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Abstract

How can networking affect the turnout in an election? We present
a simple model to explain turnout as a result of a dynamic process
of formation of the intention to vote within Erdos-Renyi random net-
works. Citizens have fixed preferences for one of two parties and are
embedded in a given social network. They decide whether or not to
vote on the basis of the attitude of their immediate contacts. They
may simply follow the behavior of the majority (followers) or make an
adaptive local calculus of voting (Downsian behavior). So they either
have the intention of voting when the majority of their neighbors are
willing to vote too, or they vote when they perceive in their social
neighborhood that elections are "close". We study the long run aver-
age turnout, interpreted as the actual turnout observed in an election.
Depending on the combination of values of the two key parameters, the
average connectivity and the probability of behaving as a follower or in
a Downsian fashion, the system exhibits monostability (zero turnout),
bistability (zero turnout and either moderate or high turnout) or trista-
bility (zero, moderate and high turnout). This means, in particular,
that for a wide range of values of both parameters, we obtain realistic
turnout rates, i.e. between 50% and 90%. Keywords: Turnout, Social
Networks, Adaptive Behavior.
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1 Introduction

Two basic questions concerning the turnout in elections are: "Who vote?"
and "Why do people vote?" Empirical research answers the first question
by pointing out a list of individual characteristics that influence partici-
pation. The results suggest that non participation is positively correlated
with low education level, social or geographical isolation (Matsusaka 1995),
being a newcomer or immigrant (Jackson 2003), having a low income (Li-
jphart 1997), and being young (Johnson 2002; Gimpel, Morris and Arm-
strong 2004). Moreover, those persons who voted in the previous election
are more likely to vote in the next: voting is thus a habit (Green and Shachar
2000; Plutzer 2002; Gerber, Green and Shachar 2003). The effect of exter-
nal characteristics such as the electoral system or the closeness of the race
between candidates has also been studied. It appears that voters are more
likely to turn out under proportional electoral systems than under majority
systems (Geys 2006). Closeness also matters (Geys 2006; Shachar and Nale-
buff 1999) although the evidence is patchy (Matsusaka 1993; Matsusaka and
Palda 1993).

The influence of social networks is well known in political science and
sociology (Lazarsfeld, Berelson and Gaudet 1948; Berelson, Lazarsfeld and
McPhee 1954). The recent empirical findings concerning what McClurg
(2004) calls "behavioral contagion" and Blais and Young (1999) call "per-
ceived pressure to vote" can be summarized as follows. People whose neigh-
bors and friends usually vote are more likely to participate (Kenny 1992;
McClurg 2004). Interpersonal discussion influences political participation
(Huckfeldt and Sprague 1995). The effect of social interaction on partici-
pation is contingent on the amount and the quality of political discussion
that occurs within the social network (McClurg 2003, 2006). Moderately
informed voters tend to imitate their neighbors’ voting behavior (Johnson
2002). The contagion effect occurs among spouses (Nickerson 2008), but
weaker ties or even casual interactions may also determine political behav-
ior patterns (Huckfeldt, Beck, Dalton and Levine 1995). Publicizing par-
ticipation increases the turnout (Gerber, Green and Larimer 2008). Politi-
cal disagreement within the network tends to dampen turnout (Mutz 2002;
Gimpel, Dyck and Shaw 2004), although Nir (2005) distinguishes between
isolation within one’s own opinion environment and the balance of exposure
to two conflicting points of views.

At the theoretical level, Downs (1957) uses rational choice to question
the turnout in large elections: Why do so many people vote given that
in marginal terms the cost of voting is larger than its benefits? Indeed



the benefit of voting depends on the voter’s probability of being decisive,
which is extremely low in large electorates. Since then many explanations
have been given, among them a sense of duty (Riker and Ordeshook 1968)
and the objective of minimizing regret (Ferejohn and Fiona 1974). Game
theoretical models (Palfrey and Rosenthal 1983, 1985; Ledyard 1984) have
been proposed, as have group-based models of mobilization (Uhlaner 1989;
Shachar and Nalebuff 1999). For a review of these models, see Feddersen
(2004) or Geys (2006). More recently, network theory has sought to explain
turnout by contagion through social networks: groups of voters can convince
their nearest neighbors to go and vote. Amaro de Matos and Barros (2004)
and Fowler (2005) show that if people imitate their neighbors’ behavior, a
small group of people with strong feelings about voting can bring about a
massive turnout by a "domino" or "cascade" effect. Fowler and Smirnov
(2005) propose a model where individuals base their decision to abstain or
participate on what the most satisfied neighbors did in the previous period,
and find that the result is a large turnout.

In this paper we bridge the gap between rational theory and network
theory by combining adaptive calculus of voting and imitation within social
networks. We assume that individuals decide whether or not to vote on the
basis of the influence of their social neighbors (e.g. family, friends, coworkers,
etc.): while some individuals simply follow the observed majority behavior
(imitation or contagion effect), others tend to turn out if they perceive that
elections are "close" (local adaptive calculus of voting effect).

