kmatXmat − kSpC(Xcav − Xmat) = 0. (6.1b)

As will be analyzed in detail below, the displacements of the oscillators can in
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6.2. Classical models of coupled harmonic oscillators in nanophotonics

principle refer to different magnitudes of the nanophotonic system that oscillate
during the Rabi oscillations. For instance, Xmat can be related to the charges
inside the matter structure, and Xcav to the transverse electromagnetic fields of
a dielectric cavity mode or to moving electrons inside a plasmonic nanocavity.
Similarly, mcav and mmat can be seen as effective parameters whose meaning
depends on the system and, at this stage, are not well defined. By defining the
frequency of the cavity ωcav =

√
kcav+kSpC

mcav
, the frequency of the matter excitation

ωmat =
√

kmat+kSpC
mmat

and the coupling strength gSpC = kSpC
2√

mcavmmat
√

ωcavωmat
, Eq.

(6.1) can be rewritten as

ẍcav + ω2
cavxcav + 2gSpC

√
ωcavωmatxmat = 0, (6.2a)

ẍmat + ω2
matxmat + 2gSpC

√
ωcavωmatxcav = 0, (6.2b)

where we have used the renormalized displacements xcav = √
mcavXcav and

xmat = √
mmatXmat. This transformation allows us to write the equations in

a simpler way without indicating the masses of the oscillators mcav and mmat
explicitly, and leaves the eigenfrequencies of the system invariant. We discuss in
Secs. 6.3 and 6.5 how to connect xcav and xmat with the parameters governing
specific systems. Further, we have not included losses (friction terms proportional
to the time derivatives ẋcav and ẋmat) in these equations in order to facilitate the
comparison with Hermitian Hamiltonians of cavity-QED modelsi. Neglecting losses
is usually an excellent approximation for the calculation of the eigenfrequencies and
eigenvectors of the system in the ultrastrong coupling regime, where the coupling
strength can be much larger than the losses of the system. The eigenmodes
of this model are obtained by writing Eq. (6.2) in the frequency domain and
diagonalizing the matrix associated with the resulting equations, which leads to
the eigenfrequencies

ω±,SpC = 1√
2

√
ω2

cav + ω2
mat ±

√
(ω2

cav − ω2
mat)2 + 16g2

SpCωcavωmat. (6.3)

This simple coupled harmonic oscillator model has been used to extract the
coupling strength gSpC by fitting the spectra of the hybrid modes obtained from
experimental data or from simulations [91, 262–267]. We refer to this model as the
Spring Coupling (SpC) model, as it assumes that the coupling is mathematically
equivalent to a spring attached to two masses. We emphasize that the SpC model
is defined as the coupled harmonic oscillator model that satisfies two important
properties as indicated in Eq. (6.2): i) the coupling terms (third term in the left
handsides) are proportional to the amplitudes xcav and xmat; and ii) the frequencies
that appear in the second term in the left handsides are the bare frequencies ωcav
and ωmat corresponding to the uncoupled oscillators (without any renormalization
of these frequencies, which is discussed in Sec. 6.6).

i An accurate approach to include losses in a system under ultrastrong coupling consists in
generalized master equations [98,99].
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Figure 6.2: Comparison of the Spring Coupling (SpC), Modified Coupling (MC) and linearized
models. a) Schematics of the SpC model in analogy to an oscillator model in classical mechanics.
The coupling mechanism of strength gSpC is analogous to a force FSpC exerted by a spring and
that is proportional to the oscillator displacements xcav and xmat. b) Schematics of the MC
model. The coupling mechanism of strength gMC is analogous to a force FMC proportional to
the time derivatives of the oscillator displacements ẋcav and ẋmat. c) Eigenfrequencies ω± as a
function of the cavity frequency ωcav, obtained from the SpC model [blue solid line, corresponding
to Eq. (6.3)], MC model [red dashed line, Eq. (6.6)] and the approximate linearized model
[black dots, Eq. (6.8)], for coupling strength g = 0.1 ωmat. The thin gray lines correspond to the
bare cavity frequency ωcav and the bare frequency of the matter excitation, ωmat. d) Same as
panel (c), for coupling strength g = 0.3 ωmat. e) Minimum splitting between the hybrid modes
Ωmin = ω+ − ω−, as a function of the coupling strength g for the SpC model (blue solid line),
the MC model (red solid line) and the linearized model (black dots). All frequencies in panels
(c-e) are normalized with respect to the fixed frequency of the matter excitation ωmat.
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On the other hand, a different classical coupled harmonic oscillator model is
also used [268–270]:

ẍcav + ω2
cavxcav − 2gMCẋmat = 0, (6.4a)

ẍmat + ω2
matxmat + 2gMCẋcav = 0. (6.4b)

These equations are very similar to Eq. (6.2), but in this case the coupling
terms are proportional to the time derivatives of the displacements ẋcav and
ẋmat (i.e. to the velocities of the oscillators, in the analogy with the coupled
masses). Equivalently, the coupling terms are proportional to the frequency ω in
the frequency domain [258]:

(ω2
cav − ω2)xcav + 2iωgMCxmat = 0, (6.5a)

(ω2
mat − ω2)xmat − 2iωgMCxcav = 0. (6.5b)

Due to the modification of the coupling term with respect to the simple picture
of coupled mechanical oscillators, we call this model the Modified Coupling (MC)
model (Fig. 6.2b). Similarly to the case of the SpC model, we emphasize that the
frequencies in the MC model [appearing in the second term in the left handsides in
Eq. (6.4)] are the bare frequencies ωcav and ωmat, as renormalizing these frequencies
is equivalent to a change in the coupling term (see Sec. 6.6) and thus it would
correspond to a different type of model. The frequencies of the hybrid modes
according to the MC model are

ω±,MC = 1√
2

√
ω2

cav + ω2
mat + 4g2

MC ±
√

(ω2
cav + ω2

mat + 4g2
MC)2 − 4ω2

cavω2
mat. (6.6)

At moderate coupling strengths g, corresponding to a system in the strong but
not in the ultrastrong coupling regime, the frequencies of the hybrid modes are very
similar for the two models. In this regime, by considering that the eigenfrequencies
ω± do not differ too strongly from the bare frequencies ωα (α = ’cav’ or α = ’mat’),
we can make the approximation ωα + ω ≈ 2ω to solve the equations for ω±. The
frequency-domain equations of both the SpC and MC models become linear in ω:

(ωcav − ω)xcav + glinxmat = 0 (6.7a)

(ωmat − ω)xmat + g∗
linxcav = 0, (6.7b)

with glin = gSpC (SpC model) or glin = igMC (MC model). The resulting
eigenfrequencies are in both cases

ω±,lin = ωcav + ωmat ±
√

(ωcav − ωmat)2 + 4|glin|2
2 . (6.8)

The validity of these linearized equations for g = 0.1 ωmat (conventionally defined
as the onset of the ultrastrong coupling regime) is analyzed in Fig. 6.2c, where we
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compare the eigenfrequencies of the SpC model (blue solid line), the MC model
(red dashed line) and the linearized model (black dots). These eigenfrequencies
are given by Eqs. (6.3), (6.6) and (6.8), respectively, and plotted as a function of
the cavity frequency ωcav (all values in Fig. 6.2 are given as the ratio with the
frequency ωmat, which remains fixed in all the panels of this figure). We find that
the three curves follow a nearly identical dependence on the cavity frequency ωcav,
and the agreement is even better for g < 0.1 ωmat. Thus, for systems not in the
ultrastrong coupling regime, the three models can often be used equally with very
small implications to the results.

In contrast, for even larger coupling strengths, corresponding to a system well
into the ultrastrong coupling regime, the choice of the model is crucial. The
differences between the three models are illustrated in Fig. 6.2d for coupling
strength g = 0.3 ωmat. In this case, the three models predict significantly
different eigenfrequencies of the coupled system. The difference is smaller for
large cavity frequencies, ωcav ≫ ωmat, because the oscillators become uncoupled
and the eigenfrequencies approach the bare frequencies ωcav and ωmat in all models.
However, even for a relatively large ωcav/ωmat = 1.5, the difference between the
values of ω± according to the different models is around 10%.

Further, comparing the three models in resonant conditions at zero detuning,
ωcav = ωmat, the splitting Ω = ω+ − ω− between the two eigenmodes is equal to
twice the coupling strength in the linearized and in the MC model, i.e. Ω = 2g.
This is the minimum splitting in these two models [271,272]. On the other hand, in
the SpC model the relation between Ω and the coupling strength for zero detuning
is different:

ΩSpC = ω+,SpC − ω−,SpC = ωmat

(√
1 + 2gSpC

ωmat
−
√

1 − 2gSpC

ωmat

)
. (6.9)

We find ΩSpC = 2.11 gSpC for the values used in Fig. 6.2d. Further, according to
this model the minimum splitting between the branches does not happen at zero
detuning, but at cavity frequencies larger than the matter excitation frequencies.
To further emphasize the difference in the splitting between the models, we plot
in Fig. 6.2e the minimum splitting Ωmin for the SpC model (blue solid line) as a
function of the coupling strength, as compared to the Ωmin = 2g linear relationship
of the MC (red solid line) and the linearized model (black dots). For couplings
too small to reach the ultrastrong coupling regime (g/ωmat ≲ 0.1), the splitting
of the three models follows the same linear tendency. However, for larger values
of g, within the ultrastrong coupling regime, the minimum splitting according to
the SpC model deviates strongly from linearity, and close to the so-called deep
strong coupling regime (g/ωmat ≈ 1), Ωmin

SpC is approximately the double than for
the other two models. Last, Fig. 6.2d shows that a striking difference appears for
small cavity frequencies, ωcav ≪ ωmat. According to the MC model, for decreasing
ωcav the lower mode frequency ω−,MC tends towards ωcav, but the upper branch
approaches the limit ω+,MC =

√
ω2

mat + 4g2
MC instead of the bare matter frequency,

and thus this hybrid mode is affected by the coupling even in this highly detuned
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situation.
The behavior of ω− and ω+ in the asymptotic limits of ωcav has an interesting

consequence on the range of energies where hybrid modes can exist according
to each model. The dispersion of the MC model shows two hybrid modes for
all values of the detuning and indicates that there is a band between ωmat and√

ω2
mat + 4g2

MC with no modes available (as can be appreciated from the limits of
the eigenfrequencies for ωcav → 0 and ωcav → ∞). For the SpC model, the upper
mode approaches the bare frequency ωmat for vanishing ωcav, but the lower mode
ceases to exist (ω−,SpC becomes imaginary) under the condition ωcav

ωmat
<
(

2gSpC
ωmat

)2
.

Further, by considering the total dispersion of the SpC model, we emphasize that
we obtain hybrid modes at any frequency ω±,SpC by tuning the bare frequencies
ωcav and ωmat, and thus there is no forbidden band as opposed to the MC model.
Last, the dispersion of the linearized model lies between the dispersions of the
other two models. In this case, there is a band of forbidden modes of spectral
width half the value given by the MC model, and the lower mode disappears
as in the SpC model but under a different inequality, because ω−,lin becomes
negative for frequencies ωcav

ωmat
<
(

glin
ωmat

)2
. The finding of these bands has important

consequences on describing the optical response of materials supporting vibrational
excitations, as done in Chapter 7. Specifically, in Sec. 7.5 we connect the bands
observed in Fig. 6.2d with the Reststrahlen band of polar materials (Sec. 1.2.2),
and show that we can only reproduce the experimental dispersion with the correct
width of the Reststrahlen band by using the MC model.

The analysis of Fig. 6.2d thus emphasizes that the three classical models
considered can lead to distinctly different predictions of the eigenfrequencies of light-
matter coupled systems in the ultrastrong coupling regime. These differences imply
that the coupling terms of the SpC and MC models are related to different types of
interactions between light and matter, and that not all electromagnetic interactions
are mathematically equivalent to two coupled mechanical springs (i.e. to the SpC
model). In order to better understand the origins of the SpC and MC models and
their relation with Coulomb interactions and with interactions based on transverse
electromagnetic modes, we derive in the next section the corresponding classical
equations from a general Lagrangian description of electrodynamics. Further, this
section has focused on the eigenfrequencies, which can be extracted directly from
the equations of coupled harmonic oscillators without an exact knowledge of what
the displacements xcav and xmat represent. However, a clear physical interpretation
of these parameters often becomes necessary to evaluate magnitudes of interest
such as the electric field at a given position. We discuss in Sec. 6.5 how xcav and
xmat relate to relevant physical quantities for representative systems.
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

6.3 Derivation of the equations of motion in the
classical coupled harmonic oscillator models

We have presented the classical SpC and MC harmonic oscillator models based on
an intuitive perspective of classical mechanics. We show in this section that these
models can be obtained in a more rigorous way from the Euler-Lagrange equations
of motion associated to the Lagrangian of electrodynamics. To particularize this
discussion, we focus on the specific systems shown in Figs. 6.1a and b, which
consist in a molecular excitation interacting with a transverse electromagnetic
mode or with the near field of a plasmonic nanoparticle.

We start considering the general Lagrangian description of electrodynamics.
The form of this Lagrangian depends on the gauge. We first choose the Coulomb
gauge, which leads to the expression given by Eq. (1.18):

LCou =
∑

i

1
2miṙ2

i −
∑
i,j>i

QiQj

4πε0|ri − rj |
+
ˆ [ε0

2 (|Ȧ|2 − c2|∇ × A|2) + jf · A
]

dr.

In this Lagrangian, the electromagnetic degrees of freedom are encapsulated in
the dynamical field variable A(r), which represents the vector potential of the
fields, with the condition ∇ · A = 0 due to the choice of gauge. On the other
hand, all the dynamics related to the matter structure are expressed by the spatial
positions ri of each point-like charge indexed by i. Each point charge, of mass mi

and charge Qi, interacts with all the others according to the Coulomb potential
energy (second term in the right handside) and with the transverse electromagnetic
fields as indicated in the last term of the Lagrangian (of the form jf · A), where
jf(r) =

∑
i Qiṙiδ(r − ri) is the current density at any position r [Eq. (1.13)].

We have proven in Sec. 1.1.2 that the equations of motion for the variables A(r)
and ri obtained from the Lagrangian in Eq. (1.18) are completely equivalent
to Maxwell’s equation for a general system. We are interested in obtaining
the equations of motion that describe the dynamics of systems formed by
molecules interacting with cavity modes in the strong and the ultrastrong coupling
regimes. First, we focus on the terms of the Lagrangian related to the transverse
electromagnetic field (which in the Coulomb gauge is entirely described with the
vector potential A), in order to separate them into the contribution of different
cavity modes. The vector potential is separated into the components Aα(r) of
all transverse modes α of the cavity as A(r) =

∑
α Aα(r) =

∑
α AαΞα(r)nα. For

each α index, the field is polarized in the direction determined by the unit vector
nα, the amplitude is given by Aα and the fields have spatial distribution Ξα(r),
normalized so that Ξα(r) = 1 in the position where the field is maximum. Further,
we consider that the α modes form an orthogonal basis and the integral of the field
distribution over space gives the effective volume Veff,α of the mode, i.e.

ˆ
Ξα(r)Ξ∗

α′(r)dr = Veff,αδα,α′ . (6.10)
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6.3. Derivation of the equations of motion

By taking into account the decomposition of the modes and their orthogonality,
the terms of the Lagrangian of Eq. (1.18) only related to the electromagnetic fields
are written as

ˆ
ε0

2

∣∣∣∣∣∑
α

ȦαΞα(r)nα

∣∣∣∣∣
2

− c2

∣∣∣∣∣∇ ×
∑

α

AαΞα(r)nα

∣∣∣∣∣
2
 dr

=
∑

α

ε0Veff,α

2
(
ȦαȦ∗

α − ω2
cav,αAαA∗

α

)
. (6.11)

We now focus on the terms of the Lagrangian associated to the matter degrees
of freedom, so that we can describe the matter excitations. We model the material
as an ensemble of dipoles indexed by j, each formed by two point charges that
have the same mass mj and opposite charges, and are placed in positions rj+ and
rj−. The two point charges are at equilibrium if they are placed at a distance
|rj+ − rj−| = |req|. We make the harmonic approximation to the Coulomb
potential of each dipole with respect to the equilibrium position: Q2

j

4πε0|rj+−rj−| =
1
2 mredω2

mat|rj+ −rj− −req|2 +O(|rj+ −rj− −req|3) ≈ 1
2 mredω2

mat|rj+ −rj− −req|2,
where mred = mj

2 is the reduced mass of the dipole. We also assume that the mass
center of the dipole is static at position rj = rj++rj−

2 . Therefore, the only variable
that evolves in time for each dipole is the distance between point charges from
the equilibrium position, i.e., lj = rj+ − rj− − req or, equivalently, the induced
dipole moment dj = Qjlj . From these assumptions, the Coulomb potential energy
in Eq. (1.18) includes the harmonic potential corresponding to the charges in
each dipole, and also the potential energy due to the interaction between different
dipoles. Accordingly, the terms related to the matter degrees of freedom in the
Lagrangian transform as

∑
j

1
2mj ṙ2

j−
∑
i,j>i

QiQj

4πε0|ri − rj |
=
∑

i

(
1
2

mred,j

Q2
j

ḋ2
j − 1

2
mred,j

Q2
j

ω2
mat,jd2

j

)

−
∑
i,j>i

1
4πε0|rj − ri|3

[di · dj − 3(di · nrij)(dj · nrij)] ,

(6.12)

with dj = |dj | and the unit vector nrij = rj−ri

|rj−ri| .
Equation (6.12) has been derived using the harmonic approximation of the

dipolar potential, and as a consequence all terms of the Lagrangian that do not
account for light-matter interaction are quadratic with respect to the amplitudes
of the vector potential and their time derivatives [Eq. (6.11)], or with respect to
the dipole moments and their time derivatives [Eq. (6.12)]. Therefore, if light and
matter were uncoupled, the dynamical evolution of these variables would be the
same as that of free harmonic oscillators. We now discuss how the interaction
between the cavity modes and the dipoles affects the equations of motion. The
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

coupling of each dipole with the transverse fields of the cavity appears in the
Lagrangian as

ˆ
jf · A dr =

ˆ ∑
j

Qj ṙj+δ(r − rj+) − Qj ṙj−δ(r − rj−)

(∑
α

AαΞα(r)nα

)
dr

=
∑
j,α

Qj [rj+Ξα(ṙj+) − ṙj−Ξα(rj−)]Aαnα ≈
∑
j,α

AαΞα(rj)ḋj · nα

(6.13)

In the last step, we have performed the long-wavelength approximation, so that in
the length scale of each dipole the fields do not vary, i.e. Ξ(rj+) ≈ Ξ(rj−) for all j.
The total Lagrangian of the system in the Coulomb gauge reads

LCou(dj , ḋj , Aα, Ȧα, A∗
α, Ȧ∗

α) =
∑

α

ε0Veff,α

2
(
ȦαȦ∗

α − ω2
cav,αAαA∗

α

)
+
∑

j

1
2

1
fmat,j

(
ḋ2

j − ω2
mat,jd2

j

)
+
∑
j,α

AαḋjΞα(rj) cos θα,j

−
∑
i,j

didj
ndi · ndj − 3(ndi · nrij)(ndj · nrij)

4πε0|ri − rj |3
, (6.14)

where ndj = dj

|dj | , θα,j is the angle between the dipole moment dj and the direction

nα of the electric field in the mode α, and fmat = Q2
j

mred
is the oscillator strength of

the jth dipole.
From the Lagrangian LCou of Eq. (6.14), we can easily derive the equations

of motion of the classical coupled harmonic oscillators by calculating the Euler-
Lagrange equations, d

dt
∂LCou

∂ẋ − ∂LCou
∂x = 0, for x ∈ {dj , A∗

α}. The resulting equations
of motion are

Äα + ω2
cav,αAα −

∑
j

ḋj
Ξα(rj) cos θα,j

ε0Veff,α
= 0, (6.15a)

d̈j + ω2
mat,jdj + fmat,j

∑
i ̸=j

ndi · ndj − 3(ndi · nrij)(ndj · nrij)
4πε0|ri − rj |3

di

+
∑

α

Ȧαfmat,jΞ∗
α(rj) cos θα,j = 0. (6.15b)

These equations account for all interactions of the system, which consist in dipole-
dipole interactions and the interaction of dipoles with cavity modes. To show how
each of these two types of interaction is connected with the MC and SpC models,
we focus on two canonical scenarios, which are sketched in Figs. 6.1a and b:

• Coupling between a molecular excitation and a transverse mode of a
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6.3. Derivation of the equations of motion

dielectric cavity: By considering a single transverse mode α of the cavity
interacting with one molecular excitation represented by the induced dipole
moment d, all Coulomb interactions in Eq. (6.15) are eliminated. The
equations of motion become

Ä + ω2
cavA − ḋ

Ξ(rmat) cos θ

ε0Veff
= 0, (6.16a)

d̈ + ω2
matd + ȦfmatΞ∗(rmat) cos θ = 0. (6.16b)

By replacing here the oscillator amplitudes xcav = A
√

ε0Veff and xmat =
d√
fmat

, together with the coupling strength

gMC = 1
2

√
fmat

ε0Veff
Ξ(rmat) cos θ, (6.17)

we recover the equations of motion of the MC model [Eq. (6.4)].

• Coupling between a molecule and a plasmonic nanoparticle via Coulomb
interactions: We consider a molecule close to a metallic nanoparticle that
supports a plasmonic mode. Under the quasitatic approximation of the
plasmonic response, the vector potential components of all transverse modes
are neglected, and the nanoparticle can be described as a polarizable dipole
of induced dipole moment dcav (Sec. 1.2.1). Equation (6.15) is then written
as

d̈cav + ω2
cavdcav + fcav

ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)
4πε0|rcav − rmat|3

dmat = 0,

(6.18a)

d̈mat + ω2
matdmat + fmat

ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)
4πε0|rcav − rmat|3

dcav = 0,

(6.18b)

where dmat is the induced dipole moment of the molecule and nrrel =
rcav−rmat

|rcav−rmat| is the unitary vector of the relative direction between the nanocavity
and the molecule. By replacing xcav = dcav√

fcav
and xmat = dmat√

fmat
, together

with the coupling strength gSpC defined as

gSpC =1
2

√
fcav

√
fmat

4πε0|rcav − rmat|3
√

ωcavωmat

× [ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)], (6.19)

we recover the equations of the SpC model [Eq. (6.2)].