In more detail, we propose the following model. Two parties compete in
an election. Each citizen has a given preference for one party or the other
and that preference does not change during the relevant period. Instead,
before the election takes place, the decision that evolves is the intention
to participate. Citizens are embedded in a random social network and dy-
namically make their choice to vote or not depending on what they observe
within their social neighborhoods. We study the long-run emerging average
behavior which, as discussed in the next section, can be interpreted as the
actual turnout observed in the election.

We represent the social structure as a fixed random network. Nodes
are citizens and links (ties) are social relationships. More specifically, we
consider undirected Erdos-Renyi random networks. In this type of network
all ties have the same probability of being present and for a large number of
nodes the connectivity distribution is approximately Poisson. This implies
that the network can be fully characterized by the average connectivity
(e.g. average number of links per node or average degree). This feature is
therefore one of the two parameters of our model. Its magnitude depends



on who is really influential when one decides whether to participate or not.
Do people discuss politics only with friends, with friends and family, with
friends, family and co-workers, etc? Naturally, it may also depict different
kinds of society, some of which are more densely connected than others.

Given the pattern of interactions, citizens form their intention to vote.
Agents have limited information and are backward adaptive learners. They
only have access to local information - that which they can gather in their
immediate neighborhood -; and use the past as a guide for making their
current decision (see Kanazawa 1998 or Fowler and Smirnov 2005). That
is, whenever a citizen updates his/her intention whether or not to turn out,
say at time ¢, he/she takes into account his/her neighbors’ intention to
participate at t — 1 as well as their given political preferences.! We consider
two possible behaviors - imitation and adaptive calculus of voting - which
may reflect differences in political awareness (see Beck, Dalton, Greene and
Huckfeldt 2002). The probability of adopting one of these behaviors is the
second parameter of our model. If the citizen acts as a "follower," he/she
decides to vote if the majority of his/her neighbors are willing to vote too.
If the citizen is a "local Downsian" he/she decides to vote if he/she may be
"decisive" in his/her social neighborhood. In this case, if a large majority
of his/her voting neighbors have preferences for his/her preferred party or
his/her opposed party he/she will not vote. Not voting if one is isolated
in an enemy neighborhood is empirically found by Gimpel, Dyck and Shaw
2004. The "local Downsian" agent only votes if his/her neighborhood is
divided; he/she does not vote if he/she feels that either party may win by a
very large majority.

We use two complementary approaches to find the long-run turnout equi-
librium, i.e. the average turnout that remains stable through time. The
results obtained by an analytical approximation (the so-called mean-field
technique) are confirmed by Monte Carlo simulations. The interplay be-
tween the two key parameters, average connectivity and probability of be-
ing a follower results in a rich long-run behavior. The model often does not
predict a unique stable equilibrium: the system may exhibit bistability with
zero and high or moderate turnout and tristability with zero, moderate and
high rates of turnout.

The rest of the paper is organized as follows. In Section 2 we present
the framework and the assumptions. In Section 3 we highlight the main

'Tt should be clear that the dynamic process of turnout formation occurs just before
an election. Therefore step t is an arbitrary time unit each time (i.e. it does not represent
different election days).



results and compare them to real election data. The model is analytically
developed in Section 4 and complemented by Monte Carlo simulations in
Section 5. Finally, in Section 6 we sum up and discuss possible avenues
for future research. For the sake of clarity we relegate some mathematical
derivations to the Appendix.

2 The model: evolution of turnout intention

Two parties, A and B, compete in an election. Before the election takes
place, citizens are involved in a dynamic process of formation of turnout
intention. Let N denote the set of agents or citizens with the right to vote
(indexed by ¢ = 1,...,n). Each agent ¢ usually interacts with a small group,
thus we model the pattern of interactions as a (exogenously given and fixed)
random social network G & la Erdos-Renyi. In this network, agents are
nodes and links (ij) represent social relationships or political discussions.
Ties are undirected (thus if ¢ is connected to j, so is j with respect to i) and
any two agents have the same probability of being connected. We denote
N; ={j #1i,7 € N :1ij € G}, the set of agents with whom i is connected
or i’s neighbors. The connectivity of ¢ (number of neighbors) is denoted
by k; = |N;|. As G belongs to the Erdos-Renyi family of networks, for
a large n, the connectivity is approximately Poisson distributed and there
are no correlations; in particular the clustering coefficient (i.e. the average
probability of two neighbors of any agent ¢ themselves being connected) is
very small. All this implies that for a sufficiently large number of realizations
and a large n, the network can be fairly described by its average connectivity
(k) = >;en Ki/n, the unique parameter of the Poisson distribution.

Each agent has two basic characteristics: his/her preference and his/her
turnout intention. Agent i’s preference does not change during the relevant
period and is denoted by u; € {A, B}. This means that if agent i votes,
he/she chooses the candidate of party A (B) whenever u; = A (B). We
assume that preferences are uniformly distributed among the population
and there are exactly n/2 agents of each type. What does change over
time is the intention of agent ¢ to vote or not. Let v;; = 1(0) denote the
intention of agent 7 to turnout (or not) at time ¢t. We assume that initially a
proportion of the population is willing to vote and its distribution (uniform)
is independent of the network structure and the distribution of preferences.
Agents are bounded rational and at each t consider the information they
know from ¢ — 1. More specifically, the information that they can gather is
the characteristics of their neighbors; therefore at time ¢t each agent 7 knows



uj and vj;_1 for every j € N;.

The turnout intention dynamics is as follows. At each time ¢ = 1,.. one
agent is random uniformly chosen to update his/her turnout intention. With
probability p, the chosen agent behaves as a "follower" and is willing to vote
if a majority of his/her neighbors are also willing to vote. With probability
1 — p, the chosen agent behaves as a "Downsian" agent: he/she is willing to
vote if he/she thinks that elections are more or less close. Close elections are
understood as a 40%-60% division between neighbors who are considering
voting. Note that as citizens only have access to information within their
neighborhood, so this adaptive calculus of voting is done at the local level.

If agent 7 is chosen to update his/her turnout behavior at time ¢, he/she
uses the information gathered at period ¢t — 1, namely, the number of voting
neighbors, which we denote by x;;_1:

Tit—1 = Z Vjt—1, (1)

JEN;

and the number of voting neighbors with identical preferences, which we
denote by y; ;—1:

Yit—1 = Z Vjt—1- (2)

jENi:ujzui

Therefore, formally, if agent ¢ behaves as a "follower", his/her turnout in-
tention at time ¢ will be:

1 Zf Tit—1 > 0.5]@‘
Vit =

0 otherwise;

while if agent ¢ behaves in a "Downsian" fashion:

1 oaf 04z <wip1 < 0.6z
Vit = .
0 otherwise.

If agent ¢ has no neighbors (k; = 0) or no one in his/her neighborhood
is willing to vote (z;+—1 = 0), we assume that he/she simply copies his/her
own past behavior, i.e. v;; = v; ;1.

Under the assumption that vi¢,vay,.. are i.i.d. random variables, the
average turnout intention at time ¢, Zie N Vit/n, for n large approximates



the expected turnout intention at time t, ie. Y . nvi¢/n A (v);. The
equilibrium turnout v is approximated by the long run value of (v),, that

is (v), il v, or in other words, when (v), remains stable over time, v =
(v), = (v),_; (see Section 4 for more specific details).?

The long-run turnout intention obtained v represents, or can be inter-
preted as, the actual turnout that would be observed on election day. We
hence study the behavior of v as a function of the following parameters:

e p € [0,1], the probability of being a follower or the fraction of time for
which any individual behaves as a follower.

e (k) = 5,6,..25, the average connectivity of the network. We assume
(k) > 5 because for (k) < 5, the fraction of isolated individuals is too
great to allow the initial behavior to be updated. (This is similar to
Fowler 2005, where (k) is assumed to be between 4 and 20).

3 Qualitative and quantitative results

We adopt two different complementary approaches to solve the model. We
approximate analytically the long run average turnout via mean-field tech-
niques (Section 4). The approximation obtained is then confirmed and com-
plemented by Monte Carlo simulations (Section 5). In this section, we out-
line the intuition of the dynamics underlying our main results and compare
the theoretical levels of turnout against real election data.

Let us start with the extreme case where only follower or imitation be-
havior prevails in the population (p = 1). Any agent is willing to vote if
a majority of his/her neighbors intends to turnout. This does not depend
much on the connectivity but rather on the average turnout in the previous
period. For an initial turnout weakly larger than 50%, agents are likely
to start out as willing to vote, and so on in the following periods, which
should increase the turnout. Contagion thus spreads participation through
the whole population and a very high turnout can be expected in the long
run. Indeed we show that in this case the equilibrium turnout is 100%.
Similarly if the initial turnout is smaller than 50%, non participation should
spread through the population, and the equilibrium turnout should be 0%.

25 denotes convergence in probability. Note that assuming that vy ¢, vay, ... are i.i.d.
random variables allow us to invoke the weak law of large numbers. That is, for any

8> 0: Y cyvit/n kit (), = limp 0o Pr (|3, vie/n — (v),| > 8) = 0. An analogous

argument lies behind (v), L v, for random variables (V) , (V) s en



More generally, the qualitative effect of follower behavior on turnout is to
reinforce the prevailing conditions.

Now let us focus on the other extreme case, i.e. when there are only
Downsian agents (p = 0). The connectivity matters for the calculus of vot-
ing. The probability of close division at local level depends on the number
of voting neighbors and also on the preferences of those neighbors. If we as-
sume that supporters of A and B are uniformly distributed, the more voting
neighbors there are, the larger the probability of close division is (though
the parity effect plays a role). Qualitatively, if average connectivity increases
the number of voting neighbors should also increase, and thus the equilib-
rium of turnout should be higher. Note however that an equilibrium turnout
equal to 100% cannot arise in the presence of pure Downsian behavior. The
intuition is simple. Assume that initially all agents are willing to vote. As
preferences are uniformly distributed within the population an agent is more
likely to find that elections are "close" in his/her neighborhood. However,
this is not certain for all agents, and some will change their intention to-
wards non participation. By contrast a null turnout can be an equilibrium:
if no one is willing to vote, no one can make his/her local calculus of voting
and thus all agents maintain their prevalent behavior. In sum, the effect of
Downsian behavior is less obvious than the effect of follower behavior, but
there seems to be a positive relation between connectivity and turnout.