Hence, this derivation confirms that the SpC model is well suited to describe
the interaction of matter excitations with longitudinal Coulomb fields, whereas the
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

MC model is appropriate when transverse cavity modes dominate the interaction,
as in the case of conventional dielectric cavities. This derivation also shows that the
oscillator displacements xcav and xmat defined in Sec. 6.2 are related to physical
magnitudes of the system such as the dipole moment or the vector potential. In
Sec. 6.5, we analyze in more detail how these relations can be used to calculate
physical observables in different systems under ultrastrong coupling. Additionally,
we have focused until here on the two classical models that are most used in the
literature, but we discuss other alternatives in Sec. 6.6. Specifically, we show
that renormalizing the cavity frequency by the right amount in the model with
coupling terms proportional to the time derivatives ẋcav and ẋmat leads to the
same frequencies as for the SpC model without renormalization, or vice versa.

6.3.1 Spring coupling model with external laser illumination
Up to now, we have not considered in this chapter any external illumination.
We now discuss briefly how to introduce an incident laser field in the model
of nanocavity-molecule interaction. We focus on the case of a single metallic
nanoparticle that supports one plasmonic mode and interacts with only one nearby
molecule, but this derivation can be generalized to systems with more molecules
and with metallic nanoparticles suporting more plasmonic modes, and also to a
dielectric cavity supporting transverse cavity modes.

The incident field has associated a vector potential of the form Ainc(r, t) =
Ainceikinc·re−iωt, which is a planewave of wavevector kinc, amplitude Ainc and
frequency ω. Under the quasistatic appoximation, all transverse modes α of the
system are neglected, and thus the only component of the vector potential considered
in the Lagrangian of Eq. (6.14) corresponds to the external laser Ainc(r, t). With
these considerations, the Lagrangian of Eq. (6.14) becomes

Ldip-dip
Cou (dcav, ḋcav, dmat, ḋmat) = 1

2
1

fcav

(
ḋ2

cav − ω2
cavd2

cav
)

+ 1
2

1
fmat

(
ḋ2

mat − ω2
matd

2
mat
)

− dcavdmat
ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3

+ Aince−iωt(ḋcav cos θinc,cav + ḋmat cos θinc,mat), (6.20)

where θinc,cav and θinc,mat are the angles between the incident field and the dipole
moments of the cavity and molecule, respectively. The superscript "dip-dip"
emphasizes that we only consider dipole-dipole interactions for this system (under
the quasistatic approximation). The dynamics of the variables dcav and dmat are
obtained within the Euler-Lagrange equations from Eq. (6.20). By calculating these
equations of motion and transforming the variables into the oscillator amplitudes
xcav = dcav√

fcav
and xmat = dmat√

fmat
, the resulting equations are

ẍcav + ω2
cavxcav + ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
xmat
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= iωAinc
√

fcav cos θinc,cave−iωt, (6.21a)

ẍmat + ω2
matxmat + ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
xcav

= iωAinc
√

fmat cos θinc,mate
−iωt. (6.21b)

Therefore, the incident field is incorporated into the SpC equations of motion [Eq.
(6.2)] by adding time-dependent forces of amplitude Fcav = iωAinc

√
fcav cos θinc,cav

and Fmat = iωAinc
√

fmat cos θinc,mat to the nanocavity and the molecule,
respectively.

6.4 Comparison between cavity-QED
Hamiltonians and classical models

We have derived in Sec. 6.3 the SpC and MC harmonic oscillator models from a
fully classical Lagrangian description. We show next how the classical Lagrangian
is related first to the classical and then to the different cavity-QED Hamiltonians
with or without the diamagnetic term [i.e. with or without the term Ĥdia

Hop in
Eq. (1.48)]. In this way, we establish a key result of this chapter, which is the
connection of the SpC and MC models with the cavity-QED Hamiltonians. We
further note that all the connections established in this section are summarized in
Table 6.1 at the end of the chapter.

6.4.1 Modified coupling model
We have shown in Sec. 6.3 that the MC model corresponds to the coupling between
a dipole (which can be associated to a molecular excitation, for example) and a
transverse electromagnetic mode of a cavity, as depicted schematically in Fig. 6.1a.
We now focus in this particular system to derive its corresponding cavity-QED
Hamiltonian. In this derivation, we start with the Lagrangian of Coulomb gauge
given by Eq. (6.14), which for a single dipole interacting with only one transverse
mode becomes

Lmin-c
Cou (d, ḋ, A, Ȧ) = ε0Veff

2 (Ȧ2 − ω2
cavA2) + 1

2fmat
(ḋ2 − ω2

matd
2) + Aḋ. (6.22)

To simplify the analytical expressions in the following discussion, Eq. (6.22)
considers a specific case where the molecule is placed in the position of maximum
field of the mode and oriented in the same direction as the field polarization, so that
Ξ(rmat) cos θ = 1 in Eq. (6.14). However, the discussion of this section remains
valid for other values of Ξ(rmat) cos θ.

The next step is to derive the classical Hamiltonian of the system. With this aim,
we obtain the canonical momenta related to the vector potential (of amplitude A)
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

of the transverse electromagnetic mode and to the dipole moment in the Coulomb
gauge as

ΠCou =∂LCou

∂Ȧ
= ε0VeffȦ, (6.23a)

pCou =∂LCou

∂ḋ
= ḋ

fmat
+ A. (6.23b)

According to these expressions, the dynamical variable ΠCou expresses the
transverse electric field of the cavity mode from the relation E = − ∂A

∂t . On
the other hand, the relation between the dipole moment d and its canonical
momentum pCou is more complicated because pCou depends not only on d but
also on the vector potential. Using Eq. (6.23), the calculation of the Hamiltonian
Hmin-c

Cou = ȦΠCou + ḋpCou − Lmin-c
Cou is straightforward:

Hmin-c
Cou = Π2

Cou
2ε0Veff

+ 1
2ε0Veffω2

cavA2 + fmat

2 p2
Cou + 1

2
ω2

mat
fmat

d2 − fmatpCouA + 1
2fmatA2.

(6.24)

This expression has the well-known form of the minimal-coupling Hamiltonian [Eq.
(1.22)], and thus we refer to this form of the coupling with the superindex "min-c"
in the Lagrangian of Eq. (6.22) and in the Hamiltonian of Eq. (6.24).

On the other hand, the Hamiltonian of Eq. (6.24) is not the only one that
can be used to describe the interaction of a molecular excitation with a transverse
electromagnetic mode, because the form of the Hamiltonian depends on the
gauge. In particular, besides the Coulomb gauge used up to this point, the
dipole gauge [273] is also widely used in cavity QED. We now derive the classical
Hamiltonian in this new gauge, so that we can then apply the canonical quantization
procedure in both gauges and establish a complete connection between the classical
coupled harmonic oscillator models and commonly used Hamiltonians.

To obtain the new Hamiltonian, we first note that the Lagrangian in the
Coulomb gauge LCou of Eq. (6.22) can be transformed to any other Lagrangian
L′ with the operation L′ = LCou + dG(A,d,t)

dt , by using a general function G(A, d, t).
The particular choice that leads to the dipole gauge is G = −dA, which is equivalent
to the Power-Zienau-Woolley transformation [274] in cavity QED, with the unitary
operator

Û = exp
{

i

ℏ

ˆ
P · A dr

}
, (6.25)

where P is the polarization density. After applying the gauge transformation to
Eq. (6.22), the Lagrangian of the system in the dipole gauge is

Lmin-c
Dip (d, ḋ, A, Ȧ) =ε0Veff

2 (Ȧ2 − ω2
cavA2) + 1

2fmat
(ḋ2 − ω2

matd
2) − Ȧd. (6.26)

We repeat the procedure implemented in the Coulomb gauge to obtain the

156



6.4. Comparison between cavity-QED and classical models

classical Hamiltonian in the dipole gauge, so that the canonical momenta are
calculated as

ΠDip =∂LDip

∂Ȧ
= ε0VeffȦ − d, (6.27a)

pDip =∂LDip

∂ḋ
= ḋ

fmat
. (6.27b)

In the dipole gauge, pDip is only related to the time derivative of the dipole moment.
However, the canonical momentum associated with the cavity mode, ΠDip, depends
on both d and the vector potential, in contrast to the result of the Coulomb
gauge. Thus, in the dipole gauge this variable represents the displacement vector
ΠDip ∝ |D| = |ε0E + P| instead of the transverse electric field of the cavity mode
as happens in the Coulomb gauge, i.e. ΠCou ∝ |E|. The resulting Hamiltonian in
the dipole gauge is

Hmin-c
Dip =

Π2
Dip

2ε0Veff
+ 1

2ε0Veffω2
cavA2 + fmat

2 p2
Dip + 1

2
ω2

mat
fmat

d2 + ΠDipd

ε0Veff
+ d2

2ε0Veff
.

(6.28)

We have thus shown that the coupling between a molecule and a transverse
electromagnetic mode of a cavity is described by the minimal-coupling Hamiltonian,
which for the Coulomb gauge has the classical form of Eq. (6.24) and for the dipole
gauge it is given by Eq. (6.28). To obtain the quantum Hopfield Hamiltonian of
the form of Eq. (1.48), we use the following quantization relations that are used in
cavity QED [72,94,275]:

Â(r) =
√

ℏ
2ωcavε0Veff

Ξ(r)(â + â†), (6.29a)

Π̂(r) = −i

√
ℏωcavε0Veff

2 Ξ(r)(â − â†), (6.29b)

d̂ =
√

ℏfmat

2ωmat
(b̂ + b̂†), (6.29c)

p̂ = −i

√
ℏωmat

2fmat
(b̂ − b̂†). (6.29d)

Following the quantization procedure in Eqs. (6.24) and (6.28), we obtain

Ĥmin-c
Cou =ℏωcav

(
â†â + 1

2

)
+ ℏωmat

(
b̂†b̂ + 1

2

)
+ iℏgMC

√
ωmat

ωcav
(â + â†)(b̂ − b̂†)

+ ℏ
g2

MC

ωcav
(â + â†)2, (6.30a)
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Ĥmin-c
Dip =ℏωcav

(
â†â + 1

2

)
+ ℏωmat

(
b̂†b̂ + 1

2

)
− iℏgMC

√
ωcav

ωmat
(â − â†)(b̂ + b̂†)

+ ℏ
g2

MC

ωmat
(b̂ + b̂†)2, (6.30b)

for the Coulomb and dipole gauges, respectively. In these Hamiltonians, â and
â† are the annihilation and creation operators of the cavity mode, while b̂ and
b̂† are the corresponding operators of the molecular excitation. The coupling
strength gMC is given by Eq. (6.17). The main difference between Eqs. (6.30a) and
(6.30b) is the last quadratic term, which is originated from the vector potential of
the electromagnetic mode in the Coulomb gauge, while it comes from the dipole
moment of the molecule in the dipole gauge. However, in both cases, we obtain a
Hopfield Hamiltonian with the diamagnetic term that is proportional to g2

MC (i.e.
Eq. (1.48) with D ∝ g2

MC).
Despite the different forms of Eqs. (6.30a) and (6.30b), we emphasize that

they are equivalent. On the one hand, by solving the Schrödinger equation with
both Hamiltonians, the same eigenvalues are obtained. Further, although the
expectation values of the operators â, â†, b̂ and b̂† are not the same for each
Hamiltonian, this occurs because they are defined differently in each gauge due
to their relation with a different set of canonical momenta: ΠCou and pCou given
by Eq. (6.23) for the Hamiltonian of Eq. (6.30a), or ΠDip and pDip given by Eq.
(6.27) for the Hamiltonian of Eq. (6.30b). Thus, the relation between the operators
and the physical magnitudes of the system are different. Once these differences
are considered, the same values for all physical observables (such as the amplitude
of the vector potential, A, or the dipole moment d) can be obtained with both
Hamiltonians because they have been derived from the same starting point.

Importantly, the classical MC model has been obtained from the same
Lagrangian [Eq. (6.22)] as the Hamiltonians of Eq. (6.30), which demonstrates
that the MC model leads to the same description as the cavity-QED Hamiltonians
with the diamagnetic term. This equivalence implies that the same values of the
hybrid mode frequencies [given by Eq. (6.6)] and of other physical observables
are obtained with either a classical or a quantum description. However, we note
that there is a slight difference between the meaning of the eigenfrequencies of Eq.
(6.6) in the classical and quantum models. By solving the Schrödinger equation,
we observe that cavity QED predicts a gMC-dependent shift of the ground-state
energy from zero, which is a fully quantum phenomenon and is not captured by
the classical MC model: the eigenvalues of the classical MC model are equivalent
to the transition energies between the ground and excited states in the cavity-QED
descriptions, and not to the absolute values of the excited state energies. The
transitions between energetic levels (and not the absolute energies) govern most
current optical experiments in nanophotonics, so that the classical models are
equivalent to the quantum approach except in very specific circumstances where
the results are affected by the ground-state energy.
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6.4.2 Spring coupling model
We now focus on studying the cavity-QED Hamiltonian that is equivalent to
the classical SpC model. As shown in Sec. 6.3, this classical model represents
dipole-dipole interactions, and the example that we consider through this section
is a molecule placed close to a metallic nanoparticle and coupled with each other
via Coulomb interactions (sketch in Fig. 6.1b). This system is described in
the quasistatic approximation by the Lagrangian of Eq. (6.20) (here we do not
include laser excitation, i.e. Ainc = 0). From this Lagrangian, and proceeding
like in the previous section, we obtain the classical Hamiltonian of the system
Hdip-dip = ḋcavpcav + ḋmatpmat − Ldip-dip

Cou , which is

Hdip-dip = 1
2fcavp2

cav + 1
2

ω2
cav

fcav
d2

cav + 1
2fmatp

2
mat + 1

2
ω2

mat
fmat

d2
mat

+ dcavdmat
ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
, (6.31)

with the canonical momenta pcav = ḋcav
fcav

and pmat = ḋmat
fmat

. The Hamiltonian of Eq.
(6.31) has been obtained using the Coulomb gauge, but the dipole gauge leads to
the same Hamiltonian for this specific system.

We apply next the quantization rules given by Eq. (6.29). Since both the
cavity and the molecule are described with the induced dipole moments dcav and
dmat, all the operators (â and â† of the cavity mode, and b̂ and b̂† of the molecular
excitation) are related to the corresponding dipole moment following Eq. (6.29c)
and the canonical momentum as given by Eq. (6.29d). The quantization of the
Hamiltonian in Eq. (6.31) leads to the expression

Ĥdip-dip = ℏωcav

(
â†â + 1

2

)
+ ℏωmat

(
b̂†b̂ + 1

2

)
+ ℏgSpC(â + â†)(b̂ + b̂†). (6.32)

This Hamiltonian does not have any diamagnetic term (i.e. it satisfies the form
of Eq. (1.48) with D = 0). Thus, we have shown that the classical SpC model
and the Hopfield Hamiltonian without diamagnetic term are equivalent. Indeed,
solving the Schrödinger equation with Eq. (6.32), we obtain the same eigenvalues
as the classical SpC model given by Eq. (6.3) (except for the shift of the ground
state energy in the classical model) and also the same values for other physical
magnitudes.

6.5 Physical observables obtained from classical
models

In Sec. 6.3, we have derived the classical SpC and MC models starting from a
general Lagrangian of electrodynamics. This derivation allows us to determine
how the oscillator amplitudes xcav and xmat, which in Sec. 6.2 have been defined
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

arbitrarily, are related to the vector potential and to the dipole moment of the matter
excitation. We now exploit this connection to show in detail how several physical
observables in systems under ultrastrong coupling (e.g. the spatial distribution of
the electric field) can be obtained with classical models (in an equivalent way as
with cavity-QED models, due to the equivalence shown in Sec, 6.4). To illustrate
the procedure, we analyze the same three canonical examples in nanophotonics
that we have already introduced (Fig. 6.1) and for which different classical or
quantum (with and without the diamagnetic term) models are appropriate. In
Sec. 6.5.1, we focus in the textbook case of a single molecule interacting with
transverse electromagnetic modes of a resonant dielectric cavity (Fig. 6.1a). As
the next example, we analyze in Sec. 6.5.2 a molecule close to a small metallic
nanoparticle, where the coupling is governed by longitudinal Coulomb interactions
(Fig. 6.1b). The last example (Sec. 6.5.3) consists in an ensemble of molecules
(representing a bulk material) inside a Fabry-Pérot cavity, where the molecules
couple with each other as well as with the transverse electromagnetic modes of the
cavity (Fig. 6.1c).

6.5.1 A molecular excitation interacting with a transverse
mode of a dielectric cavity

We consider first the canonical quantum-optics system consisting in one dipole
interacting with a single transverse mode of a resonant dielectric cavity. The dipole
is associated to matter excitations, and it can represent an excitonic transition
of a molecule or a transition between vibrational states, for example. Cavity-
QED models of this system have successfully described phenomena such as the
modification of the spontaneous emission rate of a molecule [93,276], of the photon
statistics of the emitted light [277,278] or of the coherence time of the quantum
states [279].

To analyze how the physical observables associated with this system can be
described classically, we first note that it has been demonstrated in Sec. 6.3
that this system is described with the MC model. Further, we have obtained
that the cavity oscillator amplitude xcav in the MC model [Eq. (6.4)] is given
by xcav = A

√
ε0Veff. Therefore, the oscillator amplitude xcav can be used to

calculate the spatial distribution of this potential as A(r) = AΞ(r) = xcav√
ε0Veff

Ξ(r).
Equivalently, the amplitude of the oscillator corresponding to the matter excitation
is directly connected with the induced classical dipole moment d as xmat = d√

fmat
.

These relations are schematically shown in Fig. 6.3a and allow us to obtain physical
magnitudes in the system from the classical harmonic MC model, such as the
electric field at any position inside the cavity.

We first show how to obtain the spatial distribution of the electric fields
corresponding to each hybrid mode. The transverse cavity mode field [given by
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Figure 6.3: Interaction of a molecule with a transverse cavity mode within the classical MC model.
a) Schematics of the system. The two oscillators are associated with the vector potential A of
the cavity mode and the induced dipole moment d of the molecular excitation. The oscillators
are coupled with each other with strength gMC. The bottom sketch indicates the dimensions of
the cavity that we analyze in the rest of the panels. The dipole is placed at the center of the
cavity. The green shaded areas in the sketches represent the field distribution of the cavity mode.
b) Spatial distribution of the electric field for the upper (blue) and the lower (red) hybrid modes
at frequencies ω+,MC and ω−,MC, respectively, for coupling strength gMC = 2.5 · 10−4ωcav. The
electric field is calculated along the axis of the cavity (along the x direction in panel (a), with
x = y = z = 0 corresponding to the cavity center). The inset is a zoom of the region near the
molecule. c) Contribution to the electric field from the cavity Σ±

cav (dots) and from the molecule
Σ±

mat (solid lines), for the hybrid mode at frequency ω+,MC (blue) and the hybrid mode at
frequency ω−,MC (red), as a function of the detuning ωmat − ωcav. The fields are evaluated at the
position (x, y, z) = (10.5 nm, 0, 0), i.e. at 10.5 nm distance from the center of the cavity where the
molecule is situated (see sketch in (a) for directions), which corresponds to the position indicated
by the dashed line in the inset of panel (b). The coupling strength is gMC = 2.5 · 10−4ωcav. d)
Same as in (c), for gMC = 0.2 ωcav.
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

A(r, t)] must be added to the longitudinal near field induced by the dipoleii, which
is obtained from the scalar Coulomb potential

VCou(r, t) = 1
4πε0

d(t)nd · nr

|r|2
, (6.33)

with the unit vectors nd = d
|d| and nr = r

|r| . The total electric field is therefore
given as

E(r, t) = −∇VCou(r, t) − ∂A(r, t)
∂t

,

and the electric field at frequencies ω±,MC of each hybrid mode [given by Eq. (6.6)]
corresponds to

E(r, ω±,MC) =3(nd · nr)nr − nd

4πε0r3 d(ω±,MC) + iω±,MCA(r, ω±,MC)nα

= 3(nd · nr)nr − nd

4πε0r3

√
fmatxmat(ω±,MC)︸ ︷︷ ︸

Emat(r,ω±,MC)

+ iΞ(r)√
ε0Veff

ω±,MCxcav(ω±,MC)nα︸ ︷︷ ︸
Ecav(r,ω±,MC)

.

(6.34)

According to this equation, the oscillator amplitude of the cavity mode xcav gives
directly the contribution of the cavity to the electric field [Ecav(r, ω±,MC)], whereas
the oscillator amplitude xmat is related to the contribution of the matter excitation
[Emat (r, ω±,MC)]. Further, we use Eq. (6.5) to obtain the ratio between the
amplitudes xcav and xmat of the classical harmonic oscillators:

xcav(ω±,MC)
xmat(ω±,MC) = −2iω±,MCgMC

ω2
cav − ω2

±,MC

. (6.35)

Inserting Eq. (6.35) into Eq. (6.34), we obtain the ratio between the electric field
contribution of the cavity and of the matter excitation.

Equations (6.34) and (6.35) are the main result of this subsection and are valid
to obtain the electric field at any position and for an arbitrary transverse mode
with field distribution given by Ξ(r). We consider for illustration the particular
case of a molecule introduced in the center of a rectangular vacuum box enclosed
in the three dimensions by perfect mirrors, as sketched in Fig. 6.3a. The cross
section of the box is square, with size Lx = Ly = 292 nm and its height is Lz =
215 nm, which results in a fundamental lowest-order mode at frequency ωcav = 3
eV and an effective volume Veff = 4.483 · 106 nm3. This value of Veff is calculated

ii To satisfy the boundary conditions in a closed cavity, additional terms due to image dipoles
should be included. However, for simplicity, here we neglect these terms, since their contribution
is typically small compared to the near field of the dipole ∝ 1

r3 and of the field of the cavity
mode.