Now let us consider the interplay between the two types of behavior,
depending on the initial turnout and the connectivity. We observe two
kinds of self-reinforcing dynamics, one yielding low turnout and the other
high turnout:

e Low Turnout: the "Vicious Cycle": Consider a situation with an
initial turnout below 50% and/or low connectivity so that Downsian
agents are likely not to vote. As a consequence followers will not vote
either, which decreases the number of voting neighbors. If the Down-
sian agents face smaller subsets of voting neighbors they tend to vote
less, followers continue to reinforce this behavior, and so on. In the
long run, followers are likely not to vote at all, while the turnout of
Downsian agents may be moderate or null. The process thus stabi-
lizes around zero turnout or, under some conditions, at a positive but
moderate turnout (below 50%).

e High Turnout: the "Virtuous Cycle": Next, consider a situation
with an initial turnout above 50% and/or high connectivity so that
Downsians are likely to vote, and push the average voting above 50%.



In this case, followers are likely to vote, Downsians have many voting
neighbors, which increases the probability of a close division, and thus
vote, followers reinforce this outcome, etc. The long run outcome will
be a high turnout.

followers - high turnout equilibrium
08— K>=16, p=0.35 o—o downsians - high turnout equilibrium
initial condition Vo= 05 o——= followers - low turnout equilibrium

>—e downsians - low turnout equilibrium

fraction of downsians/followers voting in 1000 timesteps

o j

0 N & o ) = P
0 1e+05 2e+05 3e+05 4e+05 5e+05

MC timesteps

FIGURE 1. Evolution of turnout intention (v) conditional on behavior.
These are two realizations for n = 5 x 103, (k) =16, p = 0.35 and T =
5 x 10°5. Each 1000 steps, we calculate the fraction of times a Downsian
(follower) agent votes. Black lines are theoretical predictions cf. Section 4,
(4) and (5).

Of course, both cycles are mediated by the probability of an agent being
a follower, and a cycle may start because followers reinforce an increasing
or decreasing turnout or because Downsian agents increase or decrease over-
all participation. Moreover both cycles can be observed on networks with
identical numbers of agents, parameters, and initial turnout. In Figure 1
we show an example of the evolution over time of the probability of voting
conditional on each type of behavior. These are two realizations for a net-
work of n = 5 x 10 agents and average connectivity (k) = 16; a probability
of being a follower of p = 0.35, and an initial turnout of 50%.% Every 1000

3The maximum number of MC timesteps is T = 5 x 10° and the dynamics includes a



steps we plot the fraction of times that a Downsian agent votes and a fol-
lower votes. As the average connectivity is medium-high, Downsian agents
tend to vote, but the key is whether or not they are able to maintain an
average turnout above 50%. If so a virtuous cycle starts, and if not a vicious
cycle starts. For the realization that leads to the low turnout equilibrium,
the Downsian turnout falls below 50%, the followers have no incentive to
vote, and thus the vicious cycle operates. In the high turnout equilibrium,
initially driven by Downsian agents, the followers tend to vote en masse,
and the virtuous cycle starts. As we show below, this is not an exception.
There are many combinations of parameters that lead to non uniqueness of
the turnout equilibrium.

Now let us focus on the levels of the equilibrium turnout and compare
them with the turnout that we observe in real elections. The international
Institute for Democracy and Electoral Assistance (International IDEA) has
a voter turnout website on which statistics are available on political partici-
pation.* From these data, it can be said than more than half of the countries
listed have turnouts of between 60% and 80%, and four fifths have turnouts
of between 50% and 90%. The countries with turnouts of more than 90%
are usually countries where voting is compulsory (such as Australia and
Belgium).

The question is whether our model can lead to equilibria compatible with
real data, that is with turnout rates between 50% and 90%. The answer is
yes, but not for all values of our parameters. In Figure 2 we plot the regions
of pairs (p, (k)) with which we obtain realistic turnout rates. These rates
are one of the two or three equilibria that the model predicts, specifically
the highest one (see Sections 4 and 5). Thus, it should be clear that these
realistic turnout rates could arise if the dynamic process of turnout formation
stabilizes around the highest equilibrium.

e A turnout rate of between 80% and 90% can be obtained for all con-
nectivity levels (k). Roughly speaking, the more densely connected is
the network is, the lower the probability of being a follower p needs to
be, but at the same time, the range of possible values of p increases.
For instance, if (k) = 5, p should be between 0.75 and 0.82; while if
(k) = 25, it should be between 0.43 and 0.7.

e Something similar occurs with a turnout of between 70% and 80%.

small noise ¢ = 0.001, the probability that the selected node does anything (i.e. the agent
chooses randomly between voting or not). As we will explain in Section 5, this noise is
included for technical reasons related to simulations.