162



6.5. Physical observables obtained from classical models

from the general expression of dielectric structures [280]

Veff =
´

ε(r)|Ξ(r)|2dr
max[ε(r)|Ξ(r)|2] , (6.36)

and in this particular case we consider ε(r) = 1 inside the cavity. The molecular
excitation is nearly resonant with the cavity, ωmat ≈ ωcav = 3 eV, but its exact
frequency is changed to study the effects of the detuning. The transition dipole
moment µmat =

√
ℏfmat
2ωmat

[corresponding to the transition from the ground state to
the first excited state, as observed in Eq. (6.29c)] is parallel to the z axis and is
relatively strong, µmat = 15 Debye, achievable with nonacene, for example [281].
This value of the transition dipole moment implies that this molecule has an
oscillator strength of fmat = (118.74e)2

mp
, where e is the electron charge and mp the

mass of the proton. By placing the molecule in the center of the cavity where the
electric field of the mode is maximum, this choice of parameters leads to a coupling
strength gMC ≈ 2.5 · 10−4ωcav, far from the ultrastrong coupling regime (a larger
value of gMC is considered at the end of this subsection).

We show in Fig. 6.3b the distribution of the z component of the electric field
inside this cavity for the upper hybrid mode Ez(x, ω+,MC) and for the lower hybrid
mode Ez(x, ω−,MC), as obtained from Eq. (6.34). We plot the fields as a function
of the position in the x direction with respect to the location of the dipole at
the center of the cavity. To highlight the differences between the contributions
of the cavity and the dipole in the two modes, we choose a slight detuning of
ωcav − ωmat = 1.5 meV. Since the classical MC model does not give the absolute
value of the eigenmode fields, we choose arbitrary units so that the contribution of
the cavity mode to the electric field of the upper hybrid mode [Ecav(r, ω+,MC) in
Eq. (6.34)] has a maximum absolute value of 1, and this choice fixes all the other
values according to Eq. (6.35)iii. The field distribution shows a clear difference
in the behavior of the two hybrid modes, where for the upper mode the dipole
points in the same direction as the cavity field ( xcav(ω+,MC)

xmat(ω+,MC) > 0), but in the inverse
direction for the lower mode ( xcav(ω−,MC)

xmat(ω−,MC) < 0). Further, at the chosen detuning,
the relative contribution of the cavity to the fields is larger for the upper than the
lower mode, as indicated by the values of the electric field far from the molecule at
ω+,MC and ω−,MC. In contrast, as shown in the inset, the relative contribution from
the dipole to the field close to the molecule (x = 0) is stronger for the lower mode.
Figure 6.3b thus confirms that the classical harmonic oscillator model allows for
the calculation of the relative contribution of cavity and matter for each mode, as
desired.

iii The eigenstates of the Hopfield Hamiltonian from Eq. (6.30) have a symmetry where the
cavity contribution of one hybrid mode is the same as the matter contribution of the other
mode and vice versa, satisfying the equality ⟨â + â†⟩(ω±,MC) = ⟨b̂ + b̂†⟩(ω∓,MC). This property
allows us to connect the amplitudes of the classical oscillators for the two hybrid eigenmodes
as √

ωcavxcav(ω±,MC) = √
ωmatxmat(ω∓,MC) (from xcav = ⟨x̂cav⟩ =

√
ℏ/2ωcav⟨â + â†⟩ and

xmat = ⟨x̂mat⟩ =
√

ℏ/2ωmat⟨b̂ + b̂†⟩).
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In addition to the spatial distribution of the electric field of the two hybrid
modes, Eqs. (6.34) and (6.35) also enable to plot the dependence of the field
E(r, ω±,MC) inside the same cavity on the detuning ωmat − ωcav. Figure 6.3c
shows for each mode the contributions to this electric field of the cavity and the
molecule, normalized with respect to the sum of both contributions, according to
Σ±

cav = |Ecav(ω±,MC)|2

|Ecav(ω±,MC)|2+|Emat(ω±,MC)|2 (dots) and Σ±
mat = |Emat(ω±,MC)|2

|Ecav(ω±,MC)|2+|Emat(ω±,MC)|2

(solid lines). These ratios play a similar role as the Hopfield coefficients from cavity
QED. The blue (red) dots and solid lines correspond to the upper (lower) hybrid
mode. We obtain Ecav(ω±,MC) and Emat(ω±,MC) by replacing Eq. (6.35) into Eq.
(6.34), for a fixed coupling strength gMC = 2.5 · 10−4ωcav and for a distance of 10.5
nm from the dipole in the x direction. This position (indicated by the dashed line in
the inset of Fig. 6.3b) is chosen because it is where the contributions of the matter
and cavity have the same weight for the two hybrid modes at zero detuning for such
small coupling strengths (Σ±

cav = Σ±
mat ≈ 0.5, as shown in Fig. 6.3c). For detunings

such that ωcav > ωmat the field of the lower mode is predominantly given by the
matter excitation (Σ−

mat > Σ−
cav as indicated by the red dots and the red solid line),

while for the upper mode the cavity contribution dominates (Σ+
cav > Σ+

mat, blue).
Further, already at detunings as small as ωcav − ωmat ≳ 15 meV = 5 · 10−3ωcav,
the modes are essentially uncoupled for this small coupling strength (Σ+

mat ≪ Σ+
cav

and Σ−
mat ≫ Σ−

cav).
The coupling strength that we have considered up to now in this subsection

corresponds to the strong coupling regime (we have neglected losses), far from the
ultrastrong coupling regime, so that the phenomena studied can also be explained
with the classical linearized model. On the other hand, we consider again in Fig.
6.3d the contributions to the electric field Σ±

cav and Σ±
mat as a function of the

detuning, but in this case for a considerably larger coupling strength gMC = 0.2 ωcav.
This value of gMC is not currently achievable with dielectric cavities at the single
molecule level, but we choose it to illustrate the analysis of a ultrastrongly-coupled
systems within the classical MC model. Further, such large gMC can be achieved
in systems with many molecules, as discussed in Sec. 6.5.3. For zero detuning
ωcav = ωmat, the contributions of the dipole and the cavity are no longer identical
in the ultrastrong coupling regime, with Σ+

cav ≈ 0.6 and Σ+
mat ≈ 0.4 for the upper

hybrid mode at frequency ω+,MC (and the opposite for the lower hybrid mode). More
strikingly, the results in Fig. 6.3d indicate a qualitatively very different tendency
of the modes at large detunings as compared to strong coupling, especially in the
case of the upper hybrid mode. In ultrastrong coupling, in the ωmat → 0 limit
(ωmat − ωcav → −3 eV), this mode at frequency ω+,MC (blue solid line and dots)
has significant contributions from both the cavity and the matter (Σ+

cav ≈ 0.9 and
Σ+

mat ≈ 0.1), and thus these two excitations do not decouple in this limit. This
behavior is consistent with the discussion of the dispersion in Fig. 6.2d, where at
large detunings the upper mode frequency does not reach the bare frequency ωcav
or ωmat. The SpC, as well as the linearized model (not shown), do not reproduce
this behavior, because in the SpC model the modes become uncoupled (Σ+

cav ≈ 1
and Σ+

mat ≈ 0), while in the linearized model we obtain intermediate values between

164



6.5. Physical observables obtained from classical models

those corresponding to the SpC and MC models. In summary, we have shown
in this section how to use the classical MC model to characterize the fields in a
hybrid system composed by a molecule coupled to a transverse mode of a cavity.
The methodology described enables to obtain equivalent results to the cavity-QED
description (Hopfield Hamiltonian with diamagnetic term) by using an intuitive
classical model of coupled harmonic oscillators.

6.5.2 A molecule interacting with the longitudinal field of a
metallic nanoparticle

As an alternative system to analyze how to obtain physical observables in the
strong and ultrastrong coupling regimes, we now consider a molecule placed close
to a metallic nanoparticle (Fig. 6.4a). These nanoparticles are attractive in
nanophotonics because they support localized surface plasmon modes characterized
by very low effective volumes [85, 264, 281–283]. Since the coupling strength is
inversely proportional to the square root of the effective mode volume, large
coupling strengths can be obtained even when the nanoparticle interacts with a
single molecule, as desired to reach the ultrastrong coupling regime.

In order to analyze the interaction of the nanoparticle with a molecular (bosonic)
excitation of dipole moment dmat, we consider that the size of the nanoparticle and
the molecule-nanoparticle distance are much smaller than the light wavelength, and
treat the system within the quasistatic approximation. We have shown in Sec. 6.3
that, under this approximation, the only interactions of the system are Coulomb
interactions. Therefore, while in the previous subsection we have analyzed the
coupling of molecular excitations with transverse electromagnetic fields, here we
focus on the interaction with longitudinal fields. Accordingly, instead of the MC
model that has been used in Sec. 6.5.2, the SpC model has to be considered, as
shown in Eq. (6.18).

For simplicity, we consider small spherical particles of radius Rcav that are
composed by a Drude metal with plasma frequency ωp. These particles present
a dipolar plasmonic resonance of Lorentzian lineshape at frequency ωcav = ωp√

3
(Sec. 1.2.1), oscillator strength fcav = 4πε0R3

cavω2
cav and dipole moment dcav [86].

Further, we consider that this dipolar mode is illuminated by an external field of
amplitude Einc and frequency ω. We have shown in Sec. 6.3.1 that this field can
be introduced in the SpC model as a forcing term acting both into the nanoparticle
and into the molecule, by adding terms Fαe−iωt =

√
fα|Einc|e−iωt (α = ’cav’

or α = ’mat’) in the right handside of Eq. (6.2), i.e. the amplitude Fα of the
time-dependent force is proportional to the dipole moments dα and to the electric
field of the illumination. By solving the equations of motion of the SpC model
[Eq. (6.2)] with this external force included, we can calculate the induced dipole
moments of the cavity and the matter excitation:

dcav(ω) =
√

fcavxcav(ω) =
√

fcav
Fcav(ω2

mat − ω2) − Fmat2gSpC
√

ωcavωmat

(ω2
cav − ω2)(ω2

mat − ω2) − 4g2
SpCωcavωmat

,

(6.37a)
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Figure 6.4: Modelling of the coupling between a molecule and a spherical nanoparticle (a
nanocavity) within the classical SpC model. a) Schematics of the system. The molecular
excitation (of induced dipole moment dmat) and the dipolar mode of the plasmonic nanocavity
(of induced dipole moment dcav) are described as two harmonic oscillators (with oscillation
amplitudes xmat and xcav) that are coupled with strength gSpC. The system is excited by a
laser with electric field Einc. The radius of the spherical nanocavity is 5 nm and the dipole is
placed at 1 nm distance from the surface of the nanoparticle along the x axis (the center of
the nanoparticle corresponds to x = y = z = 0). dcav, dmat and Einc are polarized along x.
b) Electric field distribution along the x axis (y = z = 0) when the system is excited at the
frequency of the upper hybrid mode ω+,SpC (top panel) and of the lower hybrid mode ω−,SpC
(bottom panel). The fields are evaluated only outside the nanocavity, with the positions inside
highlighted by the green-shaded area. The position of the molecule is indicated by the vertical gray
line. We evaluate the fields for coupling strength gSpC = 0.1 ωcav and the following parameters:
fmat = (118.74e)2/mp, fcav = (4345e)2/mp, Fcav =

√
fcav|Einc|, Fmat =

√
fmat|Einc|, κ = 20

meV and γ = 10 meV. For each hybrid mode, the cavity contribution to the field is highlighted by
dots, the molecular contribution is indicated by dashed lines and the total field by blue solid lines.
c) Scattering cross section of the same system, with gSpC = 0.1 ωcav, as a function of the detuning
of the laser ω − ωcav. Solid lines: tuned system with frequencies ωcav = ωmat = 3 eV. Dashed
lines: detuned system with frequencies ωcav = 3 eV and ωmat = 3.2 eV. d) Scattering cross section
of the tuned system (ωcav = ωmat = 3 eV), comparing the result of the SpC model (blue line)
to the results of the MC model (black) and the linearized model (gray), in the strong coupling
regime, g = 10−2ωcav. e) Same as in (d) for the ultrastrong coupling regime, g = 0.3 ωcav.
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dmat(ω) =
√

fmatxmat(ω) =
√

fmat
Fmat(ω2

cav − ω2) − Fcav2gSpC
√

ωcavωmat

(ω2
cav − ω2)(ω2

mat − ω2) − 4g2
SpCωcavωmat

.

(6.37b)
These expressions are consistent with an alternative classical approach that models
the nanocavity and the molecule as polarizable objects (see Appendix B), which
supports the validity of the general approach presented in this chapter. We further
note that in the absence of losses the dipole moments dcav and dmat diverge at the
eigenfrequencies ω±,SpC of the SpC model [Eq. (6.3)]. To avoid these divergences,
in this section we add an imaginary part to the bare cavity and matter frequencies.
These imaginary parts are related to the decay rates κ and γ of the cavity and the
matter excitation, respectively, as Im(ωcav) = − κ

2 and Im(ωmat) = − γ
2 .

As an example, we consider a metallic spherical nanoparticle of radius Rcav =
5 nm and with a cavity mode of frequency ωcav = 3 eV. We consider the same
molecule of Sec. 6.5.1, with a strong transition dipole moment of magnitude
µmat = 15 Debye. As indicated by Eq. (6.19), the coupling strength of the system
can be adjusted depending on the position and the orientation of the molecule.
The coupling strength is maximized if the induced dipole moments dcav and dmat
and their relative position nrrel are oriented in the same direction, parallel to
the incident field. With this choice (as indicated in Fig. 6.4a) and placing the
molecule at 1 nm from the surface of the nanoparticle, we obtain a coupling strength
gSpC ≈ 300 meV = 0.1 ωcav and thus reach the limit of ultrastrong coupling regime.
This large value of gSpC is possible due to the small size of the nanoparticle (large
field confinement) and to the strong transition dipole moment considered for the
molecule, which lies slightly beyond the values of µmat = 3−5 Debyes corresponding
to typical molecules used in plasmonic systems. Even larger field confinement
is possible in current non-spherical experimental configurations that exploit very
narrow gaps [264]. To ensure that the system is also in the strong coupling regime
when considering lower values of gSpC below, we choose γ = 10 meV and a damping
rate of the plasmonic cavity κ = 20 meV that is small compared to those of usual
plasmonic metals.

The induced dipole moments obtained from Eq. (6.37) can be used, for example,
to calculate the near-field distribution for excitation at frequency ω. The total
electric field is the sum of the cavity Ecav and molecular or matter contribution
Emat. Under the quasistatic approximation, with dcav(ω) =

√
fcavxcav(ω) and

dmat(ω) =
√

fmatxmat(ω) we obtain that the fields at position r outside the metallic
nanoparticle, |r−rcav| > Rcav, depend on the amplitude of the harmonic oscillators
as

E(r, ω) = 3(ndcav · nrcav)nrcav − ndcav

4πε0|r − rcav|3
√

fcavxcav(ω)︸ ︷︷ ︸
Ecav(r,ω)

+ 3(ndmat · nrmat)nrmat − ndmat

4πε0|r − rmat|3
√

fmatxmat(ω)︸ ︷︷ ︸
Emat(r,ω)

. (6.38)

167



Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

From this expression, the fields at the frequency of each hybrid mode are calculated
by replacing into Eq. (6.38) the dipole moments of Eq. (6.37) induced at the mode
frequencies ω±,SpC.

The electric fields associated to the upper and lower mode frequencies, which
at both frequencies are real and polarized along the x direction, are plotted in the
top and bottom panels of Fig. 6.4b (blue lines), respectively. We further show the
decomposition of the fields into the contribution of the cavity (black dots) and the
molecule (black dashed line) as given by the first and second terms in the right
handside of Eq. (6.38), respectively, which is useful to characterize the different
properties of each mode. In particular, it can be appreciated from Fig. 6.4b that
when the upper hybrid mode is excited, the dipoles associated to the cavity and
the molecule are oriented to the same direction (same sign). In contrast, for the
lower mode, the dipoles point towards the opposite direction.

The near field plotted in Fig. 6.4b is useful to analyze the behavior of the hybrid
modes but is difficult to measure, and most experiments focus on the far-field
spectra, such as the scattering cross-section spectra σsca. Neglecting retardation
effects due to the small molecule-nanocavity distance that we consider, σsca is
related to the total dipole moment of the system as [67]

σsca(ω) = ω4

6πε2
0c4

∣∣∣∣dcav(ω)
|Einc|

+ dmat(ω)
|Einc|

∣∣∣∣2
= ω4

6πε2
0c4

∣∣∣∣√fcavxcav(ω)
|Einc|

ndcav +
√

fmatxmat(ω)
|Einc|

ndmat

∣∣∣∣2 . (6.39)

We show in Fig. 6.4c the scattering cross section for the same nanoparticle-molecule
system in the outset of the ultrastrong coupling regime (gSpC = 0.1 ωcav). Since
the oscillator strength of the cavity is much larger than that of the molecule
(fcav ≫ fmat), the spectrum is fully dominated by the contribution of the cavity,
given by Eq. (6.37a) [however, in other systems, where both oscillator strengths
are similar, fcav ≈ fmat, it is crucial to consider both contributions in Eq. (6.39)].
The scattering cross-section spectra are shown for two different detunings between
the nanocavity and the molecule. At zero detuning (ωcav = ωmat = 3 eV, solid
lines in Fig. 6.4c) the upper hybrid mode has a (moderately) larger cross section
than the lower hybrid mode, mostly due to the ω4 factor in Eq. (6.39). However,
when the molecular excitation is blue detuned with respect to the cavity (ωcav = 3
eV and ωmat = 3.2 eV, dashed line), the strength of the peak in the cross-section
spectra associated to the lower hybrid mode increases and the upper hybrid mode
becomes weaker. This behavior occurs because, for this detuning, the lower hybrid
mode acquires a larger contribution of the cavity resonance that dominates the
scattering spectra, while the predominantly molecule-like behavior of the upper
mode results in a smaller cross section due to fmat ≪ fcav.

To assess the importance of using the classical SpC model to describe this
system, we compare the results of the scattering cross-section spectra calculated
with this model with those obtained using the MC and linearized models. For this
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purpose, it is first necessary to obtain the expressions of the scattering cross section
for the latter two models under external illumination. By introducing forcing terms
in the equations of motion of the MC model [Eq. (6.4)] to account for the external
field, we obtain the corresponding oscillator amplitudes

xcav(ω) = Fcav(ω2
mat − ω2) − Fmat2igMCω

(ω2
cav − ω2)(ω2

mat − ω2) − 4g2
MCω2 , (6.40a)

xmat(ω) = Fcav2igMCω + Fmat(ω2
mat − ω2)

(ω2
cav − ω2)(ω2

mat − ω2) − 4g2
MCω2 . (6.40b)

On the other hand, by repeating the procedure with the linearized model [Eq.
(6.7)], we obtain

xcav(ω) = 1
4ω

Fcav(ωmat − ω) − Fmatglin

(ωcav − ω)(ωmat − ω) − g2
lin

, (6.41a)

xmat(ω) = 1
4ω

Fmat(ωcav − ω) − Fcavglin

(ωcav − ω)(ωmat − ω) − g2
lin

. (6.41b)

We calculate the scattering cross section according to each classical model by
introducing the corresponding values of xcav(ω) and xmat(ω) in Eq. (6.39). Figure
6.4d shows the spectra for the system at zero detuning (ωcav = ωmat = 3 eV) in
the strong coupling regime but far from the ultrastrong coupling regime, with
g = 10−2ωcav. The spectra calculated from the three models overlap almost
perfectly, as expected (black line: MC model; gray line: linearized model; blue line:
SpC model). Concretely, the difference between the three calculations is less than
10% at the hybrid mode frequencies ω±,SpC. This small error is consistent with the
good agreement of the eigenfrequencies in Sec. 6.2 for this relatively low value of g.

In contrast, if the system is well into the ultrastrong coupling regime, with
coupling strength g = 0.3 ωcav, the spectra obtained with the three models are
very different (Fig. 6.4e). There is a clear disagreement in the peak positions,
due to the difference in the eigenfrequencies of the three models (see Fig. 6.2d).
Further, the MC model predicts that the strength of the peak corresponding to
the excitation of the upper hybrid mode is two times larger than the equivalent
value for the SpC model. These significant differences emphasize the importance
of the choice of the model in this regime. We note, however, that for such large
coupling, higher-order modes of the nanocavity likely play an important role in
the coupling in realistic systems, which would need to be taken into account [284].
Further, it would be interesting to examine how this analysis is modified by going
beyond the quasistatic description.
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6.5.3 An ensemble of interacting molecules in a
Fabry-Pérot cavity

The previous two examples were chosen to illustrate the procedure to connect the
oscillators of the SpC and MC models to physical observables. In both cases, the
optical cavity was coupled to a single molecule, which makes it very challenging
to reach the ultrastrong coupling regime experimentally. An alternative approach
to reach the necessary coupling strengths consists in filling a cavity with many
molecules or a material supporting a well-defined excitation (such as a phononic
resonance) [63,64]. We consider in this section a homogeneous ensemble of molecules
interacting with resonant transverse electromagnetic modes of a Fabry-Pérot cavity
(left sketch in Fig. 6.5), a system of large relevance to experiments [260]. Each
molecule presents a vibrational excitation that is modelled as a dipole of induced
dipole moment di (we focus here on the case of molecules for specificity, but
the same derivation can also be applied to phononic or similar materials by
focusing on the dipole moment associated to each unit cell). We consider that
all molecules are identical, and thus have the same oscillator strength fmat and
resonant frequency ωmat. For simplicity, we assume that there are Nmat molecules
distributed homogeneously. The electromagnetic modes of the Fabry-Pérot cavity
are standing waves with vector potential Aα and frequency ωcav,α, where all α
modes are orthogonal.