*See http://www.idea.int /vt /index.cfm
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The difference is that all the possible values of p are smaller than in
the previous case.

e A turnout of between 60% and 70% can be obtained for low levels of
probability of being a follower and connectivity levels greater than 5.

e Finally, a turnout of between 50% and 60% can be obtained for very
low levels of probability of being a follower and connectivity levels
greater than 9. Note that due to the parity effect, for (k) = 11, 13 and
15 the theoretical turnout is always greater than 60%, and that for
(k) = 10,12,14,16 and 17, the turnout in this region is greater than
55%, meaning that only for (k) > 18, would turnouts of close to 50%
be observed.

25

25

v*€(0.8, 0.9]

20

20

v*€(0.7, 0.8]

turnout betwee|
 50% & 60%:
v*€(0.5, 0.6]

v*e

average connectivity K>
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
probability of being follower p

FIGURE 2. Regions where the predicted turnout rates are realistic.

The four regions depict the combinations of average connectivity (k) and
probability of being follower p that yield realistic long run turnout rates.
The non-monotonic shape of the borders is due to the fact that (k) € N
and the subsequent parity effect.

For realistic turnout rates to be obtained, the probability cannot take
extreme values: for p = 1, we have either 0% or 100% participation, while for
p = 0 the turnout is below 60%, even for high connectivity. Realistic levels
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of turnout are obtained either for a large proportion of follower behavior
and not very densely connected networks, or for more connected networks
and a larger fraction of Downsian behavior.

4 Mean-field approximation

Our aim in this section is to obtain an analytical approximation of the
equilibrium turnout, i.e. the long-run state of the dynamics. As a first step,
we approximate the evolution in time of the expected turnout intention
(v);. The idea is simple. We assume that the binary variables v;; are i.i.d.
Bernoulli random variables with a probability of success of E (vi¢) = (v),,
therefore for n large the average turnout at time ¢ converges in probability

to the expected value (v),, i.e. Y,y vit/n il (v);. In this context, (v), is
the approximated probability that any agent ¢ is willing to vote at time t.

The probability that an agent 7 is willing to vote at time ¢ depends on
his/her behavior at time ¢ (either Downsian or follower) and his/her local
information, which in turn depends on what his/her neighbors did at time
t—1. Recalling the mean-field basic hypothesis, we assume that all neighbors
intended to vote at time ¢ — 1 with probability (v),_; and that ¢ has k; ~ (k)
neighbors, where (k) is the average connectivity of the network.’

If 7 behaves as a follower, what matters is the fraction of neighbors who
were willing to vote at time ¢t — 1 (z;+—1/k;). If ¢ behaves as a Downsian,
he/she cares about the fraction of voting neighbors with the same preferences
as himself/herself (y; +—1/x;t—1). Our assumptions imply that ;1 ~ 241
and y; ;1 ~ y;—1 for all .. They also allow us to interpret z;_; as a random
variable with binomial distribution (<U>t71 , <k:>), and y;_1, as a random
variable with binomial distribution (1/2,z;_1).

The probability that any agent ¢ is willing to vote at time ¢ is hence
approximated as:

(v), =p Pr(zi—1 >0.5(k))+(1—p) Pr(04z;—1 < yp—1 <0.624-1); (3)

where the probability of voting conditional on behavior as a follower (in
the first term) can be computed as:

°Here we assume that the average connectivity is a natural number, while it may be a
real number.
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()
= > <<I;>> (0 (1= (v)) 7, )

1=[0.5(k)]

-

(where [z] denotes the ceiling integer value of z, i.e., the smallest inte-
ger larger than z) and the probability of turnout conditional on Downsian
behavior (second term of (3)) as:

Pr (0.45875_1 < Yi—1 < 0.6(17t_1)
(k)
= ZPF(:L’IFl = l) Pr ([0.41}711 < Yt—1 < \_0.6.’131571J |£L’t71 = l)
=1
10.61]

(k)
= ZPr(xt—l =1 > Pr(y—1=m)
=1

m=[0.4{]
(k)
_ E ool (1, -t &I
- ;(l)m_l(l W) S () )

where |z]| denotes the floor integer value of z, i.e., the largest integer
smaller than z. Substituting the probabilities into (3) we obtain (v), as a
function of (v), ;. As discussed above, we are interested in the long-run
emergent behavior, which is therefore approximated by the asymptotically
stable solutions of (3).

"Long-run" solutions: existence and stability

In the long run, (v), = (v),_; = v, thus given (k) and p, the turnout intention
v meets:



The right hand side of (6) is a function of v, f(v), thus by definition any
fixed point v* satisfies condition (6). Fixed points reflect long-run behavior
as long as they are asymptotically stable. Therefore we require that v* to
meet the additional condition |f’ (v*| (k) ,p)| < 1 (that is, the absolute value
of the slope of f evaluated at the fixed point should be smaller than 1).

First, we address two results that can be easily shown analytically.

Proposition 1 v* = 0 is always an asymptotically stable solution for any
choice of parameters.

Proof. See the Appendix. m

The intuition is simple. If at some point in time no one has the intention
to vote, followers follow this behavior and Downsian agents are not able to
update, so they keep their past behavior. The equilibrium turnout is then
equal to zero.