Following the relations between the observables and oscillators given in
Sec. 6.3, we represent each vibrational dipole as a harmonic oscillator with
oscillation amplitude xmat,i = |di|√

fmat
and each cavity mode with the variable

xcav,α =
√

ε0VeffAα. Notably, this system encompasses the two types of interaction
discussed in the previous subsections: (i) each dipole i is coupled to all other dipoles
j (i.e. direct longitudinal molecule-molecule interaction) following the SpC model,
where the coupling strength g

(i,j)
SpC is given by Eq. (6.19); (ii) each dipole i is coupled

to all transverse cavity modes α according to the MC model with coupling strength
g

(α,i)
MC = 1

2

√
fmat

ε0Veff
Ξα(ri) cos θα,i [Eq. (6.17)], where the normalized amplitude value

Ξα of the cavity field is evaluated at the position of molecule i. We assume for
simplicity that all molecules are oriented in the same direction as the cavity field,
and thus cos θα,i = 1 for all α and i. All the interactions that are present in
this system are shown schematically in the left panel of Fig. 6.5. To combine all
couplings in a single model, we just include in the harmonic oscillator equations
the coupling terms associated with the longitudinal dipole-dipole interactions [SpC
model, Eq. (6.2)] and those describing the interaction of the molecules with the
transverse cavity modes [MC model, Eq. (6.4)]. The resulting equations are

ẍmat,i + ω2
matxmat,i +

∑
α

2g
(α,i)
MC ẋcav,α +

∑
j ̸=i

2ωmatg
(i,j)
SpC xmat,j = 0, (6.42a)

ẍcav,α + ω2
cav,αxcav,α −

∑
i

2g
(α,i)∗
MC ẋmat,i = 0, (6.42b)
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6.5. Physical observables obtained from classical models

Figure 6.5: Interaction between matter excitations within a homogeneous material (here a
homogeneous ensemble of molecules) and the transverse modes of a dielectric cavity. (Left)
Schematic of the system. The oscillators xcav,α represent the vector potential Aα associated to
all modes α in the cavity, and the matter oscillators xmat,i represent the dipole moments di of
each molecule. The cavity-molecule interactions are modelled with the MC model and coupling
strength g

(α,i)
MC , and the molecule-molecule interactions with the SpC model and coupling strength

g
(i,j)
SpC . We indicate all the interactions of the molecule with index i = 1. (Right) Schematic

indicating that the description of the full system is equivalent to the coupling, within the MC
model, of the cavity mode α with a single molecular excitation of dipole moment dα, modified
frequency

√
ω2

mat + 2ωmatgSpC and modified coupling strength gMC
√

Neff.

where we sum over all molecules and all cavity modes.
The direct calculation of the whole dynamics of the system requires solving

Nmat × Ncav equations, where Ncav is the number of cavity modes. However, due
to the homogeneity of the material and of the orthogonality of the cavity modes,
each cavity mode α only couples with a collective matter excitation (represented by
an oscillator of oscillation amplitude xmat,α ∝

∑
i Ξα(ri)xmat,i, i.e. the amplitude

of each individual oscillator in the collective mode α is weighted by the cavity mode
field at the same position), which allows us to strongly simplify Eq. (6.42). The
equations of motion for this new variable are (see Appendix C for the derivation of
these equations and of the value of the different parameters)

ẍmat,α + (ω2
mat + 2ωmatgSpC)xmat,α + 2gMC

√
Neffẋcav,α = 0, (6.43a)

ẍcav,α + ω2
cav,αxcav,α − 2gMC

√
Neffẋmat,α = 0. (6.43b)

In these equations, gSpC is a parameter that describes effectively the effect of the
molecule-molecule interactions within the α collective matter excitation, and gMC

is the maximum coupling strength between a single molecule and the transverse
cavity mode, obtained for a molecule placed at the antinodes of the mode. Neff
is the effective number of molecules that are coupled to the mode (Neff = Nmat/2
for a Fabry-Pérot mode). Equation (6.43) indicates that it is possible to describe
the coupling between a cavity mode and a collective molecular excitation by
considering only two harmonic oscillators, which are independent of the other
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Chapter 6. Classical and cavity-QED models in the ultrastrong coupling regime

cavity and collective modes. The coupling strength between each collective matter
excitation and the corresponding cavity mode increases with Neff as gMC

√
Neff. This

scaling with
√

Neff is consistent with the quantum Dicke model [285], and explains
the large coupling strengths that have been demonstrated in these systems [286,287].
Further, the dipole-dipole interaction between the molecules just renormalizes the
frequency of the collective excitation from ωmat to

√
ω2

mat + 2ωmatgSpC (except
when the cavity mode presents extremely fast spatial variations, where more
complex effects can occur [288].

In this description, each cavity mode α only couples to the collective molecular
mode where the dipoles are polarized following the orientation and spatial
distribution Ξα(r) of the cavity field. This collective mode thus has a dipole
moment dα = 1√

Neff

∑
i Ξα(ri)di, where di are the single-molecule induced dipole

moments (see Appendix C). Importantly, as can be observed in Eq. (6.43), the
interaction between each cavity mode with the corresponding collective matter mode
is described classically within the MC model. As a consequence, the description
of this coupling is fully equivalent to the analysis of the coupling between the
same cavity mode and an individual dipole of frequency

√
ω2

mat + 2ωmatgSpC and
increased coupling strength gMC

√
Neff, as indicated schematically in Fig. 6.5.

Accordingly, the response of the cavity filled by a large number of molecules can be
described by adapting the analysis and conclusions in Sec. 6.5.1. For example, the
expression of the eigenmodes as a function of the cavity and collective molecular
modes can be obtained using Eq. (6.35). The electric field inside the cavity
corresponding to each hybrid mode can be obtained by noticing that i) xcav,α gives
the amplitude of the vector potential Aα, ii) the oscillator xmat,α is proportional
to the dipole moment dα, which enables to calculate the individual induced dipole
moments di and iii) these single-molecule quantities lead to the polarization density
P(r) = di(r)

∆V , where ∆V is the volume that each individual dipole occupies.
We have thus shown that the MC model constitutes the proper description of the

coupling between transverse cavity modes and matter excitations in homogeneous
materials. An alternative approach that further verifies the validity of this model
to describe the system is to demonstrate that it allows for recovering the typical
bulk permittivity of ensembles of molecules or phononic materials, which cannot
be correctly done with the SpC and linearized models. We discuss this issue in
more detail in Chapter 7.

6.6 Alternative classical models of coupled
harmonic oscillators

The discussion of Sec. 6.3 led us to conclude that the classical MC model relates
matter excitations with transverse electromagnetic modes, while the SpC model
can express dipole-dipole interactions. In this section, we show that there are other
classical coupled harmonic oscillator models that are equivalent to the MC and the
SpC models. These alternative models depend on the gauge chosen for the classical
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Lagrangian and Hamiltonian descriptions, and we discuss oscillator models in two
of the most vastly used gauges: the Coulomb and dipole gauges.

6.6.1 Interaction of a molecular excitation with a transverse
cavity mode described within the Coulomb gauge

We first focus on the description of the coupling between a transverse
electromagnetic mode and a molecular excitation in the Coulomb gauge. This
system is described with the Lagrangian of Eq. (6.22) in this gauge, and it has
been shown in Sec. 6.3 that it leads to the MC model. Alternatively, here we
use Hamilton’s equations to obtain another equivalent classical model of harmonic
oscillators, starting from the classical minimal-coupling Hamiltonian of Eq. (6.24)
corresponding to the Coulomb gauge. In this section we focus again on the situation
of maximum coupling strength with Ξ(rmat) cos θ = 1 (as in Sec. 6.4), so that the
equations are written in a more concise way. From Eq. (6.24), we can directly
derive the Hamilton’s equations of motion of all canonical variables:

Ȧ = ∂Hmin-c
Cou

∂ΠCou
= ΠCou

ε0Veff
, (6.44a)

Π̇Cou = −∂Hmin-c
Cou

∂A
= −ε0Veffω2

cavA + fmat(pCou − A), (6.44b)

ḋ = ∂Hmin-c
Cou

∂pCou
= fmat(pCou − A), (6.44c)

ṗCou = −∂Hmin-c
Cou
∂d

= −ω2
mat

fmat
dj . (6.44d)

Hamilton’s equations can be used to obtain classical harmonic oscillator models
by eliminating two variables, which leads to two second-order differential equations.
By choosing the variables A and d to describe the dynamics of the system, we
obtain

Ä + ω2
cavA − ḋ

ε0Veff
= 0, (6.45a)

d̈ + ω2
matd + fmatȦ = 0. (6.45b)

As discussed in detail in Sec. 6.3, these equations have the form of the MC
model, because the coupling terms are proportional to the time derivatives Ȧ and
ḋ. However, there are other possible ways to represent the response of this system
with harmonic oscillators. An alternative is to choose the variable pCou for the
matter excitation and A for the cavity mode. By eliminating the rest of variables
in Eq. (6.44), the equations of motion for the chosen variables are written as

Ä +
(

ω2
cav + fmat

ε0Veff

)
A − fmat

ε0Veff
pCou = 0, (6.46a)
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p̈Cou + ω2
matpCou − ω2

matA = 0. (6.46b)

With the transformation xcav =
√

ε0VeffA used in Sec. 6.5.1, and with the new
transformation x′

mat =
√

fmat
ωmat

pCou, Eq. (6.46) becomes

ẍcav + (ω2
cav + 4g2

MC)xcav − 2gMCωmatx
′
mat = 0, (6.47a)

ẍ′
mat + ω2

matx
′
mat − 2gMCωmatxcav = 0, (6.47b)

with the same coupling strength gMC = 1
2

√
fmat

ε0Veff
that is used to describe the

cavity-dipole coupling within the MC model.
Equations (6.45) and (6.47) (the former corresponding to the MC model) have

been derived for the same system, and thus must result in the same response of the
system. However, several interesting aspects can be observed. First, in Eq. (6.47)
x′

mat is related to pCou, while xmat is related to d in the MC model. Thus, it is
important to consider this difference when calculating physical observables as in Sec.
6.5.1. Second, Eq. (6.47) contains coupling terms proportional to the oscillator
displacements xcav and x′

mat (as in the SpC model) instead of to the time derivatives
ẋcav and ẋmat (as in the MC model). Last, in Eq. (6.47) the frequency of the cavity
mode is renormalized from ωcav to

√
ω2

cav + 4g2
MC. The different coupling term and

the frequency renormalization compensate each other, so that Eq. (6.47) gives the
same result as the MC model. Therefore, the molecule-dielectric cavity system
can be equivalently described with coupling terms proportional to the oscillator
displacements or to their time derivatives, if the frequency of the cavity mode and
the oscillator amplitudes are modified appropriately.

6.6.2 Interaction of a molecular excitation with a transverse
cavity mode described within the dipole gauge

We have shown that the results of the MC model can be recovered by equations
with a different coupling term and a renormalized frequency of the cavity mode.
Here, we use the dipole gauge to show that we can also obtain equivalent equations
by renormalizing the frequency of the matter excitation. In this case, we start from
the Hamiltonian of Eq. (6.28) and obtain the following Hamilton’s equations of
motion:

Ȧ =
∂Hmin-c

Dip

∂ΠDip
= ΠDip + d

ε0Veff
, (6.48a)

Π̇Dip = −
∂Hmin-c

Dip

∂A
= −ε0Veffω2

cavA, (6.48b)

ḋ =
∂Hmin-c

Dip

∂pDip
= fmatpDip, (6.48c)

ṗDip = −
∂Hmin-c

Dip

∂d
= −ω2

mat
fmat

d − ΠDip + d

ε0Veff
. (6.48d)

174



6.6. Alternative classical models of coupled harmonic oscillators

The choice of variables A and d to obtain second-order differential equations
leads to the transformation from Eq. (6.48) to Eq. (6.45). Therefore, for these
variables the MC model is obtained independently of the considered gauge. On the
other hand, with the choice of the variables d and ΠDip, we obtain

Π̈Dip + ω2
cavΠDip + ω2

cavd = 0 (6.49a)

d̈ +
(

ω2
mat + fmat

ε0Veff

)
d + fmat

ε0Veff
ΠDip = 0. (6.49b)

This equation can be rewritten in terms of oscillator amplitudes. By using the
matter oscillator amplitude xmat = d√

fmat
and the new cavity oscillator amplitude

x′
cav = ΠDip√

ε0Veffωcav
, the equations are

ẍ′
cav + ω2

cavx′
cav + 2gMCωcavxmat = 0, (6.50a)

ẍmat + (ω2
mat + 4g2

MC)xmat + 2gMCωcavx′
cav = 0. (6.50b)

The last system of equations gives the same results as the MC model, but with the
coupling term proportional to the oscillator displacements x′

cav and xmat and with
the frequency of the matter excitation renormalized from ωmat to

√
ω2

mat + 4g2
MC.

6.6.3 Interaction of a molecule with a metallic nanoparticle
In Secs. 6.6.1 and 6.6.2 we have shown that the coupling between a molecular
excitation and a transverse cavity mode can be described equivalently with the MC
model (coupling terms proportional to the time derivatives ẋcav and ẋmat) or with
models where the coupling terms are proportional to the oscillator displacements
and the frequencies of the oscillators are modified. Here, we show a similar result
for dipole-dipole interactions: they can be described by the SpC model (coupling
terms proportional to the amplitudes xcav and xmat) or with alternative equations
that contain coupling terms proportional to the time derivatives ẋcav and ẋmat (as
they appear in the MC model), together with renormalized frequencies.

To show the alternative model to describe this system, we consider the
Hamiltonian of dipole-dipole interactions given by Eq. (6.31) (which is the same
in the Coulomb and dipole gauges). By calculating the equations of motion for
the oscillator variables xcav = dcav√

fcav
and xmat = dmat√

fmat
as in previous subsections,

we recover the equations of the SpC model [Eq. (6.2)]. However, we can again
make another choice for the variables to obtain an alternative model of harmonic
oscillators. Using the oscillator xcav = dcav√

fcav
as considered previously and the new

oscillator x′
mat =

√
fmat

ωmat
pmat, the equations of motion are

ẍcav + (ω2
cav − 4g′2

SpC)xcav − 2g′
SpCẋ′

mat = 0, (6.51a)
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ẍ′
mat + ω2

matx
′
mat + 2g′

SpCẋcav = 0, (6.51b)

with the coupling strength g′
SpC = gSpC

√
ωcav
ωmat

, slightly modified compared to the
SpC value gSpC used in Eq. (6.19). We have thus shown that the results of the SpC
model can also be obtained with a model where the coupling terms are proportional
to the time derivatives ẋcav and ẋ′

mat, but in this case the cavity frequency has
been renormalized from ωcav to

√
ω2

cav − 4g′2
SpC.

6.7 Summary
We have analyzed the application of classical coupled harmonic oscillator models
to describe nanophotonic systems under ultrastrong coupling and the connection
of these models with quantum descriptions. The study mainly focuses on the
two classical models typically used in this context, here referred to as the Spring
Coupling (SpC) and Modified Coupling (MC) models, where the difference relies on
whether the coupling term is proportional to the displacement of the oscillators (SpC
model) or to their velocities (MC model). The choice between these models typically
does not have significant consequences in the weak and strong coupling regimes,
where both can be approximated to the same linearized model (this approximation
is equivalent to the rotating-wave approximation in quantum models). However, the
SpC model and the MC model result in very different eigenvalues in the ultrastrong
coupling regime. We demonstrate that the SpC model represents light-matter
coupling via Coulomb interactions, such as those governing the interaction between
different molecules and between molecules and small plasmonic nanoparticles, and
that this model results in the same eigenvalue spectra as the quantum Hopfield
Hamiltonian without diamagnetic term. On the other hand, the MC model
reproduces the spectra of systems for which the diamagnetic term should be present
in the Hamiltonian, corresponding to systems where matter excitations interact with
transverse electromagnetic fields (for example, in conventional dielectric cavities).
We thus show that the SpC and MC models are capable of capturing the same
information than a cavity-QED description about the spectra of nanophotonic
systems under ultrastrong coupling, but using a simpler framework. We generalize
this discussion in Sec. 6.6 to other alternative models of classical oscillators. We
summarize in Table 6.1 all the correspondences between classical and cavity-QED
models that we have discussed in this chapter.

Additionally, classical oscillator models are typically used to calculate the
eigenvalues of the system, but we also discuss how they provide other experimentally
measurable magnitudes in three canonical systems of nanophotonics. We first show
that the MC model can be applied to calculate the electric field distribution of each
hybrid mode in a dielectric cavity filled by a single molecule. On the other hand,
for the SpC model, we consider a molecule situated near a metallic nanoparticle
and calculate the near-field distribution and the far-field scattering spectra. Last,
the two models are combined when considering an ensemble of molecules that
interact with each other due to Coulomb interactions (SpC model) and also with
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transverse electromagnetic modes of a cavity (MC model). In this case, we show
that the response of the system can be obtained by considering that each transverse
cavity mode interacts with a collective molecular excitation. The only effect of
the molecule-molecule interactions is to modify the effective frequency of the these
collective excitations, and the MC model describes the relevant ultrastrong coupling
between these collective excitations and the cavity modes.
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MICROCAVITY PHONON
POLARITONS IN THE WEAK,
STRONG AND ULTRASTRONG
COUPLING REGIMES

7.1 Introduction
We have discussed the phenomenology behind the strong and ultrastrong light-
matter coupling regimes in Sec. 1.3 and in Chapter 6. In particular, strong coupling
between cavity modes and vibrations can be achieved by filling classical Fabry-
Pérot microcavities with molecules. We have further shown in Sec. 6.5.3 that the
coupling between Fabry-Pérot modes and molecular vibrations can be described by
simple models based on classical coupled harmonic oscillators or on cavity QED.
Vibrational strong coupling has emerged as a new intriguing research topic, specially
after it has been reported that it can lead to modification of fundamental material
properties, triggering, for example, phase transitions [289] or modifying chemical
reactions [61,62]. Recently, it was shown that molecular vibrational strong coupling
could be achieved even on the nanometre scale, by exploiting localized phonon
polaritons in hexagonal boron nitride (hBN) nanoresonators [91] and slabs [290]
(localized phonon polaritons are excitations similar to localized plasmon polaritons
that emerge due to the coupling between photons and collective vibrations of the
ions of a polar material).

Remarkably, a detailed study and control of the coupling strength between
photons and phonons in classical Fabry–Pérot microcavities is relatively unexplored
terrain. Phonons have significant influence on many physical properties of crystals
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Chapter 7. Microcavity phonon polaritons

[129], such as on the electrical and thermal conductivity, ferroelectricity [291],
and superconductivity [292], so that controlling the coupling strength between
infrared photons and phonons in microcavities may become an interesting platform
for future fundamental and applied studies. For example, recent studies suggest
that cavity-mediated strong light-phonon coupling may trigger quantum phase
transitions without the need of an external pump [289].

In this chapter, we demonstrate that infrared microcavities comprising polar
van der Waals materials are a versatile test bench to study the interaction of optical
phonons and photons. Specifically, we study microcavities containing layers of
hBN, which is an insulating polar material exhibiting phonons in the mid-infrared
spectral range [87]. This system is described in more detail in Sec. 7.2. The
theoretical analysis of the coupling between cavity modes and phonons is then
performed in Sec. 7.3. We first calculate in Sec. 7.3.1 the coupling strength g of the
system from the reflectivity calculated by transfer-matrix simulations. The value of
g is extracted from the spectra by describing the system using a classical coupled
harmonic oscillator model, based on the analysis of Chapter 6. We demonstrate
that strong coupling can be achieved for layers as thin as a few nanometres, leading
to the formation of microcavity phonon polaritons. Ultrastrong coupling is possible
for thick layers, and we systematically trace the evolution from the weak to the
ultrastrong coupling regime. Further, in Sec. 7.3.2 we show that a microscopic
model that accounts for the interaction of phonons with Fabry-Pérot modes leads
to an analytical expression of the coupling strength that agrees with the results
of transfer-matrix simulations. The theoretical results presented in this chapter
have also been verified experimentally by the groups of Luis Hueso and Rainer
Hillenbrand from CIC nanoGUNE, and we show the comparison between the
theoretical predictions and experimental data in Sec. 7.4. Last, we discuss in Sec.
7.5 how the dispersion of the cavity fully filled with hBN is directly connected with
the intrinsic properties of hBN, such as with its bulk permittivity and dispersion.

7.2 Description of the system
In this section, we describe in more detail the hBN microcavities that we analyze
in this chapter. We use Fabry-Pérot cavities containing hBN layers of variable
thickness. A schematic diagram is shown in Fig. 7.1. The cavities are formed by
planar layers, and all the interfaces are perpendicular to the z axis, as shown by
the coordinates axes included in the scheme. In all the calculations the incident
medium (i.e. the medium from which the system is illuminated) is vacuum, the
substrate is CaF2 and the mirrors are 20 nm-thick gold layers. The inside of the
cavity, i.e. without considering the mirrors, extends from z = 0 to z = Lcav (Lcav
is the total thickness), and it contains a layer of thickness LhBN placed between
z = L1 and z = L2. Unless stated otherwise, we consider that the layer is in the
center of the cavity, between L1 = Lcav

2 − LhBN
2 and L2 = Lcav

2 + LhBN
2 . In many

of the transfer-matrix simulations, and also in all the experiments shown in Sec.
7.4, the material of this layer is hBN, and we refer to this particular case as a

180



7.2. Description of the system

Au

MoS2

hBN

20 nm

20 nm

LhBN

MoS2

Au

CaF2

Lcav

z = 0

z = L1

z = Lcav

x

z

z = L2

Figure 7.1: Schematic diagram of the hBN microcavities. We indicate the coordinates axes and
the material and thickness of each layer. In some simulations, hBN is substituted by a material
with constant permittivity εhBN,∞, PMMA or a material which has vibrations characterized by a
weak oscillator strength.

hBN-filled cavity. In other simulations, we replace hBN by a material with constant
permittivity εhBN,∞, which corresponds to the high-frequency permittivity of hBN.
We refer to these cavities as bare cavities, because the contribution of the hBN
phonons is eliminated. The rest of the cavity (the layers between z = 0 and z = L1
and between z = L2 and z = Lcav) is filled by MoS2, which does not show any
resonant feature in the analyzed range of frequencies.

In the transfer-matrix simulations, we have modelled the materials of the system
as follows. For the incident medium we use the vacuum permittivity, and the
(relative) permittivity of the substrate material CaF2 is εCaF2 = 1.882. The gold
mirrors are described by a Drude function that fits the low-frequency experimental
data from Ref. [71], i.e. the permittivity follows Eq. (1.25) with plasma frequency
ωp,Au = 73114.15 cm−1 and damping frequency γAu = 571.04 cm−1 [230].

We model hBN with a diagonal permittivity tensor ↔
ε hBN(ω), in order to

take into account the anisotropy of this material. hBN is characterized by
a layered atomic structure, so that the phonons that are polarized along the
plane of the atomic layers (in-plane phonons) have different frequencies compared
to those polarized in the normal direction, i.e. parallel to the anisotropic
axis (∥, out-of-plane phonons). In our configuration, the plane of the atomic
layers is parallel to all the Fabry-Pérot interfaces (x − y plane). We thus have
↔
ε hBN(ω) = diag

(
εhBN(ω), εhBN(ω), εhBN,∥(ω)

)
, where we omit a second subscript

in the x and y components for brevity (notice that the x and y components are
identical). The in-plane permittivity tensor component εhBN(ω) follows a Lorentzian
function given by Eq. (1.42). For our analysis, the exact value of the TO phonon
frequency ωTO determines the detuning between the cavity mode and the phonon,
which is a crucial parameter when analyzing strong coupling. Therefore, to obtain
the value of this parameter that is consistent with the experimental samples, the
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Figure 7.2: Linear fitting of the permittivity of MoS2. The dots indicate the experimental resonant
frequency of the different Fabry-Pérot modes and the corresponding permittivity extracted from
these values according to the procedure described in the text, for three cavities fully filled by
MoS2 of nominal thickness Lcav = 660 nm (red dots), Lcav = 740 nm (green dots) and Lcav =
960 nm (blue dots). The dashed line corresponds to the linear fitting of all dots, given by Eq.
(7.1).

experimental collaborators measured the reflectivity spectra of a 100 nm-thick
hBN layer. A clear resonance was observed at ωTO = 1364 cm−1, which is the
value that we consider in the simulations. This frequency is very close to the value
ωTO = 1360 cm−1 reported in Ref. [91]. For all the other parameters in Eq. (1.42)
we use the values of Ref. [91]: the high-frequency permittivity εhBN,∞ = 4.52, the
LO phonon frequency ωLO = 1610 cm−1 and damping frequency γ = 5 cm−1.

Equation (1.42) properly describes the optical response of hBN in most of
the results of this chapter, because we focus on calculating the response of the
system to normal incident light. In this case, the electric fields are directed
along the x direction and thus hBN can be treated as an isotropic material of
permittivity εhBN(ω). However, in Sec. 7.4.1 we consider focused illumination to
describe experimental data, where it is necessary to take the anisotropy of hBN
into account. In this case, the permittivity tensor component along the z axis
εhBN,∥(ω) follows the same Lorentzian function as in Eq. (1.42), except that the
values of the parameters are εhBN,∞ = 4.52, ωTO,∥ = 746 cm−1, ωLO,∥ = 819 cm−1

and γ∥ = 4 cm−1 (taken from Ref. [91]).
In order to obtain the permittivity of MoS2, the experimental collaborators

fabricated three microcavities fully filled by MoS2 of different nominal thickness:
Lcav = 660 nm, 740 nm and 960 nm. The geometry is the same as in Fig. 7.1
but without the hBN layer. The reflectivity spectra was measured to obtain the
frequencies of the Fabry-Pérot modes for each cavity up to 8000 cm−1. We then
perform transfer-matrix simulations (Sec. 1.1.1) of the cavities and find the value
of the permittivity εMoS2 required to reproduce the position of the experimental
dips. We show in Fig. 7.2 the experimental frequencies of the dips for the three
cavities and the corresponding value of εMoS2 that we obtain from the theoretical
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7.3. Evolution of the coupling strength with the cavity filling factor

analysis. A linear fitting of these results (dashed line) gives the permittivity that
we use in the simulations:

εMoS2(ω) = 14.689 + 0.000151ω, (7.1)

where ω is in units of cm−1.
Last, in some simulations in Sec. 7.5, we replace hBN with poly(methyl

methacrylate) (PMMA) or with a molecule presenting a vibration of low oscillator
strength. For PMMA, we use the permittivity given by Eq. (1.41), with high-
frequency permittivity ε∞ = 1.99, vibrational frequency ωvib = 1742 cm−1,
damping frequency γ = 13 cm−1 and oscillator strength f = (223.76 cm−1)2 [293].
When we consider molecules with weak oscillator strength in Sec. 7.5, we use
the same values as for PMMA, except for a 100 times smaller oscillator strength:
f = (22.376 cm−1)2.

7.3 Evolution of the coupling strength with the
cavity filling factor

7.3.1 Transfer-matrix simulations and classical coupled
harmonic oscillator model

In this section, we explore the coupling between phonons in hBN and Fabry-Pérot
cavity modes. With this purpose, we first calculate the evolution of the reflectivity
spectra as the cavity resonance is detuned from the phonon frequencies, and then
analyze these results using a coupled harmonic oscillator model that gives the
coupling strength g between phonons and cavity modes. To obtain the spectra,
we perform transfer-matrix simulations of the reflectivity spectra under a normal
incident planewave as a function of the total cavity length, Lcav, while keeping
fixed the thickness of the hBN layer (LhBN) that is placed in the middle of the
cavity. The frequencies of the modes of the system are obtained from the poles
of the reflection and transmission coefficients of the system, which are calculated
from the analytical expressions of r

s(p)
total and t

s(p)
total by extending the permittivities

of the materials to complex frequencies (as explained in Sec. 1.1.1). The mode
frequencies are very close to the dips in the reflectivity spectra (see, e.g., Fig. 1.1),
and therefore, we can also identify the modes of the system by the frequencies of
minimum reflectivity. This method is particularly useful to obtain modes from
experimental data.

We first consider a thin layer of LhBN = 10 nm, and compare calculations for
the bare cavity (i.e. with the hBN layer substituted by a medium with permittivity
εhBN,∞, Fig. 7.3a) and the hBN-filled cavity (Fig. 7.3b). We observe that the
first (j = 1) and the third (j = 3) modes of the bare cavity (ω(j)

cav indicated by
colored dashed lines in Fig. 7.3a) split into an upper and a lower branch when the
hBN layer is included (ω(j)

+ and ω
(j)
− in Fig. 7.3b). Importantly, the anticrossing

of the branches at the TO phonon frequency manifests the typical signature of
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Figure 7.3: Reflectivity spectra calculated with transfer-matrix simulations. a-b) Theoretical
calculations of the reflectivity spectra of a cavity embedding in its center a 10 nm layer of (a) a
material with the high-frequency-permittivity of hBN, εhBN,∞, and (b) hBN. The reflectivity
spectra is calculated for normal incidence and plotted as a function of the frequency of the incident
light and the total thickness of the cavity, Lcav. The shadowed area highlights the Reststrahlen
band of the in-plane phonon, delimited by the ωTO and ωLO frequencies. The dashed lines
represent the frequencies (a) of the bare cavity modes ω

(j)
cav and (b) of the polariton modes ω

(j)
+

and ω
(j)
− , as obtained from the poles of the reflection and transmission coefficients. The Rabi

splitting ΩR in panel (b) is indicated by the arrow. c-d) Same as in panels (a) and (b), for a
100 nm layer of a material with permittivity εhBN,∞ or of hBN. e-f) Same as in panels (a) and
(b), for a cavity fully filled by a material with permittivity εhBN,∞ or with hBN. The structures
analyzed are sketched in the insets.
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7.3. Evolution of the coupling strength with the cavity filling factor

coupling between two modes. The second cavity mode, in contrast, does not show
any splitting of the reflection dips and thus reveals the absence of coupling, which
can be explained by the vanishing electric field intensity of this mode in the cavity
center (for further details see the discussion of Fig. 7.5).

In Figs. 7.3c and d, we show the reflectivity spectra of a bare cavity and a
hBN-filled cavity embedding a thicker layer of 100 nm, respectively. While the
spectra of the bare cavity is very similar for layers of thickness of 10 nm and 100
nm (compare Figs. 7.3a and c), we observe for the hBN-filled cavity a much larger
anticrossing in the first and third modes for LhBN = 100 nm than for LhBN = 10
nm. Specifically, the Rabi splitting ΩR of the first mode, corresponding to the
minimum splitting between the polaritonic modes ω

(1)
+ − ω

(1)
− , increases from 63

cm−1 to 211 cm−1. We corroborate the increase of the Rabi splitting for thicker
hBN layers by considering cavities fully filled by this material (Fig. 7.3e for the
bare cavity and Fig. 7.3f for the hBN-filled cavity). We can identify an anticrossing
between the hBN TO phonon and all cavity modes, yielding the polaritonic modes
ω

(j)
± for all j [260], contrary to Figs. 7.3b and d, where coupling is observed only

for odd j. Further, a much larger spectral separation of the upper and lower
polariton branches occurs as compared to the previous cases. Indeed, there is not
any polaritonic mode in the spectral range ωTO ≲ ω ≲ ωLO that corresponds to
the Reststrahlen band (purple area in Fig. 7.3f). We determine a Rabi splitting of
ΩR = 856 cm−1, which is larger than the Reststrahlen band (246 cm−1).

For a quantitative analysis of the coupling between the hBN phonons and the
microcavity photons in the transfer-matrix calculations, we model the phonon-
photon interaction with two coupled harmonic oscillators. We have discussed
in detail in Sec. 6.5.3 that the interaction between Fabry-Pérot modes and the
collective excitation of molecular vibrations can be described classically with the
modified coupling (MC) model, obtaining the same results as for a description based
on cavity QED. We use the same classical model to describe the photon-phonon
coupling in the system of this chapter, as phonons are collective oscillations of
ions of each unit cell, with the vibrations of the ions in each cell playing a similar
role than the vibrations of molecules (see also Sec. 7.3.2). On the other hand,
in Chapter 6, we do not consider losses in the harmonic oscillator models for a
simpler comparison with the Hermitian cavity-QED Hamiltonians. However, in
the analysis of this chapter we need to include losses because the Rabi splitting is
comparable to the width of the reflectivity dips for thin hBN layers (Fig. 7.3b),
which implies that losses are not negligible. We include losses of the cavity modes
and the phonon into the MC model by adding a friction term proportional to the
oscillator velocities ẋ

(j)
cav and ẋmat as

ẍ(j)
cav + κẋ(j)

cav + (ω(j)
cav)2 − 2gẋmat = 0, (7.2a)

ẍmat + γẋmat + ωTOxmat + 2gẋ(j)
cav = 0. (7.2b)

In general, the eigenfrequencies of Eq. (7.2) cannot be expressed by a simple
analytical expression, but such expression can be obtained for two typical situations.
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Figure 7.4: Frequency of the polaritonic states formed by the TO phonon and the first cavity
mode, for a cavity (a) filled with a 10 nm layer of hBN, (b) filled with a 100 nm layer of hBN
and (c) fully filled with hBN. The layers are placed at the center of the cavity. The contour plot
shows the reflectivity spectra under normal incidence as a function of the incident frequency
ω and the total thickness Lcav calculated with transfer-matrix simulations. Red dots show the
polariton frequencies given by the MC model for (a) g = 34 cm−1, (b) g = 105 cm−1 and (c)
g = 428 cm−1, and the blue dashed lines show the frequencies extracted from the poles of the
Fresnel coefficients.

For small values of g, the polaritonic frequencies are (Sec. 1.3.1)

ω
(j)
± = 1

2(ω(j)
cav + ωTO) ± 1

2 Re

√(ω
(j)
cav − ωTO + i

γ − κ

2

)2
+ 4g2

 .

On the other hand, if the losses κ and γ are negligible compared to g, we obtain
the eigenfrequencies of the MC model analyzed in Sec. 6.2:

ω
(j)
± = 1√

2

√
(ω(j)

cav)2 + ω2
TO + 4g2 ±

√(
(ω(j)

cav)2 + ω2
TO + 4g2

)2
− 4(ω(j)

cav)2ω2
TO.

The purpose of using the MC model in this system is to determine the coupling
strength g. With this aim, for a fixed thickness of the hBN layer, LhBN, we choose
the total thickness Lcav so that the cavity mode is resonant with the TO phonon,
ω

(j)
cav = ωTO, and we extract the polaritonic frequencies ω

(j)
± from the transfer-matrix

simulations. Then, we obtain the value of g that minimizes the difference between
the two frequencies obtained from this simulation and the analytical solution. For
the latter, we use either between the two equations for ω

(j)
± above, depending on

the coupling regime (we have verified that the results from these equations are a
very good approximation of the exact Eq. (7.2) in their corresponding regimes
of application). We follow this procedure to calculate all the values of g for the
systems illustrated in Fig. 7.3. The coupling strength that we obtain for the first
cavity mode is g = 34 cm−1 for the cavity embedding a 10 nm-thick hBN layer,
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Figure 7.5: Evolution of the coupling strength as a function of the cavity filling factor. a)
Calculated coupling strength g between the TO phonon and the bare-cavity modes, for an hBN
layer of thickness LhBN in the middle of a cavity of thickness Lcav, as sketched in the inset.
The evolution of g for varying LhBN is shown for the first (blue solid line) and the second (red
solid line) cavity modes. The coupling strengths corresponding to the strong coupling regime
are highlighted by the beige area, and the green area corresponds to the ultrastrong coupling
regime. b) Zoom into the panel (a) for small filling factors LhBN/Lcav for the first cavity mode
(blue line). The analytical approximation g = 332

√
LhBN/Lcav cm−1 [according to Eq. (7.20)]

is shown by black dots. Purple dots in panels (a) and (b) indicate the experimental coupling
strengths gexp. c) Sketch of the intensity distribution of the electric field of the first and second
cavity modes. We note that the hBN layer is placed at the maximum of the intensity of the first
cavity mode and at the minimum for the second cavity mode.

g = 105 cm−1 for the 100 nm-thick layer and g = 428 cm−1 for the cavity fully
filled by hBN. These values are very close to half the Rabi splitting ΩR, as expected
from the analysis of Chapter 6.

Further, although we have calculated g for the particular case where the cavity
is tuned to the TO phonon, we show in Fig. 7.4 that these values of g enable to
fully describe the evolution of the polaritonic frequencies as the cavity is detuned.
Specifically, Fig. 7.4 shows the polaritonic frequencies obtained from the MC
model with (a) g = 34 cm−1, (b) g = 105 cm−1 and (c) g = 428 cm−1 (red dots)
compared with those given by the poles of the total reflection and transmission
coefficients for (a) a cavity with a 10 nm-thick hBN layer, (b) a cavity with a 100
nm-thick hBN layer, and (c) a fully filled cavity (dashed blue lines), as a function
of the total cavity thickness Lcav. These values are superimposed to the contour
plot of the calculated reflectivity of the cavity. The frequencies obtained from
the MC model, from the poles of the Fresnel coefficients and from the reflectivity
minima are almost identical for all Lcav and for the three cavities considered. This
agreement shows the adequacy of the MC model in the description of this system.

We generalize next this calculation and study systematically the evolution of
the coupling strength with the thickness LhBN of the hBN layer. We plot in Fig.
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Lcav
. Blue line: the hBN layer is

placed in the middle of the cavity, interacting with the first cavity mode. Red line: the hBN layer
is placed in the middle of the cavity, interacting with the second cavity mode. Red dots: the hBN
layer is separated into two equally thick hBN layers, which are centered at the intensity maxima
of the second cavity mode, interacting with this mode. The insets show the intensity distribution
of the second cavity mode interacting with either a single hBN layer of thickness LhBN in the
center of the cavity or two hBN layers of thickness LhBN

2 . Solid lines correspond to the results
shown in Fig. 7.5. The beige area indicates the values of g in the strong coupling regime, while
the green area corresponds to the ultrastrong coupling regime.

7.5a the resulting coupling strength g as a function of the filling factor LhBN/Lcav
for the first (blue line) and the second (red line) cavity modes. We observe that g
increases with the filling factor for both modes, more strongly for the first mode,
which is a consequence of the intensity distribution of the electric field across the
cavity (Fig. 7.5c). The second cavity mode exhibits an intensity minimum in the
center of the cavity, where the hBN layer is located. Thus, the coupling between
hBN phonons and the second cavity mode is generally much smaller than for the
first cavity mode, that exhibits its intensity maximum in the cavity center. This
observation is consistent with the absence of a polariton gap for the second cavity
mode in Figs. 7.3b and d. The interaction between the TO phonon and the second
cavity mode remains weak until the hBN layer is thick enough to sufficiently overlap
with the off-center intensity maxima of the cavities (shown in the right panel of
Fig. 7.5c).

We can identify the weak and strong coupling regimes in Fig. 7.5a according
to the fulfillment of the conditions g

κ+γ < 1
4 (blank area) and g

κ+γ > 1
4 (beige

area), respectively (see Sec. 1.3.1). For the first cavity mode, remarkably, the
strong coupling regime starts for LhBN/Lcav ≈ 0.0025, which corresponds to hBN
slabs for about 3 nm thickness (about four atomic hBN layers, see Fig. 7.5b for
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a zoom into Fig. 7.5a for small filling factors). Moreover, the usual condition for
ultrastrong coupling, g/ωTO > 0.1 (highlighted by the green area in Fig. 7.5a), is
fulfilled for hBN layers of thickness LhBN > 148 nm. Interestingly, we find that g
saturates for the first-order mode when LhBN/Lcav ≳ 0.8 and for the second-order
mode when LhBN/Lcav ≳ 0.9. The maximum coupling strength is obtained for
both modes when the cavity is fully filled with hBN, with gmax = 428 cm−1. In this
case, the ratio gmax/ωTO reaches up to 0.31. These results show the versatility of
the hBN-filled microcavities to explore the light-matter coupling regimes, ranging
from weak to ultrastrong coupling.

The influence of the position of the hBN layer on the coupling strength is
emphasized in Fig. 7.6. We show in Fig. 7.6a the dependence of g on the position
of a 10 nm hBN layer (blue line), a 100 nm hBN layer (red line) and a 200 nm
hBN layer (black line) placed inside the cavity. The total thickness of the cavity is
chosen so that the first cavity mode is resonant with the TO phonon frequency,
and MoS2 is again chosen as the spacer material (see sketches). Displacing the 10
nm hBN layer from a position near a mirror (left of the x axis in the figure) to
the center of the cavity (right of the axis) induces a transition from the weak to
the strong coupling regime. In a similar way, the coupling strength for the cavity
containing a 100 nm hBN layer is tuned along a range of values corresponding to
the strong coupling regime. Last, for LhBN = 200 nm, the system is tuned from
the strong to the ultrastrong coupling regime. Therefore, the results in Fig. 7.6a
show that displacing a hBN layer of fixed thickness inside the cavity also makes
possible to control the coupling strength [294].

Further, in Fig. 7.6b we plot the coupling strength g as a function of the filling
factor LhBN/Lcav for different situations. As we have already shown in Fig. 7.5a,
when the hBN layer is placed in the center of the cavity, the coupling strength
with the second cavity mode (red line) is generally much smaller than with the
first mode (blue line), because in this position the intensity of the cavity mode
vanishes for the former and is maximum for the latter. For comparison, we consider
a situation that maximizes the coupling strength with the second cavity mode (red
dots). To obtain these results, we calculate the intensity distibution associated
with the mode and place two identical hBN layers of thickness LhBN

2 centered in
the maxima (antinodes). We observe that the evolution of g is almost identical
for the first cavity mode with a hBN layer in the center of the cavity and for the
second mode with the layers in the positions of maximum intensity of this mode.

Last, we note that the MC model used here treats each cavity mode of order j
independently, i.e. that different cavity modes do not interact with each other and
thus the coupling between hBN and each cavity mode is described by a separate
Eq. (7.2). For the cavities that we analyze in this work, which are designed so
that the TO phonon interacts mostly with the first cavity mode, the results in
Fig. 7.4 show that this approach is appropriate. However, we have found that
for thicker cavities where higher-order modes are tuned to the TO phonon, the
MC model does not always describe well the position of the polaritonic frequencies
as obtained from the transfer-matrix simulations. We believe that solving this
discrepancy requires to include in the MC model the possibility of coupling different
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modes with each other, for instance following an approach based on quasinormal
modes [295,296]. However, the analysis in this and the following section would be
only weakly affected by these effects.

7.3.2 Microscopic model of interaction between phonons
and Fabry-Pérot modes

Coupling strength of a TO phonon with a Fabry-Pérot cavity mode

In Sec. 7.3.1, we have described how the coupling strength g in hBN cavities
can be calculated numerically from transfer-matrix simulations and the classical
MC model. We now present an alternative approach based on the microscopic
interaction between the phononic material and the modes of a Fabry-Pérot cavity,
which allows for a derivation of an approximate analytical expression for g, and
can give additional physical insight about the coupling. An analogous approach
has been followed in Ref. [297] to model the coupling strength between molecules
and guided nanowire modes.