One might wonder whether the other extreme, that is, a 100% turnout,
may also be a stable equilibrium. The answer is yes, but only if all voters
are followers. Formally:

Proposition 2 If v* =1 is an asymptotically stable solution then p = 1.

Proof. See the Appendix. m

These two propositions together imply that for p = 1 there is bistability,
that is, we have two different (although extreme and unrealistic) equilibrium
turnouts. This means that depending on the initial conditions either or both
of these equilibria may emerge.

For other values of p, the solutions of f(v) — v = 0 have to be found
numerically, as the degree of the polynomial ({(k) > 5) is too high for ana-
lytical solutions to be obtained. We fix (k) and show the typical bifurcation
diagrams taking p as the bifurcation parameter. The function v*(p) de-
scribes branches of fixed points and the bifurcation diagram presents all
those branches in the (p,v*) space. When for a value of p, say pg, several
branches come together, the point (pg,v*) is said to be a bifurcation point
and pg, its bifurcation value. As Figure 3 depicts, in the diagrams of our
model there can be one or two bifurcation points, at which saddle-node or
fold bifurcations emerge.”

6Tt also implies that there must be at least one more fixed point between 0 and 1 which
is not asymptotically stable. See Figure 3.

"In a saddle-node or fold bifurcation, two branches of fixed points emerge. One of them
is stable, the other unstable.
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turnout intention v
o

'y .

0 P, P, 10 Py P, 1
probability of being follower p
FIGURE 3. Bifurcation Diagrams, v*(p).
Solid lines depict stable fixed points; dashed, unstable fixed points. p1, p2
are bifurcation values. Panels: A, (k) = 6; B, (k) = 12; C, (k) = 16; D,
(k) = 22,

An important conclusion that can be derived is that, depending on the
combination of p and (k), the system may exhibit monostability, bistability
or tristability. That is, for some pairs (p, (k)), the model predicts multiple
equilibria. This does not mean, however, that all the equilibria are equally
likely to emerge: the equilibrium observed depends on the initial conditions,
i.e. the initial fraction of population willing to vote (vg). The arrows in
Figure 3 describe the basins of attraction of each equilibrium.

Consider for example the diagram of Figure 3-C, for p between p; and ps,
where the model predicts tristability (zero, moderate and high turnout). If
the initial condition lies strictly above the upper dashed line, we will observe
only the high turnout equilibrium. If the initial condition lies approximately
on the upper dashed line, both the high and moderate long-run turnouts
are likely to be observed (in this situation we can say that there exists
"true" multistability). Similarly, if vy lies strictly below the upper dashed
and strictly above the lower dashed line, only the moderate turnout will
emerge; if it lies on the bottom dashed line, again two equilibria are possible
(moderate and zero turnout); and, finally, if it lies strictly below the lower

15



dashed line we will observe only the zero turnout equilibrium.

The stability zones in the (p, (k)) space are shown in Figure 4. The
critical probabilities are the aforementioned bifurcation values. We observe
that:

e If the connectivity is low ((k) € [5,9]NN), there is a critical probability
p1 such that for p < p; there is a unique zero turnout equilibrium;
while for p > p; the system exhibits bistability, with either zero or
high turnout. An example is given in Figure 3-A ((k) = 6).

e If the connectivity is intermediate ((k) € [10,14] N N), there are two
critical values, p; and pg, (0 < p; < p2 < 1). For p < p; the system
exhibits bistability, with either zero or moderate turnout. For p; <
p < pg there is a unique zero turnout equilibrium, and for p > ps the
system exhibits bistability, either zero or high turnout. The typical
diagram is shown in Figure 3-B ((k) = 12).

e Finally, if the connectivity is high ((k) € [15,25] N N), there are two
critical values, p; and pa, (0 < p;1 < p2 < 1). For p < p; we have
either zero or moderate turnout (bistability). For p; < p < ps turnout
can be zero, moderate or high (tristability), and for p > ps there can
be either zero or high turnout (bistability). In this case, there are two
kinds of bifurcation diagram (cf. Figure 3-C for (k) = 16 and Figure
3-D for (k) = 22).

Remark Although there is no difference between the two bottom panels of
Figure 3 (C and D) in terms of stability zones, an important difference
emerges if we study the effect of gradual variations of p. Starting from
one extreme of the range of p (either 0 or 1), we let the system stabilize
at the corresponding fixed point and gradually vary the value of p
(either up or down, respectively) until another steady state is reached,
then change p again and so forth. Thus for example, when (k) is very
high (between 18 and 25, as in Figure 3-D), if we start from p = 1
and vary p downwards, we move along the upper stable branch (i.e.
without "jumps"). But when (k) is medium-high (between 15 and 17,
as in Figure 3-C), we observe a discontinuity or discrete jump at p;.
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FIGURE 4. Stability zones. Interplay between average connectivity (k)
and follower’s probability (p). The non-monotonic shape of the borders is
due to the fact that (k) € N and its parity effect on the location of the
bifurcation points.