In this derivation, we consider a simplified picture where we model each unit
cell of hBN as a harmonic oscillator characterized by a transition dipole moment
dn. The dipole is induced by the vibrations of the ions. From this perspective, the
material is a collection of Ncell dipoles interacting with the cavity mode. Due to the
homogeneity of the material, the transition dipole moments of all unit cells are the
same: dn = d. All dipoles are oriented parallel to the electric field, and in order to
deduce the magnitude dn = |dn|, we first consider the electric susceptibility χpol,
which for a polar material such as hBN is

χpol(ω) = ε∞
ω2

LO − ω2
TO

ω2
TO − ω2 − iωγ

. (7.3)

From this expression, we can directly obtain the polarizability αn of each dipole
induced in an unit cell of volume Vcell. We consider that the polarization density P
is related to the electric field E as P = αn

Vcell
E = ε0χpolE, and we therefore obtain

αn(ω) = ε0Vcellχpol(ω). (7.4)

We can now relate the transition dipole moment dn and the classical polarizability
by [67]

αn(ω) = 2ωTO

ℏ
d2

n

ω2
TO − ω2 − iωγ

, (7.5)

and, from Eqs. (7.3)–(7.5):

dn =
√

ℏ
2ωTO

Vcellε0ε∞(ω2
LO − ω2

TO). (7.6)

This expression allows us to characterize the coupling strength gn between the
dipole associated to a particular unit cell and the cavity mode with quantized
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7.3. Evolution of the coupling strength with the cavity filling factor

electric field Ê(r). This electric field corresponds to a bare cavity where hBN
is substituted by a material of frequency-independent, real permittivity ε∞ (i.e.,
without considering the resonant polarizability of the unit cells). In this derivation,
we consider normal incidence of the excitation light, as done for all transfer-matrix
simulations in Sec. 7.3.1 (however, the following derivation can be easily generalized
for light incident at an arbitrary angle). For the quantization of the field, we further
assume that the mirrors of the cavity are perfect, so that the electric and magnetic
energy of the modes are equal and the fields do not penetrate into the mirrors.
The electric field of the Fabry-Pérot mode of order j resonant at frequency ω

(j)
cav is

quantized as [273]

Ê = E(â + â†) =

√
ℏω

(j)
cav

2ε0Veff
Ξ(z)(â + â†)nx. (7.7)

â and â† are the annihilation and creation operators of the cavity mode, respectively.
The fields only vary along the z direction normal to the flat interfaces of the system,
as given by the field profile Ξ(z) (normalized so that Ξ(z) = 1 in the position where
the field amplitude is maximum). The electric field is assumed to be polarized along
the x axis, with unit vector nx. Veff = S

´
ε(z)|Ξ(z)|2dz is the effective volume of

the field, where S is the effective surface area of the cavity and ε(z) indicates the
spatial distribution of the permittivities of the system. The value of the electric
field E(r) of a Fabry-Pérot mode is related to the coupling strength gn between
that mode and the dipole excited in the unit cell at position rn, according to

ℏgn = −dn · E(rn). (7.8)

Taking into account that the dipole moments and the electric field are parallel, we
write this coupling strength as

gn = −

√
ω

(j)
cav

ωTO

ω2
LO − ω2

TO
4

Vcellε∞Ξ(zn)2

S
´

ε(z)|Ξ(z)|2dz
. (7.9)

As discussed in Sec. 6.4, the interaction of cavity modes with molecules can
be done with the Hopfield Hamiltonian in the cavity-QED framework. We next
consider the following Hopfield Hamiltonian associated with all the dipoles induced
at the unit cells in the phononic material:

ĤHop = ℏω(j)
cavâ†â + ℏωTO

Ncell∑
n=1

b̂†
nb̂n + iℏ(â + â†)

Ncell∑
n=1

(gnb̂n − g∗
nb̂†

n) + ℏg2

ωTO
(â + â†)2.

(7.10)
where b̂n and b̂†

n are the annihilation and creation operator of the harmonic oscillator
that represents each vibrational dipole, respectively. The next step is to write the
Hamiltonian of the system in terms of the annihilation b̂c and creation b̂†

c operators
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of the bright collective excitation that represents the TO phonon,

ĤHop = ℏω(j)
cavâ†â+ℏωTOb̂†

cb̂c+ℏωTO

Ncell−1∑
n=1

ĉ†
nĉn−iℏg(â+â†)(b̂c−b̂†

c)+ ℏg2

ωTO
(â+â†)2,

(7.11)
where we have also added the annihilation ĉn and creation ĉ†

n operators of the
Ncell − 1 dark collective modes that are uncoupled to the cavity mode. Equation
(7.11) can be derived from Eq. (7.10) by using the Dicke transformation

Ncell∑
n=1

b̂†
nb̂n = b̂†

cb̂c +
Ncell−1∑

n=1
ĉ†

nĉn,

Ncell∑
n=1

gnb̂n = gb̂c,

Ncell∑
n=1

g∗
nb̂†

n = g∗b̂†
c, (7.12)

where g takes the value [298]

g =

√√√√Ncell∑
n=1

|gn|2 (7.13)

so that the commutation relation [b̂c, b̂†
c] = 1 is fulfilled. The operators of the dark

modes fulfill the commutation relations [ĉn1 , ĉ†
n2

] = δn1,n2 and [b̂c, ĉ†
n] = 0. Thus,

Eq. (7.13) gives the coupling strength between the cavity mode and the collective
excitation (the TO phonon) in terms of the coupling strengths gn associated to the
individual dipoles of each unit cell. g is evaluated by introducing Eq. (7.9) into Eq.
(7.13), and transforming the sum into an integral (since the dipoles are distributed
in a continuous way). The result is

|g|2 =
Ncell∑
n=1

ω
(j)
cav

ωTO

ω2
LO − ω2

TO
4

Vcellε∞|Ξ(zn)|2
S
´

ε(z′)|Ξ(z′)|2dz′

=
ˆ

ω
(j)
cav

ωTO

ω2
LO − ω2

TO
4

Vcellε∞|Ξ(z)|2
S
´

ε(z′)|Ξ(z′)|2dz′
dNcell

dV
dV

=ω
(j)
cav

ωTO

ω2
LO − ω2

TO
4

´
ε∞|Ξ(z)|2dz´

ε(z′)|Ξ(z′)|2dz′ , (7.14)

where in the last step we have taken into account that the density of dipoles is
dNcell

dV = 1
Vcell

and the effective surface area S of the mode is eliminated after the
integration in the x − y plane. The integral of the denominator in Eq. (7.14) is
evaluated in the entire cavity, while the integral of the numerator is bounded to the
region of the phononic material. Therefore, in this subsection we have obtained an
expression that enables to calculate the coupling strength between the TO phonon
of a polar material and a Fabry-Pérot mode of a cavity with an arbitrary spatial
distribution of the permittivity ε(z) [and thus arbitrary field distribution Ξ(z)].
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7.3. Evolution of the coupling strength with the cavity filling factor

Application to hBN microcavities

We now focus on the particular system that we analyze in this chapter, a cavity
of thickness Lcav with MoS2 as a spacer and containing a layer of hBN (Sec. 7.2).
First, we need to calculate the field profile Ξ(z) of the modes of the bare cavity,
in order to evaluate the coupling strength g through Eq. (7.14). Labelling the
positions of the MoS2-hBN interfaces as L1 and L2 (indicated in Fig. 7.1), the
spatial distribution of the permittivity ε(z) of the bare cavity is described by the
function

ε(z) =


εMoS2 , 0 < z < L1

εhBN,∞, L1 < z < L2

εMoS2 , L2 < z < Lcav

. (7.15)

In each interval with constant permittivity εn, the field profile Ξ(z) satisfies the
Helmholtz equation

d2Ξ(z)
dz2 + εn(ω(j)

cav)2

c2 Ξ(z) = 0, (7.16)

Further, since the cavity is assumed to be bounded by perfect mirrors and we
only consider modes at normal incidence (so that the electric field is completely
polarized in the direction parallel to the mirror planes), the electric field vanishes
at both ends: Ξ(0) = Ξ(Lcav) = 0. In order to verify the boundary conditions,
Ξ(z) needs to be continuous and differentiable in all interfaces, which leads to the
solution

Ξ(z) =



A
sin
(

ω
(j)
cav
c

√
εhBN,∞L1+ϕ(j)

)
sin
(

ω
(j)
cav
c

√
εMoS2 L1

) sin
(

ω(j)
cav
c

√
εMoS2z

)
0 < z < L1

A sin
(

ω(j)
cav
c

√
εhBN,∞z + ϕ(j)

)
L1 < z < L2

A
sin
(

ω
(j)
cav
c

√
εhBN,∞L1+ϕ(j)

)
sin
(

ω
(j)
cav
c

√
εMoS2 L1

) sin
(

ω(j)
cav
c

√
εMoS2(z − Lcav)

)
, L2 < z < Lcav

.

(7.17)
A is the normalization constant chosen so that the maximum of the field profile is
Ξ(z) = 1, while ω

(j)
cav and ϕ(j) are the jth solution of the system of equations

√
εMoS2 cot

(
ω

(j)
cav

c

√
εMoS2L1

)
= √

εhBN,∞ cot
(

ω
(j)
cav

c

√
εhBN,∞L1 + ϕ(j)

)
(7.18a)

√
εMoS2 cot

(
ω

(j)
cav

c

√
εMoS2(L2 − Lcav)

)
= √

εhBN,∞ cot
(

ω
(j)
cav

c

√
εhBN,∞L2 + ϕ(j)

)
.

(7.18b)

We can obtain g by inserting Eq. (7.17) into Eq. (7.14), with the integral
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Figure 7.7: Evolution of the coupling strength g as a function of the ratio LhBN
Lcav

(shown in
the inset) for the first (blue), the second (red) and the third (green) cavity modes. Solid lines
represent the solution of Eq. (7.19), and the dots correspond to the values obtained from fitting
the mode frequencies given by the poles of the Fresnel coefficients with the classical MC harmonic
oscillator model (blue and red dots correspond to the values shown in Fig. 7.5). The cavity
thickness Lcav is changed so that the cavity mode being analyzed is always resonant with the TO
phonon frequency.

extending over the phononic material (between L1 and L2), i.e. we evaluate

|g|2 = ω2
LO − ω2

TO
4

´ L2
L1

εhBN,∞|Ξ(z)|2dz´ Lcav
0 ε(z′)|Ξ(z′)|2dz′

. (7.19)

In this calculation, we always assume that the cavity mode of order j is resonant
with the TO phonon, ωTO = ω

(j)
cav, so that the cavity thickness Lcav is different

for each order and the permittivity of MoS2 is evaluated at that frequency
(εMoS2 ≡ εMoS2(ωTO) in this subsection). Adjusting the cavity parameters
(specially the thickness of the hBN layer) enables to vary g from 0 to a maximum
value gmax corresponding to the fully filled cavity that can be evaluated to be
gmax =

√
ω2

LO−ω2
TO

4 = 428 cm−1. The analytical model therefore confirms the value
of gmax obtained from transfer-matrix simulations (Fig. 7.5) and shows that gmax
is fully determined by the Reststrahlen band of the material defined by the TO
and LO phonon frequencies.

Further, we can also obtain a simple analytical expression of g for thin layers of
hBN placed in the middle of the cavity and interacting with the first cavity mode.
In order to obtain the field profile Ξ(z) in this regime, we consider that the thin
layer of hBN disturbs very weakly the electric field of the cavity fully filled with
MoS2 and with the same total thickness Lcav. Under this assumption, we obtain

194



7.3. Evolution of the coupling strength with the cavity filling factor

that Ξ(z) ≈ sin
(

ω(1)
cav
c

√
εMoS2z

)
, with ω

(1)
cav = πc√

εMoS2 Lcav
. Moreover, since the thin

layer is located in the position of the maximum amplitude of the electric field, this
amplitude varies slowly inside the hBN layer, and we can assume that the field is
constant between L1 and L2 (Ξ(z) ≈ 1). By evaluating the integrals in Eq. (7.19)
for L1 = Lcav

2 − LhBN
2 and L2 = Lcav

2 + LhBN
2 , we obtain

g ≈

√
ω2

LO − ω2
TO

2
εhBN,∞

εMoS2

LhBN

Lcav
≈ 332 cm−1

√
LhBN

Lcav
. (7.20)

This result is consistent with the Dicke model [285,299] that has been often applied
to quantify the coupling strength between a cavity mode and an ensemble of N
identical molecules [300–302]. Since in our case the thickness of the hBN layer
LhBN is proportional to the amount of dipoles interacting with the cavity mode, we
obtain the same dependency of g on the number of matter excitations g ∝

√
N as

predicted by Dicke. The agreement between the analytical approximation obtained
in Eq. (7.20) and the coupling strength obtained from transfer-matrix simulation
for thin layers is indicated in Fig. 7.5b.

We further assess in Fig. 7.7 the validity of our analytical model by comparing
the result of Eq. (7.19) with the coupling strengths calculated by applying the
classical MC model to the polaritonic frequencies calculated with the transfer-
matrix method. For the calculation of the polaritonic frequencies, we always choose
the thickness Lcav so that the frequency of the cavity mode considered is resonant
with the TO phonon frequency. We show the evolution of the coupling strength g
as a function of the filling factor LhBN

Lcav
for the first three cavity modes. As discussed

in Sec. 7.3.1, g generally increases with the filling factor, particularly strongly for
thin layers and odd modes, until for all modes it saturates at the same value gmax
for fully filled cavities. The third mode also shows a non-intuitive tendency of
the coupling strength which decreases with an increase of LhBN

Lcav
(in the interval

0.5 ≲ LhBN
Lcav

≲ 0.7). The reason is that changing LhBN also modifies Lcav (to keep
the cavity resonant with the TO phonon) and the field distribution inside the
cavity, which leads to a complex tendency. Importantly, for the coupling strength
of the first two modes, we observe that the agreement between the analytical
expression (solid lines) and the MC model of classical harmonic oscillators (dots)
is very good, with only a slight overestimation by the analytical Eq. (7.19) for
intermediate values of the filling factor. The agreement becomes worse for the
third cavity mode and intermediate filling factors. This small discrepancy may
be related to the assumption made in the MC harmonic oscillator model that the
cavity modes are independent of each other [Eq. (7.2)] and could be solved by
considering the interaction between different cavity modes. However, even without
this consideration the agreement between the results shown in Fig. 7.7 remains
generally reasonable. Thus, we confirm that the simple analytical model presented
here is able to explain the evolution of the coupling strength with the filling factor,
particularly for the first two cavity modes considered in this chapter.
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Figure 7.8: Experimental and theoretical spectra at frequencies close to the TO phonon. a)
Experimental reflectivity spectrum of the MoS2/hBN/MoS2 heterostructure placed on the bottom
gold mirror (illustrated by the inset), measured before the evaporation of the top gold mirror.
Measured thicknesses are 510 nm/10 nm/370 nm. b) Experimental reflectivity spectrum of the
stack of the panel (a) after closing it with the top Au layer (illustrated by the inset). ω

(1)
− and

ω
(1)
+ mark the dips emerging for the coupling between the TO phonon and the cavity mode.

c) Theoretical reflectivity spectrum of the cavity in panel (b), using layer thicknesses of 510
nm/10 nm/370 nm and calculated for a normal incident planewave. d-f) Same as panels (a-c)
for a MoS2/hBN/MoS2 heterostructure with measured thicknesses 520 nm/100 nm/430 nm and
simulated thicknesses 480 nm/100 nm/390 nm.

7.4 Comparison with experimental reflectivity
data

The theoretical predictions discussed in Sec. 7.3 have been verified experimentally by
the groups of Luis Hueso and Rainer Hillenbrand in CIC nanoGUNE. Experimental
reflectivity measurements in several cavities of different LhBN and Lcav thicknesses
were performed. With this aim, the collaborators first fabricated a gold mirror of
20 nm thickness with thermal evaporation. The MoS2/hBN/MoS2 heterostructure
was then fabricated over the bottom mirror, following several steps of mechanical
exfoliation and deterministic transfer [303]. The thickness of all layers was
characterized with a profilometer of experimental accuracy of about 5%. The
last step of fabrication consisted in closing the cavity by evaporating the top gold
mirror over the stack. Once the samples were fabricated, their reflectivity was
measured with a Fourier transform infrared microspectroscopy setup that operates
with a Cassegrainian objective with numerical aperture of NA = 0.4. More details
can be found in Ref. [304].

We show in Fig. 7.8 the comparison between theoretical calculations and
experimental results for cavities filled with hBN layers of 10 and 100 nm. For the
fabrication of each cavity, after fixing the hBN layer thickness LhBN, the value of
Lcav was adjusted so that the fundamental cavity resonance ω

(1)
cav approximately
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Figure 7.9: Experimental measurements of ultrastrong coupling in cavities fully filled with hBN.
a) Experimental reflectivity spectra of fully filled cavities (plotted with a vertical offset). Cavity
thicknesses (from bottom to top) are: 1080 nm, 1500 nm, 1665 nm, 1900 nm, 2100 nm, 2500 nm.
b) Reflectivity spectra of a cavity fully filled with hBN as a function of the cavity thickness Lcav
and obtained with transfer-matrix simulations (same results as in Fig. 7.3f). Red and yellow
symbols show the spectral position of the experimental reflectivity dips extracted from panel (a).
The shadowed area highlights the Reststrahlen band.

coincides with the frequency of the in-plane TO phonon, ωTO, according to transfer-
matrix simulations of the bare cavity.

First, it was verified that the hBN flakes in both samples exhibit a sharp phonon
line at ωTO = 1364 cm−1, by measuring the reflection spectra prior to the fabrication
of the top mirror (Figs. 7.8a and d). Additional to the narrow phonon lines, we
observe broader dips, which indicate that the stacks act as detuned open cavities of
a low quality factor. By closing the cavities (i.e. fabricating the top gold mirror),
we clearly see a splitting of the reflection dip at the TO phonon frequency into two
dips that are shifted to a lower and a higher frequency, ω

(1)
− and ω

(1)
+ , respectively

(Figs. 7.8b and e). Transfer-matrix calculations match well the experimental
reflection spectra (Figs. 7.8c and f) upon slight modification of the nominal values
of the cavity parameter (see caption of Fig. 7.8). The need for such modification
is attributed to uncertainties in the thickness and permittivity measurements.
Further, the agreement between theory and experiments is also observed in the
values of the splitting between reflectivity dips associated to polaritonic modes,
because in experiments we observe splittings of 76 cm−1 and 215 cm−1 for 10 nm-
and 100 nm-thick hBN layers, respectively, while the corresponding theoretical
values are 68 cm−1 and 213 cm−1. From the analysis of Sec. 7.3, we know that the
double dip observed in experiments appears due to the strong coupling between the
cavity mode and the TO phonon. Further, since the cavity and phonon resonances
match reasonably well, i.e. ω

(1)
cav ≈ ωTO, we can estimate the coupling strength
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of the system from experimental data, according to gexp = (ω(1)
+ − ω

(1)
− )/2, where

ω
(1)
+ − ω

(1)
− is the experimental dip splitting (indicated in Figs. 7.8b and e). The

corresponding values of gexp = 34 cm−1 and gexp = 106 cm−1 for LhBN = 10 nm
and 100 nm, respectively, are plotted in Fig. 7.5 by purple dots, showing good
agreement with the theoretical results. Therefore, the experimental measurements
shown in Fig. 7.8 verify that strong coupling between microcavity photons and
phonons can be indeed achieved with layers of a polar material as thin as 10 nm,
and that larger coupling strengths can be obtained by increasing the layer thickness.

To further explore the regime of maximum coupling strength, a thorough
experimental study of cavities fully filled with hBN has also been performed. We
show in Fig. 7.9a the reflectivity spectra of six samples of different thicknesses
(indicated in the caption). The spectral positions of the reflectivity dips are also
plotted in Fig. 7.9b, as the dots superimposed to the colormap of the reflectivity
spectra. The latter is obtained from transfer-matrix simulations as a function of
the thickness Lcav. Interestingly, we observe that the frequencies of most of the
experimental dips approximately coincide with the theoretical frequencies of the
polariton modes ω

(j)
− and ω

(j)
− (these experimental frequencies are indicated by red

dots). This agreement allows us to associate each experimental dip with a particular
polaritonic mode. The large dip splittings that we observe in experimental data
confirm that the ultrastrong coupling regime can be reached in Fabry-Pérot cavities
filled with polar materials. We further note that the experimental reflectivity
spectra exhibit a set of almost thickness-independent dips at around 819 cm−1

(yellow dots in Fig. 7.9) that do not appear in the theoretical calculations. This
frequency corresponds to the out-of-plane LO phonon of hBN. In the following
subsection, we show that this dip appears in the experimental spectra due to the
use of focused illumination of the cavity (using a Cassegrainian objective) instead
of illumination by normal incident light.

7.4.1 Reflectivity of the system under focused illumination
In the transfer-matrix calculations performed up to this point, we assume that
the propagation direction of the incident light is normal to the surface of the
mirrors and the substrate (z direction). However, the experiments have been
performed using a microscope with focused illumination. The total reflectivity Rfoc
for focused illumination is obtained theoretically by decomposing the incident light
as an integral over planewaves incident at different angles. We then obtain (for
more details, see Chapter 3.9 in Ref. [67]):

Rfoc = Iref

Iin
=
´ sin θmax

sin θmin

|rs
total(ξ)|2+|rp

total(ξ)|2

2 ξ dξ´ sin θmax
sin θmin

ξ dξ
, (7.21)

where Iin and Iref correspond to the intensity of the incident and reflected focused
beam, respectively, ξ =

√
k2

x+k2
y

k0
= k∥

k0
is the normalized parallel wavevector and
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Figure 7.10: Reflectivity spectra calculated for cavities fully filled with hBN under focused
illumination. a-c) Comparison between the spectra of a cavity with thickness Lcav = 1665 nm
obtained for normal incident light (black solid lines) and focused illumination (red dashed lines).
(b) and (c) correspond to zooms of different regions of the spectra in (a). d) Reflectivity spectra
under focused illumination as a function of the total cavity thickness Lcav and frequency ω of the
incident light. Dots are a guide to the peak positions in the region near the anticrossing that
occurs due to the coupling of the cavity mode of order 1 and the out-of-plane phonons. The
green shadowed area in (c) and (d) represents the Reststrahlen band of the out-of-plane phonon,
limited by frequencies ωTO,∥ and ωLO,∥.

r
s(p)
total is the ξ-dependent reflection coefficient of the full system for a s(p)-polarized

planewave, which is discussed thoroughly in Sec. 1.1.1. The upper limit of the
integral is given by the numerical aperture of the microscope used to focus light,
NA = sin θmax. In the experiments performed in this work, the corresponding
value is NA = 0.4, and thus, θmax ≈ 23.5◦. Furthermore, we set θmin = 10◦ for
the lower bound of the integral, because the microscope used in the experiments
obstructs the propagation of the central part of the light incoming to the focusing
lens, which eliminates the contribution from the small-angle components.

We have verified that, for cavities embedding a 10 nm layer of hBN, the
results of the transfer-matrix simulations using focused illumination are nearly
identical compared to the spectra for normal incidence. Crucially, light travels at
considerably smaller angles inside this cavity than in free space, due to the high
permittivity of MoS2, εMoS2, which fills most of the cavity for such a thin hBN
layer. In particular, the angles inside MoS2 range from 2.6◦ to 5.9◦, and thus the
difference with the case of normal incidence is very small.

We next consider a fully filled hBN cavity of thickness Lcav = 1665 nm (whose
first cavity mode is resonant with the TO phonon frequency) and show in Fig.
7.10a-c the reflectivity spectra under focused (red dashed line) and normal-incidence
illumination (black solid line), both calculated by transfer-matrix simulations. The
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Figure 7.11: Reflectivity spectra of the fully filled hBN cavities at low frequencies, obtained from
a) the experiments; b) transfer-matrix simulations under focused illumination; and c) transfer-
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1665 nm, 1900 nm, 2100 nm and 2500 nm. Panel a is a zoom of Fig. 7.9a in the region of low
frequencies.

effect of using focused light becomes larger for the cavity fully filled by hBN,
as the high-frequency permittivity of hBN εhBN,∞ is smaller than εMoS2, and
thus the angle of light propagation inside the cavity can be larger. A small but
appreciable difference between normal incident light and focused illumination is
observed for high frequencies, as shown in panel a. The reflectivity dips obtained
under focused illumination are displaced towards larger frequencies compared to
the normal-incidence spectra, because the frequencies of the Fabry-Pérot cavity
modes depend on the angle of propagation. Furthermore, the widths of the dips are
larger for focused illumination because they are the result of the sum of different
contributions, each corresponding to a different angle and thus resonant at a slightly
different frequency [Eq. (7.21)]. However, these differences remain small, and the
agreement between the two spectra improves further for frequencies close to ωTO =
1364 cm−1 (see zoom in panel b), which is the main region of interest in this work.
Thus, the use of normal incidence in our calculations of Sec. 7.3.1 is justified.

Possibly the most interesting feature of the results obtained under focused
illumination is observed in Fig. 7.10c, which shows the reflectivity spectra at
low frequencies (near the frequencies of the out-of-plane phonons). An additional
reflectivity dip for focused illumination (red dashed line) appears compared to
the normal-incidence spectra (black solid line), which is due to the anisotropy of
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7.4. Comparison with experimental reflectivity data

hBN. For normal incidence, the illumination only couples with the in-plane TO
phonon, which is polarized in the parallel direction to all planar interfaces. On
the other hand, for focused illumination it becomes possible to excite the phonons
that are polarized in the out-of-plane direction and that are found at significantly
lower frequencies (ωTO,∥ = 746 cm−1 and ωLO,∥ = 819 cm−1, the Reststrahlen
band of the out-of-plane phonons limited by these frequencies is highlighted by the
green area in Fig. 7.10). These phonons strongly affect the z component of the
permittivity tensor, and thus they can couple with the electric field components in
the z direction of the focused light, which explains the extra dip.

For a more detailed analysis of this coupling, we show in Fig. 7.10d the
calculated reflectivity spectra under focused illumination as a function of the total
cavity thickness Lcav, for illumination frequencies between 600 and 1200 cm−1.
When the frequency of the bare-cavity mode gets close to the Reststrahlen band
of the out-of-plane phonon, an anticrossing characterized by a relatively small
splitting is observed, as indicated by the dots as a guide. Hence, the use of a
focused beam makes possible to observe the coupling of the cavity modes with
in-plane and out-of-plane phonons.

We now compare the theoretical spectra under focused illumination with the
experimental measurements. Figure 7.11a shows the experimental reflectivity
spectra for all six cavities. This figure corresponds to a zoom of Fig. 7.9a on
the region near the Reststrahlen band associated with the out-of-plane phonons
(green area). We observe a dip labelled by ω

(1)
cav that changes strongly with the

thickness of the cavity and it is mostly associated to the bare-cavity mode. The
other dip is close to ωLO,∥, and its frequency is also indicated by the yellow dots in
Fig. 7.9b. In order to confirm the nature of the dips at frequency ≈ ωLO,∥, we also
show in Fig. 7.11 the results from the transfer-matrix simulations under focused
illumination (panel b) and normal incident light (panel c). For panel c, we only see
the dip associated to the bare-cavity mode at frequency ω

(1)
cav. On the other hand,

once we consider focused illumination, we can observe the second feature near
ωLO,∥ that was identified in the experiments. We thus confirm that the extra peak
only appears in the calculations when the polarization has a nonzero z component
and thus the illumination couples also with the out-of-plane phonons. However,
we notice that the size of the experimental dips is significantly larger than the
simulated ones, and we attribute this discrepancy to experimental imperfections
such as rugosities (which can scatter light at high angles) or non-perfect planarity of
the fabricated cavities. Despite this difference, the good agreement on the spectral
positions of the dips indicates that they are indeed a result of the coupling between
the first cavity mode and the out-of-plane phonons.
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Figure 7.12: Polariton dispersions. a) Measured (black symbols) and calculated (black curves)
phonon polariton dispersion obtained from hBN layers that fully fill the cavity. Green curves
show the bulk phonon polariton dispersion of hBN. Red dashed lines indicate the light lines
ω(k) = ck√

ε(ω=0)
and ω(k) = ck√

εhBN,∞
, where ε(ω = 0) = 6.29 and εhBN,∞ = 4.52 are the low-

and high-frequency permittivities of hBN. The Reststrahlen band of bulk hBN is marked by the
purple area. b) Calculated (black curves) phonon polariton dispersion obtained from cavities that
are filled with a 10 nm thick hBN layer. c) Calculated (black curves) polariton dispersion obtained
for cavities that are fully filled with molecules exhibiting a C=O vibration. Green curves show the
bulk polariton dispersion of the filling material. d) Dispersion for a 10 nm thick molecular layer
embedded in the cavity. e) Calculated (black curves) polariton dispersion obtained for cavities
fully filled with hypothetical molecules exhibiting a vibration of arbitrarily reduced oscillator
strength. Green curves show the dispersion of the filling material. f) Dispersion for a 10 nm thick
hypothetical molecular layer of arbitrarily reduced coupling strength embedded in the cavity.
Schematics illustrate the cross section of the cavities.

7.5 Dispersion relation of microcavity phonon
polaritons

After emphasizing the agreement between theory and experiments in the polaritonic
modes of the fully filled cavity (Fig. 7.9), we now use these data to establish a
connection between the dispersion relation ω(k) of microcavity phonon polaritons
and inherent bulk properties of hBN, such as the dispersion of bulk phonon
polaritons and the bulk permittivity. To obtain the dispersion relation ω(k) of
microcavity phonon polaritons, we extract the wavevector k from the reflectivity
spectra according to [Eq. (1.11)]

k = jπ

Lcav
, (7.22)
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7.5. Dispersion relation of microcavity phonon polaritons

assuming perfect metal mirrors and where Lcav is the cavity length at which
the cavity eigenmode of order j and frequency ω is found. In Figs. 7.12a and
b, we compare ω(k) for the cavity that is fully filled with hBN (obtained from
Fig. 7.3f) and the cavity embedding a 10 nm thick hBN layer (obtained from
Fig. 7.3b), respectively (calculations are shown by black curves and experimental
values by black symbols). Note that for the fully filled cavity, the hybrid modes
resulting from the coupling with all cavity modes j were considered, whereas for
the cavity filled with 10 nm of hBN we considered only the first mode (j = 1). Both
dispersions feature anticrossing, separating into a lower and upper microcavity
phonon polariton branch, with large Rabi splitting amounting to ΩR ≈ 856 cm−1

and ΩR ≈ 63 cm−1, respectively.
To appreciate the dramatic coupling strengths between infrared microcavity

modes and phonons with respect to typical molecular vibrations [259], we show
in Figs. 7.12c and d the calculated polariton dispersions obtained (analogous to
Figs. 7.3b and f) for cavities embedding molecules that possess C=O vibrations.
Specifically, we consider the ensemble of C=O oscillators of PMMA, whose
electromagnetic response is described as specified in Sec. 7.2. Clear anticrossing
can be observed for the cavity fully filled with PMMA (Fig. 7.12c), but the Rabi
splitting ΩR ≈ 159 cm−1 is more than five times smaller than that of the cavity
fully filled with hBN. For the cavity filled with a 10 nm thick PMMA layer, we
do not find anticrossing (Fig. 7.12d), revealing that the system is in the weak
coupling regime, in contrast to the strong coupling regime achieved with a 10 nm
thick hBN layer (Fig. 7.12b). We note that the C=O vibrations are rather strong
and that many molecular vibrations can be much weaker. To demonstrate the
coupling between microcavity modes and weak molecular oscillators by way of an
example, we reduce the oscillator strength in the permittivity model of PMMA
by a factor of 100 and recalculate the dispersions. In both the partially and fully
filled cavity we do not observe anticrossing (Figs. 7.12e and f), highlighting that
for weak molecular oscillators strong coupling cannot be achieved by placing them
into a microcavity.

We now compare the dispersions of the material in the fully filled cavities with
the bulk polariton dispersion of the same material, ω(k) = ck√

ε(ω)
[Eq. (1.26)],

where ε(ω) is the permittivity of the filling material (green solid lines in Figs.
7.12a, c and e). Interestingly, we find that the polariton dispersion obtained from
fully filled cavities is identical to that of the bulk phonon polariton dispersion of
the filling material, independent of whether phonon or molecule oscillators (weak
or strong) are embedded into the cavity. The maximum splitting is determined
exclusively by the material properties as clearly shown by the analytical expression
of g in Eq. (7.19) and is also highlighted in Refs. [258, 297, 305]. These results
show that the maximum coupling strength between a cavity mode and a dipolar
excitation is governed by that of photons and bulk, implying that fully filling a
resonant cavity with a specific material does not enhance the coupling strength
between light and matter. The cavity merely enforces the strongly coupled state by
selecting the corresponding wavevector. Importantly, strong coupling in a cavity
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can only be achieved in the case that the bulk dispersion of the filling material
already exhibits strong coupling, i.e. anticrossing. In the case that the dispersion
of light in the bulk material does not exhibit polaritonic behavior, the coupling of
this bulk material with a cavity mode will remain weak. In other words, placing a
material into a cavity will not make the coupling strength to exceed that of the
bulk material. Interestingly, it has been reported that vibrational strong coupling
in cavities can modify physical and chemical properties of the material filling the
cavity [62,306–308]. Since the coupling strength is not enhanced, another effect,
such as a modification of the density of states, may be needed to explain this
intriguing phenomenon.

To reinforce the idea that the bulk permittivity contains all the information of
the ultrastrong coupling between microcavity photons and phonons in this system,
we last demonstrate that the classical MC model used in this chapter allows for
recovering the bulk permittivity. We first note that the modes of the bare cavity
follow the dispersion relation ω

(j)
cav = ck√

εhBN,∞
, with the wavevector determined by

Eq. (7.22). For the cavity filled with hBN, the frequency of each cavity mode of
wavevector k is modified to ω(k) = ck√

ε(ω)
= ω

(j)
cav
√

εhBN,∞
ε(ω) . Therefore, from the

relation between the frequencies of the polaritonic modes (ω(j)
± ) and the bare-cavity

modes (ω(j)
cav) of the MC model in the ultrastrong coupling regime (Eq. (6.6), where

we neglect losses for simplicity), we obtain that the permittivity of the material
inside the cavity must be

εMC(ω) = εhBN,∞

(
1 + 4g2

ω2
TO − ω2

)
. (7.23)

Considering next the maximum coupling strength given by Eq. (7.19), gmax =√
ω2

LO−ω2
TO

4 , we recover the permittivity of polar materials given by Eq. (1.42).
Furthermore, we emphasize that only the MC model can appropriately describe

the permittivity of polar materials, while the other harmonic oscillator models
discussed in Chapter 6 lead to incorrect results. To demonstrate it, we derive
the permittivities εSpC(ω) and εMC(ω) obtained within the SpC model and the
linearized model of harmonic oscillators, by repeating the same procedure with
Eqs. (6.3) and (6.8), respectively. We obtain:

εSpC(ω) = εhBN,∞

 2g2ωTO

ω(ω2
TO − ω2) +

√
1 +

(
2g2ωTO

ω(ω2
TO − ω2)

)2
2

, (7.24)

εlin(ω) = εhBN,∞

(
1 + g2

ω(ωTO − ω)

)
, (7.25)

which do not follow the standard form of the permittivity of polar materials [Eq.
(1.42)].

For a comparison, we plot in Fig. 7.13 the permittivities obtained with the MC
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Figure 7.13: Permittivity of the material filling the Fabry-Pérot cavity, obtained from the classical
SpC model [blue solid line, Eq. (7.24)], MC model [red solid line, Eq. (7.23)] and the linearized
model [black dashed line, Eq. (7.25)], with ωTO = 1364 cm−1, g = 428 cm−1 and εhBN,∞ = 4.52.
The Reststrahlen band of hBN is highlighted by the purple area.

model [red solid line, Eq. (7.23)], SpC model [blue solid line, Eq. (7.24)] and the
linearized model [black dashed line, Eq. (7.25)], with the TO phonon frequency ωTO
= 1364 cm−1, coupling strength g = 428 cm−1 and high-frequency permittivity
εhBN,∞ = 4.52 of hBN. The different behavior of the calculation according to
the three models can be clearly observed by comparing the permittivity in the
range of frequencies with negative permittivity for each case, i.e., the Reststrahlen
band. The MC model describes the Reststrahlen band appropriately, because the
permittivity is negative in the range ω ∈ (ωTO, ωLO) (highlighted by the purple
area in Fig. 7.13). In contrast, the permittivity εSpC associated to the SpC model
is non-negative for all frequencies, and thus is unable to describe the presence of a
Reststrahlen band. Last, the linearized model does give a Reststrahlen band, as
can be appreciated in Fig. 7.13, but the width of this band is half of that obtained
with the MC model. As an additional difference between the models, only the
MC model results in a permittivity that does not diverge in the ω → 0 limit, in
agreement with the expected behavior [Eq. (1.42)]. Hence, the equations of motion
of the MC model contain the equivalent information as the bulk permittivity of
polar materials.

7.6 Summary
We have demonstrated that classical microcavities can be applied for studying and
tuning the coupling between photons and optical phonons in thin layers of polar van
der Waals materials. For the studied material hBN, our theoretical analysis predicts
strong coupling for hBN layers between 3 and 148 nm thickness and ultrastrong
coupling for hBN thicknesses larger than 148 nm. Experimental reflection spectra
of cavities embedding 10 and 100 nm thick hBN layers show excellent agreement
with theoretical calculations and confirm strong coupling. For fully filled cavities
ultrastrong coupling was also demonstrated experimentally. In comparison with
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typical molecular vibrational strong coupling in fully filled cavities, the coupling
strength is about five times larger due to the high oscillator strength of crystal
phonons. Notably, we have shown that for Fabry-Pérot microcavities, the coupling
strength between the cavity modes and the vibrations depends on the amount of
material inside the cavity, but the maximum coupling strength achievable is solely
determined by the oscillator strength of the material. Following the analysis of this
chapter, by using van der Waals materials with even larger oscillator strength than
hBN, the deep strong coupling regime may be reached [309–311].
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CONCLUSIONS AND OUTLOOK

This thesis addresses the importance of quantum descriptions in nanophotonic
systems. To achieve this goal, three primary areas of study have been chosen: i)
how quantum calculations based on the framework of condensed matter theory
lead to an accurate first-principles description of plasmonic excitations in metals by
considering their electronic structure; ii) how a complete solution of the Schrödinger
equation in tunneling junctions allows for a more accurate calculation of the light
emitted by the system; and iii) how equivalences can be established between models
based on cavity quantum electrodynamics (QED) and on classical coupled harmonic
oscillators that are used to describe the strong and ultrastrong coupling between
cavity modes and matter excitations. We summarize in the following the main
findings obtained throughout this thesis.

First-principles description of plasmonic excitations in metallic
systems (Chapters 3 and 4)

• We employ Time Dependent Density Functional Theory (TDDFT) to
investigate the properties of plasmonic excitations on the Pd(110) surface.
Our analysis focuses on calculating the surface loss function, which reveals a
dominant peak corresponding to the surface plasmon. The frequency of the
surface plasmon in the classical limit of small wavevectors aligns with existing
experimental data. Nevertheless, we observe a weak positive dispersion in
the study of non-local optical response when the associated wavevectors
are of the order of 1 nm−1, contrary to the previously reported negative
dispersion observed in experiments on this surface. Further, we report that
this system displays bulk and surface electronic states with distinct Fermi
velocities. However, although previous studies have suggested that metallic
surfaces with such electronic states can support acoustic plasmons, we do
not identify any acoustic excitation with linear dispersion for the Pd(110)
surface. This finding indicates that the mere existence of bulk and surface
states close to the Fermi level is insufficient to generate acoustic plasmons.
Instead, a consideration of the complete band structure is essential to identify
all excitations of a metallic surface.

• We investigate the plasmonic excitations in anisotropic two-dimensional (2D)
electron gases with band structure of triangular, square, and hexagonal
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shapes. With this aim, we calculate the loss function in these systems. For all
geometries, we observe a plasmon characterized by a dispersion proportional
to the square root of the wavevector. This excitation is also present in
isotropic 2D metals. However, we discover an additional, acoustic plasmon
with linear dispersion that does not exist in the isotropic case. The number of
these acoustic plasmons varies depending on the shape of the band structure
of the material. Triangular and square-shaped systems exhibit a single
acoustic plasmon, while the hexagonal system displays two such excitations
with reduced lifetime compared to those corresponding to the other two
geometries. The number of plasmons is related to the number of groups
of electrons with the same Fermi velocity in each system. Previously, the
presence of acoustic plasmons was predominantly observed in systems with
distinct types of electronic states. Our findings thus suggest that anisotropy
serves as an additional mechanism for the emergence of acoustic plasmons,
even in materials characterized by a single electronic band.

Light emission from tunneling junctions (Chapter 5)

• We develop theoretical approaches to model the light emission that results
from the excitation of surface plasmon polaritons (SPP) in tunneling junctions.
Specifically, we revisit two methods commonly employed in the literature to
evaluate the SPP excitation rate, consisting in calculations within Fermi’s
golden rule and in the calculation of the power radiated by fluctuating
currents. We establish the relationship between these two methods, which
reveals that they provide equivalent results. Moreover, we show that the
accurate calculation of the SPP excitation rate requires the use of appropriate
wavefunctions for the tunneling electrons, obtained from the solution of the
Schrödinger equation of the entire device by considering both the insulator
gap and metallic electrodes. We call this approach the quantum device
solution (QDS). The QDS is an improvement of the widely utilized Bardeen’s
approximation that considers the wavefunctions just in the insulator gap
region. We find that the QDS predicts a significantly larger excitation rate
for the fast SPPs localized at interfaces several nanometers away from the
gap, in comparison to the result obtained within Bardeen’s approximation.
Further, the QDS provides additional qualitative insights into light emission
compared to Bardeen’s approximation. In particular, the QDS shows strong
correlations in the tunneling current between opposite metals, which Bardeen’s
approximation fails to capture. These strong correlations can be interpreted as
an electron-hole pair that recombines in the gap and that gives an additional
contribution to light emission that Bardeen’s approximation does not consider.
In general, this analysis extends the current framework of light emission from
tunneling junctions.

Coupling between cavity modes and matter excitations (Chapters 6
and 7)
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• We perform a comprehensive study of cavity-QED models and classical
coupled harmonic oscillator models that describe light-matter interaction in
the ultrastrong coupling regime. By deriving these two types of models from
the Lagrangian of electromagnetic fields, we establish the connections between
them and show that the same eigenvalue spectra and values of experimentally
measurable observables can be obtained classically and quantum mechanically,
but that care is required when defining the models. In particular, we focus
on two main classical models and two cavity-QED Hamiltonians. The first
classical model is the spring coupling (SpC) model, which mathematically
corresponds to two coupled mechanical springs. We demonstrate that this
model accurately represents longitudinal Coulomb interactions (for example,
the coupling between a molecule and a plasmonic nanoparticle within the
quasistatic approximation) and that it reproduces the behavior described with
a cavity-QED Hamiltonian that does not include a diamagnetic term. The
second model that we investigate is the modified coupling (MC) model, where
the coupling term is proportional to the time derivatives of the oscillator
amplitudes. This model is shown to be appropriate to analyze the coupling of
matter excitations with transverse electromagnetic modes in dielectric cavities
and is equivalent to the cavity-QED Hamiltonian with the diamagnetic term.

• We study the coupling between optical phonons and Fabry-Pérot cavity
modes within cavities filled with layers of hexagonal boron nitride (hBN).
We demonstrate that the strong coupling regime can be achieved even with a
hBN layer only 3 nm thick and that the coupling strength increases rapidly as
the hBN layers become thicker. The ultrastrong coupling regime is obtained
with a hBN layer of approximately 150 nm thickness, and for fully filled
cavities the coupling strength is more than 30% the bare phonon frequency. A
numerical study of the coupling strength based on transfer-matrix simulations
is supplemented by a microscopic model that leads to an analytical expression.
Notably, this analytical model emphasizes that in fully filled cavities the
coupling strength is solely determined by the bulk properties of the material,
rather than by the cavity properties. As a consequence, a coupling strength
larger than that determined by the bulk properties of the material cannot be
obtained in Fabry-Pérot cavities. Further, we demonstrate that the dispersion
of the hybrid modes that emerge due to the phonon-photon ultrastrong
coupling in fully filled cavities is directly related to the bulk permittivity
and the bulk phonon polariton dispersion of hBN. These findings indicate
that microcavities filled with polar materials are a promising platform for
studying the influence of strong and ultrastrong light-matter coupling on the
properties of polar materials.