We conclude by discussing what would happen if we varied some para-
meters that we have kept constant so far, namely the size of the majority
and how "closeness" is defined. Imagine that a follower is willing to vote if

1
xit—1 > rk; where r € [5, 1];

while a Downsian agent is willing to vote if

1 1 1
(2 - 5) Tig—1 < Yip—1 < <2 + ﬂ) xi—1, with 8 € [0, 2} .

Roughly, increasing (decreasing) r () reduces the average turnout and,
depending on (k), changes the bifurcation diagram. In particular, when (k)
is large, instead of a diagram like Figure 3-D, we would have one similar
to Figure 3-C or 3-B because when either r is close to 1 or f is close to 0,
we are introducing a bias towards non-voting behavior, the effect of which
is similar to reducing connectivity (k). The opposite occurs when r (3) is
reduced (increased), i.e., r and 3 are close to 1/2.
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5 Simulations

In this section we run simulations to supplement the analysis. The aim
is to check whether the long run solution of the mean-field approximation
describes, at least qualitatively, the long-run state of the model.

In one realization (or run), an Erdés-Renyi network of 5 x 10% nodes and
given average connectivity (k) is created. Starting with an initial condition
of 50% of voting citizens (i.e. vg = 0.5), the behavior evolves for T' = 5x 103
timesteps.® The turnout of each realization is the average over the last 2x 103
timesteps. This is repeated 50 times (with the same values of p and (k)),
and the fixed points v* are the average over all runs.’ For technical reasons
we have introduced the possibility of an agent with a low probability (e)
randomly choosing whether to participate or not. This is done to prevent
the possibility of being stuck in the extreme turnout of 0%, although this is
very unlikely given vg = 0.5.1°

In order to test our analytical approximation, we reproduce the bifurca-
tion diagram for each (k) € [5,25] NN. According to the typical behavior of
the simulated diagrams, we present four groups, from low to high average
connectivity (see Figures 5-8).

8This maximum number of timesteps is quite safe, as can be observed in Figure 1. In
order to determine it, we have proceeded as usual: we previously ran several realizations
starting from T' = 10° and observe whether the dynamics tended to stabilize around any
particular value. Then, we have increased T until the stabilization was evident (depending
on (k), this occurred around 7 = 3 x 10°).

Whenever the dynamics ended in different fixed points, we obtained 30 additional
realizations in order to have more observations to calculate both averages.

10Tn other words, we introduce ¢ to restore ergodicity.
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FIGURE 5. Turnout intention (v) against the probability of being follower (p).

Medium-Low Average Connectivity
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FIGURE 6. Turnout intention (v) against probability of being follower (p).
Solid lines are theoretical predictions; circles, MC simulations (vg = 0.5, n
=5x 103, e =0.001, T = 5 x 10%). Each circle is the average of 50 runs;
each run, of the last 2 x 10 timesteps.
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Medium-High Average Connectivity
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FIGURE 7. Turnout intention (v) against the probability of being follower (p).

High Average Connectivity
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FIGURE 8. Turnout intention (v) against probability of being follower (p).
Solid lines are theoretical predictions; circles, MC simulations (vg = 0.5, n
=5x 103, e =0.001, T = 5 x 10%). Each circle is the average of 50 runs;
each run, of the last 2 x 10 timesteps.
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Two aspects of the simulations can be stressed:

e First, the mean-field approximation describes the actual long-run turnout

intention quite accurately. Almost all the simulated turnout points
(circles) correspond to stable fixed points of condition (6) (solid lines).
Recall that not all stationary points arise as an outcome of the sim-
ulated dynamic process because initial conditions matter (see Section
4).

e Second, with the initial condition of 50%, for some combinations of pa-
rameters the system exhibits what we call "true" multistability. This
is observed for medium-low connectivity and a relatively large p, and
for medium-high connectivity and intermediate values of p (cf. Figures
6 and 7).

In order to see whether other equilibria (stable fixed points) could be
observed, we modified the initial conditions. Recall that for the extreme
case when there are only followers (p = 1) the initial condition completely
determines the equilibrium turnout: if the initial turnout is smaller than
50%, by contagion we end up with a null turnout. By contrast the initial
condition has almost no effect in the case of purely Downsian behavior (p =
0). The reason is simple: on the one hand, when the average connectivity
is small (5 < (k) < 9) the only possible equilibrium for p = 0 is zero
turnout for all initial conditions. On the other hand, even if there are two
possible equilibria (zero and moderate) for (k) > 10 the initial condition
would have to be extremely low for the zero turnout equilibrium to emerge.
Consequently, for almost all the range of initial conditions we observe the
positive turnout equilibrium. Indeed, this occurs approximately for all p <
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0.35.'1 See Figure 9 for some examples.

K>=5

turnout intention v

probability of being follower p

FIGURE 9. Turnout intention (v) against probability of being follower (p).
Solid lines are theoretical predictions; circles (vg = 0.3) and stars (vg = 0.7)
are MC simulations (n = 5 x 103, ¢ = 0.001, T' = 5 x 10%). Each symbol is
the average of 50 runs; each run, of the last 2 x 103 timesteps.

6 Conclusions

We present a simple model to explain turnout rates under the assumption
that before any election takes place, i.e. during the campaign, citizens dy-
namically form their intention to vote as a consequence of their social inter-
actions. The pattern of interactions is fixed and modeled as a Erdos-Renyi
random network and hence it can be characterized by its average connec-
tivity. Individuals may simply follow the majority behavior (and vote or
not) or they may behave as "local adaptive Downsian agents." In the latter
case they tend to vote if they perceive that the election is "close" in their
neighborhood.

We study the long-run average turnout intention, which in this model
represents the turnout observed in an election. When all agents behave as

T As explained in the previous section in the analysis of Figure 3, for the zero turnout
equilibrium to emerge initial conditions would have to lie below the lower dashed line
(unstable fixed points). These unstable branches are, in turn, very close to zero.

22



pure followers, long-run turnout rates are very unrealistic (either all vote
or no-one does) and connectivity plays no role. The introduction of Down-
sian behavior then has two interesting effects. On the one hand the resulting
turnout rates are in general more realistic; on the other hand those outcomes
depend on the average connectivity of the network. Depending on the com-
bination of values of the two key parameters (average connectivity and the
probability of being a follower/Downsian), the system exhibits monostabil-
ity (zero turnout), bistability (zero turnout and either moderate or high
turnout) or tristability (zero, moderate and high turnout). When there is
more than one possible equilibrium, different initial conditions converge to
different stable stationary states. In some cases, the same initial condition
yields different equilibria, so turnout eventually becomes unpredictable. In-
terestingly, for a wide range of the parameters values this model predicts
realistic turnout rates, i.e. comparable to the average turnout observed in
the real-world elections.

In our model, citizens have fixed preferences for two parties and their
decision is whether to vote or not. There is no correlation among neighbors’
preferences. This is not consistent with voting literature, where it is found
that citizens tend to segregate in groups of identical preferences: citizens
with identical political preference are more likely to be connected. In our
setup this segregation would only decrease turnout. To see why, consider
an agent with Downsian behavior who shares the same preference with all
his/her neighbors. Then he/she will never vote. This would induce a trend
of non participation that would spread through the whole population by
contagion. The fact that segregation depresses turnout was found previ-
ously in Fowler and Smirnov (2005). Further research could include the
coevolution of preferences and turnout intention, perhaps assuming that a
fraction of the population does not have clear preferences for one particular
party or may change its preference. This would reflect what was found by
Zuckerman, Valentino and Zuckerman (1994): half of the electorate switch
their decision at least one over three ballots. Differences between supporters
of the two parties could also be introduced, that is, the initial fraction of
supporters may differ for one party or the other.
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Appendix
Proof of Proposition 1

As the RHS of (6) as a function of v is a polynomial of degree (k) with an
independent coefficient of zero, f(v)—wv = 0 has always at least one solution,
which is v* = 0, whatever the values of (k) and p. To check its stability we
consider f’(v):

_ (k) (k) Ivi—1 (1— 1))<k>_l
= pl:f%(kﬂ ( l ) ( ! (<k> _ l) (1 . U)(k:)—l—l

®) (k) Tl (1 — )= 061l 77\ 1
+(1—P)Z(l) ! ( ) (k)y—1—1 > < >21
=1 —v' ((k) = 1) (1 =) m=10.41] \"
If we expand this expression, in all terms except the first one preceded
by (1 — p) v or a power of v appears. This term (recall that [ = 1) is:

- @ (-9 o -na-v®?) 3 (1))

m=[0.4] \"T

10.61)

but then, in this case, ). (Tln) % = 0 (if 7 has only one voting neighbor,

m=[0.41]
he/she never votes). Thus, for v = 0, f' =0 < 1. Actually, v* = 0 is an
asymptotically super-stable fixed point. ]

Proof of Proposition 2

First assume that p = 1. Then, v* satisfies:

- % <<I;>>UZ (1= o)L

1=[0.5(k)]

In all the terms except the last one (1 —v) or a power of (1 —wv) ap-

pears. The last term is simply vk}, Thus, v* = 1 is a fixed point as
(k)
> (<];>)vl (1-— U)<k>_l — = 1) — 1 =0. Now consider I (v):
1=[0.5(k)] 1
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ro= S (W) (e a -t - pa B,

1=0.5(k)]

In all terms except those for [ = (k) —1 and [ = (k) (1 — v) or a power of
(1 — v) appears. The terms for [ = (k) —1 and [ = (k) are (after simplifying)

(k) ((<k> —1)ov®"2(1—w) - v<k>> + (k) vtR—1

= (k) (k) = ) o™ 72 (1= v) = (k) v® + (k) 071,

Thus, for v = 1 all terms are zero except for those in which (1 — v) does
not appear, but f'(1) = — (k) + (k) = 0 and v* = 1 is an asymptotically
super-stable fixed point.

Next, assume that v* = 1 and p < 1. If v — 1, in condition (6) all
the terms except those for | = (k) are zero, so the condition becomes (after

rearranging):
06K /() 1
a-n(i- > (W) -0
m=(04(ky) \m / 2k
0.6
as > (<m>)2<%> < 1, it must be the case that p = 1, otherwise
m=[0.4(k)]
v* = 1 would not be a fixed point. Contradiction. ]
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