The findings presented in this thesis also raise new questions for future research.
For instance, an immediate question raised by the results of Chapter 3 is the origin
of the discrepancy between the theoretical and experimental dispersions of the
surface plasmon on the Pd(110) surface. Answering this question would require
future work from both a theoretical and an experimental perspective. Regarding
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the theoretical description, we note that our treatment has not fully captured the
accurate dynamics of the electrons that excite the surface plasmon. Instead, the
results have been evaluated with a simpler description based on the surface loss
function. Additionally, while our investigations of Chapter 4 have revealed that
anisotropy in the band structure serves as a mechanism for the emergence of acoustic
plasmons, the calculations in this thesis have utilized idealized band structures.
Thus, it would be intriguing to explore whether our findings are confirmed in
realistic metals, after performing calculations with more rigorous approaches such
as TDDFT.

In addition, Chapter 5 has emphasized the significance of considering the QDS
to accurately describe light emission from tunneling junctions. However, we have
limited this study to the specific case of planar junctions. Thus, future work can
generalize the QDS to other systems, such as gratings or nanoantennas that include
narrow junctions. Furthermore, our model for describing tunneling electrons could
be further improved. The metallic layers in our calculations possess finite thickness,
which is considered in the calculation of the electric field distribution of the SPPs
but not in the calculation of the electronic wavefunctions of the QDS. Future
work may investigate how to implement more appropriate boundary conditions to
the Schrödinger equation to obtain more accurate wavefunctions within the QDS
approach.

Last, regarding the chapters exploring ultrastrong coupling between cavity
modes and matter excitations, a first open question is how losses can be rigorously
incorporated in classical coupled harmonic oscillator models in an equivalent manner
as in cavity-QED models. Although the implementation of losses in classical and
cavity-QED models is well understood in the strong coupling regime, it has been
recently shown that the usual method to consider losses in cavity QED (based
on Lindblad operators) fails in the ultrastrong coupling regime. As a result, a
more rigorous procedure to consider losses in the cavity-QED approach has been
adopted, which uses generalized master equations. Future work could shed light on
the implications, if any, of these improvements on the classical approach. Another
noteworthy question relates to the study of ultrastrong coupling in microcavities
filled with polar materials, as presented in Chapter 7. In particular, according
to previous studies, strong coupling with electromagnetic modes can alter the
chemical reactivity of molecules introduced inside a cavity. Future work could find
whether modifications of other physical properties can occur in the case of polar
materials coupled to a cavity. Further, we have found that the maximum coupling
strength in the cavity is not larger than the intrinsic coupling strength in a bulk
material, which emphasizes the interest of exploring reasons of the modification
of the physical and chemical properties that go beyond the value of the coupling
strength.

In conclusion, we hope that this thesis contributes to improving the
understanding of a large variety of quantum effects in nanophotonics.
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Appendix A

Origin of the strong current
correlations at opposite metals in
tunneling junctions

In Fig. 5.3b, we plot the cross-spectral density Sjzjz (z, z′, ω
(ν)
K∥

) associated with the
spatial correlations of the current density due to electrons tunneling through
a narrow gap (for r∥ = r′

∥). This calculation is performed by introducing
the wavefunctions of the quantum device solution (QDS) in the definition of
Sjzjz (z, z′, ω

(ν)
K∥

) from Eq. (5.26) and then solving the integral numerically over
the wavevectors kL and kR (corresponding to electronic states of the metals in
the left and the right, respectively). We discussed that the electronic currents
are strongly correlated for z = z′ but also for points satisfying the condition

z′ − Lgap = −z

√
ER

F +VB

EL
F

at opposite metals. In this appendix, we analyse
analytically the origin of the latter strong correlations.

The cross-spectral density Sjzjz
(z, z′, ω

(ν)
K∥

) depends on the expression for the
current density jL→R associated to each particular transition [Eq. (5.13)]. We
consider the QDS and thus use Eq. (5.1) for the wavefunction ΨL(r) of the initial
state for an electron that tunnels from the left metal, and Eq. (5.2) for the
wavefunction ΨR(r) of the final state associated with an electron tunneling from
the right metal. The final state ΨR(r) has a lower energy than the initial state
ΨL(r). By introducing their corresponding expression in Eq. (5.13), we obtain the
following expressions for the z component of the current density:

• For z ≤ 0,

jz,L→R(z) = iℏe

2meff

1
LzS

t∗
Re−ik−

zLLgap
[
ei(k+

zL+k−
zL)zi(k+

zL − k−
zL)

−rLe−i(k+
zL−k−

zL)zi(k+
zL + k−

zL)
]
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≈ ℏe

2meff

1
LzS

t∗
Re−ik−

zLLgaprLe−i(k+
zL−k−

zL)z(k+
zL + k−

zL). (A.1)

• For 0 < z ≤ Lgap,

jz,L→R(z) = iℏe

2meff

1
LzS

[
(k+

zgap + k−
zgap)α∗

RαLe(k+
zgap−k−

zgap)zek−
zgapLgap

− (k+
zgap + k−

zgap)β∗
RβLe−(k+

zgap−k−
zgap)ze−k−

zgapLgap

− (k+
zgap − k−

zgap)α∗
RβLe−(k+

zgap+k−
zgap)zek−

zgapLgap

+ (k+
zgap − k−

zgap)β∗
RαLe(k+

zgap+k−
zgap)ze−k−

zgapLgap
]

.

(A.2)

• For z > Lgap,

jz,L→R(z) = iℏe

2meff

1
LzS

tL

[
ei(k+

zR+k−
zR)ze−ik−

zRLgapi(k+
zR − k−

zR)

+r∗
Rei(k+

zR−k−
zR)zeik−

zRLgapi(k+
zR + k−

zR)
]

≈ − ℏe

2meff

1
LzS

tLr∗
Rei(k+

zR−k−
zR)zeik−

zRLgap(k+
zR + k−

zR). (A.3)

In these expressions, the superscripts + and − in kzL, kzR and kzgap mean that
these wavevectors are associated to the state of the initial state (at higher energy)
or to the final state (at lower energy), respectively. Further, in Eqs. (A.1) and
(A.3), we have assumed that k+

zL(R) + k−
zL(R) ≫ |k+

zL(R) − k−
zL(R)|.

To calculate the cross-spectral density Sjzjz (z, z′, ω
(ν)
K∥

), we need to integrate
the product of the current density of Eqs. (A.1), (A.2) and (A.3) at two points z
and z′, over all initial (with wavevector kL) and final (with wavevector kR) states,
as indicated by Eq. (5.26). Crucially, to obtain strong correlations at different
points z and z′, the relation between the phases of the current density jz,L→R(z) at
these two points must be equal for all transitions between ΨL(z) and ΨR(z) states,
so that contributions with different phases do not cancel out with each other. For
each transition, we obtain the following phase relations of the current density over
spacei:

arg{jz,L→R(z)} ≈


arg(t∗

R) + arg(rL) − k−
zLLgap − (k+

zL − k−
zL)z z ≤ 0

constant 0 < z ≤ Lgap

π + arg(tL) + arg(r∗
R) + k−

zRLgap + (k+
zR − k−

zR)z Lgap < z

.

(A.4)
In the length scales of usual insulator gaps, the argument of Eq. (A.2) changes

i In all equations involving the arg function in this appendix, the equalities are satisfied under
mod(2π).
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very slightly, and thus we have considered in the derivation of Eq. (A.4) that it
is constant over the gap region. Importantly, the phase of the current density
changes linearly with z in the metals, due to the exponential terms e−i(k+

zL−k−
zL)z

and ei(k+
zR−k−

zR)z in Eqs. (A.1) and (A.3), respectively. Further, the continuity of
the wavefunctions ΨL(z) and ΨR(z) implies that jz,L→R(z) must be also continuous.
By defining ζ as the argument of the current density in the two metal-insulator
boundaries at the gap, we rewrite Eq. (A.4) as

arg{jz,L→R(z)} ≈


ζ − (k+

zL − k−
zL)z z ≤ 0

ζ 0 < z ≤ Lgap

ζ + (k+
zR − k−

zR)(z − Lgap) Lgap < z

. (A.5)

An important consequence of Eq. (A.5) is that the values of arg{jz,L→R(z)} are
related in the two metals. Indeed, at two points z and z′ satisfying the condition

z = −
k+

zR − k−
zR

k+
zL − k−

zL
(z′ − Lgap) (A.6)

the current density has the same argument. Considering a transition from an initial
state of energy ℏωel and parallel wavevector k+

∥ to a final state of corresponding
values ℏωel − ℏω

(ν)
K∥

and k−
∥ , the denominator of Eq. (A.6) is evaluated as

k+
zL − k−

zL =
√

2meff(ℏωel + EL
F)

ℏ2 − |k+
∥ |2 −

√
2meff(ℏωel − ℏω

(ν)
K∥

+ EL
F)

ℏ2 − |k−
∥ |2

=
√

2meffEL
F

ℏ2


√√√√1 +

ℏωel −
ℏ|k+

∥ |2

2meff

EL
F

−

√√√√
1 +

ℏωel − ℏω
(ν)
K∥

−
ℏ|k−

∥ |2

2meff

EL
F


≈
√

2meffEL
F

ℏ2

ℏω
(ν)
K∥

+
ℏ(|k−

∥ |2−|k+
∥ |2)

2meff

EL
F

, (A.7)

where in the last step we have made a first-order Taylor expansion under the
assumption that the electronic energies ℏωel −

ℏ|k+
∥ |2

2meff
are considerably smaller than

the Fermi energy EL
F in the transitions considered. Following the same calculation

for k+
zR − k−

zR, we obtain the same expression of Eq. (A.7) with the substitution
EL

F → ER
F + eVB. Accordingly, we can evaluate the fraction in Eq. (A.6), which

leads to the condition

z = −

√
ER

F + eVB

EL
F

(z′ − Lgap). (A.8)

Notably, under the approximations considered in this appendix, Eq. (A.8) does
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not depend on the transition frequency ω
(ν)
K∥

and on the parallel wavevectors k+
∥

and k−
∥ of the initial and final quantum states. This means that for all possible

transitions from a state ΨL(z) to a state ΨR(z), the current density has a similar
argument at points z and z′ that satisfy Eq. (A.8). Therefore, all transitions act
constructively in the integral of Eq. (5.26) at these two points, leading to a strong
peak in the correlations of the current density.
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Classical description of the
coupling between a molecule and a
plasmonic nanocavity based on
their polarizability

The interaction of a small metallic nanoparticle with a molecular excitation can
be described classically by using polarizabilities αcav and αmat for both particles,
so that the dipole moment induced by the electric field at each position rcav and
rmat is given by dcav = αcavE(rcav) and dmat = αmatE(rmat), respectively. In
this appendix, we briefly show that this approach leads to the same equations as
the SpC model obtained from the electromagnetic Lagrangian [Eq. (6.21)], which
supports the validity of the general approach used in Chapter 6.

For the cavity (metallic nanoparticle) and the molecular excitation (or any
matter excitation in general), we consider the polarizability given by the Lorentz
oscillator model. In the case of the molecule, we focus on a single excitation with
Lorentzian polarizability centered at resonant frequency ωmat, linewidth determined
by the damping frequency γ and oscillator strength fmat. Similarly, we also model
the nanocavity response as given by a single plasmonic resonance that follows a
Lorentzian-like lineshape, which is the typical lineshape in the quasistatic regime.
This resonance is centered at frequency ωcav, and is characterized by losses κ and
oscillator strength fcav. The polarizabilities of the plasmonic nanocavity and the
molecule are then given by

αcav(ω) = fcav

ω2
cav − ω2 − iωκ

, (B.1a)

αmat(ω) = fmat

ω2
mat − ω2 − iωγ

. (B.1b)

The dipole moment of each particle is induced by the electric field Einc of

217



Appendix B. Coupling between a molecule and a plasmonic nanocavity

the external laser and also by the electric field generated by the other particle
(Ecav and Emat corresponding to the fields induced by the nanocavity and the
matter excitation, respectively). We then have dcav = αcav[Emat(rcav) + Einc] and
dmat = αmat[Ecav(rmat)+Einc]. By inserting in these expressions the polarizabilities
given by Eq. (B.1) and the fields induced by the dipoles excited at the cavity and
the molecule,

Emat(rcav) = ndmat − 3(ndmat · nrrel)nrrel

4πε0|rcav − rmat|3
, (B.2a)

Ecav(rmat) = ndcav − 3(ndcav · nrrel)nrrel

4πε0|rcav − rmat|3
, (B.2b)

we obtain the expressions of the induced dipole moments

(ω2
cav − ω2 − iωκ)dcav

= fcav

[
ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
+ Einc · ndcav

]
,

(B.3a)

(ω2
mat − ω2 − iωγ)dmat

= fmat

[
ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
+ Einc · ndmat

]
.

(B.3b)

These equations are equivalent to Eq. (6.21) in frequency domain, with xcav =
dcav√

fcav
, xmat = dmat√

fmat
and using the relation |Einc| = |iωAinc| that follows from the

definition of the vector potential.
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Appendix C

Transformation from individual to
collective oscillators in the
description of homogeneous
materials in Fabry-Pérot cavities

In Sec. 6.5.3, we analyze how classical models of harmonic oscillators describe an
ensemble of Nmat molecules introduced in a Fabry-Pérot cavity. Each molecule
couples with all the other molecules and also with the transverse modes of the
cavity, and all these interactions can be modelled through Eq. (6.42). In this
appendix, we show how to describe this system by considering the coupling of each
Fabry-Pérot mode with a single collective mode of matter oscillators. Specifically,
here we demonstrate how to transform Eq. (6.42), written in terms of harmonic
oscillators of individual molecular excitations, into Eq. (6.43), which considers
collective modes. This derivation can be generalized to other cavities by following
the same procedure but using the spatial distribution of the transverse electric field
of the corresponding cavity modes.

We assume that the Fabry-Pérot cavity contains perfect mirrors in the planes
z = 0 and z = Lcav (Lcav is the thickness of the cavity), so that the cavity has
transverse electric (TE) modes with field distributioni

Ξnk∥(r) = sin
(

nπz

Lcav

)
eik∥·r∥ . (C.1)

All modes of the cavity are indexed by the integer n and the wavevector in the
parallel direction k∥, which can be any two-dimensional vector [we consider a

i To simplify the discussion, here we show explicitly the transformation under the field
distribution of TE modes. However, Fabry-Pérot cavities also have transverse magnetic (TM)
modes, and all the transformations are equivalent after substituting the field distribution of these
modes into Eq. (C.1).
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discrete set of k∥ by assuming that the cavity has a long but finite size in the
lateral dimensions and using Born-von Karman periodic boundary conditions for
Eq. (C.1)]. We further assume that the direction of the transition dipole moments
of the molecules is the same as that of the electric field of the mode (parallel to the
mirror planes). As a consequence, the coupling strength between each molecule
placed in the position ri = (r∥,i, zi) and the nk∥ Fabry-Pérot mode is calculated
with the expression g

(nk∥,i)
MC = 1

2

√
fmat

ε0Veff
Ξnk∥(ri) [Eq. (6.17)]. By introducing the

field distribution of Eq. (C.1) in the expression of the coupling strength explicitly,
the equations of motion of the system [Eq. (6.42)] become

ẍcav,nk∥ + ω2
cav,nk∥

xcav,nk∥ −
∑

i

√
fmat

ε0Veff
sin
(

nπzi

Lcav

)
e−ik∥·r∥i ẋmat,i = 0, (C.2a)

ẍmat,i + ω2
matxmat,i +

∑
n′,k′∥

√
fmat

ε0Veff
sin
(

n′πzi

Lcav

)
eik′

∥·r∥i ẋcav,n′k′∥

+
∑
j ̸=i

2ωmatg
(i,j)
SpC xmat,j = 0. (C.2b)

In Eq. (C.2a), we already observe that the oscillator xcav,nk∥ of the nk∥ cavity
mode is coupled to a collective matter operator. By defining the collective oscillator
of the nk∥ matter mode as

xmat,nk∥ = 1√
Neff

∑
i

e−ik∥·r∥i sin
(

nπzi

Lcav

)
xmat,i, (C.3)

Equation (C.2a) becomes

ẍcav,nk∥ + ω2
cav,nk∥

xcav,nk∥ −
√

NeffgMCẋmat,nk∥ = 0. (C.4)

where gMC = 1
2

√
fmat

ε0Veff
is the maximum achievable coupling strength in this system

between a single molecule and a cavity mode, for molecules placed in the antinodes
of the mode. As discussed below, Neff =

∑
i |Ξnk∥(ri)|2 is the effective number of

molecules that couple with the cavity mode, whose exact relation with the total
number of molecules Nmat depends on the system and the spatial distribution of the
modes. Further, we observe in Eq. (C.4) that the coupling strength between the
cavity mode and the collective oscillator mode increases as gMC

√
Neff. This scaling

of the coupling strength [together with the scaling as 1/
√

Neff of the collective
oscillator in Eq. (C.3)] is the same as in the quantum Dicke model [285], showing
that the classical oscillator models are consistent with descriptions based on cavity
QED.

The next step is to transform Eq. (C.2b), which requires considering Nmat
equations simultaneously, one per molecule at position ri. To do the transformation,
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we multiply Eq. (C.2b) by 1√
Neff

sin
(

nπzi

Lcav

)
e−ik∥·r∥i for each i molecule and sum

the Nmat resulting terms. With this procedure, the transformation of the first two
terms is straightforward as

1√
Neff

∑
i

sin
(

nπzi

Lcav

)
e−ik∥·r∥i(ẍmat,i + ω2

matxmat,i) = ẍmat,nk∥ + ω2
matxmat,nk∥ .

(C.5)
Repeating the procedure with the third term of Eq. (C.2b), we obtain

1√
Neff

gMC

∑
n′,k′∥

ẋcav,n′k′∥

∑
i

sin
(

n′πzi

Lcav

)
sin
(

nπzi

Lcav

)
ei(k∥−k′

∥)·r∥i

= 1√
Neff

gMC

∑
n′,k′∥

ẋcav,nk∥

Nmat

2 δn,n′δk∥,k′∥ = gMC
Nmat

2
1√
Neff

ẋcav,nk∥ .

(C.6)

Equation (C.6) shows that, although each molecule couples with all Fabry-Pérot
modes, the collective matter oscillator of amplitude xmat,nk∥ , described by the
indexes n and k∥, only couples with the cavity mode of same indexes due to the
orthogonality of all these modes. Further, the coupling strength between the cavity
mode and the collective matter mode, which is the term multiplying ẋcav,nk∥ in Eq.
(C.6), must be equal to the coupling strength that multiplies ẋmat,nk∥ in Eq. (C.4).
This equality implies that Neff =

∑
i |Ξnk∥(ri)|2 = Nmat/2 for the Fabry-Pérot

cavity.
Last, we transform the fourth term of Eq. (C.2b), which involves molecule-

molecule interactions. To perform this transformation, we consider the SpC coupling
strength between molecules as given by Eq. (6.19) explicitly, which leads to

1√
Neff

∑
i

∑
j ̸=i

2ωmatg
(i,j)
SpC sin

(
nπzi

Lcav

)
e−ik∥·r∥ixmat,j

= 1√
Neff

∑
j

2ωmatxmat,je−ik∥·r∥j

∑
i ̸=j

g
(i,j)
SpC sin

(
nπzi

Lcav

)
e−ik∥·(r∥i−r∥j)

= 1√
Neff

∑
j

2ωmatxmat,je−ik∥·r∥j

×

∑
i ̸=j

1
2

fmate
−ik∥·(r∥i−r∥j)

4πε0|ri − rj |3ωmat
[1 − 3(nd · nrij)] sin

(
nπzi

Lcav

)
≈ 1√

Neff

∑
j

2ωmatxmat,je−ik∥·r∥j sin
(

nπzj

Lcav

)
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×

∑
i ̸=j

1
2

fmate
−ik∥·(r∥i−r∥j)

4πε0|ri − rj |3ωmat
[1 − 3(nd · nrij)]


︸ ︷︷ ︸

g
(nk∥)
SpC

(C.7)

= 2ωmatg
(nk∥)
SpC xmat,nk∥ . (C.8)

To obtain Eq. (C.7), we have considered that the dipole-dipole coupling strength
between different molecules, which depends over their distance as |ri −rj |−3, decays
much faster over z than the term sin(nπzi/Lcav) changes (unless n is so large that
it has very fast oscillations, which we do not consider here). Due to this fast decay,
we have checked numerically that the term sin(nπzi/Lcav) can be taken outside the
sum over molecules i as a constant. The sum over the variable i in Eq. (C.7) can
be then performed numerically to obtain the collective molecule-molecule coupling
strength g

(nk∥)
SpC .

Therefore, by gathering all transformed terms in Eqs. (C.5), (C.6) and (C.8),
Eq. (C.2b) becomes

ẍmat,nk∥ +
(

ω2
mat + 2ωmatg

(nk∥)
SpC

)
xmat,nk∥ + gMC

√
Neffẋcav,nk∥ = 0. (C.9)

Equations (C.4) and (C.9) correspond to Eq. (6.43). Importantly, the derivation
carried out in this appendix shows two important features of light-matter coupling
in this system: i) although each nk∥ cavity mode is coupled to all individual
molecules, it is only coupled to the nk∥ collective mode due to the orthogonality of
the modes, and ii) the only consequence of the molecule-molecule coupling for the
interaction between the nk∥ cavity and matter modes is to renormalize the bare

frequency of the matter oscillator from ωmat to
√

ω2
mat + 2ωmatg

(nk∥)
SpC [288].
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